1
|
Kumar T, Rekhi A, Lee Y, Tran J, Nagtalon AGD, Rohatgi S, Cyphert EL. Leveraging the microbiome to combat antibiotic resistant gynecological infections. NPJ ANTIMICROBIALS AND RESISTANCE 2025; 3:32. [PMID: 40269132 PMCID: PMC12019171 DOI: 10.1038/s44259-025-00106-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Accepted: 04/09/2025] [Indexed: 04/25/2025]
Abstract
The vaginal resistome can be considered a collection of the resistant determinants in the vaginal microbiome. Here we review the vaginal resistome including the microbes and resistant genes harbored in common gynecological infections, vaginal microbes that participate in horizontal gene transfer, host factors that contribute to the resistome, and common therapies. Finally, we provide perspective on technologies that can be leveraged to study the vaginal resistome and remaining challenges.
Collapse
Affiliation(s)
- Tanya Kumar
- University of California San Diego, Shu Chien-Gene Lay Department of Bioengineering, La Jolla, CA, USA
- Medical Scientist Training Program, University of California San Diego, La Jolla, CA, USA
| | - Aryak Rekhi
- University of California San Diego, Shu Chien-Gene Lay Department of Bioengineering, La Jolla, CA, USA
| | - Yumie Lee
- University of California San Diego, Shu Chien-Gene Lay Department of Bioengineering, La Jolla, CA, USA
| | - Julielam Tran
- University of California San Diego, Shu Chien-Gene Lay Department of Bioengineering, La Jolla, CA, USA
| | - Arlene Grace D Nagtalon
- University of California San Diego, Shu Chien-Gene Lay Department of Bioengineering, La Jolla, CA, USA
| | - Sidhant Rohatgi
- University of California San Diego, Shu Chien-Gene Lay Department of Bioengineering, La Jolla, CA, USA
| | - Erika L Cyphert
- University of California San Diego, Shu Chien-Gene Lay Department of Bioengineering, La Jolla, CA, USA.
| |
Collapse
|
2
|
Alizhan D, Ukybassova T, Bapayeva G, Aimagambetova G, Kongrtay K, Kamzayeva N, Terzic M. Cervicovaginal Microbiome: Physiology, Age-Related Changes, and Protective Role Against Human Papillomavirus Infection. J Clin Med 2025; 14:1521. [PMID: 40094958 PMCID: PMC11900180 DOI: 10.3390/jcm14051521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/17/2025] [Accepted: 02/23/2025] [Indexed: 03/19/2025] Open
Abstract
Background/Objectives: Persistent high-risk human papillomavirus (HPV) infections are the leading cause of cervical cancer. Developing evidence suggests that the cervicovaginal microbiome plays a significant role in modulating HPV persistence and progression to cervical neoplasia. This review synthesizes the current knowledge on the interplay between the cervicovaginal microbiome and local immunity in HPV infections, emphasizing microbial diversity, immune responses, and potential therapeutic implications. Methods: A thorough review of the literature was performed using Embase, PubMed, Scopus, and Google Scholar, encompassing studies published between 2000 and 2024. Studies examining the composition of the microbiome, immune responses, and HPV-related outcomes were evaluated and synthesized into a comprehensive review. Results: A Lactobacillus-dominant microbiome, particularly with L. crispatus, creates a protective environment through lactic acid production, maintenance of low pH, and anti-inflammatory immune modulation, facilitating HPV clearance. Dysbiosis, often characterized by a dominance of L. iners and overgrowth of anaerobic bacteria, fosters chronic inflammation, cytokine imbalance, and a microenvironment conducive to HPV persistence and progression. Hormonal changes and menopause exacerbate these microbial shifts, increasing the risk of cervical lesions. Studies suggest that cytokine profiles and antimicrobial peptides significantly influence local immune responses, further modulating infection outcomes. Conclusions: The cervicovaginal microbiome is a critical determinant in HPV infection outcomes, with therapeutic potential for modulating the microbiome to enhance immune responses and prevent cervical cancer. Personalized microbiome-targeted therapies may offer a novel avenue for managing HPV and reducing cervical cancer incidence.
Collapse
Affiliation(s)
- Diana Alizhan
- School of Medicine, Nazarbayev University, Astana 010000, Kazakhstan;
| | - Talshyn Ukybassova
- Clinical Academic Department of Women’s Health, CF “University Medical Center”, Astana 010000, Kazakhstan (K.K.); (N.K.); (M.T.)
| | - Gauri Bapayeva
- Clinical Academic Department of Women’s Health, CF “University Medical Center”, Astana 010000, Kazakhstan (K.K.); (N.K.); (M.T.)
| | - Gulzhanat Aimagambetova
- Clinical Academic Department of Women’s Health, CF “University Medical Center”, Astana 010000, Kazakhstan (K.K.); (N.K.); (M.T.)
- Department of Surgery, School of Medicine, Nazarbayev University, Astana 010000, Kazakhstan
| | - Kuralay Kongrtay
- Clinical Academic Department of Women’s Health, CF “University Medical Center”, Astana 010000, Kazakhstan (K.K.); (N.K.); (M.T.)
- Department of Surgery, School of Medicine, Nazarbayev University, Astana 010000, Kazakhstan
| | - Nazira Kamzayeva
- Clinical Academic Department of Women’s Health, CF “University Medical Center”, Astana 010000, Kazakhstan (K.K.); (N.K.); (M.T.)
| | - Milan Terzic
- Clinical Academic Department of Women’s Health, CF “University Medical Center”, Astana 010000, Kazakhstan (K.K.); (N.K.); (M.T.)
- Department of Surgery, School of Medicine, Nazarbayev University, Astana 010000, Kazakhstan
| |
Collapse
|
3
|
Castellanos-Ruiz D, Ojeda-Borbolla JG, Ruiz-García OV, Peña-Corona SI, Martínez-Peña AA, Ibarra-Rubio ME, Gavilanes-Ruiz M, Mendoza-Rodríguez CA. Uterine Microbiota and Bisphenols: Novel Influencers in Reproductive Health. J Xenobiot 2025; 15:26. [PMID: 39997369 PMCID: PMC11856463 DOI: 10.3390/jox15010026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 01/10/2025] [Accepted: 01/24/2025] [Indexed: 02/26/2025] Open
Abstract
Infertility affects 8-12% of couples worldwide, and 30-75% of preclinical pregnancy losses are due to a failure during the implantation process. Exposure to endocrine disruptors, like bisphenols, among others, has been associated with the increase in infertility observed in the past decades. An increase in infertility has correlated with exposure to endocrine disruptors like bisphenols. The uterus harbors its own microbiota, and changes in this microbiota have been linked to several gynecological conditions, including reproductive failure. There are no studies on the effects of bisphenols on the uterine-microbiota composition, but some inferences can be gleaned by looking at the gut. Bisphenols can alter the gut microbiota, and the molecular mechanism by which gut microbiota regulates intestinal permeability involves Toll-like receptors (TLRs) and tight junction (TJ) proteins. TJs participate in embryo implantation in the uterus, but bisphenol exposure disrupts the expression and localization of TJ proteins. The aim of this review is to summarize the current knowledge on the microbiota of the female reproductive tract (FRT), its association with different reproductive diseases-particularly reproductive failure-the effects of bisphenols on microbiota composition and reproductive health, and the molecular mechanisms regulating uterine-microbiota interactions crucial for embryo implantation. This review also highlights existing knowledge gaps and outlines research needs for future risk assessments regarding the effects of bisphenols on reproduction.
Collapse
Affiliation(s)
- Dafne Castellanos-Ruiz
- Facultad de Química, Departamento de Biología, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico (M.E.I.-R.)
| | - J. Gerardo Ojeda-Borbolla
- Facultad de Química, Departamento de Biología, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico (M.E.I.-R.)
| | - Olga V. Ruiz-García
- Facultad de Química, Departamento de Biología, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico (M.E.I.-R.)
| | - Sheila I. Peña-Corona
- Facultad de Química, Departamento de Farmacia, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Annia A. Martínez-Peña
- División de Ciencias de la Salud, Universidad Intercontinental, A. C., Ciudad de México 14420, Mexico
| | - María Elena Ibarra-Rubio
- Facultad de Química, Departamento de Biología, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico (M.E.I.-R.)
| | - Marina Gavilanes-Ruiz
- Facultad de Química, Departamento de Bioquímica, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - C. Adriana Mendoza-Rodríguez
- Facultad de Química, Departamento de Biología, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico (M.E.I.-R.)
| |
Collapse
|
4
|
Kim S, Lee HC, Sim JE, Park SJ, Oh HH. Bacterial profile-based body fluid identification using a machine learning approach. Genes Genomics 2025; 47:87-98. [PMID: 39503932 DOI: 10.1007/s13258-024-01594-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 10/23/2024] [Indexed: 01/16/2025]
Abstract
BACKGROUND Identifying the origins of biological traces is critical for the reconstruction of crime scenes in forensic investigations. Traditional methods for body fluid identification rely on chemical, enzymatic, immunological, and spectroscopic techniques, which can be sample-consuming and depend on simple color-change reactions. However, these methods have limitations when residual samples are insufficient after DNA extraction. OBJECTIVE This study aimed to develop a method for body fluid identification by leveraging bacterial DNA profiling to overcome the limitations of the conventional approaches. METHODS Bacterial profiles were determined by sequencing the hypervariable region of the 16 S rRNA gene, using DNA metabarcoding of evidence collected from criminal cases. Amplicon sequence variants (ASVs) were analyzed to identify significant microbial patterns in different body fluid samples. RESULTS The bacterial profile-based method demonstrated high discriminatory power with a machine learning model trained using the naïve Bayes algorithm, achieving an accuracy of over 98% in classifying samples into one of four body fluid types: blood, saliva, vaginal secretion, and mixture traces of vaginal secretions and semen. CONCLUSION Bacterial profiling enhances the accuracy and robustness of body fluid identification in forensic analysis, providing a valuable alternative to traditional methods by utilizing DNA and microbial community data despite the uncontrollable conditions. This approach offers significant improvements in the classification accuracy and practical applicability in forensic investigations.
