1
|
Amann V, Kissmann AK, Firacative C, Rosenau F. Biofilm-Associated Candidiasis: Pathogenesis, Prevalence, Challenges and Therapeutic Options. Pharmaceuticals (Basel) 2025; 18:460. [PMID: 40283897 PMCID: PMC12030374 DOI: 10.3390/ph18040460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 03/11/2025] [Accepted: 03/21/2025] [Indexed: 04/29/2025] Open
Abstract
The rising prevalence of fungal infections, especially those caused by Candida species, presents a major risk to global health. With approximately 1.5 million deaths annually, the urgency for effective treatment options has never been greater. Candida spp. are the leading cause of invasive infections, significantly impacting immunocompromised patients and those in healthcare settings. C. albicans, C. parapsilosis and the emerging species C. auris are categorized as highly dangerous species because of their pathogenic potential and increasing drug resistance. This review comparatively describes the formation of microbial biofilms of both bacterial and fungal origin, including major pathogens, thereby creating a novel focus. Biofilms can further complicate treatment, as these structures provide enhanced resistance to antifungal therapies. Traditional antifungal agents, including polyenes, azoles and echinocandins, have shown effectiveness, yet resistance development continues to rise, necessitating the exploration of novel therapeutic approaches. Antimicrobial peptides (AMPs) such as the anti-biofilm peptides Pom-1 and Cm-p5 originally isolated from snails represent promising candidates due to their unique mechanisms of action and neglectable cytotoxicity. This review article discusses the challenges posed by Candida infections, the characteristics of important species, the role of biofilms in virulence and the potential of new therapeutic options like AMPs.
Collapse
Affiliation(s)
- Valerie Amann
- Institute of Pharmaceutical Biotechnology, Ulm University, 89081 Ulm, Germany; (V.A.); (A.-K.K.)
| | - Ann-Kathrin Kissmann
- Institute of Pharmaceutical Biotechnology, Ulm University, 89081 Ulm, Germany; (V.A.); (A.-K.K.)
| | - Carolina Firacative
- Studies in Translational Microbiology and Emerging Diseases (MICROS) Research Group, School of Medicine and Health Sciences, Universidad del Rosario, Bogota 111221, Colombia;
| | - Frank Rosenau
- Institute of Pharmaceutical Biotechnology, Ulm University, 89081 Ulm, Germany; (V.A.); (A.-K.K.)
| |
Collapse
|
2
|
Makarichian A, Ahmadi E, Chayjan RA, Zafari D, Mohtasebi SS. Use of the electronic nose to monitor the influences of modified atmosphere packaging on the storage of contaminated garlic. Heliyon 2025; 11:e42609. [PMID: 40034325 PMCID: PMC11875824 DOI: 10.1016/j.heliyon.2025.e42609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 02/08/2025] [Accepted: 02/10/2025] [Indexed: 03/05/2025] Open
Abstract
Garlic is a valuable product that has an excessive application due to its impressive nutritional value. The issue of garlic storage as a seasonal product is critical. Therefore, the effective conditions in the storage should be identified and monitored. In this research, three important treatments in garlic storage including packaging materials, packaging atmosphere, and fungal infection were studied. The effect of these treatments on some important qualitative indices in garlic such as weight reduction, browning index, acidity, total soluble solids, toughness, etc was investigated. Also, the non-destructive technology of the electronic nose (E-Nose) was used as a complementary solution in garlic quality monitoring. The data were evaluated by the Analysis of Variance (ANOVA), Principal Component Analysis (PCA), Backpropagation Neural Network (BPNN), Linear Discriminant Analysis (LDA), and Partial Least-Squares Regression (PLSR) methods. The results disclosed well that applying the studied treatments can affect the changes in qualitative traits. Also, changes in qualitative traits were associated with aromatic changes. The E-Nose responses toward the aroma of different treatment combinations (TCs) had a unique pattern but did not represent an exclusive trend. The PLSR results proved among the qualitative properties, the physical and mechanical traits had the highest (97 %) and lowest (24 %) correlation with aroma changes, respectively. Therefore, the E-Nose can be employed as a complementary and non-destructive solution in the quality monitoring of the storage of products such as garlic.
Collapse
Affiliation(s)
- Alireza Makarichian
- Department of Biosystems Engineering, Faculty of Agriculture, Bu-Ali Sina University, Hamadan, Iran
| | - Ebrahim Ahmadi
- Department of Biosystems Engineering, Faculty of Agriculture, Bu-Ali Sina University, Hamadan, Iran
| | - Reza Amiri Chayjan
- Department of Biosystems Engineering, Faculty of Agriculture, Bu-Ali Sina University, Hamadan, Iran
| | - Doostmorad Zafari
- Department of Plant Protection, Faculty of Agriculture, Bu-Ali Sina University, Hamadan, Iran
| | - Seyed Saeid Mohtasebi
- Department of Agricultural Machinery Engineering, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| |
Collapse
|
3
|
Volkova ON, Amel'chenko EV, Makeeva OV, Tolmachev SA, Lesovaya EA, Zacharia LC, Dikovskiy AV. Efficacy and safety of vaginal suppositories containing combination of Natamycin and Lactulose in treatment of vulvovaginal candidiasis: international, randomized, controlled, superiority clinical trial (combination of Natamycin and Lactulose for treatment of vulvovaginal candidiasis). BMC Womens Health 2025; 25:77. [PMID: 39979898 PMCID: PMC11843759 DOI: 10.1186/s12905-025-03616-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 02/17/2025] [Indexed: 02/22/2025] Open
Abstract
BACKGROUND The study aimed to assess the efficacy and safety of Natamycin + Lactulose vaginal suppositories (100 mg natamycin and 300 mg lactulose) (AVVA RUS JSC, Russia) in adult females with vulvovaginal candidiasis. METHODS AND RESULTS An international, randomized, controlled, assessor-blinded clinical trial enrolled 218 females randomly distributed into three groups: Natamycin + Lactulose (92 patients), Lactulose (36 patients), and Pimafucin® (90 patients). The study drug and comparator drugs had an identical dosing regimen (one suppository intravaginally once a day at bedtime for six days). The study involved four visits to the study site with examination at Visits 2 and 3. The fixed-dose combination of Natamycin + Lactulose was superior to both comparator drugs in terms of the primary efficacy endpoint defined as the percentage of patients achieving a clinical recovery: the absence of symptoms of vulvovaginal candidiasis. At Visit 2, clinical recovery was reported in 81.6% of females in the Natamycin + Lactulose group compared to 42.9% and 62.3% of patients in the Lactulose and Pimafucin groups, respectively. The difference in proportions was 38.8% and 18.4%. In the Natamycin + Lactulose group, microscopic recovery was observed in 75.9% of patients at Visit 2 and in 90.8% of patients at Visit 3. In the Lactulose group, 45.7% and 74.3% subjects responded positively at Visits 2 and 3. In Pimafucin group, microscopic recovery was reported in 71.3% and 88.5% of patients at Visits 2 and 3, respectively, while no differences were observed between the Natamycin + Lactulose and Pimafucin groups at both visits. At Visit 3, the number of vaginal lactobacilli was significantly higher in the Natamycin + Lactulose group. In females with the low baseline content of vaginal lactobacilli, the combination drug under investigation increased the vaginal lactobacilli content to the reference values in 15.4% and 20.9% of patients at Visit 2 and Visit 3, respectively. CONCLUSIONS The fixed-dose combination Natamycin + Lactulose 100 mg + 300 mg vaginal suppositories (AVVA RUS JSC, Russia) demonstrated superior efficacy compared to 1) Pimafucin 100 mg and 2) Lactulose 300 mg vaginal suppositories in adult females with vulvovaginal candidiasis. TRIAL REGISTRATION NCT06411314, retrospectively registered on May, the 13th, 2024.
Collapse
Affiliation(s)
- Oksana N Volkova
- City Clinical Hospital of Emergency Medical Care of Minsk, Minsk, Belarus
| | | | | | | | | | - Lefteris C Zacharia
- AVVA Pharmaceuticals Ltd, Limassol, Cyprus.
- Department of Health Sciences, School of Life and Health Sciences, University of Nicosia, Nicosia, 2417, Cyprus.
| | | |
Collapse
|
4
|
Liao Y, Gao IH, Kusakabe T, Lin WY, Grier A, Pan X, Morzhanaeva O, Shea TP, Yano H, Karo-Atar D, Olsen KA, Oh JH, Vandegrift KJ, King IL, Cuomo CA, Artis D, Rehermann B, Lipman N, Iliev ID. Fungal symbiont transmitted by free-living mice promotes type 2 immunity. Nature 2024; 636:697-704. [PMID: 39604728 PMCID: PMC11733984 DOI: 10.1038/s41586-024-08213-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 10/14/2024] [Indexed: 11/29/2024]
Abstract
The gut mycobiota is crucial for intestinal homeostasis and immune function1. Yet its variability and inconsistent fungal colonization of laboratory mice hinders the study of the evolutionary and immune processes that underpin commensalism2,3. Here, we show that Kazachstania pintolopesii is a fungal commensal in wild urban and rural mice, with an exceptional ability to colonize the mouse gastrointestinal tract and dominate the gut mycobiome. Kazachstania pintolopesii colonization occurs in a bacteria-independent manner, results in enhanced colonization resistance to other fungi and is shielded from host immune surveillance, allowing commensal presence. Following changes in the mucosal environment, K. pintolopesii colonization triggers a type 2 immune response in mice and induces gastrointestinal eosinophilia. Mechanistically, we determined that K. pintolopesii activates type 2 immunity via the induction of epithelial IL-33 and downstream IL-33-ST2 signalling during mucus fluctuations. Kazachstania pintolopesii-induced type 2 immunity enhanced resistance to helminth infections or aggravated gastrointestinal allergy in a context-dependent manner. Our findings indicate that K. pintolopesii is a mouse commensal and serves as a valuable model organism for studying gut fungal commensalism and immunity in its native host. Its unnoticed presence in mouse facilities highlights the need to evaluate its influence on experimental outcomes and phenotypes.
Collapse
Affiliation(s)
- Yun Liao
- Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA
- The Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Iris H Gao
- Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA
- The Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Takato Kusakabe
- Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA
- The Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Woan-Yu Lin
- Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA
- The Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Alexander Grier
- Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA
- The Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Xiangyu Pan
- Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA
- The Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Olga Morzhanaeva
- Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA
- The Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Terrance P Shea
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Hiroshi Yano
- Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA
- The Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Friedman Center for Nutrition and Inflammation, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Allen Discovery Center for Neuroimmune Interactions, New York, NY, USA
| | - Danielle Karo-Atar
- Department of Microbiology and Immunology, Meakins-Christie Laboratories, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
- McGill Centre for Microbiome Research, McGill University, Montreal, Quebec, Canada
| | - Kaitlin A Olsen
- Department of Microbiology and Immunology, Meakins-Christie Laboratories, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
- McGill Centre for Microbiome Research, McGill University, Montreal, Quebec, Canada
| | - Ji Hoon Oh
- Immunology Section, Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, DHHS, Bethesda, MD, USA
| | - Kurt J Vandegrift
- Department of Biology, The Pennsylvania State University, University Park, PA, USA
| | - Irah L King
- Department of Microbiology and Immunology, Meakins-Christie Laboratories, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
- McGill Centre for Microbiome Research, McGill University, Montreal, Quebec, Canada
| | - Christina A Cuomo
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, USA
| | - David Artis
- Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA
- The Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Friedman Center for Nutrition and Inflammation, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Allen Discovery Center for Neuroimmune Interactions, New York, NY, USA
| | - Barbara Rehermann
- Immunology Section, Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, DHHS, Bethesda, MD, USA
| | - Neil Lipman
- Center for Comparative Medicine and Pathology, Memorial Sloan Kettering Cancer Center and Weill Cornell Medicine, New York, NY, USA
| | - Iliyan D Iliev
- Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA.
- The Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, USA.
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, Cornell University, New York, NY, USA.
- Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY, USA.
| |
Collapse
|
5
|
Park J, Park S, Kim J, Cho YJ, Lee JS. Ctr9 promotes virulence of Candida albicans by regulating methionine metabolism. Virulence 2024; 15:2405616. [PMID: 39316797 PMCID: PMC11423685 DOI: 10.1080/21505594.2024.2405616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 08/28/2024] [Accepted: 09/05/2024] [Indexed: 09/26/2024] Open
Abstract
Candida albicans, a part of normal flora, is an opportunistic fungal pathogen and causes severe health issues in immunocompromised patients. Its pathogenicity is intricately linked to the transcriptional regulation of its metabolic pathways. Paf1 complex (Paf1C) is a crucial transcriptional regulator that is highly conserved in eukaryotes. The objective of this study was to explore the role of Paf1C in the metabolic pathways and how it influences the pathogenicity of C. albicans. Paf1C knockout mutant strains of C. albicans (ctr9Δ/Δ, leo1Δ/Δ, and cdc73Δ/Δ) were generated using the CRISPR-Cas9 system. To investigate the effect of Paf1C on pathogenicity, macrophage interaction assays and mouse survival tests were conducted. The growth patterns of the Paf1C knockout mutants were analyzed through spotting assays and growth curve measurements. Transcriptome analysis was conducted under yeast conditions (30°C without serum) and hyphal conditions (37°C with 10% FBS), to further elucidate the role of Paf1C in the pathogenicity of C. albicans. CTR9 deletion resulted in the attenuation of C. albicans virulence, in macrophage and mouse models. Furthermore, we confirmed that the reduced virulence of the ctr9Δ/Δ mutant can be attributed to a decrease in C. albicans cell abundance. Moreover, transcriptome analysis revealed that metabolic processes required for cell proliferation are impaired in ctr9Δ/Δ mutant. Notably, CTR9 deletion led to the downregulation of methionine biosynthetic genes and the cAMP-PKA signaling pathway-related hypha essential genes, which are pivotal for virulence. Our results suggest that Ctr9-regulated methionine metabolism is a crucial factor for determining C. albicans pathogenicity.
