1
|
Matsuo A, Matsumura Y, Mori K, Noguchi T, Yamamoto M, Nagao M. Molecular epidemiology and β-lactam resistance mechanisms of Enterobacter cloacae complex isolates obtained from bloodstream infections, Kyoto, Japan. Microbiol Spectr 2025; 13:e0248524. [PMID: 40062888 PMCID: PMC11960451 DOI: 10.1128/spectrum.02485-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 02/11/2025] [Indexed: 04/03/2025] Open
Abstract
The Enterobacter cloacae complex (ECC) comprises multiple species that require genomic analysis for precise identification. They produce inducible AmpC β-lactamase and may carry acquired β-lactamases, which are responsible for cefotaxime and cefepime resistance. To determine the molecular epidemiology, antimicrobial resistance, and β-lactam resistance mechanisms of the ECC, we conducted whole-genome sequencing analysis, antimicrobial susceptibility testing, and mutation analysis on bloodstream ECC isolates from patients in Kyoto, Japan. In 194 ECC isolates, 13 species and six unnamed taxa were identified, with Enterobacter xiangfangensis (36%) being the most common. A total of 38% of the isolates were nonsusceptible to cefotaxime and presented relatively high nonsusceptibility rates to all antimicrobial agents tested. Among the different species, Enterobacter hoffmannii presented the highest nonsusceptibility rates to both β-lactams and non-β-lactams. Among the cefotaxime-nonsusceptible isolates, 16% harbored genes encoding extended-spectrum β-lactamases (ESBLs), carbapenemase, and/or plasmid-mediated AmpC, and ampC derepression was the predominant resistance mechanism in the remaining isolates. The prevalent sequence types (STs) in cefotaxime-susceptible and cefotaxime-nonsusceptible isolates were different, although some STs were shared by both groups. Cefepime nonsusceptibility was detected in 7% of the isolates and was associated with E. hoffmannii ST78 and E. xiangfangensis ST93, which carry ESBLs. Sixty-four mutants, experimentally obtained from eight cefotaxime-susceptible isolates, had various ampD mutations, and 42% and 99% of the mutants were nonsusceptible to cefepime and piperacillin/tazobactam, respectively, indicating the risks associated with the use of these antimicrobials. Continuous surveillance via genomic and phenotypic analyses is needed to combat antimicrobial resistance in the ECC.IMPORTANCEThe Enterobacter cloacae complex (ECC) is a group of pathogenic bacteria that cause nosocomial infections. The ECC produces chromosomal inducible AmpC β-lactamases, which is associated with treatment failure despite initial susceptibility to third-generation cephalosporins in selected ampC-derepressed mutants. The complex antimicrobial resistance mechanisms of the ECC and challenges in species identification have complicated our understanding of the ECC and the selection of appropriate treatment. In this study, we performed phenotypic, whole-genome sequencing, and mutation analyses among ECC isolates from patients with bloodstream infections to determine the precise molecular-based epidemiology, resistance mechanisms to third-/fourth-generation cephalosporins, specific species and clones that contribute to antimicrobial resistance, and acquisition rates of fourth-generation cephalosporin resistance in ampC-derepressed mutants. These data will help elucidate the local epidemiology and complex β-lactam resistance mechanisms in the ECC and guide appropriate antimicrobial therapy and infection control strategies for ECC-related infections.
Collapse
Affiliation(s)
- Akihiko Matsuo
- Department of Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yasufumi Matsumura
- Department of Clinical Laboratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Keiichiro Mori
- Department of Clinical Laboratory, Kyoto University Hospital, Kyoto, Japan
| | - Taro Noguchi
- Department of Clinical Laboratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masaki Yamamoto
- Department of Clinical Laboratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Miki Nagao
- Department of Clinical Laboratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
2
|
Desai D, Cole SD. Complete genome sequences of two verona integron-encoded metallo-ß-lactamase (VIM)-producing enterobacterales isolated from dogs in the United States. Microbiol Resour Announc 2025; 14:e0089224. [PMID: 39907448 PMCID: PMC11895491 DOI: 10.1128/mra.00892-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 01/13/2025] [Indexed: 02/06/2025] Open
Abstract
This announcement reports the complete genome sequences, created by combined Illumina and Oxford Nanopore sequencing, of two carbapenemase-producing Enterobacterales (Escherichia coli [LaAc-1-20] and Enterobacter hormaechei, strain 19632-21) isolated from dogs in the United States. Both isolates harbor a blaVIM-4 gene found on a 47 kb plasmid and on the bacterial chromosome, respectively.
Collapse
Affiliation(s)
- Dhruv Desai
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, USA
| | - Stephen D. Cole
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, USA
| |
Collapse
|
3
|
Perault AI, John AS, DuMont AL, Shopsin B, Pironti A, Torres VJ. Enterobacter hormaechei replaces virulence with carbapenem resistance via porin loss. Proc Natl Acad Sci U S A 2025; 122:e2414315122. [PMID: 39977318 PMCID: PMC11874173 DOI: 10.1073/pnas.2414315122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 01/08/2025] [Indexed: 02/22/2025] Open
Abstract
Pathogenic Enterobacter species are of increasing clinical concern due to the multidrug-resistant nature of these bacteria, including resistance to carbapenem antibiotics. Our understanding of Enterobacter virulence is limited, hindering the development of new prophylactics and therapeutics targeting infections caused by Enterobacter species. In this study, we assessed the virulence of contemporary clinical Enterobacter hormaechei isolates in a mouse model of intraperitoneal infection and used comparative genomics to identify genes promoting virulence. Through mutagenesis and complementation studies, we found two porin-encoding genes, ompC and ompD, to be required for E. hormaechei virulence. These porins imported clinically relevant carbapenems into the bacteria, and thus loss of OmpC and OmpD desensitized E. hormaechei to the antibiotics. Our genomic analyses suggest porin-related genes are frequently mutated in E. hormaechei, perhaps due to the selective pressure of antibiotic therapy during infection. Despite the importance of OmpC and OmpD during infection of immunocompetent hosts, we found the two porins to be dispensable for virulence in a neutropenic mouse model. Moreover, porin loss provided a fitness advantage during carbapenem treatment in an ex vivo human whole blood model of bacteremia. Our data provide experimental evidence of pathogenic Enterobacter species gaining antibiotic resistance via loss of porins and argue antibiotic therapy during infection of immunocompromised patients is a conducive environment for the selection of porin mutations enhancing the multidrug-resistant profile of these pathogens.
Collapse
Affiliation(s)
- Andrew I. Perault
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY10016
- Department of Medicine, Division of Infectious Diseases, New York University Grossman School of Medicine, New York, NY10016
- Antimicrobial Resistant Pathogens Program, New York University Grossman School of Medicine, New York, NY10016
| | - Amelia St. John
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY10016
- Antimicrobial Resistant Pathogens Program, New York University Grossman School of Medicine, New York, NY10016
| | - Ashley L. DuMont
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY10016
- Department of Host-Microbe Interactions, St. Jude Children’s Research Hospital, Memphis, TN38105
| | - Bo Shopsin
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY10016
- Department of Medicine, Division of Infectious Diseases, New York University Grossman School of Medicine, New York, NY10016
- Antimicrobial Resistant Pathogens Program, New York University Grossman School of Medicine, New York, NY10016
| | - Alejandro Pironti
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY10016
- Antimicrobial Resistant Pathogens Program, New York University Grossman School of Medicine, New York, NY10016
| | - Victor J. Torres
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY10016
- Antimicrobial Resistant Pathogens Program, New York University Grossman School of Medicine, New York, NY10016
- Department of Host-Microbe Interactions, St. Jude Children’s Research Hospital, Memphis, TN38105
| |
Collapse
|
4
|
Al-Zahrani IA, Brek TM. Emergence of a bla NDM-5-carrying extensively drug-resistant Enterobacter cloacae ST1718 in Saudi Arabia: Insights from comprehensive genome analysis. J Infect Public Health 2025; 18:102645. [PMID: 39813857 DOI: 10.1016/j.jiph.2024.102645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/21/2024] [Accepted: 12/29/2024] [Indexed: 01/18/2025] Open
Abstract
BACKGROUND Patients with severe COVID-19 may require intensive care unit (ICU) admission to manage life-threatening complications. However, ICU admission is associated with an increased risk of acquiring nosocomial infections caused by multidrug-resistant (MDR) bacteria, particularly carbapenem-resistant Enterobacterale (CRE). Enterobacter cloacae complex (ECC), a group of closely related species including Enterobacter cloacae, is a common cause of healthcare-associated infections (HAIs). METHODS The study conducted a comprehensive genomic analysis of an extensively drug-resistant (XDR) E. cloacae strain (ECloa-JZ71) isolated from the blood of a critically ill COVID-19 patient in Jazan, Saudi Arabia. RESULTS ECloa-JZ71 exhibited resistance to multiple antimicrobial agents, except for amikacin, gentamycin, and fosfomycin. Whole-genome sequencing revealed that ECloa-JZ71 had a rarely reported sequence type, ST1718. Resistance to β-lactam antibiotics was primarily mediated by the genes blaCMH-3, blaTEM-1B, blaLAP-2, and blaNDM-5. The strain was found to harbor IncFIB(pECLA) and IncX3 plasmid replicons, with the latter encoding the blaNDM-5 gene. The IncX3 plasmid was identified as a significant contributor to the dissemination of the blaNDM-5 gene among Enterobacterale species The coexistence of blaNDM-5 and other carbapenem-hydrolyzing enzymes explains the reduced efficacy of β-lactam drugs in ECloa-JZ71. The coexistence of blaNDM-5 and other carbapenem-hydrolyzing enzymes explains the reduced efficacy of β-lactam drugs in ECloa-JZ71. The presence of specific virulence factors along with carbapenem resistance in ECloa-JZ71 may enhance its pathogenesis, complicating treatment and control efforts. CONCLUSION The findings highlight the need for monitoring the spread of multidrug-resistant clones, conducting molecular epidemiological studies, and implementing effective infection control measures to prevent the dissemination of antimicrobial resistance in healthcare settings.
Collapse
Affiliation(s)
- Ibrahim A Al-Zahrani
- Medical Laboratory Sciences Department, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia; Special Infectious Agents Unit-Biosafety Level-3, King Fahd Medical Research Centre, King Abdulaziz University, Jeddah, Saudi Arabia.
| | - Thamer M Brek
- Public health Laboratory, The regional laboratory, Jazan Health Cluster, Jazan, Saudi Arabia
| |
Collapse
|
5
|
Jolivet S, Couturier J, Le Neindre K, Ehmig M, Dortet L, Emeraud C, Barbut F. Persistence of OXA-48-producing ST-22 Citrobacter freundii in patients and the hospital environment, Paris, France, 2016 to 2022. Euro Surveill 2024; 29. [PMID: 39639813 DOI: 10.2807/1560-7917.es.2024.29.49.2400262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024] Open
Abstract
In 2016-2019, hospital A's haematology ward experienced an outbreak of OXA-48-producing ST-22 Citrobacter freundii strains, with toilets identified as source of transmission. Between 2020 and 2022, 28 strains of OXA-48-producing ST-22 C. freundii were isolated on other wards. This study aimed to determine whether all OXA-48-producing ST-22 C. freundii strains belonged to the same clone and to investigate the persistence of this clone using whole genome sequencing. OXA-48-producing ST-22 C. freundii strains collected from patients (n = 33) and from the hospital environment (n = 20) of seven wards were sequenced using Illumina technology and clonal relationships were determined using single nucleotide polymorphism (SNP). Phylogenetic analyses were performed on 53 strains from hospital A and on 240 epidemiologically unrelated carbapenem-resistant ST-22 C. freundii isolated from elsewhere in France. SNP analysis suggested long-lasting persistence of the same clone for more than 6 years. Phylogenetic analysis showed that 52 of 53 strains isolated in hospital A belonged to the same cluster and were different from the 240 epidemiologically unrelated C. freundii ST-22. Our data suggest that this clone can persist in hospital environments for years, representing a risk for hospital-acquired infections and outbreaks. Reservoir management is essential to prevent further transmission.
Collapse
Affiliation(s)
- Sarah Jolivet
- Unité de prévention du risque infectieux, Hôpital Saint-Antoine, Assistance Publique - Hôpitaux de Paris, Paris, France
| | - Jeanne Couturier
- Service de microbiologie de l'environnement, Hôpital Saint-Antoine, Assistance Publique - Hôpitaux de Paris, Paris, France
- INSERM 1139, 3PHM, Université de Paris Cité, Paris, France
| | - Killian Le Neindre
- Service de microbiologie de l'environnement, Hôpital Saint-Antoine, Assistance Publique - Hôpitaux de Paris, Paris, France
| | - Muriel Ehmig
- Unité de prévention du risque infectieux, Hôpital Saint-Antoine, Assistance Publique - Hôpitaux de Paris, Paris, France
| | - Laurent Dortet
- Associated French National Reference Center for Antibiotic Resistance: Carbapenemase-producing Enterobacterales, Le Kremlin-Bicêtre, France
| | - Cécile Emeraud
- Associated French National Reference Center for Antibiotic Resistance: Carbapenemase-producing Enterobacterales, Le Kremlin-Bicêtre, France
| | - Frédéric Barbut
- Unité de prévention du risque infectieux, Hôpital Saint-Antoine, Assistance Publique - Hôpitaux de Paris, Paris, France
- Service de microbiologie de l'environnement, Hôpital Saint-Antoine, Assistance Publique - Hôpitaux de Paris, Paris, France
- INSERM 1139, 3PHM, Université de Paris Cité, Paris, France
| |
Collapse
|
6
|
Gomez-Simmonds A, Annavajhala MK, Seeram D, Hokunson TW, Park H, Uhlemann AC. Genomic epidemiology of carbapenem-resistant Enterobacterales at a New York City hospital over a 10-year period reveals complex plasmid-clone dynamics and evidence for frequent horizontal transfer of bla KPC. Genome Res 2024; 34:1895-1907. [PMID: 39366703 PMCID: PMC11610580 DOI: 10.1101/gr.279355.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 09/27/2024] [Indexed: 10/06/2024]
Abstract
Transmission of carbapenem-resistant Enterobacterales (CRE) in hospitals has been shown to occur through complex, multifarious networks driven by both clonal spread and horizontal transfer mediated by plasmids and other mobile genetic elements. We performed nanopore long-read sequencing on CRE isolates from a large urban hospital system to determine the overall contribution of plasmids to CRE transmission and identify specific plasmids implicated in the spread of bla KPC (the Klebsiella pneumoniae carbapenemase [KPC] gene). Six hundred and five CRE isolates collected between 2009 and 2018 first underwent Illumina sequencing for genome-wide genotyping; 435 bla KPC-positive isolates were then successfully nanopore sequenced to generate hybrid assemblies including circularized bla KPC-harboring plasmids. Phylogenetic analysis and Mash clustering were used to define putative clonal and plasmid transmission clusters, respectively. Overall, CRE isolates belonged to 96 multilocus sequence types (STs) encoding bla KPC on 447 plasmids which formed 54 plasmid clusters. We found evidence for clonal transmission in 66% of CRE isolates, over half of which belonged to four clades comprising K. pneumoniae ST258. Plasmid-mediated acquisition of bla KPC occurred in 23%-27% of isolates. While most plasmid clusters were small, several plasmids were identified in multiple different species and STs, including a highly promiscuous IncN plasmid and an IncF plasmid putatively spreading bla KPC from ST258 to other clones. Overall, this points to both the continued dominance of K. pneumoniae ST258 and the dissemination of bla KPC across clones and species by diverse plasmid backbones. These findings support integrating long-read sequencing into genomic surveillance approaches to detect the hitherto silent spread of carbapenem resistance driven by mobile plasmids.
Collapse
Affiliation(s)
- Angela Gomez-Simmonds
- Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, New York 10032, USA
| | - Medini K Annavajhala
- Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, New York 10032, USA
| | - Dwayne Seeram
- Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, New York 10032, USA
| | - Todd W Hokunson
- Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, New York 10032, USA
| | - Heekuk Park
- Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, New York 10032, USA
| | - Anne-Catrin Uhlemann
- Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, New York 10032, USA
| |
Collapse
|
7
|
Cai S, Quan J, Wang Z, Hu H, Han X, Jiang Y, Yang Q, Yu Y, Zhou Z. High prevalence of carbapenem-resistant Enterobacter cloacae complex in a tertiary hospital over a decade. Microbiol Spectr 2024; 12:e0078024. [PMID: 39475294 PMCID: PMC11619405 DOI: 10.1128/spectrum.00780-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 08/07/2024] [Indexed: 12/08/2024] Open
Abstract
The aim of this study was to explore the mechanisms and molecular epidemiology of carbapenem resistance in the carbapenem-resistant Enterobacter cloacae complex (CRECC) over a decade in a tertiary hospital in Zhejiang, China. From January 2011 to December 2021, we collected a total of 931 Enterobacter cloacae complex (ECC) isolates from a tertiary hospital in Zhejiang, China. Antimicrobial susceptibility tests were performed. Whole-genome sequencing was used to analyze the molecular characteristics of the CRECC isolates. For carbapenem-resistant strains, efflux inhibitor assay and quantitative real-time PCR (qRT-PCR) were performed to evaluate the function of efflux pumps. A total of 82 CRECC isolates were detected, and the rate of resistance for carbapenems was 8.8%, increasing from 5.5% in 2011 to 18.3% in 2019, with an overall increasing trend, with Enterobacter hormaechei subsp. hoffmannii being the predominant species. Among the CRECC, 24 (24/931) isolates were found to produce carbapenemases, including NDM-1, NDM-5, IMP-4, and KPC-2. Among all carbapenemases, NDM-1 was the most prevalent, accounting for 62.5% (15/24) of carbapenemases, followed by NDM-5 (5/24). Genes encoding extended-spectrum beta-lactamases (47/82) and AmpC (76/82) were also identified, with blaSHV-12 and blaACT being the predominant ones, respectively. Multilocus sequence typing revealed 28 different sequence types, among which ST78 was the predominant, followed by ST93 and ST177. IncFIB was the most common type of plasmid replicon. Efflux inhibitor assay and qRT-PCR indicated that the overexpression of efflux pumps was involved in carbapenem resistance mechanisms. Additionally, disrupted outer membrane proteins also contribute to carbapenem resistance. The detection rate of CRECC was rising in the tertiary hospital. BlaNDM-1 and blaNDM-5 were the main carbapenem resistance genes. Our study revealed the presence of carbapenem-resistant ECC strains, emphasizing the need for effective infection prevention approaches to reduce the prevalence of CRECC. IMPORTANCE The emergence and spread of the carbapenem-resistant Enterobacter cloacae complex (CRECC) have become a significant public health problem. CRECC strains frequently harbor multiple drug resistance genes and can be epidemic within healthcare facilities. The study explored the characteristics and prevalence of CRECC strains in the same hospital over a decade, which provides a theoretical basis for epidemiologic surveillance and clinical treatment.