Collapse
Affiliation(s)
- Sungmin Kim
- Forensic Genetics and Chemistry Division, Supreme Prosecutors' Office, 157 Banpo daero, Seocho gu, Seoul, 06590, Republic of Korea.
| | - Han Chul Lee
- Forensic Genetics and Chemistry Division, Supreme Prosecutors' Office, 157 Banpo daero, Seocho gu, Seoul, 06590, Republic of Korea
| | - Jeong Eun Sim
- Forensic Genetics and Chemistry Division, Supreme Prosecutors' Office, 157 Banpo daero, Seocho gu, Seoul, 06590, Republic of Korea
| | - Su Jeong Park
- Forensic Genetics and Chemistry Division, Supreme Prosecutors' Office, 157 Banpo daero, Seocho gu, Seoul, 06590, Republic of Korea
| | - Hye Hyun Oh
- Forensic Genetics and Chemistry Division, Supreme Prosecutors' Office, 157 Banpo daero, Seocho gu, Seoul, 06590, Republic of Korea
| |
Collapse
|
5
|
Mureanu N, Bowman AM, Porter-Wright IA, Verma P, Efthymiou A, Nicolaides KH, Scotta C, Lombardi G, Tribe RM, Shangaris P. The Immunomodulatory Role of Regulatory T Cells in Preterm Birth and Associated Pregnancy Outcomes. Int J Mol Sci 2024; 25:11878. [PMID: 39595948 PMCID: PMC11593591 DOI: 10.3390/ijms252211878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 10/29/2024] [Accepted: 10/30/2024] [Indexed: 11/28/2024] Open
Abstract
Spontaneous preterm birth (sPTB), defined as live birth before 37 weeks of gestational age, is associated with immune dysregulation and pro-inflammatory conditions that profoundly impact newborn health. The question of immune integrity at the maternal-foetal interface is a focus of recent studies centring not only sPTB but the conditions often affiliated with this outcome. Regulatory T cells (Tregs) play a critical anti-inflammatory role in pregnancy, promoting foetal tolerance and placentation. Due to this gestational role, it is hypothesised that decreased or dysfunctional Tregs may be implicated in cases of sPTB. This review examines studies comparing Treg presence in healthy term pregnancies and those with sPTB-associated conditions. Conflicting findings across different conditions and within sPTB itself have been identified. However, notable findings from the research indicate increased proinflammatory cytokines in pregnancies suffering from premature rupture of membranes (pPROM), chorioamnionitis, infection, preeclampsia, and gestational diabetes (GDM). Additionally, reduced Treg levels were identified in preeclampsia, GDM, and pPROM as well as chorioamnionitis presenting with increased Treg dysfunctionality. Treg deficiencies may contribute to health issues in preterm newborns. Current sPTB treatments are limited, underscoring the potential of in utero therapies targeting inflammation, including T cell interventions. Future research aims to establish consensus on the role of Tregs in sPTB and associated conditions and advancing understanding of mechanisms leading to Treg deficiencies in adverse pregnancy outcomes.
Collapse
Affiliation(s)
- Nicoleta Mureanu
- School of Life Course & Population Sciences, King’s College London, 10th Floor North Wing, St Thomas’ Hospital, London SE1 7EH, UK; (N.M.); (A.M.B.); (A.E.); (K.H.N.); (R.M.T.)
- Harris Birthright Research Centre for Fetal Medicine, King’s College London, London SE1 7EH, UK
- Faculty of Medicine, Department of Obstetrics and Gynaecology, Carol Davila University of Medicine and Pharmacy, Bulevardul Eroii Sanitari 8, 050474 Bucharest, Romania
| | - Amanda M. Bowman
- School of Life Course & Population Sciences, King’s College London, 10th Floor North Wing, St Thomas’ Hospital, London SE1 7EH, UK; (N.M.); (A.M.B.); (A.E.); (K.H.N.); (R.M.T.)
- Peter Gorer Department of Immunobiology, School of Immunology & Microbial Sciences, Faculty of Life Sciences & Medicine, King’s College London, London SE1 7EH, UK; (I.A.P.-W.); (P.V.); (C.S.); (G.L.)
| | - Imogen A. Porter-Wright
- Peter Gorer Department of Immunobiology, School of Immunology & Microbial Sciences, Faculty of Life Sciences & Medicine, King’s College London, London SE1 7EH, UK; (I.A.P.-W.); (P.V.); (C.S.); (G.L.)
| | - Priya Verma
- Peter Gorer Department of Immunobiology, School of Immunology & Microbial Sciences, Faculty of Life Sciences & Medicine, King’s College London, London SE1 7EH, UK; (I.A.P.-W.); (P.V.); (C.S.); (G.L.)
| | - Athina Efthymiou
- School of Life Course & Population Sciences, King’s College London, 10th Floor North Wing, St Thomas’ Hospital, London SE1 7EH, UK; (N.M.); (A.M.B.); (A.E.); (K.H.N.); (R.M.T.)
- Harris Birthright Research Centre for Fetal Medicine, King’s College London, London SE1 7EH, UK
| | - Kypros H. Nicolaides
- School of Life Course & Population Sciences, King’s College London, 10th Floor North Wing, St Thomas’ Hospital, London SE1 7EH, UK; (N.M.); (A.M.B.); (A.E.); (K.H.N.); (R.M.T.)
- Harris Birthright Research Centre for Fetal Medicine, King’s College London, London SE1 7EH, UK
| | - Cristiano Scotta
- Peter Gorer Department of Immunobiology, School of Immunology & Microbial Sciences, Faculty of Life Sciences & Medicine, King’s College London, London SE1 7EH, UK; (I.A.P.-W.); (P.V.); (C.S.); (G.L.)
- Department of Life Sciences, Centre for Inflammation Research and Translational Medicine, Brunel University London, London UB8 3PH, UK
| | - Giovanna Lombardi
- Peter Gorer Department of Immunobiology, School of Immunology & Microbial Sciences, Faculty of Life Sciences & Medicine, King’s College London, London SE1 7EH, UK; (I.A.P.-W.); (P.V.); (C.S.); (G.L.)
| | - Rachel M. Tribe
- School of Life Course & Population Sciences, King’s College London, 10th Floor North Wing, St Thomas’ Hospital, London SE1 7EH, UK; (N.M.); (A.M.B.); (A.E.); (K.H.N.); (R.M.T.)
| | - Panicos Shangaris
- School of Life Course & Population Sciences, King’s College London, 10th Floor North Wing, St Thomas’ Hospital, London SE1 7EH, UK; (N.M.); (A.M.B.); (A.E.); (K.H.N.); (R.M.T.)
- Harris Birthright Research Centre for Fetal Medicine, King’s College London, London SE1 7EH, UK
- Peter Gorer Department of Immunobiology, School of Immunology & Microbial Sciences, Faculty of Life Sciences & Medicine, King’s College London, London SE1 7EH, UK; (I.A.P.-W.); (P.V.); (C.S.); (G.L.)
| |
Collapse
|
6
|
Meng L, Öberg S, Sandström A, Reilly M. Association between infertility and cervical insufficiency in nulliparous women-the contribution of fertility treatment. Am J Obstet Gynecol 2024:S0002-9378(24)01107-4. [PMID: 39477049 DOI: 10.1016/j.ajog.2024.10.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 10/21/2024] [Accepted: 10/24/2024] [Indexed: 12/01/2024]
Abstract
BACKGROUND Pregnancies conceived through assisted reproduction have been associated with increased risks of adverse pregnancy and delivery outcomes, including cervical insufficiency (CI). Despite CI being a significant cause of late miscarriage or preterm birth, there are minimal published data on the associations of infertility (with or without fertility treatment) with CI. OBJECTIVE To examine the associations between infertility-assisted reproduction and CI in nulliparous women. STUDY DESIGN This population-based case-control study used data from Swedish national health registers to extract 2662 cases of cervical insufficiency in singleton pregnancies of nulliparous women in the 21-year period (1992-2012). The reference group of 26,620 controls was extracted from the population of non-cases using simple random sampling. RESULTS On adjusting for maternal characteristics and medical history, infertility was associated with CI, overall (adjusted odds ratio [aOR] 1.91 [1.53, 2.39]) and in the subgroup of nonusers of fertility treatment, aOR 1.60 (1.21, 2.12), compared to women without infertility. Among women with infertility, pregnancies conceived with the aid of fertility treatment had higher risk of CI than naturally-conceived pregnancies, aOR 1.49 (1.05, 2.10). In the subgroup of women with infertility and no history of miscarriage, the use of fertility treatment was associated with CI, aOR 3.48 (2.02. 5.98). No association was found between fertility treatment and CI in the pregnancies of women with infertility and a history of miscarriage. CONCLUSION From this study, we conclude that CI in nulliparous women is associated with both infertility and its treatment. For infertile women, the risk of CI following fertility treatment was seen only in those with no history of miscarriage, providing crucial information for improving risk assessment and management strategies for preterm birth prevention in populations availing of fertility treatment.
Collapse
Affiliation(s)
- Lili Meng
- Department of Gynecology and Obstetrics, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou City, China
| | - Sara Öberg
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden; Department of Epidemiology, T.H. Chan School of Public Health, Harvard, Boston, MA
| | - Anna Sandström
- Clinical Epidemiology Division, Department of Medicine, Karolinska Institutet, Stockholm, Sweden; Department of Women's Health, Karolinska University Hospital, Stockholm, Sweden
| | - Marie Reilly
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
7
|
Chen P, Hu T, Zheng Z, Garfield RE, Yang J. The cervicovaginal metabolome in women with favorable induction cervix and those unfavorable for induction when delivering at term. Heliyon 2024; 10:e34166. [PMID: 39071700 PMCID: PMC11279265 DOI: 10.1016/j.heliyon.2024.e34166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 06/28/2024] [Accepted: 07/04/2024] [Indexed: 07/30/2024] Open
Abstract
Background Cervical ripening is crucial for induction. However, its influencing factors, mechanistic understanding, and effective risk stratification are still challenging. Recent research suggested that microorganisms and their metabolites in vaginal spaces correlate to preterm birth. However, it remains unclear whether the cervicovaginal metabolome is related to the natural physiological process of cervical maturation. Objective We aimed to analyze the cervicovaginal metabolome in women with favorable induction cervix and those unfavorable for induction when delivering at term. Study design Cervicovaginal swabs were collected between 40 and 41 weeks gestation from the following 2 different groups of patients: Ripe group (n = 25) which was favorable for the induction cervix and Unripe group which was unfavorable for the induction cervix (n = 25). Samples were tested using untargeted metabolomics analysis and analyzed by a bioinformatics platform. The correlation analysis between the metabolome and the previously acquired microbiome was also performed. Results A total of 629 metabolites were identified in cervicovaginal fluid. The cervicovaginal metabolome was significantly different between the women with the ripe cervix and those with the unripe cervix, especially within each stratum of the same CST. Metabolites within the amino acid, carbohydrate, and dipeptide pathways may play a role in this distinction. Thirty-four metabolites were significantly upregulated, and the remaining fourteen were significantly downregulated in the Unripe group with an unripe cervix unfavorable for induction. Statistical modeling identified Arachidonic Acid and Nicotinate associated with the risk of cervical maturation disorder (AUC 0.87) in negative ion mode. A combination of Choline and d-Mannose identified a risk of cervical maturation disorder (AUC 0.80) in positive ion mode, improved by Lactobacillus relative abundance (AUC 0.89). Conclusion These data suggested that the cervicovaginal space was metabolically active during pregnancy and significantly altered among the women with the mature and immature cervix. Combining the genera-level phylotypes and metabolites could build better cervix maturity prediction models. By using cervicovaginal fluid samples, we demonstrated the potential of multi-data type integration for developing composite models toward understanding the contribution of the vaginal environment to the remodeling of cervix during term pregnancy.
