1
|
Diniz BC, Wilfert P, Sorokin DY, van Loosdrecht MCM. Anaerobic digestion at high-pH and alkalinity for biomethane production: Insights into methane yield, biomethane purity, and process performance. BIORESOURCE TECHNOLOGY 2025; 429:132505. [PMID: 40220921 DOI: 10.1016/j.biortech.2025.132505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 03/21/2025] [Accepted: 04/07/2025] [Indexed: 04/14/2025]
Abstract
The role of high-pH conditions in anaerobic digestion (AD) has traditionally been confined to it's use in pre-treatment processes. However, operating AD at elevated pH and alkalinity offers significant advantages, including in-situ upgrading of biogas to biomethane. This study examines the potential and scalability of AD under these conditions (pH ∼ 9.3; alkalinity ∼ 0.5 eq/L). The substrate used was the alkaline waste generated from the extraction of extracellular polymeric substances (EPS) from aerobic granular sludge (AGS), and the inoculum used was a haloalkaliphile microbial community from soda lake sediments. To evaluate the system's performance, the organic loading rate (OLR) was incrementally increased. The highest methane production obtained was 8.4 ± 0.1 mL/day/gVSadded at a hydraulic retention time (HRT) of 15 days and an OLR of 1 kgVS/day/m3. At this loading rate, methanogenesis became the rate limiting conversion. The maximum volatile solids conversion was 48.1 ± 1.1 %. Throughout the reactor operation, methane purity in the biogas consistently exceeded 90 % peaking at 96.0 ± 0.2 %, showcasing the potential for in-situ biogas purification under these conditions. In addition, no ammonia inhibition was observed, even with free-ammonia (NH3) concentrations reaching up to 14 mM. This study underscores the potential of high-pH anaerobic digestion as a sustainable method for both waste treatment and energy recovery.
Collapse
Affiliation(s)
- Beatriz C Diniz
- Department of Biotechnology, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, Delft 2629 HZ, the Netherlands.
| | - Philipp Wilfert
- Department of Biotechnology, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, Delft 2629 HZ, the Netherlands; Labor für Siedlungswasserwirtschaft und Abfalltechnik, Fachbereich Bauwesen, Technische Hochschule Lübeck 23562 Lübeck, Germany
| | - Dimitry Y Sorokin
- Department of Biotechnology, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, Delft 2629 HZ, the Netherlands; Winogradsky Institute of Microbiology, Federal Research Centre of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Mark C M van Loosdrecht
- Department of Biotechnology, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, Delft 2629 HZ, the Netherlands
| |
Collapse
|
2
|
Chen M, Grégoire DS, St-Germain P, Berdugo-Clavijo C, Hug LA. Microbial diversity and capacity for arsenic biogeochemical cycling in aquifers associated with thermal mobilization. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 977:179357. [PMID: 40239498 DOI: 10.1016/j.scitotenv.2025.179357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 04/02/2025] [Accepted: 04/03/2025] [Indexed: 04/18/2025]
Abstract
Thermal recovery technologies for in-situ bitumen extraction can result in the heating of surrounding aquifers, potentially mobilizing arsenic naturally present in the sediments to the groundwater. The relative toxicity of dissolved arsenic is related to its speciation, with As(V) being less toxic than As(III). Microorganisms have various mechanisms of arsenic detoxification and metabolism, which include genes for efflux, methylation, and reduction/oxidation of As(V)/As(III). We characterized the microbial communities along two aquifer transects associated with thermally mobilized arsenic near Northeastern Alberta oil sands deposits. 16S rRNA amplicons and metagenomic sequencing data of biomass from filtered groundwater indicated major changes in the dominant taxa between wells, especially those currently experiencing elevated arsenic concentrations. Annotation of arsenic-related genes indicated that efflux pumps (arsB, acr3), intracellular reduction (arsC) and methylation (arsM) genes were widespread among community members but comparatively few organisms encoded genes for arsenic respiratory reductases (arrA) and oxidases (arxA, aioA). While this indicates that microbes have the capacity to exacerbate arsenic toxicity by increasing the relative concentration of As(III), some populations of iron oxidizing and sulfate reducing bacteria (including novel Gallionella and Thermodesulfovibrionia populations) show potential for indirect bioremediation through formation of insoluble iron/sulfide minerals which adsorb or coprecipitate arsenic. An unusually high proportional abundance of a single Paceibacteria population that lacked arsenic resistance genes was identified in one high‑arsenic well, and we discuss hypotheses for its ability to persist. Overall, this study describes how aquifer microbial communities respond to thermal and arsenic plumes, and predicts potential contributions of microbes to arsenic biogeochemical cycling under this disturbance.
Collapse
Affiliation(s)
- Molly Chen
- Department of Biology, University of Waterloo, 200 University Ave W, N2L 3G1 Waterloo, Ontario, Canada
| | - Daniel S Grégoire
- Department of Biology, University of Waterloo, 200 University Ave W, N2L 3G1 Waterloo, Ontario, Canada; Department of Chemistry, Carleton University, 1125 Colonel By Dr, K1S 5B6 Ottawa, Ontario, Canada
| | - Pascale St-Germain
- Imperial Oil Resources Ltd, 505 Quarry Park Blvd SE, Calgary, Alberta, Canada
| | | | - Laura A Hug
- Department of Biology, University of Waterloo, 200 University Ave W, N2L 3G1 Waterloo, Ontario, Canada.
| |
Collapse
|
3
|
Peng SX, Gao SM, Lin ZL, Luo ZH, Zhang SY, Shu WS, Meng F, Huang LN. Biogeography and ecological functions of underestimated CPR and DPANN in acid mine drainage sediments. mBio 2025:e0070525. [PMID: 40298441 DOI: 10.1128/mbio.00705-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Accepted: 04/08/2025] [Indexed: 04/30/2025] Open
Abstract
Recent genomic surveys have uncovered candidate phyla radiation (CPR) bacteria and DPANN archaea as major microbial dark matter lineages in various anoxic habitats. Despite their extraordinary diversity, the biogeographic patterns and ecological implications of these ultra-small and putatively symbiotic microorganisms have remained elusive. Here, we performed metagenomic sequencing on 90 geochemically diverse acid mine drainage sediments sampled across southeast China and recovered 282 CPR and 189 DPANN nonredundant metagenome-assembled genomes, which collectively account for up to 28.6% and 31.2% of the indigenous prokaryotic communities, respectively. We found that, remarkably, geographic distance represents the primary factor driving the large-scale ecological distribution of both CPR and DPANN organisms, followed by pH and Fe. Although both groups might be capable of iron reduction through a flavin-based extracellular electron transfer mechanism, significant differences are found in their metabolic capabilities (with complex carbon degradation and chitin degradation being more prevalent in CPR whereas fermentation and acetate production being enriched in DPANN), indicating potential niche differentiation. Predicted hosts are mainly Acidobacteriota, Bacteroidota, and Proteobacteria for CPR and Thermoplasmatota for DPANN, and extensive, unbalanced metabolic exchanges between these symbionts and putative hosts are displayed. Together, our results provide initial insights into the complex interplays between the two lineages and their physicochemical environments and host populations at a large geographic scale.IMPORTANCECandidate phyla radiation (CPR) bacteria and DPANN archaea constitute a significant fraction of Earth's prokaryotic diversity. Despite their ubiquity and abundance, especially in anoxic habitats, we know little about the community patterns and ecological drivers of these ultra-small, putatively episymbiotic microorganisms across geographic ranges. This study is facilitated by a large collection of CPR and DPANN metagenome-assembled genomes recovered from the metagenomes of 90 sediments sampled from geochemically diverse acid mine drainage (AMD) environments across southeast China. Our comprehensive analyses have allowed first insights into the biogeographic patterns and functional differentiation of these major enigmatic prokaryotic groups in the AMD model system.
Collapse
Affiliation(s)
- Sheng-Xuan Peng
- School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Shao-Ming Gao
- School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Zhi-Liang Lin
- School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Zhen-Hao Luo
- School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Si-Yu Zhang
- School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Wen-Sheng Shu
- School of Life Sciences, South China Normal University, Guangzhou, Guangdong, China
| | - Fangang Meng
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Li-Nan Huang
- School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
4
|
Jonas L, Lee YY, Mroz R, Hill RT, Li Y. Nannochloropsis oceanica IMET1 and its bacterial symbionts for carbon capture, utilization, and storage: biomass and calcium carbonate production under high pH and high alkalinity. Appl Environ Microbiol 2025:e0013325. [PMID: 40243321 DOI: 10.1128/aem.00133-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Accepted: 03/19/2025] [Indexed: 04/18/2025] Open
Abstract
To combat the increasing levels of carbon dioxide (CO2) released from the combustion of fossil fuels, microalgae have emerged as a promising strategy for biological carbon capture, utilization, and storage. This study used a marine microalgal strain, Nannochloropsis oceanica IMET1, which thrives in high CO2 concentrations. A high-pH, high-alkalinity culture was designed for CO2 capture through algal biomass production as well as permanent sequestration through calcium carbonate (CaCO3) precipitation. This was accomplished by timed pH elevation and the addition of sodium bicarbonate to cultures of N. oceanica grown at lab scale (1 L) and pilot scale (500 L) with 10% and 5% CO2, respectively. Our data showed that 0.02 M NaHCO3 promoted algal growth and that sparging cultures with ambient air after 12 days raised pH and created favorable CaCO3 formation conditions. At the 1 L scale, we reached 1.52 g L-1 biomass after 12 days and an extra 9.3% CO2 was captured in the form of CaCO3 precipitates. At the 500 L pilot scale, an extra 60% CO2 was captured (Day 40) with a maximum CO2 capture rate of 63.2 g m-2 day-1 (Day 35). Bacterial communities associated with the microalgae were dominated by two novel Patescibacteria. Functional analysis revealed that genes for several plant growth-promotion traits (PGPTs) were enriched within this group. The microalgal-bacterial coculture system offers advantages for enhanced carbon mitigation through biomass production and simultaneous precipitation of recalcitrant CaCO3 for long-term CO2 storage.IMPORTANCECapturing carbon dioxide (CO2) released from fossil fuel combustion is of the utmost importance as the impacts of climate change continue to worsen. Microalgae can remove CO2 through their natural photosynthetic pathways and are additionally able to convert CO2 into a stable, recalcitrant form as calcium carbonate (CaCO3). We demonstrate that microalgae-based carbon capture systems can be greatly improved with high pH and high alkalinity by providing optimal conditions for carbonate precipitation. Our results with the microalga, Nannochloropsis oceanica strain IMET1, show an extra 9.3% CO2 captured as CaCO3 at the 1 L scale and an extra 60% CO2 captured at the 500 L (pilot) scale. Our optimized system provides a novel approach to capture CO2 through two mechanisms: (i) as organic carbon within microalgal biomass and (ii) as inorganic carbon stored permanently in the form of CaCO3.
Collapse
Affiliation(s)
- Lauren Jonas
- University of Maryland Center for Environmental Science, Baltimore, Maryland, USA
- Institute of Marine and Environmental Technology, Baltimore, Maryland, USA
| | - Yi-Ying Lee
- University of Maryland Center for Environmental Science, Baltimore, Maryland, USA
- Institute of Marine and Environmental Technology, Baltimore, Maryland, USA
| | | | - Russell T Hill
- University of Maryland Center for Environmental Science, Baltimore, Maryland, USA
- Institute of Marine and Environmental Technology, Baltimore, Maryland, USA
| | - Yantao Li
- University of Maryland Center for Environmental Science, Baltimore, Maryland, USA
- Institute of Marine and Environmental Technology, Baltimore, Maryland, USA
| |
Collapse
|
5
|
He Y, Zhuo S, Li M, Pan J, Jiang Y, Hu Y, Sanford RA, Lin Q, Sun W, Wei N, Peng S, Jiang Z, Li S, Li Y, Dong Y, Shi L. Candidate Phyla Radiation (CPR) bacteria from hyperalkaline ecosystems provide novel insight into their symbiotic lifestyle and ecological implications. MICROBIOME 2025; 13:94. [PMID: 40189564 PMCID: PMC11974145 DOI: 10.1186/s40168-025-02077-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Accepted: 03/04/2025] [Indexed: 04/09/2025]
Abstract
BACKGROUND Candidate Phyla Radiation (CPR) represents a unique superphylum characterized by ultra-small cell size and symbiotic lifestyle. Although CPR bacteria have been identified in varied environments, their broader distribution, associations with hosts, and ecological roles remain largely unexplored. To address these knowledge gaps, a serpentinite-like environment was selected as a simplified model system to investigate the CPR communities in hyperalkaline environments and their association with hosts in extreme conditions. Additionally, the enzymatic activity, global distribution, and evolution of the CPR-derived genes encoding essential metabolites (e.g., folate or vitamin B9) were analyzed and assessed. RESULTS In the highly alkaline serpentinite-like ecosystem (pH = 10.9-12.4), metagenomic analyses of the water and sediment samples revealed that CPR bacteria constituted 1.93-34.8% of the microbial communities. Metabolic reconstruction of 12 high-quality CPR metagenome-assembled genomes (MAGs) affiliated to the novel taxa from orders UBA6257, UBA9973, and Paceibacterales suggests that these bacteria lack the complete biosynthetic pathways for amino acids, lipids, and nucleotides. Notably, the CPR bacteria commonly harbored the genes associated with essential folate cofactor biosynthesis and metabolism, including dihydrofolate reductase (folA), serine hydroxymethyltransferase (glyA), and methylenetetrahydrofolate reductase (folD). Additionally, two presumed auxotrophic hosts, incapable of forming tetrahydrofolate (THF) due to the absence of folA, were identified as potential hosts for some CPR bacteria harboring folA genes. The functionality of these CPR-derived folA genes was experimentally verified by heterologous expression in the folA-deletion mutant Escherichia coli MG1655 ΔfolA. Further assessment of the available CPR genomes (n = 4,581) revealed that the genes encoding the proteins for the synthesis of bioactive folate derivatives (e.g., folA, glyA, and/or folD genes) were present in 90.8% of the genomes examined. It suggests potential widespread metabolic complementarity in folate biosynthesis between CPR and their hosts. CONCLUSIONS This finding deepens our understanding of the mechanisms of CPR-host symbiosis, providing novel insight into essential cofactor-dependent mutualistic CPR-host interactions. Our observations suggest that CPR bacteria may contribute to auxotrophic organisms and indirectly influence biogeochemical processes. Video Abstract.
Collapse
Affiliation(s)
- Yu He
- School of Environmental Studies, China University of Geosciences (Wuhan), Wuhan, China
| | - Shiyan Zhuo
- School of Environmental Studies, China University of Geosciences (Wuhan), Wuhan, China
| | - Meng Li
- Archaeal Biology Centre, Synthetic Biology Research Center, Shenzhen Key Laboratory of Marine Microbiome Engineering, Key Laboratory of Marine Microbiome Engineering of Guangdong Higher Education Institutes, Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Jie Pan
- Archaeal Biology Centre, Synthetic Biology Research Center, Shenzhen Key Laboratory of Marine Microbiome Engineering, Key Laboratory of Marine Microbiome Engineering of Guangdong Higher Education Institutes, Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Yongguang Jiang
- School of Environmental Studies, China University of Geosciences (Wuhan), Wuhan, China
| | - Yidan Hu
- School of Environmental Studies, China University of Geosciences (Wuhan), Wuhan, China
| | - Robert A Sanford
- Department of Earth Science & Environmental Change, University of Illinois Urbana-Champaign, Champaign, USA
| | - Qin Lin
- Shanghai Biozeron Biological Technology Co. Ltd., Shanghai, China
| | - Weimin Sun
- Guangdong Institute of Eco-Environmental and Soil Science, Guangzhou, China
| | - Na Wei
- Department of Civil and Environmental Engineering, University of Illinois Urbana-Champaign, Champaign, USA
| | - Shuming Peng
- Institute of Ecological Environment, Chengdu University of Technology, Chengdu, China
| | - Zhou Jiang
- School of Environmental Studies, China University of Geosciences (Wuhan), Wuhan, China
| | - Shuyi Li
- School of Environmental Studies, China University of Geosciences (Wuhan), Wuhan, China
| | - Yongzhe Li
- School of Environmental Studies, China University of Geosciences (Wuhan), Wuhan, China
- Central and South China Municipal Engineering Design and Research Institute Co, Ltd., Wuhan, China
| | - Yiran Dong
- School of Environmental Studies, China University of Geosciences (Wuhan), Wuhan, China.
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences (Wuhan), Wuhan, China.