Collapse
Affiliation(s)
- Shiqi Cai
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jingjing Quan
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhengan Wang
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Huangdu Hu
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xinhong Han
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yan Jiang
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qing Yang
- Department of Laboratory Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yunsong Yu
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhihui Zhou
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
8
|
Miller WR, Arias CA. ESKAPE pathogens: antimicrobial resistance, epidemiology, clinical impact and therapeutics. Nat Rev Microbiol 2024; 22:598-616. [PMID: 38831030 DOI: 10.1038/s41579-024-01054-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/22/2024] [Indexed: 06/05/2024]
Abstract
The rise of antibiotic resistance and a dwindling antimicrobial pipeline have been recognized as emerging threats to public health. The ESKAPE pathogens - Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa and Enterobacter spp. - were initially identified as critical multidrug-resistant bacteria for which effective therapies were rapidly needed. Now, entering the third decade of the twenty-first century, and despite the introduction of several new antibiotics and antibiotic adjuvants, such as novel β-lactamase inhibitors, these organisms continue to represent major therapeutic challenges. These bacteria share several key biological features, including adaptations for survival in the modern health-care setting, diverse methods for acquiring resistance determinants and the dissemination of successful high-risk clones around the world. With the advent of next-generation sequencing, novel tools to track and combat the spread of these organisms have rapidly evolved, as well as renewed interest in non-traditional antibiotic approaches. In this Review, we explore the current epidemiology and clinical impact of this important group of bacterial pathogens and discuss relevant mechanisms of resistance to recently introduced antibiotics that affect their use in clinical settings. Furthermore, we discuss emerging therapeutic strategies needed for effective patient care in the era of widespread antimicrobial resistance.
Collapse
Affiliation(s)
- William R Miller
- Department of Internal Medicine, Division of Infectious Diseases, Houston Methodist Hospital, Houston, TX, USA
- Center for Infectious Diseases, Houston Methodist Research Institute, Houston, TX, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Cesar A Arias
- Department of Internal Medicine, Division of Infectious Diseases, Houston Methodist Hospital, Houston, TX, USA.
- Center for Infectious Diseases, Houston Methodist Research Institute, Houston, TX, USA.
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA.
| |
Collapse
|
9
|
Ghazawi A, Anes F, Mouftah S, Elbediwi M, Baig A, Alketbi M, Almazrouei F, Alhashmi M, Alzarooni N, Manzoor A, Habib I, Strepis N, Nabi A, Khan M. Genomic Study of High-Risk Clones of Enterobacter hormaechei Collected from Tertiary Hospitals in the United Arab Emirates. Antibiotics (Basel) 2024; 13:592. [PMID: 39061274 PMCID: PMC11274081 DOI: 10.3390/antibiotics13070592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 06/19/2024] [Accepted: 06/24/2024] [Indexed: 07/28/2024] Open
Abstract
Enterobacter hormaechei has emerged as a significant pathogen within healthcare settings due to its ability to develop multidrug resistance (MDR) and survive in hospital environments. This study presents a genome-based analysis of carbapenem-resistant Enterobacter hormaechei isolates from two major hospitals in the United Arab Emirates. Eight isolates were subjected to whole-genome sequencing (WGS), revealing extensive resistance profiles including the blaNDM-1, blaOXA-48, and blaVIM-4 genes. Notably, one isolate belonging to ST171 harbored dual carbapenemase genes, while five isolates exhibited colistin resistance without mcr genes. The presence of the type VI secretion system (T6SS), various adhesins, and virulence genes contributes to the virulence and competitive advantage of the pathogen. Additionally, our isolates (87.5%) possessed ampC β-lactamase genes, predominantly blaACT genes. The genomic context of blaNDM-1, surrounded by other resistance genes and mobile genetic elements, highlights the role of horizontal gene transfer (HGT) in the spread of resistance. Our findings highlight the need for rigorous surveillance, strategic antibiotic stewardship, and hospital-based WGS to manage and mitigate the spread of these highly resistant and virulent pathogens. Accurate identification and monitoring of Enterobacter cloacae complex (ECC) species and their resistance mechanisms are crucial for effective infection control and treatment strategies.
Collapse
Affiliation(s)
- Akela Ghazawi
- Department of Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (A.G.); (A.B.); (M.A.); (F.A.); (M.A.); (N.A.); (A.M.)
| | - Febin Anes
- Veterinary Public Health Research Laboratory, Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (F.A.); (I.H.)
| | - Shaimaa Mouftah
- Department of Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza 12578, Egypt;
| | - Mohammed Elbediwi
- Evolutionary Biology, Institute for Biology, Freie Universität Berlin, 14163 Berlin, Germany;
- Animal Health Research Institute, Agriculture Research Centre, Cairo 12618, Egypt
| | - Awase Baig
- Department of Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (A.G.); (A.B.); (M.A.); (F.A.); (M.A.); (N.A.); (A.M.)
| | - Muna Alketbi
- Department of Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (A.G.); (A.B.); (M.A.); (F.A.); (M.A.); (N.A.); (A.M.)
| | - Fatema Almazrouei
- Department of Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (A.G.); (A.B.); (M.A.); (F.A.); (M.A.); (N.A.); (A.M.)
| | - Mariam Alhashmi
- Department of Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (A.G.); (A.B.); (M.A.); (F.A.); (M.A.); (N.A.); (A.M.)
| | - Norah Alzarooni
- Department of Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (A.G.); (A.B.); (M.A.); (F.A.); (M.A.); (N.A.); (A.M.)
| | - Ashrat Manzoor
- Department of Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (A.G.); (A.B.); (M.A.); (F.A.); (M.A.); (N.A.); (A.M.)
| | - Ihab Habib
- Veterinary Public Health Research Laboratory, Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (F.A.); (I.H.)
| | - Nikolaos Strepis
- Department of Medical Microbiology & Infectious Diseases, Erasmus University Medical Centre (Erasmus MC), 3015 GD Rotterdam, The Netherlands;
| | - Anju Nabi
- Microbiology and Immunology Department, Dubai Hospital, Dubai P.O. Box 53735, United Arab Emirates;
| | - Mushtaq Khan
- Department of Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (A.G.); (A.B.); (M.A.); (F.A.); (M.A.); (N.A.); (A.M.)
| |
Collapse
|
10
|
Emeraud C, Girlich D, Deschamps M, Rezzoug I, Jacquemin A, Jousset AB, Lecolant S, Locher L, Birer A, Naas T, Bonnin RA, Dortet L. IMI-Type Carbapenemase-Producing Enterobacter cloacae Complex, France and Overseas Regions, 2012-2022. Emerg Infect Dis 2024; 30:1279-1282. [PMID: 38782383 PMCID: PMC11138976 DOI: 10.3201/eid3006.231525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024] Open
Abstract
We characterized a collection of IMI-like-producing Enterobacter spp. isolates (n = 112) in France. The main clone corresponded to IMI-1-producing sequence type 820 E. cloacae subspecies cloacae that was involved in an outbreak. Clinicians should be aware of potential antimicrobial resistance among these bacteria.
Collapse
|
11
|
Mauritz MD, Claus B, Forster J, Petzold M, Schneitler S, Halfmann A, Hauswaldt S, Nurjadi D, Toepfner N. The EC-COMPASS: Long-term, multi-centre surveillance of Enterobacter cloacae complex - a clinical perspective. J Hosp Infect 2024; 148:11-19. [PMID: 38554809 DOI: 10.1016/j.jhin.2024.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/02/2024] [Accepted: 03/13/2024] [Indexed: 04/02/2024]
Abstract
BACKGROUND Enterobacter cloacae complex (ECCO) comprises closely related Enterobacterales, causing a variety of infections ranging from mild urinary tract infections to severe bloodstream infections. ECCO has emerged as a significant cause of healthcare-associated infections, particularly in neonatal and adult intensive care. AIM The Enterobacter Cloacae COMplex PASsive Surveillance (EC-COMPASS) aims to provide a detailed multi-centre overview of ECCO epidemiology and resistance patterns detected in routine microbiological diagnostics in four German tertiary-care hospitals. METHODS In a sentinel cluster of four German tertiary-care hospitals, all culture-positive ECCO results between 1st January 2020 and 31st December 2022, were analysed based on Hybase® laboratory data. FINDINGS Analysis of 31,193 ECCO datasets from 14,311 patients revealed a higher incidence in male patients (P<0.05), although no significant differences were observed in ECCO infection phenotypes. The most common sources of ECCO were swabs (42.7%), urine (17.5%), respiratory secretions (16.1%), blood cultures (8.9%) and tissue samples (5.6%). The annual bacteraemia rate remained steady at approximately 33 cases per hospital. Invasive ECCO infections were predominantly found in oncology and intensive care units. Incidences of nosocomial outbreaks were infrequent and limited in scope. Notably, resistance to carbapenems was consistently low. CONCLUSION EC-COMPASS offers a profound clinical perspective on ECCO infections in German tertiary-healthcare settings, highlighting elderly men in oncology and intensive care units as especially vulnerable to ECCO infections. Early detection strategies targeting at-risk patients could improve ECCO infection management.
Collapse
Affiliation(s)
- M D Mauritz
- Department of General Pediatrics and Adolescent Medicine, Children's and Adolescents' Hospital, Datteln, Germany; Department of Children's Pain Therapy and Pediatric Palliative Care, Faculty of Health, School of Medicine, Witten/Herdecke University, Witten, Germany.
| | - B Claus
- Department of Children's Pain Therapy and Pediatric Palliative Care, Faculty of Health, School of Medicine, Witten/Herdecke University, Witten, Germany; PedScience Research Institute, Datteln, Germany
| | - J Forster
- Institute for Hygiene and Microbiology, University of Wuerzburg, Wuerzburg, Germany
| | - M Petzold
- Institute for Medical Microbiology and Virology, University Hospital Carl Gustav Carus Dresden, Technical University Dresden, Dresden, Germany
| | - S Schneitler
- Institute of Medical Microbiology and Hygiene, Saarland University, Homburg, Germany
| | - A Halfmann
- Institute of Medical Microbiology and Hygiene, Saarland University, Homburg, Germany
| | - S Hauswaldt
- Department of Infectious Diseases and Microbiology, University of Luebeck, Luebeck, Germany
| | - D Nurjadi
- Department of Infectious Diseases and Microbiology, University of Luebeck, Luebeck, Germany
| | - N Toepfner
- Department of Pediatrics, Faculty of Medicine and University Hospital Carl Gustav Carus, Technical University Dresden, Dresden, Germany
| |
Collapse
|
12
|
Zeng Z, Wei Y, Ye C, Jiang Y, Feng C, Guo T, Song M, Ding Y, Zhan P, Liu J. Carbapenem-Resistant Enterobacter cloacae Complex in Southwest China: Molecular Characteristics and Risk Factors Caused by NDM Producers. Infect Drug Resist 2024; 17:1643-1652. [PMID: 38707989 PMCID: PMC11067929 DOI: 10.2147/idr.s447857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 04/12/2024] [Indexed: 05/07/2024] Open
Abstract
Purpose The isolation rate of carbapenem-resistant Enterobacter cloacae complex (CREC) is continuously increasing. The aims of this study were to investigate the molecular characteristics and risk factors associated with CREC infections. Methods Bacterial species were identified using the matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) (Bruker Daltonik GmbH, Bremen, Germany), and the hsp60 gene was utilized for further typing. Antimicrobial susceptibilities were assessed through the MicroScan WalkAway 96 Plus system (Siemens, Germany) and the microbroth dilution method. Antimicrobial resistance genes were screened through polymerase chain reaction (PCR), while the homologous relationship was assessed using multilocus sequence typing (MLST). Conjugation experiments were performed to verify whether the plasmid could be transferred. Additionally, logistic regression model was employed to analyze risk factors for CREC infections. Results 32 strains of CREC bacteria were isolated during the study, yet only 20 were retained for preservation. While the isolates demonstrated resistance to the majority of antibiotics, they exhibited high sensitivity to polymyxin B and tigecycline. All isolates carried the blaNDM resistance gene, including 13 blaNDM-1 isolates and 7 blaNDM-5 isolates. MLST homology analysis revealed the presence of seven known ST types and one new ST type. Conjugation experiments confirmed that 13 isolates were capable of transferring the blaNDM resistance gene to Escherichia coli strain EC600. Single-factor analysis identified multiple primary risk factors for CREC infection, but multivariate analysis did not reveal independent risk factors. Conclusion This study investigates the molecular characteristics and risk factors associated with CREC infections. The detection rate of CREC strains in our hospital is continuously rising and homology analysis suggested that strains might spread in our hospital, emphasizing the importance of implementing effective preventive measures to control the horizontal transmission of plasmid-mediated antimicrobial resistance genes.
Collapse
Affiliation(s)
- Zhangrui Zeng
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Sichuan Province Engineering Technology Research Center of Molecular Diagnosis of Clinical Diseases, Molecular Diagnosis of Clinical Diseases Key Laboratory of Luzhou, Luzhou, People’s Republic of China
| | - Yueshuai Wei
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Sichuan Province Engineering Technology Research Center of Molecular Diagnosis of Clinical Diseases, Molecular Diagnosis of Clinical Diseases Key Laboratory of Luzhou, Luzhou, People’s Republic of China
| | - Caihong Ye
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Sichuan Province Engineering Technology Research Center of Molecular Diagnosis of Clinical Diseases, Molecular Diagnosis of Clinical Diseases Key Laboratory of Luzhou, Luzhou, People’s Republic of China
| | - Yuan Jiang
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Sichuan Province Engineering Technology Research Center of Molecular Diagnosis of Clinical Diseases, Molecular Diagnosis of Clinical Diseases Key Laboratory of Luzhou, Luzhou, People’s Republic of China
| | - Chunlin Feng
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Sichuan Province Engineering Technology Research Center of Molecular Diagnosis of Clinical Diseases, Molecular Diagnosis of Clinical Diseases Key Laboratory of Luzhou, Luzhou, People’s Republic of China
| | - Tongtong Guo
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Sichuan Province Engineering Technology Research Center of Molecular Diagnosis of Clinical Diseases, Molecular Diagnosis of Clinical Diseases Key Laboratory of Luzhou, Luzhou, People’s Republic of China
| | - Min Song
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Sichuan Province Engineering Technology Research Center of Molecular Diagnosis of Clinical Diseases, Molecular Diagnosis of Clinical Diseases Key Laboratory of Luzhou, Luzhou, People’s Republic of China
| | - Yinhuan Ding
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Sichuan Province Engineering Technology Research Center of Molecular Diagnosis of Clinical Diseases, Molecular Diagnosis of Clinical Diseases Key Laboratory of Luzhou, Luzhou, People’s Republic of China
| | - Ping Zhan
- Department of Gynaecology, The Affiliated Hospital of Southwest Medical University, Luzhou, People’s Republic of China
| | - Jinbo Liu
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Sichuan Province Engineering Technology Research Center of Molecular Diagnosis of Clinical Diseases, Molecular Diagnosis of Clinical Diseases Key Laboratory of Luzhou, Luzhou, People’s Republic of China
| |
Collapse
|
13
|
Halder G, Chaudhury BN, Mandal S, Denny P, Sarkar D, Chakraborty M, Khan UR, Sarkar S, Biswas B, Chakraborty A, Maiti S, Dutta S. Whole genome sequence-based molecular characterization of blood isolates of carbapenem-resistant Enterobacter cloacae complex from ICU patients in Kolkata, India, during 2017-2022: emergence of phylogenetically heterogeneous Enterobacter hormaechei subsp. xiangfangensis. Microbiol Spectr 2024; 12:e0352923. [PMID: 38385742 PMCID: PMC10986559 DOI: 10.1128/spectrum.03529-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 12/14/2023] [Indexed: 02/23/2024] Open
Abstract
Blood-borne infections caused by the carbapenem-resistant Enterobacter cloacae complex (CR-ECC) are major public threats with respect to the challenges encountered during treatment. This study describes the whole genome sequencing-based molecular characteristics of blood isolates (n = 70) of CR-ECC from patients admitted to the intensive care unit of tertiary care hospitals in Kolkata, India, during 2017-2022 with respect to species identification, antimicrobial resistance (AMR) profiling, mechanism of drug resistance, and molecular subtypes. Vitek2 MALDI and species-specific PCR identified Enterobacter hormaechei subsp. xiangfangensis (47.14%) as the emerging CR-ECC subspecies in Kolkata. The predominating carbapenemase and extended-spectrum β-lactamase genes found were blaNDM-1 (51.42%) and blaCTX-M-15 (27%), respectively. Besides, blaNDM-4, blaNDM-5, blaNDM-7, blaCMH-3, blaSFO-1, blaOXA-181, blaOXA-232, blaKPC-3, and blaDHA-7 genes were also detected, which were not previously reported from India. A multitude of Class 1 integrons (including In180, In4874, In4887, and In4888, which were novel) and plasmid replicon types (IncFIB, IncFII, IncX3, IncHI1-HI2, IncC, and IncR) involved in AMR dissemination were identified. Reverse transcription-PCR and western blot revealed that carbapenem resistance in non-carbapenemase-producing CR-ECC isolates was contributed by elevated levels of ampC, overexpression of acrAB, and loss of ompF. A total of 30 distinct sequence types (STs) were ascertained by multi-locus sequence typing; of which, ST2011, ST2018, ST2055, ST2721, and ST2722 were novel STs. Pulsed-field gel electrophoresis analysis showed heterogeneity (69 pulsotypes with a similarity coefficient of 48.40%) among the circulating isolates, suggesting multiple reservoirs of infections in humans. Phylogenetically and genetically diverse CR-ECC with multiple AMR mechanisms mandates close monitoring of nosocomial infections caused by these isolates to forestall the transmission and dissemination of AMR.IMPORTANCEThe emergence and extensive dissemination of the carbapenem-resistant Enterobacter cloacae complex (CR-ECC) have positioned it as a critical nosocomial global pathogen. The dearth of a comprehensive molecular study pertaining to CR-ECC necessitated this study, which is the first of its kind from India. Characterization of blood isolates of CR-ECC over the last 6 years revealed Enterobacter hormaechei subsp. xiangfangensis as the most prevalent subsp., exhibiting resistance to almost all antibiotics currently in use and harboring diverse transmissible carbapenemase genes. Besides the predominating blaNDM-1 and blaCTX-M-15, we document diverse carbapenemase and AmpC genes, such as blaNDM-4, blaNDM-7, blaOXA-181, blaOXA-232, blaKPC-3, blaCMH-3, blaSFO-1, and blaDHA-7, in CR-ECC, which were not previously reported from India. Furthermore, novel integrons and sequence types were identified. Our findings emphasize the need for strengthened vigilance for molecular epidemiological surveillance of CR-ECC due to the presence of epidemic clones with a phylogenetically diverse and wide array of antimicrobial resistance genes in vulnerable populations.