Collapse
Affiliation(s)
- Jiyeon Park
- Department of Molecular Bioscience, College of Biomedical Science, Kangwon National University, Chuncheon, Republic of Korea
| | - Shinae Park
- Department of Molecular Bioscience, College of Biomedical Science, Kangwon National University, Chuncheon, Republic of Korea
| | - Jueun Kim
- Department of Molecular Bioscience, College of Biomedical Science, Kangwon National University, Chuncheon, Republic of Korea
| | - Yong-Joon Cho
- Department of Molecular Bioscience, College of Biomedical Science, Kangwon National University, Chuncheon, Republic of Korea
- Multidimensional Genomics Research Center, Kangwon National University, Chuncheon, Republic of Korea
| | - Jung-Shin Lee
- Department of Molecular Bioscience, College of Biomedical Science, Kangwon National University, Chuncheon, Republic of Korea
| |
Collapse
|
6
|
Ray SC, Shen Q, Rappleye CA. Three transporters, including the novel Gai1 permease, drive amino acid uptake in Histoplasma yeasts. Virulence 2024; 15:2438750. [PMID: 39652632 PMCID: PMC11633205 DOI: 10.1080/21505594.2024.2438750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 11/08/2024] [Accepted: 12/02/2024] [Indexed: 12/13/2024] Open
Abstract
The dimorphic fungus Histoplasma capsulatum, which almost exclusively resides within host phagocytic cells during infection, must meet its nutritional needs by scavenging molecules from the phagosome environment. The requirement for gluconeogenesis, but not fatty acid catabolism, for intracellular growth, implicates amino acids as a likely intracellular nutrient source. Consequently, we investigated Histoplasma growth on amino acids. Growth assays demonstrated that Histoplasma yeasts readily utilize most amino acids as nitrogen sources but only efficiently catabolize glutamine, glutamate, aspartate, proline, isoleucine, and alanine as carbon sources. An amino acid permease-based conserved domain search identified 28 putative amino acid transporters within the Histoplasma genome. We characterized the substrate specificities of the major Histoplasma amino acid transporters using a Saccharomyces cerevisiae heterologous expression system and found that H. capsulatum Dip5, Gap3, and a newly described permease, Gai1, comprise most of Histoplasma's amino acid import capacity. Histoplasma yeasts deficient in these three transporters are impaired for growth on free amino acids but proliferate within macrophages and remain fully virulent during infection of mice, indicating that free amino acids are not the principal nutrient source within the phagosome to support Histoplasma proliferation during infection.
Collapse
Affiliation(s)
- Stephanie C. Ray
- Department of Microbiology, Ohio State University, Columbus, OH, USA
| | - Qian Shen
- Department of Biology, Rhodes College, Memphis, TN, USA
| | - Chad A. Rappleye
- Department of Microbiology, Ohio State University, Columbus, OH, USA
| |
Collapse
|
7
|
Boschetto F, Rondinella A, Marin E. Biological Activity of Silicon Nitride Ceramics: A Critical Review. MATERIALS (BASEL, SWITZERLAND) 2024; 17:5548. [PMID: 39597372 PMCID: PMC11595669 DOI: 10.3390/ma17225548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/01/2024] [Accepted: 11/08/2024] [Indexed: 11/29/2024]
Abstract
The commercial use of Si3N4 ceramics in the biomedical field dates back to the early 1980s and, initially, did not show promising results, which is why their biocompatibility was not then investigated further until about 10 years later. Over the years, a change in trend has been observed; more and more studies have shown that this material could possess high biocompatibility and antibacterial properties. However, the relevant literature struggles to find mechanisms that can incontrovertibly explain the reasons behind the biological activity of Si3N4. The proposed mechanisms are often pure hypotheses or are not substantiated by comprehensive analyses. This review begins by studying the early references to the biological activity of Si3N4 and then reviews the literature regarding the bioactivity of this ceramic over time. An examination of the early insights into surface chemistry and biocompatibility lays the foundation for a detailed examination of the chemical reactions that Si3N4 undergoes in biological environments. Next, the analysis focuses on the mechanisms of bioactivity and antipathogenicity that the material exhibits both alone and in combination with modern bioglass. However, it is highlighted that despite the general consensus on the biocompatibility and bioactivity of Si3N4 ceramics, sometimes the proposed biological mechanisms behind its behavior are discordant or unsupported by the direct evaluation of specific biochemical activities. This review highlights both the reliable information in the literature and the gaps in research that need to be filled in order to fully understand the reasons behind the biological properties of this material.
Collapse
Affiliation(s)
- Francesco Boschetto
- Center for Excellence in Hip, Scottish Rite for Children, Dallas, TX 75219, USA
| | - Alfredo Rondinella
- Department Polytechnic of Engineering and Architecture, University of Udine, 33100 Udine, Italy
| | - Elia Marin
- Department Polytechnic of Engineering and Architecture, University of Udine, 33100 Udine, Italy
- Materials Bioengineering Laboratory, Faculty of Materials Science and Engineering, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, Kyoto 606-8585, Japan
- Biomedical Research Center, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, Kyoto 606-8585, Japan
| |
Collapse
|
8
|
Schaefer S, Corrigan N, Brunke S, Lenardon MD, Boyer C. Combatting Fungal Infections: Advances in Antifungal Polymeric Nanomaterials. Biomacromolecules 2024; 25:5670-5701. [PMID: 39177507 DOI: 10.1021/acs.biomac.4c00866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
Fungal pathogens cause over 6.5 million life-threatening systemic infections annually, with mortality rates ranging from 20 to 95%, even with medical intervention. The World Health Organization has recently emphasized the urgent need for new antifungal drugs. However, the range of effective antifungal agents remains limited and resistance is increasing. This Review explores the current landscape of fungal infections and antifungal drugs, focusing on synthetic polymeric nanomaterials like nanoparticles that enhance the physicochemical properties of existing drugs. Additionally, we examine intrinsically antifungal polymers that mimic naturally occurring peptides. Advances in polymer characterization and synthesis now allow precise design and screening for antifungal activity, biocompatibility, and drug interactions. These antifungal polymers represent a promising new class of drugs for combating fungal infections.
Collapse
Affiliation(s)
- Sebastian Schaefer
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, New South Wales 2052, Australia
- Australian Centre for NanoMedicine, UNSW, Sydney, New South Wales 2052, Australia
- School of Biotechnology and Biomolecular Sciences, UNSW, Sydney, New South Wales 2052, Australia
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute, 07745 Jena, Germany
| | - Nathaniel Corrigan
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, New South Wales 2052, Australia
- Australian Centre for NanoMedicine, UNSW, Sydney, New South Wales 2052, Australia
| | - Sascha Brunke
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute, 07745 Jena, Germany
| | - Megan D Lenardon
- School of Biotechnology and Biomolecular Sciences, UNSW, Sydney, New South Wales 2052, Australia
| | - Cyrille Boyer
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, New South Wales 2052, Australia
- Australian Centre for NanoMedicine, UNSW, Sydney, New South Wales 2052, Australia
| |
Collapse
|
9
|
Xiong EH, Zhang X, Yan H, Ward HN, Lin ZY, Wong CJ, Fu C, Gingras AC, Noble SM, Robbins N, Myers CL, Cowen LE. Functional genomic analysis of genes important for Candida albicans fitness in diverse environmental conditions. Cell Rep 2024; 43:114601. [PMID: 39126650 PMCID: PMC11416860 DOI: 10.1016/j.celrep.2024.114601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 06/20/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
Fungal pathogens such as Candida albicans pose a significant threat to human health with limited treatment options available. One strategy to expand the therapeutic target space is to identify genes important for pathogen growth in host-relevant environments. Here, we leverage a pooled functional genomic screening strategy to identify genes important for fitness of C. albicans in diverse conditions. We identify an essential gene with no known Saccharomyces cerevisiae homolog, C1_09670C, and demonstrate that it encodes subunit 3 of replication factor A (Rfa3). Furthermore, we apply computational analyses to identify functionally coherent gene clusters and predict gene function. Through this approach, we predict the cell-cycle-associated function of C3_06880W, a previously uncharacterized gene required for fitness specifically at elevated temperatures, and follow-up assays confirm that C3_06880W encodes Iml3, a component of the C. albicans kinetochore with roles in virulence in vivo. Overall, this work reveals insights into the vulnerabilities of C. albicans.
Collapse
Affiliation(s)
- Emily H Xiong
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Xiang Zhang
- Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Huijuan Yan
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA 94143, USA
| | - Henry N Ward
- Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN 55455, USA; Bioinformatics and Computational Biology Graduate Program, University of Minnesota, Minneapolis, MN 55455, USA
| | - Zhen-Yuan Lin
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health, Toronto, ON M5G 1X5, Canada
| | - Cassandra J Wong
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health, Toronto, ON M5G 1X5, Canada
| | - Ci Fu
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Anne-Claude Gingras
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada; Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health, Toronto, ON M5G 1X5, Canada
| | - Suzanne M Noble
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA 94143, USA
| | - Nicole Robbins
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Chad L Myers
- Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN 55455, USA; Bioinformatics and Computational Biology Graduate Program, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Leah E Cowen
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
10
|
Pasman R, Zhang J, Zaat SAJ, Brul S, Krom BP. A customizable and defined medium supporting culturing of Candida albicans, Staphylococcus aureus, and human oral epithelial cells. Appl Environ Microbiol 2024; 90:e0036024. [PMID: 39072650 PMCID: PMC11337806 DOI: 10.1128/aem.00360-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 06/27/2024] [Indexed: 07/30/2024] Open
Abstract
Candida albicans, an opportunistic oral pathogen, synergizes with Staphylococcus aureus, allowing bacteria to co-invade and systemically disseminate within the host. Studying human-microbe interactions creates the need for a universal culture medium that supports fungal, bacterial, and human cell culturing, while allowing sensitive analytical approaches such as OMICs and chromatography techniques. In this study, we established a fully defined, customizable adaptation of Dulbecco's modified Eagle medium (DMEM), allowing multi-kingdom culturing of S. aureus, C. albicans, and human oral cell lines, whereas minimal version of DMEM (mDMEM) did not support growth of S. aureus, and neither did supplementation with dextrose, MEM non-essential amino acids, pyruvate, and Glutamax. This new medium composition, designated as "mDMEM-DMP," promoted growth of all tested S. aureus strains. Addition of 25 mM 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) further improved growth, while higher concentrations did not improve growth any further. Higher concentrations of HEPES did result in prolonged stabilization of medium pH. mDMEM-DMP promoted (hyphal) C. albicans monoculturing and co-culturing on both solid and semi-solid surfaces. In contrast to S. aureus, addition of HEPES reduced C. albicans maximum culture optical density (OD). Finally, only buffered mDMEM-DMP (100 mM HEPES) was successful in maintaining the metabolic activity of human oral Ca9-22 and HO1N1 cell lines for 24 hours. Altogether, our findings show that mDMEM-DMP is a versatile and potent culture medium for both microbial and human cell culturing, providing a customizable platform to study human as well as microbial molecular physiology and putative interactions. IMPORTANCE Interaction between microbes and the host are in the center of interest both in disease and in health. In order to study the interactions between microbes of different kingdoms and the host, alternative media are required. Synthetic media are useful as they allow addition of specific components. In addition, well-defined media are required if high-resolution analyses such as metabolomics and proteomics are desired. We describe the development of a synthetic medium to study the interactions between C. albicans, S. aureus, and human oral epithelial cells. Our findings show that mDMEM-DMP is a versatile and potent culture medium for both microbial and human cell culturing, providing a customizable platform to study human as well as microbial molecular physiology and putative interactions.
Collapse
Affiliation(s)
- Raymond Pasman
- Department of Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, the Netherlands
| | - Jianbo Zhang
- Department of Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, the Netherlands
| | - Sebastian A. J. Zaat
- Department of Medical Microbiology and Infection Prevention, Amsterdam institute for Infection and Immunity, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Stanley Brul
- Department of Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, the Netherlands
| | - Bastiaan P. Krom
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Free University Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
11
|
Iswara RA, Hestiantoro A, Budiningsih Y, Werdhani RA, Birowo P, Wuyung PE, Afandi D. Effect of pH and neutrophil count on the motility and persistence of spermatozoa in the vagina of candidiasis rat models. NARRA J 2024; 4:e823. [PMID: 39280289 PMCID: PMC11391961 DOI: 10.52225/narra.v4i2.823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 06/18/2024] [Indexed: 09/18/2024]
Abstract
Sexual violence is a global issue affecting individuals regardless of their relationship to the perpetrator or the setting. Microscopic examination of spermatozoa from vaginal swabs is crucial in investigating cases of sexual intercourse to determine the time of the crime. Factors such as vaginal pH and neutrophil count influence the motility and persistence of spermatozoa in the vagina, particularly in conditions like candidiasis, highlighting the need for further research in this area. This study aimed to determine the effect of pH and neutrophil count on the motility and persistence of spermatozoa in the vagina with candidiasis. An experimental study was conducted using white rats (Rattus norvegicus) of the Wistar strain, with four male rats providing spermatozoa samples and 32 female rats receiving treatment. The female rats were divided into two groups: the normal group and the candidiasis model group. In both groups, the female rats were given vaginal insemination of spermatozoa. Variables measured included pH, neutrophil count, motility, and persistence of spermatozoa in the vagina. Data were analyzed using the Mann-Whitney test, followed by the Spearman correlation test. The findings revealed that spermatozoa motility lasted up to three minutes in normal rats, whereas in the candidiasis model, it was reduced to two minutes. Additionally, spermatozoa persistence in the vagina lasted up to six days in the normal group compared to up to three days in the candidiasis model. There were significant differences in pH, neutrophil count, motility, and persistence of spermatozoa in the vagina between the normal group and the candidiasis model (all had p<0.001). There was a correlation between pH and neutrophil count with the motility and persistence of spermatozoa in the rat's vagina (p<0.001). In conclusion, vaginal pH and neutrophil count influence the motility and persistence of spermatozoa in the vagina of candidiasis rat models.
