1
|
Zhang Y, Jia Z, Yuan G, Chen K, Cen J, Wang J, Feng H, Adamek M, Zou J. HnRNPC triggers the degradation of MITA to suppress the interferon-mediated antiviral response. Vet Res 2025; 56:45. [PMID: 39994817 PMCID: PMC11854013 DOI: 10.1186/s13567-025-01463-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Accepted: 11/14/2024] [Indexed: 02/26/2025] Open
Abstract
Heterogeneous nuclear ribonucleoproteins (hnRNPs) are a group of 34-120 kDa nuclear proteins that have recently been reported to participate in virus replication. The hnRNP family contains approximately 20 members, including hnRNP A1, hnRNP A2, hnRNP A2B1, hnRNPC, hnRNPD and hnRNPK. HnRNPC plays important roles in RNA biology, including expression, stability, mRNA splicing, nonspecific sequence export and 3'-end processing; however, the mechanisms underlying hnRNPC regulatory roles are not fully understood. Here, we found that zebrafish hnRNPC promoted spring viraemia of carp virus (SVCV) replication by increasing the stability of SVCV phosphoprotein while inhibiting the K48-linked ubiquitination of virus phosphoprotein, thereby suppressing the type I interferon (IFN) response. Mechanistically, hnRNPC could interact with the mediator of IFN regulatory factor 3 activation (MITA) to activate K48-linked ubiquitination for MITA degradation through the C-terminal domain of hnRNPC. We also showed that human hnRNPC could interact with MITA and that the overexpression of human hnRNPC decreased MITA protein in HEK293 cells, suggesting that the negative regulatory effects of hnRNPC on the type I IFN response are evolutionarily conserved. Collectively, our data indicate that hnRNPC promotes virus replication by suppressing IFN production activated by MITA and increasing the availability of viral proteins. Our work reveals an evolutionarily conserved mechanism that controls the IFN-mediated antiviral response by a member of the hnRNP family in vertebrates.
Collapse
Affiliation(s)
- Yanwei Zhang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266200, China
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
- School of Fisheries, Xinyang Agriculture and Forestry University, Xinyang, 464000, China
| | - Zhao Jia
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266200, China
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Gaoliang Yuan
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266200, China
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Kangyong Chen
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266200, China
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Jing Cen
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266200, China
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Junya Wang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266200, China
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Hao Feng
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Mikolaj Adamek
- Fish Disease Research Unit, Institute for Parasitology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Jun Zou
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266200, China.
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China.
| |
Collapse
|
2
|
Zhang X, Lim K, Qiu Y, Hazawa M, Wong RW. Strategies for the Viral Exploitation of Nuclear Pore Transport Pathways. Viruses 2025; 17:151. [PMID: 40006906 PMCID: PMC11860923 DOI: 10.3390/v17020151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 01/20/2025] [Accepted: 01/21/2025] [Indexed: 02/27/2025] Open
Abstract
Viruses frequently exploit the host's nucleocytoplasmic trafficking machinery to facilitate their replication and evade immune defenses. By encoding specialized proteins and other components, they strategically target host nuclear transport receptors (NTRs) and nucleoporins within the spiderweb-like inner channel of the nuclear pore complex (NPC), enabling efficient access to the host nucleus. This review explores the intricate mechanisms governing the nuclear import and export of viral components, with a focus on the interplay between viral factors and host determinants that are essential for these processes. Given the pivotal role of nucleocytoplasmic shuttling in the viral life cycle, we also examine therapeutic strategies aimed at disrupting the host's nuclear transport pathways. This includes evaluating the efficacy of pharmacological inhibitors in impairing viral replication and assessing their potential as antiviral treatments. Furthermore, we emphasize the need for continued research to develop targeted therapies that leverage vulnerabilities in nucleocytoplasmic trafficking. Emerging high-resolution techniques, such as advanced imaging and computational modeling, are transforming our understanding of the dynamic interactions between viruses and the NPC. These cutting-edge tools are driving progress in identifying novel therapeutic opportunities and uncovering deeper insights into viral pathogenesis. This review highlights the importance of these advancements in paving the way for innovative antiviral strategies.
Collapse
Affiliation(s)
- Xin Zhang
- Division of Nano Life Science, Graduate School of Frontier Science Initiative, Kanazawa University, Kanazawa 920-1192, Japan; (X.Z.); (Y.Q.)
| | - Keesiang Lim
- WPI-Nano Life Science Institute, Kanazawa University, Kanazawa 920-1192, Japan;
| | - Yujia Qiu
- Division of Nano Life Science, Graduate School of Frontier Science Initiative, Kanazawa University, Kanazawa 920-1192, Japan; (X.Z.); (Y.Q.)
| | - Masaharu Hazawa
- WPI-Nano Life Science Institute, Kanazawa University, Kanazawa 920-1192, Japan;
- Cell-Bionomics Research Unit, Institute for Frontier Science Initiative, Kanazawa University, Kanazawa 920-1192, Japan
| | - Richard W. Wong
- Division of Nano Life Science, Graduate School of Frontier Science Initiative, Kanazawa University, Kanazawa 920-1192, Japan; (X.Z.); (Y.Q.)
- WPI-Nano Life Science Institute, Kanazawa University, Kanazawa 920-1192, Japan;
- Cell-Bionomics Research Unit, Institute for Frontier Science Initiative, Kanazawa University, Kanazawa 920-1192, Japan
| |
Collapse
|
3
|
Xiaomiao H, Ruihong Z, Wei L, Xiaocheng P, Yin D, Huimin W, Yantao W, Chengcheng Z. Host protein PRPS2 interact with the non-structural protein p17 of Avian Reovirus and promote viral replication. Poult Sci 2025; 104:104582. [PMID: 39631276 PMCID: PMC11665346 DOI: 10.1016/j.psj.2024.104582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 11/07/2024] [Accepted: 11/21/2024] [Indexed: 12/07/2024] Open
Abstract
Avian reovirus (ARV) is highly prevalent in healthy poultry flocks and has been linked to viral arthritis/tendonitis, dwarf syndrome, chronic respiratory disease, and immunosuppression in avian species, resulting in significant economic losses within the poultry industry. The non-structural protein p17 encoded by ARV induces cellular autophagy and facilitates viral proliferation, playing a pivotal role in viral pathogenesis. To further elucidate the pathogenic mechanism basis of ARV p17 protein function, we employed a yeast two-hybrid system to identify Phosphoribosyl pyrophosphate synthetase 2 (PRPS2) as an interacting host protein with p17. In this study, we validated the interaction between PRPS2 and p17 using laser confocal microscopy, coimmunoprecipitation, and GST-Pulldown assays. Moreover, our findings demonstrate that the C-terminal region of PRPS2 is responsible for its binding to the p17 protein. Intriguingly, ARV infection significantly upregulated PRPS2 expression levels. Additionally, PRPS2 was shown to have a substantial impact on ARV replication; overexpression of PRPS2 increased ARV replication while knockdown of PRPS2 resulted in decreased quantities of ARV particles. Furthermore, our findings suggest that this process involves cellular apoptosis as a potential mechanism underlying these observations. Overall, this research provides valuable insights into elucidating the function of the p17 protein and sheds light on the pathogenic mechanism involving ARV-induced cellular apoptosis while offering novel perspectives for exploring therapeutic targets against ARV.
Collapse
Affiliation(s)
- Hu Xiaomiao
- Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences/Livestock and Poultry Epidemic Diseases Research Center of Anhui Province/Anhui province Key laboratory of Livestock and Poultry Product Safety Engineering, Hefei, Anhui 230031, China
| | - Zhao Ruihong
- Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences/Livestock and Poultry Epidemic Diseases Research Center of Anhui Province/Anhui province Key laboratory of Livestock and Poultry Product Safety Engineering, Hefei, Anhui 230031, China
| | - Li Wei
- Yangzhou Polytechnic College, Yangzhou 225009, China
| | - Pan Xiaocheng
- Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences/Livestock and Poultry Epidemic Diseases Research Center of Anhui Province/Anhui province Key laboratory of Livestock and Poultry Product Safety Engineering, Hefei, Anhui 230031, China
| | - Dai Yin
- Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences/Livestock and Poultry Epidemic Diseases Research Center of Anhui Province/Anhui province Key laboratory of Livestock and Poultry Product Safety Engineering, Hefei, Anhui 230031, China
| | - Wu Huimin
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, Jiangsu 225009, PR China
| | - Wu Yantao
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, Jiangsu 225009, PR China
| | - Zhang Chengcheng
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, Jiangsu 225009, PR China.
| |
Collapse
|
4
|
Daniels MG, Werner ME, Li RT, Pascal SM. Exploration of Potential Broad-Spectrum Antiviral Targets in the Enterovirus Replication Element: Identification of Six Distinct 5' Cloverleaves. Viruses 2024; 16:1009. [PMID: 39066172 PMCID: PMC11281424 DOI: 10.3390/v16071009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/18/2024] [Accepted: 06/21/2024] [Indexed: 07/28/2024] Open
Abstract
Enterovirus genomic replication initiates at a predicted RNA cloverleaf (5'CL) at the 5' end of the RNA genome. The 5'CL contains one stem (SA) and three stem-loops (SLB, SLC, SLD). Here, we present an analysis of 5'CL conservation and divergence for 209 human health-related serotypes from the enterovirus genus, including enterovirus and rhinovirus species. Phylogenetic analysis indicates six distinct 5'CL serotypes that only partially correlate with the species definition. Additional findings include that 5'CL sequence conservation is higher between the EV species than between the RV species, the 5'CL of EVA and EVB are nearly identical, and RVC has the lowest 5'CL conservation. Regions of high conservation throughout all species include SA and the loop and nearby bases of SLB, which is consistent with known protein interactions at these sites. In addition to the known protein binding site for the Poly-C binding protein in the loop of SLB, other conserved consecutive cytosines in the stems of SLB and SLC provide additional potential interaction sites that have not yet been explored. Other sites of conservation, including the predicted bulge of SLD and other conserved stem, loop, and junction regions, are more difficult to explain and suggest additional interactions or structural requirements that are not yet fully understood. This more intricate understanding of sequence and structure conservation and variability in the 5'CL may assist in the development of broad-spectrum antivirals against a wide range of enteroviruses, while better defining the range of virus isotypes expected to be affected by a particular antiviral.
Collapse
Affiliation(s)
- Morgan G. Daniels
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, VA 23529, USA; (M.G.D.); (M.E.W.)
| | - Meagan E. Werner
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, VA 23529, USA; (M.G.D.); (M.E.W.)
| | - Rockwell T. Li
- Math and Science Academy, Ocean Lakes High School, Virginia Beach, VA 23454, USA;
| | - Steven M. Pascal
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, VA 23529, USA; (M.G.D.); (M.E.W.)
| |
Collapse
|
5
|
Mann JT, Riley BA, Baker SF. All differential on the splicing front: Host alternative splicing alters the landscape of virus-host conflict. Semin Cell Dev Biol 2023; 146:40-56. [PMID: 36737258 DOI: 10.1016/j.semcdb.2023.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 01/24/2023] [Accepted: 01/25/2023] [Indexed: 02/05/2023]
Abstract
Alternative RNA splicing is a co-transcriptional process that richly increases proteome diversity, and is dynamically regulated based on cell species, lineage, and activation state. Virus infection in vertebrate hosts results in rapid host transcriptome-wide changes, and regulation of alternative splicing can direct a combinatorial effect on the host transcriptome. There has been a recent increase in genome-wide studies evaluating host alternative splicing during viral infection, which integrates well with prior knowledge on viral interactions with host splicing proteins. A critical challenge remains in linking how these individual events direct global changes, and whether alternative splicing is an overall favorable pathway for fending off or supporting viral infection. Here, we introduce the process of alternative splicing, discuss how to analyze splice regulation, and detail studies on genome-wide and splice factor changes during viral infection. We seek to highlight where the field can focus on moving forward, and how incorporation of a virus-host co-evolutionary perspective can benefit this burgeoning subject.