Collapse
Affiliation(s)
- Gourab Halder
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, Beliaghata, Kolkata, India
| | | | | | - Priyanka Denny
- Collaborative Research Center for Infectious Diseases in India, Okayama University, JICA Building, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Deotima Sarkar
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, Beliaghata, Kolkata, India
| | - Mandira Chakraborty
- Division of Microbiology, Calcutta Medical College, College Square, Kolkata, India
| | - Ujjwayini Ray Khan
- Division of Microbiology, Apollo Gleneagles Hospital, Phool Bagan, Kolkata, India
| | - Soma Sarkar
- Division of Microbiology, NRS Medical College, Sealdah, Kolkata, India
| | | | | | - Sourav Maiti
- Division of Microbiology, Ruby General Hospital, Kasba, Kolkata, India
| | - Shanta Dutta
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, Beliaghata, Kolkata, India
| |
Collapse
|
14
|
Leelapsawas C, Sroithongkham P, Payungporn S, Nimsamer P, Yindee J, Collaud A, Perreten V, Chanchaithong P. First report of blaOXA-181-carrying IncX3 plasmids in multidrug-resistant Enterobacter hormaechei and Serratia nevei recovered from canine and feline opportunistic infections. Microbiol Spectr 2024; 12:e0358923. [PMID: 38319115 PMCID: PMC10913469 DOI: 10.1128/spectrum.03589-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 01/14/2024] [Indexed: 02/07/2024] Open
Abstract
Whole-genome sequence analysis of six Enterobacter hormaechei and two Serratia nevei strains, using a hybrid assembly of Illumina and Oxford Nanopore Technologies sequencing, revealed the presence of the epidemic blaOXA-181-carrying IncX3 plasmids co-harboring qnrS1 and ∆ere(A) genes, as well as multiple multidrug resistance (MDR) plasmids disseminating in all strains, originated from dogs and cats in Thailand. The subspecies and sequence types (ST) of the E. hormaechei strains recovered from canine and feline opportunistic infections included E. hormaechei subsp. xiangfangensis ST171 (n = 3), ST121 (n = 1), and ST182 (n = 1), as well as E. hormaechei subsp. steigerwaltii ST65 (n = 1). Five of the six E. hormaechei strains harbored an identical 51,479-bp blaOXA-181-carrying IncX3 plasmid. However, the blaOXA-181 plasmid (pCUVET22-969.1) of the E. hormaechei strain CUVET22-969 presented a variation due to the insertion of ISKpn74 and ISSbo1 into the virB region. Additionally, the blaOXA-181 plasmids of S. nevei strains were nearly identical to the others at the nucleotide level, with ISEcl1 inserted upstream of the qnrS1 gene. The E. hormaechei and S. nevei lineages from canine and feline origins might acquire the epidemic blaOXA-181-carrying IncX3 and MDR plasmids, which are shared among Enterobacterales, contributing to the development of resistance. These findings suggest the spillover of significant OXA-181-encoding plasmids to these bacteria, causing severe opportunistic infections in dogs and cats in Thailand. Surveillance and effective hygienic practice, especially in hospitalized animals and veterinary hospitals, should be urgently implemented to prevent the spread of these plasmids in healthcare settings and communities. IMPORTANCE blaOXA-181 is a significant carbapenemase-encoding gene, usually associated with an epidemic IncX3 plasmid found in Enterobacterales worldwide. In this article, we revealed six carbapenemase-producing (CP) Enterobacter hormaechei and two CP Serratia nevei strains harboring blaOXA-181-carrying IncX3 and multidrug resistance plasmids recovered from dogs and cats in Thailand. The carriage of these plasmids can promote extensively drug-resistant properties, limiting antimicrobial treatment options in veterinary medicine. Since E. hormaechei and S. nevei harboring blaOXA-181-carrying IncX3 plasmids have not been previously reported in dogs and cats, our findings provide the first evidence of dissemination of the epidemic plasmids in these bacterial species isolated from animal origins. Pets in communities can serve as reservoirs of significant antimicrobial resistance determinants. This situation places a burden on antimicrobial treatment in small animal practice and poses a public health threat.
Collapse
Affiliation(s)
- Chavin Leelapsawas
- Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Parinya Sroithongkham
- Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Sunchai Payungporn
- Center of Excellence in Systems Microbiology (CESM), Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Pattaraporn Nimsamer
- Center of Excellence in Systems Microbiology (CESM), Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Jitrapa Yindee
- Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Alexandra Collaud
- Division of Molecular Bacterial Epidemiology and Infectious Diseases, Institute of Veterinary Bacteriology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Vincent Perreten
- Division of Molecular Bacterial Epidemiology and Infectious Diseases, Institute of Veterinary Bacteriology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Pattrarat Chanchaithong
- Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Research Unit in Microbial Food Safety and Antimicrobial Resistance, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
15
|
Huang J, Lv C, Li M, Rahman T, Chang YF, Guo X, Song Z, Zhao Y, Li Q, Ni P, Zhu Y. Carbapenem-resistant Escherichia coli exhibit diverse spatiotemporal epidemiological characteristics across the globe. Commun Biol 2024; 7:51. [PMID: 38184739 PMCID: PMC10771496 DOI: 10.1038/s42003-023-05745-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 12/27/2023] [Indexed: 01/08/2024] Open
Abstract
Carbapenem-resistant Escherichia coli (CREC) poses a severe global public health risk. This study reveals the worldwide geographic spreading patterns and spatiotemporal distribution characteristics of resistance genes in 7918 CREC isolates belonging to 497 sequence types (ST) and originating from 75 countries. In the last decade, there has been a transition in the prevailing STs from highly virulent ST131 and ST38 to higher antibiotic-resistant ST410 and ST167. The rise of multi-drug resistant strains of CREC carrying plasmids with extended-spectrum beta-lactamase (ESBL) resistance genes could be attributed to three important instances of host-switching events. The spread of CREC was associated with the changing trends in blaNDM-5, blaKPC-2, and blaOXA-48, as well as the plasmids IncFI, IncFII, and IncI. There were intercontinental geographic transfers of major CREC strains. Various crucial transmission hubs and patterns have been identified for ST131 in the United Kingdom, Italy, the United States, and China, ST167 in India, France, Egypt, and the United States, and ST410 in Thailand, Israel, the United Kingdom, France, and the United States. This work is valuable in managing CREC infections and preventing CREC occurrence and transmission inside healthcare settings and among diverse hosts.
Collapse
Affiliation(s)
- Jiewen Huang
- Department of Laboratory Medicine, College of Health Science and Technology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chao Lv
- Department of Animal Health and Food Safety, School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Min Li
- Department of Animal Health and Food Safety, School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tanvir Rahman
- Department of Microbiology and Hygiene, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Yung-Fu Chang
- Department of Population Medicine and Diagnostic Sciences, Cornell University College of Veterinary Medicine, Ithaca, NY, USA
| | - Xiaokui Guo
- Department of Animal Health and Food Safety, School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhen Song
- Department of Laboratory Medicine, College of Health Science and Technology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanan Zhao
- Department of Laboratory Medicine, College of Health Science and Technology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qingtian Li
- Department of Laboratory Medicine, College of Health Science and Technology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Peihua Ni
- Department of Laboratory Medicine, College of Health Science and Technology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Yongzhang Zhu
- Department of Animal Health and Food Safety, School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
16
|
Zhu Z, Xie X, Yu H, Jia W, Shan B, Huang B, Qu F, Niu S, Lv J, Gao Q, Qian F, Tian X, Zhai Y, Wen Y, Yang C, Zhu J, Tang Y, Chen L, Du H. Epidemiological characteristics and molecular features of carbapenem-resistant Enterobacter strains in China: a multicenter genomic study. Emerg Microbes Infect 2023; 12:2148562. [PMID: 36382635 PMCID: PMC9769138 DOI: 10.1080/22221751.2022.2148562] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Epidemiological characteristics and molecular features of carbapenem-resistant Enterobacter (CR-Ent) species remain unclear in China. In this study, we performed a genomic study on 92 isolates from Enterobacter-caused infections from a multicenter study in China. Whole genome sequencing (WGS) was used to determine the genome sequence of 92 non-duplicated CR-Ent strains collected from multiple tertiary health centres. The precise species of Enterobacter strains were identified by average nucleotide identity (ANI) and in silico DNA-DNA hybridization (isDDH). Molecular features of high-risk CR-Ent sequence type (ST) lineages and carbapenemase-encoding plasmids were determined. The result revealed that the most common human-source CR-Ent species in China was E. xiangfangensis (66/92, 71.93%), and the proportion of carbapenemase-producing Enterobacter (CP-Ent) in CR-Ent was high (72/92, 78.26%) in comparison to other global regions. Furthermore, ST171 and ST116 E. xiangfangensis were the major lineages of CP-Ent strains, and ST171 E. xiangfangensis was more likely to cause infections in older patients. Genomic analysis also highlighted the likelihood of intra-hospital/inter-hospital clonal transmission of ST171 and ST116 E. xiangfangensis. In addition, the blaNDM-harbouring IncX3-type plasmid was identified as the prevalent carbapenemase-encoding plasmid carried by CR-Ent strains, and was experimentally confirmed to be able to self-transfer with high frequency. This study detailed the genomic and clinical characteristics of CR-Ent in China in the form of multicenter for the first time. The high risk of carbapenemase-producing ST171 and ST116 E. xiangfangensis, and the blaNDM-harbouring IncX3-type plasmid were detected and emphasized.
Collapse
Affiliation(s)
- Zhichen Zhu
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Xiaofang Xie
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Hua Yu
- Department of Laboratory Medicine and Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Wei Jia
- Center of Medical Laboratory, General Hospital of Ningxia Medical University, Yinchuan, People's Republic of China
| | - Bin Shan
- Department of Laboratory Medicine, The First Affiliated Hospital of Kunming Medical University, Kunming, People's Republic of China
| | - Bin Huang
- Department of Laboratory Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Fen Qu
- Laboratory Medicine Center, Aviation General Hospital, Beijing, People's Republic of China
| | - Siqiang Niu
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Jinnan Lv
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Qizhao Gao
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Feinan Qian
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Xiangxiang Tian
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Yaxuan Zhai
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Yicheng Wen
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Chengcheng Yang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Jie Zhu
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Yiwei Tang
- Department of Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Department of Medical Affairs, Danaher Diagnostic Platform/Cepheid (China), New York, NY, USA
| | - Liang Chen
- Center for Discovery and Innovation, Hackensack-Meridian Health, Nutley, NJ, USA.,Hackensack Meridian School of Medicine, Seton Hall University, Nutley, NJ, USA
| | - Hong Du
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| |
Collapse
|
17
|
Moussa J, Nassour E, Tahan E, El Chaar M, Jisr T, Tokajian S. Carbapenem resistance determinants and their transmissibility among clinically isolated Enterobacterales in Lebanon. J Infect Public Health 2023; 16:1947-1953. [PMID: 37871361 DOI: 10.1016/j.jiph.2023.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 06/13/2023] [Accepted: 10/02/2023] [Indexed: 10/25/2023] Open
Abstract
BACKGROUND The occurrence of carbapenem-resistant bacterial infections has increased significantly over the years with Gram-negative bacteria exhibiting the broadest resistance range. In this study we aimed to investigate the genomic characteristics of clinical carbapenem-resistant Enterobacterales (CRE). METHODS Seventeen representative multi-drug resistant (MDR) isolates from a hospital setting showing high level of resistance to carbapenems (ertapenem, meropenem and imipenem) were chosen for further characterization through whole-genome sequencing. Resistance mechanisms and transferability of plasmids carrying carbapenemase-encoding genes were also determined in silico and through conjugative mating assays. RESULTS We detected 18 different β-lactamases, including four carbapenemases (blaNDM-1, blaNDM-5, blaNDM-7, blaOXA-48) on plasmids with different Inc groups. The combined results from PBRT and in silico replicon typing revealed 20 different replicons linked to plasmids ranging in size between 80 and 200 kb. The most prevalent Inc groups were IncFIB(K) and IncM. OXA-48, detected on 76-kb IncM1 conjugable plasmid, was the most common carbapenemase. We also detected other conjugative plasmids with different carbapenemases confirming the role of horizontal gene transfer in the dissemination of antimicrobial resistance genes. CONCLUSION Our findings verified the continuing spread of carbapenemases in Enterobacterales and revealed the types of mobile elements circulating in a hospital setting and contributing to the spread of resistance determinants. The occurrence and transmission of plasmids carrying carbapenemase-encoding genes call for strengthening active surveillance and prevention efforts to control antimicrobial resistance dissemination in healthcare settings.
Collapse
Affiliation(s)
- Jennifer Moussa
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Byblos 1401, Lebanon
| | - Elie Nassour
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Byblos 1401, Lebanon
| | - Elio Tahan
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Byblos 1401, Lebanon
| | - Mira El Chaar
- Faculty of Health Sciences, University of Balamand, Beirut, Lebanon
| | - Tamima Jisr
- Laboratory Medicine Department, Makassed General Hospital, Lebanon
| | - Sima Tokajian
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Byblos 1401, Lebanon.
| |
Collapse
|
18
|
Lutgring JD, Kent AG, Bowers JR, Jasso-Selles DE, Albrecht V, Stevens VA, Pfeiffer A, Barnes R, Engelthaler DM, Johnson JK, Gargis AS, Rasheed JK, Limbago BM, Elkins CA, Karlsson M, Halpin AL. Comparison of carbapenem-susceptible and carbapenem-resistant Enterobacterales at nine sites in the USA, 2013-2016: a resource for antimicrobial resistance investigators. Microb Genom 2023; 9. [PMID: 37987646 DOI: 10.1099/mgen.0.001119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023] Open
Abstract
Carbapenem-resistant Enterobacterales (CRE) are an urgent public health threat. Genomic sequencing is an important tool for investigating CRE. Through the Division of Healthcare Quality Promotion Sentinel Surveillance system, we collected CRE and carbapenem-susceptible Enterobacterales (CSE) from nine clinical laboratories in the USA from 2013 to 2016 and analysed both phenotypic and genomic sequencing data for 680 isolates. We describe the molecular epidemiology and antimicrobial susceptibility testing (AST) data of this collection of isolates. We also performed a phenotype-genotype correlation for the carbapenems and evaluated the presence of virulence genes in Klebsiella pneumoniae complex isolates. These AST and genomic sequencing data can be used to compare and contrast CRE and CSE at these sites and serve as a resource for the antimicrobial resistance research community.
Collapse
Affiliation(s)
- Joseph D Lutgring
- Division of Healthcare Quality Promotion, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Alyssa G Kent
- Division of Healthcare Quality Promotion, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
- Goldbelt C6, LLC, Chesapeake, Virginia, USA
| | - Jolene R Bowers
- Pathogen and Microbiome Division, Translational Genomics Research Institute North, Flagstaff, Arizona, USA
| | - Daniel E Jasso-Selles
- Pathogen and Microbiome Division, Translational Genomics Research Institute North, Flagstaff, Arizona, USA
| | - Valerie Albrecht
- Division of Healthcare Quality Promotion, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
- Present address: Office of the Director, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Valerie A Stevens
- Division of Healthcare Quality Promotion, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Ashlyn Pfeiffer
- Pathogen and Microbiome Division, Translational Genomics Research Institute North, Flagstaff, Arizona, USA
| | - Riley Barnes
- Pathogen and Microbiome Division, Translational Genomics Research Institute North, Flagstaff, Arizona, USA
| | - David M Engelthaler
- Pathogen and Microbiome Division, Translational Genomics Research Institute North, Flagstaff, Arizona, USA
| | - J Kristie Johnson
- Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Amy S Gargis
- Division of Healthcare Quality Promotion, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - J Kamile Rasheed
- Division of Healthcare Quality Promotion, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Brandi M Limbago
- Division of Healthcare Quality Promotion, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
- Present address: Office of Science, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Christopher A Elkins
- Division of Healthcare Quality Promotion, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Maria Karlsson
- Division of Healthcare Quality Promotion, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
- Goldbelt C6, LLC, Chesapeake, Virginia, USA
| | - Alison L Halpin
- Division of Healthcare Quality Promotion, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| |
Collapse
|
19
|
Hu S, Xie W, Cheng Q, Zhang X, Dong X, Jing H, Wang J. Molecular eidemiology of carbapenem-resistant Enterobacter cloacae complex in a tertiary hospital in Shandong, China. BMC Microbiol 2023; 23:177. [PMID: 37407923 DOI: 10.1186/s12866-023-02913-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 06/27/2023] [Indexed: 07/07/2023] Open
Abstract
BACKGROUND The increasing incidence and prevalence of carbapenem-resistant Enterobacter cloacae complex (CREC) poses great challenges to infection prevention and disease treatment. However, much remains unknown about the clinical characteristics of CREC isolates. Our objective was to characterize antimicrobial resistance and, carbapenemase production in CREC with 36 CREC isolates collected from a tertiary hospital in Shandong, China. RESULTS Three types of carbapenemases (NDM, IMP and VIM) were detected in these isolates. Among them, NDM carbapenemases were most prevalent, with a 61.2% (22/36) detection rate for NDM-1, 27.8% (10/36) for NDM-5 and 2.8% (1/36) for NDM-7. IMP-4 was found in two isolates and VIM-1 in only one isolate. The MLST analysis identified 12 different sequence types (STs), of which ST171 (27.8%) was the most prevalent, followed by ST418 (25.0%). ST171 isolates had significantly higher rates of resistance than other STs to gentamicin and tobramycin (Ps < 0.05), and lower rates of resistance to aztreonam than ST418 and other STs (Ps < 0.05). Among 17 carbapenemase-encoding genes, the blaNDM-5 gene was more frequently detected in ST171 than in ST418 and other isolates (Ps < 0.05). In contrast, the blaNDM-1 gene was more frequently seen in ST418 than in ST171 isolates. One novel ST (ST1965) was identified, which carried the blaNDM-1 gene. CONCLUSION NDM-5 produced by ST171 and NDM-1 carbapenemase produced by ST418 were the leading cause of CREC in this hospital. This study enhances the understanding of CREC strains and helps improve infection control and treatment in hospitals.