Collapse
Affiliation(s)
- Ping Chen
- Department of Gastroenterology, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China
- GMU-GIBH Joint School of Life Sciences, the Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Medical University, Guangzhou, Guangdong, 511436, China
| | - Tingting Hu
- Guangzhou Laboratory, Bioland, Guangzhou, Guangdong, China
| | - Zheng Zheng
- Guangzhou Women and Children's Medical Center, China
| | - Robert E. Garfield
- Department of Obstetrics and Gynecology, University of Arizona College of Medicine Phoenix, Phoenix, AZ, USA
| | - Jinying Yang
- Department of Obstetrics, Longgang Maternity and Child Institute of Shantou University Medical College (Longgang District Maternity & Child Healthcare Hospital of Shenzhen City), Shenzhen, Guangdong, 518172, China
| |
Collapse
|
8
|
Lin LT, Li CJ, Wu CC, Pan LF, Tsui KH. Pilot Study on Next-Generation Sequencing Analysis of Vaginal Microbiota in Clinically Infertile Patients Treated with Probiotics. J Clin Med 2024; 13:3420. [PMID: 38929949 PMCID: PMC11204178 DOI: 10.3390/jcm13123420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/28/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
Background: In this investigation, we aimed to understand the influence of oral probiotic supplementation on the vaginal microbiota of women preparing for assisted reproductive technology (ART) procedures. Given the importance of a healthy microbiome for reproductive success, this study sought to explore how probiotics might alter the bacterial composition in the vaginal environment. Methods: We recruited a cohort of 30 women, averaging 37 years of age (ranging from 31 to 43 years), who were scheduled to undergo ART. Using 16S ribosomal RNA (rRNA) sequencing, we meticulously analyzed the vaginal microbiota composition before and after the administration of oral probiotic supplements. Results: Our analysis identified 17 distinct microorganisms, including 8 species of Lactobacillus. Following probiotic supplementation, we observed subtle yet notable changes in the vaginal microbiota of some participants. Specifically, there was a decrease in Gardnerella abundance by approximately 20%, and increases in Lactobacillus and Bifidobacterium by 10% and 15%, respectively. Additionally, we noted a significant reduction in the Firmicutes/Bacteroidetes (F/B) ratio in the probiotic group, indicating potential shifts in the overall bacterial composition. Conclusions: These preliminary findings suggest that oral probiotic supplementation can induce significant changes in the vaginal microbiota of middle-aged women undergoing ART, potentially improving their overall bacterial profile. Future studies should consider a larger sample size and a narrower age range to validate these results. Investigating factors related to female hormone production could also provide deeper insights. Understanding the effects of probiotics on the vaginal microbiota in patients with ovarian aging may lead to personalized interventions and better reproductive outcomes.
Collapse
Affiliation(s)
- Li-Te Lin
- Department of Obstetrics and Gynaecology, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan
- Institute of Biopharmaceutical Sciences, National Sun Yat-sen University, Kaohsiung 804, Taiwan
- Department of Obstetrics and Gynaecology, National Yang-Ming University School of Medicine, Taipei 112, Taiwan
| | - Chia-Jung Li
- Department of Obstetrics and Gynaecology, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan
- Institute of Biopharmaceutical Sciences, National Sun Yat-sen University, Kaohsiung 804, Taiwan
| | - Chia-Chun Wu
- Department of Obstetrics and Gynaecology, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan
| | - Li-Fei Pan
- Department of General Affair Office, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan;
- College of Finance and Banking, National Kaohsiung University of Science and Technology, Kaohsiung 824, Taiwan
| | - Kuan-Hao Tsui
- Department of Obstetrics and Gynaecology, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan
- Institute of Biopharmaceutical Sciences, National Sun Yat-sen University, Kaohsiung 804, Taiwan
- Department of Obstetrics and Gynaecology, National Yang-Ming University School of Medicine, Taipei 112, Taiwan
- Department of Obstetrics and Gynecology, Taipei Veterans General Hospital, Taipei 112, Taiwan
- Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
| |
Collapse
|
9
|
Malloy E, Kates AE, Dixon J, Riley C, Safdar N, Hanson L. Vaginal and Rectal microbiome changes following administration of a multi-species antenatal probiotic: A randomized control trial. GUT MICROBES REPORTS 2024; 1:1-10. [PMID: 38708373 PMCID: PMC11065196 DOI: 10.1080/29933935.2024.2334311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 03/14/2024] [Accepted: 03/14/2024] [Indexed: 05/07/2024]
Abstract
The gut and vaginal microbiome undergo changes during pregnancy which may be protective or harmful to the birthing person. Probiotics have been found to cause protective changes to the gut and vaginal microbiomes, with the potential to improve perinatal outcomes. This randomized control trial compares the vaginal and rectal microbiomes before and after an antenatal probiotic or placebo intervention, with a diverse group of pregnant people and a special focus on racial disparities. The vaginal and rectal microbiomes reveal non-significant increased Lactobacillus in the probiotics group, with a greater increase in participants who identified as Black. Potential implications and future study are discussed.
Collapse
Affiliation(s)
- Emily Malloy
- Aurora UW Medical Group Midwifery & Wellness, Advocate Aurora Healthcare Milwaukee, USA
- College of Nursing, Marquette University, Milwaukee, USA
| | - Ashley E. Kates
- Department of Medicine, Division of Infectious Disease, University of Wisconsin-Madison, Madison, USA
- William S. Middleton Memorial Veterans Hospital, Madison, USA
| | - Jonah Dixon
- Department of Medicine, Division of Infectious Disease, University of Wisconsin-Madison, Madison, USA
- William S. Middleton Memorial Veterans Hospital, Madison, USA
| | - Colleen Riley
- Department of Medicine, Division of Infectious Disease, University of Wisconsin-Madison, Madison, USA
- William S. Middleton Memorial Veterans Hospital, Madison, USA
| | - Nasia Safdar
- Department of Medicine, Division of Infectious Disease, University of Wisconsin-Madison, Madison, USA
- William S. Middleton Memorial Veterans Hospital, Madison, USA
| | - Lisa Hanson
- College of Nursing, Marquette University, Milwaukee, USA
| |
Collapse
|
10
|
Ardizzone CM, Taylor CM, Toh E, Lillis RA, Elnaggar JH, Lammons JW, Mott PD, Duffy EL, Shen L, Quayle AJ. Association of Chlamydia trachomatis burden with the vaginal microbiota, bacterial vaginosis, and metronidazole treatment. Front Cell Infect Microbiol 2023; 13:1289449. [PMID: 38149008 PMCID: PMC10750252 DOI: 10.3389/fcimb.2023.1289449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 11/21/2023] [Indexed: 12/28/2023] Open
Abstract
Bacterial vaginosis (BV), a dysbiosis of the vaginal microbiota, is a common coinfection with Chlamydia trachomatis (Ct), and BV-associated bacteria (BVAB) and their products have been implicated in aiding Ct evade natural immunity. Here, we determined if a non-optimal vaginal microbiota was associated with a higher genital Ct burden and if metronidazole, a standard treatment for BV, would reduce Ct burden or aid in natural clearance of Ct infection. Cervicovaginal samples were collected from women at enrollment and, if testing positive for Ct infection, at a follow-up visit approximately one week later. Cervical Ct burden was assessed by inclusion forming units (IFU) and Ct genome copy number (GCN), and 16S rRNA gene sequencing was used to determine the composition of the vaginal microbiota. We observed a six-log spectrum of IFU and an eight-log spectrum of GCN in our study participants at their enrollment visit, but BV, as indicated by Amsel's criteria, Nugent scoring, or VALENCIA community state typing, did not predict infectious and total Ct burden, although IFU : GCN increased with Amsel and Nugent scores and in BV-like community state types. Ct burden was, however, associated with the abundance of bacterial species in the vaginal microbiota, negatively with Lactobacillus crispatus and positively with Prevotella bivia. Women diagnosed with BV were treated with metronidazole, and Ct burden was significantly reduced in those who resolved BV with treatment. A subset of women naturally cleared Ct infection in the interim, typified by low Ct burden at enrollment and resolution of BV. Abundance of many BVAB decreased, and Lactobacillus increased, in response to metronidazole treatment, but no changes in abundances of specific vaginal bacteria were unique to women who spontaneously cleared Ct infection.