- State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, Ministry of Ecology and Environment, Beijing, China.
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, Wuhan, China.
| | - Liang Shi
- School of Environmental Studies, China University of Geosciences (Wuhan), Wuhan, China
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences (Wuhan), Wuhan, China
- State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, Ministry of Ecology and Environment, Beijing, China
| |
Collapse
|
6
|
Simon SA, Aschmann V, Behrendt A, Hügler M, Engl LM, Pohlner M, Rolfes S, Brinkhoff T, Engelen B, Könneke M, Rodriguez-R LM, Bornemann TLV, Nuy JK, Rothe L, Stach TL, Beblo-Vranesevic K, Leuko S, Runzheimer K, Möller R, Conrady M, Huth M, Trabold T, Herkendell K, Probst AJ. Earth's most needed uncultivated aquatic prokaryotes. WATER RESEARCH 2025; 273:122928. [PMID: 39724798 DOI: 10.1016/j.watres.2024.122928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 11/29/2024] [Accepted: 12/06/2024] [Indexed: 12/28/2024]
Abstract
Aquatic ecosystems house a significant fraction of Earth's biosphere, yet most prokaryotes inhabiting these environments remain uncultivated. While recently developed genome-resolved metagenomics and single-cell genomics techniques have underscored the immense genetic breadth and metabolic potential residing in uncultivated Bacteria and Archaea, cultivation of these microorganisms is required to study their physiology via genetic systems, confirm predicted biochemical pathways, exploit biotechnological potential, and accurately appraise nutrient turnover. Over the past two decades, the limitations of culture-independent investigations highlighted the importance of cultivation in bridging this vast knowledge gap. Here, we collected more than 80 highly sought-after uncultivated lineages of aquatic Bacteria and Archaea with global ecological impact. In addition to fulfilling critical roles in global carbon, nitrogen, and sulfur cycling, many of these organisms are thought to partake in key symbiotic relationships. This review highlights the vital contributions of uncultured microbes in aquatic ecosystems, from lakes and groundwater to the surfaces and depths of the oceans and will guide current and future initiatives tasked with cultivating our planet's most elusive, yet highly consequential aquatic microflora.
Collapse
Affiliation(s)
- Sophie A Simon
- Department of Environmental Metagenomics, Research Center One Health Ruhr, University Alliance Ruhr, Faculty of Chemistry, University of Duisburg-Essen, Essen, Germany
| | - Vera Aschmann
- Department of Water Microbiology, TZW: DVGW-Technologiezentrum Wasser, Karlsruhe, Germany
| | - Annika Behrendt
- Department of Water Microbiology, TZW: DVGW-Technologiezentrum Wasser, Karlsruhe, Germany
| | - Michael Hügler
- Department of Water Microbiology, TZW: DVGW-Technologiezentrum Wasser, Karlsruhe, Germany
| | - Lisa M Engl
- Institute for Chemistry and Biology of the Marine Environment, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
| | - Marion Pohlner
- Institute for Chemistry and Biology of the Marine Environment, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
| | - Sönke Rolfes
- Institute for Chemistry and Biology of the Marine Environment, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
| | - Thorsten Brinkhoff
- Institute for Chemistry and Biology of the Marine Environment, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
| | - Bert Engelen
- Institute for Chemistry and Biology of the Marine Environment, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
| | - Martin Könneke
- Institute for Chemistry and Biology of the Marine Environment, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
| | - Luis M Rodriguez-R
- Department of Microbiology and Digital Science Center (DiSC), University of Innsbruck, Austria
| | - Till L V Bornemann
- Department of Environmental Metagenomics, Research Center One Health Ruhr, University Alliance Ruhr, Faculty of Chemistry, University of Duisburg-Essen, Essen, Germany; Centre of Water and Environmental Research, University of Duisburg-Essen, Essen, Germany
| | - Julia K Nuy
- Department of Environmental Metagenomics, Research Center One Health Ruhr, University Alliance Ruhr, Faculty of Chemistry, University of Duisburg-Essen, Essen, Germany; Centre of Water and Environmental Research, University of Duisburg-Essen, Essen, Germany
| | - Louisa Rothe
- Centre of Water and Environmental Research, University of Duisburg-Essen, Essen, Germany
| | - Tom L Stach
- Department of Environmental Metagenomics, Research Center One Health Ruhr, University Alliance Ruhr, Faculty of Chemistry, University of Duisburg-Essen, Essen, Germany; Centre of Water and Environmental Research, University of Duisburg-Essen, Essen, Germany
| | | | - Stefan Leuko
- German Aerospace Center, Institute of Aerospace Medicine, Cologne, Germany
| | | | - Ralf Möller
- German Aerospace Center, Institute of Aerospace Medicine, Cologne, Germany
| | - Marius Conrady
- Faculty of Life Sciences, Biosystemtechnik, Humboldt University Berlin, Berlin, Germany
| | - Markus Huth
- Faculty of Life Sciences, Biosystemtechnik, Humboldt University Berlin, Berlin, Germany
| | - Thomas Trabold
- Chair of Energy Process Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Nürnberg, Germany
| | - Katharina Herkendell
- Chair of Energy Process Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Nürnberg, Germany; Department of Energy Process Engineering and Conversion Technologies for Renewable Energies, Technische Universität Berlin, Berlin, Germany
| | - Alexander J Probst
- Department of Environmental Metagenomics, Research Center One Health Ruhr, University Alliance Ruhr, Faculty of Chemistry, University of Duisburg-Essen, Essen, Germany; Centre of Water and Environmental Research, University of Duisburg-Essen, Essen, Germany.
| |
Collapse
|
7
|
Mills S, Ijaz UZ, Lens PNL. Environmental instability reduces shock resistance by enriching specialist taxa with distinct two component regulatory systems. NPJ Biofilms Microbiomes 2025; 11:54. [PMID: 40164638 PMCID: PMC11958701 DOI: 10.1038/s41522-025-00679-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 03/05/2025] [Indexed: 04/02/2025] Open
Abstract
Different microbial communities are impacted disproportionately by environmental disturbances. The degree to which a community can remain unchanged under a disturbance is referred to as resistance1. However, the contributing ecological factors, which infer a community's resistance are unknown. In this study, the impact of historical environmental stability on ecological phenomena and microbial community resistance to shocks was investigated. Three separate methanogenic bioreactor consortia, which were subjected to varying degrees of historical environmental stability, and displayed different levels of resistance to an organic loading rate (OLR) shock were sampled. Their community composition was assessed using high throughput sequencing of 16S rRNA genes and assembly based metagenomics. The effect environmental instability on ecological phenomena such as microbial community assembly, microbial niche breadth and the rare biosphere were assessed in the context of each reactor's demonstrated resistance to an OLR shock. Additionally, metagenome assembled genomes were analysed for functional effects of prolonged stability/instability. The system which was subjected to more environmental instability experienced more temporal variation in community beta diversity and a proliferation of specialists, with more abundant two component regulatory systems. This community was more susceptible to deterministic community assembly and demonstrated a lower degree of resistance, indicating that microbial communities experiencing longer term environmental instability (e.g. variations in pH or temperature) are less able to resist a large disturbance.
Collapse
Affiliation(s)
| | - Umer Zeeshan Ijaz
- University of Galway, Galway, Ireland
- Water & Environment Research Group, University of Glasgow, Mazumdar-Shaw Advanced Research Centre, Glasgow, UK
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, UK
| | | |
Collapse
|
8
|
Nakajima M, Nakai R, Hirakata Y, Kubota K, Satoh H, Nobu MK, Narihiro T, Kuroda K. Minisyncoccus archaeiphilus gen. nov., sp. nov., a mesophilic, obligate parasitic bacterium and proposal of Minisyncoccaceae fam. nov., Minisyncoccales ord. nov., Minisyncoccia class. nov. and Minisyncoccota phyl. nov. formerly referred to as Candidatus Patescibacteria or candidate phyla radiation. Int J Syst Evol Microbiol 2025; 75. [PMID: 39928396 DOI: 10.1099/ijsem.0.006668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2025] Open
Abstract
In the domain Bacteria, one of the largest, most diverse and environmentally ubiquitous phylogenetic groups, Candidatus Patescibacteria (also known as candidate phyla radiation/CPR), remains poorly characterized, leaving a major knowledge gap in microbial ecology. We recently discovered a novel cross-domain symbiosis between Ca. Patescibacteria and Archaea in highly purified enrichment cultures and proposed Candidatus taxa for the characterized species, including Ca. Minisyncoccus archaeophilus and the corresponding family Ca. Minisyncoccaceae. In this study, we report the isolation of this bacterium, designated strain PMX.108T, in a two-strain co-culture with a host archaeon, Methanospirillum hungatei strain DSM 864T (JF-1T), and hereby describe it as the first representative species of Ca. Patescibacteria. Strain PMX.108T was isolated from mesophilic methanogenic sludge in an anaerobic laboratory-scale bioreactor treating synthetic purified terephthalate- and dimethyl terephthalate-manufacturing wastewater. The strain could not grow axenically and is obligately anaerobic and parasitic, strictly depending on M. hungatei as a host. The genome was comparatively large (1.54 Mbp) compared to other members of the clade, lacked some genes involved in the biosynthesis pathway and encoded type IV pili-related genes associated with the parasitic lifestyle of ultrasmall microbes. The G+C content of the genomic DNA was 36.6 mol%. Here, we report the phenotypic and genomic properties of strain PMX.108T; we propose Minisyncoccus archaeiphilus gen. nov., sp. nov. to accommodate this strain. The type strain of the species is PMX.108T (=JCM 39522T). We also propose the associated family, order, class and phylum as Minisyncoccaceae fam. nov. Minisyncoccales nov., Minisyncoccia class. nov. and Minisyncoccota phyl. nov. within the bacterial kingdom Bacillati.
Collapse
Affiliation(s)
- Meri Nakajima
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2-17-2-1 Tsukisamu-Higashi, Toyohira-ku, Sapporo, Hokkaido 062-8517, Japan
- Division of Environmental Engineering, Faculty of Engineering, Hokkaido University, North-13, West-8, Sapporo, Hokkaido 060-8628, Japan
| | - Ryosuke Nakai
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2-17-2-1 Tsukisamu-Higashi, Toyohira-ku, Sapporo, Hokkaido 062-8517, Japan
| | - Yuga Hirakata
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, Higashi 1-1-1, Tsukuba, Ibaraki 305-8566, Japan
| | - Kengo Kubota
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan
- Department of Frontier Sciences for Advanced Environment, Graduate School of Environmental Studies, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Hisashi Satoh
- Division of Environmental Engineering, Faculty of Engineering, Hokkaido University, North-13, West-8, Sapporo, Hokkaido 060-8628, Japan
| | - Masaru K Nobu
- Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka, Kanagawa 237-0061, Japan
| | - Takashi Narihiro
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2-17-2-1 Tsukisamu-Higashi, Toyohira-ku, Sapporo, Hokkaido 062-8517, Japan
- Division of Environmental Engineering, Faculty of Engineering, Hokkaido University, North-13, West-8, Sapporo, Hokkaido 060-8628, Japan
| | - Kyohei Kuroda
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2-17-2-1 Tsukisamu-Higashi, Toyohira-ku, Sapporo, Hokkaido 062-8517, Japan
- Division of Environmental Engineering, Faculty of Engineering, Hokkaido University, North-13, West-8, Sapporo, Hokkaido 060-8628, Japan
| |
Collapse
|
9
|
Lera M, Ferrer JF, Borrás L, Martí N, Serralta J, Seco A. Mesophilic anaerobic digestion of mixed sludge in CSTR and AnMBR systems: A perspective on microplastics fate. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 375:124250. [PMID: 39879929 DOI: 10.1016/j.jenvman.2025.124250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 01/04/2025] [Accepted: 01/19/2025] [Indexed: 01/31/2025]
Abstract
Most microplastics (MPs) end up in the biosolids produced in wastewater treatment plants (WWTPs) and can pose contamination risks when the biosolids are applied to agriculture. This study evaluated the impact of mesophilic anaerobic digestion on the fate of MPs in WWTP sludge. For this, two laboratory-scale anaerobic digesters were operated in parallel, consisting of a continuous stirred tank reactor (CSTR) and a membrane bioreactor (AnMBR) equipped with an ultrafiltration membrane to decouple the hydraulic and sludge retention times. Both digesters were continuously fed with mixed sludge from a municipal WWTP. The results showed a significant reduction in the MP concentration, with the AnMBR having the higher MP removal efficiency (88.6% vs. 62.1%) and obtaining a higher percentage of biomethanisation (58.3% vs. 43.7%). Polypropylene (PP) and polyacrylonitrile were the main polymers in the mixed sludge, while PP and polyethylene were the dominant polymers in the digested samples. The MP particles in all the samples were predominantly in the 500-104 μm size range. Microbiological analysis indicates a greater species diversity in the microbial community of the AnMBR, the results also revealed a symbiotic relationship between the Firmicutes and Patescibacteria phyla in this digester.
Collapse
Affiliation(s)
- M Lera
- CALAGUA - Unitat Mixta UV-UPV, Departament d'Enginyeria Química, Universitat de València, Avinguda de la Universitat s/n, Burjassot, Valencia, 46100, Spain.
| | - J F Ferrer
- AIMPLAS - Instituto Tecnológico del Plástico, València Parc Tecnològic, Carrer Gustave Eiffel 4, Paterna, Valencia, 46980, Spain
| | - L Borrás
- CALAGUA - Unitat Mixta UV-UPV, Departament d'Enginyeria Química, Universitat de València, Avinguda de la Universitat s/n, Burjassot, Valencia, 46100, Spain
| | - N Martí
- CALAGUA - Unitat Mixta UV-UPV, Departament d'Enginyeria Química, Universitat de València, Avinguda de la Universitat s/n, Burjassot, Valencia, 46100, Spain
| | - J Serralta
- CALAGUA - Unitat Mixta UV-UPV, Institut Universitari d'Investigació d'Enginyeria de l'Aigua i Medi Ambient - IIAMA, Universitat Politècnica de Valencia, Camí de Vera s/n, 46022, Valencia, Spain
| | - A Seco
- CALAGUA - Unitat Mixta UV-UPV, Departament d'Enginyeria Química, Universitat de València, Avinguda de la Universitat s/n, Burjassot, Valencia, 46100, Spain
| |
Collapse
|
10
|
Yildirim EA, Laptev GY, Ilina LA, Ponomareva ES, Brazhnik EA, Smetannikova TS, Novikova NI, Turina DG, Filippova VA, Dubrovin AV, Dubrovina AS, Kalitkina KA, Klyuchnikova IA, Zaikin VA, Griffin DK, Romanov MN. Metagenomic Composition and Predicted Metabolic Pathway Analyses of the Endometrial and Rectal Microbiota in Dairy Cows Following the Introduction of a Complex Feed Additive. Front Biosci (Elite Ed) 2025; 17:25725. [PMID: 40150979 DOI: 10.31083/fbe25725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/26/2024] [Accepted: 09/04/2024] [Indexed: 03/29/2025]
Abstract
BACKGROUND The microbiome composition in dairy cows (Bos taurus) directly impacts on health and reproductive performance. This study aimed to determine the metagenomic composition and predicted microbial community functions in the endometrium and rectal chyme of cows fed a complex feed additive (CFA). The latter included the Bacillus mucilaginosus 159 strain, a short-chain fatty acid, plus essential oils. METHODS Clinically healthy cows were divided into two groups (n = 15 in each): (I) a control group fed the standard diet, and (II) an experimental group. CFA was introduced into the diet of Group II during the entire transit period at a dose of 50 g per animal per day; moreover, all animals received Pen-Strep 400 antibiotics to prevent endometritis and other pathologies. The microbial community composition from the endometrium and rectal chyme biotopes was assessed using targeted next-generation sequencing. RESULTS Significant changes were observed in the composition and predicted metabolic pathways due to the CFA administration, with the endometrial microbiota being more responsive to CFA than the intestinal chyme microbiome. Remarkably, the Actinobacteriota representatives disappeared in the endometrium of Group II animals compared to controls, whose content ranged from 0.34 to 3.3%. The use of CFA also resulted in a less pronounced effect in four predicted metabolic pathways for microbial degradation of catechol in the endometrium compared to controls (p < 0.05). CONCLUSIONS Our findings support the concept of a relationship between the gut microbiome and the reproductive system microflora of cows, as we observed changes in the composition and predicted metabolic pathways of the endometrial microbiota after orally administering CFA. This emphasizes the need for an integrated approach combining the correction of microecological disorders in the intestines and the reproductive system simultaneously.