Collapse
Affiliation(s)
- Shengnan Hu
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Laboratory Medicine, Jinan, Shandong, China
| | - Wenyan Xie
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Laboratory Medicine, Jinan, Shandong, China
| | - Qiwen Cheng
- Biodesign Center for Health Through Microbiomes, Arizona State University, Tempe, AZ, 85287, USA
| | - Xiaoning Zhang
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Laboratory Medicine, Jinan, Shandong, China
| | - Xiutao Dong
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Laboratory Medicine, Jinan, Shandong, China
| | - Huaiqi Jing
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Changping, Beijing, 102206, People's Republic of China
| | - Jiazheng Wang
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Laboratory Medicine, Jinan, Shandong, China.
| |
Collapse
|
20
|
Huang YS, Chen PY, Chou PC, Wang JT. In Vitro Activities and Inoculum Effects of Cefiderocol and Aztreonam-Avibactam against Metallo-β-Lactamase-Producing Enterobacteriaceae. Microbiol Spectr 2023; 11:e0056923. [PMID: 37154758 PMCID: PMC10269523 DOI: 10.1128/spectrum.00569-23] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 04/18/2023] [Indexed: 05/10/2023] Open
Abstract
Cefiderocol and aztreonam-avibactam (ATM-AVI) both had activity against carbapenem-resistant Gram-negative bacilli, including those that produce metallo-β-lactamases (MBLs). We compared the in vitro activities and inoculum effects of these antibiotics against carbapenemase-producing Enterobacteriaceae (CPE), especially MBL-producing isolates. The MICs of cefiderocol and ATM-AVI were determined using broth microdilution method for a 2016 to 2021 collection of Enterobacteriaceae isolates which produced MBL, KPC, or OXA-48-like carbapenemases. MICs with high bacteria inoculum were also evaluated for susceptible isolates. A total of 195 CPE were tested, including 143 MBL- (74 NDM, 42 IMP, and 27 VIM), 38 KPC-, and 14 OXA-48-like-producing isolates. The susceptible rates of MBL-, KPC-, and OXA-48-like producers to cefiderocol were 86.0%, 92.1%, and 92.9%, respectively, and that to ATM-AVI were 95.8%, 100%, and 100%, respectively. NDM producers displayed lower susceptibility and higher MIC50s/MIC90s of cefiderocol (78.4%, 2/16 mg/L) than IMP (92.9%, 0.375/4 mg/L) and VIM (96.3%, 1/4 mg/L) producers. NDM- and VIM-producing Escherichia coli showed lower susceptibility to ATM-AVI (77.3% and 75.0%, respectively) compared to MBL-CPE of other species (100% susceptible). Inoculum effects for cefiderocol and ATM-AVI were observed among 95.9% and 95.2% of susceptible CPE, respectively. A switch from susceptible to resistant category was observed in 83.6% (143/171) of isolates for cefiderocol and 94.7% (179/189) for ATM-AVI. Our results revealed that NDM-producing Enterobacteriaceae had lower susceptibility to cefiderocol and ATM-AVI. Prominent inoculum effects on both antibiotics were observed for CPE, which suggested a risk of microbiological failure when they were used for CPE infections with high bacteria burden. IMPORTANCE The prevalence of infections caused by carbapenem-resistant Enterobacteriaceae is increasing worldwide. Currently, therapeutic options for metallo-β-lactamase (MBL)-producing Enterobacteriaceae remain limited. We demonstrated that clinical metallo-β-lactamase (MBL)-producing Enterobacteriaceae isolates were highly susceptible to cefiderocol (86.0%) and aztreonam-avibactam (ATM-AVI) (95.8%). However, inoculum effects on cefiderocol and ATM-AVI were observed for over 90% of susceptible carbapenemase-producing Enterobacteriaceae (CPE) isolates. Our findings highlight a potential risk of microbiological failure when using monotherapy with cefiderocol or ATM-AVI to treat severe CPE infection.
Collapse
Affiliation(s)
- Yu-Shan Huang
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Pao-Yu Chen
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Pei-Chun Chou
- Laboratory of Infectious Disease, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Jann-Tay Wang
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
21
|
Loyola-Cruz MÁ, Gonzalez-Avila LU, Martínez-Trejo A, Saldaña-Padilla A, Hernández-Cortez C, Bello-López JM, Castro-Escarpulli G. ESKAPE and Beyond: The Burden of Coinfections in the COVID-19 Pandemic. Pathogens 2023; 12:pathogens12050743. [PMID: 37242413 DOI: 10.3390/pathogens12050743] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/15/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023] Open
Abstract
The ESKAPE group constitute a threat to public health, since these microorganisms are associated with severe infections in hospitals and have a direct relationship with high mortality rates. The presence of these bacteria in hospitals had a direct impact on the incidence of healthcare-associated coinfections in the SARS-CoV-2 pandemic. In recent years, these pathogens have shown resistance to multiple antibiotic families. The presence of high-risk clones within this group of bacteria contributes to the spread of resistance mechanisms worldwide. In the pandemic, these pathogens were implicated in coinfections in severely ill COVID-19 patients. The aim of this review is to describe the main microorganisms of the ESKAPE group involved in coinfections in COVID-19 patients, addressing mainly antimicrobial resistance mechanisms, epidemiology, and high-risk clones.
Collapse
Affiliation(s)
- Miguel Ángel Loyola-Cruz
- Laboratorio de Investigación Clínica y Ambiental, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Carpio y Plan de Ayala, Col. Casco de Santo Tomás, Ciudad de México 11340, Mexico
- División de Investigación, Hospital Juárez de México, Av. Instituto Politécnico Nacional 5160, Magdalena de las Salinas, Gustavo A. Madero, Ciudad de México 07760, Mexico
| | - Luis Uriel Gonzalez-Avila
- Laboratorio de Investigación Clínica y Ambiental, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Carpio y Plan de Ayala, Col. Casco de Santo Tomás, Ciudad de México 11340, Mexico
| | - Arturo Martínez-Trejo
- Laboratorio de Investigación Clínica y Ambiental, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Carpio y Plan de Ayala, Col. Casco de Santo Tomás, Ciudad de México 11340, Mexico
| | - Andres Saldaña-Padilla
- Laboratorio de Investigación Clínica y Ambiental, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Carpio y Plan de Ayala, Col. Casco de Santo Tomás, Ciudad de México 11340, Mexico
- Laboratorio de Bioquímica Microbiana, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Carpio y Plan de Ayala, Col. Casco de Santo Tomás, Mexico City 11340, Mexico
| | - Cecilia Hernández-Cortez
- Laboratorio de Bioquímica Microbiana, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Carpio y Plan de Ayala, Col. Casco de Santo Tomás, Mexico City 11340, Mexico
| | - Juan Manuel Bello-López
- División de Investigación, Hospital Juárez de México, Av. Instituto Politécnico Nacional 5160, Magdalena de las Salinas, Gustavo A. Madero, Ciudad de México 07760, Mexico
| | - Graciela Castro-Escarpulli
- Laboratorio de Investigación Clínica y Ambiental, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Carpio y Plan de Ayala, Col. Casco de Santo Tomás, Ciudad de México 11340, Mexico
| |
Collapse
|
22
|
St. John A, Perault AI, Giacometti SI, Sommerfield AG, DuMont AL, Lacey KA, Zheng X, Sproch J, Petzold C, Dancel-Manning K, Gonzalez S, Annavajhala M, Beckford C, Zeitouni N, Liang FX, van Bakel H, Shopsin B, Uhlemann AC, Pironti A, Torres VJ. Capsular Polysaccharide Is Essential for the Virulence of the Antimicrobial-Resistant Pathogen Enterobacter hormaechei. mBio 2023; 14:e0259022. [PMID: 36779722 PMCID: PMC10127600 DOI: 10.1128/mbio.02590-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 01/13/2023] [Indexed: 02/14/2023] Open
Abstract
Nosocomial infections caused by multidrug-resistant (MDR) Enterobacter cloacae complex (ECC) pathogens are on the rise. However, the virulence strategies employed by these pathogens remain elusive. Here, we study the interaction of ECC clinical isolates with human serum to define how this pathogen evades the antimicrobial action of complement, one of the first lines of host-mediated immune defense. We identified a small number of serum-sensitive strains, including Enterobacter hormaechei strain NR3055, which we exploited for the in vitro selection of serum-resistant clones. Comparative genomics between the serum-sensitive NR3055 strain and the isolated serum-resistant clones revealed a premature stop codon in the wzy gene of the capsular polysaccharide biosynthesis locus of NR3055. The complementation of wzy conferred serum resistance to NR3055, prevented the deposition of complement proteins on the bacterial surface, inhibited phagocytosis by human neutrophils, and rendered the bacteria virulent in a mouse model of peritonitis. Mice exposed to a nonlethal dose of encapsulated NR3055 were protected from subsequent lethal infections by encapsulated NR3055, whereas mice that were previously exposed to unencapsulated NR3055 succumbed to infection. Thus, capsule is a key immune evasion determinant for E. hormaechei, and it is a potential target for prophylactics and therapeutics to combat these increasingly MDR human pathogens. IMPORTANCE Infections caused by antimicrobial resistant bacteria are of increasing concern, especially those due to carbapenem-resistant Enterobacteriaceae pathogens. Included in this group are species of the Enterobacter cloacae complex, regarding which there is a paucity of knowledge on the infection biology of the pathogens, despite their clinical relevance. In this study, we combine techniques in comparative genomics, bacterial genetics, and diverse models of infection to establish capsule as an important mechanism of Enterobacter pathogens to resist the antibacterial activity of serum, a first line of host defense against bacterial infections. We also show that immune memory targeting the Enterobacter capsule protects against lethal infection. The further characterization of Enterobacter infection biology and the immune response to infection are needed for the development of therapies and preventative interventions targeting these highly antibiotic resistant pathogens.
Collapse
Affiliation(s)
- Amelia St. John
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, USA
- Antimicrobial-Resistant Pathogens Program, New York University Grossman School of Medicine, New York, New York, USA
| | - Andrew I. Perault
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, USA
- Antimicrobial-Resistant Pathogens Program, New York University Grossman School of Medicine, New York, New York, USA
| | - Sabrina I. Giacometti
- Department of Cell Biology, New York University Grossman School of Medicine, New York, New York, USA
| | - Alexis G. Sommerfield
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, USA
| | - Ashley L. DuMont
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, USA
| | - Keenan A. Lacey
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, USA
| | - Xuhui Zheng
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, USA
| | - Julia Sproch
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, USA
| | - Chris Petzold
- Microscopy Laboratory, Division of Advanced Research Technologies, New York University Langone Health, New York, New York, USA
| | - Kristen Dancel-Manning
- Microscopy Laboratory, Division of Advanced Research Technologies, New York University Langone Health, New York, New York, USA
| | - Sandra Gonzalez
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, USA
| | - Medini Annavajhala
- Department of Medicine, Division of Infectious Diseases, Columbia University Medical Center, New York, New York, USA
| | - Colleen Beckford
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Nathalie Zeitouni
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Feng-Xia Liang
- Microscopy Laboratory, Division of Advanced Research Technologies, New York University Langone Health, New York, New York, USA
| | - Harm van Bakel
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Bo Shopsin
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, USA
- Antimicrobial-Resistant Pathogens Program, New York University Grossman School of Medicine, New York, New York, USA
- Department of Medicine, Division of Infectious Diseases, New York University Grossman School of Medicine, New York, New York, USA
| | - Anne-Catrin Uhlemann
- Department of Medicine, Division of Infectious Diseases, Columbia University Medical Center, New York, New York, USA
| | - Alejandro Pironti
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, USA
- Antimicrobial-Resistant Pathogens Program, New York University Grossman School of Medicine, New York, New York, USA
- Microbial Computational Genomic Core Lab, Department of Microbiology, New York University Grossman School of Medicine, New York, New York, USA
| | - Victor J. Torres
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, USA
- Antimicrobial-Resistant Pathogens Program, New York University Grossman School of Medicine, New York, New York, USA
| |
Collapse
|
23
|
van der Schoor AS, Severin JA, Klaassen CHW, Gommers D, Bruno MJ, Hendriks JM, Voor In 't Holt AF, Vos MC. Environmental contamination with highly resistant microorganisms after relocating to a new hospital building with 100% single-occupancy rooms: A prospective observational before-and-after study with a three-year follow-up. Int J Hyg Environ Health 2023; 248:114106. [PMID: 36621268 DOI: 10.1016/j.ijheh.2022.114106] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 12/16/2022] [Accepted: 12/17/2022] [Indexed: 01/09/2023]
Abstract
INTRODUCTION Inanimate surfaces within hospitals can be a source of transmission for highly resistant microorganisms (HRMO). While many hospitals are transitioning to single-occupancy rooms, the effect of single-occupancy rooms on environmental contamination is still unknown. We aimed to determine differences in environmental contamination with HRMO between an old hospital building with mainly multiple-occupancy rooms and a new hospital building with 100% single-occupancy rooms, and the environmental contamination in the new hospital building during three years after relocating. METHODS Environmental samples were taken twice in the old hospital, and fifteen times over a three-year period in the new hospital. Replicate Organism Direct Agar Contact-plates (RODACs) were used to determine colony forming units (CFU). Cotton swabs premoistened with PBS were used to determine presence of methicillin-resistant Staphylococcus aureus, carbapenemase-producing Pseudomonas aeruginosa, highly resistant Enterobacterales, carbapenem-resistant Acinetobacter baumannii, and vancomycin-resistant Enterococcus faecium. All identified isolates were subjected to whole genome sequencing (WGS) using Illumina technology. RESULTS In total, 4993 hospital sites were sampled, 724 in the old and 4269 in the new hospital. CFU counts fluctuated during the follow-up period in the new hospital building, with lower CFU counts observed two- and three years after relocating, which was during the COVID-19 pandemic. The CFU counts in the new building were equal to or surpassed the CFU counts in the old hospital building. In the old hospital building, 24 (3.3%) sample sites were positive for 49 HRMO isolates, compared to five (0.1%) sample sites for seven HRMO isolates in the new building (P < 0.001). In the old hospital, 89.8% of HRMO were identified from the sink plug. In the new hospital, 71.4% of HRMO were identified from the shower drain, and no HRMO were found in sinks. DISCUSSION Our results indicate that relocating to a new hospital building with 100% single-occupancy rooms significantly decreases HRMO in the environment. Given that environmental contamination is an important source for healthcare associated infections, this finding should be taken into account when considering hospital designs for renovations or the construction of hospitals.
Collapse
Affiliation(s)
- Adriënne S van der Schoor
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Juliëtte A Severin
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Corné H W Klaassen
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Diederik Gommers
- Department of Adult Intensive Care, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Marco J Bruno
- Department of Gastroenterology and Hepatology, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Johanna M Hendriks
- Department of Surgery, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Anne F Voor In 't Holt
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC University Medical Center, Rotterdam, the Netherlands.
| | - Margreet C Vos
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| |
Collapse
|
24
|
Lumbreras-Iglesias P, de Toro M, Vázquez X, García-Carús E, Rodicio MR, Fernández J. High-risk international clones ST66, ST171 and ST78 of Enterobacter cloacae complex causing blood stream infections in Spain and carrying bla OXA-48 with or without mcr-9. J Infect Public Health 2023; 16:272-279. [PMID: 36621205 DOI: 10.1016/j.jiph.2022.12.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 12/01/2022] [Accepted: 12/21/2022] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND In the last years, Enterobacter cloacae complex has become an important threat associated with nosocomial infections (including bacteraemia). These bacteria have the ability to acquire mobile genetic elements with antimicrobial resistance genes, reducing the number of therapies available for treatment of the infections they cause. Multidrug resistant isolates of the E. cloacae complex have been causing blood stream infections in a hospital in northern Spain. The aim of this study was to report the spread of E. cloacae complex isolates carrying blaOXA-48 with or without mcr-9 which were involved in blood stream infections, in a Spanish hospital. METHODS All Enterobacter spp. isolates recovered from blood cultures of patients admitted to a tertiary Spanish hospital, over a five-year period were recovered. Of those, OXA-48-producing isolates were selected for further analysis (19 E. xiangfangensis isolates and a single E. hoffmannii). Bacterial identification, antimicrobial susceptibility, DNA sequencing, molecular typing, resistome analysis and plasmid characterization was performed. RESULTS 20 isolates were positive for blaOXA-48, harbored by IncL/M plasmids. They belonged to the international high-risk clones ST66, ST171 and ST78. They produced the extended-spectrum β-lactamases CTX-M-15 and/or CTX-M-9 and 40 % of them (n = 8) also carried the mcr-9 gene, located on IncHI2 plasmids. However, they were susceptible to colistin. CONCLUSION The presence of blaOXA-48, together with at least one blaCTX-M gene in our multidrug resistant high-risk E. cloacae complex clones is worrisome. Also, the additional presence of mcr-9 in some of them is of concern as it could potentially be transferred into other hosts or acquire mutations that might led to emerging colistin resistance. Surveillance systems are essential to detect these difficult-to-treat bacteria which, apart from causing live-threatening infections, can spread important resistance threats.