Collapse
Affiliation(s)
- Raja Afw Iswara
- Doctoral Program in Medical Science, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
- Department of Forensic and Medicolegal, Faculty of Medicine, Universitas Halu Oleo, Kendari, Indonesia
| | - Andon Hestiantoro
- Department of Obstetrics and Gynecology, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Yuli Budiningsih
- Department of Forensic and Medicolegal, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Retno A Werdhani
- Department of Community Medicine, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Ponco Birowo
- Department of Urology, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Puspita E Wuyung
- Department of Pathological Anatomy, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Dedi Afandi
- Department of Forensic and Medicolegal, Faculty of Medicine, Universitas Riau, Pekanbaru, Indonesia
| |
Collapse
|
12
|
Cohen S, Ost KS, Doran KS. Impact of interkingdom microbial interactions in the vaginal tract. PLoS Pathog 2024; 20:e1012018. [PMID: 38457371 PMCID: PMC10923463 DOI: 10.1371/journal.ppat.1012018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2024] Open
Affiliation(s)
- Shirli Cohen
- University of Colorado Anschutz Medical Campus, Department of Immunology and Microbiology, Aurora, Colorado, United States of America
| | - Kyla S. Ost
- University of Colorado Anschutz Medical Campus, Department of Immunology and Microbiology, Aurora, Colorado, United States of America
| | - Kelly S. Doran
- University of Colorado Anschutz Medical Campus, Department of Immunology and Microbiology, Aurora, Colorado, United States of America
| |
Collapse
|
13
|
Das S, Konwar BK. Inhibiting pathogenicity of vaginal Candida albicans by lactic acid bacteria and MS analysis of their extracellular compounds. APMIS 2024; 132:161-186. [PMID: 38168754 DOI: 10.1111/apm.13365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 11/26/2023] [Indexed: 01/05/2024]
Abstract
Maintaining healthy vaginal microflora post-puberty is critical. In this study we explore the potential of vaginal lactic acid bacteria (LAB) and their extracellular metabolites against the pathogenicity of Candida albicans. The probiotic culture free supernatant (PCFS) from Lactobacillus crispatus, L. gasseri, and L. vaginalis exhibit an inhibitory effect on budding, hyphae, and biofilm formation of C. albicans. LGPCFS manifested the best potential among the LAB PCFS, inhibiting budding for 24 h and restricting hyphae formation post-stimulation. LGPCFS also pre-eminently inhibited biofilm formation. Furthermore, L. gasseri itself grew under RPMI 1640 stimulation suppressing the biofilm formation of C. albicans. The PCFS from the LAB downregulated the hyphal genes of C. albicans, inhibiting the yeast transformation to fungi. Hyphal cell wall proteins HWP1, ALS3, ECE1, and HYR1 and transcription factors BCR1 and CPH1 were downregulated by the metabolites from LAB. Finally, the extracellular metabolome of the LAB was studied by LC-MS/MS analysis. L.gasseri produced the highest antifungal compounds and antibiotics, supporting its best activity against C. albicans. Vaginal LAB and their extracellular metabolites perpetuate C. albicans at an avirulent state. The metabolites produced by these LAB in vitro have been identified, and can be further exploited as a preventive measure against vaginal candidiasis.
Collapse
Affiliation(s)
- Shreaya Das
- Department of MBBT, Tezpur University, Napaam, Assam, India
| | | |
Collapse
|
14
|
Sonnberger J, Kasper L, Lange T, Brunke S, Hube B. "We've got to get out"-Strategies of human pathogenic fungi to escape from phagocytes. Mol Microbiol 2024; 121:341-358. [PMID: 37800630 DOI: 10.1111/mmi.15149] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/08/2023] [Accepted: 08/16/2023] [Indexed: 10/07/2023]
Abstract
Human fungal pathogens are a deadly and underappreciated risk to global health that most severely affect immunocompromised individuals. A virulence attribute shared by some of the most clinically relevant fungal species is their ability to survive inside macrophages and escape from these immune cells. In this review, we discuss the mechanisms behind intracellular survival and elaborate how escape is mediated by lytic and non-lytic pathways as well as strategies to induce programmed host cell death. We also discuss persistence as an alternative to rapid host cell exit. In the end, we address the consequences of fungal escape for the host immune response and provide future perspectives for research and development of targeted therapies.
Collapse
Affiliation(s)
- Johannes Sonnberger
- Department of Microbial Pathogenicity Mechanisms, Hans Knoell Institute, Jena, Germany
| | - Lydia Kasper
- Department of Microbial Pathogenicity Mechanisms, Hans Knoell Institute, Jena, Germany
| | - Theresa Lange
- Department of Microbial Pathogenicity Mechanisms, Hans Knoell Institute, Jena, Germany
| | - Sascha Brunke
- Department of Microbial Pathogenicity Mechanisms, Hans Knoell Institute, Jena, Germany
| | - Bernhard Hube
- Department of Microbial Pathogenicity Mechanisms, Hans Knoell Institute, Jena, Germany
- Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| |
Collapse
|
15
|
Garcia MT, Dos Santos JD, do Carmo PHF, Mendes GV, de Oliveira JR, de Oliveira LD, Junqueira JC. Streptococcus mutans supernatant affects the virulence of Candida albicans. Braz J Microbiol 2024; 55:365-374. [PMID: 38040990 PMCID: PMC10920551 DOI: 10.1007/s42770-023-01198-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 11/22/2023] [Indexed: 12/03/2023] Open
Abstract
Candida albicans causes a variety of clinical manifestations through multiple virulence factors that act simultaneously to overcome the immune system and invade the host tissues. Owing to the limited number of antifungal agents available, new candidiasis therapeutic strategies are required. Previous studies have demonstrated that the metabolites produced by Streptococcus mutans lead to a decrease in the number of Candida cells. Here, for the first time, we evaluated whether the C. albicans cells that survived the pretreatment with S. mutans supernatant can modify their virulence factors and their capability to infect Galleria mellonella larvae. Streptococcus mutans supernatant (SM-S) was obtained by filtering the culture supernatant of this bacterium. Then, C. albicans cells were pretreated with SM-S for 24 h, and the surviving cells were evaluated using in vitro and in vivo assays. The C. albicans pretreated with SM-S showed a significant inhibition of hyphal growth, an altered adhesion pattern, and an impaired capability to form biofilms; however, its proteolytic activity was not affected. In the in vivo assays, C. albicans cells previously exposed to SM-S exhibited a reduced ability to infect G. mellonella and a higher amount of circulating hemocytes. Thus, SM-S could inhibit important virulence factors of C. albicans, which may contribute to the development of new candidiasis therapeutic strategies.
Collapse
Affiliation(s)
- Maíra Terra Garcia
- Department of Biosciences and Oral Diagnosis, São Paulo State University (UNESP), Institute of Science and Technology, Av. Engenheiro Francisco José Longo, 777, São José dos Campos, SP, 12245-000, Brazil.
| | - Jéssica Diane Dos Santos
- Department of Biosciences and Oral Diagnosis, São Paulo State University (UNESP), Institute of Science and Technology, Av. Engenheiro Francisco José Longo, 777, São José dos Campos, SP, 12245-000, Brazil
| | - Paulo Henrique Fonseca do Carmo
- Department of Biosciences and Oral Diagnosis, São Paulo State University (UNESP), Institute of Science and Technology, Av. Engenheiro Francisco José Longo, 777, São José dos Campos, SP, 12245-000, Brazil
| | - Gabriela Vieira Mendes
- Department of Biosciences and Oral Diagnosis, São Paulo State University (UNESP), Institute of Science and Technology, Av. Engenheiro Francisco José Longo, 777, São José dos Campos, SP, 12245-000, Brazil
| | - Jonatas Rafael de Oliveira
- Anhembi Morumbi University, School of Medicine, Av. Deputado Benedito Matarazzo, 6709, São José dos Campos, SP, 12242-010, Brazil
| | - Luciane Dias de Oliveira
- Department of Biosciences and Oral Diagnosis, São Paulo State University (UNESP), Institute of Science and Technology, Av. Engenheiro Francisco José Longo, 777, São José dos Campos, SP, 12245-000, Brazil
| | - Juliana Campos Junqueira
- Department of Biosciences and Oral Diagnosis, São Paulo State University (UNESP), Institute of Science and Technology, Av. Engenheiro Francisco José Longo, 777, São José dos Campos, SP, 12245-000, Brazil
| |
Collapse
|
16
|
Schaefer S, Melodia D, Pracey C, Corrigan N, Lenardon MD, Boyer C. Mimicking Charged Host-Defense Peptides to Tune the Antifungal Activity and Biocompatibility of Amphiphilic Polymers. Biomacromolecules 2024; 25:871-889. [PMID: 38165721 DOI: 10.1021/acs.biomac.3c01038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
Invasive fungal infections impose a substantial global health burden. They cause more than 1.5 million deaths annually and are insufficiently met by the currently approved antifungal drugs. Antifungal peptides are a promising alternative to existing antifungal drugs; however, they can be challenging to synthesize, and are often susceptible to proteases in vivo. Synthetic polymers which mimic the properties of natural antifungal peptides can circumvent these limitations. In this study, we developed a library of 29 amphiphilic polyacrylamides with different charged units, namely, amines, guanidinium, imidazole, and carboxylic acid groups, representative of the natural amino acids lysine, arginine, histidine, and glutamic acid. Ternary polymers incorporating primary ammonium (lysine-like) or imidazole (histidine-like) groups demonstrated superior activity against Candida albicans and biocompatibility with mammalian cells compared to the polymers containing the other charged groups. Furthermore, a combination of primary ammonium, imidazole, and guanidinium (arginine-like) within the same polymer outperformed the antifungal drug amphotericin B in terms of therapeutic index and exhibited fast C. albicans-killing activity. The most promising polymer compositions showed synergistic effects in combination with caspofungin and fluconazole against C. albicans and additionally demonstrated activity against other clinically relevant fungi. Collectively, these results indicate the strong potential of these easily producible polymers to be used as antifungals.
Collapse
Affiliation(s)
- Sebastian Schaefer
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, New South Wales 2052, Australia
- Australian Centre for NanoMedicine, UNSW, Sydney, New South Wales 2052, Australia
- School of Biotechnology and Biomolecular Sciences, UNSW, Sydney, New South Wales 2052, Australia
| | - Daniele Melodia
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, New South Wales 2052, Australia
- Australian Centre for NanoMedicine, UNSW, Sydney, New South Wales 2052, Australia
| | - Christopher Pracey
- Nuclear Magnetic Resonance Facility, Mark Wainwright Analytical Centre, UNSW, Sydney, New South Wales 2052, Australia
| | - Nathaniel Corrigan
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, New South Wales 2052, Australia
- Australian Centre for NanoMedicine, UNSW, Sydney, New South Wales 2052, Australia
| | - Megan D Lenardon
- School of Biotechnology and Biomolecular Sciences, UNSW, Sydney, New South Wales 2052, Australia
| | - Cyrille Boyer
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, New South Wales 2052, Australia
- Australian Centre for NanoMedicine, UNSW, Sydney, New South Wales 2052, Australia
| |
Collapse
|
17
|
Zhang FY, Lian N, Li M. Macrophage pyroptosis induced by Candida albicans. Pathog Dis 2024; 82:ftae003. [PMID: 38499444 PMCID: PMC11162155 DOI: 10.1093/femspd/ftae003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 10/21/2023] [Accepted: 03/15/2024] [Indexed: 03/20/2024] Open
Abstract
Candida albicans (C. albicans) is a prevalent opportunistic pathogen that causes mucocutaneous and systemic infections, particularly in immunocompromised individuals. Macrophages play a crucial role in eliminating C. albicans in local and bloodstream contexts, while also regulating antifungal immune responses. However, C. albicans can induce macrophage lysis through pyroptosis, a type of regulated cell death. This process can enable C. albicans to escape from immune cells and trigger the release of IL-1β and IL-18, which can impact both the host and the pathogen. Nevertheless, the mechanisms by which C. albicans triggers pyroptosis in macrophages and the key factors involved in this process remain unclear. In this review, we will explore various factors that may influence or trigger pyroptosis in macrophages induced by C. albicans, such as hypha, ergosterol, cell wall remodeling, and other virulence factors. We will also examine the possible immune response following macrophage pyroptosis.
Collapse
Affiliation(s)
- Feng-yuan Zhang
- Hospital for Skin Diseases, Institute of Dermatology,Chinese Academy of Medical Sciences & Peking Union Medical College, 12th. JiangWangmiao street, Nanjing, 210042, China
| | - Ni Lian
- Hospital for Skin Diseases, Institute of Dermatology,Chinese Academy of Medical Sciences & Peking Union Medical College, 12th. JiangWangmiao street, Nanjing, 210042, China
| | - Min Li
- Hospital for Skin Diseases, Institute of Dermatology,Chinese Academy of Medical Sciences & Peking Union Medical College, 12th. JiangWangmiao street, Nanjing, 210042, China
- Center for Global Health, School of Public Health, Nanjing Medical University, 101st. LongMian Avenue, Nanjing, 211166, China
| |
Collapse
|
18
|
Guan G, Li S, Bing J, Liu L, Tao L. The Rfg1 and Bcr1 transcription factors regulate acidic pH-induced filamentous growth in Candida albicans. Microbiol Spectr 2023; 11:e0178923. [PMID: 37933972 PMCID: PMC10715123 DOI: 10.1128/spectrum.01789-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 09/23/2023] [Indexed: 11/08/2023] Open
Abstract
IMPORTANCE Candida albicans is a human commensal and frequent pathogen that encounters a wide range of pH stresses. The ability of C. albicans to adapt to changes in extracellular pH is crucial for its success in colonization and pathogenesis. The Rim101 pH sensing pathway is well known to govern neutral-alkaline pH responses in this pathogen. Here, we report a novel Rfg1-Bcr1 regulatory pathway that governs acidic pH responses and regulates filamentous growth in C. albicans. In addition, the Rim101-Phr1 pathway, cAMP signaling pathway, transcription factors Efg1 and Flo8, and hyphal-specific G1 cyclin Hgc1 cooperate with this regulation. Our findings provide new insights into the regulatory mechanism of acidic pH response in C. albicans.