Collapse
Affiliation(s)
- Elena A Yildirim
- Molecular Genetics and Microbiomics Laboratory, BIOTROF+ Ltd, 196602 Pushkin, Russia
- Federal State Budgetary Educational Institution of Higher Education "St. Petersburg State Agrarian University", 196601 Pushkin, Russia
| | - Georgi Yu Laptev
- Molecular Genetics and Microbiomics Laboratory, BIOTROF+ Ltd, 196602 Pushkin, Russia
- Federal State Budgetary Educational Institution of Higher Education "St. Petersburg State Agrarian University", 196601 Pushkin, Russia
| | - Larisa A Ilina
- Molecular Genetics and Microbiomics Laboratory, BIOTROF+ Ltd, 196602 Pushkin, Russia
- Federal State Budgetary Educational Institution of Higher Education "St. Petersburg State Agrarian University", 196601 Pushkin, Russia
| | - Ekaterina S Ponomareva
- Federal State Budgetary Educational Institution of Higher Education "St. Petersburg State Agrarian University", 196601 Pushkin, Russia
| | - Evgeni A Brazhnik
- Molecular Genetics and Microbiomics Laboratory, BIOTROF+ Ltd, 196602 Pushkin, Russia
| | - Tatyana S Smetannikova
- Molecular Genetics and Microbiomics Laboratory, BIOTROF+ Ltd, 196602 Pushkin, Russia
- JSC Gatchinskoe, Bolshiye Kolpany, 188349 Leningrad Oblast, Russia
| | - Natalia I Novikova
- Federal State Budgetary Educational Institution of Higher Education "St. Petersburg State Agrarian University", 196601 Pushkin, Russia
| | - Daria G Turina
- Federal State Budgetary Educational Institution of Higher Education "St. Petersburg State Agrarian University", 196601 Pushkin, Russia
| | - Valentina A Filippova
- Molecular Genetics and Microbiomics Laboratory, BIOTROF+ Ltd, 196602 Pushkin, Russia
- Federal State Budgetary Educational Institution of Higher Education "St. Petersburg State Agrarian University", 196601 Pushkin, Russia
| | - Andrei V Dubrovin
- Federal State Budgetary Educational Institution of Higher Education "St. Petersburg State Agrarian University", 196601 Pushkin, Russia
| | - Alisa S Dubrovina
- Federal State Budgetary Educational Institution of Higher Education "St. Petersburg State Agrarian University", 196601 Pushkin, Russia
| | - Kseniya A Kalitkina
- Molecular Genetics and Microbiomics Laboratory, BIOTROF+ Ltd, 196602 Pushkin, Russia
- Federal State Budgetary Educational Institution of Higher Education "St. Petersburg State Agrarian University", 196601 Pushkin, Russia
| | - Irina A Klyuchnikova
- Molecular Genetics and Microbiomics Laboratory, BIOTROF+ Ltd, 196602 Pushkin, Russia
| | - Vasiliy A Zaikin
- Federal State Budgetary Educational Institution of Higher Education "St. Petersburg State Agrarian University", 196601 Pushkin, Russia
| | - Darren K Griffin
- School of Natural Sciences, University of Kent, CT2 7NZ Canterbury, UK
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, Chatuchak, 10900 Bangkok, Thailand
| | - Michael N Romanov
- School of Natural Sciences, University of Kent, CT2 7NZ Canterbury, UK
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, Chatuchak, 10900 Bangkok, Thailand
- L. K. Ernst Federal Research Centre for Animal Husbandry, Dubrovitsy, 142132 Podolsk, Russia
| |
Collapse
|
11
|
Wolf S, Jayawickrama C, Carlson CA, Deutsch C, Davis EW, Daniels BN, Chan F, Giovannoni SJ. Microbial carbon oxidation in seawater below the hypoxic threshold. Sci Rep 2025; 15:2838. [PMID: 39843462 PMCID: PMC11754627 DOI: 10.1038/s41598-024-82438-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 12/05/2024] [Indexed: 01/24/2025] Open
Abstract
Global oxygen minimum zones (OMZs) often reach hypoxia but seldom reach anoxia. Recently it was reported that Michaelis Menten constants (Km) of oxidative enzymes are orders of magnitude higher than respiratory Km values, and in the Hypoxic Barrier Hypothesis it was proposed that, in ecosystems experiencing falling oxygen, oxygenase enzyme activities become oxygen-limited long before respiration. We conducted a mesocosm experiment with a phytoplankton bloom as an organic carbon source and controlled dissolved oxygen (DO) concentrations in the dark to determine whether hypoxia slows carbon oxidation and oxygen decline. Total oxygen utilization (TOU) in hypoxic treatment (ca. 7.1 µM O2) was 21.7% lower than the oxic treatment (ca. 245.1 µM O2) over the first 43 days of the experiment. In addition, following the restoration of fully oxic conditions to the hypoxic treatment, TOU accelerated, demonstrating that oxidative processes are sensitive to DO concentrations found in large volumes of the ocean. Microbial amplicon-based community composition diverged between oxic treatments, indicating a specialized microbiome that included Thioglobaceae (SUP05 Gammaproteobacteria), OM190 (Planctomycetota), ABY1 (Patescibacteria), and SAR86 subclade D2472, thrived in the hypoxic treatment, while the genus Candidatus Actinomarina and SAR11 alphaproteobacteria were sharply inhibited. Our findings support the hypothesis that oxygenase kinetics might slow the progression of ocean deoxygenation in oxygen-poor regions and be a factor in the evolution of microbial taxa adapted to hypoxic environments.
Collapse
Affiliation(s)
- Sarah Wolf
- Department of Microbiology, Oregon State University, 220 Nash Hall, Corvallis, OR, USA
| | - Clare Jayawickrama
- Department of Microbiology, Oregon State University, 220 Nash Hall, Corvallis, OR, USA
| | - Craig A Carlson
- Marine Science Institute, UC Santa Barbara, Santa Barbara, CA, USA
- Department of Ecology, Evolution, and Marine Biology, Santa Barbara, CA, USA
| | - Curtis Deutsch
- Department of Geosciences, Princeton University, Princeton, NJ, USA
| | - Edward W Davis
- Center for Quantitative Life Sciences, Oregon State University, Corvallis, OR, USA
| | - Benjamin N Daniels
- Department of Microbiology, Oregon State University, 220 Nash Hall, Corvallis, OR, USA
| | - Francis Chan
- Department of Integrative Biology, Oregon State University, Corvallis, OR, USA.
| | - Stephen J Giovannoni
- Department of Microbiology, Oregon State University, 220 Nash Hall, Corvallis, OR, USA.
| |
Collapse
|
12
|
Srinivas P, Peterson SB, Gallagher LA, Wang Y, Mougous JD. Beyond genomics in Patescibacteria: A trove of unexplored biology packed into ultrasmall bacteria. Proc Natl Acad Sci U S A 2024; 121:e2419369121. [PMID: 39665754 DOI: 10.1073/pnas.2419369121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 11/14/2024] [Indexed: 12/13/2024] Open
Abstract
Patescibacteria, also known as the Candidate Phyla Radiation, are a diverse clade of largely uncultivated, small bacteria that comprise a significant proportion of all bacterial diversity. The few members that have been cultivated exhibit a fascinating life cycle in which they grow as obligate epibionts on the surface of host bacteria. In this Perspective, we make the case that the study of these unique, divergent, and poorly characterized organisms represents an exciting frontier in microbiology. This burgeoning field has already achieved several critical breakthroughs, including metagenomic sequence-based reconstructions of the metabolic and biosynthetic capabilities of diverse Patescibacteria and the development of generalizable strategies for their cultivation and genetic manipulation. We argue these that advances, among others, should pave the way toward a molecular understanding of the complex interactions that undoubtedly underpin the relationship between Patescibacteria and their hosts.
Collapse
Affiliation(s)
- Pooja Srinivas
- Department of Microbiology, University of Washington, Seattle, WA 98109
| | - S Brook Peterson
- Department of Microbiology, University of Washington, Seattle, WA 98109
| | - Larry A Gallagher
- Department of Microbiology, University of Washington, Seattle, WA 98109
| | - Yaxi Wang
- Department of Microbiology, University of Washington, Seattle, WA 98109
| | - Joseph D Mougous
- Department of Microbiology, University of Washington, Seattle, WA 98109
- HHMI, University of Washington, Seattle, WA 98109
- Microbial Interactions and Microbiome Center, University of Washington, Seattle, WA 98109
| |
Collapse
|
13
|
Richy E, Thiago Dobbler P, Tláskal V, López-Mondéjar R, Baldrian P, Kyselková M. Long-read sequencing sheds light on key bacteria contributing to deadwood decomposition processes. ENVIRONMENTAL MICROBIOME 2024; 19:99. [PMID: 39627869 PMCID: PMC11613949 DOI: 10.1186/s40793-024-00639-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 11/11/2024] [Indexed: 12/06/2024]
Abstract
BACKGROUND Deadwood decomposition is an essential ecological process in forest ecosystems, playing a key role in nutrient cycling and carbon sequestration by enriching soils with organic matter. This process is driven by diverse microbial communities encompassing specialized functions in breaking down organic matter, but the specific roles of individual microorganisms in this process are still not fully understood. RESULTS Here, we characterized the deadwood microbiome in a natural mixed temperate forest in Central Europe using PacBio HiFi long-read sequencing and a genome-resolved transcriptomics approach in order to uncover key microbial contributors to wood decomposition. We obtained high quality assemblies, which allowed attribution of complex microbial functions such as nitrogen fixation to individual microbial taxa and enabled the recovery of metagenome-assembled genomes (MAGs) from both abundant and rare deadwood bacteria. We successfully assembled 69 MAGs (including 14 high-quality and 7 single-contig genomes) from 4 samples, representing most of the abundant bacterial phyla in deadwood. The MAGs exhibited a rich diversity of carbohydrate-active enzymes (CAZymes), with Myxococcota encoding the highest number of CAZymes and the full complement of enzymes required for cellulose decomposition. For the first time we observed active nitrogen fixation by Steroidobacteraceae, as well as hemicellulose degradation and chitin recycling by Patescibacteria. Furthermore, PacBio HiFi sequencing identified over 1000 biosynthetic gene clusters, highlighting a vast potential for secondary metabolite production in deadwood, particularly in Pseudomonadota and Myxococcota. CONCLUSIONS PacBio HiFi long-read sequencing offers comprehensive insights into deadwood decomposition processes by advancing the identification of functional features involving multiple genes. It represents a robust tool for unraveling novel microbial genomes in complex ecosystems and allows the identification of key microorganisms contributing to deadwood decomposition.
Collapse
Affiliation(s)
- Etienne Richy
- Laboratory of Environmental Microbiology, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14200, Prague 4, Czech Republic.
| | - Priscila Thiago Dobbler
- Laboratory of Environmental Microbiology, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14200, Prague 4, Czech Republic
| | - Vojtěch Tláskal
- Laboratory of Environmental Microbiology, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14200, Prague 4, Czech Republic
- Institute of Soil Biology and Biogeochemistry, Biology Centre of the Czech Academy of Sciences, Na Sádkách 7, 37005, České Budějovice, Czech Republic
| | - Rubén López-Mondéjar
- Laboratory of Environmental Microbiology, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14200, Prague 4, Czech Republic
- Department of Soil and Water Conservation and Waste Management, CEBAS-CSIC, Campus Universitario de Espinardo, 30100, Murcia, Spain
| | - Petr Baldrian
- Laboratory of Environmental Microbiology, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14200, Prague 4, Czech Republic
| | - Martina Kyselková
- Laboratory of Environmental Microbiology, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14200, Prague 4, Czech Republic.
| |
Collapse
|
14
|
Habib R, Do MP, Chen Y, Jiang G, Sivakumar M. Elucidating biofouling development and succession in membrane distillation using treated effluent. ENVIRONMENTAL RESEARCH 2024; 262:119864. [PMID: 39216734 DOI: 10.1016/j.envres.2024.119864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/08/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Biofouling in membrane distillation (MD) has several repercussions, including reduced efficiency of the MD process and limiting membrane life. Additionally, the evaluation of MD biofouling using treated effluents from wastewater treatment plants remains an unexplored area. Thus, biofouling formation and development in a long term MD process (15 days) using treated effluent from a wastewater treatment plant was explored in this study. The results revealed that flux decline occurred in four phases: i) initial decline (0-1 d), ii) gradual decline (1-5 d), iii) progressive decline (5-10 d), and iv) rapid decline (10-15 d). Liquid Chromatography-Organic Carbon Detection (LC-OCD) analysis demonstrated that the treated effluent contained humic-like substances, which deposited on the membrane surface in phase 1. Whereas biopolymers development on the membrane surface in phase 2 and 3 was linked to biofouling. Microbial community analysis revealed that the initial colonisers were predominantly thermophilic bacteria, which were different from the microbial community of the treated effluent. The biofilm-forming bacteria included Schlegelella, Meiothermus, and Vulcaniibacterium. These microorganisms proliferate and release excessive extracellular polymeric substances (EPS), leading to the development of mature biofilm on membrane surface. This helped in the deposition of organics and inorganics from the bulk feed, which led to microbial community succession in phase 4 with the emergence of the Kallotenue genus. The results suggested that organic substances and microbial communities on membrane surface at different stages in a long-term MD process had a significant influence on MD performance for high-quality wastewater reuse.
Collapse
Affiliation(s)
- Rasikh Habib
- School of Civil, Mining, Environmental and Architectural Engineering, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Mai Phuong Do
- School of Civil, Mining, Environmental and Architectural Engineering, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Yan Chen
- School of Civil, Mining, Environmental and Architectural Engineering, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Guangming Jiang
- School of Civil, Mining, Environmental and Architectural Engineering, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Muttucumaru Sivakumar
- School of Civil, Mining, Environmental and Architectural Engineering, University of Wollongong, Wollongong, NSW, 2522, Australia.
| |
Collapse
|
15
|
Grossman AS, Lei L, Botting JM, Liu J, Nahar N, Souza JGS, Liu J, McLean JS, He X, Bor B. Saccharibacteria deploy two distinct Type IV pili, driving episymbiosis, host competition, and twitching motility. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.25.624915. [PMID: 39651235 PMCID: PMC11623550 DOI: 10.1101/2024.11.25.624915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
All cultivated Patescibacteria, or CPR, exist as obligate episymbionts on other microbes. Despite being ubiquitous in mammals and environmentally, molecular mechanisms of host identification and binding amongst ultrasmall bacterial episymbionts are largely unknown. Type 4 pili (T4P) are well conserved in this group and predicted to facilitate symbiotic interactions. To test this, we targeted T4P pilin genes in Saccharibacteria Nanosynbacter lyticus strain TM7x to assess their essentiality and roles in symbiosis. Our results revealed that N. lyticus assembles two distinct T4P, a non-essential thin pili that has the smallest diameter of any T4P and contributes to host-binding, episymbiont growth, and competitive fitness relative to other Saccharibacteria, and an essential thick pili whose functions include twitching motility. Identification of lectin-like minor pilins and modification of host cell walls suggest glycan binding mechanisms. Collectively our findings demonstrate that Saccharibacteria encode unique extracellular pili that are vital mediators of their underexplored episymbiotic lifestyle.