Collapse
Affiliation(s)
- Pilar Lumbreras-Iglesias
- Department of Clinical Microbiology, Hospital Universitario Central de Asturias, Oviedo, Spain; Traslational Microbiology Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - María de Toro
- Genomics and Bioinformatics Core Facility, Center for Biomedical Research of La Rioja (CIBIR), Logroño, Spain
| | - Xenia Vázquez
- Traslational Microbiology Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain; Department of Functional Biology, Microbiology Area, University of Oviedo, Oviedo, Spain
| | - Enrique García-Carús
- Department of Internal Medicine, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - M Rosario Rodicio
- Traslational Microbiology Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain; Department of Functional Biology, Microbiology Area, University of Oviedo, Oviedo, Spain
| | - Javier Fernández
- Department of Clinical Microbiology, Hospital Universitario Central de Asturias, Oviedo, Spain; Traslational Microbiology Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain; Research & Innovation, Artificial Intelligence and Statistical Department, Pragmatech AI Solutions, Oviedo, Spain; Centro de Investigación Biomédica en Red-Enfermedades Respiratorias, Madrid, Spain.
| |
Collapse
|
25
|
Han M, Liu C, Xie H, Zheng J, Zhang Y, Li C, Shen H, Cao X. Genomic and clinical characteristics of carbapenem-resistant Enterobacter cloacae complex isolates collected in a Chinese tertiary hospital during 2013-2021. Front Microbiol 2023; 14:1127948. [PMID: 36896426 PMCID: PMC9989974 DOI: 10.3389/fmicb.2023.1127948] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 02/06/2023] [Indexed: 02/25/2023] Open
Abstract
Objective To analyze the molecular epidemiology of carbapenem-resistant Enterobacter cloacae complex (CREC) by whole-genome sequencing and to explore its clinical characteristics. Methods Enterobacter cloacae complex isolates collected in a tertiary hospital during 2013-2021 were subjected to whole-genome sequencing to determine the distribution of antimicrobial resistance genes (ARGs), sequence types (STs), and plasmid replicons. A phylogenetic tree of the CREC strains was constructed based on the whole-genome sequences to analyze their relationships. Clinical patient information was collected for risk factor analysis. Results Among the 51 CREC strains collected, blaNDM-1 (n = 42, 82.4%) was the main carbapenem-hydrolyzing β-lactamase (CHβL), followed by blaIMP-4 (n = 11, 21.6%). Several other extended-spectrum β-lactamase-encoding genes were also identified, with blaSHV-12 (n = 30, 58.8%) and blaTEM-1B (n = 24, 47.1%) being the predominant ones. Multi-locus sequence typing revealed 25 distinct STs, and ST418 (n = 12, 23.5%) was the predominant clone. Plasmid analysis identified 15 types of plasmid replicons, among which IncHI2 (n = 33, 64.7%) and IncHI2A (n = 33, 64.7%) were the main ones. Risk factor analysis showed that intensive care unit (ICU) admission, autoimmune disease, pulmonary infection, and previous corticosteroid use within 1 month were major risk factors for acquiring CREC. Logistic regression analysis showed that ICU admission was an independent risk factor for CREC acquisition and was closely related with acquiring infection by CREC with ST418. Conclusion BlaNDM-1 and blaIMP-4 were the predominant carbapenem resistance genes. ST418 carrying BlaNDM-1 not only was the main clone, but also circulated in the ICU of our hospital during 2019-2021, which highlights the necessity for surveillance of this strain in the ICU. Furthermore, patients with risk factors for CREC acquisition, including ICU admission, autoimmune disease, pulmonary infection, and previous corticosteroid use within 1 month, need to be closely monitored for CREC infection.
Collapse
Affiliation(s)
- Mei Han
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Chang Liu
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Hui Xie
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Jie Zheng
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Yan Zhang
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Chuchu Li
- Department of Acute Infectious Disease Control and Prevention, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, Jiangsu, China
| | - Han Shen
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Xiaoli Cao
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| |
Collapse
|
26
|
Annavajhala MK, Kelly NE, Geng W, Ferguson SA, Giddins MJ, Grohs EC, Hill-Ricciuti A, Green DA, Saiman L, Uhlemann AC. Genomic and Epidemiological Features of Two Dominant Methicillin-Susceptible Staphylococcus aureus Clones from a Neonatal Intensive Care Unit Surveillance Effort. mSphere 2022; 7:e0040922. [PMID: 36218345 PMCID: PMC9769867 DOI: 10.1128/msphere.00409-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 09/26/2022] [Indexed: 01/13/2023] Open
Abstract
Methicillin-susceptible Staphylococcus aureus (MSSA) is a more prevalent neonatal intensive care unit (NICU) pathogen than methicillin-resistant S. aureus (MRSA). However, the introduction and spread of MSSA, the role of systematic decolonization, and optimal infection prevention and control strategies remain incompletely understood. We previously screened infants hospitalized in a university-affiliated level III to IV NICU twice monthly over 18 months for S. aureus colonization and identified several prevalent staphylococcal protein A (spa) types. Here, we performed whole-genome sequencing (WGS) and phylogenetic comparisons of 140 isolates from predominant spa types t279, t1451, and t571 to examine possible transmission routes and identify genomic and epidemiologic features associated with the spread of dominant clones. We identified two major MSSA clones: sequence type 398 (ST398), common in the local community, and ST1898, not previously encountered in the region. ST398 NICU isolates formed distinct clusters with closely related community isolates from previously published data sets, suggesting multiple sources of acquisition, such as family members or staff, including residents of the local community. In contrast, ST1898 isolates were nearly identical, pointing to clonal expansion within the NICU. Almost all ST1898 isolates harbored plasmids encoding mupirocin resistance (mupA), suggesting an association between the proliferation of this clone and decolonization efforts with mupirocin. Comparative genomics indicated genotype-specific pathways of introduction and spread of MSSA via community-associated (ST398) or health care-associated (ST1898) sources and the potential role of mupirocin resistance in dissemination of ST1898. Future surveillance efforts could benefit from routine genotyping to inform clone-specific infection prevention strategies. IMPORTANCE Methicillin-susceptible Staphylococcus aureus (MSSA) is a significant pathogen in neonates. However, surveillance efforts in neonatal intensive care units (NICUs) have focused primarily on methicillin-resistant S. aureus (MRSA), limiting our understanding of colonizing and infectious MSSA clones which are prevalent in the NICU. Here, we identify two dominant colonizing MSSA clones during an 18-month surveillance effort in a level III to IV NICU, ST398 and ST1898. Using genomic surveillance and phylogenetic analysis, coupled with epidemiological investigation, we found that these two sequence types had distinct modes of spread, namely the suggested exchange with community reservoirs for ST398 and the contribution of antibiotic resistance to dissemination of ST1898 in the health care setting. This study highlights the additional benefits of whole-genome surveillance for colonizing pathogens, beyond routine species identification and genotyping, to inform targeted infection prevention strategies.
Collapse
Affiliation(s)
- Medini K. Annavajhala
- Department of Medicine, Division of Infectious Diseases, Columbia University Irving Medical Center, New York, New York, USA
| | - Nicole E. Kelly
- Department of Pediatrics, Columbia University Irving Medical Center, New York, New York, USA
| | - Wenjing Geng
- Neonatal Center, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| | - Samantha A. Ferguson
- Department of Medicine, Division of Infectious Diseases, Columbia University Irving Medical Center, New York, New York, USA
| | - Marla J. Giddins
- Department of Medicine, Division of Infectious Diseases, Columbia University Irving Medical Center, New York, New York, USA
| | - Emily C. Grohs
- Department of Pediatrics, Columbia University Irving Medical Center, New York, New York, USA
| | - Alexandra Hill-Ricciuti
- Department of Pediatrics, Columbia University Irving Medical Center, New York, New York, USA
| | - Daniel A. Green
- Clinical Microbiology Laboratory, Department of Pathology & Cell Biology, Columbia University Irving Medical Center, New York, New York, USA
| | - Lisa Saiman
- Department of Pediatrics, Columbia University Irving Medical Center, New York, New York, USA
- Department of Infection Prevention and Control, New York-Presbyterian Hospital, New York, New York, USA
| | - Anne-Catrin Uhlemann
- Department of Medicine, Division of Infectious Diseases, Columbia University Irving Medical Center, New York, New York, USA
| |
Collapse
|
27
|
Whole-Genome Sequencing-Based Species Classification, Multilocus Sequence Typing, and Antimicrobial Resistance Mechanism Analysis of the Enterobacter cloacae Complex in Southern China. Microbiol Spectr 2022; 10:e0216022. [PMID: 36350178 PMCID: PMC9769718 DOI: 10.1128/spectrum.02160-22] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Members of the Enterobacter cloacae complex (ECC) are important opportunistic nosocomial pathogens that are associated with a great variety of infections. Due to limited data on the genome-based classification of species and investigation of resistance mechanisms, in this work, we collected 172 clinical ECC isolates between 2019 and 2020 from three hospitals in Zhejiang, China and performed a retrospective whole-genome sequencing to analyze their population structure and drug resistance mechanisms. Of the 172 ECC isolates, 160 belonged to 9 classified species, and 12 belonged to unclassified species based on ANI analysis. Most isolates belonged to E. hormaechei (45.14%) followed by E. kobei (13.71%), which contained 126 STs, including 62 novel STs, as determined by multilocus sequence typing (MLST) analysis. Pan-genome analysis of the two ECC species showed that they have an "open" tendency, which indicated that their Pan-genome increased considerably with the addition of new genomes. A total of 80 resistance genes associated with 11 antimicrobial agent categories were identified in the genomes of all the isolates. The most prevailing resistance genes (12/29, 41.38%) were related to β-lactams followed by aminoglycosides. A total of 247 β-lactamase genes were identified, of which the blaACT genes were the most dominant (145/247, 58.70%), followed by the blaTEM genes (21/247, 8.50%). The inherent ACT type β-lactamase genes differed among different species. blaACT-2 and blaACT-3 were only present in E. asburiae, while blaACT-9, blaACT-12, and blaACT-6 exclusively appeared in E. kobei, E. ludwigii, and E. mori. Among the six carbapenemase-encoding genes (blaNDM-1, blaNDM-5, blaIMP-1, blaIMP-4, blaIMP-26, and blaKPC-2) identified, two (blaNDM-1 and blaIMP-1) were identified in an ST78 E. hormaechei isolate. Comparative genomic analysis of the carbapenemase gene-related sequences was performed, and the corresponding genetic structure of these resistance genes was analyzed. Genome-wide molecular characterization of the ECC population and resistance mechanism would offer valuable insights into the effective management of ECC infection in clinical settings. IMPORTANCE The presence and emergence of multiple species/subspecies of ECC have led to diversity and complications at the taxonomic level, which impedes our further understanding of the epidemiology and clinical significance of species/subspecies of ECC. Accurate identification of ECC species is extremely important. Also, it is of great importance to study the carbapenem-resistant genes in ECC and to further understand the mechanism of horizontal transfer of the resistance genes by analyzing the surrounding environment around the genes. The occurrence of ECC carrying two MBL genes also indicates that the selection pressure of bacteria is further increased, suggesting that we need to pay special attention to the emergence of such bacteria in the clinic.
Collapse
|
28
|
Knecht CA, García Allende N, Álvarez VE, Prack Mc Cormick B, Massó MG, Campos J, Fox B, Alonso FM, Donis N, Canigia LF, Quiroga MP, Centrón D. New sequence type of an Enterobacter cloacae complex strain with the potential to become a high-risk clone. J Glob Antimicrob Resist 2022; 31:162-164. [PMID: 36049730 DOI: 10.1016/j.jgar.2022.08.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/13/2022] [Accepted: 08/21/2022] [Indexed: 12/30/2022] Open
Abstract
OBJECTIVES Enterobacter cloacae complex (ECC) has awakened interest recently because of its increasing resistance to carbapenems codified by several genes all over the globe. Even though there are some sequence types (STs) which represent high-risk clones, there is substantial clonal diversity in the ECC. This work aimed to perform whole-genome sequencing (WGS), genomic analysis, and phylogenetic studies of a Klebsiella pneumoniae carbapenemase (KPC) -producing multidrug-resistant (MDR) ECC isolate from Argentina. METHODS We analysed the genome of an MDR KPC-producing ECC strain isolated from a urine sample from a patient in a hospital in Argentina. The WGS was done by Illumina MiSeq-I (Illumina, San Diego, CA). The genome was assembled with SPAdes 3.9.0, and annotated with PROKKA, RAST, and Blast. Plasmids were identified with PlasmidFinder. Antibiotic resistance genes were detected using RESfinder, CARD, and Blastn. STs were identified with pubMLST. RESULTS The strain was identified as Enterobacter hormaechei, an important emerging human pathogen. No ST could be assigned; six of seven alleles of multilocus sequence typing (MLST) were the same as for E. hormaechei ST66, which is a high-risk clone. We found multiple acquired antibiotic resistance genes, including blaKPC-2 in an IncM1 plasmid, and a secretion system VI, which can favour the prevalence of ECC strains while competing with other bacteria. CONCLUSION Because of its MLST profile being so close to that of E. hormaechei ST66, the acquisition of multiple resistance genes, and the presence of the secretion systems, the potential of this strain for becoming a new high-risk clone cannot be discarded.
Collapse
Affiliation(s)
- Camila A Knecht
- Research Laboratory on Antibiotic Resistance Mechanisms. Institute of Medical Microbiology and Parasitology, Faculty of Medicine, University of Buenos Aires-National Council for Scientific and Technological Research (IMPaM, UBA-CONICET), Buenos Aires, Argentina
| | | | - Verónica E Álvarez
- Research Laboratory on Antibiotic Resistance Mechanisms. Institute of Medical Microbiology and Parasitology, Faculty of Medicine, University of Buenos Aires-National Council for Scientific and Technological Research (IMPaM, UBA-CONICET), Buenos Aires, Argentina
| | - Bárbara Prack Mc Cormick
- Research Laboratory on Antibiotic Resistance Mechanisms. Institute of Medical Microbiology and Parasitology, Faculty of Medicine, University of Buenos Aires-National Council for Scientific and Technological Research (IMPaM, UBA-CONICET), Buenos Aires, Argentina; Faculty of Agricultural Sciences, National University of Lomas de Zamora, Argentina
| | - Mariana G Massó
- Research Laboratory on Antibiotic Resistance Mechanisms. Institute of Medical Microbiology and Parasitology, Faculty of Medicine, University of Buenos Aires-National Council for Scientific and Technological Research (IMPaM, UBA-CONICET), Buenos Aires, Argentina
| | - Josefina Campos
- Genomics and bioinformatics platform, INEI-ANLIS 'Dr. Carlos G. Malbran', Buenos Aires, Argentina
| | | | - Fernando Martín Alonso
- Research Laboratory on Antibiotic Resistance Mechanisms. Institute of Medical Microbiology and Parasitology, Faculty of Medicine, University of Buenos Aires-National Council for Scientific and Technological Research (IMPaM, UBA-CONICET), Buenos Aires, Argentina
| | - Nicolás Donis
- Research Laboratory on Antibiotic Resistance Mechanisms. Institute of Medical Microbiology and Parasitology, Faculty of Medicine, University of Buenos Aires-National Council for Scientific and Technological Research (IMPaM, UBA-CONICET), Buenos Aires, Argentina
| | | | - María Paula Quiroga
- Research Laboratory on Antibiotic Resistance Mechanisms. Institute of Medical Microbiology and Parasitology, Faculty of Medicine, University of Buenos Aires-National Council for Scientific and Technological Research (IMPaM, UBA-CONICET), Buenos Aires, Argentina
| | - Daniela Centrón
- Research Laboratory on Antibiotic Resistance Mechanisms. Institute of Medical Microbiology and Parasitology, Faculty of Medicine, University of Buenos Aires-National Council for Scientific and Technological Research (IMPaM, UBA-CONICET), Buenos Aires, Argentina
| |
Collapse
|
29
|
Knecht CA, García Allende N, Álvarez VE, Prack McCormick B, Massó MG, Piekar M, Campos J, Fox B, Camicia G, Gambino AS, Leguina ACDV, Donis N, Fernández-Canigia L, Quiroga MP, Centrón D. Novel insights related to the rise of KPC-producing Enterobacter cloacae complex strains within the nosocomial niche. Front Cell Infect Microbiol 2022; 12:951049. [DOI: 10.3389/fcimb.2022.951049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 09/29/2022] [Indexed: 11/13/2022] Open
Abstract
According to the World Health Organization, carbapenem-resistant Enterobacteriaceae (CRE) belong to the highest priority group for the development of new antibiotics. Argentina-WHONET data showed that Gram-negative resistance frequencies to imipenem have been increasing since 2010 mostly in two CRE bacteria: Klebsiella pneumoniae and Enterobacter cloacae Complex (ECC). This scenario is mirrored in our hospital. It is known that K. pneumoniae and the ECC coexist in the human body, but little is known about the outcome of these species producing KPC, and colonizing or infecting a patient. We aimed to contribute to the understanding of the rise of the ECC in Argentina, taking as a biological model both a patient colonized with two KPC-producing strains (one Enterobacter hormaechei and one K. pneumoniae) and in vitro competition assays with prevalent KPC-producing ECC (KPC-ECC) versus KPC-producing K. pneumoniae (KPC-Kp) high-risk clones from our institution. A KPC-producing E. hormaechei and later a KPC-Kp strain that colonized a patient shared an identical novel conjugative IncM1 plasmid harboring blaKPC-2. In addition, a total of 19 KPC-ECC and 58 KPC-Kp strains isolated from nosocomial infections revealed that high-risk clones KPC-ECC ST66 and ST78 as well as KPC-Kp ST11 and ST258 were prevalent and selected for competition assays. The competition assays with KCP-ECC ST45, ST66, and ST78 versus KPC-Kp ST11, ST18, and ST258 strains analyzed here showed no statistically significant difference. These assays evidenced that high-risk clones of KPC-ECC and KPC-Kp can coexist in the same hospital environment including the same patient, which explains from an ecological point of view that both species can exchange and share plasmids. These findings offer hints to explain the worldwide rise of KPC-ECC strains based on the ability of some pandemic clones to compete and occupy a certain niche. Taken together, the presence of the same new plasmid and the fitness results that showed that both strains can coexist within the same patient suggest that horizontal genetic transfer of blaKPC-2 within the patient cannot be ruled out. These findings highlight the constant interaction that these two species can keep in the hospital environment, which, in turn, can be related to the spread of KPC.