Collapse
Affiliation(s)
- Joshua T Mann
- Infectious Disease Program, Lovelace Biomedical Research Institute, Albuquerque, NM, USA
| | - Brent A Riley
- Infectious Disease Program, Lovelace Biomedical Research Institute, Albuquerque, NM, USA
| | - Steven F Baker
- Infectious Disease Program, Lovelace Biomedical Research Institute, Albuquerque, NM, USA.
| |
Collapse
|
6
|
Bhattarai K, Holcik M. Diverse roles of heterogeneous nuclear ribonucleoproteins in viral life cycle. FRONTIERS IN VIROLOGY 2022. [DOI: 10.3389/fviro.2022.1044652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Understanding the host-virus interactions helps to decipher the viral replication strategies and pathogenesis. Viruses have limited genetic content and rely significantly on their host cell to establish a successful infection. Viruses depend on the host for a broad spectrum of cellular RNA-binding proteins (RBPs) throughout their life cycle. One of the major RBP families is the heterogeneous nuclear ribonucleoproteins (hnRNPs) family. hnRNPs are typically localized in the nucleus, where they are forming complexes with pre-mRNAs and contribute to many aspects of nucleic acid metabolism. hnRNPs contain RNA binding motifs and frequently function as RNA chaperones involved in pre-mRNA processing, RNA splicing, and export. Many hnRNPs shuttle between the nucleus and the cytoplasm and influence cytoplasmic processes such as mRNA stability, localization, and translation. The interactions between the hnRNPs and viral components are well-known. They are critical for processing viral nucleic acids and proteins and, therefore, impact the success of the viral infection. This review discusses the molecular mechanisms by which hnRNPs interact with and regulate each stage of the viral life cycle, such as replication, splicing, translation, and assembly of virus progeny. In addition, we expand on the role of hnRNPs in the antiviral response and as potential targets for antiviral drug research and development.
Collapse
|
7
|
Tang YS, So WK, Ng KLA, Mok KPC, Shaw PC. Interaction of Influenza A Nucleoprotein with Host hnRNP-C Is Implicated in Viral Replication. Int J Mol Sci 2022; 23:13613. [PMID: 36362400 PMCID: PMC9655074 DOI: 10.3390/ijms232113613] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/27/2022] [Accepted: 11/04/2022] [Indexed: 08/18/2023] Open
Abstract
The host interactome of influenza viral proteins is ever-expanding. In this work, we report the identification of host heterogeneous nuclear ribonucleoprotein C (hnRNP-C) as an interacting partner of influenza A virus nucleoprotein (NP). We confirmed that this interaction exists across different influenza A subtypes and strains. Using biochemical methods, we determined that hnRNP-C interacts with NP via its C-terminal auxiliary domain. Further, we determined that the hnRNP-C is a negative regulator of influenza viral growth. Its interaction with NP is implicated in the promotion of host cell apoptosis during viral infection. It is the first time that the interaction between influenza nucleoprotein and host heterogeneous nuclear ribonucleoprotein C is characterized in detail. Overall, these findings not only characterize the interaction between NP and its host interacting partner hnRNP-C but also clarify the functional significance of this interaction. This work may lead to a new therapeutic target for the development of anti-influenza drugs.
Collapse
Affiliation(s)
- Yun-Sang Tang
- Centre for Protein Sciences and Crystallography, School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Wai-Kin So
- Centre for Protein Sciences and Crystallography, School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Ka-Leung Andy Ng
- Office of University General Education, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Ka-Pun Chris Mok
- The Jockey Club School of Public Health and Primary Care, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Pang-Chui Shaw
- Centre for Protein Sciences and Crystallography, School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Hong Kong SAR, China
- Li Dak Sum Yip Yio Chin R&D Centre for Chinese Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
8
|
Bi Y, Jing Y, Guo L. Construction and validation of a prognostic marker and risk model for HCC ultrasound therapy combined with WGCNA identification. Front Genet 2022; 13:1017551. [PMID: 36263426 PMCID: PMC9573990 DOI: 10.3389/fgene.2022.1017551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 09/12/2022] [Indexed: 11/23/2022] Open
Abstract
Background: Hepatocellular carcinoma (HCC) is a malignant tumor with a highly aggressive and metastatic nature. Ultrasound remains a routine monitoring tool for screening, treatment and post-treatment recheck of HCC. Therefore, it is of great significance to explore the role of ultrasound therapy and related genes in prognosis prediction and clinical diagnosis and treatment of HCC. Methods: Gene co-expression networks were developed utilizing the R package WGCNA as per the expression profiles and clinical features of TCGA HCC samples, key modules were identified by the correlation coefficients between clinical features and modules, and hub genes of modules were determined as per the GS and MM values. Ultrasound treatment differential expression genes were identified using R package limma, and univariate Cox analysis was conducted on the intersection genes of ultrasound differential expression genes and hub genes of key HCC modules to screen the signatures linked with HCC prognosis and construct a risk model. The median risk score was used as the threshold point to classify tumor samples into high- and low-risk groups, and the R package IOBR was used to assess the proportion of immune cells in high- and low-risk groups, R package maftools to assess the genomic mutation differences in high- and low-risk groups, R package GSVA’s ssgsea algorithm to assess the HALLMARK pathway enrichment analysis, and R package pRRophetic to analyze drug sensitivity in patients with HCC. Results: WGCNA analysis based on the expression profiles and clinical data of the TCGA LIHC cohort identified three key modules with two major clinical features associated with HCC. The intersection of ultrasound-related differential genes and module hub genes was selected for univariate Cox analysis to identify prognostic factors significantly associated with HCC, and a risk score model consisting of six signatures was finally developed to analyze the prognosis of individuals with HCC. The risk model showed strength in the training set, overall set, and external validation set. The percentage of immune cell infiltration, genomic mutations, pathway enrichment scores, and chemotherapy drug resistance were significantly different between high- and low-risk groups according to the risk scores. Expression of model genes correlated with tumor immune microenvironment and clinical tumor characteristics while generally differentially expressed in pan-cancer tumor and healthy samples. In the immunotherapy dataset, patients in the high-risk group had a worse prognosis with immunotherapy, indicating that subjects in the low-risk group are more responsive to immunotherapy. Conclusion: The 6-gene signature constructed by ultrasound treatment of HCC combined with WGCNA analysis can be used for prognosis prediction of HCC patients and may become a marker for immune response.
Collapse
Affiliation(s)
- Yunlong Bi
- Department of Orthopedics, First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Yu Jing
- Department of Oncology, First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Lingling Guo
- Department of Ultrasound, First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
- *Correspondence: Lingling Guo,
| |
Collapse
|
9
|
Moghimi S, Viktorova EG, Gabaglio S, Zimina A, Budnik B, Wynn BG, Sztul E, Belov GA. A Proximity biotinylation assay with a host protein bait reveals multiple factors modulating enterovirus replication. PLoS Pathog 2022; 18:e1010906. [PMID: 36306280 PMCID: PMC9645661 DOI: 10.1371/journal.ppat.1010906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 11/09/2022] [Accepted: 09/30/2022] [Indexed: 11/07/2022] Open
Abstract
As ultimate parasites, viruses depend on host factors for every step of their life cycle. On the other hand, cells evolved multiple mechanisms of detecting and interfering with viral replication. Yet, our understanding of the complex ensembles of pro- and anti-viral factors is very limited in virtually every virus-cell system. Here we investigated the proteins recruited to the replication organelles of poliovirus, a representative of the genus Enterovirus of the Picornaviridae family. We took advantage of a strict dependence of enterovirus replication on a host protein GBF1, and established a stable cell line expressing a truncated GBF1 fused to APEX2 peroxidase that effectively supported viral replication upon inhibition of the endogenous GBF1. This construct biotinylated multiple host and viral proteins on the replication organelles. Among the viral proteins, the polyprotein cleavage intermediates were overrepresented, suggesting that the GBF1 environment is linked to viral polyprotein processing. The proteomics characterization of biotinylated host proteins identified multiple proteins previously associated with enterovirus replication, as well as more than 200 new factors recruited to the replication organelles. RNA metabolism proteins, many of which normally localize in the nucleus, constituted the largest group, underscoring the massive release of nuclear factors into the cytoplasm of infected cells and their involvement in viral replication. Functional analysis of several newly identified proteins revealed both pro- and anti-viral factors, including a novel component of infection-induced stress granules. Depletion of these proteins similarly affected the replication of diverse enteroviruses indicating broad conservation of the replication mechanisms. Thus, our data significantly expand the knowledge of the composition of enterovirus replication organelles, provide new insights into viral replication, and offer a novel resource for identifying targets for anti-viral interventions.
Collapse
Affiliation(s)
- Seyedehmahsa Moghimi
- Department of Veterinary Medicine and Virginia-Maryland College of Veterinary Medicine, University of Maryland, College Park, Maryland, United States of America
| | - Ekaterina G. Viktorova
- Department of Veterinary Medicine and Virginia-Maryland College of Veterinary Medicine, University of Maryland, College Park, Maryland, United States of America
| | - Samuel Gabaglio
- Department of Veterinary Medicine and Virginia-Maryland College of Veterinary Medicine, University of Maryland, College Park, Maryland, United States of America
| | - Anna Zimina
- Department of Veterinary Medicine and Virginia-Maryland College of Veterinary Medicine, University of Maryland, College Park, Maryland, United States of America
| | - Bogdan Budnik
- Mass Spectrometry and Proteomics Resource Laboratory (MSPRL), FAS Division of Science, Harvard University, Cambridge, Massachusetts, United States of America
| | - Bridge G. Wynn
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham; Birmingham, Alabama, United States of America
| | - Elizabeth Sztul
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham; Birmingham, Alabama, United States of America
| | - George A. Belov
- Department of Veterinary Medicine and Virginia-Maryland College of Veterinary Medicine, University of Maryland, College Park, Maryland, United States of America
| |
Collapse
|
10
|
Wang J, Sun D, Wang M, Cheng A, Zhu Y, Mao S, Ou X, Zhao X, Huang J, Gao Q, Zhang S, Yang Q, Wu Y, Zhu D, Jia R, Chen S, Liu M. Multiple functions of heterogeneous nuclear ribonucleoproteins in the positive single-stranded RNA virus life cycle. Front Immunol 2022; 13:989298. [PMID: 36119073 PMCID: PMC9478383 DOI: 10.3389/fimmu.2022.989298] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 08/12/2022] [Indexed: 11/13/2022] Open
Abstract
The heterogeneous nuclear ribonucleoproteins (hnRNPs) are a diverse family of RNA binding proteins that are implicated in RNA metabolism, such as alternative splicing, mRNA stabilization and translational regulation. According to their different cellular localization, hnRNPs display multiple functions. Most hnRNPs were predominantly located in the nucleus, but some of them could redistribute to the cytoplasm during virus infection. HnRNPs consist of different domains and motifs that enable these proteins to recognize predetermined nucleotide sequences. In the virus-host interactions, hnRNPs specifically bind to viral RNA or proteins. And some of the viral protein-hnRNP interactions require the viral RNA or other host factors as the intermediate. Through various mechanisms, hnRNPs could regulate viral translation, viral genome replication, the switch of translation to replication and virion release. This review highlights the common features and the distinguish roles of hnRNPs in the life cycle of positive single-stranded RNA viruses.
Collapse
Affiliation(s)
- Jingming Wang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Di Sun
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Mingshu Wang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Anchun Cheng
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
- *Correspondence: Anchun Cheng,
| | - Yukun Zhu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Sai Mao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Xuming Ou
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Xinxin Zhao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Juan Huang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Qun Gao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Shaqiu Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Qiao Yang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Ying Wu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Dekang Zhu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Renyong Jia
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Shun Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Mafeng Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| |
Collapse
|
11
|
Early Emergence of 5' Terminally Deleted Coxsackievirus-B3 RNA Forms Is Associated with Acute and Persistent Infections in Mouse Target Tissues. Vaccines (Basel) 2022; 10:vaccines10081203. [PMID: 36016091 PMCID: PMC9413645 DOI: 10.3390/vaccines10081203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/12/2022] [Accepted: 07/26/2022] [Indexed: 01/27/2023] Open
Abstract
Major EV-B populations characterized by 5′ terminal deletions (5′TD) have been shown to be associated with the development of myocarditis and type 1 diabetes in mice or humans. To date, the dynamics of EV-B 5′TD-RNA forms’ emergence during the course of infection and their impact on cellular functions remain unclear. Using a RACE-PCR approach in CVB3/28-infected mouse organs, we showed an early (3 days post infection, DPI) emergence of major 5′TD populations associated with minor full-length RNA forms. Viral replication activities with infectious particle production were associated with heart, liver, and pancreas acute inflammatory lesions, whereas clearance of viral RNA without organ lesions was observed in the brain, lung, intestines, and muscles from 3 to 7 DPI. At 28 DPI, low viral RNA levels, +/-RNA ratios < 5 associated with viral protein 1 expression revealed a persistent infection in the heart and pancreas. This persistent infection was characterized by molecular detection of only 5′TD RNA forms that were associated with dystrophin cleavage in the heart and insulin production impairment in beta-pancreatic cells. These results demonstrated that major EV-B 5′TD RNA forms can be early selected during systemic infection and that their maintenance may drive EV-induced acute and persistent infections with target cell dysfunctions.