Collapse
Affiliation(s)
- Alex S Grossman
- Department of Microbiology, ADA Forsyth Institute, Cambridge MA, 02142, USA
| | - Lei Lei
- Department of Microbiology, ADA Forsyth Institute, Cambridge MA, 02142, USA
- West China Hospital of Stomatology, Sichuan University, Chengdu Sichuan, 610093, China
| | - Jack M Botting
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven CT, 06536, United States
- New Haven Microbial Sciences Institute, Yale University, West Haven CT, 06516, United States
| | - Jett Liu
- Department of Microbiology, ADA Forsyth Institute, Cambridge MA, 02142, USA
- Institute for Medical Engineering and Science and Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge MA, 02139, USA
| | - Nusrat Nahar
- Department of Microbiology, ADA Forsyth Institute, Cambridge MA, 02142, USA
| | - João Gabriel S Souza
- Department of Microbiology, ADA Forsyth Institute, Cambridge MA, 02142, USA
- Department of Periodontology, Dental Research Division, Guarulhos University, Praça Tereza Cristina, Guarulhos, São Paulo 07023-070, Brazil
| | - Jun Liu
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven CT, 06536, United States
- New Haven Microbial Sciences Institute, Yale University, West Haven CT, 06516, United States
| | - Jeffrey S McLean
- Department of Microbiology, University of Washington, Seattle WA, 98109, USA
- Department of Periodontics, University of Washington, Seattle WA, 98195, USA
- Department of Oral Health Sciences, University of Washington, Seattle WA, 98195, USA
| | - Xuesong He
- Department of Microbiology, ADA Forsyth Institute, Cambridge MA, 02142, USA
| | - Batbileg Bor
- Department of Microbiology, ADA Forsyth Institute, Cambridge MA, 02142, USA
| |
Collapse
|
16
|
Yang JX, Peng Y, Yu QY, Yang JJ, Zhang YH, Zhang HY, Adams CA, Willing CE, Wang C, Li QS, Han XG, Gao C. Gene horizontal transfers and functional diversity negatively correlated with bacterial taxonomic diversity along a nitrogen gradient. NPJ Biofilms Microbiomes 2024; 10:128. [PMID: 39550371 PMCID: PMC11569254 DOI: 10.1038/s41522-024-00588-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 10/16/2024] [Indexed: 11/18/2024] Open
Abstract
Horizontal gene transfer (HGT) mediated diversification is a critical force driving evolutionary and ecological processes. However, how HGT might relate to anthropogenic activity such as nitrogen addition, and its subsequent effect on functional diversity and cooccurrence networks remain unknown. Here we approach this knowledge gap by blending bacterial 16S rRNA gene amplicon and shotgun metagenomes from a platform of cessation of nitrogen additions and continuous nitrogen additions. We found that bacterial HGT events, functional genes, and virus diversities increased whereas bacterial taxonomic diversity decreased by nitrogen additions, resulting in a counterintuitive strong negative association between bacterial taxonomic and functional diversities. Nitrogen additions, especially the ceased one, complexified the cooccurrence network by increasing the contribution of vitamin B12 auxotrophic Acidobacteria, indicating cross-feeding. These findings advance our perceptions of the causes and consequences of the diversification process in community ecology.
Collapse
Affiliation(s)
- Jian-Xia Yang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yang Peng
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qing-Yi Yu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jun-Jie Yang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Yun-Hai Zhang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Hai-Yang Zhang
- College of Life Sciences, Hebei University, Baoding, China
| | - Catharine Allyssa Adams
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Claire Elizabeth Willing
- Department of Biology, Stanford University, Stanford, CA, USA
- School of Environmental and Forest Science, University of Washington, Seattle, WA, USA
| | - Cong Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Qiu-Shi Li
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xing-Guo Han
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China.
- College of Life Sciences, Hebei University, Baoding, China.
| | - Cheng Gao
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
17
|
Khamespanah E, Asad S, Vanak Z, Mehrshad M. Niche-Aware Metagenomic Screening for Enzyme Methioninase Illuminates Its Contribution to Metabolic Syntrophy. MICROBIAL ECOLOGY 2024; 87:141. [PMID: 39546027 PMCID: PMC11568061 DOI: 10.1007/s00248-024-02458-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 11/01/2024] [Indexed: 11/17/2024]
Abstract
The single-step methioninase-mediated degradation of methionine (as a sulfur containing amino acid) is a reaction at the interface of carbon, nitrogen, sulfur, and methane metabolism in microbes. This enzyme also has therapeutic application due to its role in starving auxotrophic cancer cells. Applying our refined in silico screening pipeline on 33,469 publicly available genome assemblies and 1878 metagenome assembled genomes/single-cell amplified genomes from brackish waters of the Caspian Sea and the Fennoscandian Shield deep groundwater resulted in recovering 1845 methioninases. The majority of recovered methioninases belong to representatives of phyla Proteobacteria (50%), Firmicutes (29%), and Firmicutes_A (13%). Prevalence of methioninase among anaerobic microbes and in the anoxic deep groundwater together with the relevance of its products for energy conservation in anaerobic metabolism highlights such environments as desirable targets for screening novel methioninases and resolving its contribution to microbial metabolism and interactions. Among archaea, majority of detected methioninases are from representatives of Methanosarcina that are able to use methanethiol, the sulfur containing product from methionine degradation, as a precursor for methanogenesis. Branching just outside these archaeal methioninases in the phylogenetic tree, we recovered three methioninases belonging to representatives of Patescibacteria reconstructed from deep groundwater metagenomes. We hypothesize that methioninase in Patescibacteria could contribute to their syntrophic interactions where their methanogenic partners/hosts benefit from the produced 2-oxobutyrate and methanethiol. Our results underscore the significance of accounting for specific ecological niche in screening for enzyme variates with desired characteristics. Finally, complementing of our findings with experimental validation of methioninase activity confirms the potential of our in silico screening in clarifying the peculiar ecological role of methioninase in anoxic environments.
Collapse
Affiliation(s)
- Erfan Khamespanah
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
| | - Sedigheh Asad
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran.
| | - Zeynab Vanak
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
| | - Maliheh Mehrshad
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, 75007, Uppsala, Sweden.
| |
Collapse
|
18
|
Lu ML, Yuan GH, Rehemujiang H, Li CC, Hu LH, Duan PP, Zhang LD, Diao QY, Deng KD, Xu GS. Effects of spent substrate of oyster mushroom ( Pleurotus ostreatus) on ruminal fermentation, microbial community and growth performance in Hu sheep. Front Microbiol 2024; 15:1425218. [PMID: 39507332 PMCID: PMC11538048 DOI: 10.3389/fmicb.2024.1425218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 10/11/2024] [Indexed: 11/08/2024] Open
Abstract
Introduction The study aimed to evaluate the effects of Pleurotus Spent Mushroom Substrate (P.SMS) on the rumen microbiota, encompassing bacteria and fungi, as well as their interactions in Hu sheep. Methods A total of forty-five 3-month-old Hu sheep were randomly assigned to five groups. Each group was fed diets in which whole-plant corn silage (WPCS) was substituted with P.SMS at varying levels: 0% (CON), 5% (PSMS5), 10% (PSMS10), 15% (PSMS15), or 20% (PSMS20). Results The results indicated that higher proportions of P.SMS during the experimental period might have a detrimental effect on feed utilization efficiency, kidney function, and blood oxygen-carrying capacity. Notably, moderate levels of P.SMS, specifically below 15%, were associated with improvements in rumen NH3-N levels and absorption capacity. The results indicated that (1) PSMS20 exhibited a significantly higher feed-to-gain ratio compared to CON (P < 0.05); (2) PSMS15 showed a significantly higher NH3-N content than CON, PSMS5, and PSMS20. Additionally, PSMS10 and PSMS20 had elevated concentrations of NH3-N compared to CON and PSMS5 (P < 0.05); (3) The length and width of rumen papillae were significantly greater in PSMS20 compared to CON and PSMS5 (P < 0.05); (4) Creatinine levels were significantly higher in PSMS20 than in CON, PSMS5, and PSMS10 (P < 0.05); (5) By the conclusion of the experiment, hemoglobin concentration in PSMS20 showed a significant increase compared to CON (P < 0.05). Furthermore, the addition of P.SMS influenced microorganisms at both the phylum and genus levels: (1) At the phylum level, the prevalence of Patescibacteria was significantly lower in PSMS20 compared to the other groups; (2) PSMS15 exhibited significantly higher relative abundances of Basidiomycota compared to CON and PSMS10, while PSMS20 also demonstrated significantly higher relative abundances compared to CON (P < 0.05); (3) At the genus level, the prevalence of Candidatus_Saccharimonas in PSMS20 was significantly lower than in PSMS5, PSMS10, and PSMS15. Conversely, the prevalence of Phanerochaete in PSMS15 was notably higher than in CON and PSMS10, and it was also significantly elevated in PSMS20 compared to CON (P < 0.05); (4) Correlation analysis indicated no significant correlation between changes in the structure of bacterial and fungal communities. Discussion Considering these findings, a high percentage of P.SMS negatively impacted feed utilization efficiency, blood oxygen carrying capacity, and kidney function, while a moderate percentage of P.SMS promotes rumen absorption capacity, indicating that feeding 10% P.SMS is optimal.
Collapse
Affiliation(s)
- Mu-Long Lu
- College of Animal Science and Technology, Tarim University, Alar, China
| | - Guo-Hong Yuan
- College of Animal Science and Technology, Tarim University, Alar, China
| | - Halidai Rehemujiang
- College of Animal Science and Technology, Tarim University, Alar, China
- Key Laboratory of Livestock and Forage Resources Utilization around Tarim, Ministry of Agriculture and Rural Affairs, Tarim University, Alar, China
| | - Chang-Chang Li
- College of Animal Science and Technology, Tarim University, Alar, China
| | - Li-Hong Hu
- College of Animal Science and Technology, Tarim University, Alar, China
| | - Ping-Ping Duan
- College of Animal Science and Technology, Tarim University, Alar, China
| | - Li-Dong Zhang
- College of Animal Science and Technology, Tarim University, Alar, China
| | - Qi-Yu Diao
- Institute of Feed Research/Key Laboratory of Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Kai-Dong Deng
- College of Animal Science and Food Engineering, Jinling Institute of Technology, Nanjing, Jiangsu, China
| | - Gui-Shan Xu
- College of Animal Science and Technology, Tarim University, Alar, China
- Key Laboratory of Livestock and Forage Resources Utilization around Tarim, Ministry of Agriculture and Rural Affairs, Tarim University, Alar, China
| |
Collapse
|
19
|
Fujii N, Kuroda K, Narihiro T, Aoi Y, Ozaki N, Ohashi A, Kindaichi T. Unique episymbiotic relationship between Candidatus Patescibacteria and Zoogloea in activated sludge flocs at a municipal wastewater treatment plant. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e70007. [PMID: 39267333 PMCID: PMC11393006 DOI: 10.1111/1758-2229.70007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 08/28/2024] [Indexed: 09/17/2024]
Abstract
Candidatus Patescibacteria, also known as candidate phyla radiation (CPR), including the class-level uncultured clade JAEDAM01 (formerly a subclass of Gracilibacteria/GN02/BD1-5), are ubiquitous in activated sludge. However, their characteristics and relationships with other organisms are largely unknown. They are believed to be episymbiotic, endosymbiotic or predatory. Despite our understanding of their limited metabolic capacity, their precise roles remain elusive due to the difficulty in cultivating and identifying them. In previous research, we successfully recovered high-quality metagenome-assembled genomes (MAGs), including a member of JAEDAM01 from activated sludge flocs. In this study, we designed new probes to visualize the targeted JAEDAM01-associated MAG HHAS10 and identified its host using fluorescence in situ hybridization (FISH). The FISH observations revealed that JAEDAM01 HHAS10-like cells were located within dense clusters of Zoogloea, and the fluorescence brightness of zoogloeal cells decreased in the vicinity of the CPR cells. The Zoogloea MAGs possessed genes related to extracellular polymeric substance biosynthesis, floc formation and nutrient removal, including a polyhydroxyalkanoate (PHA) accumulation pathway. The JAEDAM01 MAG HHAS10 possessed genes associated with type IV pili, competence protein EC and PHA degradation, suggesting a Zoogloea-dependent lifestyle in activated sludge flocs. These findings indicate a new symbiotic relationship between JAEDAM01 and Zoogloea.
Collapse
Affiliation(s)
- Naoki Fujii
- Department of Civil and Environmental Engineering, Graduate School of Advanced Science and Engineering, Hiroshima University, Hiroshima, Japan
| | - Kyohei Kuroda
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Sapporo, Japan
| | - Takashi Narihiro
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Sapporo, Japan
| | - Yoshiteru Aoi
- Program of Biotechnology, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Noriatsu Ozaki
- Department of Civil and Environmental Engineering, Graduate School of Advanced Science and Engineering, Hiroshima University, Hiroshima, Japan
| | - Akiyoshi Ohashi
- Department of Civil and Environmental Engineering, Graduate School of Advanced Science and Engineering, Hiroshima University, Hiroshima, Japan
| | - Tomonori Kindaichi
- Department of Civil and Environmental Engineering, Graduate School of Advanced Science and Engineering, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
20
|
Nakagawa S, Sakai HD, Shimamura S, Takamatsu Y, Kato S, Yagi H, Yanaka S, Yagi-Utsumi M, Kurosawa N, Ohkuma M, Kato K, Takai K. N-linked protein glycosylation in Nanobdellati (formerly DPANN) archaea and their hosts. J Bacteriol 2024; 206:e0020524. [PMID: 39194224 PMCID: PMC11411935 DOI: 10.1128/jb.00205-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 08/02/2024] [Indexed: 08/29/2024] Open
Abstract
Members of the kingdom Nanobdellati, previously known as DPANN archaea, are characterized by ultrasmall cell sizes and reduced genomes. They primarily thrive through ectosymbiotic interactions with specific hosts in diverse environments. Recent successful cultivations have emphasized the importance of adhesion to host cells for understanding the ecophysiology of Nanobdellati. Cell adhesion is often mediated by cell surface carbohydrates, and in archaea, this may be facilitated by the glycosylated S-layer protein that typically coats their cell surface. In this study, we conducted glycoproteomic analyses on two co-cultures of Nanobdellati with their host archaea, as well as on pure cultures of both host and non-host archaea. Nanobdellati exhibited various glycoproteins, including archaellins and hypothetical proteins, with glycans that were structurally distinct from those of their hosts. This indicated that Nanobdellati autonomously synthesize their glycans for protein modifications probably using host-derived substrates, despite the high energy cost. Glycan modifications on Nanobdellati proteins consistently occurred on asparagine residues within the N-X-S/T sequon, consistent with patterns observed across archaea, bacteria, and eukaryotes. In both host and non-host archaea, S-layer proteins were commonly modified with hexose, N-acetylhexosamine, and sulfonated deoxyhexose. However, the N-glycan structures of host archaea, characterized by distinct sugars such as deoxyhexose, nonulosonate sugar, and pentose at the nonreducing ends, were implicated in enabling Nanobdellati to differentiate between host and non-host cells. Interestingly, the specific sugar, xylose, was eliminated from the N-glycan in a host archaeon when co-cultured with Nanobdella. These findings enhance our understanding of the role of protein glycosylation in archaeal interactions.IMPORTANCENanobdellati archaea, formerly known as DPANN, are phylogenetically diverse, widely distributed, and obligately ectosymbiotic. The molecular mechanisms by which Nanobdellati recognize and adhere to their specific hosts remain largely unexplored. Protein glycosylation, a fundamental biological mechanism observed across all domains of life, is often crucial for various cell-cell interactions. This study provides the first insights into the glycoproteome of Nanobdellati and their host and non-host archaea. We discovered that Nanobdellati autonomously synthesize glycans for protein modifications, probably utilizing substrates derived from their hosts. Additionally, we identified distinctive glycosylation patterns that suggest mechanisms through which Nanobdellati differentiate between host and non-host cells. This research significantly advances our understanding of the molecular basis of microbial interactions in extreme environments.