Collapse
Affiliation(s)
- Guobo Guan
- Department of Infectious Diseases, Huashan Hospital, Shanghai Institute of Infectious Disease and Biosecurity and State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Shuaihu Li
- Department of Infectious Diseases, Huashan Hospital, Shanghai Institute of Infectious Disease and Biosecurity and State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Jian Bing
- Department of Infectious Diseases, Huashan Hospital, Shanghai Institute of Infectious Disease and Biosecurity and State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Ling Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Li Tao
- Department of Infectious Diseases, Huashan Hospital, Shanghai Institute of Infectious Disease and Biosecurity and State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| |
Collapse
|
19
|
Anand R, Kashif M, Pandit A, Babu R, Singh AP. Reprogramming in Candida albicans Gene Expression Network under Butanol Stress Abrogates Hyphal Development. Int J Mol Sci 2023; 24:17227. [PMID: 38139056 PMCID: PMC10743114 DOI: 10.3390/ijms242417227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 11/02/2023] [Accepted: 11/03/2023] [Indexed: 12/24/2023] Open
Abstract
Candida albicans is the causative agent of invasive fungal infections. Its hyphae-forming ability is regarded as one of the important virulence factors. To unravel the impact of butanol on Candida albicans, it was placed in O+ve complete human serum with butanol (1% v/v). The Candida transcriptome under butanol stress was then identified by mRNA sequencing. Studies including electron microscopy demonstrated the inhibition of hyphae formation in Candida under the influence of butanol, without any significant alteration in growth rate. The numbers of genes upregulated in the butanol in comparison to the serum alone were 1061 (20 min), 804 (45 min), and 537 (120 min). Candida cells exhibited the downregulation of six hypha-specific transcription factors and the induction of four repressor/regulator genes. Many of the hypha-specific genes exhibited repression in the medium with butanol. The genes related to adhesion also exhibited repression, whereas, among the heat-shock genes, three showed inductions in the presence of butanol. The fungal-specific genes exhibited induction as well as repression in the butanol-treated Candida cells. Furthermore, ten upregulated genes formed the core stress gene set in the presence of butanol. In the gene ontology analysis, enrichment of the processes related to non-coding RNA, ribosome biosynthesis, and metabolism was observed in the induced gene set. On the other side, a few GO biological process terms, including biofilm formation and filamentous growth, were enriched in the repressed gene set. Taken together, under butanol stress, Candida albicans is unable to extend hyphae and shows growth by budding. Many of the genes with perturbed expression may have fitness or virulence attributes and may provide prospective sites of antifungal targets against C. albicans.
Collapse
Affiliation(s)
- Rajesh Anand
- Infectious Disease Laboratory, National Institute of Immunology, New Delhi 110067, India; (R.A.)
| | - Mohammad Kashif
- Infectious Disease Laboratory, National Institute of Immunology, New Delhi 110067, India; (R.A.)
| | - Awadhesh Pandit
- Next Generation Sequencing Facility, National Institute of Immunology, New Delhi 110067, India
| | - Ram Babu
- Department of Botany, Kirori Mal College, University of Delhi, Delhi 110007, India
| | - Agam P. Singh
- Infectious Disease Laboratory, National Institute of Immunology, New Delhi 110067, India; (R.A.)
| |
Collapse
|
20
|
Li S, Liu Y, Weng L, Zhao Y, Zhang Y, Zhang Z, Yang Y, Chen Q, Liu X, Zhang H. The F 1F o-ATP synthase α subunit of Candida albicans induces inflammatory responses by controlling amino acid catabolism. Virulence 2023; 14:2190645. [PMID: 36914568 PMCID: PMC10072111 DOI: 10.1080/21505594.2023.2190645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 02/08/2023] [Accepted: 03/09/2023] [Indexed: 03/15/2023] Open
Abstract
Sepsis is a leading cause of fatality in invasive candidiasis. The magnitude of the inflammatory response is a determinant of sepsis outcomes, and inflammatory cytokine imbalances are central to the pathophysiological processes. We previously demonstrated that a Candida albicans F1Fo-ATP synthase α subunit deletion mutant was nonlethal to mice. Here, the potential effects of the F1Fo-ATP synthase α subunit on host inflammatory responses and the mechanism were studied. Compared with wild-type strain, the F1Fo-ATP synthase α subunit deletion mutant failed to induce inflammatory responses in Galleria mellonella and murine systemic candidiasis models and significantly decreased the mRNA levels of the proinflammatory cytokines IL-1β, IL-6 and increased those of the anti-inflammatory cytokine IL-4 in the kidney. During C. albicans-macrophage co-culture, the F1Fo-ATP synthase α subunit deletion mutant was trapped inside macrophages in yeast form, and its filamentation, a key factor in inducing inflammatory responses, was inhibited. In the macrophage-mimicking microenvironment, the F1Fo-ATP synthase α subunit deletion mutant blocked the cAMP/PKA pathway, the core filamentation-regulating pathway, because it failed to alkalinize environment by catabolizing amino acids, an important alternative carbon source inside macrophages. The mutant downregulated Put1 and Put2, two essential amino acid catabolic enzymes, possibly due to severely impaired oxidative phosphorylation. Our findings reveal that the C. albicans F1Fo-ATP synthase α subunit induces host inflammatory responses by controlling its own amino acid catabolism and it is significant to find drugs that inhibit F1Fo-ATP synthase α subunit activity to control the induction of host inflammatory responses.
Collapse
Affiliation(s)
- Shuixiu Li
- Department of Dermatology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
- Institute of Mycology, Jinan University, Guangzhou, Guangdong, China
| | - Yuting Liu
- Department of Dermatology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
- Institute of Mycology, Jinan University, Guangzhou, Guangdong, China
| | - Luobei Weng
- Department of Dermatology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
- Institute of Mycology, Jinan University, Guangzhou, Guangdong, China
| | - Yajing Zhao
- Department of Dermatology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
- Institute of Mycology, Jinan University, Guangzhou, Guangdong, China
| | - Yishan Zhang
- Department of Dermatology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
- Institute of Mycology, Jinan University, Guangzhou, Guangdong, China
| | - Zhanpeng Zhang
- Department of Dermatology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
- Institute of Mycology, Jinan University, Guangzhou, Guangdong, China
| | - Yang Yang
- Department of Dermatology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
- Institute of Mycology, Jinan University, Guangzhou, Guangdong, China
| | - Qiaoxin Chen
- Department of Dermatology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
- Institute of Mycology, Jinan University, Guangzhou, Guangdong, China
| | - Xiaocong Liu
- Department of Dermatology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
- Institute of Mycology, Jinan University, Guangzhou, Guangdong, China
| | - Hong Zhang
- Department of Dermatology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
- Institute of Mycology, Jinan University, Guangzhou, Guangdong, China
| |
Collapse
|
21
|
Miramón P, Pountain AW, Lorenz MC. Candida auris-macrophage cellular interactions and transcriptional response. Infect Immun 2023; 91:e0027423. [PMID: 37815367 PMCID: PMC10652981 DOI: 10.1128/iai.00274-23] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 08/29/2023] [Indexed: 10/11/2023] Open
Abstract
The pathogenic yeast Candida auris represents a global threat of the utmost clinical relevance. This emerging fungal species is remarkable in its resistance to commonly used antifungal agents and its persistence in the nosocomial settings. The innate immune system is one the first lines of defense preventing the dissemination of pathogens in the host. C. auris is susceptible to circulating phagocytes, and understanding the molecular details of these interactions may suggest routes to improved therapies. In this work, we examined the interactions of this yeast with macrophages. We found that macrophages avidly phagocytose C. auris; however, intracellular replication is not inhibited, indicating that C. auris resists the killing mechanisms imposed by the phagocyte. Unlike Candida albicans, phagocytosis of C. auris does not induce macrophage lysis. The transcriptional response of C. auris to macrophage phagocytosis is very similar to other members of the CUG clade (C. albicans, C. tropicalis, C. parapsilosis, C. lusitaniae), i.e., downregulation of transcription/translation and upregulation of alternative carbon metabolism pathways, transporters, and induction of oxidative stress response and proteolysis. Gene family expansions are common in this yeast, and we found that many of these genes are induced in response to macrophage co-incubation. Among these, amino acid and oligopeptide transporters, as well as lipases and proteases, are upregulated. Thus, C. auris shares key transcriptional signatures shared with other fungal pathogens and capitalizes on the expansion of gene families coding for potential virulence attributes that allow its survival, persistence, and evasion of the innate immune system.
Collapse
Affiliation(s)
- Pedro Miramón
- Department of Microbiology and Molecular Genetics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, USA
| | | | - Michael C. Lorenz
- Department of Microbiology and Molecular Genetics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, USA
| |
Collapse
|
22
|
Han Z, Moh ESX, Santos ALS, Barcellos IC, Peng Y, Huang W, Ye J. Dechlorination of wastewater from shell-based glucosamine processing by mangrove wetland-derived fungi. Front Microbiol 2023; 14:1271286. [PMID: 37901808 PMCID: PMC10613029 DOI: 10.3389/fmicb.2023.1271286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 09/28/2023] [Indexed: 10/31/2023] Open
Abstract
Wastewater from processing crustacean shell features ultrahigh chloride content. Bioremediation of the wastewater is challenging due to the high chloride ion content, making it inhospitable for most microorganisms to survive and growth. In this study, mangrove wetland-derived fungi were first tested for their salt tolerance, and the highly tolerant isolates were cultured in shrimp processing wastewater and the chloride concentration was monitored. Notably, the filamentous fungal species Aspergillus piperis could remove over 70% of the chloride in the wastewater within 3 days, with the fastest biomass increase (2.01 times heavier) and chloride removal occurring between day one and two. The chloride ions were sequestered into the fungal cells. The genome of this fungal species contained Cl- conversion enzymes, which may have contributed to the ion removal. The fungal strain was found to be of low virulence in larval models and could serve as a starting point for further considerations in bioremediation of shell processing wastewater, promoting the development of green technology in the shell processing industry.
Collapse
Affiliation(s)
- Zhiping Han
- College of Food Science and Engineering, Lingnan Normal University, Zhanjiang, Guangdong, China
| | - Edward S. X. Moh
- ARC Centre of Excellence for Synthetic Biology, School of Natural Sciences, Macquarie University, Sydney, NSW, Australia
| | - André L. S. Santos
- Department of General Microbiology, Institute of Microbiology Paulo de Góes, Federal University of Rio de Janeiro (UFRJ), and Rede Micologia RJ – FAPERJ, Rio de Janeiro, Brazil
| | - Iuri C. Barcellos
- Department of General Microbiology, Institute of Microbiology Paulo de Góes, Federal University of Rio de Janeiro (UFRJ), and Rede Micologia RJ – FAPERJ, Rio de Janeiro, Brazil
| | - Yuanhuai Peng
- College of Food Science and Engineering, Lingnan Normal University, Zhanjiang, Guangdong, China
| | - Weicong Huang
- College of Food Science and Engineering, Lingnan Normal University, Zhanjiang, Guangdong, China
| | - Jianzhi Ye
- Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, Guangdong, China
| |
Collapse
|
23
|
David H, Solomon AP. Molecular association of Candida albicans and vulvovaginal candidiasis: focusing on a solution. Front Cell Infect Microbiol 2023; 13:1245808. [PMID: 37900321 PMCID: PMC10611527 DOI: 10.3389/fcimb.2023.1245808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 09/21/2023] [Indexed: 10/31/2023] Open
Abstract
Candida albicans-mediated vulvovaginal candidiasis (VVC) is a significant challenge in clinical settings, owing to the inefficacy of current antifungals in modulating virulence, development of resistance, and poor penetration into the biofilm matrix. Various predisposition factors are molecular drivers that lead to the dysbiosis of normal microflora of the vagina, upregulation of central metabolic pathways, morphogenesis, hyphal extension, adhesion, invasion, and biofilm formation leading to chronic infection and recurrence. Hence, it is crucial to understand the molecular mechanism behind the virulence pathways driven by those drivers to decode the drug targets. Finding innovative solutions targeting fungal virulence/biofilm may potentiate the antifungals at low concentrations without affecting the recurrence of resistance. With this background, the present review details the critical molecular drivers and associated network of virulence pathways, possible drug targets, target-specific inhibitors, and probable mode of drug delivery to cross the preclinical phase by appropriate in vivo models.
Collapse
Affiliation(s)
| | - Adline Princy Solomon
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| |
Collapse
|
24
|
Milner DS, Galindo LJ, Irwin NAT, Richards TA. Transporter Proteins as Ecological Assets and Features of Microbial Eukaryotic Pangenomes. Annu Rev Microbiol 2023; 77:45-66. [PMID: 36944262 DOI: 10.1146/annurev-micro-032421-115538] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
Here we review two connected themes in evolutionary microbiology: (a) the nature of gene repertoire variation within species groups (pangenomes) and (b) the concept of metabolite transporters as accessory proteins capable of providing niche-defining "bolt-on" phenotypes. We discuss the need for improved sampling and understanding of pangenome variation in eukaryotic microbes. We then review the factors that shape the repertoire of accessory genes within pangenomes. As part of this discussion, we outline how gene duplication is a key factor in both eukaryotic pangenome variation and transporter gene family evolution. We go on to outline how, through functional characterization of transporter-encoding genes, in combination with analyses of how transporter genes are gained and lost from accessory genomes, we can reveal much about the niche range, the ecology, and the evolution of virulence of microbes. We advocate for the coordinated systematic study of eukaryotic pangenomes through genome sequencing and the functional analysis of genes found within the accessory gene repertoire.