Collapse
|
12
|
Song J, Quan R, Wang D, Liu J. Seneca Valley Virus 3C pro Cleaves Heterogeneous Nuclear Ribonucleoprotein K to Facilitate Viral Replication. Front Microbiol 2022; 13:945443. [PMID: 35875542 PMCID: PMC9298500 DOI: 10.3389/fmicb.2022.945443] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 06/10/2022] [Indexed: 02/03/2023] Open
Abstract
Seneca Valley virus (SVV) has emerged as an important pathogen that is associated with idiopathic vesicular infection in pigs, causing a potential threat to the global swine industry. The heterogeneous nuclear ribonucleoprotein K (hnRNP K) that shuttles between the nucleus and cytoplasm plays an important role in viral infection. In this study, we observed that infection with SVV induced cleavage, degradation, and cytoplasmic redistribution of hnRNP K in cultured cells, which was dependent on the activity of viral 3Cpro protease. Also, the 3Cpro induced degradation of hnRNP K via the caspase pathway. Further studies demonstrated that SVV 3Cpro cleaved hnRNP K at residue Q364, and the expression of the cleavage fragment hnRNP K (aa.365–464) facilitates viral replication, which is similar to full-length hnRNP K, whereas hnRNP K (aa.1–364) inhibits viral replication. Additionally, hnRNP K interacts with the viral 5′ untranslated region (UTR), and small interfering RNA (siRNA)-mediated knockdown of hnRNP K results in significant inhibition of SVV replication. Overall, our results demonstrated that the hnRNP K positively regulates SVV replication in a protease activity-dependent fashion in which the cleaved C-terminal contributes crucially to the upregulation of SVV replication. This finding of the role of hnRNP K in promoting SVV propagation provides a novel antiviral strategy to utilize hnRNP K as a potential target for therapy.
Collapse
Affiliation(s)
- Jiangwei Song
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Rong Quan
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Dan Wang
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Jue Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| |
Collapse
|
13
|
Persistent Enterovirus Infection: Little Deletions, Long Infections. Vaccines (Basel) 2022; 10:vaccines10050770. [PMID: 35632526 PMCID: PMC9143164 DOI: 10.3390/vaccines10050770] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/04/2022] [Accepted: 05/10/2022] [Indexed: 01/27/2023] Open
Abstract
Enteroviruses have now been shown to persist in cell cultures and in vivo by a novel mechanism involving the deletion of varying amounts of the 5′ terminal genomic region termed domain I (also known as the cloverleaf). Molecular clones of coxsackievirus B3 (CVB3) genomes with 5′ terminal deletions (TD) of varying length allow the study of these mutant populations, which are able to replicate in the complete absence of wildtype virus genomes. The study of TD enteroviruses has revealed numerous significant differences from canonical enteroviral biology. The deletions appear and become the dominant population when an enterovirus replicates in quiescent cell populations, but can also occur if one of the cis-acting replication elements of the genome (CRE-2C) is artificially mutated in the element’s stem and loop structures. This review discusses how the TD genomes arise, how they interact with the host, and their effects on host biology.
Collapse
|
14
|
Abstract
Enterovirus 71 (EV71) is the major pathogen of hand, foot, and mouth disease. In severe cases, it can cause life-threatening neurological complications, such as aseptic meningitis and polio-like paralysis. There are no specific antiviral treatments for EV71 infections. In a previous study, the host protein growth arrest and DNA damage-inducible protein 34 (GADD34) expression was upregulated during EV71 infection determined by ribosome profiling and RNA-sequencing. Here, we investigated the interactions of host protein GADD34 and EV71 during infections. Rhabdomyosarcoma (RD) cells were infected with EV71 resulting in a significant increase in expression of GADD34 mRNA and protein. Through screening of EV71 protein we determined that the non-structural precursor protein 3CD is responsible for upregulating GADD34. EV71 3CD increased the RNA and protein levels of GADD34, while the 3CD mutant Y441S could not. 3CD upregulated GADD34 translation via the upstream open reading frame (uORF) of GADD34 5'untranslated regions (UTR). EV71 replication was attenuated by the knockdown of GADD34. The function of GADD34 to dephosphorylate eIF2α was unrelated to the upregulation of EV71 replication, but the PEST 1, 2, and 3 regions of GADD34 were required. GADD34 promoted the EV71 internal ribosome entry site (IRES) activity through the PEST repeats and affected several other viruses. Finally, GADD34 amino acids 563 to 565 interacted with 3CD, assisting GADD34 to target the EV71 IRES. Our research reveals a new mechanism by which GADD34 promotes viral IRES and how the EV71 non-structural precursor protein 3CD regulates host protein expression to support viral replication. IMPORTANCE Identification of host factors involved in viral replication is an important approach in discovering viral pathogenic mechanisms and identifying potential therapeutic targets. Previously, we screened host proteins that were upregulated by EV71 infection. Here, we report the interaction between the upregulated host protein GADD34 and EV71. EV71 non-structural precursor protein 3CD activates the RNA and protein expression of GADD34. Our study reveals that 3CD regulates the uORF of the 5′-UTR to increase GADD34 translation, providing a new explanation for how viral proteins regulate host protein expression. GADD34 is important for EV71 replication, and the key functional domains of GADD34 that promote EV71 are PEST 1, 2, and 3 regions. We report that GADD34 promotes viral IRES for the first time and this process is independent of its eIF2α phosphatase activity.
Collapse
|
15
|
Song J, Wang D, Quan R, Liu J. Seneca Valley virus 3C pro degrades heterogeneous nuclear ribonucleoprotein A1 to facilitate viral replication. Virulence 2021; 12:3125-3136. [PMID: 34923914 PMCID: PMC8923066 DOI: 10.1080/21505594.2021.2014681] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Seneca Valley virus (SVV) is a recently-identified important pathogen that is closely related to idiopathic vesicular disease in swine. Infection of SVV has been shown to induce a variety of cellular factors and their activations are essential for viral replication, but whether heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1) involved in SVV replication is unknown. The cytoplasmic redistribution of hnRNP A1 is considered to play an important role in the virus life cycle. Here, we demonstrated that SVV infection can promote redistribution of the nucleocytoplasmic shuttling RNA-binding protein hnRNP A1 to the cytoplasm from the nucleus, whereas hnRNP A1 remained mainly in the nucleus of mock-infected cells. siRNA-mediated knockdown of the gene encoding hnRNP A1 attenuated viral replication as evidenced by decreased viral protein expression and virus production, whereas its overexpression enhanced replication. Moreover, infection with SVV induced the degradation of hnRNP A1, and viral 3 C protease (3 Cpro) was found to be responsible for its degradation and translocation. Further studies demonstrated that 3 Cpro induced hnRNP A1 degradation through its protease activity, via the proteasome pathway. This degradation could be attenuated by a proteasome inhibitor (MG132) and inactivation of the conserved catalytic box in 3 Cpro. Taken together, these results presented here reveal that SVV 3 C protease targets cellular hnRNP A1 for its degradation and translocation, which is utilized by SVV to aid viral replication, thereby highlighting the control potential of strategies for infection of SVV.
Collapse
Affiliation(s)
- Jiangwei Song
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Dan Wang
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Rong Quan
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Jue Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| |
Collapse
|
16
|
de Jong LC, Crnko S, ten Broeke T, Bovenschen N. Noncytotoxic functions of killer cell granzymes in viral infections. PLoS Pathog 2021; 17:e1009818. [PMID: 34529743 PMCID: PMC8445437 DOI: 10.1371/journal.ppat.1009818] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Cytotoxic lymphocytes produce granules armed with a set of 5 serine proteases (granzymes (Gzms)), which, together with the pore-forming protein (perforin), serve as a major defense against viral infections in humans. This granule-exocytosis pathway subsumes a well-established mechanism in which target cell death is induced upon perforin-mediated entry of Gzms and subsequent activation of various (apoptosis) pathways. In the past decade, however, a growing body of evidence demonstrated that Gzms also inhibit viral replication and potential reactivation in cell death–independent manners. For example, Gzms can induce proteolysis of viral or host cell proteins necessary for the viral entry, release, or intracellular trafficking, as well as augment pro-inflammatory antiviral cytokine response. In this review, we summarize current evidence for the noncytotoxic mechanisms and roles by which killer cells can use Gzms to combat viral infections, and we discuss the potential thereof for the development of novel therapies.
Collapse
Affiliation(s)
- Lisanne C. de Jong
- Radboud University, Nijmegen, the Netherlands
- Department of Pathology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Sandra Crnko
- Department of Pathology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Toine ten Broeke
- Department of Pathology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Niels Bovenschen
- Department of Pathology, University Medical Center Utrecht, Utrecht, the Netherlands
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, the Netherlands
- * E-mail:
| |
Collapse
|
17
|
Xi J, Ma C, Wei Z, Yin B, Zhao S, Quan W, Yang J, Yuan J, Qiang B, Ye F, Peng X. A single mutation in the cis-acting replication element identified within the EV-A71 2C-coding region causes defects in virus production in cell culture. Emerg Microbes Infect 2021; 10:1988-1999. [PMID: 34511027 PMCID: PMC8526025 DOI: 10.1080/22221751.2021.1977590] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
ABSTRACTEnterovirus A71 (EV-A71) can cause hand, foot and mouth disease with neurological and systemic complications, most frequently affecting children and infants. We describe a cis-acting replication element (cre) with a conserved stem-loop structure within the EV-A71 2C-coding region. By site-directed mutagenesis and reverse genetics using the EV-A71 full-length genome and the EV-A71 replicon containing the firefly luciferase reporter gene in place of the P1 region, the stem-loop structure and the AAACA in the loop of the cre were confirmed to be required for the EV-A71 replication phenotype. EV-A71 genomes containing a mutation at the first or third A residue of AAACA could not be recovered. Insertion of a wild-type cre from EV-A71 or poliovirus in the 5'UTR led to successful recovery of the replication of nonviable mutants. Furthermore, the cre mutants showed lower binding capacity with the host cellular factor IGF2BP2, knockdown of which resulted in a significant decrease in EV-A71 production. All the available evidence shows the location independence but functional importance of the interaction of the cre with the cellular host for efficient production of EV-A71, contributing to the growing body of knowledge regarding picornavirus cres.
Collapse
Affiliation(s)
- Juemin Xi
- Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College, Kunming, People's Republic of China
| | - Chunxia Ma
- Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College, Kunming, People's Republic of China
| | - Zhizhong Wei
- The State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Bin Yin
- The State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Siwen Zhao
- Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College, Kunming, People's Republic of China
| | - Wenqi Quan
- Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College, Kunming, People's Republic of China
| | - Jing Yang
- Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College, Kunming, People's Republic of China
| | - Jiangang Yuan
- The State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Boqin Qiang
- The State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Fei Ye
- The State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China.,NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control & Prevention, Chinese Center for Disease Control and Prevention, China CDC, Beijing, People's Republic of China
| | - Xiaozhong Peng
- Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College, Kunming, People's Republic of China.,The State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| |
Collapse
|
18
|
Eruera AR, McSweeney AM, McKenzie-Goldsmith GM, Ward VK. Protein Nucleotidylylation in +ssRNA Viruses. Viruses 2021; 13:1549. [PMID: 34452414 PMCID: PMC8402628 DOI: 10.3390/v13081549] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/30/2021] [Accepted: 08/02/2021] [Indexed: 12/22/2022] Open
Abstract
Nucleotidylylation is a post-transcriptional modification important for replication in the picornavirus supergroup of RNA viruses, including members of the Caliciviridae, Coronaviridae, Picornaviridae and Potyviridae virus families. This modification occurs when the RNA-dependent RNA polymerase (RdRp) attaches one or more nucleotides to a target protein through a nucleotidyl-transferase reaction. The most characterized nucleotidylylation target is VPg (viral protein genome-linked), a protein linked to the 5' end of the genome in Caliciviridae, Picornaviridae and Potyviridae. The nucleotidylylation of VPg by RdRp is a critical step for the VPg protein to act as a primer for genome replication and, in Caliciviridae and Potyviridae, for the initiation of translation. In contrast, Coronaviridae do not express a VPg protein, but the nucleotidylylation of proteins involved in replication initiation is critical for genome replication. Furthermore, the RdRp proteins of the viruses that perform nucleotidylylation are themselves nucleotidylylated, and in the case of coronavirus, this has been shown to be essential for viral replication. This review focuses on nucleotidylylation within the picornavirus supergroup of viruses, including the proteins that are modified, what is known about the nucleotidylylation process and the roles that these modifications have in the viral life cycle.
Collapse
Affiliation(s)
| | | | | | - Vernon K. Ward
- Department of Microbiology & Immunology, School of Biomedical Sciences, University of Otago, PO Box 56, Dunedin 9054, New Zealand; (A.-R.E.); (A.M.M.); (G.M.M.-G.)
| |
Collapse
|
19
|
Sajidah ES, Lim K, Wong RW. How SARS-CoV-2 and Other Viruses Build an Invasion Route to Hijack the Host Nucleocytoplasmic Trafficking System. Cells 2021; 10:1424. [PMID: 34200500 PMCID: PMC8230057 DOI: 10.3390/cells10061424] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 05/31/2021] [Accepted: 06/03/2021] [Indexed: 12/14/2022] Open
Abstract
The host nucleocytoplasmic trafficking system is often hijacked by viruses to accomplish their replication and to suppress the host immune response. Viruses encode many factors that interact with the host nuclear transport receptors (NTRs) and the nucleoporins of the nuclear pore complex (NPC) to access the host nucleus. In this review, we discuss the viral factors and the host factors involved in the nuclear import and export of viral components. As nucleocytoplasmic shuttling is vital for the replication of many viruses, we also review several drugs that target the host nuclear transport machinery and discuss their feasibility for use in antiviral treatment.