Collapse
Affiliation(s)
- Caleb M. Ardizzone
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Christopher M. Taylor
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Evelyn Toh
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Rebecca A. Lillis
- Department of Medicine, Section of Infectious Diseases, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Jacob H. Elnaggar
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - John W. Lammons
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Patricia Dehon Mott
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Emily L. Duffy
- Department of Medicine, Section of Infectious Diseases, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Li Shen
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Alison J. Quayle
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| |
Collapse
|
11
|
Sun H, Su X, Mao J, Du Q. Impact of pre-pregnancy weight on the risk of premature rupture of membranes in Chinese women. Heliyon 2023; 9:e21971. [PMID: 38027997 PMCID: PMC10661500 DOI: 10.1016/j.heliyon.2023.e21971] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/18/2023] [Accepted: 11/01/2023] [Indexed: 12/01/2023] Open
Abstract
Objective The objective of this study was to investigate the influence of pre-pregnancy body mass index (BMI) on the incidence of premature rupture of membranes (PROM) among Chinese women. Methods This was a hospital-based retrospective cohort study of 75,760 Chinese women who had live singleton births between 2016 and 2020. In this study, we utilized logistic regression analysis to estimate the association between pre-pregnancy BMI and PROM based on gestational age. Results Prior to pregnancy, being overweight or obese was found to be significantly associated with an increased risk of preterm premature rupture of membranes (PPROM), as evidenced by adjusted odds ratios and 95 % confidence intervals of 1.336 (1.173-1.522) and 1.411 (1.064-1.872), respectively. Those with PPROM were divided into three groups according to gestational age: 22-27, 28-31, and 32-36 weeks. Women who were overweight or obese prior to pregnancy had a higher likelihood of experiencing PROM between 22 and 27 weeks of gestation. This finding remained consistent even after controlling for potential confounding factors, such as gestational diabetes mellitus (GDM), gestational hypertension, preeclampsia, hydramnios, cervical abnormalities, and a history of preterm birth. Conclusion Our research findings indicate that being overweight or obese before pregnancy is linked to a higher likelihood of experiencing PPROM. Therefore, achieving optimal weight before pregnancy is important to prevent PPROM and its associated complications.
Collapse
Affiliation(s)
- Hanxiang Sun
- Department of Obstetrics, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Xiujuan Su
- Clinical Research Center, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Jing Mao
- Department of Obstetrics, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Qiaoling Du
- Department of Obstetrics, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| |
Collapse
|
12
|
Salas-Espejo E, Terrón-Camero LC, Ruiz JL, Molina NM, Andrés-León E. Exploring the Microbiome in Human Reproductive Tract: High-Throughput Methods for the Taxonomic Characterization of Microorganisms. Semin Reprod Med 2023; 41:125-143. [PMID: 38320576 DOI: 10.1055/s-0044-1779025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
Microorganisms are important due to their widespread presence and multifaceted roles across various domains of life, ecology, and industries. In humans, they underlie the proper functioning of multiple systems crucial to well-being, including immunological and metabolic functions. Emerging research addressing the presence and roles of microorganisms within human reproduction is increasingly relevant. Studies implementing new methodologies (e.g., to investigate vaginal, uterine, and semen microenvironments) can now provide relevant insights into fertility, reproductive health, or pregnancy outcomes. In that sense, cutting-edge sequencing techniques, as well as others such as meta-metabolomics, culturomics, and meta-proteomics, are becoming more popular and accessible worldwide, allowing the characterization of microbiomes at unprecedented resolution. However, they frequently involve rather complex laboratory protocols and bioinformatics analyses, for which researchers may lack the required expertise. A suitable pipeline would successfully enable both taxonomic classification and functional profiling of the microbiome, providing easy-to-understand biological interpretations. However, the selection of an appropriate methodology would be crucial, as it directly impacts the reproducibility, accuracy, and quality of the results and observations. This review focuses on the different current microbiome-related techniques in the context of human reproduction, encompassing niches like vagina, endometrium, and seminal fluid. The most standard and reliable methods are 16S rRNA gene sequencing, metagenomics, and meta-transcriptomics, together with complementary approaches including meta-proteomics, meta-metabolomics, and culturomics. Finally, we also offer case examples and general recommendations about the most appropriate methods and workflows and discuss strengths and shortcomings for each technique.
Collapse
Affiliation(s)
- Eduardo Salas-Espejo
- Department of Biochemistry and Molecular Biology, Faculty of Sciences, University of Granada, Granada, Spain
| | - Laura C Terrón-Camero
- Bioinformatics Unit, Institute of Parasitology and Biomedicine "López-Neyra" (IPBLN), CSIC, Granada, Spain
| | - José L Ruiz
- Bioinformatics Unit, Institute of Parasitology and Biomedicine "López-Neyra" (IPBLN), CSIC, Granada, Spain
| | - Nerea M Molina
- Department of Biochemistry and Molecular Biology, Faculty of Sciences, University of Granada, Granada, Spain
| | - Eduardo Andrés-León
- Bioinformatics Unit, Institute of Parasitology and Biomedicine "López-Neyra" (IPBLN), CSIC, Granada, Spain
| |
Collapse
|
13
|
Ma H, Zhao W, Song T, Baijiu Z, Zhang Z. Comparative Analysis of the Pre-Parturition and Post-Parturition Genital Tract Microbiota in Plateau Bangor Sewa Sheep. Vet Sci 2023; 10:523. [PMID: 37624310 PMCID: PMC10459245 DOI: 10.3390/vetsci10080523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/09/2023] [Accepted: 08/09/2023] [Indexed: 08/26/2023] Open
Abstract
(1) Background: Bangor Sewa sheep are an economically significant livestock species on the plateau. The roles of microbiota in reproduction are complex and critical for animal health. But little is known currently about the microbiome of plateau Bangor Sewa sheep. The purpose of this study was to discover the changes in the genital tract microbiota of pre- and post-partum Bangor Sewa sheep. (2) Methods: Samples from the birth canal were obtained for 16S rRNA sequencing, three days before and after delivery, respectively. (3) Results: The results showed that there was a noticeable difference in three phyla and 74 genera between the pre- and post-parturition groups in the microbiota of Bangor Sewa sheep. The changes included a decrease in the abundance of genera related to health (unclassified_Cellulomonadaceae, Cellulomonas, Fibrobacti, Flavobacterium, Eubacterium_ventriosum_group, Acetitomaculum, Aeromicrobium, Dietzia, Romboutsia, Ruminococcus, etc.) and an increased abundance of negatively related genera (Nocardioides, unclassified_Clostridia, Sphingobacteriaceae, unclassified_Ruminococcaceae, Prevotellaceae_UCG_004, Micromonospora, Streptococcus, Facklamia, Bosea, etc.) spp. (4) Conclusions: Microbes can serve as indicators of the physical state of Bangor Sewa sheep. These findings laid the foundation for deciphering the effects of microbial changes during birth on the reproductive health of plateau Bangor Sewa sheep.
Collapse
Affiliation(s)
- Hongcai Ma
- Institute of Animal Husbandry and Veterinary Medicine, Tibet Autonomous Region Academy of Agriculture and Animal Science, Lhasa 850009, China; (H.M.); (T.S.)
| | - Wangsheng Zhao
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China;
| | - Tianzeng Song
- Institute of Animal Husbandry and Veterinary Medicine, Tibet Autonomous Region Academy of Agriculture and Animal Science, Lhasa 850009, China; (H.M.); (T.S.)
| | - Zhaxi Baijiu
- Cultural Service Center of Maqian Township, Nagqu 852599, China;
| | - Zhenzhen Zhang
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China;
| |
Collapse
|
14
|
Correia GD, Marchesi JR, MacIntyre DA. Moving beyond DNA: towards functional analysis of the vaginal microbiome by non-sequencing-based methods. Curr Opin Microbiol 2023; 73:102292. [PMID: 36931094 DOI: 10.1016/j.mib.2023.102292] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/10/2023] [Accepted: 02/14/2023] [Indexed: 03/17/2023]
Abstract
Over the last two decades, sequencing-based methods have revolutionised our understanding of niche-specific microbial complexity. In the lower female reproductive tract, these approaches have enabled identification of bacterial compositional structures associated with health and disease. Application of metagenomics and metatranscriptomics strategies have provided insight into the putative function of these communities but it is increasingly clear that direct measures of microbial and host cell function are required to understand the contribution of microbe-host interactions to pathophysiology. Here we explore and discuss current methods and approaches, many of which rely upon mass-spectrometry, being used to capture functional insight into the vaginal mucosal interface. In addition to improving mechanistic understanding, these methods offer innovative solutions for the development of diagnostic and therapeutic strategies designed to improve women's health.
Collapse
Affiliation(s)
- Gonçalo Ds Correia
- Institute of Reproductive and Developmental Biology, Department of Metabolism, Digestion and Reproduction, Imperial College London, London W12 0NN, UK; March of Dimes Prematurity Research Centre at Imperial College London, London, UK
| | - Julian R Marchesi
- March of Dimes Prematurity Research Centre at Imperial College London, London, UK; Centre for Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Imperial College London, Imperial College London, London W2 1NY, UK
| | - David A MacIntyre
- Institute of Reproductive and Developmental Biology, Department of Metabolism, Digestion and Reproduction, Imperial College London, London W12 0NN, UK; March of Dimes Prematurity Research Centre at Imperial College London, London, UK.
| |
Collapse
|
15
|
Nguyen HDT, Le TM, Lee E, Lee D, Choi Y, Cho J, Park NJY, Chong GO, Seo I, Han HS. Relationship between Human Papillomavirus Status and the Cervicovaginal Microbiome in Cervical Cancer. Microorganisms 2023; 11:1417. [PMID: 37374919 DOI: 10.3390/microorganisms11061417] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/05/2023] [Accepted: 05/25/2023] [Indexed: 06/29/2023] Open
Abstract
Uterine cervical cancer (CC) is a complex, multistep disease primarily linked to persistent infection with high-risk human papillomavirus (HR-HPV). However, it is widely acknowledged that HR-HPV infection alone cannot account for the formation and progression of CC. Emerging evidence suggests that the cervicovaginal microbiome (CVM) also plays a significant role in HPV-related CC. Certain bacteria, such as Fusobacterium spp., Porphyromonas, Prevotella, and Campylobacter, are currently being considered as potential microbiomarkers for HPV-positive CC. However, the composition of the CVM in CC is inconsistent; thus, further studies are needed. This review comprehensively discusses the complex interplay between HPV and the CVM in cervical carcinogenesis. It is postulated that the dynamic interaction between HPV and the CVM creates an imbalanced cervicovaginal microenvironment that triggers dysbiosis, enhances HPV persistence, and promotes cervical carcinogenesis. Moreover, this review aims to provide updated evidence on the potential role of bacteriotherapy, particularly probiotics, in the treatment of CC.