Collapse
Affiliation(s)
- David S Milner
- Department of Biology, University of Oxford, Oxford, United Kingdom;
| | | | - Nicholas A T Irwin
- Department of Biology, University of Oxford, Oxford, United Kingdom;
- Merton College, University of Oxford, Oxford, United Kingdom
| | - Thomas A Richards
- Department of Biology, University of Oxford, Oxford, United Kingdom;
| |
Collapse
|
25
|
Omotani S, Murakami K, Naka A, Hatsuda Y, Myotoku M. Differences in the growth of microorganisms depends on the type of semi-solid enteral nutritional supplements. J Pharm Health Care Sci 2023; 9:27. [PMID: 37653514 PMCID: PMC10472649 DOI: 10.1186/s40780-023-00297-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 07/11/2023] [Indexed: 09/02/2023] Open
Abstract
BACKGROUND Enteral nutritional supplements are used in many medical facilities and home care, but require appropriate management because they are nutrient-rich products. Recently, infection control methods for Ready To Hang (RTH) preparations, which are widely used and are expected to reduce the risk of infection, have not been established in Japan and are dependent on caregivers. Therefore, we evaluated the difference in the growth of microorganisms depending on the type of enteral nutrients following contamination with microorganisms. METHODS Nine types of enteral nutrition were used. Escherichia coli (E. coli) W3110, Serratia marcescens (S. marcescens) NBRC3046, and Candida albicans (C. albicans) IFM61197 were used as test bacteria. The bacterial solution was added to the enteral nutritional supplement, adjusted, and the number of bacteria was measured at 0, 4, 8, and 24 h after the addition of the bacterial solution at 25 °C and in the dark. RESULTS E. coli and S. marcescens grew in RACOL®-NF SemiSolid for Enteral Use, Hine® Jerry AQUA, and Mermed Plus® over a 24-h period; however, a decrease was observed for other enteral nutrition products. In contrast, C. albicans grew in all enteral nutrition products. CONCLUSION Because the viscosity and calorie content vary among enteral nutrition preparations in which growth was observed, we found that pH had the greatest effect on the differences in bacterial growth. Nonetheless, C. albicans growth occurred in all nine types of enteral nutrients, indicating that unlike bacteria, its growth was independent of pH. If semi-solid enteral nutrients are contaminated with microorganisms for any reason, microorganisms will grow, so appropriate infection control is necessary to prevent infection.
Collapse
Affiliation(s)
- Sachiko Omotani
- Faculty of Pharmacy, Osaka Ohtani University, 3-11-1, Nishikiori-Kita, Tondabayashi, Osaka, 584-8540, Japan
| | - Kanaha Murakami
- Faculty of Pharmacy, Osaka Ohtani University, 3-11-1, Nishikiori-Kita, Tondabayashi, Osaka, 584-8540, Japan
| | - Arisa Naka
- Faculty of Pharmacy, Osaka Ohtani University, 3-11-1, Nishikiori-Kita, Tondabayashi, Osaka, 584-8540, Japan
| | - Yasutoshi Hatsuda
- Faculty of Pharmacy, Osaka Ohtani University, 3-11-1, Nishikiori-Kita, Tondabayashi, Osaka, 584-8540, Japan
| | - Michiaki Myotoku
- Faculty of Pharmacy, Osaka Ohtani University, 3-11-1, Nishikiori-Kita, Tondabayashi, Osaka, 584-8540, Japan.
| |
Collapse
|
26
|
Wang F, Wang Z, Tang J. The interactions of Candida albicans with gut bacteria: a new strategy to prevent and treat invasive intestinal candidiasis. Gut Pathog 2023; 15:30. [PMID: 37370138 DOI: 10.1186/s13099-023-00559-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND The gut microbiota plays an important role in human health, as it can affect host immunity and susceptibility to infectious diseases. Invasive intestinal candidiasis is strongly associated with gut microbiota homeostasis. However, the nature of the interaction between Candida albicans and gut bacteria remains unclear. OBJECTIVE This review aimed to determine the nature of interaction and the effects of gut bacteria on C. albicans so as to comprehend an approach to reducing intestinal invasive infection by C. albicans. METHODS This review examined 11 common gut bacteria's interactions with C. albicans, including Escherichia coli, Pseudomonas aeruginosa, Acinetobacter baumannii, Enterococcus faecalis, Staphylococcus aureus, Salmonella spp., Helicobacter pylori, Lactobacillus spp., Bacteroides spp., Clostridium difficile, and Streptococcus spp. RESULTS Most of the studied bacteria demonstrated both synergistic and antagonistic effects with C. albicans, and just a few bacteria such as P. aeruginosa, Salmonella spp., and Lactobacillus spp. demonstrated only antagonism against C. albicans. CONCLUSIONS Based on the nature of interactions reported so far by the literature between gut bacteria and C. albicans, it is expected to provide new ideas for the prevention and treatment of invasive intestinal candidiasis.
Collapse
Affiliation(s)
- Fei Wang
- Department of Trauma-Emergency & Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, 128 Ruili Road, Shanghai, 200240, China
| | - Zetian Wang
- Department of Trauma-Emergency & Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, 128 Ruili Road, Shanghai, 200240, China.
| | - Jianguo Tang
- Department of Trauma-Emergency & Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, 128 Ruili Road, Shanghai, 200240, China.
| |
Collapse
|
27
|
Wilson HB, Lorenz MC. Candida albicans Hyphal Morphogenesis within Macrophages Does Not Require Carbon Dioxide or pH-Sensing Pathways. Infect Immun 2023; 91:e0008723. [PMID: 37078861 PMCID: PMC10187119 DOI: 10.1128/iai.00087-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 03/29/2023] [Indexed: 04/21/2023] Open
Abstract
The opportunistic fungal pathogen Candida albicans has evolved a variety of mechanisms for surviving inside and escaping macrophages, including the initiation of filamentous growth. Although several distinct models have been proposed to explain this process at the molecular level, the signals driving hyphal morphogenesis in this context have yet to be clarified. Here, we evaluate the following three molecular signals as potential hyphal inducers within macrophage phagosomes: CO2, intracellular pH, and extracellular pH. Additionally, we revisit previous work suggesting that the intracellular pH of C. albicans fluctuates in tandem with morphological changes in vitro. Using time-lapse microscopy, we observed that C. albicans mutants lacking components of the CO2-sensing pathway were able to undergo hyphal morphogenesis within macrophages. Similarly, a rim101Δ strain was competent in hyphal induction, suggesting that neutral/alkaline pH sensing is not necessary for the initiation of morphogenesis within phagosomes either. Contrary to previous findings, single-cell pH-tracking experiments revealed that the cytosolic pH of C. albicans remains tightly regulated both within macrophage phagosomes and under a variety of in vitro conditions throughout the process of morphogenesis. This finding suggests that intracellular pH is not a signal contributing to morphological changes.
Collapse
Affiliation(s)
- Hannah B. Wilson
- Graduate School for Biomedical Sciences, University of Texas Science Center at Houston, Houston, Texas, USA
- Department of Microbiology and Molecular Genetics, University of Texas McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Michael C. Lorenz
- Department of Microbiology and Molecular Genetics, University of Texas McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, USA
| |
Collapse
|
28
|
Deng Y, Wang R, Zhang Y, Li J, Gooneratne R. Effect of Amino Acids on Fusarium oxysporum Growth and Pathogenicity Regulated by TORC1- Tap42 Gene and Related Interaction Protein Analysis. Foods 2023; 12:foods12091829. [PMID: 37174368 PMCID: PMC10177761 DOI: 10.3390/foods12091829] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/26/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
Free amino acids (AAs) formed in fermented meat products are important nitrogen sources for the survival and metabolism of contaminating fungi. These AAs are mainly regulated by the TORC1-Tap42 signaling pathway. Fusarium spp., a common contaminant of fermented products, is a potential threat to food safety. Therefore, there is an urgent need to clarify the effect of different AAs on Fusarium spp. growth and metabolism. This study investigated the effect of 18 AAs on Fusarium oxysporum (Fo17) growth, sporulation, T-2 toxin (T-2) synthesis and Tri5 expression through Tap42 gene regulation. Co-immunoprecipitation and Q Exactive LC-MS/MS methods were used to detect the interacting protein of Tap42 during specific AA treatment. Tap42 positively regulated L-His, L-Ile and L-Tyr absorption for Fo17 colony growth. Acidic (L-Asp, L-Glu) and sulfur-containing (L-Cys, L-Met) AAs significantly inhibited the Fo17 growth which was not regulated by Tap42. The L-Ile and L-Pro addition significantly activated the sporulation of ΔFoTap42. L-His and L-Ser inhibited the sporulation of ΔFoTap42. In T-2 synthesis, ΔFoTap42 was increased in GYM medium, but was markedly inhibited in L-Asp and L-Glu addition groups. Dose-response experiments showed that 10-70 mg/mL of neutral AA (L-Thr) and alkaline AA (L-His) significantly increased the T-2 production and Tri5 expression of Fo17, but Tri5 expression was not activated in ΔFoTap42. Inhibition of T-2 synthesis and Tri5 expression were observed in Fo17 following the addition of 30-70 mg/mL L-Asp. KEGG enrichment pathway analysis demonstrated that interacting proteins of Tap42 were from glycerophospholipid metabolism, pentose phosphate pathway, glyoxylate and dicarboxylate metabolism, glycolysis and gluconeogenesis, and were related to the MAPK and Hippo signaling pathways. This study enhanced our understanding of AA regulation in fermented foods and its effect on Fusarium growth and metabolism, and provided insight into potential ways to control fungal contamination in high-protein fermented foods.
Collapse
Affiliation(s)
- Yijia Deng
- College of Food Science, Southwest University, Chongqing 400715, China
- College of Food Science and Engineering, Bohai University, Jinzhou 121013, China
| | - Rundong Wang
- College of Food Science, Southwest University, Chongqing 400715, China
- College of Food Science and Engineering, Bohai University, Jinzhou 121013, China
| | - Yuhao Zhang
- College of Food Science, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China
| | - Jianrong Li
- College of Food Science and Engineering, Bohai University, Jinzhou 121013, China
| | - Ravi Gooneratne
- Department of Wine, Food and Molecular Biosciences, Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln 7647, New Zealand
| |
Collapse
|
29
|
Pedro NA, Fontebasso G, Pinto SN, Alves M, Mira NP. Acetate modulates the inhibitory effect of Lactobacillus gasseri against the pathogenic yeasts Candida albicans and Candida glabrata. MICROBIAL CELL (GRAZ, AUSTRIA) 2023; 10:88-102. [PMID: 37009625 PMCID: PMC10054710 DOI: 10.15698/mic2023.04.795] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 03/10/2023] [Accepted: 03/16/2023] [Indexed: 04/04/2023]
Abstract
The exploration of the interference prompted by commensal bacteria over fungal pathogens is an interesting alternative to develop new therapies. In this work we scrutinized how the presence of the poorly studied vaginal species Lactobacillus gasseri affects relevant pathophysiological traits of Candida albicans and Candida glabrata. L. gasseri was found to form mixed biofilms with C. albicans and C. glabrata resulting in pronounced death of the yeast cells, while bacterial viability was not affected. Reduced viability of the two yeasts was also observed upon co-cultivation with L. gasseri under planktonic conditions. Either in planktonic cultures or in biofilms, the anti-Candida effect of L. gasseri was augmented by acetate in a concentration-dependent manner. During planktonic co-cultivation the two Candida species counteracted the acidification prompted by L. gasseri thus impacting the balance between dissociated and undissociated organic acids. This feature couldn't be phenocopied in single-cultures of L. gasseri resulting in a broth enriched in acetic acid, while in the co-culture the non-toxic acetate prevailed. Altogether the results herein described advance the design of new anti-Candida therapies based on probiotics, in particular, those based on vaginal lactobacilli species, helping to reduce the significant burden that infections caused by Candida have today in human health.
Collapse
Affiliation(s)
- Nuno A. Pedro
- iBB, Institute for Bioengineering and Biosciences, Instituto Superior Técnico – Department of Bioengineering, Universidade de Lisboa, 1049-001 Lisboa, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Gabriela Fontebasso
- iBB, Institute for Bioengineering and Biosciences, Instituto Superior Técnico – Department of Bioengineering, Universidade de Lisboa, 1049-001 Lisboa, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Sandra N. Pinto
- iBB, Institute for Bioengineering and Biosciences, Instituto Superior Técnico – Department of Bioengineering, Universidade de Lisboa, 1049-001 Lisboa, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Marta Alves
- CQE-Centro Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Nuno P. Mira
- iBB, Institute for Bioengineering and Biosciences, Instituto Superior Técnico – Department of Bioengineering, Universidade de Lisboa, 1049-001 Lisboa, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- * Corresponding Author: Nuno P Mira, Instituto Superior Técnico, Department of Bioengineering, University of Lisbon, Portugal; E-mail:
| |
Collapse
|
30
|
Powell AM, Sarria I, Goje O. Microbiome and Vulvovaginitis. Obstet Gynecol Clin North Am 2023; 50:311-326. [PMID: 37149312 DOI: 10.1016/j.ogc.2023.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
Abstract
Vulvovaginitis occurs in mostly reproductive aged women. Recurrent vaginitis affects overall quality of life, with a large financial burden on the patient, family, and health system. This review discusses a clinician's approach to vulvovaginitis with specific attention to the 2021 updated Center for Disease Control and Prevention guidelines. The authors discuss the role of the microbiome in vaginitis and evidence-based approaches for diagnosis and treatment of vaginitis. This review also provides updates on new considerations, diagnosis, management, and treatment of vaginitis. Desquamative inflammatory vaginitis and genitourinary syndrome of menopause are discussed as differential diagnosis of vaginitis symptoms.
Collapse
Affiliation(s)
- Anna Maya Powell
- Johns Hopkins University School of Medicine, 600 North Wolfe Street, Phipps 249, Baltimore, MD 21287, USA. https://twitter.com/annapbanana
| | - Isabella Sarria
- Johns Hopkins University Bloomberg School of Public Health, 615 North Wolfe Street, Baltimore, MD 21205, USA
| | - Oluwatosin Goje
- OB/GYN and Women's Health Institute, Cleveland Clinic Foundation, 9500 Euclid Avenue, A81, Cleveland, OH 44195, USA.
| |
Collapse
|
31
|
Lange T, Kasper L, Gresnigt MS, Brunke S, Hube B. "Under Pressure" - How fungi evade, exploit, and modulate cells of the innate immune system. Semin Immunol 2023; 66:101738. [PMID: 36878023 PMCID: PMC10109127 DOI: 10.1016/j.smim.2023.101738] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Indexed: 03/06/2023]
Abstract
The human immune system uses an arsenal of effector mechanisms to prevent and counteract infections. Yet, some fungal species are extremely successful as human pathogens, which can be attributed to a wide variety of strategies by which these fungi evade, exploit, and modulate the immune system. These fungal pathogens normally are either harmless commensals or environmental fungi. In this review we discuss how commensalism, but also life in an environmental niche without human contact, can drive the evolution of diverse and specialized immune evasion mechanisms. Correspondingly, we discuss the mechanisms contributing to the ability of these fungi to cause superficial to life-threatening infections.