Collapse
Affiliation(s)
- Elma Sakinatus Sajidah
- Division of Nano Life Science in the Graduate School of Frontier Science Initiative, Kanazawa University, Kanazawa 920-1192, Japan;
| | - Keesiang Lim
- WPI-Nano Life Science Institute, Kanazawa University, Kanazawa 920-1192, Japan
| | - Richard W. Wong
- Division of Nano Life Science in the Graduate School of Frontier Science Initiative, Kanazawa University, Kanazawa 920-1192, Japan;
- WPI-Nano Life Science Institute, Kanazawa University, Kanazawa 920-1192, Japan
- Cell-Bionomics Research Unit, Institute for Frontier Science Initiative, Kanazawa University, Kanazawa 920-1192, Japan
| |
Collapse
|
20
|
Structures and Functions of Viral 5' Non-Coding Genomic RNA Domain-I in Group-B Enterovirus Infections. Viruses 2020; 12:v12090919. [PMID: 32839386 PMCID: PMC7552046 DOI: 10.3390/v12090919] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/17/2020] [Accepted: 08/19/2020] [Indexed: 12/22/2022] Open
Abstract
Group-B enteroviruses (EV-B) are ubiquitous naked single-stranded positive RNA viral pathogens that are responsible for common acute or persistent human infections. Their genome is composed in the 5′ end by a non-coding region, which is crucial for the initiation of the viral replication and translation processes. RNA domain-I secondary structures can interact with viral or cellular proteins to form viral ribonucleoprotein (RNP) complexes regulating viral genomic replication, whereas RNA domains-II to -VII (internal ribosome entry site, IRES) are known to interact with cellular ribosomal subunits to initiate the viral translation process. Natural 5′ terminally deleted viral forms lacking some genomic RNA domain-I secondary structures have been described in EV-B induced murine or human infections. Recent in vitro studies have evidenced that the loss of some viral RNP complexes in the RNA domain-I can modulate the viral replication and infectivity levels in EV-B infections. Moreover, the disruption of secondary structures of RNA domain-I could impair viral RNA sensing by RIG-I (Retinoic acid inducible gene I) or MDA5 (melanoma differentiation-associated protein 5) receptors, a way to overcome antiviral innate immune response. Overall, natural 5′ terminally deleted viral genomes resulting in the loss of various structures in the RNA domain-I could be major key players of host–cell interactions driving the development of acute or persistent EV-B infections.
Collapse
|
21
|
Moon H, Jang HN, Liu Y, Choi N, Oh J, Ha J, Kim HH, Zheng X, Shen H. RRM but not the Asp/Glu domain of hnRNP C1/C2 is required for splicing regulation of Ron exon 11 pre-mRNA. BMB Rep 2019. [PMID: 31401978 PMCID: PMC6889891 DOI: 10.5483/bmbrep.2019.52.11.080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
The Ron proto-oncogene is a human receptor for macrophage-stimulating protein (MSP). The exclusion of exon 11 in alternative splicing generates ΔRON protein that is constitutively activated. Heterogenous ribonucleaoprotein (hnRNP) C1/C2 is one of the most abundant proteins in cells. In this manuscript, we showed that both hnRNP C1 and C2 promoted exon 11 inclusion of Ron pre-mRNA and that hnRNP C1 and hnRNP C2 functioned independently but not cooperatively. Moreover, hnRNP C1 stimulated exon 11 splicing through intron 10 activation but not through intron 11 splicing. Furthermore, we showed that, whereas the RRM domain was required for hnRNP C1 function, the Asp/Glu domain was not. In conclusion, hnRNP C1/C2 promoted exon 11 splicing independently by stimulating intron 10 splicing through RRM but not through the Asp/Glu domain.
Collapse
Affiliation(s)
- Heegyum Moon
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 61005, Korea
| | - Ha Na Jang
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 61005, Korea
| | - Yongchao Liu
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 61005, Korea
| | - Namjeong Choi
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 61005, Korea
| | - Jagyeong Oh
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 61005, Korea
| | - Jiyeon Ha
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 61005, Korea
| | - Hyeon Ho Kim
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul 06351, Korea
| | - Xuexiu Zheng
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 61005, Korea
| | - Haihong Shen
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 61005, Korea
| |
Collapse
|
22
|
Holmes AC, Semler BL. Picornaviruses and RNA Metabolism: Local and Global Effects of Infection. J Virol 2019; 93:e02088-17. [PMID: 31413128 PMCID: PMC6803262 DOI: 10.1128/jvi.02088-17] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 08/06/2019] [Indexed: 11/20/2022] Open
Abstract
Due to the limiting coding capacity for members of the Picornaviridae family of positive-strand RNA viruses, their successful replication cycles require complex interactions with host cell functions. These interactions span from the down-modulation of many aspects of cellular metabolism to the hijacking of specific host functions used during viral translation, RNA replication, and other steps of infection by picornaviruses, such as human rhinovirus, coxsackievirus, poliovirus, foot-and-mouth disease virus, enterovirus D-68, and a wide range of other human and nonhuman viruses. Although picornaviruses replicate exclusively in the cytoplasm of infected cells, they have extensive interactions with host cell nuclei and the proteins and RNAs that normally reside in this compartment of the cell. This review will highlight some of the more recent studies that have revealed how picornavirus infections impact the RNA metabolism of the host cell posttranscriptionally and how they usurp and modify host RNA binding proteins as well as microRNAs to potentiate viral replication.
Collapse
Affiliation(s)
- Autumn C Holmes
- Department of Microbiology & Molecular Genetics, University of California, Irvine, California, USA
- Center for Virus Research, University of California, Irvine, California, USA
| | - Bert L Semler
- Department of Microbiology & Molecular Genetics, University of California, Irvine, California, USA
- Center for Virus Research, University of California, Irvine, California, USA
| |
Collapse
|
23
|
Dave P, George B, Balakrishnan S, Sharma DK, Raheja H, Dixit NM, Das S. Strand-specific affinity of host factor hnRNP C1/C2 guides positive to negative-strand ratio in Coxsackievirus B3 infection. RNA Biol 2019; 16:1286-1299. [PMID: 31234696 DOI: 10.1080/15476286.2019.1629208] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Coxsackievirus B3 is an enterovirus, with positive-sense single-stranded RNA genome containing 'Internal Ribosome Entry Site' (IRES) in the 5'UTR. Once sufficient viral proteins are synthesized in the cell from the input RNA, viral template switches from translation to replication to synthesize negative-strand RNA. Inhibition of translation is a key step in regulating this switch as the positive-strand RNA template should be free of ribosomes to enable polymerase movement. In this study, we show how a host protein hnRNP C1/C2 inhibits viral RNA translation. hnRNP C1/C2 interacts with stem-loop V in the IRES and displaces poly-pyrimidine tract binding protein, a positive regulator of translation. We further demonstrate that hnRNP C1/C2 induces translation to replication switch, independently from the already known role of the ternary complex (PCBP2-3CD-cloverleaf RNA). These results suggest a novel function of hnRNP C1/C2 in template switching of positive-strand from translation to replication by a new mechanism. Using mathematical modelling, we show that the differential affinity of hnRNP C1/C2 for positive and negative-strand RNAs guides the final ± RNA ratio, providing first insight in the regulation of the positive to negative-strand RNA ratio in enteroviruses.
Collapse
Affiliation(s)
- Pratik Dave
- a Department of Microbiology and Cell Biology, Indian Institute of Science , Bangalore , Karnataka , India
| | - Biju George
- a Department of Microbiology and Cell Biology, Indian Institute of Science , Bangalore , Karnataka , India
| | - Sreenath Balakrishnan
- b Center for BioSystems Science and Engineering, Indian Institute of Science , Bangalore , Karnataka , India
| | - Divya Khandige Sharma
- a Department of Microbiology and Cell Biology, Indian Institute of Science , Bangalore , Karnataka , India
| | - Harsha Raheja
- a Department of Microbiology and Cell Biology, Indian Institute of Science , Bangalore , Karnataka , India
| | - Narendra M Dixit
- b Center for BioSystems Science and Engineering, Indian Institute of Science , Bangalore , Karnataka , India.,c Department of Chemical Engineering, Indian Institute of Science , Bangalore , Karnataka , India
| | - Saumitra Das
- a Department of Microbiology and Cell Biology, Indian Institute of Science , Bangalore , Karnataka , India.,b Center for BioSystems Science and Engineering, Indian Institute of Science , Bangalore , Karnataka , India.,d Centre for Infectious Disease Research, Indian Institute of Science , Bangalore , Karnataka , India.,e Infectious Disease Research, National Institute of Biomedical Genomics , Kalyani , West Bengal , India
| |
Collapse
|
24
|
Owino CO, Chu JJH. Recent advances on the role of host factors during non-poliovirus enteroviral infections. J Biomed Sci 2019; 26:47. [PMID: 31215493 PMCID: PMC6582496 DOI: 10.1186/s12929-019-0540-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Accepted: 06/11/2019] [Indexed: 02/06/2023] Open
Abstract
Non-polio enteroviruses are emerging viruses known to cause outbreaks of polio-like infections in different parts of the world with several cases already reported in Asia Pacific, Europe and in United States of America. These outbreaks normally result in overstretching of health facilities as well as death in children under the age of five. Most of these infections are usually self-limiting except for the neurological complications associated with human enterovirus A 71 (EV-A71). The infection dynamics of these viruses have not been fully understood, with most inferences made from previous studies conducted with poliovirus.Non-poliovirus enteroviral infections are responsible for major outbreaks of hand, foot and mouth disease (HFMD) often associated with neurological complications and severe respiratory diseases. The myriad of disease presentations observed so far in children calls for an urgent need to fully elucidate the replication processes of these viruses. There are concerted efforts from different research groups to fully map out the role of human host factors in the replication cycle of these viral infections. Understanding the interaction between viral proteins and human host factors will unravel important insights on the lifecycle of this groups of viruses.This review provides the latest update on the interplay between human host factors/processes and non-polio enteroviruses (NPEV). We focus on the interactions involved in viral attachment, entry, internalization, uncoating, replication, virion assembly and eventual egress of the NPEV from the infected cells. We emphasize on the virus- human host interplay and highlight existing knowledge gaps that needs further studies. Understanding the NPEV-human host factors interactions will be key in the design and development of vaccines as well as antivirals against enteroviral infections. Dissecting the role of human host factors during NPEV infection cycle will provide a clear picture of how NPEVs usurp the human cellular processes to establish an efficient infection. This will be a boost to the drug and vaccine development against enteroviruses which will be key in control and eventual elimination of the viral infections.
Collapse
Affiliation(s)
- Collins Oduor Owino
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, 138673, Singapore
| | - Justin Jang Hann Chu
- Department of Microbiology and Immunology, National University of Singapore, Singapore, 117597, Singapore.
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, 138673, Singapore.
| |
Collapse
|
25
|
De Nova-Ocampo M, Soliman MC, Espinosa-Hernández W, Velez-Del Valle C, Salas-Benito J, Valdés-Flores J, García-Morales L. Human astroviruses: in silico analysis of the untranslated region and putative binding sites of cellular proteins. Mol Biol Rep 2018; 46:1413-1424. [PMID: 30448895 PMCID: PMC7089336 DOI: 10.1007/s11033-018-4498-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 11/12/2018] [Indexed: 12/21/2022]
Abstract
Human astrovirus (HAstV) constitutes a major cause of acute gastroenteritis in children. The viral 5' and 3' untranslated regions (UTR) have been involved in the regulation of several molecular mechanisms. However, in astrovirues have been less characterized. Here, we analyzed the secondary structures of the 5' and 3' UTR of HAstV, as well as their putative target sites that might be recognized by cellular factors. To our knowledge, this is the first bioinformatic analysis that predicts the HAstV 5' UTR secondary structure. The analysis showed that both the UTR sequence and secondary structure are highly conserved in all HAstVs analyzed, suggesting their regulatory role of viral activities. Notably, the UTRs of HAstVs contain putative binding sites for the serine/arginine-rich factors SRSF2, SRSF5, SRSF6, SRSF3, and the multifunctional hnRNPE2 protein. More importantly, putative binding sites for PTB were localized in single-stranded RNA sequences, while hnRNPE2 sites were localized in double-stranded sequence of the HAstV 5' and 3' UTR structures. These analyses suggest that the combination of SRSF proteins, hnRNPE2 and PTB described here could be involved in the maintenance of the secondary structure of the HAstVs, possibly allowing the recruitment of the replication complex that selects and recruits viral RNA replication templates.