Collapse
Affiliation(s)
- Hong Duc Thi Nguyen
- Department of Biomedical Science, Graduate School, Kyungpook National University, Daegu 41944, Republic of Korea
- BK21 Four Program, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Tan Minh Le
- Department of Biomedical Science, Graduate School, Kyungpook National University, Daegu 41944, Republic of Korea
- BK21 Four Program, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Eunmi Lee
- Department of Biomedical Science, Graduate School, Kyungpook National University, Daegu 41944, Republic of Korea
- BK21 Four Program, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Donghyeon Lee
- Department of Biomedical Science, Graduate School, Kyungpook National University, Daegu 41944, Republic of Korea
- BK21 Four Program, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Yeseul Choi
- Department of Biomedical Science, Graduate School, Kyungpook National University, Daegu 41944, Republic of Korea
- BK21 Four Program, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Junghwan Cho
- Clinical Omics Institute, Kyungpook National University, Daegu 41405, Republic of Korea
| | - Nora Jee-Young Park
- BK21 Four Program, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
- Clinical Omics Institute, Kyungpook National University, Daegu 41405, Republic of Korea
- Department of Pathology, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
- Department of Pathology, Kyungpook National University Chilgok Hospital, Daegu 41404, Republic of Korea
| | - Gun Oh Chong
- BK21 Four Program, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
- Clinical Omics Institute, Kyungpook National University, Daegu 41405, Republic of Korea
- Department of Obstetrics and Gynecology, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
- Department of Obstetrics and Gynecology, Kyungpook National University Chilgok Hospital, Daegu 41404, Republic of Korea
| | - Incheol Seo
- Department of Immunology, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Hyung Soo Han
- Department of Biomedical Science, Graduate School, Kyungpook National University, Daegu 41944, Republic of Korea
- BK21 Four Program, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
- Clinical Omics Institute, Kyungpook National University, Daegu 41405, Republic of Korea
- Department of Physiology, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| |
Collapse
|
16
|
Silvano A, Meriggi N, Renzi S, Seravalli V, Torcia MG, Cavalieri D, Di Tommaso M. Vaginal Microbiome in Pregnant Women with and without Short Cervix. Nutrients 2023; 15:2173. [PMID: 37432374 DOI: 10.3390/nu15092173] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/27/2023] [Accepted: 04/30/2023] [Indexed: 07/12/2023] Open
Abstract
Cervical shortening is a recognised risk factor for pre-term birth. The vaginal microbiome plays an essential role in pregnancy and in maternal and foetal outcomes. We studied the vaginal microbiome in 68 women with singleton gestation and a cervical length ≤25 mm and in 29 pregnant women with a cervix >25 mm in the second or early third trimester. Illumina protocol 16S Metagenomic Sequencing Library Preparation was used to detail amplified 16SrRNA gene. Statistical analyses were performed in R environment. Firmicutes was the phylum most represented in all pregnant women. The mean relative abundance of Proteobacteria and Actinobacteriota was higher in women with a short cervix. Bacterial abundance was higher in women with a normal length cervix compared to the group of women with a short cervix. Nonetheless, a significant enrichment in bacterial taxa poorly represented in vaginal microbiome was observed in the group of women with a short cervix. Staphylococcus and Pseudomonas, taxa usually found in aerobic vaginitis, were more common in women with a short cervix compared with the control group, while Lactobacillus iners and Bifidobacterium were associated with a normal cervical length. Lactobacillus jensenii and Gardenerella vaginalis were associated with a short cervix.
Collapse
Affiliation(s)
- Angela Silvano
- Department of Health Sciences, Division of Obstetrics and Gynecology, Careggi Hospital, 50139 Florence, Italy
| | - Niccolò Meriggi
- Department of Biology, University of Florence, Via Madonna del Piano 6, 50019 Florence, Italy
| | - Sonia Renzi
- Department of Biology, University of Florence, Via Madonna del Piano 6, 50019 Florence, Italy
| | - Viola Seravalli
- Department of Health Sciences, Division of Obstetrics and Gynecology, Careggi Hospital, 50139 Florence, Italy
| | - Maria Gabriella Torcia
- Department of Clinical and Experimental Medicine, University of Firenze, 50139 Firenze, Italy
| | - Duccio Cavalieri
- Department of Biology, University of Florence, Via Madonna del Piano 6, 50019 Florence, Italy
| | - Mariarosaria Di Tommaso
- Department of Health Sciences, Division of Obstetrics and Gynecology, Careggi Hospital, 50139 Florence, Italy
| |
Collapse
|
17
|
Lee CY, Dillard LR, Papin JA, Arnold KB. New perspectives into the vaginal microbiome with systems biology. Trends Microbiol 2023; 31:356-368. [PMID: 36272885 DOI: 10.1016/j.tim.2022.09.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 09/19/2022] [Accepted: 09/21/2022] [Indexed: 10/28/2022]
Abstract
The vaginal microbiome (VMB) is critical to female reproductive health; however, the mechanisms associated with optimal and non-optimal states remain poorly understood due to the complex community structure and dynamic nature. Quantitative systems biology techniques applied to the VMB have improved understanding of community composition and function using primarily statistical methods. In contrast, fewer mechanistic models that use a priori knowledge of VMB features to develop predictive models have been implemented despite their use for microbiomes at other sites, including the gastrointestinal tract. Here, we explore systems biology approaches that have been applied in the VMB, highlighting successful techniques and discussing new directions that hold promise for improving understanding of health and disease.
Collapse
Affiliation(s)
- Christina Y Lee
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Lillian R Dillard
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA; Department of Biochemistry & Molecular Genetics, University of Virginia, Charlottesville, VA, USA
| | - Jason A Papin
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| | - Kelly B Arnold
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
18
|
Das S, Bhattacharjee MJ, Mukherjee AK, Khan MR. Recent advances in understanding of multifaceted changes in the vaginal microenvironment: implications in vaginal health and therapeutics. Crit Rev Microbiol 2023; 49:256-282. [PMID: 35312419 DOI: 10.1080/1040841x.2022.2049696] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The vagina endures multifaceted changes from neonatal to menopausal phases due to hormonal flux, metabolite deposition, and microbial colonization. These features have important implications in women's health. Several pre-factors show dynamic characteristics according to the phases that shift the vaginal microbiota from anaerobes to aerobes which is a hallmark of healthy vaginal environment. These factors include oestrogen levels, glycogen deposition, and vaginal microstructure. In the adult phase, Lactobacillus is highly dominant and regulates pH, adherence, aggregation, immune modulation, synthesis of bacteriocins, and biosurfactants (BSs) which are antagonistic to pathogens. Maternal factors are protective by favouring the colonization of lactobacilli in the vagina in the neonatal phase, which diminishes with age. The dominance of lactobacilli and dysbiosis in the adult phase depends on intrinsic and extrinsic factors in women, which vary between ethnicities. Recent developments in probiotics used against vaginal microbiome dysbiosis have shown great promise in restoring the normal microbiota including preventing the loss of beneficial bacteria. However, further in-depth studies are warranted to ensure long-term protection by probiotics. This review highlights various aspects of the vaginal microenvironment in different phases of growth and diverse ethnicities. Furthermore, it discusses future trends for formulating more effective population-specific probiotics and implications of paraprobiotics and postbiotics as effective therapeutics.
Collapse
Affiliation(s)
- Sushmita Das
- Division of Life Science, Institute of Advanced Study in Science and Technology, Guwahati, India
| | | | - Ashis K Mukherjee
- Division of Life Science, Institute of Advanced Study in Science and Technology, Guwahati, India.,Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, India
| | - Mojibur Rohman Khan
- Division of Life Science, Institute of Advanced Study in Science and Technology, Guwahati, India
| |
Collapse
|
19
|
Larkin AA, Hagstrom GI, Brock ML, Garcia NS, Martiny AC. Basin-scale biogeography of Prochlorococcus and SAR11 ecotype replication. THE ISME JOURNAL 2023; 17:185-194. [PMID: 36273241 PMCID: PMC9589681 DOI: 10.1038/s41396-022-01332-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 10/03/2022] [Accepted: 10/06/2022] [Indexed: 11/13/2022]
Abstract
Establishing links between microbial diversity and environmental processes requires resolving the high degree of functional variation among closely related lineages or ecotypes. Here, we implement and validate an improved metagenomic approach that estimates the spatial biogeography and environmental regulation of ecotype-specific replication patterns (RObs) across ocean regions. A total of 719 metagenomes were analyzed from meridional Bio-GO-SHIP sections in the Atlantic and Indian Ocean. Accounting for sequencing bias and anchoring replication estimates in genome structure were critical for identifying physiologically relevant biological signals. For example, ecotypes within the dominant marine cyanobacteria Prochlorococcus exhibited distinct diel cycles in RObs that peaked between 19:00-22:00. Additionally, both Prochlorococcus ecotypes and ecotypes within the highly abundant heterotroph Pelagibacter (SAR11) demonstrated systematic biogeographies in RObs that differed from spatial patterns in relative abundance. Finally, RObs was significantly regulated by nutrient stress and temperature, and explained by differences in the genomic potential for nutrient transport, energy production, cell wall structure, and replication. Our results suggest that our new approach to estimating replication is reflective of gross population growth. Moreover, this work reveals that the interaction between adaptation and environmental change drives systematic variability in replication patterns across ocean basins that is ecotype-specific, adding an activity-based dimension to our understanding of microbial niche space.
Collapse
Affiliation(s)
- Alyse A Larkin
- Department of Earth System Science, University of California, Irvine, CA, USA
| | - George I Hagstrom
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
| | - Melissa L Brock
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA, USA
| | - Nathan S Garcia
- Department of Earth System Science, University of California, Irvine, CA, USA
| | - Adam C Martiny
- Department of Earth System Science, University of California, Irvine, CA, USA.