Collapse
|
30
|
Pot M, Reynaud Y, Couvin D, Dereeper A, Ferdinand S, Bastian S, Foucan T, Pommier JD, Valette M, Talarmin A, Guyomard-Rabenirina S, Breurec S. Emergence of a Novel Lineage and Wide Spread of a blaCTX-M-15/IncHI2/ST1 Plasmid among Nosocomial Enterobacter in Guadeloupe. Antibiotics (Basel) 2022; 11:1443. [PMID: 36290101 PMCID: PMC9598596 DOI: 10.3390/antibiotics11101443] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/10/2022] [Accepted: 10/17/2022] [Indexed: 04/04/2024] Open
Abstract
Between April 2018 and August 2019, a total of 135 strains of Enterobacter cloacae complex (ECC) were randomly collected at the University Hospital Center of Guadeloupe to investigate the structure and diversity of the local bacterial population. These nosocomial isolates were initially identified genetically by the hsp60 typing method, which revealed the clinical relevance of E. xiangfangensis (n = 69). Overall, 57/94 of the third cephalosporin-resistant strains were characterized as extended-spectrum-β-lactamase (ESBL) producers, and their whole-genome was sequenced using Illumina technology to determine the clonal relatedness and diffusion of resistance genes. We found limited genetic diversity among sequence types (STs). ST114 (n = 13), ST1503 (n = 9), ST53 (n = 5) and ST113 (n = 4), which belong to three different Enterobacter species, were the most prevalent among the 57 ESBL producers. The blaCTXM-15 gene was the most prevalent ESBL determinant (56/57) and was in most cases associated with IncHI2/ST1 plasmid replicon carriage (36/57). To fully characterize this predominant blaCTXM-15/IncHI2/ST1 plasmid, four isolates from different lineages were also sequenced using Oxford Nanopore sequencing technology to generate long-reads. Hybrid sequence analyses confirmed the circulation of a well-conserved plasmid among ECC members. In addition, the novel ST1503 and its associated species (ECC taxon 4) were analyzed, in view of its high prevalence in nosocomial infections. These genetic observations confirmed the overall incidence of nosocomial ESBL Enterobacteriaceae infections acquired in this hospital during the study period, which was clearly higher in Guadeloupe (1.59/1000 hospitalization days) than in mainland France (0.52/1,000 hospitalization days). This project revealed issues and future challenges for the management and surveillance of nosocomial and multidrug-resistant Enterobacter in the Caribbean.
Collapse
Affiliation(s)
- Matthieu Pot
- Transmission, Reservoir and Diversity of Pathogens Unit, Pasteur Institute of Guadeloupe, 97139 Les Abymes, France
| | - Yann Reynaud
- Transmission, Reservoir and Diversity of Pathogens Unit, Pasteur Institute of Guadeloupe, 97139 Les Abymes, France
| | - David Couvin
- Transmission, Reservoir and Diversity of Pathogens Unit, Pasteur Institute of Guadeloupe, 97139 Les Abymes, France
| | - Alexis Dereeper
- Transmission, Reservoir and Diversity of Pathogens Unit, Pasteur Institute of Guadeloupe, 97139 Les Abymes, France
| | - Séverine Ferdinand
- Transmission, Reservoir and Diversity of Pathogens Unit, Pasteur Institute of Guadeloupe, 97139 Les Abymes, France
| | - Sylvaine Bastian
- Laboratory of Clinical Microbiology, University Hospital Center of Guadeloupe, 97159 Pointe-à-Pitre, France
| | - Tania Foucan
- Operational Hygiene Team, University Hospital Center of Guadeloupe, 97159 Pointe-à-Pitre, France
| | - Jean-David Pommier
- Division of Intensive Care, University Hospital Center of Guadeloupe, 97159 Pointe-à-Pitre, France
| | - Marc Valette
- Division of Intensive Care, University Hospital Center of Guadeloupe, 97159 Pointe-à-Pitre, France
| | - Antoine Talarmin
- Transmission, Reservoir and Diversity of Pathogens Unit, Pasteur Institute of Guadeloupe, 97139 Les Abymes, France
| | | | - Sébastien Breurec
- Transmission, Reservoir and Diversity of Pathogens Unit, Pasteur Institute of Guadeloupe, 97139 Les Abymes, France
- Faculty of Medicine Hyacinthe Bastaraud, University of the Antilles, 97157 Pointe-à-Pitre, France
- INSERM, Center for Clinical Investigation 1424, 97139 Les Abymes, France
| |
Collapse
|
31
|
Liu Y, Zhu S, Wei L, Feng Y, Cai L, Dunn S, McNally A, Zong Z. Arm race among closely-related carbapenem-resistant Klebsiella pneumoniae clones. ISME COMMUNICATIONS 2022; 2:76. [PMID: 37938732 PMCID: PMC9723571 DOI: 10.1038/s43705-022-00163-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 08/03/2022] [Accepted: 08/10/2022] [Indexed: 11/09/2023]
Abstract
Multiple carbapenem-resistant Klebsiella pneumoniae (CRKP) clones typically co-exist in hospital wards, but often certain clones will dominate. The factors driving this dominance are largely unclear. This study began from a genomic epidemiology analysis and followed by multiple approaches to identify the potential mechanisms driving the successful spread of a dominant clone. 638 patients in a 50-bed ICU were screened. 171 (26.8%) and 21 had CRKP from swabs and clinical specimens, respectively. Many (39.8% of those with ≥7-day ICU stay) acquired CRKP. After removing 18 unable to recover, 174 CRKP isolates were genome sequenced and belonged to six sequence types, with ST11 being the most prevalent (n = 154, 88.5%) and most (n = 169, 97.1%) carrying blaKPC-2. The 154 ST11 isolates belonged to 7 clones, with one (clone 1, KL64 capsular type) being dominant (n = 130, 84.4%). Clone 1 and the second-most common clone (clone 2, KL64, n = 15, 9.7%) emerged simultaneously, which was also detected by genome-based dating. Clone 1 exhibited decreased biofilm formation, shorter environment survival, and attenuated virulence. In murine gut, clone 1 outcompeted clone 2. Transcriptomic analysis showed significant upregulation of the ethanolamine operon in clone 1 when competing with clone 2. Clone 1 exhibited increased utilization of ethanolamine as a nitrogen source. This highlights that reduced virulence and enhanced ability to utilize ethanolamine may promote the success of nosocomial multidrug-resistant clones.
Collapse
Affiliation(s)
- Ying Liu
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
- Center for Pathogen Research, West China Hospital, Sichuan University, Chengdu, China
| | - Shichao Zhu
- Department of Infection Control, West China Hospital, Sichuan University, Chengdu, China
| | - Li Wei
- Department of Infection Control, West China Hospital, Sichuan University, Chengdu, China
| | - Yu Feng
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
- Center for Pathogen Research, West China Hospital, Sichuan University, Chengdu, China
| | - Lin Cai
- Intensive Care Unit, West China Hospital, Sichuan University, Chengdu, China
| | - Steven Dunn
- Institute of Microbiology and Infection, College of Medical and Dental Science, University of Birmingham, Birmingham, UK
| | - Alan McNally
- Institute of Microbiology and Infection, College of Medical and Dental Science, University of Birmingham, Birmingham, UK
| | - Zhiyong Zong
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China.
- Center for Pathogen Research, West China Hospital, Sichuan University, Chengdu, China.
- Department of Infection Control, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
32
|
Hara Y, Iguchi M, Tetsuka N, Morioka H, Hirabayashi A, Suzuki M, Tomita Y, Oka K, Yagi T. <Editors' Choice> Multicenter survey for carbapenemase-producing Enterobacterales in central Japan. NAGOYA JOURNAL OF MEDICAL SCIENCE 2022; 84:630-639. [PMID: 36237878 PMCID: PMC9529634 DOI: 10.18999/nagjms.84.3.630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 12/02/2021] [Indexed: 11/20/2022]
Abstract
Carbapenemase-producing Enterobacterales (CPE) raise concerns about the treatment options for infectious diseases and infection control. We conducted a multicenter study to clarify the molecular epidemiology of CPE in the Aichi Prefecture during the first 3-month period from 2015 to 2019. Carbapenemase production was screened using a modified carbapenem inactivation method, and the genotypes of the carbapenemase genes were determined by polymerase chain reaction sequencing. Genetic relatedness was analyzed using multilocus sequence typing (MLST). Twenty-four hospitals participated in this study. Of the 56,494 Enterobacterales strains detected during the study period, 341 (0.6%) that met the susceptibility criteria were analyzed. Sixty-five of the 341 strains were determined to be CPE, with an incidence rate of 0.12% (65/56,494). The bacterial species responsible for CPE were Klebsiella pneumoniae (n = 24), Enterobacter cloacae complex (n = 23), Klebsiella oxytoca (n = 10), and Escherichia coli (n = 8). Most of the carbapenemase genotypes were IMP-1 (58/65), and only three were IMP-6 types. Three E. coli strains that produced NDM-5 were detected. MLST analysis showed that Sequence type (ST) 78 was predominant in E. cloacae complex CPE (14/23, 60.9%). Meanwhile, various STs were detected in carbapenemase-producing (CP) K. pneumoniae, of which ST37 and ST517 were the most common. The incidence rate of CPE in this region was comparable to national data. This 3-month surveillance revealed the spread of ST78 of CP E. cloacae complex and ST517 and ST592 of CP K. pneumoniae across hospitals, indicating the need to strengthen regional infection control programs.
Collapse
Affiliation(s)
- Yuki Hara
- Department of Infectious Diseases, Nagoya University Graduate School of Medicine, Nagoya, Japan
,Department of Clinical Laboratory, Japanese Red Cross Aichi Medical Center Nagoya Daini Hospital, Nagoya, Japan
| | - Mitsutaka Iguchi
- Department of Infectious diseases, Nagoya University Hospital, Nagoya, Japan
| | - Nobuyuki Tetsuka
- Department of Infection control, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Hiroshi Morioka
- Department of Infectious diseases, Nagoya University Hospital, Nagoya, Japan
| | - Aki Hirabayashi
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Masato Suzuki
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yuka Tomita
- Department of Infection control, Japanese Red Cross Aichi Medical Center Nagoya Daini Hospital, Nagoya, Japan
| | - Keisuke Oka
- Department of Infectious diseases, Nagoya University Hospital, Nagoya, Japan
| | - Tetsuya Yagi
- Department of Infectious Diseases, Nagoya University Graduate School of Medicine, Nagoya, Japan
,Department of Infectious diseases, Nagoya University Hospital, Nagoya, Japan
| |
Collapse
|
33
|
Gomez-Simmonds A, Annavajhala MK, Tang N, Rozenberg FD, Ahmad M, Park H, Lopatkin AJ, Uhlemann AC. Population structure of blaKPC-harbouring IncN plasmids at a New York City medical centre and evidence for multi-species horizontal transmission. J Antimicrob Chemother 2022; 77:1873-1882. [PMID: 35412609 PMCID: PMC9633718 DOI: 10.1093/jac/dkac114] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 03/14/2022] [Indexed: 06/10/2024] Open
Abstract
BACKGROUND Carbapenem-resistant Enterobacterales (CRE) are highly concerning MDR pathogens. Horizontal transfer of broad-host-range IncN plasmids may contribute to the dissemination of the Klebsiella pneumoniae carbapenemase (KPC), spreading carbapenem resistance among unrelated bacteria. However, the population structure and genetic diversity of IncN plasmids has not been fully elucidated. OBJECTIVES We reconstructed blaKPC-harbouring IncN plasmid genomes to characterize shared gene content, structural variability, and putative horizontal transfer within and across patients and diverse bacterial clones. METHODS We performed short- and long-read sequencing and hybrid assembly on 45 CRE isolates with blaKPC-harbouring IncN plasmids. Eight serial isolates from two patients were included to assess intra-patient plasmid dynamics. Comparative genomic analysis was performed to assess structural and sequence similarity across plasmids. Within IncN sublineages defined by plasmid MLST and kmer-based clustering, phylogenetic analysis was used to identify closely related plasmids. RESULTS Comparative analysis of IncN plasmid genomes revealed substantial heterogeneity including large rearrangements in serial patient plasmids and differences in structure and content across plasmid clusters. Within plasmid sublineages, core genome content and resistance gene regions were largely conserved. Closely related plasmids (≤1 SNP) were found in highly diverse isolates, including ten pST6 plasmids found in eight bacterial clones from three different species. CONCLUSIONS Genomic analysis of blaKPC-harbouring IncN plasmids revealed the presence of several distinct sublineages as well as substantial host diversity within plasmid clusters suggestive of frequent mobilization. This study reveals complex plasmid dynamics within a single plasmid family, highlighting the challenge of tracking plasmid-mediated transmission of blaKPC in clinical settings.
Collapse
Affiliation(s)
- Angela Gomez-Simmonds
- Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, 630 W 168th St, New York NY 10032, USA
| | - Medini K Annavajhala
- Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, 630 W 168th St, New York NY 10032, USA
| | - Nina Tang
- Barnard College, Columbia University, 3009 Broadway, New York NY 10027, USA
| | - Felix D Rozenberg
- Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, 630 W 168th St, New York NY 10032, USA
| | - Mehrose Ahmad
- Barnard College, Columbia University, 3009 Broadway, New York NY 10027, USA
| | - Heekuk Park
- Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, 630 W 168th St, New York NY 10032, USA
| | - Allison J Lopatkin
- Barnard College, Columbia University, 3009 Broadway, New York NY 10027, USA
- Data Science Institute, Columbia University, 550 W 120th St, New York NY 10027, USA
| | - Anne Catrin Uhlemann
- Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, 630 W 168th St, New York NY 10032, USA
| |
Collapse
|
34
|
Karlsson M, Lutgring JD, Ansari U, Lawsin A, Albrecht V, McAllister G, Daniels J, Lonsway D, McKay S, Beldavs Z, Bower C, Dumyati G, Gross A, Jacob J, Janelle S, Kainer MA, Lynfield R, Phipps EC, Schutz K, Wilson L, Witwer ML, Bulens SN, Walters MS, Duffy N, Kallen AJ, Elkins CA, Rasheed JK. Molecular Characterization of Carbapenem-Resistant Enterobacterales Collected in the United States. Microb Drug Resist 2022; 28:389-397. [PMID: 35172110 DOI: 10.1089/mdr.2021.0106] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Carbapenem-resistant Enterobacterales (CRE) are a growing public health concern due to resistance to multiple antibiotics and potential to cause health care-associated infections with high mortality. Carbapenemase-producing CRE are of particular concern given that carbapenemase-encoding genes often are located on mobile genetic elements that may spread between different organisms and species. In this study, we performed phenotypic and genotypic characterization of CRE collected at eight U.S. sites participating in active population- and laboratory-based surveillance of carbapenem-resistant organisms. Among 421 CRE tested, the majority were isolated from urine (n = 349, 83%). Klebsiella pneumoniae was the most common organism (n = 265, 63%), followed by Enterobacter cloacae complex (n = 77, 18%) and Escherichia coli (n = 50, 12%). Of 419 isolates analyzed by whole genome sequencing, 307 (73%) harbored a carbapenemase gene; variants of blaKPC predominated (n = 299, 97%). The occurrence of carbapenemase-producing K. pneumoniae, E. cloacae complex, and E. coli varied by region; the predominant sequence type within each genus was ST258, ST171, and ST131, respectively. None of the carbapenemase-producing CRE isolates displayed resistance to all antimicrobials tested; susceptibility to amikacin and tigecycline was generally retained.
Collapse
Affiliation(s)
- Maria Karlsson
- Division of Healthcare Quality Promotion, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Joseph D Lutgring
- Division of Healthcare Quality Promotion, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Uzma Ansari
- Division of Healthcare Quality Promotion, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Adrian Lawsin
- Division of Healthcare Quality Promotion, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Valerie Albrecht
- Division of Healthcare Quality Promotion, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Gillian McAllister
- Division of Healthcare Quality Promotion, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Jonathan Daniels
- Division of Healthcare Quality Promotion, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - David Lonsway
- Division of Healthcare Quality Promotion, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Susannah McKay
- Division of Healthcare Quality Promotion, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | | | - Chris Bower
- Georgia Emerging Infections Program, Atlanta, Georgia, USA
| | - Ghinwa Dumyati
- New York Emerging Infections Program at the University of Rochester Medical Center, Rochester, New York, USA
| | | | - Jesse Jacob
- Georgia Emerging Infections Program, Atlanta, Georgia, USA.,Emory University School of Medicine, Atlanta, Georgia, USA
| | - Sarah Janelle
- Colorado Department of Public Health and Environment, Denver, Colorado, USA
| | - Marion A Kainer
- Tennessee Department of Public Health, Nashville, Tennessee, USA
| | - Ruth Lynfield
- Minnesota Department of Health, St. Paul, Minnesota, USA
| | - Erin C Phipps
- New Mexico Emerging Infections Program, Santa Fe, New Mexico, USA
| | - Kyle Schutz
- Colorado Department of Public Health and Environment, Denver, Colorado, USA
| | - Lucy Wilson
- Maryland Department of Health, Baltimore, Maryland, USA
| | | | - Sandra N Bulens
- Division of Healthcare Quality Promotion, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Maroya Spalding Walters
- Division of Healthcare Quality Promotion, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Nadezhda Duffy
- Division of Healthcare Quality Promotion, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Alexander J Kallen
- Division of Healthcare Quality Promotion, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Christopher A Elkins
- Division of Healthcare Quality Promotion, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - J Kamile Rasheed
- Division of Healthcare Quality Promotion, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| |
Collapse
|
35
|
Cardoso B, Sellera FP, Sano E, Esposito F, Seabra LA, Azedo MR, Pogliani FC, Lincopan N. Phylogenomic analysis of CTX-M-15-producing Enterobacter hormaechei belonging to the high-risk ST78 from animal infection: Another successful One Health clone? J Glob Antimicrob Resist 2022; 29:113-115. [DOI: 10.1016/j.jgar.2022.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/04/2022] [Accepted: 02/12/2022] [Indexed: 11/25/2022] Open
|
36
|
Bolourchi N, Giske CG, Nematzadeh S, Mirzaie A, Abhari SS, Solgi H, Badmasti F. Comparative resistome and virulome analysis of clinical NDM-1 producing carbapenem-resistant Enterobacter cloacae complex. J Glob Antimicrob Resist 2022; 28:254-263. [PMID: 35121164 DOI: 10.1016/j.jgar.2022.01.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/15/2022] [Accepted: 01/22/2022] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVES Enterobacter cloacae complex (ECC), are causatives of hospital-acquired infections (HAI). The antimicrobial resistance (AMR) and virulence and profiling of ECC promotes our knowledge to be further implemented for their elimination in clinical settings. METHOD We assembled the whole genome of four clinical Carbapenem-resistant ECC (CR-ECC) and characterized their AMR and virulence profiles using whole genome sequencing (WGS). RESULTS The chromosome length of scaled from minimum 3,949,952 bp (for P2) to maximum 4,976,575 bp (for P3). P1 and P2 belonged to ST182. P3 and P4 belonged to ST477 and ST134, respectively. The blaCTX-M-15 gene was detected in P1 plamsid. P1 and P4 harbored the blaTEM-1 and blaOXA-1 genes. blaNDM-1 was found in P1, P3 and P4. No blaOXA-48, blaKPC, blaVIM and blaIMP were identified. The plasmids were non-transferrable and had IncFIB, IncFII, Col and IncC incompatibility groups (Inc). Class 1 integron was deteceted in all strains. Genes related to biofilms, adhesins, siderophores (aerobactin, enterobactin and salmochelin), intrinsic antimicrobial efflux pumps, secretory systems type I to VI, environmental and antibiotic stress response regulators, outer membrane proteins (OMPs) and heavy metals (copper, tellurite, arsenic and zinc) resistance were found in the strains. The number of positive virulence factors was higher for P1 to that of other strains. CONCLUSION The accumulation of AMR genes in Enterobacter spp. and their high endurance in hostile environments is a serious health problem. More genomic investigations are required in to determine their AMR and virulence genetic reservoirs at the global level.