Collapse
Affiliation(s)
- Mónica De Nova-Ocampo
- ENMH, Programa Institucional de Biomedicina Molecular, Instituto Politécnico Nacional, Guillermo Massieu Helguera No. 239 Col. Fracc. La Escalera-Ticomán, 07320, Ciudad de Mexico, Mexico.
| | - Mayra Cristina Soliman
- ENMH, Programa Institucional de Biomedicina Molecular, Instituto Politécnico Nacional, Guillermo Massieu Helguera No. 239 Col. Fracc. La Escalera-Ticomán, 07320, Ciudad de Mexico, Mexico
| | - Wendy Espinosa-Hernández
- ENMH, Programa Institucional de Biomedicina Molecular, Instituto Politécnico Nacional, Guillermo Massieu Helguera No. 239 Col. Fracc. La Escalera-Ticomán, 07320, Ciudad de Mexico, Mexico
| | - Cristina Velez-Del Valle
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del IPN, Avenida IPN 2508 Col. San Pedro Zacatenco, 07360, Ciudad de Mexico, Mexico
| | - Juan Salas-Benito
- ENMH, Programa Institucional de Biomedicina Molecular, Instituto Politécnico Nacional, Guillermo Massieu Helguera No. 239 Col. Fracc. La Escalera-Ticomán, 07320, Ciudad de Mexico, Mexico
| | - Jesús Valdés-Flores
- Departamento de Bioquímica, Centro de Investigación y de Estudios Avanzados del IPN, Avenida IPN 2508 Col. San Pedro Zacatenco, 07360, Ciudad de Mexico, Mexico
| | - Lorena García-Morales
- ENMH, Programa Institucional de Biomedicina Molecular, Instituto Politécnico Nacional, Guillermo Massieu Helguera No. 239 Col. Fracc. La Escalera-Ticomán, 07320, Ciudad de Mexico, Mexico
| |
Collapse
|
26
|
Flather D, Nguyen JHC, Semler BL, Gershon PD. Exploitation of nuclear functions by human rhinovirus, a cytoplasmic RNA virus. PLoS Pathog 2018; 14:e1007277. [PMID: 30142213 PMCID: PMC6126879 DOI: 10.1371/journal.ppat.1007277] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 09/06/2018] [Accepted: 08/11/2018] [Indexed: 12/17/2022] Open
Abstract
Protein production, genomic RNA replication, and virion assembly during infection by picornaviruses like human rhinovirus and poliovirus take place in the cytoplasm of infected human cells, making them the quintessential cytoplasmic pathogens. However, a growing body of evidence suggests that picornavirus replication is promoted by a number of host proteins localized normally within the host cell nucleus. To systematically identify such nuclear proteins, we focused on those that appear to re-equilibrate from the nucleus to the cytoplasm during infection of HeLa cells with human rhinovirus via quantitative protein mass spectrometry. Our analysis revealed a highly selective re-equilibration of proteins with known mRNA splicing and transport-related functions over nuclear proteins of all other functional classes. The multifunctional splicing factor proline and glutamine rich (SFPQ) was identified as one such protein. We found that SFPQ is targeted for proteolysis within the nucleus by viral proteinase 3CD/3C, and a fragment of SFPQ was shown to migrate to the cytoplasm at mid-to-late times of infection. Cells knocked down for SFPQ expression showed significantly reduced rhinovirus titers, viral protein production, and viral RNA accumulation, consistent with SFPQ being a pro-viral factor. The SFPQ fragment that moved into the cytoplasm was able to bind rhinovirus RNA either directly or indirectly. We propose that the truncated form of SFPQ promotes viral RNA stability or replication, or virion morphogenesis. More broadly, our findings reveal dramatic changes in protein compartmentalization during human rhinovirus infection, allowing the virus to systematically hijack the functions of proteins not normally found at its cytoplasmic site of replication. We explored the dynamics of host cell protein relocalization from the nucleus to the cytoplasm during an infection by human rhinovirus using quantitative mass spectrometry, confocal imaging, and Western blot analysis. We discovered a highly selective re-equilibration of proteins with known mRNA splicing and transport-related functions, including splicing factor proline and glutamine rich (SFPQ). Using RNAi experiments and viral replication assays, we demonstrated that SFPQ is a pro-viral factor required for rhinovirus growth. Our studies provide new insights into how this cytoplasmic RNA virus is able to alter and hijack the functions of host proteins that normally reside in the nucleus.
Collapse
Affiliation(s)
- Dylan Flather
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine, California, United States of America
- Center for Virus Research, University of California, Irvine, California, United States of America
| | - Joseph H. C. Nguyen
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine, California, United States of America
- Center for Virus Research, University of California, Irvine, California, United States of America
| | - Bert L. Semler
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine, California, United States of America
- Center for Virus Research, University of California, Irvine, California, United States of America
- * E-mail: (BLS); (PDG)
| | - Paul D. Gershon
- Center for Virus Research, University of California, Irvine, California, United States of America
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California, United States of America
- * E-mail: (BLS); (PDG)
| |
Collapse
|
27
|
MicroRNA-134 regulates poliovirus replication by IRES targeting. Sci Rep 2017; 7:12664. [PMID: 28978937 PMCID: PMC5627394 DOI: 10.1038/s41598-017-12860-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 09/14/2017] [Indexed: 02/06/2023] Open
Abstract
Global poliovirus eradication efforts include high vaccination coverage with live oral polio vaccine (OPV), surveillance for acute flaccid paralysis, and OPV “mop-up” campaigns. An important objective involves host-directed strategies to reduce PV replication to diminish viral shedding in OPV recipients. In this study, we show that microRNA-134-5p (miR-134) can regulate Sabin-1 replication but not Sabin-2 or Sabin-3 via direct interaction with the PV 5′UTR. Hypochromicity data showed miR-134 binding to Sabin-1 and 3 but not Sabin-2 IRES. Transfection of a miR-134 mimic repressed translation of Sabin-1 5′UTR driven luciferase validating the mechanism of miR-134-mediated repression of Sabin-1. Further, site directed mutagenesis of the miR-134 binding site in Sabin-1 IRES relieved miR-134-mediated repression indicating that these regulatory molecules have an important role in regulating the host gene response to PV. Binding of miR-134 to Sabin-1 IRES caused degradation of the IRES transcript in a miR-134 and sequence specific manner. The miR-134 binding site was found to be highly conserved in wild type PV-1 as well as EV71 strains indicating that miR-134 may regulate function of these IRES sequences in circulation.
Collapse
|
28
|
Functional Consequences of RNA 5'-Terminal Deletions on Coxsackievirus B3 RNA Replication and Ribonucleoprotein Complex Formation. J Virol 2017; 91:JVI.00423-17. [PMID: 28539455 DOI: 10.1128/jvi.00423-17] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 05/17/2017] [Indexed: 12/11/2022] Open
Abstract
Group B coxsackieviruses are responsible for chronic cardiac infections. However, the molecular mechanisms by which the virus can persist in the human heart long after the signs of acute myocarditis have abated are still not completely understood. Recently, coxsackievirus B3 strains with 5'-terminal deletions in genomic RNAs were isolated from a patient suffering from idiopathic dilated cardiomyopathy, suggesting that such mutant viruses may be the forms responsible for persistent infection. These deletions lacked portions of 5' stem-loop I, which is an RNA secondary structure required for viral RNA replication. In this study, we assessed the consequences of the genomic deletions observed in vivo for coxsackievirus B3 biology. Using cell extracts from HeLa cells, as well as transfection of luciferase replicons in two types of cardiomyocytes, we demonstrated that coxsackievirus RNAs harboring 5' deletions ranging from 7 to 49 nucleotides in length can be translated nearly as efficiently as those of wild-type virus. However, these 5' deletions greatly reduced the synthesis of viral RNA in vitro, which was detected only for the 7- and 21-nucleotide deletions. Since 5' stem-loop I RNA forms a ribonucleoprotein complex with cellular and viral proteins involved in viral RNA replication, we investigated the binding of the host cell protein PCBP2, as well as viral protein 3CDpro, to deleted positive-strand RNAs corresponding to the 5' end. We found that binding of these proteins was conserved but that ribonucleoprotein complex formation required higher PCBP2 and 3CDpro concentrations, depending on the size of the deletion. Overall, this study confirmed the characteristics of persistent CVB3 infection observed in heart tissues and provided a possible explanation for the low level of RNA replication observed for the 5'-deleted viral genomes-a less stable ribonucleoprotein complex formed with proteins involved in viral RNA replication.IMPORTANCE Dilated cardiomyopathy is the most common indication for heart transplantation worldwide, and coxsackie B viruses are detected in about one-third of idiopathic dilated cardiomyopathies. Terminal deletions at the 5' end of the viral genome involving an RNA secondary structure required for RNA replication have been recently reported as a possible mechanism of virus persistence in the human heart. These mutations are likely to disrupt the correct folding of an RNA secondary structure required for viral RNA replication. In this report, we demonstrate that transfected RNAs harboring 5'-terminal sequence deletions are able to direct the synthesis of viral proteins, but not genomic RNAs, in human and murine cardiomyocytes. Moreover, we show that the binding of cellular and viral replication factors to viral RNA is conserved despite genomic deletions but that the impaired RNA synthesis associated with terminally deleted viruses could be due to destabilization of the ribonucleoprotein complexes formed.
Collapse
|
29
|
Abstract
Out of the five members of the Ebolavirus family, four cause life-threatening disease, whereas the fifth, Reston virus (RESTV), is nonpathogenic in humans. Out of the five members of the Ebolavirus family, four cause life-threatening disease, whereas the fifth, Reston virus (RESTV), is nonpathogenic in humans. The reasons for this discrepancy remain unclear. In this review, we analyze the currently available information to provide a state-of-the-art summary of the factors that determine the human pathogenicity of Ebolaviruses. RESTV causes sporadic infections in cynomolgus monkeys and is found in domestic pigs throughout the Philippines and China. Phylogenetic analyses revealed that RESTV is most closely related to the Sudan virus, which causes a high mortality rate in humans. Amino acid sequence differences between RESTV and the other Ebolaviruses are found in all nine Ebolavirus proteins, though no one residue appears sufficient to confer pathogenicity. Changes in the glycoprotein contribute to differences in Ebolavirus pathogenicity but are not sufficient to confer pathogenicity on their own. Similarly, differences in VP24 and VP35 affect viral immune evasion and are associated with changes in human pathogenicity. A recent in silico analysis systematically determined the functional consequences of sequence variations between RESTV and human-pathogenic Ebolaviruses. Multiple positions in VP24 were differently conserved between RESTV and the other Ebolaviruses and may alter human pathogenicity. In conclusion, the factors that determine the pathogenicity of Ebolaviruses in humans remain insufficiently understood. An improved understanding of these pathogenicity-determining factors is of crucial importance for disease prevention and for the early detection of emergent and potentially human-pathogenic RESTVs.
Collapse
|
30
|
Generation of Recombinant Polioviruses Harboring RNA Affinity Tags in the 5' and 3' Noncoding Regions of Genomic RNAs. Viruses 2016; 8:v8020039. [PMID: 26861382 PMCID: PMC4776194 DOI: 10.3390/v8020039] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 01/18/2016] [Accepted: 01/21/2016] [Indexed: 12/30/2022] Open
Abstract
Despite being intensely studied for more than 50 years, a complete understanding of the enterovirus replication cycle remains elusive. Specifically, only a handful of cellular proteins have been shown to be involved in the RNA replication cycle of these viruses. In an effort to isolate and identify additional cellular proteins that function in enteroviral RNA replication, we have generated multiple recombinant polioviruses containing RNA affinity tags within the 3' or 5' noncoding region of the genome. These recombinant viruses retained RNA affinity sequences within the genome while remaining viable and infectious over multiple passages in cell culture. Further characterization of these viruses demonstrated that viral protein production and growth kinetics were unchanged or only slightly altered relative to wild type poliovirus. However, attempts to isolate these genetically-tagged viral genomes from infected cells have been hindered by high levels of co-purification of nonspecific proteins and the limited matrix-binding efficiency of RNA affinity sequences. Regardless, these recombinant viruses represent a step toward more thorough characterization of enterovirus ribonucleoprotein complexes involved in RNA replication.