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA, USA.
| |
Collapse
|
20
|
Compositional Changes in the Vaginal Bacterial Microbiome of Healthy Pregnant Women across the Three Gestational Trimesters in Ismailia, Egypt. Microorganisms 2023; 11:microorganisms11010139. [PMID: 36677431 PMCID: PMC9862816 DOI: 10.3390/microorganisms11010139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/23/2022] [Accepted: 01/03/2023] [Indexed: 01/07/2023] Open
Abstract
The composition of the vaginal microbiome may lead to adverse pregnancy outcomes. Normal pregnancy is associated with changes in the vaginal bacterial community composition, which tend to be more enriched with one or two Lactobacillus species promoting a healthy vagina and favorable birth outcomes. The aim of the current study was to determine compositional changes in the healthy vaginal microbiome composition during the three trimesters of pregnancy in Ismailia, Egypt using Illumina MiSeq sequencing of the V3-V4 region of the 16S rRNA. The phylum Firmicutes and the genus Lactobacillus dominated across the three trimesters of pregnancy. L. iners was the most abundant species. However, L. coleohominis and L. reuteri represented the least dominant vaginal lactobacilli. Core microbiome analyses showed the Lactobacillus genus and L. iners species to have the highest prevalence in all the samples of our study groups. The phylum Firmicutes was found to be negatively correlated with almost all other vaginal phyla during pregnancy. Likewise, a negative correlation between Lactobacillus and almost all other genera was detected, including significant negative correlations with Dialister and Prevotella. Furthermore, negative correlations of L. iners were detected with almost all other species, including a significant negative correlation with L. helveticus, G. vaginalis, S. anginosus, and S. agalactiae.
Collapse
|
21
|
Xiao Y, Huang S, Yu W, Ni Y, Lu D, Wu Q, Leng Q, Yang T, Ni M, Xie J, Zhang X. Effects of emergency/nonemergency cervical cerclage on the vaginal microbiome of pregnant women with cervical incompetence. Front Cell Infect Microbiol 2023; 13:1072960. [PMID: 36968117 PMCID: PMC10034410 DOI: 10.3389/fcimb.2023.1072960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 02/21/2023] [Indexed: 03/29/2023] Open
Abstract
Background Evaluation of the therapeutic effects of cerclage on preterm birth (PTB) caused by cervical incompetence remains challenging. The vaginal microbiome is associated with preterm births. Thus, this study aimed to analyse the vaginal microbiota of patients with cervical incompetence, explore the relationship between the composition of the vaginal microbiota before cervical cerclage and at term delivery, and assess the effect of cervical cerclage on the vaginal microbiota. Methods Patients (n = 30) underwent cerclage performed by the same surgical team. Vaginal swabs were obtained pre-surgery and seven days post-surgery. A gestational age-matched cohort of healthy pregnant women (n = 20) (no particular abnormality during pregnancy, delivery at term) was used as the control group and sampled during a comparable pregnancy. All collected vaginal swabs were analysed by 16S rRNA gene sequencing. Results When comparing the healthy control and cervical cerclage groups, the enriched microorganism in the healthy controls was G. Scardovia, and the enriched microorganism of the cerclage was G. Streptococcus. α diversity was significantly increased in patients who received cerclage with preterm delivery compared with those with full-term delivery, and the enriched microorganism was F. Enterococcus. A comparison before and after nonemergency cerclage suggested that the enriched microorganisms were G. Lactobacillus and F. Lactobacillaceae before surgery. After nonemergency cerclage, the enriched microorganisms were F. Enterobacteriaceae and C. Gammaproteobacteria. Vaginal microbiota diversity significantly increased, and the proportion of women with Lactobacillus spp.-depleted microbiomes increased after emergency cerclage. Significant differences in β diversity were found between the groups. Before the emergency cerclage, the enriched microorganisms were G. Lactobacillus, O. Alteromonadales, and P. Firmicutes. After emergency cerclage, the enriched microorganisms were P. Actinobacteria, C. Actinobacteria, P. Proteobacteria, F. Bifidobacteriaceae, O. Bifidobacteriales, G. Gardnerella, and G. Veillonella. Conclusion Cerclage (particularly emergency cerclage) may alter the vaginal microbiota by increasing microbiota diversity, decreasing vaginal Lactobacillus abundance, and increasing the abundance of pathogenic bacteria that are not conducive to pregnancy maintenance, thereby affecting surgical efficacy. Therefore, the role of the vaginal microbiome should be considered when developing treatment strategies for pregnant women with cervical incompetence. Clinical trial registration https://www.chictr.org.cn, identifier ChiCTR2100046305.
Collapse
Affiliation(s)
- Yunshan Xiao
- Department of Obstetrics, Women and Children’s Hospital, School of Medicine, Xiamen University, Xiamen, China
- Xiamen Key Laboratory of Basic and Clinical Research on Major Obstetrical Diseases, Xiamen, China
- Xiamen Clinical Research Center for Perinatal Medicine, Xiamen, China
| | - Shiting Huang
- Department of Obstetrics, Women and Children’s Hospital, School of Medicine, Xiamen University, Xiamen, China
- Xiamen Key Laboratory of Basic and Clinical Research on Major Obstetrical Diseases, Xiamen, China
| | - Weiwei Yu
- Department of Obstetrics, Women and Children’s Hospital, School of Medicine, Xiamen University, Xiamen, China
- Xiamen Key Laboratory of Basic and Clinical Research on Major Obstetrical Diseases, Xiamen, China
| | - Yan Ni
- Department of Obstetrics, Women and Children’s Hospital, School of Medicine, Xiamen University, Xiamen, China
- Xiamen Key Laboratory of Basic and Clinical Research on Major Obstetrical Diseases, Xiamen, China
| | - Danni Lu
- Department of Obstetrics, Women and Children’s Hospital, School of Medicine, Xiamen University, Xiamen, China
- Xiamen Key Laboratory of Basic and Clinical Research on Major Obstetrical Diseases, Xiamen, China
| | - Quanfeng Wu
- Department of Obstetrics, Women and Children’s Hospital, School of Medicine, Xiamen University, Xiamen, China
- Xiamen Key Laboratory of Basic and Clinical Research on Major Obstetrical Diseases, Xiamen, China
| | - Qin Leng
- Department of Obstetrics, Women and Children’s Hospital, School of Medicine, Xiamen University, Xiamen, China
- Xiamen Key Laboratory of Basic and Clinical Research on Major Obstetrical Diseases, Xiamen, China
| | - Ting Yang
- Department of Obstetrics, Women and Children’s Hospital, School of Medicine, Xiamen University, Xiamen, China
- Xiamen Key Laboratory of Basic and Clinical Research on Major Obstetrical Diseases, Xiamen, China
| | - Meilan Ni
- Department of Obstetrics, Women and Children’s Hospital, School of Medicine, Xiamen University, Xiamen, China
- Xiamen Key Laboratory of Basic and Clinical Research on Major Obstetrical Diseases, Xiamen, China
| | - Jingxian Xie
- Department of Obstetrics, Women and Children’s Hospital, School of Medicine, Xiamen University, Xiamen, China
- Xiamen Key Laboratory of Basic and Clinical Research on Major Obstetrical Diseases, Xiamen, China
| | - Xueqin Zhang
- Department of Obstetrics, Women and Children’s Hospital, School of Medicine, Xiamen University, Xiamen, China
- Xiamen Key Laboratory of Basic and Clinical Research on Major Obstetrical Diseases, Xiamen, China
- Xiamen Clinical Research Center for Perinatal Medicine, Xiamen, China
- *Correspondence: Xueqin Zhang,
| |
Collapse
|
22
|
Shabayek S, Abdellah AM, Salah M, Ramadan M, Fahmy N. Alterations of the vaginal microbiome in healthy pregnant women positive for group B Streptococcus colonization during the third trimester. BMC Microbiol 2022; 22:313. [PMID: 36544085 PMCID: PMC9769055 DOI: 10.1186/s12866-022-02730-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 12/09/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Streptococcus agalactiae or group B Streptococcus (GBS) asymptomatically colonizes the genitourinary tracts of up to 30% of pregnant women. Globally, GBS is an important cause of neonatal morbidity and mortality. GBS has recently been linked to adverse pregnancy outcomes. The potential interactions between GBS and the vaginal microbiome composition remain poorly understood. In addition, little is known about the vaginal microbiota of pregnant Egyptian women. RESULTS Using V3-V4 16S rRNA next-generation sequencing, we examined the vaginal microbiome in GBS culture-positive pregnant women (22) and GBS culture-negative pregnant women (22) during the third trimester in Ismailia, Egypt. According to the alpha-diversity indices, the vaginal microbiome of pregnant GBS culture-positive women was significantly more diverse and less homogenous. The composition of the vaginal microbiome differed significantly based on beta-diversity between GBS culture-positive and culture-negative women. The phylum Firmicutes and the family Lactobacillaceae were significantly more abundant in GBS-negative colonizers. In contrast, the phyla Actinobacteria, Tenericutes, and Proteobacteria and the families Bifidobacteriaceae, Mycoplasmataceae, Streptococcaceae, Corynebacteriaceae, Staphylococcaceae, and Peptostreptococcaceae were significantly more abundant in GBS culture-positive colonizers. On the genus and species levels, Lactobacillus was the only genus detected with significantly higher relative abundance in GBS culture-negative status (88%), and L. iners was the significantly most abundant species. Conversely, GBS-positive carriers exhibited a significant decrease in Lactobacillus abundance (56%). In GBS-positive colonizers, the relative abundance of the genera Ureaplasma, Gardnerella, Streptococcus, Corynebacterium, Staphylococcus, and Peptostreptococcus and the species Peptostreptococcus anaerobius was significantly higher. The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways related to the metabolism of cofactors and vitamins, phosphatidylinositol signaling system, peroxisome, host immune system pathways, and host endocrine system were exclusively enriched among GBS culture-positive microbial communities. However, lipid metabolism KEGG pathways, nucleotide metabolism, xenobiotics biodegradation and metabolism, genetic information processing pathways associated with translation, replication, and repair, and human diseases (Staphylococcus aureus infection) were exclusively enriched in GBS culture-negative communities. CONCLUSIONS Understanding how perturbations of the vaginal microbiome contribute to pregnancy complications may result in the development of alternative, targeted prevention strategies to prevent maternal GBS colonization. We hypothesized associations between inferred microbial function and GBS status that would need to be confirmed in larger cohorts.