Collapse
Affiliation(s)
- Theresa Lange
- Department of Microbial Pathogenicity Mechanisms, Hans Knoell Institute, Jena, Germany
| | - Lydia Kasper
- Department of Microbial Pathogenicity Mechanisms, Hans Knoell Institute, Jena, Germany
| | - Mark S Gresnigt
- Junior Research Group Adaptive Pathogenicity Strategies, Hans Knoell Institute, Jena, Germany
| | - Sascha Brunke
- Department of Microbial Pathogenicity Mechanisms, Hans Knoell Institute, Jena, Germany
| | - Bernhard Hube
- Department of Microbial Pathogenicity Mechanisms, Hans Knoell Institute, Jena, Germany; Institute of Microbiology, Friedrich Schiller University, Jena, Germany.
| |
Collapse
|
32
|
Zeng L, Huang Y, Tan J, Peng J, Hu N, Liu Q, Cao Y, Zhang Y, Chen J, Huang X. QCR7 affects the virulence of Candida albicans and the uptake of multiple carbon sources present in different host niches. Front Cell Infect Microbiol 2023; 13:1136698. [PMID: 36923588 PMCID: PMC10009220 DOI: 10.3389/fcimb.2023.1136698] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 02/09/2023] [Indexed: 03/02/2023] Open
Abstract
Background Candida albicans is a commensal yeast that may cause life-threatening infections. Studies have shown that the cytochrome b-c1 complex subunit 7 gene (QCR7) of C. albicans encodes a protein that forms a component of the mitochondrial electron transport chain complex III, making it an important target for studying the virulence of this yeast. However, to the best of our knowledge, the functions of QCR7 have not yet been characterized. Methods A QCR7 knockout strain was constructed using SN152, and BALb/c mice were used as model animals to determine the role of QCR7 in the virulence of C. albicans. Subsequently, the effects of QCR7 on mitochondrial functions and use of carbon sources were investigated. Next, its mutant biofilm formation and hyphal growth maintenance were compared with those of the wild type. Furthermore, the transcriptome of the qcr7Δ/Δ mutant was compared with that of the WT strain to explore pathogenic mechanisms. Results Defective QCR7 reduced recruitment of inflammatory cells and attenuated the virulence of C. albicans infection in vivo. Furthermore, the mutant influenced the use of multiple alternative carbon sources that exist in several host niches (GlcNAc, lactic acid, and amino acid, etc.). Moreover, it led to mitochondrial dysfunction. Furthermore, the QCR7 knockout strain showed defects in biofilm formation or the maintenance of filamentous growth. The overexpression of cell-surface-associated genes (HWP1, YWP1, XOG1, and SAP6) can restore defective virulence phenotypes and the carbon-source utilization of qcr7Δ/Δ. Conclusion This study provides new insights into the mitochondria-based metabolism of C. albicans, accounting for its virulence and the use of variable carbon sources that promote C. albicans to colonize host niches.
Collapse
Affiliation(s)
- Lingbing Zeng
- The First Affiliated Hospital of Nanchang University, School of Public Health, Jiangxi Medical College, Nanchang University, Nanchang, China
- Department of Medical Microbiology, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Yongcheng Huang
- School of Public Health, Jiangxi Medical College, Nanchang University, Nanchang, China
- Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang, China
| | - Junjun Tan
- Department of Medical Microbiology, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Jun Peng
- Department of Medical Microbiology, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Niya Hu
- The First Affiliated Hospital of Nanchang University, School of Public Health, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Qiong Liu
- Department of Medical Microbiology, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - YanLi Cao
- Department of Medical Microbiology, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Yuping Zhang
- Department of Medical Microbiology, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Junzhu Chen
- Department of Medical Microbiology, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Xiaotian Huang
- The First Affiliated Hospital of Nanchang University, School of Public Health, Jiangxi Medical College, Nanchang University, Nanchang, China
- Department of Medical Microbiology, Jiangxi Medical College, Nanchang University, Nanchang, China
- School of Public Health, Jiangxi Medical College, Nanchang University, Nanchang, China
- Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang, China
| |
Collapse
|
33
|
Brown AJP. Fungal resilience and host-pathogen interactions: Future perspectives and opportunities. Parasite Immunol 2023; 45:e12946. [PMID: 35962618 PMCID: PMC10078341 DOI: 10.1111/pim.12946] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 08/08/2022] [Accepted: 08/10/2022] [Indexed: 01/31/2023]
Abstract
We are constantly exposed to the threat of fungal infection. The outcome-clearance, commensalism or infection-depends largely on the ability of our innate immune defences to clear infecting fungal cells versus the success of the fungus in mounting compensatory adaptive responses. As each seeks to gain advantage during these skirmishes, the interactions between host and fungal pathogen are complex and dynamic. Nevertheless, simply compromising the physiological robustness of fungal pathogens reduces their ability to evade antifungal immunity, their virulence, and their tolerance against antifungal therapy. In this article I argue that this physiological robustness is based on a 'Resilience Network' which mechanistically links and controls fungal growth, metabolism, stress resistance and drug tolerance. The elasticity of this network probably underlies the phenotypic variability of fungal isolates and the heterogeneity of individual cells within clonal populations. Consequently, I suggest that the definition of the fungal Resilience Network represents an important goal for the future which offers the clear potential to reveal drug targets that compromise drug tolerance and synergise with current antifungal therapies.
Collapse
Affiliation(s)
- Alistair J P Brown
- Medical Research Council Centre for Medical Mycology at the University of Exeter, Exeter, UK
| |
Collapse
|
34
|
Sfl1 is required for Candida albicans biofilm formation under acidic conditions. Biochimie 2023; 209:37-43. [PMID: 36669724 DOI: 10.1016/j.biochi.2023.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 12/13/2022] [Accepted: 01/16/2023] [Indexed: 01/20/2023]
Abstract
Candida albicans is a common Candida species, responsible for infections in various anatomical sites under different environmental conditions, aggravated in the presence of its biofilms. As such, this study aimed to reveal the regulation of C. albicans biofilms under acidic conditions by the transcription factor Sfl1, whose role on biofilm formation is unclear. For that, microbiologic and transcriptomic analyses were performed with the knock-out mutant C. albicans sfl1Δ/sfl1Δ and its parental strain SN76, grown in planktonic and biofilm lifestyles at pH 4 (vaginal pH). The results revealed that despite being a filamentation repressor Sf1 is required for maximal biofilm formation under acidic conditions. Additionally, Sfl1 was found to induce 275 and 126 genes in biofilm and planktonic cells, respectively, with an overlap of 19 genes. The functional distribution of Sfl1 targets was similar in planktonic and biofilm modes but an enrichment of carbohydrate metabolism function was found in biofilm cells, including some genes encoding proteins involved in the biofilm matrix production. Furthermore, this study shows that the regulatory network of Sfl1 in acidic biofilms is complex and includes positive and negative regulation of transcription factors involved in adhesion and biofilm formation, such as Ahr1, Brg1, Tye7, Tec1, Wor1, and some of their targets. Overall, this study shows that Sfl1 is a relevant regulator of C. albicans biofilm formation in acidic environments and contributes to a better understanding of C. albicans virulence under acidic conditions.
Collapse
|
35
|
Kabir MG, Wang Y, Abuhena M, Azim MF, Al-Rashid J, Rasul NM, Mandal D, Maitra P. A bio-sustainable approach for reducing Eucalyptus tree-caused agricultural ecosystem hazards employing Trichoderma bio-sustained spores and mycorrhizal networks. Front Microbiol 2023; 13:1071392. [PMID: 36726567 PMCID: PMC9885803 DOI: 10.3389/fmicb.2022.1071392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 12/27/2022] [Indexed: 01/17/2023] Open
Abstract
The presence of the exotic Eucalyptus tree in crop-growing soil and the accumulation of its undecomposed leaves is a significant ecological hazard. The waxy coating on the leaves and the phenolic compounds takes a long time to break down under normal conditions. It is necessary to explore various fungi that can degrade these leaves for an eco-friendly solution to this problem. In this study, spores of nine native Trichoderma strains were produced on wheat agar using a lactic acid-induced sporulation strategy (LAISS). Trichoderma biosustained spores and Serendipita indica (SI) spores were applied to a rice field with accumulated Eucalyptus leaves under continuous ponding (CP) and alternate flooding and wetting conditions (AFW). Among the strains, TI04 (Trichoderma viride) and TI15 (Trichoderma citrinoviride) showed faster (5 days) and massive sporulation (1.06-1.38 × 1011 CFU/g) in LAISS. In vitro, TI04 and TI15 biosustained on Eucalyptus leaves and improved rice seedling growth and SI infection under greenhouse conditions. In the rice-field experiment, Trichoderma-treatment had a threefold yield (percentage) increase from control, with TI04 (CP) increasing the yield by 30.79, TI04 (AFW) by 29.45, TI15 (CP) by 32.72, and TI15 (AFW) rising by 31.91. Remarkably, unfilled grain yield significantly decreased in all the Trichoderma treatments. Under AFW conditions, TI04 and TI15 showed a higher pH increase. Furthermore, TI04 and TI15 under AFW had higher water productivity (t ha-1 cm-1) of 0.0763 and 0.0791, respectively, and the highest rates (percentage) of SI colonization of 86.36 and 83.16, respectively. According to the findings, LAISS-produced Trichoderma spores can be applied to break down persistent wastes and restore agricultural ecosystems through increased mycorrhizae networking.
Collapse
Affiliation(s)
- Md. Golam Kabir
- Department of Research and Development, Apex Biofertilizers and Biopesticides Limited, Gaibandha, Bangladesh,Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China,International College, University of Chinese Academy of Sciences, Beijing, China
| | - Yonglong Wang
- Faculty of Biological Science and Technology, Baotou Teacher's College, Baotou, Inner Mongolia, China,*Correspondence: Yonglong Wang, ✉
| | - Md. Abuhena
- Department of Research and Development, Apex Biofertilizers and Biopesticides Limited, Gaibandha, Bangladesh,Apex Biotechnology Laboratory, Apex Holdings Ltd., Gazipur, Bangladesh,Md. Abuhena, ✉
| | - Md. Faisal Azim
- Department of Research and Development, Apex Biofertilizers and Biopesticides Limited, Gaibandha, Bangladesh
| | - Jubair Al-Rashid
- Department of Research and Development, Apex Biofertilizers and Biopesticides Limited, Gaibandha, Bangladesh,International College, University of Chinese Academy of Sciences, Beijing, China,Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Noorain Munim Rasul
- Department of Research and Development, Apex Biofertilizers and Biopesticides Limited, Gaibandha, Bangladesh,Apex Biotechnology Laboratory, Apex Holdings Ltd., Gazipur, Bangladesh
| | - Dipa Mandal
- Institute of Microbiology, University of Chinese Academy of Sciences, Beijing, China
| | - Pulak Maitra
- Apex Biotechnology Laboratory, Apex Holdings Ltd., Gazipur, Bangladesh,Institute of Dendrology, Polish Academy of Sciences, Kórnik, Poland,Pulak Maitra, ✉
| |
Collapse
|
36
|
Zaongo SD, Ouyang J, Isnard S, Zhou X, Harypursat V, Cui H, Routy JP, Chen Y. Candida albicans can foster gut dysbiosis and systemic inflammation during HIV infection. Gut Microbes 2023; 15:2167171. [PMID: 36722096 PMCID: PMC9897780 DOI: 10.1080/19490976.2023.2167171] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Candida albicans (C. albicans) is a ubiquitous fungal commensal component of the human microbiota, and under certain circumstances, such as during an immunocompromised state, it may initiate different types of infection. Moreover, C. albicans continuously and reciprocally interacts with the host immune system as well as with other elements of the gut microbiota, thus contributing significantly to both gut homeostasis and host immunity. People living with HIV (PLWH), including those receiving antiretroviral therapy, are characterized by a depletion of CD4 + T-cells and dysbiosis in their gut. C. albicans colonization is frequent in PLWH, causing both a high prevalence and high morbidity. Gut barrier damage and elevated levels of microbial translocation are also fairly common in this population. Herein, we take a closer look at the reciprocity among C. albicans, gut microbiota, HIV, and the host immune system, thus throwing some light on this complex interplay.