Collapse
|
31
|
Shim BS, Wu W, Kyriakis CS, Bakre A, Jorquera PA, Perwitasari O, Tripp RA. MicroRNA-555 has potent antiviral properties against poliovirus. J Gen Virol 2015; 97:659-668. [PMID: 26683768 DOI: 10.1099/jgv.0.000372] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Vaccination with live-attenuated polio vaccine has been the primary reason for the drastic reduction of poliomyelitis worldwide. However, reversion of this attenuated poliovirus vaccine occasionally results in the emergence of vaccine-derived polioviruses that may cause poliomyelitis. Thus, the development of anti-poliovirus agents remains a priority for control and eradication of the disease. MicroRNAs (miRNAs) have been shown to regulate viral infection through targeting the viral genome or reducing host factors required for virus replication. However, the roles of miRNAs in poliovirus (PV) replication have not been fully elucidated. In this study, a library of 1200 miRNA mimics was used to identify miRNAs that govern PV replication. High-throughput screening revealed 29 miRNAs with antiviral properties against Sabin-2, which is one of the oral polio vaccine strains. In particular, miR-555 was found to have the most potent antiviral activity against three different oral polio attenuated vaccine strains tested. The results show that miR-555 reduced the level of heterogeneous nuclear ribonucleoprotein C1/C2 (hnRNP C) required for PV replication in the infected cells, which in turn resulted in reduction of PV positive-strand RNA synthesis and production of infectious progeny. These findings provide the first evidence for the role of miR-555 in PV replication and reveal that miR-555 could contribute to the development of antiviral therapeutic strategies against PV.
Collapse
Affiliation(s)
- Byoung-Shik Shim
- Department of Infectious Diseases, College of Veterinary Medicine, 30602 University of Georgia, Athens, GA, USA
| | - Weilin Wu
- Department of Infectious Diseases, College of Veterinary Medicine, 30602 University of Georgia, Athens, GA, USA
| | - Constantinos S Kyriakis
- Department of Infectious Diseases, College of Veterinary Medicine, 30602 University of Georgia, Athens, GA, USA
| | - Abhijeet Bakre
- Department of Infectious Diseases, College of Veterinary Medicine, 30602 University of Georgia, Athens, GA, USA
| | - Patricia A Jorquera
- Department of Infectious Diseases, College of Veterinary Medicine, 30602 University of Georgia, Athens, GA, USA
| | - Olivia Perwitasari
- Department of Infectious Diseases, College of Veterinary Medicine, 30602 University of Georgia, Athens, GA, USA
| | - Ralph A Tripp
- Department of Infectious Diseases, College of Veterinary Medicine, 30602 University of Georgia, Athens, GA, USA
| |
Collapse
|
32
|
Selective Removal of FG Repeat Domains from the Nuclear Pore Complex by Enterovirus 2A(pro). J Virol 2015; 89:11069-79. [PMID: 26311873 DOI: 10.1128/jvi.00956-15] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2015] [Accepted: 08/20/2015] [Indexed: 12/31/2022] Open
Abstract
UNLABELLED Enteroviruses proteolyze nuclear pore complex (NPC) proteins (Nups) during infection, leading to disruption of host nuclear transport pathways and alterations in nuclear permeability. To better understand how enteroviruses exert these effects on nuclear transport, the mechanisms and consequences of Nup98 proteolysis were examined. The results indicate that Nup98 is rapidly targeted for degradation following enterovirus infection and that this is mediated by the enterovirus 2A protease (2A(pro)). Incubation of bacterially expressed or in vitro-translated Nup98 with 2A(pro) results in proteolytic cleavage at multiple sites in vitro, indicating that 2A(pro) cleaves Nup98 directly. Site-directed mutagenesis of putative cleavage sites identified Gly374 and Gly552 as the sites of 2A(pro) proteolysis in Nup98 in vitro and in infected cells. Indirect immunofluorescence assays using an antibody that recognizes the N terminus of Nup98 revealed that proteolysis releases the N-terminal FG-rich region from the NPC. In contrast, similar analyses using an antibody to the C terminus indicated that this region is retained at the nuclear rim. Nup88, a core NPC component that serves as a docking site for Nup98, also remains at the NPC in infected cells. These findings support a model whereby the selective removal of Nup FG repeat domains leads to increased NPC permeability and inhibition of certain transport pathways, while retention of structural domains maintains the overall NPC structure and leaves other transport pathways unaffected. IMPORTANCE Enteroviruses are dependent upon host nuclear RNA binding proteins for efficient replication. This study examines the mechanisms responsible for alterations in nuclear transport in enterovirus-infected cells that lead to the cytoplasmic accumulation of these proteins. The results demonstrate that the enterovirus 2A protease directly cleaves the nuclear pore complex (NPC) protein, Nup98, at amino acid positions G374 and G552 both in vitro and in infected cells. Cleavage at these positions results in the selective removal of the FG-containing N terminus of Nup98 from the NPC, while the C terminus remains associated. Nup88, a core component of the NPC that serves as a docking site for the C terminus of Nup98, remains associated with the NPC in infected cells. These findings help to explain the alterations in permeability and nuclear transport in enterovirus-infected cells and how NPCs remain functional for certain trafficking pathways despite significant alterations to their compositions.
Collapse
|
33
|
Flather D, Semler BL. Picornaviruses and nuclear functions: targeting a cellular compartment distinct from the replication site of a positive-strand RNA virus. Front Microbiol 2015; 6:594. [PMID: 26150805 PMCID: PMC4471892 DOI: 10.3389/fmicb.2015.00594] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 05/29/2015] [Indexed: 11/13/2022] Open
Abstract
The compartmentalization of DNA replication and gene transcription in the nucleus and protein production in the cytoplasm is a defining feature of eukaryotic cells. The nucleus functions to maintain the integrity of the nuclear genome of the cell and to control gene expression based on intracellular and environmental signals received through the cytoplasm. The spatial separation of the major processes that lead to the expression of protein-coding genes establishes the necessity of a transport network to allow biomolecules to translocate between these two regions of the cell. The nucleocytoplasmic transport network is therefore essential for regulating normal cellular functioning. The Picornaviridae virus family is one of many viral families that disrupt the nucleocytoplasmic trafficking of cells to promote viral replication. Picornaviruses contain positive-sense, single-stranded RNA genomes and replicate in the cytoplasm of infected cells. As a result of the limited coding capacity of these viruses, cellular proteins are required by these intracellular parasites for both translation and genomic RNA replication. Being of messenger RNA polarity, a picornavirus genome can immediately be translated upon entering the cell cytoplasm. However, the replication of viral RNA requires the activity of RNA-binding proteins, many of which function in host gene expression, and are consequently localized to the nucleus. As a result, picornaviruses disrupt nucleocytoplasmic trafficking to exploit protein functions normally localized to a different cellular compartment from which they translate their genome to facilitate efficient replication. Furthermore, picornavirus proteins are also known to enter the nucleus of infected cells to limit host-cell transcription and down-regulate innate antiviral responses. The interactions of picornavirus proteins and host-cell nuclei are extensive, required for a productive infection, and are the focus of this review.
Collapse
Affiliation(s)
- Dylan Flather
- Department of Microbiology and Molecular Genetics, Center for Virus Research, School of Medicine, University of California, Irvine Irvine, CA, USA
| | - Bert L Semler
- Department of Microbiology and Molecular Genetics, Center for Virus Research, School of Medicine, University of California, Irvine Irvine, CA, USA
| |
Collapse
|
34
|
Cytoplasmic translocation, aggregation, and cleavage of TDP-43 by enteroviral proteases modulate viral pathogenesis. Cell Death Differ 2015; 22:2087-97. [PMID: 25976304 DOI: 10.1038/cdd.2015.58] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 03/29/2015] [Accepted: 04/13/2015] [Indexed: 12/12/2022] Open
Abstract
We have previously demonstrated that infection by coxsackievirus B3 (CVB3), a positive-stranded RNA enterovirus, results in the accumulation of insoluble ubiquitin-protein aggregates, which resembles the common feature of neurodegenerative diseases. The importance of protein aggregation in viral pathogenesis has been recognized; however, the underlying regulatory mechanisms remain ill-defined. Transactive response DNA-binding protein-43 (TDP-43) is an RNA-binding protein that has an essential role in regulating RNA metabolism at multiple levels. Cleavage and cytoplasmic aggregation of TDP-43 serves as a major molecular marker for amyotrophic lateral sclerosis and frontotemporal lobar degeneration and contributes significantly to disease progression. In this study, we reported that TDP-43 is translocated from the nucleus to the cytoplasm during CVB3 infection through the activity of viral protease 2A, followed by the cleavage mediated by viral protease 3C. Cytoplasmic translocation of TDP-43 is accompanied by reduced solubility and increased formation of protein aggregates. The cleavage takes place at amino-acid 327 between glutamine and alanine, resulting in the generation of an N- and C-terminal cleavage fragment of ~35 and ~8 kDa, respectively. The C-terminal product of TDP-43 is unstable and quickly degraded through the proteasome degradation pathway, whereas the N-terminal truncation of TDP-43 acts as a dominant-negative mutant that inhibits the function of native TDP-43 in alternative RNA splicing. Lastly, we demonstrated that knockdown of TDP-43 results in an increase in viral titers, suggesting a protective role for TDP-43 in CVB3 infection. Taken together, our findings suggest a novel model by which cytoplasmic redistribution and cleavage of TDP-43 as a consequence of CVB3 infection disrupts the solubility and transcriptional activity of TDP-43. Our results also reveal a mechanism evolved by enteroviruses to support efficient viral infection.
Collapse
|
35
|
Lloyd RE. Nuclear proteins hijacked by mammalian cytoplasmic plus strand RNA viruses. Virology 2015; 479-480:457-74. [PMID: 25818028 PMCID: PMC4426963 DOI: 10.1016/j.virol.2015.03.001] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 01/12/2015] [Accepted: 03/03/2015] [Indexed: 01/18/2023]
Abstract
Plus strand RNA viruses that replicate in the cytoplasm face challenges in supporting the numerous biosynthetic functions required for replication and propagation. Most of these viruses are genetically simple and rely heavily on co-opting cellular proteins, particularly cellular RNA-binding proteins, into new roles for support of virus infection at the level of virus-specific translation, and building RNA replication complexes. In the course of infectious cycles many nuclear-cytoplasmic shuttling proteins of mostly nuclear distribution are detained in the cytoplasm by viruses and re-purposed for their own gain. Many mammalian viruses hijack a common group of the same factors. This review summarizes recent gains in our knowledge of how cytoplasmic RNA viruses use these co-opted host nuclear factors in new functional roles supporting virus translation and virus RNA replication and common themes employed between different virus groups. Nuclear shuttling host proteins are commonly hijacked by RNA viruses to support replication. A limited group of ubiquitous RNA binding proteins are commonly hijacked by a broad range of viruses. Key virus proteins alter roles of RNA binding proteins in different stages of virus replication.
Collapse
Affiliation(s)
- Richard E Lloyd
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, United States.