Collapse
Affiliation(s)
- Sarah Shabayek
- grid.33003.330000 0000 9889 5690Department of Microbiology and Immunology, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| | - Asmaa M. Abdellah
- grid.33003.330000 0000 9889 5690Department of Obstetrics and Gynecology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Mohammed Salah
- grid.440879.60000 0004 0578 4430Department of Microbiology and Immunology, Faculty of Pharmacy, Port Said University, Port Said, Egypt
| | - Mohammed Ramadan
- grid.411303.40000 0001 2155 6022Department of Microbiology and Immunology, Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt
| | - Nora Fahmy
- grid.33003.330000 0000 9889 5690Department of Microbiology and Immunology, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
23
|
Huo Y, Jiang Q, Zhao W. Meta-analysis of metagenomics reveals the signatures of vaginal microbiome in preterm birth. MEDICINE IN MICROECOLOGY 2022. [DOI: 10.1016/j.medmic.2022.100065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
24
|
Gaur SS, Annapure US. Untargeted metabolite profiling of Enterococcus villorum SB2, isolated from the vagina of pregnant women, by HR-LCMS. World J Microbiol Biotechnol 2022; 38:219. [PMID: 36070101 DOI: 10.1007/s11274-022-03404-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 08/28/2022] [Indexed: 10/14/2022]
Abstract
Enterococcus bacteria are studied in various sectors including fermentation, food and dairy industries,as well as studied for their probiotic properties but have limited use due to their possible pathogenic behavior. The present report talks about the metabolites produced, by the previously isolated Enterococcus strain, E.villorum SB2 (accession number KX830968), from the vaginal source. The growth of the bacteria in three types of media (M17, MRS and LAPTg) was compared, where the M17 media gave better bacterial colonies, also maximum growth rate was observed in M17 media (Td = 1.6 h & k = 0.4 h-1), and thus was selected as the metabolite production media. Further, the studied bacteria did not show any hemolytic activity, making it safe for industrial applications. The HR-LCMS results showed the production of various amino acids, organic acids, peptides, and other metabolites like flavonoids (Quercetin 3-O-Manoglucoside), terpenoids (7',8',Dihydro-8'-hydroxycitraniaxanthin, O-Methylganoderic acid O, Thalicsessine, Austinol, Valdiate), indole derivatives produced by tryptophan metabolism (5-hydroxykynurenamine, 2S,4R)-4-(9H-Pyrido[3,4-b]indol-1-yl)-1,2,4-butanetriol, Indoleacrylic acid), antimicrobial compounds (Fortimicin A) and fatty acids (Stearic acid, Myristic acid), which were earlier unreported form Enterococcus species opening new scope for discovering new industrial applications of the strain. As the studied bacteria has been reported to be a potential probiotic, the detection of these industrially important metabolites can be studied further in future studies to reveal the potential industrial applications of the strain.
Collapse
Affiliation(s)
- Shivani Singh Gaur
- Department of Food Engineering and Technology, Institute of Chemical Technology, Matunga, Mumbai, India
| | - Uday S Annapure
- Department of Food Engineering and Technology, Institute of Chemical Technology, Matunga, Mumbai, India. .,Institute of Chemical Technology, Marathwada Campus, Jalna, India.
| |
Collapse
|
25
|
Park S, Moon J, Kang N, Kim YH, You YA, Kwon E, Ansari A, Hur YM, Park T, Kim YJ. Predicting preterm birth through vaginal microbiota, cervical length, and WBC using a machine learning model. Front Microbiol 2022; 13:912853. [PMID: 35983325 PMCID: PMC9378785 DOI: 10.3389/fmicb.2022.912853] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 07/05/2022] [Indexed: 11/13/2022] Open
Abstract
An association between the vaginal microbiome and preterm birth has been reported. However, in practice, it is difficult to predict premature birth using the microbiome because the vaginal microbial community varies highly among samples depending on the individual, and the prediction rate is very low. The purpose of this study was to select markers that improve predictive power through machine learning among various vaginal microbiota and develop a prediction algorithm with better predictive power that combines clinical information. As a multicenter case–control study with 150 Korean pregnant women with 54 preterm delivery group and 96 full-term delivery group, cervicovaginal fluid was collected from pregnant women during mid-pregnancy. Their demographic profiles (age, BMI, education level, and PTB history), white blood cell count, and cervical length were recorded, and the microbiome profiles of the cervicovaginal fluid were analyzed. The subjects were randomly divided into a training (n = 101) and a test set (n = 49) in a two-to-one ratio. When training ML models using selected markers, five-fold cross-validation was performed on the training set. A univariate analysis was performed to select markers using seven statistical tests, including the Wilcoxon rank-sum test. Using the selected markers, including Lactobacillus spp., Gardnerella vaginalis, Ureaplasma parvum, Atopobium vaginae, Prevotella timonensis, and Peptoniphilus grossensis, machine learning models (logistic regression, random forest, extreme gradient boosting, support vector machine, and GUIDE) were used to build prediction models. The test area under the curve of the logistic regression model was 0.72 when it was trained with the 17 selected markers. When analyzed by combining white blood cell count and cervical length with the seven vaginal microbiome markers, the random forest model showed the highest test area under the curve of 0.84. The GUIDE, the single tree model, provided a more reasonable biological interpretation, using the 10 selected markers (A. vaginae, G. vaginalis, Lactobacillus crispatus, Lactobacillus fornicalis, Lactobacillus gasseri, Lactobacillus iners, Lactobacillus jensenii, Peptoniphilus grossensis, P. timonensis, and U. parvum), and the covariates produced a tree with a test area under the curve of 0.77. It was confirmed that the association with preterm birth increased when P. timonensis and U. parvum increased (AUC = 0.77), which could also be explained by the fact that as the number of Peptoniphilus lacrimalis increased, the association with preterm birth was high (AUC = 0.77). Our study demonstrates that several candidate bacteria could be used as potential predictors for preterm birth, and that the predictive rate can be increased through a machine learning model employing a combination of cervical length and white blood cell count information.
Collapse
Affiliation(s)
- Sunwha Park
- Department of Obstetrics and Gynecology, College of Medicine, Ewha Medical Research Institute, Ewha Womans University, Seoul, South Korea
| | - Jeongsup Moon
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, South Korea
| | - Nayeon Kang
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, South Korea
| | - Young-Han Kim
- Department of Obstetrics and Gynecology, College of Medicine, Yonsei University, Seoul, South Korea
| | - Young-Ah You
- Department of Obstetrics and Gynecology, College of Medicine, Ewha Medical Research Institute, Ewha Womans University, Seoul, South Korea
| | - Eunjin Kwon
- Department of Obstetrics and Gynecology, College of Medicine, Ewha Medical Research Institute, Ewha Womans University, Seoul, South Korea
| | - AbuZar Ansari
- Department of Obstetrics and Gynecology, College of Medicine, Ewha Medical Research Institute, Ewha Womans University, Seoul, South Korea
| | - Young Min Hur
- Department of Obstetrics and Gynecology, College of Medicine, Ewha Medical Research Institute, Ewha Womans University, Seoul, South Korea
| | - Taesung Park
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, South Korea
- Department of Statistics, Seoul National University, Seoul, South Korea
- *Correspondence: Taesung Park,
| | - Young Ju Kim
- Department of Obstetrics and Gynecology, College of Medicine, Ewha Medical Research Institute, Ewha Womans University, Seoul, South Korea
- Young Ju Kim,
| |
Collapse
|
26
|
GERSON KD, YANG N, ANTON L, LEVY M, RAVEL J, ELOVITZ MA, BURRIS HH. Second trimester short cervix is associated with decreased abundance of cervicovaginal lipid metabolites. Am J Obstet Gynecol 2022; 227:273.e1-273.e18. [PMID: 35469813 PMCID: PMC9382664 DOI: 10.1016/j.ajog.2022.04.031] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 04/10/2022] [Accepted: 04/18/2022] [Indexed: 12/25/2022]
Abstract
BACKGROUND A short cervix is a risk factor for preterm birth. The molecular drivers of a short cervix remain elusive. Metabolites may function as mediators of pathologic processes. OBJECTIVE We sought to determine if a distinct cervicovaginal metabolomic profile is associated with a short cervix (<25 mm) to unveil the potential mechanisms by which premature cervical remodeling leads to a short cervix. STUDY DESIGN This was a secondary analysis of a completed prospective pregnancy cohort. Cervicovaginal fluid was obtained between 20 and 24 weeks' gestation. The participants selected for metabolomic profiling were frequency-matched by birth outcome and cervicovaginal microbiota profile. This analysis included 222 participants with cervical length measured. A short cervix was defined as one having length <25 mm, as measured by transvaginal ultrasound. Unpaired t-tests were performed with a Bonferroni correction for multiple comparisons. RESULTS There were 27 participants with a short cervix, and 195 with normal cervical length. Of the 637 metabolites detected, 26 differed between those with a short cervix and those with normal cervical lengths; 22 were decreased, of which 21 belonged to the lipid metabolism pathway (all P<.000079). Diethanolamine, erythritol, progesterone, and mannitol or sorbitol were increased in the cases of short cervix. Among participants with Lactobacillus-deficient microbiota, only diethanolamine and mannitol or sorbitol differed between short cervix (n=17) and normal cervical length (n=75), both increased. CONCLUSION A short cervix is associated with decreased cervicovaginal lipid metabolites, particularly sphingolipids. This class of lipids stabilizes cell membranes and protects against environmental exposures. Increased diethanolamine-an immunostimulatory xenobiotic-is associated with a short cervix. These observations begin to identify the potential mechanisms by which modifiable environmental factors may invoke cell damage in the setting of biological vulnerability, thus promoting premature cervical remodeling in spontaneous preterm birth.
Collapse
Affiliation(s)
- Kristin D. GERSON
- Center for Research on Reproduction and Women’s Health, Department of Obstetrics and Gynecology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA,Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Nancy YANG
- Center for Research on Reproduction and Women’s Health, Department of Obstetrics and Gynecology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Lauren ANTON
- Center for Research on Reproduction and Women’s Health, Department of Obstetrics and Gynecology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Maayan LEVY
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Jacques RAVEL
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Michal A. ELOVITZ
- Center for Research on Reproduction and Women’s Health, Department of Obstetrics and Gynecology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA,Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Heather H. BURRIS
- Center for Research on Reproduction and Women’s Health, Department of Obstetrics and Gynecology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA,Children’s Hospital of Philadelphia, Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| |
Collapse
|
27
|
Park S, You YA, Kim YH, Kwon E, Ansari A, Kim SM, Lee G, Hur YM, Jung YJ, Kim K, Kim YJ. Ureaplasma and Prevotella colonization with Lactobacillus abundance during pregnancy facilitates term birth. Sci Rep 2022; 12:10148. [PMID: 35710793 PMCID: PMC9203766 DOI: 10.1038/s41598-022-13871-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
Ureaplasma and Prevotella infections are well-known bacteria associated with preterm birth. However, with the development of metagenome sequencing techniques, it has been found that not all Ureaplasma and Prevotella colonizations cause preterm birth. The purpose of this study was to determine the association between Ureaplasma and Prevotella colonization with the induction of preterm birth even in the presence of Lactobacillus. In this matched case–control study, a total of 203 pregnant Korean women were selected and their cervicovaginal fluid samples were collected during mid-pregnancy. The microbiome profiles of the cervicovaginal fluid were analyzed using 16S rRNA gene amplification. Sequencing data were processed using QIIME1.9.1. Statistical analyses were performed using R software, and microbiome analysis was performed using the MicrobiomeAnalyst and Calypso software. A positive correlation between Ureaplasma and other genera was highly related to preterm birth, but interestingly, there was a negative correlation with Lactobacillus and term birth, with the same pattern observed with Prevotella. Ureaplasma and Prevotella colonization with Lactobacillus abundance during pregnancy facilitates term birth, although Ureaplasma and Prevotella are associated with preterm birth. Balanced colonization between Lactobacillus and Ureaplasma and Prevotella is important to prevent preterm birth.