Collapse
Affiliation(s)
- Negin Bolourchi
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran
| | - Christian G Giske
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institute and Karolinska University Hospital, Stockholm, Sweden
| | - Shoeib Nematzadeh
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institute and Karolinska University Hospital, Stockholm, Sweden
| | - Amir Mirzaie
- Department of Biology, Parand Branch, Islamic Azad University, Parand, Iran
| | | | - Hamid Solgi
- Department of Laboratory Medicine, Amin Hospital, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Farzad Badmasti
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran; Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
37
|
Mullié C, Lemonnier D, Adjidé CC, Maizel J, Mismacque G, Cappe A, Carles T, Pierson-Marchandise M, Zerbib Y. Nosocomial outbreak of monoclonal VIM carbapenemase-producing Enterobacter cloacae complex in an intensive care unit during the COVID-19 pandemic: an integrated approach. J Hosp Infect 2021; 120:48-56. [PMID: 34861315 PMCID: PMC8631059 DOI: 10.1016/j.jhin.2021.11.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 11/24/2021] [Accepted: 11/24/2021] [Indexed: 01/18/2023]
Abstract
Background An outbreak of VIM carbapenemase-expressing Enterobacter cloacae complex occurred between March and October 2020 in an intensive care unit (ICU) of a tertiary care and teaching hospital in France. At the same time, the hospital was facing the COVID-19 first wave. Aim To describe the management of an outbreak caused by a VIM-producing Enterobacter cloacae complex strain during the COVID-19 pandemic in an ICU and to show the importance of an integrated approach. Methods A multi-focal investigation was conducted including descriptive and molecular epidemiology, environmental screening, and assessment of infection prevention and control measures. Findings A total of 14 cases were identified in this outbreak with a high attributable mortality rate (85.7%). The outbreak management was coordinated by a crisis cell, and involved the implementation of multi-disciplinary actions such as: enhanced hygiene measures, microbiological and molecular analysis of patients and environmental E. cloacae complex strains, and simulation-based teaching. All 23 E. cloacae complex strains isolated from patients and environment samples belonged to multi-locus sequence type ST78 and carried bla-VIM4 gene. Using Fourier transform infrared spectroscopy, all but two isolates were also found to belong to a single cluster. Although the source of this outbreak could not be pinpointed, the spread of the strain was controlled thanks to this multi-focal approach and multi-disciplinary implementation. Conclusion This investigation highlighted the usefulness of Fourier transform infra-red spectroscopy in the rapid typing of outbreak strains as well as the importance of an integrated approach to successfully fight against multidrug-resistant micro-organism dissemination and healthcare-associated infections.
Collapse
Affiliation(s)
- C Mullié
- Laboratoire Hygiène Risque Biologique & Environnement, CHU Amiens Picardie, Amiens, France; Laboratoire AGIR UR UPJV 4294, Université de Picardie Jules Verne, Amiens, France.
| | - D Lemonnier
- Unité d'Hygiène et d'Epidémiologie Hospitalière, CHU Amiens Picardie, Amiens, France.
| | - C C Adjidé
- Laboratoire Hygiène Risque Biologique & Environnement, CHU Amiens Picardie, Amiens, France
| | - J Maizel
- Service de Médecine Intensive et Réanimation, CHU Amiens Picardie, Amiens, France
| | - G Mismacque
- Unité d'Hygiène et d'Epidémiologie Hospitalière, CHU Amiens Picardie, Amiens, France
| | - A Cappe
- Département de Pharmacie Clinique, CHU Amiens Picardie, Amiens, France
| | - T Carles
- Département de Pharmacie Clinique, CHU Amiens Picardie, Amiens, France
| | - M Pierson-Marchandise
- Service Prévention, Evaluations, Vigilances et Amélioration des Pratiques, CHU Amiens Picardie, Amiens, France
| | - Y Zerbib
- Service de Médecine Intensive et Réanimation, CHU Amiens Picardie, Amiens, France
| |
Collapse
|
38
|
Umar A, Haque A, Alghamdi YS, Mashraqi MM, Rehman A, Shahid F, Khurshid M, Ashfaq UA. Development of a Candidate Multi-Epitope Subunit Vaccine against Klebsiella aerogenes: Subtractive Proteomics and Immuno-Informatics Approach. Vaccines (Basel) 2021; 9:vaccines9111373. [PMID: 34835304 PMCID: PMC8624419 DOI: 10.3390/vaccines9111373] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 11/03/2021] [Accepted: 11/11/2021] [Indexed: 12/17/2022] Open
Abstract
Klebsiella aerogenes is a Gram-negative bacterium which has gained considerable importance in recent years. It is involved in 10% of nosocomial and community-acquired urinary tract infections and 12% of hospital-acquired pneumonia. This organism has an intrinsic ability to produce inducible chromosomal AmpC beta-lactamases, which confer high resistance. The drug resistance in K. aerogenes has been reported in China, Israel, Poland, Italy and the United States, with a high mortality rate (~50%). This study aims to combine immunological approaches with molecular docking approaches for three highly antigenic proteins to design vaccines against K. aerogenes. The synthesis of the B-cell, T-cell (CTL and HTL) and IFN-γ epitopes of the targeted proteins was performed and most conserved epitopes were chosen for future research studies. The vaccine was predicted by connecting the respective epitopes, i.e., B cells, CTL and HTL with KK, AAY and GPGPG linkers and all these were connected with N-terminal adjuvants with EAAAK linker. The humoral response of the constructed vaccine was measured through IFN-γ and B-cell epitopes. Before being used as vaccine candidate, all identified B-cell, HTL and CTL epitopes were tested for antigenicity, allergenicity and toxicity to check the safety profiles of our vaccine. To find out the compatibility of constructed vaccine with receptors, MHC-I, followed by MHC-II and TLR4 receptors, was docked with the vaccine. Lastly, in order to precisely certify the proper expression and integrity of our construct, in silico cloning was carried out. Further studies are needed to confirm the safety features and immunogenicity of the vaccine.
Collapse
Affiliation(s)
- Ahitsham Umar
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad 38000, Pakistan; (A.U.); (A.H.); (A.R.); (F.S.)
| | - Asma Haque
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad 38000, Pakistan; (A.U.); (A.H.); (A.R.); (F.S.)
| | - Youssef Saeed Alghamdi
- Department of Biology, Turabah University College, Taif University, Taif 21944, Saudi Arabia;
| | - Mutaib M Mashraqi
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, Najran University, Najran 61441, Saudi Arabia;
| | - Abdur Rehman
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad 38000, Pakistan; (A.U.); (A.H.); (A.R.); (F.S.)
| | - Farah Shahid
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad 38000, Pakistan; (A.U.); (A.H.); (A.R.); (F.S.)
| | - Mohsin Khurshid
- Department of Microbiology, Government College University Faisalabad, Faisalabad 38000, Pakistan;
| | - Usman Ali Ashfaq
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad 38000, Pakistan; (A.U.); (A.H.); (A.R.); (F.S.)
- Correspondence:
| |
Collapse
|
39
|
Barnsteiner S, Baty F, Albrich WC, Babouee Flury B, Gasser M, Plüss-Suard C, Schlegel M, Kronenberg A, Kohler P. Antimicrobial resistance and antibiotic consumption in intensive care units, Switzerland, 2009 to 2018. EURO SURVEILLANCE : BULLETIN EUROPEEN SUR LES MALADIES TRANSMISSIBLES = EUROPEAN COMMUNICABLE DISEASE BULLETIN 2021; 26. [PMID: 34794535 PMCID: PMC8603405 DOI: 10.2807/1560-7917.es.2021.26.46.2001537] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Background Intensive care units (ICU) constitute a high-risk setting for antimicrobial resistance (AMR). Aim We aimed to describe secular AMR trends including meticillin-resistant Staphylococcus aureus (MRSA), glycopeptide-resistant enterococci (GRE), extended-spectrum cephalosporin-resistant Escherichia coli (ESCR-EC) and Klebsiella pneumoniae (ESCR-KP), carbapenem-resistant Enterobacterales (CRE) and Pseudomonas aeruginosa (CRPA) from Swiss ICU. We assessed time trends of antibiotic consumption and identified factors associated with CRE and CRPA. Methods We analysed patient isolate and antibiotic consumption data of Swiss ICU sent to the Swiss Centre for Antibiotic Resistance (2009–2018). Time trends were assessed using linear logistic regression; a mixed-effects logistic regression was used to identify factors associated with CRE and CRPA. Results Among 52 ICU, MRSA decreased from 14% to 6% (p = 0.005; n = 6,465); GRE increased from 1% to 3% (p = 0.011; n = 4,776). ESCR-EC and ESCR-KP increased from 7% to 15% (p < 0.001, n = 10,648) and 5% to 11% (p = 0.002; n = 4,052), respectively. CRE, mostly Enterobacter spp., increased from 1% to 5% (p = 0.008; n = 17,987); CRPA remained stable at 27% (p = 0.759; n = 4,185). Antibiotic consumption in 58 ICU increased from 2009 to 2013 (82.5 to 97.4 defined daily doses (DDD)/100 bed-days) and declined until 2018 (78.3 DDD/100 bed-days). Total institutional antibiotic consumption was associated with detection of CRE in multivariable analysis (odds ratio per DDD: 1.01; 95% confidence interval: 1.0–1.02; p = 0.004). Discussion In Swiss ICU, antibiotic-resistant Enterobacterales have been steadily increasing over the last decade. The emergence of CRE, associated with institutional antibiotic consumption, is of particular concern and calls for reinforced surveillance and antibiotic stewardship in this setting.
Collapse
Affiliation(s)
- Stefanie Barnsteiner
- Division of Infectious Diseases and Hospital Epidemiology, Cantonal Hospital St. Gallen, St. Gallen, Switzerland
| | - Florent Baty
- Lung Center, Cantonal Hospital St. Gallen, St. Gallen, Switzerland
| | - Werner C Albrich
- Division of Infectious Diseases and Hospital Epidemiology, Cantonal Hospital St. Gallen, St. Gallen, Switzerland
| | - Baharak Babouee Flury
- Division of Infectious Diseases and Hospital Epidemiology, Cantonal Hospital St. Gallen, St. Gallen, Switzerland.,Medical Research Center, Cantonal Hospital St. Gallen, St. Gallen, Switzerland
| | - Michael Gasser
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | | | - Matthias Schlegel
- Division of Infectious Diseases and Hospital Epidemiology, Cantonal Hospital St. Gallen, St. Gallen, Switzerland
| | - Andreas Kronenberg
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Philipp Kohler
- Division of Infectious Diseases and Hospital Epidemiology, Cantonal Hospital St. Gallen, St. Gallen, Switzerland
| | -
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| |
Collapse
|
40
|
Binsker U, Käsbohrer A, Hammerl JA. Global colistin use: A review of the emergence of resistant Enterobacterales and the impact on their genetic basis. FEMS Microbiol Rev 2021; 46:6382128. [PMID: 34612488 PMCID: PMC8829026 DOI: 10.1093/femsre/fuab049] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 10/04/2021] [Indexed: 02/06/2023] Open
Abstract
The dramatic global rise of MDR and XDR Enterobacterales in human medicine forced clinicians to the reintroduction of colistin as last-resort drug. Meanwhile, colistin is used in the veterinary medicine since its discovery, leading to a steadily increasing prevalence of resistant isolates in the livestock and meat-based food sector. Consequently, transmission of resistant isolates from animals to humans, acquisition via food and exposure to colistin in the clinic are reasons for the increased prevalence of colistin-resistant Enterobacterales in humans in the last decades. Initially, resistance mechanisms were caused by mutations in chromosomal genes. However, since the discovery in 2015, the focus has shifted exclusively to mobile colistin resistances (mcr). This review will advance the understanding of chromosomal-mediated resistance mechanisms in Enterobacterales. We provide an overview about genes involved in colistin resistance and the current global situation of colistin-resistant Enterobacterales. A comparison of the global colistin use in veterinary and human medicine highlights the effort to reduce colistin sales in veterinary medicine under the One Health approach. In contrast, it uncovers the alarming rise in colistin consumption in human medicine due to the emergence of MDR Enterobacterales, which might be an important driver for the increasing emergence of chromosome-mediated colistin resistance.
Collapse
Affiliation(s)
- Ulrike Binsker
- Department Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Annemarie Käsbohrer
- Department Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany.,Department for Farm Animals and Veterinary Public Health, Institute of Veterinary Public Health, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Jens A Hammerl
- Department Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| |
Collapse
|
41
|
Intrathymic differentiation of natural antibody-producing plasma cells in human neonates. Nat Commun 2021; 12:5761. [PMID: 34599177 PMCID: PMC8486820 DOI: 10.1038/s41467-021-26069-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 09/14/2021] [Indexed: 02/08/2023] Open
Abstract
The thymus is a central lymphoid organ primarily responsible for the development of T cells. A small proportion of B cells, however, also reside in the thymus to assist negative selection of self-reactive T cells. Here we show that the thymus of human neonates contains a consistent contingent of CD138+ plasma cells, producing all classes and subclasses of immunoglobulins with the exception of IgD. These antibody-secreting cells are part of a larger subset of B cells that share the expression of signature genes defining mouse B1 cells, yet lack the expression of complement receptors CD21 and CD35. Data from single-cell transcriptomic, clonal correspondence and in vitro differentiation assays support the notion of intrathymic CD138+ plasma cell differentiation, alongside other B cell subsets with distinctive molecular phenotypes. Lastly, neonatal thymic plasma cells also include clones reactive to commensal and pathogenic bacteria that commonly infect children born with antibody deficiency. Thus, our findings point to the thymus as a source of innate humoral immunity in human neonates.
Collapse
|
42
|
Rossolini GM, Bochenska M, Fumagalli L, Dowzicky M. Trends of major antimicrobial resistance phenotypes in enterobacterales and gram-negative non-fermenters from ATLAS and EARS-net surveillance systems: Italian vs. European and global data, 2008-2018. Diagn Microbiol Infect Dis 2021; 101:115512. [PMID: 34419741 DOI: 10.1016/j.diagmicrobio.2021.115512] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 07/13/2021] [Accepted: 07/23/2021] [Indexed: 10/20/2022]
Abstract
Antimicrobial resistance (AMR) is a growing health concern over the recent years. High AMR levels have been reported in Italy among European countries. Here, we analyze longitudinally the AMR trends observed in Italy for Escherichia coli, Klebsiella pneumoniae, Acinetobacter baumannii, Enterobacter cloacae and Pseudomonas aeruginosa from the Antimicrobial Testing Leadership and Surveillance database, in comparison with data from the European Antimicrobial Resistance Surveillance Network (2008-2018). We also compare these longitudinal data from Italy with those from Europe and globally. Data analysis revealed highest resistance rates for carbapenems and difficult-to-treat resistance in A. baumannii (82.4% and 83.6%, respectively) followed by third-generation cephalosporin-resistant K. pneumoniae in Italy (≥50%). Resistance rates in Italy were higher compared to Europe and globally, as observed in both Antimicrobial Testing Leadership and Surveillance and European Antimicrobial Resistance Surveillance Network. These findings further substantiate the high AMR rates in Italy and aim to support informed decision making at a national level.
Collapse
Affiliation(s)
- Gian Maria Rossolini
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy; Clinical Microbiology and Virology Unit, Florence Careggi University Hospital, Florence, Italy.
| | | | | | | |
Collapse
|
43
|
Stokes W, Peirano G, Matsumara Y, Nobrega D, Pitout JDD. Population-based surveillance of Enterobacter cloacae complex causing blood stream infections in a centralized Canadian region. Eur J Clin Microbiol Infect Dis 2021; 41:119-125. [PMID: 34258687 DOI: 10.1007/s10096-021-04309-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 07/08/2021] [Indexed: 11/30/2022]
Abstract
Active population-based surveillance determined clinical factors, susceptibility patterns, incidence rates (IR), and genomics among Enterobacter cloacae complex (n = 154) causing blood stream infections in a centralized Canadian region (2015-2017). The annual population IR was 1.2/100,000 (95% CI 0.9-16) in 2015, 1.4/100,000 (95% CI 1.1-1.9) in 2016, and 1.5/100,000 (95% CI 1.2-2.0) in 2017, affecting mainly elderly males with underlying comorbid conditions in the hospital setting. E. cloacae complex was dominated by polyclonal subspecies (i.e., E. hormaechei subsp. steigerwaltii, subsp. hoffmanni and subsp. xiangfangesis). Antimicrobial resistant determinants were rare. This study provided novel information about Enterobacter genomics in a well-defined human population.