| |
Collapse
|
36
|
High throughput proteomic analysis and a comparative review identify the nuclear chaperone, Nucleophosmin among the common set of proteins modulated in Chikungunya virus infection. J Proteomics 2015; 120:126-41. [PMID: 25782748 PMCID: PMC7102674 DOI: 10.1016/j.jprot.2015.03.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 02/14/2015] [Accepted: 03/04/2015] [Indexed: 01/14/2023]
Abstract
Global re-emergence of Chikungunya virus (CHIKV) has renewed the interest in its cellular pathogenesis. We subjected CHIKV-infected Human Embryo Kidney cells (HEK293), a widely used cell-based system for CHIKV infection studies, to a high throughput expression proteomics analysis by Liquid Chromatography–tandem mass spectrometry. A total of 1047 differentially expressed proteins were identified in infected cells, consistently in three biological replicates. Proteins involved in transcription, translation, apoptosis and stress response were the major ones among the 209 proteins that had significant up-regulation. In the set of 45 down-regulated proteins, those involved in carbohydrate and lipid metabolism predominated. A STRING network analysis revealed tight interaction of proteins within the apoptosis, stress response and protein synthesis pathways. We short-listed a common set of 30 proteins that can be implicated in cellular pathology of CHIKV infection by comparing our results and results of earlier CHIKV proteomics studies. Modulation of eight proteins selected from this set was re-confirmed at transcript level. One among them, Nucleophosmin, a nuclear chaperone, showed temporal modulation and cytoplasmic aggregation upon CHIKV infection in double immunofluorescence staining and confocal microscopy. The short-listed cellular proteins will be potential candidates for targeted study of the molecular interactions of CHIKV with host cells. Biological significance Chikungunya remained as a neglected tropical disease till its re-emergence in 2005 in the La RéUnion islands and subsequently, in India and many parts of South East Asia. These and the epidemics that followed in subsequent years ran an explosive course leading to extreme morbidity and attributed mortality to this originally benign virus infection. Apart from classical symptoms of acute fever and debilitating polyarthralgia lasting for several weeks, a number of complications were documented. These included aphthous-like ulcers and vesiculo-bullous eruptions on the skin, hepatic involvement, central nervous system complications such as encephalopathy and encephalitis, and transplacental transmission. The disease has recently spread to the Americas with its initial documentation in the Caribbean islands. The Asian genotype of this positive-stranded RNA virus of the Alphavirus genus has been attributed in these outbreaks. However, the disease ran a similar course as the one caused by the East, Central and South African (ECSA) genotype in the other parts of the world. Studies have documented a number of mutations in the re-emerging strains of the virus that enhances mosquito adaptability and modulates virus infectivity. This might support the occurrence of fiery outbreaks in the absence of herd immunity in affected population. Several research groups work to understand the pathogenesis of chikungunya and the mechanisms of complications using cellular and animal models. A few proteomics approaches have been employed earlier to understand the protein level changes in the infected cells. Our present study, which couples a high throughput proteomic analysis and a comparative review of these earlier studies, identifies a few critical molecules as hypothetical candidates that might be important in this infection and for future study. High throughput expression proteomics analysis in HEK293 cells Identified four major cellular pathways affected in Chikungunya virus infection Short-listed 30 key proteins modulated by a comparative review Confirmed modulation of Nucleophosmin and other selected proteins upon infection
Collapse
|
37
|
Dechtawewat T, Songprakhon P, Limjindaporn T, Puttikhunt C, Kasinrerk W, Saitornuang S, Yenchitsomanus PT, Noisakran S. Role of human heterogeneous nuclear ribonucleoprotein C1/C2 in dengue virus replication. Virol J 2015; 12:14. [PMID: 25890165 PMCID: PMC4351676 DOI: 10.1186/s12985-014-0219-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 11/27/2014] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Host and viral proteins are involved in dengue virus (DENV) replication. Heterogeneous ribonucleoprotein (hnRNP) C1/C2 are abundant host cellular proteins that exhibit RNA binding activity and play important roles in the replication of positive-strand RNA viruses such as poliovirus and hepatitis C virus. hnRNP C1/C2 have previously been shown to interact with vimentin and viral NS1 in DENV-infected cells; however, their functional role in DENV replication is not clearly understood. In the present study, we investigated the role of hnRNP C1/C2 in DENV replication by using an in vitro model of DENV infection in a hepatocyte cell line (Huh7) and siRNA-mediated knockdown of hnRNP C1/C2. METHODS Huh7 cells were transfected with hnRNP C1/C2-specific siRNA or irrelevant siRNA (control) followed by infection with DENV. Mock and DENV-infected knockdown cells were processed for immunoprecipitation using hnRNP C1/C2-specific antibody or their isotype-matched control antibody. The immunoprecipitated samples were subjected to RNA extraction and reverse transcriptase polymerase chain reaction (RT-PCR) for detection of DENV RNA. In addition, the knockdown cells harvested at varying time points after the infection were assessed for cell viability, cell proliferation, percentage of DENV infection, amount of viral RNA, and viral E and NS1 expression. Culture supernatants were subjected to focus forming unit assays to determine titers of infectious DENV. DENV luciferase reporter assay was also set up to determine viral translation. RESULTS Immunoprecipitation with the anti-hnRNP C1/C2 antibody and subsequent RT-PCR revealed the presence of DENV RNA in the immunoprecipitated complex containing hnRNP C1/C2 proteins. Transfection with hnRNP C1/C2-specific siRNA resulted in a significant reduction of hnRNP C1/C2 mRNA and protein levels but did not induce cell death during DENV infection. The reduced hnRNP C1/C2 expression decreased the percentage of DENV antigen-positive cells as well as the amount of DENV RNA and the relative levels of DENV E and NS1 proteins; however, it had no direct effect on DENV translation. In addition, a significant reduction of DENV titers was observed in the supernatant from DENV-infected cells following the knockdown of hnRNP C1/C2. CONCLUSIONS Our findings suggest that hnRNP C1/C2 is involved in DENV replication at the stage of viral RNA synthesis.
Collapse
Affiliation(s)
- Thanyaporn Dechtawewat
- Division of Molecular Medicine, Office of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand.
- Graduate Program in Immunology, Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand.
| | - Pucharee Songprakhon
- Division of Molecular Medicine, Office of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand.
| | - Thawornchai Limjindaporn
- Department of Anatomy, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand.
| | - Chunya Puttikhunt
- Medical Biotechnology Research Unit, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Bangkok, 10700, Thailand.
- Division of Dengue Hemorrhagic Fever Research Unit, Office of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand.
| | - Watchara Kasinrerk
- Division of Clinical Immunology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand.
- Biomedical Technology Research Center, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Chiang Mai, 50200, Thailand.
| | - Sawanan Saitornuang
- Medical Biotechnology Research Unit, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Bangkok, 10700, Thailand.
- Division of Dengue Hemorrhagic Fever Research Unit, Office of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand.
| | - Pa-Thai Yenchitsomanus
- Division of Molecular Medicine, Office of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand.
| | - Sansanee Noisakran
- Medical Biotechnology Research Unit, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Bangkok, 10700, Thailand.
- Division of Dengue Hemorrhagic Fever Research Unit, Office of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand.
| |
Collapse
|
38
|
Paul AV, Wimmer E. Initiation of protein-primed picornavirus RNA synthesis. Virus Res 2015; 206:12-26. [PMID: 25592245 DOI: 10.1016/j.virusres.2014.12.028] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 12/16/2014] [Accepted: 12/24/2014] [Indexed: 12/14/2022]
Abstract
Plus strand RNA viruses use different mechanisms to initiate the synthesis of their RNA chains. The Picornaviridae family constitutes a large group of plus strand RNA viruses that possess a small terminal protein (VPg) covalently linked to the 5'-end of their genomes. The RNA polymerases of these viruses use VPg as primer for both minus and plus strand RNA synthesis. In the first step of the initiation reaction the RNA polymerase links a UMP to the hydroxyl group of a tyrosine in VPg using as template a cis-replicating element (cre) positioned in different regions of the viral genome. In this review we will summarize what is known about the initiation reaction of protein-primed RNA synthesis by the RNA polymerases of the Picornaviridae. As an example we will use the RNA polymerase of poliovirus, the prototype of Picornaviridae. We will also discuss models of how these nucleotidylylated protein primers might be used, together with viral and cellular replication proteins and other cis-replicating RNA elements, during minus and plus strand RNA synthesis.
Collapse
Affiliation(s)
- Aniko V Paul
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY 11790, United States.
| | - Eckard Wimmer
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY 11790, United States
| |
Collapse
|
39
|
Misasi J, Sullivan NJ. Camouflage and misdirection: the full-on assault of ebola virus disease. Cell 2014; 159:477-86. [PMID: 25417101 DOI: 10.1016/j.cell.2014.10.006] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Indexed: 01/30/2023]
Abstract
Ebolaviruses cause a severe hemorrhagic fever syndrome that is rapidly fatal to humans and nonhuman primates. Ebola protein interactions with host cellular proteins disrupt type I and type II interferon responses, RNAi antiviral responses, antigen presentation, T-cell-dependent B cell responses, humoral antibodies, and cell-mediated immunity. This multifaceted approach to evasion and suppression of innate and adaptive immune responses in their target hosts leads to the severe immune dysregulation and "cytokine storm" that is characteristic of fatal ebolavirus infection. Here, we highlight some of the processes by which Ebola interacts with its mammalian hosts to evade antiviral defenses.
Collapse
Affiliation(s)
- John Misasi
- Boston Children's Hospital, Department of Medicine, Division of Infectious Diseases, Boston, MA 02115, USA
| | - Nancy J Sullivan
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
40
|
Issac THK, Tan EL, Chu JJH. Proteomic profiling of chikungunya virus-infected human muscle cells: reveal the role of cytoskeleton network in CHIKV replication. J Proteomics 2014; 108:445-64. [PMID: 24933005 DOI: 10.1016/j.jprot.2014.06.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 05/06/2014] [Accepted: 06/03/2014] [Indexed: 02/01/2023]
Abstract
UNLABELLED Chikungunya virus (CHIKV) is an arthropod-borne, positive-sense, single-stranded RNA virus belonging to genus Alphavirus and family Togaviridae. The clinical manifestations developed upon CHIKV-infection include fever, myositis, arthralgia and maculopapular rash. Thus, the re-emergence of CHIKV has posed serious health threats worldwide. Due to the fact that myositis is induced upon CHIKV-infection, we sought to understand the dynamic proteomic regulation in SJCRH30, a human rhabdomyosarcoma cell line, to gain insights on CHIKV pathogenesis. Two-dimensional gel electrophoresis (2DE) in combination of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) was used to profile differential cellular proteins expression in CHIKV-infected SJCRH30 cells. 2DE analysis on CHIKV-infected cells has revealed 44 protein spots. These spots are found to be involved in various biological pathways such as biomolecules synthesis and metabolism, cell signaling and cellular reorganization. siRNA-mediated gene silencing on selected genes has elucidated the biological significance of these gene-translated host proteins involved in CHIKV-infection. More importantly, the interaction of vimentin with non-structural protein (nsP3) of CHIKV was shown, suggesting the role played by vimentin during CHIKV replication by forming an anchorage network with the CHIKV replication complexes (RCs). BIOLOGICAL SIGNIFICANCE Chikungunya virus (CHIKV) is a re-emerging virus that has caused various disease outbreaks in Africa and Asia. The clinical symptoms of CHIKV-infection include fever, skin rash, recurrent joint paint, and myositis. Neuronal implications and death may be resulted from the severe viral infection. Up to date, there are no effective treatments and vaccines against CHIKV-infection. More importantly, little is known about the differential regulation of host proteins upon CHIKV infection, hence deciphering the viral-host cell interactions during viral infection provide critical information on our understanding on the mechanisms of virus infection and its dependency of host proteins for replication. In light of the muscle-related clinical manifestations of myositis resulting from CHIKV-infection, human rhabdomyosarcoma cells, SJCRH30 were utilized in this protein profiling study, in order to decipher the pathogenesis of CHIKV. This study has identified an arrays of host proteins that are differentially regulated upon CHIKV infection including that of the cytoskeletal protein, vimentin that plays significant role in aiding the replication of CHIKV within the host cells through 2DE assay. Immunofluorescence assay further shows that the novel interaction between cytoskeleton structure and CHIKV replication complex by forming an intercalating network around the replication complexes and facilitating various stages of the virus life cycle. This novel finding has inevitably led to a deeper understanding of CHIKV pathogenesis in revealing the importance of host proteins during CHIKV replication, as well as contributing to the development of specific antiviral strategies against this medically important viral pathogen.
Collapse
Affiliation(s)
- Too Horng Khit Issac
- Laboratory of Molecular RNA Virology and Antiviral Strategies. Department of Microbiology, Yong Loo Lin School of Medicine, National University Health System, 5 Science Drive 2, National University of Singapore, Singapore 117597
| | - Eng Lee Tan
- Department of Paediatrics, University Children's Medical Institute, National University Hospital, Singapore, Singapore; Centre for Biomedical and Life Sciences, Singapore Polytechnic, 500 Dover Road, Singapore, Singapore
| | - Justin Jang Hann Chu
- Laboratory of Molecular RNA Virology and Antiviral Strategies. Department of Microbiology, Yong Loo Lin School of Medicine, National University Health System, 5 Science Drive 2, National University of Singapore, Singapore 117597.
| |
Collapse
|
41
|
The structural and phylogenetic profile of the 3' terminus of coxsackievirus B3 negative strand. Virus Res 2014; 188:81-9. [PMID: 24675276 DOI: 10.1016/j.virusres.2014.03.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2013] [Revised: 03/14/2014] [Accepted: 03/16/2014] [Indexed: 11/20/2022]
Abstract
In the replication process of RNA(+) viruses both the positive-strand template and the newly synthesized negative strand appear in a double-stranded form, RF. It has been shown for poliovirus that prior to the initiation of positive-strand synthesis, the 5'-terminus of the positive strand must adopt a cloverleaf structure. When that happens, the 3'-terminal region of the negative strand is released from the RF form and is able to form into its own defined structure. In order to determine the secondary structure of this region, a comprehensive approach consisting of experimental mapping methods, phylogenetic analysis and computer predictions was applied. Here we propose the first structural model of the 3'-terminal region of the coxsackievirus B3 (CV-B3) negative strand, approximately 450 nucleotides in length. The region folds into three highly defined structural domains, I'-III'. The most 3'-terminal part of this region is domain I', which folds into a cloverleaf structure similar to that found in the viral RNA strand of positive-polarity. Remarkably, this motif is conserved among all analyzed viral isolates of CV-B3 despite the observed sequence diversity. Several other conserved structural motifs within the 3'-terminal region of the viral negative strand were also identified. The structure of this region may be crucial for the replication complex assembly.