Collapse
Affiliation(s)
- Satoshi Nakagawa
- Division of Applied Biosciences, Laboratory of Marine Environmental Microbiology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
- Super-cutting-edge Grand and Advanced Research (SUGAR) Program, Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institute of Natural Sciences, Okazaki, Aichi, Japan
| | - Hiroyuki D. Sakai
- Department of Science and Engineering for Sustainable Innovation, Faculty of Science and Engineering, Soka University, Hachioji, Tokyo, Japan
- Japan Collection of Microorganisms (JCM), RIKEN BioResource Research Center, Tsukuba, Ibaraki, Japan
| | - Shigeru Shimamura
- Super-cutting-edge Grand and Advanced Research (SUGAR) Program, Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan
| | - Yoshiki Takamatsu
- Division of Applied Biosciences, Laboratory of Marine Environmental Microbiology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Shingo Kato
- Japan Collection of Microorganisms (JCM), RIKEN BioResource Research Center, Tsukuba, Ibaraki, Japan
| | - Hirokazu Yagi
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institute of Natural Sciences, Okazaki, Aichi, Japan
- Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Saeko Yanaka
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institute of Natural Sciences, Okazaki, Aichi, Japan
- Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
- Institute for Molecular Science (IMS), National Institutes of Natural Sciences, Okazaki, Aichi, Japan
| | - Maho Yagi-Utsumi
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institute of Natural Sciences, Okazaki, Aichi, Japan
- Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
- Institute for Molecular Science (IMS), National Institutes of Natural Sciences, Okazaki, Aichi, Japan
| | - Norio Kurosawa
- Department of Science and Engineering for Sustainable Innovation, Faculty of Science and Engineering, Soka University, Hachioji, Tokyo, Japan
| | - Moriya Ohkuma
- Japan Collection of Microorganisms (JCM), RIKEN BioResource Research Center, Tsukuba, Ibaraki, Japan
| | - Koichi Kato
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institute of Natural Sciences, Okazaki, Aichi, Japan
- Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
- Institute for Molecular Science (IMS), National Institutes of Natural Sciences, Okazaki, Aichi, Japan
| | - Ken Takai
- Super-cutting-edge Grand and Advanced Research (SUGAR) Program, Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institute of Natural Sciences, Okazaki, Aichi, Japan
| |
Collapse
|
21
|
Lezcano MÁ, Bornemann TLV, Sánchez-García L, Carrizo D, Adam PS, Esser SP, Cabrol NA, Probst AJ, Parro V. Hyperexpansion of genetic diversity and metabolic capacity of extremophilic bacteria and archaea in ancient Andean lake sediments. MICROBIOME 2024; 12:176. [PMID: 39300577 PMCID: PMC11411797 DOI: 10.1186/s40168-024-01878-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 07/19/2024] [Indexed: 09/22/2024]
Abstract
BACKGROUND The Andean Altiplano hosts a repertoire of high-altitude lakes with harsh conditions for life. These lakes are undergoing a process of desiccation caused by the current climate, leaving terraces exposed to extreme atmospheric conditions and serving as analogs to Martian paleolake basins. Microbiomes in Altiplano lake terraces have been poorly studied, enclosing uncultured lineages and a great opportunity to understand environmental adaptation and the limits of life on Earth. Here we examine the microbial diversity and function in ancient sediments (10.3-11 kyr BP (before present)) from a terrace profile of Laguna Lejía, a sulfur- and metal/metalloid-rich saline lake in the Chilean Altiplano. We also evaluate the physical and chemical changes of the lake over time by studying the mineralogy and geochemistry of the terrace profile. RESULTS The mineralogy and geochemistry of the terrace profile revealed large water level fluctuations in the lake, scarcity of organic carbon, and high concentration of SO42--S, Na, Cl and Mg. Lipid biomarker analysis indicated the presence of aquatic/terrestrial plant remnants preserved in the ancient sediments, and genome-resolved metagenomics unveiled a diverse prokaryotic community with still active microorganisms based on in silico growth predictions. We reconstructed 591 bacterial and archaeal metagenome-assembled genomes (MAGs), of which 98.8% belonged to previously unreported species. The most abundant and widespread metabolisms among MAGs were the reduction and oxidation of S, N, As, and halogenated compounds, as well as aerobic CO oxidation, possibly as a key metabolic trait in the organic carbon-depleted sediments. The broad redox and CO2 fixation pathways among phylogenetically distant bacteria and archaea extended the knowledge of metabolic capacities to previously unknown taxa. For instance, we identified genomic potential for dissimilatory sulfate reduction in Bacteroidota and α- and γ-Proteobacteria, predicted an enzyme for ammonia oxidation in a novel Actinobacteriota, and predicted enzymes of the Calvin-Benson-Bassham cycle in Planctomycetota, Gemmatimonadota, and Nanoarchaeota. CONCLUSIONS The high number of novel bacterial and archaeal MAGs in the Laguna Lejía indicates the wide prokaryotic diversity discovered. In addition, the detection of genes in unexpected taxonomic groups has significant implications for the expansion of microorganisms involved in the biogeochemical cycles of carbon, nitrogen, and sulfur. Video Abstract.
Collapse
Affiliation(s)
- María Ángeles Lezcano
- Centro de Astrobiología (CAB), CSIC-INTA, 28850, Torrejón de Ardoz, Madrid, Spain.
- IMDEA Water Institute, Avenida Punto Com 2, 28805, Alcalá de Henares, Madrid, Spain.
| | - Till L V Bornemann
- Environmental Metagenomics, Research Center One Health Ruhr of the University Alliance Ruhr, Faculty of Chemistry, University of Duisburg-Essen, Essen, Germany
- Centre of Water and Environmental Research (ZWU), University of Duisburg-Essen, Essen, Germany
| | - Laura Sánchez-García
- Centro de Astrobiología (CAB), CSIC-INTA, 28850, Torrejón de Ardoz, Madrid, Spain
| | - Daniel Carrizo
- Centro de Astrobiología (CAB), CSIC-INTA, 28850, Torrejón de Ardoz, Madrid, Spain
| | - Panagiotis S Adam
- Environmental Metagenomics, Research Center One Health Ruhr of the University Alliance Ruhr, Faculty of Chemistry, University of Duisburg-Essen, Essen, Germany
- Institute of General Microbiology, Kiel University, Kiel, Germany
| | - Sarah P Esser
- Environmental Metagenomics, Research Center One Health Ruhr of the University Alliance Ruhr, Faculty of Chemistry, University of Duisburg-Essen, Essen, Germany
| | - Nathalie A Cabrol
- SETI Institute, 339 Bernardo Avenue, Suite 200, Mountain View, CA, 94043, USA
| | - Alexander J Probst
- Environmental Metagenomics, Research Center One Health Ruhr of the University Alliance Ruhr, Faculty of Chemistry, University of Duisburg-Essen, Essen, Germany
- Centre of Water and Environmental Research (ZWU), University of Duisburg-Essen, Essen, Germany
| | - Víctor Parro
- Centro de Astrobiología (CAB), CSIC-INTA, 28850, Torrejón de Ardoz, Madrid, Spain
| |
Collapse
|
22
|
Lauzon J, Caron D, Lazar CS. The Saint-Leonard Urban Glaciotectonic Cave Harbors Rich and Diverse Planktonic and Sedimentary Microbial Communities. Microorganisms 2024; 12:1791. [PMID: 39338466 PMCID: PMC11434022 DOI: 10.3390/microorganisms12091791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/19/2024] [Accepted: 08/23/2024] [Indexed: 09/30/2024] Open
Abstract
The terrestrial subsurface harbors unique microbial communities that play important biogeochemical roles and allow for studying a yet unknown fraction of the Earth's biodiversity. The Saint-Leonard cave in Montreal City (Canada) is of glaciotectonic origin. Its speleogenesis traces back to the withdrawal of the Laurentide Ice Sheet 13,000 years ago, during which the moving glacier dislocated the sedimentary rock layers. Our study is the first to investigate the microbial communities of the Saint-Leonard cave. By using amplicon sequencing, we analyzed the taxonomic diversity and composition of bacterial, archaeal and eukaryote communities living in the groundwater (0.1 µm- and 0.2 µm-filtered water), in the sediments and in surface soils. We identified a microbial biodiversity typical of cave ecosystems. Communities were mainly shaped by habitat type and harbored taxa associated with a wide variety of lifestyles and metabolic capacities. Although we found evidence of a geochemical connection between the above soils and the cave's galleries, our results suggest that the community assembly dynamics are driven by habitat selection rather than dispersal. Furthermore, we found that the cave's groundwater, in addition to being generally richer in microbial taxa than sediments, contained a considerable diversity of ultra-small bacteria and archaea.
Collapse
Affiliation(s)
- Jocelyn Lauzon
- Biological Sciences Department, University of Quebec in Montreal (UQAM), Montreal, QC H3C 3P8, Canada
| | | | - Cassandre Sara Lazar
- Biological Sciences Department, University of Quebec in Montreal (UQAM), Montreal, QC H3C 3P8, Canada
| |
Collapse
|
23
|
Tsurumaki M, Sato A, Saito M, Kanai A. Comprehensive analysis of insertion sequences within rRNA genes of CPR bacteria and biochemical characterization of a homing endonuclease encoded by these sequences. J Bacteriol 2024; 206:e0007424. [PMID: 38856219 PMCID: PMC11270868 DOI: 10.1128/jb.00074-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 05/11/2024] [Indexed: 06/11/2024] Open
Abstract
The Candidate Phyla Radiation (CPR) represents an extensive bacterial clade comprising primarily uncultured lineages and is distinguished from other bacteria by a significant prevalence of insertion sequences (ISs) within their rRNA genes. However, our understanding of the taxonomic distribution and characteristics of these ISs remains limited. In this study, we used a comprehensive approach to systematically determine the nature of the rRNA ISs in CPR bacteria. The analysis of hundreds of rRNA gene sequences across 65 CPR phyla revealed that ISs are present in 48% of 16S rRNA genes and 82% of 23S rRNA genes, indicating a broad distribution across the CPR clade, with exceptions in the 16S and 23S rRNA genes of Candidatus (Ca.) Saccharibacteria and the 16S rRNA genes of Ca. Peregrinibacteria. Over half the ISs display a group-I-intron-like structure, whereas specific 16S rRNA gene ISs display features reminiscent of group II introns. The ISs frequently encode proteins with homing endonuclease (HE) domains, centered around the LAGLIDADG motif. The LAGLIDADG HE (LHE) proteins encoded by the rRNA ISs of CPR bacteria predominantly have a single-domain structure, deviating from the usual single- or double-domain configuration observed in typical prokaryotic LHEs. Experimental analysis of one LHE protein, I-ShaI from Ca. Shapirobacteria, confirmed that its endonuclease activity targets the DNA sequence of its insertion site, and chemical cross-linking experiments demonstrated its capacity to form homodimers. These results provide robust evidence supporting the hypothesis that the explosive proliferation of rRNA ISs in CPR bacteria was facilitated by mechanisms involving LHEs. IMPORTANCE Insertion sequences (ISs) in rRNA genes are relatively limited and infrequent in most bacterial phyla. With a comprehensive bioinformatic analysis, we show that in CPR bacteria, these ISs occur in 48% of 16S rRNA genes and 82% of 23S rRNA genes. We also report the systematic and biochemical characterization of the LAGLIDADG homing endonucleases (LHEs) encoded by these ISs in the first such analysis of the CPR bacteria. This study significantly extends our understanding of the phylogenetic positions of rRNA ISs within CPR bacteria and the biochemical features of their LHEs.
Collapse
Affiliation(s)
- Megumi Tsurumaki
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan
- Systems Biology Program, Graduate School of Media and Governance, Keio University, Fujisawa, Japan
| | - Asako Sato
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan
| | - Motofumi Saito
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan
- Systems Biology Program, Graduate School of Media and Governance, Keio University, Fujisawa, Japan
| | - Akio Kanai
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan
- Systems Biology Program, Graduate School of Media and Governance, Keio University, Fujisawa, Japan
- Faculty of Environment and Information Studies, Keio University, Fujisawa, Japan
| |
Collapse
|
24
|
Sakurai R, Fukuda Y, Tada C. Circular metagenome-assembled genome of Candidatus Patescibacteria recovered from anaerobic digestion sludge. Microbiol Resour Announc 2024; 13:e0008324. [PMID: 38526092 PMCID: PMC11008200 DOI: 10.1128/mra.00083-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 03/15/2024] [Indexed: 03/26/2024] Open
Abstract
A single-contig, circular metagenome-assembled genome (cMAG) of Candidatus (Ca.) Patescibacteria was reconstructed from a mesophilic full-scale food waste treatment plant in Japan. The genome is of small size and lacks fundamental biosynthetic pathways. Taxonomic analysis using the Genome Taxonomy Database revealed that this cMAG belonged to the genus JAEZRQ01 (Ca. Parcubacteria).
Collapse
Affiliation(s)
- Riku Sakurai
- Laboratory of Sustainable Animal Environment, Graduate School of Agricultural Science, Tohoku University, Osaki, Miyagi, Japan
- Japan Society for the Promotion of Science, Chiyoda-ku, Tokyo, Japan
| | - Yasuhiro Fukuda
- Laboratory of Sustainable Animal Environment, Graduate School of Agricultural Science, Tohoku University, Osaki, Miyagi, Japan
| | - Chika Tada
- Laboratory of Sustainable Animal Environment, Graduate School of Agricultural Science, Tohoku University, Osaki, Miyagi, Japan
| |
Collapse
|
25
|
Kuroda K, Maeda R, Shinshima F, Urasaki K, Kubota K, Nobu MK, Noguchi TQP, Satoh H, Yamauchi M, Narihiro T, Yamada M. Microbiological insights into anaerobic phenol degradation mechanisms and bulking phenomenon in a mesophilic upflow anaerobic sludge blanket reactor in long-term operation. WATER RESEARCH 2024; 253:121271. [PMID: 38341972 DOI: 10.1016/j.watres.2024.121271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 01/14/2024] [Accepted: 02/05/2024] [Indexed: 02/13/2024]
Abstract
In this study, a long-term operation of 2,747 days was conducted to evaluate the performance of the upflow anaerobic sludge blanket (UASB) reactor and investigated the degradation mechanisms of high-organic loading phenol wastewater. During the reactor operation, the maximum chemical oxygen demand (COD) removal rate of 6.1 ± 0.6 kg/m3/day under 1,680 mg/L phenol concentration was achieved in the mesophilic UASB reactor. After a significant change in the operating temperature from 24.0 ± 4.1 °C to 35.9 ± 0.6 °C, frequent observations of floating and washout of the bloated granular sludge (novel types of the bulking phenomenon) were made in the UASB reactor, suggesting that the change in operating temperature could be a trigger for the bulking phenomenon. Through the metagenomic analysis, phenol degradation mechanisms were predicted that phenol was converted to 4-hydroxybenzoate via two possible routes by Syntrophorhabdaceae and Pelotomaculaceae bacteria. Furthermore, the degradation of 4-hydroxybenzoate to benzoyl-CoA was carried out by members of Syntrophorhabdaceae and Smithellaceae. In the bulking sludge, a predominant presence of Nanobdellota, belonging to DPANN archaea, was detected. The metagenome-assembled genome of the Nanobdellota lacks many biosynthetic pathways and has several genes for the symbiotic lifestyle such as trimeric autotransporter adhesin-related protein. Furthermore, the Nanobdellota have significant correlations with several methanogenic archaea that are predominantly present in the UASB reactor. Considering the results of this study, the predominant Nanobdellota may negatively affect the growth of the methanogens through the parasitic lifestyle and change the balance of microbial interactions in the granular sludge ecosystem.
Collapse
Affiliation(s)
- Kyohei Kuroda
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2-17-2-1 Tsukisamu-Higashi, Toyohira-ku, Sapporo, Hokkaido 062-8517 Japan.
| | - Ryota Maeda
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2-17-2-1 Tsukisamu-Higashi, Toyohira-ku, Sapporo, Hokkaido 062-8517 Japan; Department of Chemical Science and Engineering, National Institute of Technology, Miyakonojo College, 473-1 Yoshio-cho, Miyakonojo, Miyazaki 885-8567, Japan; Department of Frontier Sciences for Advanced Environment, Graduate School of Environmental Studies, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Futaba Shinshima
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2-17-2-1 Tsukisamu-Higashi, Toyohira-ku, Sapporo, Hokkaido 062-8517 Japan; Department of Chemical Science and Engineering, National Institute of Technology, Miyakonojo College, 473-1 Yoshio-cho, Miyakonojo, Miyazaki 885-8567, Japan
| | - Kampachiro Urasaki
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Kengo Kubota
- Department of Frontier Sciences for Advanced Environment, Graduate School of Environmental Studies, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan; Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Masaru K Nobu
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, Higashi 1-1-1, Tsukuba, Ibaraki 305-8566, Japan
| | - Taro Q P Noguchi
- Department of Chemical Science and Engineering, National Institute of Technology, Miyakonojo College, 473-1 Yoshio-cho, Miyakonojo, Miyazaki 885-8567, Japan
| | - Hisashi Satoh
- Division of Environmental Engineering, Faculty of Engineering, Hokkaido University, North-13, West-8, Hokkaido 060-8628 Japan
| | - Masahito Yamauchi
- Department of Urban Environmental Design and Engineering, National Institute of Technology, Kagoshima College, 1460-1 Shinkou, Hayato, Kirishima, Kagoshima 899-5193, Japan
| | - Takashi Narihiro
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2-17-2-1 Tsukisamu-Higashi, Toyohira-ku, Sapporo, Hokkaido 062-8517 Japan.
| | - Masayoshi Yamada
- Department of Urban Environmental Design and Engineering, National Institute of Technology, Kagoshima College, 1460-1 Shinkou, Hayato, Kirishima, Kagoshima 899-5193, Japan.
| |
Collapse
|
26
|
Hu H, Kristensen JM, Herbold CW, Pjevac P, Kitzinger K, Hausmann B, Dueholm MKD, Nielsen PH, Wagner M. Global abundance patterns, diversity, and ecology of Patescibacteria in wastewater treatment plants. MICROBIOME 2024; 12:55. [PMID: 38493180 PMCID: PMC10943839 DOI: 10.1186/s40168-024-01769-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 01/23/2024] [Indexed: 03/18/2024]
Abstract
BACKGROUND Microorganisms are responsible for nutrient removal and resource recovery in wastewater treatment plants (WWTPs), and their diversity is often studied by 16S rRNA gene amplicon sequencing. However, this approach underestimates the abundance and diversity of Patescibacteria due to the low coverage of commonly used PCR primers for this highly divergent bacterial phylum. Therefore, our current understanding of the global diversity, distribution, and ecological role of Patescibacteria in WWTPs is very incomplete. This is particularly relevant as Patescibacteria are considered to be associated with microbial host cells and can therefore influence the abundance and temporal variability of other microbial groups that are important for WWTP functioning. RESULTS Here, we evaluated the in silico coverage of widely used 16S rRNA gene-targeted primer pairs and redesigned a primer pair targeting the V4 region of bacterial and archaeal 16S rRNA genes to expand its coverage for Patescibacteria. We then experimentally evaluated and compared the performance of the original and modified V4-targeted primers on 565 WWTP samples from the MiDAS global sample collection. Using the modified primer pair, the percentage of ASVs classified as Patescibacteria increased from 5.9 to 23.8%, and the number of detected patescibacterial genera increased from 560 to 1576, while the detected diversity of the remaining microbial community remained similar. Due to this significantly improved coverage of Patescibacteria, we identified 23 core genera of Patescibacteria in WWTPs and described the global distribution pattern of these unusual microbes in these systems. Finally, correlation network analysis revealed potential host organisms that might be associated with Patescibacteria in WWTPs. Interestingly, strong indications were found for an association between Patescibacteria of the Saccharimonadia and globally abundant polyphosphate-accumulating organisms of the genus Ca. Phosphoribacter. CONCLUSIONS Our study (i) provides an improved 16S rRNA gene V4 region-targeted amplicon primer pair inclusive of Patescibacteria with little impact on the detection of other taxa, (ii) reveals the diversity and distribution patterns of Patescibacteria in WWTPs on a global scale, and (iii) provides new insights into the ecological role and potential hosts of Patescibacteria in WWTPs. Video Abstract.