Collapse
Affiliation(s)
- William Stokes
- Alberta Precision Laboratories, Calgary, Alberta, Canada.,Cummings School of Medicine, University of Calgary, #9, 3535 Research Road NW, Calgary, Alberta, T2L 2K8, Canada.,Department of Pathology and Laboratory Medicine, University of Alberta, Edmonton, Alberta, Canada.,Division of Infectious Diseases, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Gisele Peirano
- Alberta Precision Laboratories, Calgary, Alberta, Canada.,Cummings School of Medicine, University of Calgary, #9, 3535 Research Road NW, Calgary, Alberta, T2L 2K8, Canada
| | | | | | - Johann D D Pitout
- Alberta Precision Laboratories, Calgary, Alberta, Canada. .,Cummings School of Medicine, University of Calgary, #9, 3535 Research Road NW, Calgary, Alberta, T2L 2K8, Canada. .,University of Pretoria, Pretoria, Gauteng, South Africa.
| |
Collapse
|
44
|
Chen J, Tian S, Nian H, Wang R, Li F, Jiang N, Chu Y. Carbapenem-resistant Enterobacter cloacae complex in a tertiary Hospital in Northeast China, 2010-2019. BMC Infect Dis 2021; 21:611. [PMID: 34174823 PMCID: PMC8235818 DOI: 10.1186/s12879-021-06250-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 05/27/2021] [Indexed: 12/03/2022] Open
Abstract
Background Carbapenem-resistant Enterobacter cloacae complex (CREC) is a new emerging threat to global public health. The objective of the study was to investigate the clinical characteristics and molecular epidemiology of CREC infections in the medical center of northeast China. Methods Twenty-nine patients were infected/colonized with CREC during a ten-year period (2010–2019) by WHONET analysis. Antibiotic susceptibilities were tested with VITEK 2 and micro broth dilution method (for polymyxin B and tigecycline). Carbapenemase encoding genes, β-lactamase genes, and seven housekeeping genes for MLST were amplified and sequenced for 18 cryopreserved CREC isolates. Maximum likelihood phylogenetic tree was built with the concentrated sequences to show the relatedness between the 18 isolates. Results There was a rapid increase in CREC detection rate during the ten-year period, reaching 8.11% in 2018 and 6.48% in 2019. The resistance rate of CREC isolates to imipenem and meropenem were 100.0 and 77.8%, however, they showed high sensitivity to tigecycline, polymyxin B and amikacin. The 30-day crude mortality of CREC infection was 17.4%, indicating that it may be a low-virulence bacterium. Furthermore, molecular epidemiology revealed that ST93 was the predominant sequence type followed by ST171 and ST145, with NDM-1 and NDM-5 as the main carbapenemase-encoding genes. Moreover, E. hormaechei subsp. steigerwaltii and E. hormaechei subsp. oharae were the main species, which showed different resistance patterns. Conclusion Rising detection rate of CREC was observed in a tertiary hospital, which showed heterogeneity in drug resistance patterns, resistance genes, and MLST types. Effective infection prevention and control measures should be taken to reduce the spread of CREC. Supplementary Information The online version contains supplementary material available at 10.1186/s12879-021-06250-0.
Collapse
Affiliation(s)
- Jingjing Chen
- Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, 155 North Nanjing Street, Heping District, Shenyang, 110001, Liaoning, China.,National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China.,Labortory Medicine Innovation Unit, Chinese Academy of Medical Sciences, Shenyang, China
| | - Sufei Tian
- Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, 155 North Nanjing Street, Heping District, Shenyang, 110001, Liaoning, China.,National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China.,Labortory Medicine Innovation Unit, Chinese Academy of Medical Sciences, Shenyang, China
| | - Hua Nian
- Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, 155 North Nanjing Street, Heping District, Shenyang, 110001, Liaoning, China.,National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China.,Labortory Medicine Innovation Unit, Chinese Academy of Medical Sciences, Shenyang, China
| | - Ruixuan Wang
- Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, 155 North Nanjing Street, Heping District, Shenyang, 110001, Liaoning, China.,National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China.,Labortory Medicine Innovation Unit, Chinese Academy of Medical Sciences, Shenyang, China
| | - Fushun Li
- Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, 155 North Nanjing Street, Heping District, Shenyang, 110001, Liaoning, China.,National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China.,Labortory Medicine Innovation Unit, Chinese Academy of Medical Sciences, Shenyang, China
| | - Ning Jiang
- Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, 155 North Nanjing Street, Heping District, Shenyang, 110001, Liaoning, China.,National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China.,Labortory Medicine Innovation Unit, Chinese Academy of Medical Sciences, Shenyang, China
| | - Yunzhuo Chu
- Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, 155 North Nanjing Street, Heping District, Shenyang, 110001, Liaoning, China. .,National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China. .,Labortory Medicine Innovation Unit, Chinese Academy of Medical Sciences, Shenyang, China.
| |
Collapse
|
45
|
Wu W, Wei L, Feng Y, Xie Y, Zong Z. Precise Species Identification by Whole-Genome Sequencing of Enterobacter Bloodstream Infection, China. Emerg Infect Dis 2021; 27:161-169. [PMID: 33350909 PMCID: PMC7774573 DOI: 10.3201/eid2701.190154] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The clinical importance of Enterobacter spp. remains unclear because phenotype-based Enterobacter species identification is unreliable. We performed a genomic study on 48 cases of Enterobacter-caused bloodstream infection by using in silico DNA-DNA hybridization to identify precise species. Strains belonged to 12 species; Enterobacter xiangfangensis (n = 21) and an unnamed species (taxon 1, n = 8) were dominant. Most (63.5%) Enterobacter strains (n = 349) with genomes in GenBank from human blood are E. xiangfangensis; taxon 1 (19.8%) was next most common. E. xiangfangensis and taxon 1 were associated with increased deaths (20.7% vs. 15.8%), lengthier hospitalizations (median 31 d vs. 19.5 d), and higher resistance to aztreonam, cefepime, ceftriaxone, piperacillin-tazobactam, and tobramycin. Strains belonged to 37 sequence types (STs); ST171 (E. xiangfangensis) was most common (n = 6). Four ST171 strains belonged to a defined clone. Precise species identification has greater implications for epidemiology and infection control than treatment.
Collapse
|
46
|
Hendrickx APA, Debast S, Pérez-Vázquez M, Schoffelen AF, Notermans DW, Landman F, Wielders CCH, Cañada Garcia JE, Flipse J, de Haan A, Witteveen S, van Santen-Verheuvel M, de Greeff SC, Kuijper E, Schouls LM. A genetic cluster of MDR Enterobacter cloacae complex ST78 harbouring a plasmid containing bla VIM-1 and mcr-9 in the Netherlands. JAC Antimicrob Resist 2021; 3:dlab046. [PMID: 34223115 PMCID: PMC8210100 DOI: 10.1093/jacamr/dlab046] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 03/14/2021] [Indexed: 11/23/2022] Open
Abstract
Background Carbapenemases produced by Enterobacterales are often encoded by genes on transferable plasmids and represent a major healthcare problem, especially if the plasmids contain additional antibiotic resistance genes. As part of Dutch national surveillance, 50 medical microbiological laboratories submit their Enterobacterales isolates suspected of carbapenemase production to the National Institute for Public Health and the Environment for characterization. All isolates for which carbapenemase production is confirmed are subjected to next-generation sequencing. Objectives To study the molecular characteristics of a genetic cluster of Enterobacter cloacae complex isolates collected in Dutch national surveillance in the period 2015–20 in the Netherlands. Methods Short- and long-read genome sequencing was used in combination with MLST and pan-genome MLST (pgMLST) analyses. Automated antimicrobial susceptibility testing (AST), the Etest for meropenem and the broth microdilution test for colistin were performed. The carbapenem inactivation method was used to assess carbapenemase production. Results pgMLST revealed that nine E. cloacae complex isolates from three different hospitals in the Netherlands differed by <20 alleles and grouped in a genetic cluster termed EclCluster-013. Seven isolates were submitted by one hospital in 2016–20. EclCluster-013 isolates produced carbapenemase and were from ST78, a globally disseminated lineage. EclCluster-013 isolates harboured a 316 078 bp IncH12 plasmid carrying the blaVIM-1 carbapenemase and the novel mcr-9 colistin resistance gene along with genes encoding resistance to different antibiotic classes. AST showed that EclCluster-013 isolates were MDR, but susceptible to meropenem (<2 mg/L) and colistin (<2 mg/L). Conclusions The EclCluster-013 reported here represents an MDR E. cloacae complex ST78 strain containing an IncH12 plasmid carrying both the blaVIM-1 carbapenemase and the mcr-9 colistin resistance gene.
Collapse
Affiliation(s)
- Antoni P A Hendrickx
- Center for Infectious Disease Control (CIb), National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Sylvia Debast
- Isala, Laboratory for Medical Microbiology and Infectious Diseases, Zwolle, The Netherlands
| | - María Pérez-Vázquez
- Laboratorio de Referencia e Investigación en Resistencia a Antibióticos e Infecciones Relacionadas con la Asistencia Sanitaria, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Annelot F Schoffelen
- Center for Infectious Disease Control (CIb), National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Daan W Notermans
- Center for Infectious Disease Control (CIb), National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Fabian Landman
- Center for Infectious Disease Control (CIb), National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Cornelia C H Wielders
- Center for Infectious Disease Control (CIb), National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Javier E Cañada Garcia
- Laboratorio de Referencia e Investigación en Resistencia a Antibióticos e Infecciones Relacionadas con la Asistencia Sanitaria, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Jacky Flipse
- Isala, Laboratory for Medical Microbiology and Infectious Diseases, Zwolle, The Netherlands
| | - Angela de Haan
- Center for Infectious Disease Control (CIb), National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Sandra Witteveen
- Center for Infectious Disease Control (CIb), National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Marga van Santen-Verheuvel
- Center for Infectious Disease Control (CIb), National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Sabine C de Greeff
- Center for Infectious Disease Control (CIb), National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Ed Kuijper
- Center for Infectious Disease Control (CIb), National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Leo M Schouls
- Center for Infectious Disease Control (CIb), National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | | |
Collapse
|
47
|
Interplay between ESKAPE Pathogens and Immunity in Skin Infections: An Overview of the Major Determinants of Virulence and Antibiotic Resistance. Pathogens 2021; 10:pathogens10020148. [PMID: 33540588 PMCID: PMC7912840 DOI: 10.3390/pathogens10020148] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 01/26/2021] [Accepted: 01/27/2021] [Indexed: 12/16/2022] Open
Abstract
The skin is the largest organ in the human body, acting as a physical and immunological barrier against pathogenic microorganisms. The cutaneous lesions constitute a gateway for microbial contamination that can lead to chronic wounds and other invasive infections. Chronic wounds are considered as serious public health problems due the related social, psychological and economic consequences. The group of bacteria known as ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa and Enterobacter sp.) are among the most prevalent bacteria in cutaneous infections. These pathogens have a high level of incidence in hospital environments and several strains present phenotypes of multidrug resistance. In this review, we discuss some important aspects of skin immunology and the involvement of ESKAPE in wound infections. First, we introduce some fundamental aspects of skin physiology and immunology related to cutaneous infections. Following this, the major virulence factors involved in colonization and tissue damage are highlighted, as well as the most frequently detected antimicrobial resistance genes. ESKAPE pathogens express several virulence determinants that overcome the skin's physical and immunological barriers, enabling them to cause severe wound infections. The high ability these bacteria to acquire resistance is alarming, particularly in the hospital settings where immunocompromised individuals are exposed to these pathogens. Knowledge about the virulence and resistance markers of these species is important in order to develop new strategies to detect and treat their associated infections.
Collapse
|
48
|
Zong Z, Feng Y, McNally A. Carbapenem and Colistin Resistance in Enterobacter: Determinants and Clones. Trends Microbiol 2021; 29:473-476. [PMID: 33431326 DOI: 10.1016/j.tim.2020.12.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/15/2020] [Accepted: 12/15/2020] [Indexed: 02/05/2023]
Abstract
Enterobacter is a globally important pathogen. Here we clarify its taxonomy and review recent developments in its resistance to carbapenem and colistin, illustrating that Enterobacter has a large arsenal of mechanisms to grow under antimicrobial pressure. Further studies are required to decipher colistin heteroresistance and understand why certain Enterobacter lineages have emerged clinically.
Collapse
Affiliation(s)
- Zhiyong Zong
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China; Center for Pathogen Research, West China Hospital, Sichuan University, Chengdu, China; Department of Infection Control, West China Hospital, Sichuan University, Chengdu, China; Division of Infectious Diseases, State Key Laboratory of Biotherapy, Chengdu, China.
| | - Yu Feng
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China; Center for Pathogen Research, West China Hospital, Sichuan University, Chengdu, China; Division of Infectious Diseases, State Key Laboratory of Biotherapy, Chengdu, China
| | - Alan McNally
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
49
|
Macesic N, Nelson B, Mcconville TH, Giddins MJ, Green DA, Stump S, Gomez-Simmonds A, Annavajhala MK, Uhlemann AC. Emergence of Polymyxin Resistance in Clinical Klebsiella pneumoniae Through Diverse Genetic Adaptations: A Genomic, Retrospective Cohort Study. Clin Infect Dis 2021; 70:2084-2091. [PMID: 31513705 DOI: 10.1093/cid/ciz623] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 07/17/2019] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Polymyxins are antimicrobials of last resort for the treatment of carbapenem-resistant Enterobacteriaceae, but resistance in 5% to >40% isolates has been reported. We conducted a genomic survey of clinical polymyxin-resistant (PR) Klebsiella pneumoniae to determine the molecular mechanisms of PR and the role of polymyxin exposure versus transmission in PR emergence. METHODS We included 88 patients with PR K. pneumoniae from 2011-2018 and collected demographic, antimicrobial exposure, and infection data. Whole-genome sequencing was performed on 388 isolates, including 164 PR isolates. Variant calling and insertion sequence detection were performed, focusing on key genes associated with PR (mgrB, crrAB, phoPQ, and pmrAB). We conducted phylogenetic analyses of key K. pneumoniae multi-locus sequence types (ST258, ST17, ST307, and ST392). RESULTS Polymyxin exposure was documented in 53/88 (60%) patients prior to PR detection. Through an analysis of key PR genes, we detected 129 individual variants and 72 unique variant combinations in PR isolates. This included multiple, distinct changes in 36% of patients with serial PR isolates. Insertion sequence disruption was limited to mgrB (P < .001). Polymyxin minimum inhibitory concentrations showed stepwise increases with the number of PR genes affected (P < .001). When clusters containing PR isolates in ≥2 patients were analyzed, 10/14 had multiple genetic events leading to PR. CONCLUSIONS Molecular mechanisms leading to PR in clinical K. pneumoniae isolates are remarkably heterogenous, even within clusters or individual patients. Polymyxin exposure with de novo PR emergence led to PR in the majority of patients, rather than transmission. Optimizing polymyxin use should be a key strategy in stopping the spread of PR.
Collapse
Affiliation(s)
- Nenad Macesic
- Division of Infectious Diseases, Columbia University Irving Medical Center, New York City, New York.,Central Clinical School, Monash University, Melbourne, Australia
| | - Brian Nelson
- Department of Pharmacy, Columbia University Irving Medical Center/New York Presbyterian Hospital, New York City, New York
| | - Thomas H Mcconville
- Division of Infectious Diseases, Columbia University Irving Medical Center, New York City, New York
| | - Marla J Giddins
- Division of Infectious Diseases, Columbia University Irving Medical Center, New York City, New York.,Microbiome & Pathogen Genomics Core, , New York City, New York
| | - Daniel A Green
- Clinical Microbiology Laboratory, Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York City, New York
| | - Stephania Stump
- Division of Infectious Diseases, Columbia University Irving Medical Center, New York City, New York.,Microbiome & Pathogen Genomics Core, , New York City, New York
| | - Angela Gomez-Simmonds
- Division of Infectious Diseases, Columbia University Irving Medical Center, New York City, New York
| | - Medini K Annavajhala
- Division of Infectious Diseases, Columbia University Irving Medical Center, New York City, New York.,Microbiome & Pathogen Genomics Core, , New York City, New York
| | - Anne-Catrin Uhlemann
- Division of Infectious Diseases, Columbia University Irving Medical Center, New York City, New York.,Microbiome & Pathogen Genomics Core, , New York City, New York
| |
Collapse
|
50
|
Intraoperative Tobramycin Powder Prevents Enterobacter cloacae Surgical Site Infections in a Rabbit Model of Internal Fixation. J Orthop Trauma 2021; 35:35-40. [PMID: 32516196 DOI: 10.1097/bot.0000000000001859] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/01/2020] [Indexed: 02/02/2023]
Abstract
OBJECTIVES To evaluate the efficacy of intraoperative tobramycin powder in preventing surgical site infection (SSI) and implant colonization with Enterobacter cloacae in a rabbit fixation model. Gram-negative rods, particularly Enterobacter species, comprise an increasing percentage of SSI at our institution. METHODS Eighteen New Zealand White rabbits underwent surgical fixation of the left tibia with implantation of a plate and screws. The surgical site and implant were inoculated with 1 × 107 CFUs E. cloacae. The selected E. cloacae isolate was resistant to tobramycin and capable of forming biofilms. Nine rabbits received 125 mg tobramycin powder directly into the surgical site, overlying the implant. The control group was untreated. Fourteen days postinfection, the tibiae and implants were explanted. Radiographs were taken with and without the implants in place. One tibia from each group was examined after hematoxylin and eosin staining. The remaining tibiae and implants were morselized or sonicated, respectively, and plated on agar to determine infection burden. Data were analyzed with Fisher exact tests and Mann-Whitney U tests. RESULTS No bone infection or implant colonization occurred in the tobramycin-treated group. In the control group, 7 of 8 rabbits developed bone infections (P = 0.001), and 4 of 8 implants were colonized (P = 0.07). No gross disruption of the normal bone architecture was observed in either group. CONCLUSIONS Intraoperative tobramycin powder applied at the time of contamination prevented bone infection with E. cloacae in this rabbit fixation model. The results are encouraging because the E. cloacae isolate was tobramycin-resistant, demonstrating the utility of intraoperative powdered antibiotics.
Collapse
|