Collapse
|
42
|
Magnetic fractionation and proteomic dissection of cellular organelles occupied by the late replication complexes of Semliki Forest virus. J Virol 2013; 87:10295-312. [PMID: 23864636 DOI: 10.1128/jvi.01105-13] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Alphavirus replicase complexes are initially formed at the plasma membrane and are subsequently internalized by endocytosis. During the late stages of infection, viral replication organelles are represented by large cytopathic vacuoles, where replicase complexes bind to membranes of endolysosomal origin. In addition to viral components, these organelles harbor an unknown number of host proteins. In this study, a fraction of modified lysosomes carrying functionally intact replicase complexes was obtained by feeding Semliki Forest virus (SFV)-infected HeLa cells with dextran-covered magnetic nanoparticles and later magnetically isolating the nanoparticle-containing lysosomes. Stable isotope labeling with amino acids in cell culture combined with quantitative proteomics was used to reveal 78 distinct cellular proteins that were at least 2.5-fold more abundant in replicase complex-carrying vesicles than in vesicles obtained from noninfected cells. These host components included the RNA-binding proteins PCBP1, hnRNP M, hnRNP C, and hnRNP K, which were shown to colocalize with the viral replicase. Silencing of hnRNP M and hnRNP C expression enhanced the replication of SFV, Chikungunya virus (CHIKV), and Sindbis virus (SINV). PCBP1 silencing decreased SFV-mediated protein synthesis, whereas hnRNP K silencing increased this synthesis. Notably, the effect of hnRNP K silencing on CHIKV- and SINV-mediated protein synthesis was opposite to that observed for SFV. This study provides a new approach for analyzing the proteome of the virus replication organelle of positive-strand RNA viruses and helps to elucidate how host RNA-binding proteins exert important but diverse functions during positive-strand RNA viral infection.
Collapse
|
43
|
Thiouracil cross-linking mass spectrometry: a cell-based method to identify host factors involved in viral amplification. J Virol 2013; 87:8697-712. [PMID: 23740976 DOI: 10.1128/jvi.00950-13] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Eukaryotic RNA viruses are known to utilize host factors; however, the identity of these factors and their role in the virus life cycle remain largely undefined. Here, we report a method to identify proteins bound to the viral RNA during amplification in cell culture: thiouracil cross-linking mass spectrometry (TUX-MS). TUX-MS relies on incorporation of a zero-distance cross-linker into the viral RNA during infection. Proteins bound to viral RNA are cross-linked prior to cell lysis, purified, and identified using mass spectrometry. Using the TUX-MS method, an unbiased screen for poliovirus (PV) host factors was conducted. All host and viral proteins that are known to interact with the poliovirus RNA were identified. In addition, TUX-MS identified an additional 66 host proteins that have not been previously described in poliovirus amplification. From these candidates, eight were selected and validated. Furthermore, we demonstrate that small interfering RNA (siRNA)-mediated knockdown of two of these uncharacterized host factors results in either a decrease in copy number of positive-stranded RNA or a decrease in PV translation. These data demonstrate that TUX-MS is a robust, unbiased method to identify previously unknown host cell factors that influence virus growth. This method is broadly applicable to a range of RNA viruses, such as flaviviruses, alphaviruses, picornaviruses, bunyaviruses, and coronaviruses.
Collapse
|
44
|
Fitzgerald KD, Chase AJ, Cathcart AL, Tran GP, Semler BL. Viral proteinase requirements for the nucleocytoplasmic relocalization of cellular splicing factor SRp20 during picornavirus infections. J Virol 2013; 87:2390-400. [PMID: 23255796 PMCID: PMC3571363 DOI: 10.1128/jvi.02396-12] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2012] [Accepted: 12/11/2012] [Indexed: 02/05/2023] Open
Abstract
Infection of mammalian cells by picornaviruses results in the nucleocytoplasmic redistribution of certain host cell proteins. These viruses interfere with import-export pathways, allowing for the cytoplasmic accumulation of nuclear proteins that are then available to function in viral processes. We recently described the cytoplasmic relocalization of cellular splicing factor SRp20 during poliovirus infection. SRp20 is an important internal ribosome entry site (IRES) trans-acting factor (ITAF) for poliovirus IRES-mediated translation; however, it is not known whether other picornaviruses utilize SRp20 as an ITAF and direct its cytoplasmic relocalization. Also, the mechanism by which poliovirus directs the accumulation of SRp20 in the cytoplasm of the infected cell is currently unknown. Work described in this report demonstrated that infection by another picornavirus (coxsackievirus B3) causes SRp20 to relocalize from the nucleus to the cytoplasm of HeLa cells, similar to poliovirus infection; however, SRp20 is relocalized to a somewhat lesser extent in the cytoplasm of HeLa cells during infection by yet another picornavirus (human rhinovirus 16). We show that expression of poliovirus 2A proteinase is sufficient to cause the nucleocytoplasmic redistribution of SRp20. Following expression of poliovirus 2A proteinase in HeLa cells, we detect cleavage of specific nuclear pore proteins known to be cleaved during poliovirus infection. We also find that expression of human rhinovirus 16 2A proteinase alone can cause efficient cytoplasmic relocalization of SRp20, despite the lower levels of SRp20 relocalization observed during rhinovirus infection compared to poliovirus. Taken together, these results further define the mechanism of SRp20 cellular redistribution during picornavirus infections, and they provide additional insight into some of the differences observed between human rhinovirus and other enterovirus infections.
Collapse
Affiliation(s)
- Kerry D Fitzgerald
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine, California, USA
| | | | | | | | | |
Collapse
|
45
|
Rozovics JM, Chase AJ, Cathcart AL, Chou W, Gershon PD, Palusa S, Wilusz J, Semler BL. Picornavirus modification of a host mRNA decay protein. mBio 2012; 3:e00431-12. [PMID: 23131833 PMCID: PMC3487778 DOI: 10.1128/mbio.00431-12] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Accepted: 10/12/2012] [Indexed: 01/27/2023] Open
Abstract
UNLABELLED Due to the limited coding capacity of picornavirus genomic RNAs, host RNA binding proteins play essential roles during viral translation and RNA replication. Here we describe experiments suggesting that AUF1, a host RNA binding protein involved in mRNA decay, plays a role in the infectious cycle of picornaviruses such as poliovirus and human rhinovirus. We observed cleavage of AUF1 during poliovirus or human rhinovirus infection, as well as interaction of this protein with the 5' noncoding regions of these viral genomes. Additionally, the picornavirus proteinase 3CD, encoded by poliovirus or human rhinovirus genomic RNAs, was shown to cleave all four isoforms of recombinant AUF1 at a specific N-terminal site in vitro. Finally, endogenous AUF1 was found to relocalize from the nucleus to the cytoplasm in poliovirus-infected HeLa cells to sites adjacent to (but distinct from) putative viral RNA replication complexes. IMPORTANCE This study derives its significance from reporting how picornaviruses like poliovirus and human rhinovirus proteolytically cleave a key player (AUF1) in host mRNA decay pathways during viral infection. Beyond cleavage of AUF1 by the major viral proteinase encoded in picornavirus genomes, infection by poliovirus results in the relocalization of this host cell RNA binding protein from the nucleus to the cytoplasm. The alteration of both the physical state of AUF1 and its cellular location illuminates how small RNA viruses manipulate the activities of host cell RNA binding proteins to ensure a faithful intracellular replication cycle.
Collapse
Affiliation(s)
| | | | | | | | | | - Saiprasad Palusa
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Jeffrey Wilusz
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | | |
Collapse
|
46
|
Abstract
The genomic RNA of poliovirus and closely related picornaviruses perform template and non-template functions during viral RNA replication. The non-template functions are mediated by cis-active RNA sequences that bind viral and cellular proteins to form RNP complexes. The RNP complexes mediate temporally dynamic, long-range interactions in the viral genome and ensure the specificity of replication. The 5' cloverleaf (5' CL)-RNP complex serves as a key cis-active element in all of the non-template functions of viral RNA. The 5'CL-RNP complex is proposed to interact with the cre-RNP complex during VPgpUpU synthesis, the 3'NTR-poly(A) RNP complex during negative-strand initiation and the 30 end negative-strand-RNP complex during positive-strand initiation. Co-ordinating these long-range interactions is important in regulating each step in the replication cycle.
Collapse
Affiliation(s)
- Sushma A Ogram
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL 32610, United States
| | | |
Collapse
|
47
|
Castilla V, Scolaro LA. Involvement of heterogeneous nuclear ribonucleoproteins in viral multiplication. Future Virol 2012. [DOI: 10.2217/fvl.12.48] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The study of virus–host interactions is a major goal in molecular virology and provides new effective targets for antiviral therapies. Heterogeneous nuclear ribonucleoproteins (hnRNPs) constitute a group of cellular RNA-binding proteins localized predominantly within the nucleus, which participate in gene transcription and subsequent RNA post-transcriptional modifications. The interaction between hnRNPs and viral components was extensively demonstrated, as well as the ability of virus infections to alter the intracellular localization or the level of expression of different hnRNPs. The involvement of these proteins in the replication of numerous viruses including members from the Retroviridae, Flaviviridae, Coronaviridae, Arenaviridae, Rhabdoviridae, Papillomaviridae, Orthomyxoviridae, Picornaviridae, Togaviridae and Herpesviridae families, has been reported. In order to gain an increased understanding of the interactions between virus and cell that result in the productive infection of the latter, in this review we discuss the main findings about the role of hnRNPs in different steps of viral replication, such as RNA synthesis, translation, RNA processing and egress of newly assembled progeny virus.
Collapse
Affiliation(s)
- Viviana Castilla
- Laboratorio de Virología, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Luis A Scolaro
- Laboratorio de Virología, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
48
|
Nagy PD, Pogany J. The dependence of viral RNA replication on co-opted host factors. Nat Rev Microbiol 2011; 10:137-49. [PMID: 22183253 PMCID: PMC7097227 DOI: 10.1038/nrmicro2692] [Citation(s) in RCA: 339] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Positive-sense RNA ((+)RNA) viruses such as hepatitis C virus exploit host cells by subverting host proteins, remodelling subcellular membranes, co-opting and modulating protein and ribonucleoprotein complexes, and altering cellular metabolic pathways during infection. To facilitate RNA replication, (+)RNA viruses interact with numerous host molecules through protein-protein, RNA-protein and protein-lipid interactions. These interactions lead to the formation of viral replication complexes, which produce new viral RNA progeny in host cells. This Review presents the recent progress that has been made in understanding the role of co-opted host proteins and membranes during (+)RNA virus replication, and discusses common themes employed by different viruses.
Collapse
Affiliation(s)
- Peter D Nagy
- Department of Plant Pathology, University of Kentucky, 201F Plant Science Building, Lexington, Kentucky 40546, USA.
| | | |
Collapse
|
49
|
Shabman RS, Gulcicek EE, Stone KL, Basler CF. The Ebola virus VP24 protein prevents hnRNP C1/C2 binding to karyopherin α1 and partially alters its nuclear import. J Infect Dis 2011; 204 Suppl 3:S904-10. [PMID: 21987768 DOI: 10.1093/infdis/jir323] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The Ebola virus (EBOV) protein VP24 inhibits type I and II interferon (IFN) signaling by binding to NPI-1 subfamily karyopherin α (KPNA) nuclear import proteins, preventing their interaction with tyrosine-phosphorylated STAT1 (phospho-STAT1). This inhibits phospho-STAT1 nuclear import. A biochemical screen now identifies heterogeneous nuclear ribonuclear protein complex C1/C2 (hnRNP C1/C2) nuclear import as an additional target of VP24. Co-immunoprecipitation studies demonstrate that hnRNP C1/C2 interacts with multiple KPNA family members, including KPNA1. Interaction with hnRNP C1/C2 occurs through the same KPNA1 C-terminal region (amino acids 424-457) that binds VP24 and phospho-STAT1. The ability of hnRNP C1/C2 to bind KPNA1 is diminished in the presence of VP24, and cells transiently expressing VP24 redistribute hnRNP C1/C2 from the nucleus to the cytoplasm. These data further define the mechanism of hnRNP C1/C2 nuclear import and demonstrate that the impact of EBOV VP24 on nuclear import extends beyond STAT1.
Collapse
Affiliation(s)
- Reed S Shabman
- Mount Sinai School of Medicine, New York, New York 10029, USA
| | | | | | | |
Collapse
|
50
|
Daijogo S, Semler BL. Mechanistic intersections between picornavirus translation and RNA replication. Adv Virus Res 2011; 80:1-24. [PMID: 21762819 DOI: 10.1016/b978-0-12-385987-7.00001-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Members of the Picornaviridae are positive-strand RNA viruses whose genomes contain internal ribosome entry sites (IRESs) in the 5' noncoding region (NCR). These viruses must utilize host cell factors for translation initiation and RNA replication in the cytoplasm of infected cells. Such cytoplasmic, positive-strand RNA viruses have a conflict between the processes of translation and negative-strand RNA synthesis, since they occur in opposing directions and utilize positive-strand viral RNA as a template. The most extensively studied picornavirus, poliovirus, will be the focus of this review. Critical RNA elements and factors involved in the virus replication cycle will be discussed, with an overview on how these steps in replication relate to the switch mechanism between IRES-dependent translation and synthesis of negative-strand RNA intermediates.
Collapse
Affiliation(s)
- Sarah Daijogo
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine, California, USA
| | | |
Collapse
|