Collapse
Affiliation(s)
- Huifeng Hu
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Djerassiplatz 1, 1030, Vienna, Austria
- Doctoral School in Microbiology and Environmental Science, University of Vienna, Universitätsring 1, 1010, Vienna, Austria
| | - Jannie Munk Kristensen
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Djerassiplatz 1, 1030, Vienna, Austria
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Craig William Herbold
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Djerassiplatz 1, 1030, Vienna, Austria
- Te Kura Putaiao Koiora, School of Biological Sciences, Te Whare Wananga o Waitaha, University of Canterbury, Otautahi, Christchurch, Aotearoa, New Zealand
| | - Petra Pjevac
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Djerassiplatz 1, 1030, Vienna, Austria
- Joint Microbiome Facility of the Medical University of Vienna , University of Vienna, Vienna, Austria
| | - Katharina Kitzinger
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Djerassiplatz 1, 1030, Vienna, Austria
| | - Bela Hausmann
- Joint Microbiome Facility of the Medical University of Vienna , University of Vienna, Vienna, Austria
- Division of Clinical Microbiology, Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Morten Kam Dahl Dueholm
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Per Halkjaer Nielsen
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Michael Wagner
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Djerassiplatz 1, 1030, Vienna, Austria.
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark.
- Joint Microbiome Facility of the Medical University of Vienna , University of Vienna, Vienna, Austria.
| |
Collapse
|
27
|
Kuroda K, Nakajima M, Nakai R, Hirakata Y, Kagemasa S, Kubota K, Noguchi TQP, Yamamoto K, Satoh H, Nobu MK, Narihiro T. Microscopic and metatranscriptomic analyses revealed unique cross-domain parasitism between phylum Candidatus Patescibacteria/candidate phyla radiation and methanogenic archaea in anaerobic ecosystems. mBio 2024; 15:e0310223. [PMID: 38323857 PMCID: PMC10936435 DOI: 10.1128/mbio.03102-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 01/10/2024] [Indexed: 02/08/2024] Open
Abstract
To verify whether members of the phylum Candidatus Patescibacteria parasitize archaea, we applied cultivation, microscopy, metatranscriptomic, and protein structure prediction analyses on the Patescibacteria-enriched cultures derived from a methanogenic bioreactor. Amendment of cultures with exogenous methanogenic archaea, acetate, amino acids, and nucleoside monophosphates increased the relative abundance of Ca. Patescibacteria. The predominant Ca. Patescibacteria were families Ca. Yanofskyibacteriaceae and Ca. Minisyncoccaceae, and the former showed positive linear relationships (r2 ≥ 0.70) Methanothrix in their relative abundances, suggesting related growth patterns. Methanothrix and Methanospirillum cells with attached Ca. Yanofskyibacteriaceae and Ca. Minisyncoccaceae, respectively, had significantly lower cellular activity than those of the methanogens without Ca. Patescibacteria, as extrapolated from fluorescence in situ hybridization-based fluorescence. We also observed that parasitized methanogens often had cell surface deformations. Some Methanothrix-like filamentous cells were dented where the submicron cells were attached. Ca. Yanofskyibacteriaceae and Ca. Minisyncoccaceae highly expressed extracellular enzymes, and based on structural predictions, some contained peptidoglycan-binding domains with potential involvement in host cell attachment. Collectively, we propose that the interactions of Ca. Yanofskyibacteriaceae and Ca. Minisyncoccaceae with methanogenic archaea are parasitisms.IMPORTANCECulture-independent DNA sequencing approaches have explored diverse yet-to-be-cultured microorganisms and have significantly expanded the tree of life in recent years. One major lineage of the domain Bacteria, Ca. Patescibacteria (also known as candidate phyla radiation), is widely distributed in natural and engineered ecosystems and has been thought to be dependent on host bacteria due to the lack of several biosynthetic pathways and small cell/genome size. Although bacteria-parasitizing or bacteria-preying Ca. Patescibacteria have been described, our recent studies revealed that some lineages can specifically interact with archaea. In this study, we provide strong evidence that the relationship is parasitic, shedding light on overlooked roles of Ca. Patescibacteria in anaerobic habitats.
Collapse
Affiliation(s)
- Kyohei Kuroda
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Sapporo, Hokkaido, Japan
| | - Meri Nakajima
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Sapporo, Hokkaido, Japan
- Division of Environmental Engineering, Faculty of Engineering, Hokkaido University, Hokkaido, Japan
| | - Ryosuke Nakai
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Sapporo, Hokkaido, Japan
| | - Yuga Hirakata
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| | - Shuka Kagemasa
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Sapporo, Hokkaido, Japan
- Department of Civil and Environmental Engineering, National Institute of Technology, Anan College, Anan, Tokushima, Japan
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, Sendai, Miyagi, Japan
| | - Kengo Kubota
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, Sendai, Miyagi, Japan
- Department of Frontier Sciences for Advanced Environment, Graduate School of Environmental Studies, Tohoku University, Sendai, Miyagi, Japan
| | - Taro Q. P. Noguchi
- Department of Chemical Science and Engineering, National Institute of Technology, Miyakonojo College, Miyakonojo, Miyazaki, Japan
| | - Kyosuke Yamamoto
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Sapporo, Hokkaido, Japan
| | - Hisashi Satoh
- Division of Environmental Engineering, Faculty of Engineering, Hokkaido University, Hokkaido, Japan
| | - Masaru K. Nobu
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
- Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Kanagawa, Japan
| | - Takashi Narihiro
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Sapporo, Hokkaido, Japan
| |
Collapse
|
28
|
Pan K, Wei Y, Qiu C, Li H, Wang L, Cheng L, Bi X. Comprehensive analysis of effects of magnetic nanoparticles on aerobic granulation and microbial community composition: From the perspective of acyl-homoserine lactones mediated communication. BIORESOURCE TECHNOLOGY 2024; 393:130174. [PMID: 38072081 DOI: 10.1016/j.biortech.2023.130174] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/22/2023] [Accepted: 12/06/2023] [Indexed: 01/18/2024]
Abstract
As dosing additives benefit for aerobic granular sludge (AGS) cultivation, effects of different concentrations (0, 10, 50 and 100 mg/L) of magnetic nanoparticles (Fe3O4 NPs) on aerobic granulation, contaminant removal and potential microbial community evolution related to acyl-homoserine lactones (AHLs) mediated bacterial communication were investigated with municipal wastewater. Results showed that the required time to achieve granulation ratio > 70 % was reduced by 60, 90 and 30 days in phase II with addition of 10, 50, 100 mg/L Fe3O4 NPs, respectively. 50 mg/L Fe3O4 NPs can improve contaminant removal efficiency. The promotion of relative abundance of AHLs-producing and AHLs-producing/quenching populations and AHLs-related functional genes accompanied with faster granulation. Iron-cycling-related bacteria were closely related with AHLs-related bacteria during AGS formation. Co-occurrence network analyses showed that AHLs-mediated communication may play an important role in coordinating microbial community composition and functional bacteria participating in nitrogen and polyphosphate metabolisms during aerobic granulation process.
Collapse
Affiliation(s)
- Kailing Pan
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266000, China.
| | - Yuxuan Wei
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266000, China
| | - Chen Qiu
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266000, China
| | - Hongyu Li
- Qingdao SPRING Water Treatment Co. Ltd., Qingdao 266000, China.
| | - Ling Wang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266000, China
| | - Lihua Cheng
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266000, China
| | - Xuejun Bi
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266000, China
| |
Collapse
|
29
|
Valentin-Alvarado LE, Fakra SC, Probst AJ, Giska JR, Jaffe AL, Oltrogge LM, West-Roberts J, Rowland J, Manga M, Savage DF, Greening C, Baker BJ, Banfield JF. Autotrophic biofilms sustained by deeply sourced groundwater host diverse bacteria implicated in sulfur and hydrogen metabolism. MICROBIOME 2024; 12:15. [PMID: 38273328 PMCID: PMC10811913 DOI: 10.1186/s40168-023-01704-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 10/18/2023] [Indexed: 01/27/2024]
Abstract
BACKGROUND Biofilms in sulfide-rich springs present intricate microbial communities that play pivotal roles in biogeochemical cycling. We studied chemoautotrophically based biofilms that host diverse CPR bacteria and grow in sulfide-rich springs to investigate microbial controls on biogeochemical cycling. RESULTS Sulfide springs biofilms were investigated using bulk geochemical analysis, genome-resolved metagenomics, and scanning transmission X-ray microscopy (STXM) at room temperature and 87 K. Chemolithotrophic sulfur-oxidizing bacteria, including Thiothrix and Beggiatoa, dominate the biofilms, which also contain CPR Gracilibacteria, Absconditabacteria, Saccharibacteria, Peregrinibacteria, Berkelbacteria, Microgenomates, and Parcubacteria. STXM imaging revealed ultra-small cells near the surfaces of filamentous bacteria that may be CPR bacterial episymbionts. STXM and NEXAFS spectroscopy at carbon K and sulfur L2,3 edges show that filamentous bacteria contain protein-encapsulated spherical elemental sulfur granules, indicating that they are sulfur oxidizers, likely Thiothrix. Berkelbacteria and Moranbacteria in the same biofilm sample are predicted to have a novel electron bifurcating group 3b [NiFe]-hydrogenase, putatively a sulfhydrogenase, potentially linked to sulfur metabolism via redox cofactors. This complex could potentially contribute to symbioses, for example, with sulfur-oxidizing bacteria such as Thiothrix that is based on cryptic sulfur cycling. One Doudnabacteria genome encodes adjacent sulfur dioxygenase and rhodanese genes that may convert thiosulfate to sulfite. We find similar conserved genomic architecture associated with CPR bacteria from other sulfur-rich subsurface ecosystems. CONCLUSIONS Our combined metagenomic, geochemical, spectromicroscopic, and structural bioinformatics analyses of biofilms growing in sulfide-rich springs revealed consortia that contain CPR bacteria and sulfur-oxidizing Proteobacteria, including Thiothrix, and bacteria from a new family within Beggiatoales. We infer roles for CPR bacteria in sulfur and hydrogen cycling. Video Abstract.
Collapse
Affiliation(s)
- Luis E Valentin-Alvarado
- Graduate Group in Microbiology, University of California, Berkeley, CA, USA
- Innovative Genomics Institute, University of California, Berkeley, CA, USA
| | - Sirine C Fakra
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Alexander J Probst
- Earth and Planetary Science, University of California, Berkeley, CA, USA
- Environmental Metagenomics, Research Center One Health Ruhr of the University Alliance Ruhr, Faculty of Chemistry,, University of Duisburg-Essen, Essen, Essen, Germany
| | - Jonathan R Giska
- Earth and Planetary Science, University of California, Berkeley, CA, USA
- Cleaner Air Oregon Program, Oregon Department of Environmental Quality, Portland, USA
| | - Alexander L Jaffe
- Graduate Group in Microbiology, University of California, Berkeley, CA, USA
| | - Luke M Oltrogge
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
- Howard Hughes Medical Institute, University of California, Berkeley, CA, 94720, USA
| | - Jacob West-Roberts
- Environmental Science, Policy and Management, University of California, Berkeley, CA, USA
| | - Joel Rowland
- Earth and Planetary Science, University of California, Berkeley, CA, USA
- Earth and Env. Sciences Division, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Michael Manga
- Earth and Planetary Science, University of California, Berkeley, CA, USA
- University of Duisburg-Essen, Universitätsstraße 5, 45141, Essen, Germany
| | - David F Savage
- Innovative Genomics Institute, University of California, Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
- Howard Hughes Medical Institute, University of California, Berkeley, CA, 94720, USA
| | - Chris Greening
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, Australia
| | - Brett J Baker
- Department of Integrative Biology, University of Texas, Austin, USA
- Department of Marine Science, University of Texas, Austin, USA
| | - Jillian F Banfield
- Innovative Genomics Institute, University of California, Berkeley, CA, USA.
- Earth and Planetary Science, University of California, Berkeley, CA, USA.
- Environmental Science, Policy and Management, University of California, Berkeley, CA, USA.
- Department of Marine Science, University of Texas, Austin, USA.
- Energy Geoscience Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| |
Collapse
|
30
|
Medvedeva S, Borrel G, Gribaldo S. Sheaths are diverse and abundant cell surface layers in archaea. THE ISME JOURNAL 2024; 18:wrae225. [PMID: 39499655 PMCID: PMC11576556 DOI: 10.1093/ismejo/wrae225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/10/2024] [Accepted: 11/04/2024] [Indexed: 11/07/2024]
Abstract
Prokaryotic cells employ multiple protective layers crucial for defense, structural integrity, and cellular interactions in the environment. Archaea often feature an S-layer, with some species possessing additional and remarkably resistant sheaths. The archaeal sheath has been studied in Methanothrix and Methanospirillum, revealing a complex structure consisting of amyloid proteins organized into rings. Here, we conducted a comprehensive survey of sheath-forming proteins (SH proteins) across archaeal genomes. Structural modeling reveals a rich diversity of SH proteins, indicating the presence of a sheath in members of the TACK superphylum (Thermoprotei), as well as in the methanotrophic ANME-1. SH proteins are present in up to 40 copies per genome and display diverse domain arrangements suggesting multifunctional roles within the sheath, and potential involvement in cell-cell interaction with syntrophic partners. We uncover a complex evolutionary dynamic, indicating active exchange of SH proteins in archaeal communities. We find that viruses infecting sheathed archaea encode a diversity of SH-like proteins and we use them as markers to identify 580 vOTUs potentially associated with sheathed archaea. Structural modeling suggests that viral SH proteins can form complexes with the host SH proteins. We propose a previously unreported egress strategy where the expression of viral SH-like proteins may disrupt the integrity of the host sheath and facilitate viral exit during lysis. Together, our results significantly expand knowledge of the diversity and evolution of the archaeal sheath, which has been largely understudied but might have an important role in shaping microbial communities.