Collapse
Affiliation(s)
- Silvere D Zaongo
- Department of Infectious Diseases, Chongqing Public Health Medical Center, Chongqing, China,Clinical Research Center, Chongqing Public Health Medical Center, Chongqing, China
| | - Jing Ouyang
- Clinical Research Center, Chongqing Public Health Medical Center, Chongqing, China
| | - Stéphane Isnard
- Infectious Diseases and Immunity in Global Health Program, Research Institute, McGill University Health Centre, Montréal, QC, Canada,Chronic Viral Illness Service, McGill University Health Centre, Montréal, QC, Canada,Canadian HIV Trials Network, Canadian Institutes for Health Research, Vancouver, British Columbia, Canada
| | - Xin Zhou
- Clinical Research Center, Chongqing Public Health Medical Center, Chongqing, China,Cancer Center, Medical Research Institute, Southwest University, Chongqing, China
| | - Vijay Harypursat
- Clinical Research Center, Chongqing Public Health Medical Center, Chongqing, China
| | - Hongjuan Cui
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, China
| | - Jean-Pierre Routy
- Infectious Diseases and Immunity in Global Health Program, Research Institute, McGill University Health Centre, Montréal, QC, Canada,Chronic Viral Illness Service, McGill University Health Centre, Montréal, QC, Canada,Division of Hematology, McGill University Health Centre, Montréal, QC, Canada
| | - Yaokai Chen
- Department of Infectious Diseases, Chongqing Public Health Medical Center, Chongqing, China,Clinical Research Center, Chongqing Public Health Medical Center, Chongqing, China,CONTACT Yaokai Chen Department of Infectious Diseases, Chongqing Public Health Medical Center, Chongqing, China
| |
Collapse
|
37
|
Enhancing polysaccharide production by Paraisaria dubia spores batch fermentation through a pH-shift strategy based on kinetic analysis. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.12.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
38
|
Lopes JP, Lionakis MS. Pathogenesis and virulence of Candida albicans. Virulence 2022; 13:89-121. [PMID: 34964702 PMCID: PMC9728475 DOI: 10.1080/21505594.2021.2019950] [Citation(s) in RCA: 203] [Impact Index Per Article: 67.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 12/08/2021] [Accepted: 12/14/2021] [Indexed: 12/18/2022] Open
Abstract
Candida albicans is a commensal yeast fungus of the human oral, gastrointestinal, and genital mucosal surfaces, and skin. Antibiotic-induced dysbiosis, iatrogenic immunosuppression, and/or medical interventions that impair the integrity of the mucocutaneous barrier and/or perturb protective host defense mechanisms enable C. albicans to become an opportunistic pathogen and cause debilitating mucocutaneous disease and/or life-threatening systemic infections. In this review, we synthesize our current knowledge of the tissue-specific determinants of C. albicans pathogenicity and host immune defense mechanisms.
Collapse
Affiliation(s)
- José Pedro Lopes
- From the Fungal Pathogenesis Section, Laboratory of Clinical Immunology and Microbiology (LCIM), National Institute of Allergy and Infectious Diseases (NIAID), Bethesda, MD, USA
| | - Michail S. Lionakis
- From the Fungal Pathogenesis Section, Laboratory of Clinical Immunology and Microbiology (LCIM), National Institute of Allergy and Infectious Diseases (NIAID), Bethesda, MD, USA
| |
Collapse
|
39
|
Smith DFQ, Mudrak NJ, Zamith-Miranda D, Honorato L, Nimrichter L, Chrissian C, Smith B, Gerfen G, Stark RE, Nosanchuk JD, Casadevall A. Melanization of Candida auris Is Associated with Alteration of Extracellular pH. J Fungi (Basel) 2022; 8:1068. [PMID: 36294632 PMCID: PMC9604884 DOI: 10.3390/jof8101068] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/05/2022] [Accepted: 10/07/2022] [Indexed: 11/29/2022] Open
Abstract
Candida auris is a recently emerged global fungal pathogen, which causes life-threatening infections, often in healthcare settings. C. auris infections are worrisome because the fungus is often resistant to multiple antifungal drug classes. Furthermore, C. auris forms durable and difficult to remove biofilms. Due to the relatively recent, resilient, and resistant nature of C. auris, we investigated whether it produces the common fungal virulence factor melanin. Melanin is a black-brown pigment typically produced following enzymatic oxidation of aromatic precursors, which promotes fungal virulence through oxidative stress resistance, mammalian immune response evasion, and antifungal peptide and pharmaceutical inactivation. We found that certain strains of C. auris oxidized L-DOPA and catecholamines into melanin. Melanization occurred extracellularly in a process mediated by alkalinization of the extracellular environment, resulting in granule-like structures that adhere to the fungus' external surface. C. auris had relatively high cell surface hydrophobicity, but there was no correlation between hydrophobicity and melanization. Melanin protected the fungus from oxidative damage, but we did not observe a protective role during infection of macrophages or Galleria mellonella larvae. In summary, C. auris alkalinizes the extracellular medium, which promotes the non-enzymatic oxidation of L-DOPA to melanin that attaches to its surface, thus illustrating a novel mechanism for fungal melanization.
Collapse
Affiliation(s)
- Daniel F. Q. Smith
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Nathan J. Mudrak
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
- Krieger School of Arts & Science, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Daniel Zamith-Miranda
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA
- Division of Infectious Diseases, Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA
| | - Leandro Honorato
- Laboratório de Glicobiologia de Eucariotos, Departamento de Microbiologia Geral, Instituto de Microbiologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-901, Brazil
| | - Leonardo Nimrichter
- Laboratório de Glicobiologia de Eucariotos, Departamento de Microbiologia Geral, Instituto de Microbiologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-901, Brazil
| | - Christine Chrissian
- Department of Chemistry and Biochemistry, City College of New York and CUNY Institute for Macromolecular Assemblies, The City University of New York, New York, NY 10031, USA
| | - Barbara Smith
- Institute for Basic Biomedical Sciences Microscope Facility, The Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Gary Gerfen
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA
| | - Ruth E. Stark
- Department of Chemistry and Biochemistry, City College of New York and CUNY Institute for Macromolecular Assemblies, The City University of New York, New York, NY 10031, USA
| | - Joshua D. Nosanchuk
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA
- Division of Infectious Diseases, Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA
| | - Arturo Casadevall
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| |
Collapse
|
40
|
Begum N, Lee S, Portlock TJ, Pellon A, Nasab SDS, Nielsen J, Uhlen M, Moyes DL, Shoaie S. Integrative functional analysis uncovers metabolic differences between Candida species. Commun Biol 2022; 5:1013. [PMID: 36163459 PMCID: PMC9512779 DOI: 10.1038/s42003-022-03955-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 09/07/2022] [Indexed: 12/02/2022] Open
Abstract
Candida species are a dominant constituent of the human mycobiome and associated with the development of several diseases. Understanding the Candida species metabolism could provide key insights into their ability to cause pathogenesis. Here, we have developed the BioFung database, providing an efficient annotation of protein-encoding genes. Along, with BioFung, using carbohydrate-active enzyme (CAZymes) analysis, we have uncovered core and accessory features across Candida species demonstrating plasticity, adaption to the environment and acquired features. We show a greater importance of amino acid metabolism, as functional analysis revealed that all Candida species can employ amino acid metabolism. However, metabolomics revealed that only a specific cluster of species (AGAu species—C. albicans, C. glabrata and C. auris) utilised amino acid metabolism including arginine, cysteine, and methionine metabolism potentially improving their competitive fitness in pathogenesis. We further identified critical metabolic pathways in the AGAu cluster with biomarkers and anti-fungal target potential in the CAZyme profile, polyamine, choline and fatty acid biosynthesis pathways. This study, combining genomic analysis, and validation with gene expression and metabolomics, highlights the metabolic diversity with AGAu species that underlies their remarkable ability to dominate they mycobiome and cause disease. Metabolic differences between Candida species are uncovered using the BioFung database alongside genomic and metabolic analysis.
Collapse
Affiliation(s)
- Neelu Begum
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, SE1 9RT, London, UK
| | - Sunjae Lee
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, SE1 9RT, London, UK
| | - Theo John Portlock
- Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, SE-171 21, Sweden
| | - Aize Pellon
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, SE1 9RT, London, UK
| | - Shervin Dokht Sadeghi Nasab
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, SE1 9RT, London, UK
| | - Jens Nielsen
- Department of Biology and Biological Engineering, Kemivägen 10, Chalmers University of Technology, SE-412 96, Gothenburg, Sweden.,BioInnovation Institute, Ole Maaløes Vej 3, DK2200, Copenhagen N, Denmark
| | - Mathias Uhlen
- Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, SE-171 21, Sweden
| | - David L Moyes
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, SE1 9RT, London, UK.
| | - Saeed Shoaie
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, SE1 9RT, London, UK. .,Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, SE-171 21, Sweden.
| |
Collapse
|
41
|
Wagner AS, Lumsdaine SW, Mangrum MM, King AE, Hancock TJ, Sparer TE, Reynolds TB. Cek1 regulates ß(1,3)-glucan exposure through calcineurin effectors in Candida albicans. PLoS Genet 2022; 18:e1010405. [PMID: 36121853 PMCID: PMC9521907 DOI: 10.1371/journal.pgen.1010405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 09/29/2022] [Accepted: 08/30/2022] [Indexed: 11/19/2022] Open
Abstract
In order to successfully induce disease, the fungal pathogen Candida albicans regulates exposure of antigens like the cell wall polysaccharide ß(1,3)-glucan to the host immune system. C. albicans covers (masks) ß(1,3)-glucan with a layer of mannosylated glycoproteins, which aids in immune system evasion by acting as a barrier to recognition by host pattern recognition receptors. Consequently, enhanced ß(1,3)-glucan exposure (unmasking) makes fungal cells more visible to host immune cells and facilitates more robust fungal clearance. However, an understanding of how C. albicans regulates its exposure levels of ß(1,3)-glucan is needed to leverage this phenotype. Signal transduction pathways and their corresponding effector genes mediating these changes are only beginning to be defined. Here, we report that the phosphatase calcineurin mediates unmasking of ß(1,3)-glucan in response to inputs from the Cek1 MAPK pathway and in response to caspofungin exposure. In contrast, calcineurin reduces ß-glucan exposure in response to high levels of extracellular calcium. Thus, depending on the input, calcineurin acts as a switchboard to regulate ß(1,3)-glucan exposure levels. By leveraging these differential ß(1,3)-glucan exposure phenotypes, we identified two novel effector genes in the calcineurin regulon, FGR41 and C1_11990W_A, that encode putative cell wall proteins and mediate masking/unmasking. Loss of either effector caused unmasking and attenuated virulence during systemic infection in mice. Furthermore, immunosuppression restored the colonization decrease seen in mice infected with the fgr41Δ/Δ mutant to wild-type levels, demonstrating a reliance on the host immune system for virulence attenuation. Thus, calcineurin and its downstream regulon are general regulators of unmasking.
Collapse
Affiliation(s)
- Andrew S. Wagner
- Department of Microbiology, University of Tennessee at Knoxville, Knoxville, Tennessee, United States of America
| | - Stephen W. Lumsdaine
- Department of Microbiology, University of Tennessee at Knoxville, Knoxville, Tennessee, United States of America
| | - Mikayla M. Mangrum
- Department of Microbiology, University of Tennessee at Knoxville, Knoxville, Tennessee, United States of America
| | - Ainsley E. King
- Department of Microbiology, University of Tennessee at Knoxville, Knoxville, Tennessee, United States of America
| | - Trevor J. Hancock
- Department of Microbiology, University of Tennessee at Knoxville, Knoxville, Tennessee, United States of America
| | - Timothy E. Sparer
- Department of Microbiology, University of Tennessee at Knoxville, Knoxville, Tennessee, United States of America
| | - Todd B. Reynolds
- Department of Microbiology, University of Tennessee at Knoxville, Knoxville, Tennessee, United States of America
| |
Collapse
|
42
|
Co CM, Mulgaonkar A, Zhou N, Harris S, Öz OK, Tang L, Sun X. PET Imaging of Active Invasive Fungal Infections with d-[5- 11C]-Glutamine. ACS Infect Dis 2022; 8:1663-1673. [PMID: 35869564 DOI: 10.1021/acsinfecdis.2c00249] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The increasing prevalence and severity of invasive fungal infections (IFIs), especially in immunocompromised populations, has amplified the need for rapid diagnosis of fungal pathogens. Radiotracers derived from d-amino acids (DAAs) show promise as bacterial-specific positron emission tomography (PET) imaging agents due to their preferential consumption by bacteria and largely nonutilization by hosts. Unlike mammals, fungi can utilize external DAAs including d-glutamine for their growth by rapidly upregulating DAA oxidases. Additionally, glutamine is essential for fungal nitrogen assimilation, survival, and virulence. We previously validated d-[5-11C]-glutamine (d-[5-11C]-Gln) as an efficient radiotracer targeting live bacterial soft-tissue infections. Here, we further expanded this investigation to evaluate its translational potential for PET imaging of IFIs in immunocompetent mouse models subcutaneously (SubQ) and intramuscularly (IM) infected with Candida albicans (C. albicans), using its l-isomer counterpart (l-[5-11C]-Gln) as a control. Comparative studies between pathogens showed significantly (p < 0.05) higher uptake in fungi (C. albicans and C. tropicalis) versus tested bacterial species for d-[5-11C]-Gln, suggesting that it could potentially serve as a more sensitive radiotracer for detection of fungal infections. Additionally, comparative PET imaging studies in immunocompetent infected mice demonstrated significantly higher infection-to-background ratios for d- versus l-[5-11C]-Gln in both SubQ (ratio = 1.97, p = 0.043) and IM (ratio = 1.97, p = 0.028) infections. Fungal infection imaging specificity was confirmed with no significant difference observed between localized inflammation sites versus untreated muscle background (heat-killed injection site/untreated muscle: ∼1.1). Taken together, this work demonstrates the translational potential of d-[5-11C]-Gln for noninvasive PET imaging of IFIs.
Collapse
Affiliation(s)
- Cynthia M Co
- Department of Bioengineering, University of Texas at Arlington, Arlington, Texas 76019, United States
| | - Aditi Mulgaonkar
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Ning Zhou
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Shelby Harris
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Orhan K Öz
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Liping Tang
- Department of Bioengineering, University of Texas at Arlington, Arlington, Texas 76019, United States
| | - Xiankai Sun
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| |
Collapse
|
43
|
Succession of Bacterial and Fungal Communities during Fermentation of Medicinal Plants. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8080383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The fermentation of medicinal plants has been studied very little, as compared to the fermentation of food and beverages. One approach applies fermentation by single bacterial or fungal strains and targets the production of specific compounds or preservation of the fermented material. Spontaneous fermentation by an autochthonous starter community may lead to a more diverse blend of fermentation products because co-occurring microbes may activate the biosynthetic potentials and formation of compounds not produced in single strain approaches. We applied the community approach and studied the fermentation of four medicinal plants (Achillea millefolium, Taraxacum officinale, Mercurialis perennis, and Euphrasia officinalis), according to a standardized pharmaceutical fermentation method. It is based on the spontaneous fermentation by plant-specific bacterial and fungal communities under a distinct temperature regime, with a recurrent cooling during the first week and further fermentation for at least six months. The results revealed both general and plant-specific patterns in the composition and succession of microbial communities during fermentation. Lactic acid bacteria increasingly dominated in all preparations, whereas the fungal communities retained more plant-specific features. Three distinct fermentation phases with characteristic bacterial communities were identified, i.e., early, middle, and late phases. Co-occurrence network analyses revealed the plant-specific features of the microbial communities.