Collapse
Affiliation(s)
- Sofia Medvedeva
- Institut Pasteur, Université Paris Cité, Microbiology Department, Evolutionary Biology of the Microbial Cell, 25 rue du dr Roux, 75015, Paris, France
| | - Guillaume Borrel
- Institut Pasteur, Université Paris Cité, Microbiology Department, Evolutionary Biology of the Microbial Cell, 25 rue du dr Roux, 75015, Paris, France
| | - Simonetta Gribaldo
- Institut Pasteur, Université Paris Cité, Microbiology Department, Evolutionary Biology of the Microbial Cell, 25 rue du dr Roux, 75015, Paris, France
| |
Collapse
|
31
|
Wang Y, Gallagher LA, Andrade PA, Liu A, Humphreys IR, Turkarslan S, Cutler KJ, Arrieta-Ortiz ML, Li Y, Radey MC, McLean JS, Cong Q, Baker D, Baliga NS, Peterson SB, Mougous JD. Genetic manipulation of Patescibacteria provides mechanistic insights into microbial dark matter and the epibiotic lifestyle. Cell 2023; 186:4803-4817.e13. [PMID: 37683634 PMCID: PMC10633639 DOI: 10.1016/j.cell.2023.08.017] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/06/2023] [Accepted: 08/16/2023] [Indexed: 09/10/2023]
Abstract
Patescibacteria, also known as the candidate phyla radiation (CPR), are a diverse group of bacteria that constitute a disproportionately large fraction of microbial dark matter. Its few cultivated members, belonging mostly to Saccharibacteria, grow as epibionts on host Actinobacteria. Due to a lack of suitable tools, the genetic basis of this lifestyle and other unique features of Patescibacteira remain unexplored. Here, we show that Saccharibacteria exhibit natural competence, and we exploit this property for their genetic manipulation. Imaging of fluorescent protein-labeled Saccharibacteria provides high spatiotemporal resolution of phenomena accompanying epibiotic growth, and a transposon-insertion sequencing (Tn-seq) genome-wide screen reveals the contribution of enigmatic Saccharibacterial genes to growth on their hosts. Finally, we leverage metagenomic data to provide cutting-edge protein structure-based bioinformatic resources that support the strain Southlakia epibionticum and its corresponding host, Actinomyces israelii, as a model system for unlocking the molecular underpinnings of the epibiotic lifestyle.
Collapse
Affiliation(s)
- Yaxi Wang
- Department of Microbiology, University of Washington, Seattle, WA 98109, USA
| | - Larry A Gallagher
- Department of Microbiology, University of Washington, Seattle, WA 98109, USA
| | - Pia A Andrade
- Department of Microbiology, University of Washington, Seattle, WA 98109, USA
| | - Andi Liu
- Department of Microbiology, University of Washington, Seattle, WA 98109, USA
| | - Ian R Humphreys
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | | | - Kevin J Cutler
- Department of Physics, University of Washington, Seattle, WA 98195, USA
| | | | - Yaqiao Li
- Department of Microbiology, University of Washington, Seattle, WA 98109, USA; Institute for Systems Biology, Seattle, WA 98109, USA
| | - Matthew C Radey
- Department of Microbiology, University of Washington, Seattle, WA 98109, USA
| | - Jeffrey S McLean
- Department of Microbiology, University of Washington, Seattle, WA 98109, USA; Department of Periodontics, University of Washington, Seattle, WA 98195, USA
| | - Qian Cong
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - David Baker
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA; Howard Hughes Medical Institute, University of Washington, Seattle, WA 98109, USA
| | | | - S Brook Peterson
- Department of Microbiology, University of Washington, Seattle, WA 98109, USA
| | - Joseph D Mougous
- Department of Microbiology, University of Washington, Seattle, WA 98109, USA; Howard Hughes Medical Institute, University of Washington, Seattle, WA 98109, USA; Microbial Interactions and Microbiome Center, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
32
|
Zehnle H, Otersen C, Benito Merino D, Wegener G. Potential for the anaerobic oxidation of benzene and naphthalene in thermophilic microorganisms from the Guaymas Basin. Front Microbiol 2023; 14:1279865. [PMID: 37840718 PMCID: PMC10570749 DOI: 10.3389/fmicb.2023.1279865] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 09/13/2023] [Indexed: 10/17/2023] Open
Abstract
Unsubstituted aromatic hydrocarbons (UAHs) are recalcitrant molecules abundant in crude oil, which is accumulated in subsurface reservoirs and occasionally enters the marine environment through natural seepage or human-caused spillage. The challenging anaerobic degradation of UAHs by microorganisms, in particular under thermophilic conditions, is poorly understood. Here, we established benzene- and naphthalene-degrading cultures under sulfate-reducing conditions at 50°C and 70°C from Guaymas Basin sediments. We investigated the microorganisms in the enrichment cultures and their potential for UAH oxidation through short-read metagenome sequencing and analysis. Dependent on the combination of UAH and temperature, different microorganisms became enriched. A Thermoplasmatota archaeon was abundant in the benzene-degrading culture at 50°C, but catabolic pathways remained elusive, because the archaeon lacked most known genes for benzene degradation. Two novel species of Desulfatiglandales bacteria were strongly enriched in the benzene-degrading culture at 70°C and in the naphthalene-degrading culture at 50°C. Both bacteria encode almost complete pathways for UAH degradation and for downstream degradation. They likely activate benzene via methylation, and naphthalene via direct carboxylation, respectively. The two species constitute the first thermophilic UAH degraders of the Desulfatiglandales. In the naphthalene-degrading culture incubated at 70°C, a Dehalococcoidia bacterium became enriched, which encoded a partial pathway for UAH degradation. Comparison of enriched bacteria with related genomes from environmental samples indicated that pathways for benzene degradation are widely distributed, while thermophily and capacity for naphthalene activation are rare. Our study highlights the capacities of uncultured thermophilic microbes for UAH degradation in petroleum reservoirs and in contaminated environments.
Collapse
Affiliation(s)
- Hanna Zehnle
- Max Planck Institute for Marine Microbiology, Bremen, Germany
- MARUM, Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
- Faculty of Geosciences, University of Bremen, Bremen, Germany
| | - Carolin Otersen
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - David Benito Merino
- Max Planck Institute for Marine Microbiology, Bremen, Germany
- Faculty of Geosciences, University of Bremen, Bremen, Germany
| | - Gunter Wegener
- Max Planck Institute for Marine Microbiology, Bremen, Germany
- MARUM, Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
| |
Collapse
|
33
|
Abstract
Related groups of microbes are widely distributed across Earth's habitats, implying numerous dispersal and adaptation events over evolutionary time. However, relatively little is known about the characteristics and mechanisms of these habitat transitions, particularly for populations that reside in animal microbiomes. Here, we review the literature concerning habitat transitions among a variety of bacterial and archaeal lineages, considering the frequency of migration events, potential environmental barriers, and mechanisms of adaptation to new physicochemical conditions, including the modification of protein inventories and other genomic characteristics. Cells dependent on microbial hosts, particularly bacteria from the Candidate Phyla Radiation, have undergone repeated habitat transitions from environmental sources into animal microbiomes. We compare their trajectories to those of both free-living cells-including the Melainabacteria, Elusimicrobia, and methanogenic archaea-and cellular endosymbionts and bacteriophages, which have made similar transitions. We conclude by highlighting major related topics that may be worthy of future study.
Collapse
Affiliation(s)
- Alexander L Jaffe
- Department of Plant and Microbial Biology, University of California, Berkeley, California, USA
- Department of Earth System Science, Stanford University, Stanford, California, USA
| | - Cindy J Castelle
- Innovative Genomics Institute and Department of Earth and Planetary Science, University of California, Berkeley, California, USA;
| | - Jillian F Banfield
- Innovative Genomics Institute and Department of Earth and Planetary Science, University of California, Berkeley, California, USA;
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, California, USA
- Chan Zuckerberg Biohub, San Francisco, California, USA
| |
Collapse
|
34
|
Kuroda K, Tomita S, Kurashita H, Hatamoto M, Yamaguchi T, Hori T, Aoyagi T, Sato Y, Inaba T, Habe H, Tamaki H, Hagihara Y, Tamura T, Narihiro T. Metabolic implications for predatory and parasitic bacterial lineages in activated sludge wastewater treatment systems. WATER RESEARCH X 2023; 20:100196. [PMID: 37662426 PMCID: PMC10469934 DOI: 10.1016/j.wroa.2023.100196] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/03/2023] [Accepted: 08/12/2023] [Indexed: 09/05/2023]
Abstract
Deciphering unclear microbial interactions is key to improving biological wastewater treatment processes. Microbial predation and parasitism in wastewater treatment ecosystems are unexplored survival strategies that have long been known and have recently attracted attention because these interspecies interactions may contribute to the reduction of excess sludge. Here, microbial community profiling of 600 activated sludge samples taken from six industrial and one municipal wastewater treatment processes (WWTPs) was conducted. To identify the shared lineages in the WWTPs, the shared microbial constituents were defined as the family level taxa that had ≥ 0.1% average relative abundance and detected in all processes. The microbial community analysis assigned 106 families as the shared microbial constituents in the WWTPs. Correlation analysis showed that 98 of the 106 shared families were significantly correlated with total carbon (TC) and/or total nitrogen (TN) concentrations, suggesting that they may contribute to wastewater remediation. Most possible predatory or parasitic bacteria belonging to the phyla Bdellovibrionota, Myxococcota, and Candidatus Patescibacteria were found to be the shared families and negatively correlated with TC/TN; thus, they were frequently present in the WWTPs and could be involved in the removal of carbon/nitrogen derived from cell components. Shotgun metagenome-resolved metabolic reconstructions indicated that gene homologs associated with predation or parasitism are conserved in the Bdellovibrionota, Myxococcota, and Ca. Patescibacteria genomes (e.g., host interaction (hit) locus, Tad-like secretion complexes, and type IV pilus assembly proteins). This study provides insights into the complex microbial interactions potentially linked to the reduction of excess sludge biomass in these processes.
Collapse
Affiliation(s)
- Kyohei Kuroda
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2‐17‐2‐1 Tsukisamu‐Higashi, Toyohira‐Ku, Sapporo, Hokkaido 062‐8517 Japan
| | - Shun Tomita
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2‐17‐2‐1 Tsukisamu‐Higashi, Toyohira‐Ku, Sapporo, Hokkaido 062‐8517 Japan
| | - Hazuki Kurashita
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2‐17‐2‐1 Tsukisamu‐Higashi, Toyohira‐Ku, Sapporo, Hokkaido 062‐8517 Japan
- Department of Science of Technology Innovation, Nagaoka University of Technology, 1603-1 Kamitomioka-Machi, Nagaoka, Niigata 940-2188 Japan
| | - Masashi Hatamoto
- Department of Science of Technology Innovation, Nagaoka University of Technology, 1603-1 Kamitomioka-Machi, Nagaoka, Niigata 940-2188 Japan
| | - Takashi Yamaguchi
- Department of Science of Technology Innovation, Nagaoka University of Technology, 1603-1 Kamitomioka-Machi, Nagaoka, Niigata 940-2188 Japan
| | - Tomoyuki Hori
- Environmental Management Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 16–1, Onogawa, Tsukuba, Ibaraki 305–8569, Japan
| | - Tomo Aoyagi
- Environmental Management Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 16–1, Onogawa, Tsukuba, Ibaraki 305–8569, Japan
| | - Yuya Sato
- Environmental Management Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 16–1, Onogawa, Tsukuba, Ibaraki 305–8569, Japan
| | - Tomohiro Inaba
- Environmental Management Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 16–1, Onogawa, Tsukuba, Ibaraki 305–8569, Japan
| | - Hiroshi Habe
- Environmental Management Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 16–1, Onogawa, Tsukuba, Ibaraki 305–8569, Japan
| | - Hideyuki Tamaki
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
| | - Yoshihisa Hagihara
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
| | - Tomohiro Tamura
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2‐17‐2‐1 Tsukisamu‐Higashi, Toyohira‐Ku, Sapporo, Hokkaido 062‐8517 Japan
| | - Takashi Narihiro
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2‐17‐2‐1 Tsukisamu‐Higashi, Toyohira‐Ku, Sapporo, Hokkaido 062‐8517 Japan
| |
Collapse
|
35
|
Noell SE, Hellweger FL, Temperton B, Giovannoni SJ. A Reduction of Transcriptional Regulation in Aquatic Oligotrophic Microorganisms Enhances Fitness in Nutrient-Poor Environments. Microbiol Mol Biol Rev 2023; 87:e0012422. [PMID: 36995249 PMCID: PMC10304753 DOI: 10.1128/mmbr.00124-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023] Open
Abstract
In this review, we consider the regulatory strategies of aquatic oligotrophs, microbial cells that are adapted to thrive under low-nutrient concentrations in oceans, lakes, and other aquatic ecosystems. Many reports have concluded that oligotrophs use less transcriptional regulation than copiotrophic cells, which are adapted to high nutrient concentrations and are far more common subjects for laboratory investigations of regulation. It is theorized that oligotrophs have retained alternate mechanisms of regulation, such as riboswitches, that provide shorter response times and smaller amplitude responses and require fewer cellular resources. We examine the accumulated evidence for distinctive regulatory strategies in oligotrophs. We explore differences in the selective pressures copiotrophs and oligotrophs encounter and ask why, although evolutionary history gives copiotrophs and oligotrophs access to the same regulatory mechanisms, they might exhibit distinctly different patterns in how these mechanisms are used. We discuss the implications of these findings for understanding broad patterns in the evolution of microbial regulatory networks and their relationships to environmental niche and life history strategy. We ask whether these observations, which have emerged from a decade of increased investigation of the cell biology of oligotrophs, might be relevant to recent discoveries of many microbial cell lineages in nature that share with oligotrophs the property of reduced genome size.
Collapse
Affiliation(s)
- Stephen E. Noell
- Department of Microbiology, Oregon State University, Corvallis, Oregon, USA
| | | | - Ben Temperton
- School of Biosciences, University of Exeter, Exeter, United Kingdom
| | | |
Collapse
|
36
|
Chen X, Molenda O, Brown CT, Toth CRA, Guo S, Luo F, Howe J, Nesbø CL, He C, Montabana EA, Cate JHD, Banfield JF, Edwards EA. " Candidatus Nealsonbacteria" Are Likely Biomass Recycling Ectosymbionts of Methanogenic Archaea in a Stable Benzene-Degrading Enrichment Culture. Appl Environ Microbiol 2023; 89:e0002523. [PMID: 37098974 PMCID: PMC10231131 DOI: 10.1128/aem.00025-23] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 03/20/2023] [Indexed: 04/27/2023] Open
Abstract
The Candidate Phyla Radiation (CPR), also referred to as superphylum Patescibacteria, is a very large group of bacteria with no pure culture representatives discovered by 16S rRNA sequencing or genome-resolved metagenomic analyses of environmental samples. Within the CPR, candidate phylum Parcubacteria, previously referred to as OD1, is prevalent in anoxic sediments and groundwater. Previously, we had identified a specific member of the Parcubacteria (referred to as DGGOD1a) as an important member of a methanogenic benzene-degrading consortium. Phylogenetic analyses herein place DGGOD1a within the clade "Candidatus Nealsonbacteria." Because of its persistence over many years, we hypothesized that "Ca. Nealsonbacteria" DGGOD1a must play an important role in sustaining anaerobic benzene metabolism in the consortium. To try to identify its growth substrate, we amended the culture with a variety of defined compounds (pyruvate, acetate, hydrogen, DNA, and phospholipid), as well as crude culture lysate and three subfractions thereof. We observed the greatest (10-fold) increase in the absolute abundance of "Ca. Nealsonbacteria" DGGOD1a only when the consortium was amended with crude cell lysate. These results implicate "Ca. Nealsonbacteria" in biomass recycling. Fluorescence in situ hybridization and cryogenic transmission electron microscope images revealed that "Ca. Nealsonbacteria" DGGOD1a cells were attached to larger archaeal Methanothrix cells. This apparent epibiont lifestyle was supported by metabolic predictions from a manually curated complete genome. This is one of the first examples of bacterial-archaeal episymbiosis and may be a feature of other "Ca. Nealsonbacteria" found in anoxic environments. IMPORTANCE An anaerobic microbial enrichment culture was used to study members of candidate phyla that are difficult to grow in the lab. We were able to visualize tiny "Candidatus Nealsonbacteria" cells attached to a large Methanothrix cell, revealing a novel episymbiosis.
Collapse
Affiliation(s)
- Xu Chen
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada
| | - Olivia Molenda
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada
| | - Christopher T. Brown
- Department of Molecular and Cell Biology, University of California, Berkeley, California, USA
- California Institute for Quantitative Biosciences, University of California, Berkeley, California, USA
| | - Courtney R. A. Toth
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada
| | - Shen Guo
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada
| | - Fei Luo
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada
| | - Jane Howe
- Department of Materials Science and Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Camilla L. Nesbø
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada
| | - Christine He
- Innovative Genomics Institute, University of California, Berkeley, California, USA
| | - Elizabeth A. Montabana
- Department of Molecular and Cell Biology, University of California, Berkeley, California, USA
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Jamie H. D. Cate
- Department of Molecular and Cell Biology, University of California, Berkeley, California, USA
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, California, USA
- Department of Chemistry, University of California, Berkeley, California, USA
| | - Jillian F. Banfield
- Innovative Genomics Institute, University of California, Berkeley, California, USA
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, California, USA
- Department of Earth and Planetary Science, University of California, Berkeley, California, USA
- Environmental Science, Policy and Management, University of California, Berkeley, California, USA
| | - Elizabeth A. Edwards
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
37
|
Wang Y, Gallagher LA, Andrade PA, Liu A, Humphreys IR, Turkarslan S, Cutler KJ, Arrieta-Ortiz ML, Li Y, Radey MC, McLean JS, Cong Q, Baker D, Baliga NS, Peterson SB, Mougous JD. Genetic manipulation of candidate phyla radiation bacteria provides functional insights into microbial dark matter. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.02.539146. [PMID: 37205512 PMCID: PMC10187176 DOI: 10.1101/2023.05.02.539146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The study of bacteria has yielded fundamental insights into cellular biology and physiology, biotechnological advances and many therapeutics. Yet due to a lack of suitable tools, the significant portion of bacterial diversity held within the candidate phyla radiation (CPR) remains inaccessible to such pursuits. Here we show that CPR bacteria belonging to the phylum Saccharibacteria exhibit natural competence. We exploit this property to develop methods for their genetic manipulation, including the insertion of heterologous sequences and the construction of targeted gene deletions. Imaging of fluorescent protein-labeled Saccharibacteria provides high spatiotemporal resolution of phenomena accompanying epibiotic growth and a transposon insertion sequencing genome-wide screen reveals the contribution of enigmatic Saccharibacterial genes to growth on their Actinobacteria hosts. Finally, we leverage metagenomic data to provide cutting-edge protein structure-based bioinformatic resources that support the strain Southlakia epibionticum and its corresponding host, Actinomyces israelii , as a model system for unlocking the molecular underpinnings of the epibiotic lifestyle.
Collapse
Affiliation(s)
- Yaxi Wang
- Department of Microbiology, University of Washington, Seattle, WA 98109, USA
| | - Larry A. Gallagher
- Department of Microbiology, University of Washington, Seattle, WA 98109, USA
| | - Pia A. Andrade
- Department of Microbiology, University of Washington, Seattle, WA 98109, USA
| | - Andi Liu
- Department of Microbiology, University of Washington, Seattle, WA 98109, USA
| | - Ian R. Humphreys
- Department of Biochemistry, University of Washington, Seattle, WA 98109, USA
- Institute for Protein Design, Seattle, WA 98109, USA
| | | | - Kevin J. Cutler
- Department of Physics, University of Washington, Seattle, WA 98195, USA
| | | | - Yaqiao Li
- Department of Microbiology, University of Washington, Seattle, WA 98109, USA
- Institute for Systems Biology, Seattle, WA 98109, USA
| | - Matthew C. Radey
- Department of Microbiology, University of Washington, Seattle, WA 98109, USA
| | - Jeffrey S. McLean
- Department of Microbiology, University of Washington, Seattle, WA 98109, USA
- Department of Periodontics, University of Washington, Seattle, WA 98195, USA
| | - Qian Cong
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - David Baker
- Department of Biochemistry, University of Washington, Seattle, WA 98109, USA
- Institute for Protein Design, Seattle, WA 98109, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
| | | | - S. Brook Peterson
- Department of Microbiology, University of Washington, Seattle, WA 98109, USA
| | - Joseph D. Mougous
- Department of Microbiology, University of Washington, Seattle, WA 98109, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
- Microbial Interactions and Microbiome Center, University of Washington, Seattle, WA 98109, USA
| |
Collapse
|
38
|
Volland JM. Small cells with big secrets. Nat Rev Microbiol 2023:10.1038/s41579-023-00903-4. [PMID: 37131069 DOI: 10.1038/s41579-023-00903-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Affiliation(s)
- Jean-Marie Volland
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
- Laboratory for Research in Complex Systems, Menlo Park, CA, USA.
| |
Collapse
|
39
|
Haro-Moreno JM, Cabello-Yeves PJ, Garcillán-Barcia MP, Zakharenko A, Zemskaya TI, Rodriguez-Valera F. A novel and diverse group of Candidatus Patescibacteria from bathypelagic Lake Baikal revealed through long-read metagenomics. ENVIRONMENTAL MICROBIOME 2023; 18:12. [PMID: 36823661 PMCID: PMC9948471 DOI: 10.1186/s40793-023-00473-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Lake Baikal, the world's deepest freshwater lake, contains important numbers of Candidatus Patescibacteria (formerly CPR) in its deepest reaches. However, previously obtained CPR metagenome-assembled genomes recruited very poorly indicating the potential of other groups being present. Here, we have applied for the first time a long-read (PacBio CCS) metagenomic approach to analyze in depth the Ca. Patescibacteria living in the bathypelagic water column of Lake Baikal at 1600 m. RESULTS The retrieval of nearly complete 16S rRNA genes before assembly has allowed us to detect the presence of a novel and a likely endemic group of Ca. Patescibacteria inhabiting bathypelagic Lake Baikal. This novel group seems to possess extremely high intra-clade diversity, precluding complete genomes' assembly. However, read binning and scaffolding indicate that these microbes are similar to other Ca. Patescibacteria (i.e. parasites or symbionts), although they seem to carry more anabolic pathways, likely reflecting the extremely oligotrophic habitat they inhabit. The novel bins have not been found anywhere, but one of the groups appears in small amounts in an oligotrophic and deep alpine Lake Thun. We propose this novel group be named Baikalibacteria. CONCLUSION The recovery of 16S rRNA genes via long-read metagenomics plus the use of long-read binning to uncover highly diverse "hidden" groups of prokaryotes are key strategies to move forward in ecogenomic microbiology. The novel group possesses enormous intraclade diversity akin to what happens with Ca. Patescibacteria at the interclade level, which is remarkable in an environment that has changed little in the last 25 million years.
Collapse
Affiliation(s)
- Jose M Haro-Moreno
- Evolutionary Genomics Group, Departamento Producción Vegetal y Microbiología, Universidad Miguel Hernández, Apartado 18, San Juan de Alicante, 03550, Alicante, Spain
| | - Pedro J Cabello-Yeves
- Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, 46980, Paterna, Valencia, Spain
| | - M Pilar Garcillán-Barcia
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria-Consejo Superior de Investigaciones Científicas, Santander, Spain
| | - Alexandra Zakharenko
- Limnological Institute, Siberian Branch of the Russian Academy of Sciences, Irkutsk, Russia
| | - Tamara I Zemskaya
- Limnological Institute, Siberian Branch of the Russian Academy of Sciences, Irkutsk, Russia
| | - Francisco Rodriguez-Valera
- Evolutionary Genomics Group, Departamento Producción Vegetal y Microbiología, Universidad Miguel Hernández, Apartado 18, San Juan de Alicante, 03550, Alicante, Spain.
| |
Collapse
|
40
|
Vigneron A, Cruaud P, Guyoneaud R, Goñi-Urriza M. Into the darkness of the microbial dark matter in situ activities through expression profiles of Patescibacteria populations. Front Microbiol 2023; 13:1073483. [PMID: 36699594 PMCID: PMC9868632 DOI: 10.3389/fmicb.2022.1073483] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 12/05/2022] [Indexed: 01/11/2023] Open
Abstract
Patescibacteria form a highly diverse and widespread superphylum of uncultured microorganisms representing a third of the global microbial diversity. Most of our knowledge on Patescibacteria putative physiology relies on metagenomic mining and metagenome-assembled genomes, but the in situ activities and the ecophysiology of these microorganisms have been rarely explored, leaving the role of Patescibacteria in ecosystems elusive. Using a genome-centric metatranscriptomic approach, we analyzed the diel and seasonal gene transcription profiles of 18 Patescibacteria populations in brackish microbial mats to test whether our understanding of Patescibacteria metabolism allows the extrapolation of their in situ activities. Although our results revealed a circadian cycle in Patescibacteria activities, a strong streamlined genetic expression characterized the Patescibacteria populations. This result has a major consequence for the extrapolation of their physiology and environmental function since most transcribed genes were uncharacterized, indicating that the ecophysiology of Patescibacteria cannot be yet reliably predicted from genomic data.
Collapse
Affiliation(s)
- Adrien Vigneron
- IBEAS, Université de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Pau, France
| | | | - Rémy Guyoneaud
- IBEAS, Université de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Pau, France
| | - Marisol Goñi-Urriza
- IBEAS, Université de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Pau, France
| |
Collapse
|
41
|
Zhao R, Farag IF, Jørgensen SL, Biddle JF. Occurrence, Diversity, and Genomes of " Candidatus Patescibacteria" along the Early Diagenesis of Marine Sediments. Appl Environ Microbiol 2022; 88:e0140922. [PMID: 36468881 PMCID: PMC9765117 DOI: 10.1128/aem.01409-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 11/14/2022] [Indexed: 12/07/2022] Open
Abstract
The phylum "Candidatus Patescibacteria" (or Candidate Phyla Radiation [CPR]) accounts for roughly one-quarter of microbial diversity on Earth, but the presence and diversity of these bacteria in marine sediments have been rarely charted. Here, we investigate the abundance, diversity, and metabolic capacities of CPR bacteria in three sediment sites (Mohns Ridge, North Pond, and Costa Rica Margin) with samples covering a wide range of redox zones formed during the early diagenesis of organic matter. Through metagenome sequencing, we found that all investigated sediment horizons contain "Ca. Patescibacteria" (0.4 to 28% of the total communities), which are affiliated with the classes "Ca. Paceibacteria," "Ca. Gracilibacteria," "Ca. Microgenomatia," "Ca. Saccharimonadia," "Ca. ABY1," and "Ca. WWE3." However, only a subset of the diversity of marine sediment "Ca. Patescibacteria," especially the classes "Ca. Paceibacteria" and "Ca. Gracilibacteria," can be captured by 16S rRNA gene amplicon sequencing with commonly used universal primers. We recovered 11 metagenome-assembled genomes (MAGs) of CPR from these sediments, most of which are novel at the family or genus level in the "Ca. Paceibacteria" class and are missed by the amplicon sequencing. While individual MAGs are confined to specific anoxic niches, the lack of capacities to utilize the prevailing terminal electron acceptors indicates that they may not be directly selected by the local redox conditions. These CPR bacteria lack essential biosynthesis pathways and may use a truncated glycolysis pathway to conserve energy as fermentative organotrophs. Our findings suggest that marine sediments harbor some novel yet widespread CPR bacteria during the early diagenesis of organic matter, which needs to be considered in population dynamics assessments in this vast environment. IMPORTANCE Ultrasmall-celled "Ca. Patescibacteria" have been estimated to account for one-quarter of the total microbial diversity on Earth, the parasitic lifestyle of which may exert a profound control on the overall microbial population size of the local ecosystems. However, their diversity and metabolic functions in marine sediments, one of the largest yet understudied ecosystems on Earth, remain virtually uncharacterized. By applying cultivation-independent approaches to a range of sediment redox zones, we reveal that "Ca. Patescibacteria" members are rare but widespread regardless of the prevailing geochemical conditions. These bacteria are affiliated with novel branches of "Ca. Patescibacteria" and have been largely missed in marker gene-based surveys. They do not have respiration capacity but may conserve energy by fermenting organic compounds from their episymbiotic hosts. Our findings suggest that these novel "Ca. Patescibacteria" are among the previously overlooked microbes in diverse marine sediments.
Collapse
Affiliation(s)
- Rui Zhao
- School of Marine Science and Policy, University of Delaware, Lewes, Delaware, USA
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Ibrahim F. Farag
- School of Marine Science and Policy, University of Delaware, Lewes, Delaware, USA
| | - Steffen L. Jørgensen
- Centre for Deep Sea Research, Department of Earth Science, University of Bergen, Bergen, Norway
| | - Jennifer F. Biddle
- School of Marine Science and Policy, University of Delaware, Lewes, Delaware, USA
| |
Collapse
|
42
|
Ji Y, Zhang P, Zhou S, Gao P, Wang B, Jiang J. Widespread but Poorly Understood Bacteria: Candidate Phyla Radiation. Microorganisms 2022; 10:2232. [PMID: 36422302 PMCID: PMC9698310 DOI: 10.3390/microorganisms10112232] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 08/15/2023] Open
Abstract
Candidate Phyla Radiation (CPR) bacteria is a bacterial division composed mainly of candidate phyla bacteria with ultra-small cell sizes, streamlined genomes, and limited metabolic capacity, which are generally considered to survive in a parasitic or symbiotic manner. Despite their wide distribution and rich diversity, CPR bacteria have received little attention until recent years, and are therefore poorly understood. This review systematically summarizes the history of CPR research, the parasitic/symbiotic lifestyle, and the ecological distribution and unique metabolic features of CPR bacteria, hoping to provide guidance for future ecological and physiological research on CPR bacteria.
Collapse
Affiliation(s)
| | | | | | | | - Baozhan Wang
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
| | - Jiandong Jiang
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
| |
Collapse
|
43
|
Du Toit A. Cross-domain symbiosis. Nat Rev Microbiol 2022; 20:638. [PMID: 36127517 DOI: 10.1038/s41579-022-00802-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
44
|
Kuroda K, Kubota K, Kagemasa S, Nakai R, Hirakata Y, Yamamoto K, Nobu MK, Narihiro T. Novel Cross-domain Symbiosis between Candidatus Patescibacteria and Hydrogenotrophic Methanogenic Archaea Methanospirillum Discovered in a Methanogenic Ecosystem. Microbes Environ 2022; 37:ME22063. [PMID: 36372432 PMCID: PMC9763046 DOI: 10.1264/jsme2.me22063] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
To identify novel cross-domain symbiosis between Candidatus Patescibacteria and Archaea, we performed fluorescence in situ hybridization (FISH) on enrichment cultures derived from methanogenic bioreactor sludge with the newly designed 32-520-1066 probe targeting the family-level uncultured clade 32-520/UBA5633 lineage in the class Ca. Paceibacteria. All FISH-detectable 32-520/UBA5633 cells were attached to Methanospirillum, indicating high host specificity. Transmission electron microscopy observations revealed 32-520/UBA5633-like cells that were specifically adherent to the plug structure of Methanospirillum-like rod-shaped cells. The metagenome-assembled genomes of 32-520/UBA5633 encoded unique gene clusters comprising pilin signal peptides and type IV pilins. These results provide novel insights into unseen symbiosis between Ca. Patescibacteria and Archaea.
Collapse
Affiliation(s)
- Kyohei Kuroda
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2–17–2–1 Tsukisamu‐Higashi, Toyohira‐ku, Sapporo, Hokkaido, 062–8517 Japan, Corresponding authors. Kyohei Kuroda: E-mail: ; Tel: +81–11–857–8402; Fax: +81–11–857–8915. Takashi Narihiro: E-mail: ; Tel: +81–29–861–9443; Fax: +81–11–857–8915
| | - Kengo Kubota
- Department of Frontier Sciences for Advanced Environment, Graduate School of Environmental Studies, Tohoku University, 6–6–06 Aza-Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980–8579, Japan,Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6–6–06 Aza-Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980–8579, Japan
| | - Shuka Kagemasa
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2–17–2–1 Tsukisamu‐Higashi, Toyohira‐ku, Sapporo, Hokkaido, 062–8517 Japan,Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6–6–06 Aza-Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980–8579, Japan
| | - Ryosuke Nakai
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2–17–2–1 Tsukisamu‐Higashi, Toyohira‐ku, Sapporo, Hokkaido, 062–8517 Japan
| | - Yuga Hirakata
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, Higashi 1–1–1, Tsukuba, Ibaraki 305–8566, Japan
| | - Kyosuke Yamamoto
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2–17–2–1 Tsukisamu‐Higashi, Toyohira‐ku, Sapporo, Hokkaido, 062–8517 Japan
| | - Masaru K. Nobu
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, Higashi 1–1–1, Tsukuba, Ibaraki 305–8566, Japan
| | - Takashi Narihiro
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2–17–2–1 Tsukisamu‐Higashi, Toyohira‐ku, Sapporo, Hokkaido, 062–8517 Japan, Corresponding authors. Kyohei Kuroda: E-mail: ; Tel: +81–11–857–8402; Fax: +81–11–857–8915. Takashi Narihiro: E-mail: ; Tel: +81–29–861–9443; Fax: +81–11–857–8915
| |
Collapse
|