Collapse
|
44
|
A microplate‐based Response Surface Methodology model for growth optimization and biofilm formation on polystyrene polymeric material in a
Candida albicans
and
Escherichia coli
co‐culture. POLYM ADVAN TECHNOL 2022. [DOI: 10.1002/pat.5753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
45
|
Balakrishnan SN, Yamang H, Lorenz MC, Chew SY, Than LTL. Role of Vaginal Mucosa, Host Immunity and Microbiota in Vulvovaginal Candidiasis. Pathogens 2022; 11:pathogens11060618. [PMID: 35745472 PMCID: PMC9230866 DOI: 10.3390/pathogens11060618] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 11/16/2022] Open
Abstract
Vulvovaginal candidiasis (VVC) is a prevalent gynaecological disease characterised by vaginal wall inflammation that is caused by Candida species. VVC impacts almost three-quarters of all women throughout their reproductive years. As the vaginal mucosa is the first point of contact with microbes, vaginal epithelial cells are the first line of defence against opportunistic Candida infection by providing a physical barrier and mounting immunological responses. The mechanisms of defence against this infection are displayed through the rapid shedding of epithelial cells, the presence of pattern recognition receptors, and the release of inflammatory cytokines. The bacterial microbiota within the mucosal layer presents another form of defence mechanism within the vagina through acidic pH regulation, the release of antifungal peptides and physiological control against dysbiosis. The significant role of the microbiota in maintaining vaginal health promotes its application as one of the potential treatment modalities against VVC with the hope of alleviating the burden of VVC, especially the recurrent disease. This review discusses and summarises current progress in understanding the role of vaginal mucosa and host immunity upon infection, together with the function of vaginal microbiota in VVC.
Collapse
Affiliation(s)
- Subatrra Nair Balakrishnan
- Department of Medical Microbiology, Faculty of Medicine and Health Sciences, University Putra Malaysia, Serdang 43300, Selangor, Malaysia; (S.N.B.); (H.Y.)
| | - Haizat Yamang
- Department of Medical Microbiology, Faculty of Medicine and Health Sciences, University Putra Malaysia, Serdang 43300, Selangor, Malaysia; (S.N.B.); (H.Y.)
| | - Michael C. Lorenz
- Department of Microbiology and Molecular Genetics, University of Texas McGovern Medical School, Houston, TX 77030, USA;
| | - Shu Yih Chew
- Department of Medical Microbiology, Faculty of Medicine and Health Sciences, University Putra Malaysia, Serdang 43300, Selangor, Malaysia; (S.N.B.); (H.Y.)
- Correspondence: (S.Y.C.); (L.T.L.T.)
| | - Leslie Thian Lung Than
- Department of Medical Microbiology, Faculty of Medicine and Health Sciences, University Putra Malaysia, Serdang 43300, Selangor, Malaysia; (S.N.B.); (H.Y.)
- Correspondence: (S.Y.C.); (L.T.L.T.)
| |
Collapse
|
46
|
Dong P, Zhan Y, Jusuf S, Hui J, Dagher Z, Mansour MK, Cheng J. Photoinactivation of Catalase Sensitizes Candida albicans and Candida auris to ROS-Producing Agents and Immune Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2104384. [PMID: 35119220 PMCID: PMC8981478 DOI: 10.1002/advs.202104384] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 01/07/2022] [Indexed: 06/14/2023]
Abstract
Microbes have developed their own specific strategies to cope with reactive oxygen species (ROS). Catalase, a heme-containing tetramer expressed in a broad range of aerobic fungi, shows remarkable efficiency in degrading hydrogen peroxide (H2 O2 ) for fungal survival and host invasion. Here, it is demonstrated that catalase inactivation by blue light renders fungal cells highly susceptible to ROS attack. To confirm catalase as a major molecular target of blue light, wild type Candida albicans are systematically compared with a catalase-deficient mutant strain regarding their susceptibility to ROS through 410 nm treatment. Upon testing a wide range of fungal species, it is found that intracellular catalase can be effectively and universally inactivated by 410 nm blue light. It is also found that photoinactivation of catalase in combination with ROS-generating agents is highly effective in total eradication of various fungal species, including multiple Candida auris strains, the causative agent of the global fungal epidemic. In addition, photoinactivation of catalase is shown to facilitate macrophage killing of intracellular Candida albicans. The antifungal efficacy of catalase photoinactivation is further validated using a C. albicans-induced mouse model of skin abrasion. Taken together, the findings offer a novel catalase-photoinactivation approach to address multidrug-resistant Candida infections.
Collapse
Affiliation(s)
- Pu‐Ting Dong
- Department of Biomedical EngineeringBoston UniversityBostonMA02215USA
- Photonics CenterBoston UniversityBostonMA02215USA
| | - Yuewei Zhan
- Department of Biomedical EngineeringBoston UniversityBostonMA02215USA
- Photonics CenterBoston UniversityBostonMA02215USA
| | - Sebastian Jusuf
- Department of Biomedical EngineeringBoston UniversityBostonMA02215USA
- Photonics CenterBoston UniversityBostonMA02215USA
| | - Jie Hui
- Department of Biomedical EngineeringBoston UniversityBostonMA02215USA
- Photonics CenterBoston UniversityBostonMA02215USA
| | - Zeina Dagher
- Division of Infectious DiseasesMassachusetts General HospitalBostonMA02114USA
- Harvard Medical SchoolBostonMA02115USA
| | - Michael K. Mansour
- Division of Infectious DiseasesMassachusetts General HospitalBostonMA02114USA
- Harvard Medical SchoolBostonMA02115USA
| | - Ji‐Xin Cheng
- Department of Biomedical EngineeringBoston UniversityBostonMA02215USA
- Photonics CenterBoston UniversityBostonMA02215USA
| |
Collapse
|
47
|
Cruz AHS, Santos RS, Martins MP, Peres NTA, Trevisan GL, Mendes NS, Martinez-Rossi NM, Rossi A. Relevance of Nutrient-Sensing in the Pathogenesis of Trichophyton rubrum and Trichophyton interdigitale. FRONTIERS IN FUNGAL BIOLOGY 2022; 3:858968. [PMID: 37746184 PMCID: PMC10512404 DOI: 10.3389/ffunb.2022.858968] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 03/03/2022] [Indexed: 09/26/2023]
Abstract
The growth and development of organisms depend on nutrient availability. Dermatophytes must sense nutrient levels and adapt to the host environment to colonize human and animal keratinized tissues. Owing to the clinical importance of the Trichophyton genus, this study compared the expression profile of genes involved in metabolism, cell cycle control, and proteases in two Trichophyton species, Trichophyton rubrum, and Trichophyton interdigitale, in response to nutrients and environmental pH. In addition, we evaluated the activity of enzymes in the tricarboxylic acid, glyoxylate, and methylcitrate cycles. Moreover, the effects of interruption of the transcription factor pacC on T. interdigitale in the same conditions as for the wild-type strain were determined. Our analyses revealed specific responses in each species to the nutritional and pH variation. An improved adaptation of T. interdigitale to keratin was observed, compared with that of T. rubrum. T. rubrum growth in buffered keratin media indicated pH 8.0 as an optimal pH condition for metabolic activity, which differed from that for T. interdigitale. Tricarboxylic acid components in T. rubrum showed increased enzymatic activity and transcript accumulation. In T. interdigitale, a higher activity of enzymes in glyoxylate and methylcitrate cycles was observed, with no direct correlation to the transcriptional profile. T. interdigitale fungal metabolism suggests the requirement of anaplerotic pathways in the late cultivation period. The identified differences between T. rubrum and T. interdigitale may represent determinants for adaptation to the host and the incidence of infection with each species.
Collapse
Affiliation(s)
- Aline H. S. Cruz
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Rodrigo S. Santos
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
- Department of Biochemistry and Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, Goiânia, Brazil
| | - Maíra P. Martins
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Nalu T. A. Peres
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
- Department of Microbiology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Glauce L. Trevisan
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Niege S. Mendes
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Nilce M. Martinez-Rossi
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Antonio Rossi
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
48
|
A Proteomic Landscape of Candida albicans in the Stepwise Evolution to Fluconazole Resistance. Antimicrob Agents Chemother 2022; 66:e0210521. [PMID: 35343782 DOI: 10.1128/aac.02105-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
As an opportunistic fungal pathogen, Candida albicans is a major cause of superficial and systemic infections in immunocompromised patients. The increasing rate of azole resistance in C. albicans has brought further challenges to clinical therapy. In this study, we collected five isogenic C. albicans strains recovered over discrete intervals from an HIV-infected patient who suffered 2-year recurrent oropharyngeal candidiasis. Azole resistance was known from the clinical history to have developed gradually in this patient, and this was confirmed by MIC assays of each strain. Proteomic techniques can be used to investigate more comprehensively how resistance develops in pathogenic fungi over time. Our study is the first to use tandem mass tag (TMT) labeling combined with liquid chromatography-tandem mass spectrometry (LC-MS/MS) technology to investigate the acquired resistance mechanisms of serial C. albicans isolates at the proteomic level. A total of 4,029 proteins have been identified, of which 3,766 have been quantified. Compared with Ca1, bioinformatics analysis showed that differentially expressed proteins were mainly associated with aspects such as the downregulation of glycolysis/gluconeogenesis, pyruvate metabolism, fatty acid degradation, and oxidative stress response proteins in all four subsequent strains but, remarkably, the activation of amino acid metabolism in Ca8 and Ca14 and increased protection against osmotic stress or excessive copper toxicity, upregulation of respiratory chain activity, and suppression of iron transport in Ca17. By tracing proteomic alterations in this set of isogenic resistance isolates, we acquire mechanistic insight into the steps involved in the acquisition of azole resistance in C. albicans.
Collapse
|
49
|
Palmieri F, Koutsokera A, Bernasconi E, Junier P, von Garnier C, Ubags N. Recent Advances in Fungal Infections: From Lung Ecology to Therapeutic Strategies With a Focus on Aspergillus spp. Front Med (Lausanne) 2022; 9:832510. [PMID: 35386908 PMCID: PMC8977413 DOI: 10.3389/fmed.2022.832510] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 02/22/2022] [Indexed: 12/15/2022] Open
Abstract
Fungal infections are estimated to be the main cause of death for more than 1.5 million people worldwide annually. However, fungal pathogenicity has been largely neglected. This is notably the case for pulmonary fungal infections, which are difficult to diagnose and to treat. We are currently facing a global emergence of antifungal resistance, which decreases the chances of survival for affected patients. New therapeutic approaches are therefore needed to face these life-threatening fungal infections. In this review, we will provide a general overview on respiratory fungal infections, with a focus on fungi of the genus Aspergillus. Next, the immunological and microbiological mechanisms of fungal pathogenesis will be discussed. The role of the respiratory mycobiota and its interactions with the bacterial microbiota on lung fungal infections will be presented from an ecological perspective. Finally, we will focus on existing and future innovative approaches for the treatment of respiratory fungal infections.
Collapse
Affiliation(s)
- Fabio Palmieri
- Laboratory of Microbiology, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
- *Correspondence: Fabio Palmieri,
| | - Angela Koutsokera
- Faculty of Biology and Medicine, University of Lausanne, Service de Pneumologie, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| | - Eric Bernasconi
- Faculty of Biology and Medicine, University of Lausanne, Service de Pneumologie, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| | - Pilar Junier
- Laboratory of Microbiology, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Christophe von Garnier
- Faculty of Biology and Medicine, University of Lausanne, Service de Pneumologie, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| | - Niki Ubags
- Faculty of Biology and Medicine, University of Lausanne, Service de Pneumologie, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
- Niki Ubags,
| |
Collapse
|
50
|
Chandler CE, Hernandez FG, Totten M, Robinett NG, Schatzman SS, Zhang SX, Culotta VC. Biochemical Analysis of CaurSOD4, a Potential Therapeutic Target for the Emerging Fungal Pathogen Candida auris. ACS Infect Dis 2022; 8:584-595. [PMID: 35179882 PMCID: PMC9906785 DOI: 10.1021/acsinfecdis.1c00590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Candida auris is an emerging multidrug-resistant fungal pathogen. With high mortality rates, there is an urgent need for new antifungals to combat C. auris. Possible antifungal targets include Cu-only superoxide dismutases (SODs), extracellular SODs that are unique to fungi and effectively combat the superoxide burst of host immunity. Cu-only SODs are essential for the virulence of diverse fungal pathogens; however, little is understood about these enzymes in C. auris. We show here that C. auris secretes an enzymatically active Cu-only SOD (CaurSOD4) when cells are starved for Fe, a condition mimicking host environments. Although predicted to attach to cell walls, CaurSOD4 is detected as a soluble extracellular enzyme and can act at a distance to remove superoxide. CaurSOD4 selectively binds Cu and not Zn, and Cu binding is labile compared to bimetallic Cu/Zn SODs. Moreover, CaurSOD4 is susceptible to inhibition by various metal-binding drugs that are without effect on mammalian Cu/Zn SODs. Our studies highlight CaurSOD4 as a potential antifungal target worthy of consideration.
Collapse
Affiliation(s)
- Courtney E Chandler
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland 21205, United States
| | - Francisco G Hernandez
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland 21205, United States
| | - Marissa Totten
- Divsion of Medical Microbiology, Department of Pathology and Division of Microbiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, United States
| | - Natalie G Robinett
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland 21205, United States
| | - Sabrina S Schatzman
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland 21205, United States
| | - Sean X Zhang
- Divsion of Medical Microbiology, Department of Pathology and Division of Microbiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, United States
| | - Valeria C Culotta
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland 21205, United States
| |
Collapse
|