Collapse
Affiliation(s)
- Sunwha Park
- Department of Obstetrics and Gynecology, College of Medicine, Ewha Medical Research Institute, Ewha Womans University, 1071, Anyangcheon-ro, Yangcheon-gu, Seoul, 07985, Korea
| | - Young-Ah You
- Department of Obstetrics and Gynecology, College of Medicine, Ewha Medical Research Institute, Ewha Womans University, 1071, Anyangcheon-ro, Yangcheon-gu, Seoul, 07985, Korea
| | - Young-Han Kim
- Department of Obstetrics and Gynecology, College of Medicine, Yonsei University, Seoul, Korea
| | - Eunjin Kwon
- Department of Obstetrics and Gynecology, College of Medicine, Ewha Medical Research Institute, Ewha Womans University, 1071, Anyangcheon-ro, Yangcheon-gu, Seoul, 07985, Korea
| | - AbuZar Ansari
- Department of Obstetrics and Gynecology, College of Medicine, Ewha Medical Research Institute, Ewha Womans University, 1071, Anyangcheon-ro, Yangcheon-gu, Seoul, 07985, Korea
| | - Soo Min Kim
- Department of Obstetrics and Gynecology, College of Medicine, Ewha Medical Research Institute, Ewha Womans University, 1071, Anyangcheon-ro, Yangcheon-gu, Seoul, 07985, Korea
| | - Gain Lee
- Department of Obstetrics and Gynecology, College of Medicine, Ewha Medical Research Institute, Ewha Womans University, 1071, Anyangcheon-ro, Yangcheon-gu, Seoul, 07985, Korea
| | - Young Min Hur
- Department of Obstetrics and Gynecology, College of Medicine, Ewha Medical Research Institute, Ewha Womans University, 1071, Anyangcheon-ro, Yangcheon-gu, Seoul, 07985, Korea
| | - Yun Ji Jung
- Department of Obstetrics and Gynecology, College of Medicine, Yonsei University, Seoul, Korea
| | | | - Young Ju Kim
- Department of Obstetrics and Gynecology, College of Medicine, Ewha Medical Research Institute, Ewha Womans University, 1071, Anyangcheon-ro, Yangcheon-gu, Seoul, 07985, Korea.
| |
Collapse
|
28
|
Ansari A, Bose S, You Y, Park S, Kim Y. Molecular Mechanism of Microbiota Metabolites in Preterm Birth: Pathological and Therapeutic Insights. Int J Mol Sci 2021; 22:8145. [PMID: 34360908 PMCID: PMC8347546 DOI: 10.3390/ijms22158145] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/24/2021] [Accepted: 07/26/2021] [Indexed: 12/11/2022] Open
Abstract
Preterm birth (PTB) refers to the birth of infants before 37 weeks of gestation and is a challenging issue worldwide. Evidence reveals that PTB is a multifactorial dysregulation mediated by a complex molecular mechanism. Thus, a better understanding of the complex molecular mechanisms underlying PTB is a prerequisite to explore effective therapeutic approaches. During early pregnancy, various physiological and metabolic changes occur as a result of endocrine and immune metabolism. The microbiota controls the physiological and metabolic mechanism of the host homeostasis, and dysbiosis of maternal microbial homeostasis dysregulates the mechanistic of fetal developmental processes and directly affects the birth outcome. Accumulating evidence indicates that metabolic dysregulation in the maternal or fetal membranes stimulates the inflammatory cytokines, which may positively progress the PTB. Although labour is regarded as an inflammatory process, it is still unclear how microbial dysbiosis could regulate the molecular mechanism of PTB. In this review based on recent research, we focused on both the pathological and therapeutic contribution of microbiota-generated metabolites to PTB and the possible molecular mechanisms.
Collapse
Affiliation(s)
- AbuZar Ansari
- Department of Obstetrics and Gynecology, Ewha Medical Research Institute, College of Medicine, Ewha Womans University, Mokdong Hospital, Seoul 07985, Korea; (A.A.); (Y.Y.); (S.P.)
| | - Shambhunath Bose
- Department of Bioscience, Sri Sathya Sai University for Human Excellence, Navanihal, Okali Post, Kamalapur, Kalaburagi, Karnataka 585313, India;
| | - Youngah You
- Department of Obstetrics and Gynecology, Ewha Medical Research Institute, College of Medicine, Ewha Womans University, Mokdong Hospital, Seoul 07985, Korea; (A.A.); (Y.Y.); (S.P.)
| | - Sunwha Park
- Department of Obstetrics and Gynecology, Ewha Medical Research Institute, College of Medicine, Ewha Womans University, Mokdong Hospital, Seoul 07985, Korea; (A.A.); (Y.Y.); (S.P.)
| | - Youngju Kim
- Department of Obstetrics and Gynecology, Ewha Medical Research Institute, College of Medicine, Ewha Womans University, Mokdong Hospital, Seoul 07985, Korea; (A.A.); (Y.Y.); (S.P.)
| |
Collapse
|
29
|
Dall'Asta M, Laghi L, Morselli S, Re MC, Zagonari S, Patuelli G, Foschi C, Pedna MF, Sambri V, Marangoni A, Danesi F. Pre-Pregnancy Diet and Vaginal Environment in Caucasian Pregnant Women: An Exploratory Study. Front Mol Biosci 2021; 8:702370. [PMID: 34395531 PMCID: PMC8356051 DOI: 10.3389/fmolb.2021.702370] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 07/14/2021] [Indexed: 11/13/2022] Open
Abstract
Vaginal microbes and their metabolic products have crucial functions, affecting local immunity development and maternal-fetal health. The composition of the vaginal microbiome can vary in response to various factors, including body mass index (BMI), and diet. In this study we get new insights into the vaginal ecosystem of Caucasian women (n = 24) at the first trimester of pregnancy, assessing whether pre-pregnancy diet can affect the structure of the vaginal environment in terms of bacterial composition and vaginal metabolite concentration. We characterized 1) the vaginal bacterial composition (Nugent score), 2) the vaginal metabolic profiles (1H-NMR spectroscopy), and 3) the dietary nutrient intake by means of a validated food frequency questionnaire. Pre-pregnancy BMI was negatively related to vaginal health status, indicating that women who begin pregnancy overweight/obese have a greater occurrence of vaginal dysbiosis during pregnancy. A lactobacilli-dominated vaginal microbiota was negatively associated with higher pre-pregnancy intake of animal-sourced protein. Conversely, a higher pre-pregnancy consumption of total carbohydrates and sugars seemed to be a protective factor for vaginal health. The vaginal environment of BV-women was characterized by higher levels of biogenic amines and organic acids, whereas higher levels of phenylpropionate and diverse amino acids were fingerprints of a healthy vaginal status. A significant association between a higher pre-pregnancy BMI and several dysbiosis-related vaginal metabolites was also found. Our study shed light on the role of pre-pregnancy BMI and diet on the vaginal environment during pregnancy, underlining the importance of limiting protein intake from animal foods to maintain a healthy lactobacilli-dominated microbiota.
Collapse
Affiliation(s)
- Margherita Dall'Asta
- Department of Animal Science, Food and Nutrition (DIANA), Università Cattolica Del Sacro Cuore, Piacenza, Italy
| | - Luca Laghi
- Centre of Foodomics, Department of Agricultural and Food Sciences (DISTAL), University of Bologna, Cesena, Italy.,Interdepartmental Centre for Agri-Food Industrial Research (CIRI Agrifood), University of Bologna, Cesena, Italy
| | - Sara Morselli
- Unit of Microbiology (DIMES), University of Bologna, Bologna, Italy
| | - Maria Carla Re
- Unit of Microbiology (DIMES), University of Bologna, Bologna, Italy
| | | | | | - Claudio Foschi
- Unit of Microbiology (DIMES), University of Bologna, Bologna, Italy
| | | | - Vittorio Sambri
- Unit of Microbiology, Greater Romagna Hub Laboratory, Cesena, Italy
| | | | - Francesca Danesi
- Interdepartmental Centre for Agri-Food Industrial Research (CIRI Agrifood), University of Bologna, Cesena, Italy.,Human Nutrition Unit, Department of Agricultural and Food Sciences (DISTAL), University of Bologna, Cesena, Italy
| |
Collapse
|
30
|
Park S, Oh D, Heo H, Lee G, Kim SM, Ansari A, You YA, Jung YJ, Kim YH, Lee M, Kim YJ. Prediction of preterm birth based on machine learning using bacterial risk score in cervicovaginal fluid. Am J Reprod Immunol 2021; 86:e13435. [PMID: 33905152 DOI: 10.1111/aji.13435] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 04/04/2021] [Accepted: 04/22/2021] [Indexed: 12/16/2022] Open
Abstract
PROBLEM Preterm birth (PTB) is a major cause of increased morbidity and mortality in newborns. The main cause of spontaneous PTB (sPTB) is the activation of an inflammatory response as a result of ascending genital tract infection. Despite various studies on the effects of the vaginal microbiome on PTB, a practical method for its clinical application has yet to be developed. METHOD OF STUDY In this case-control study, 94 Korean pregnant women with PTB (n = 38) and term birth (TB; n = 56) were enrolled. Their cervicovaginal fluid (CVF) was sampled, and a total of 10 bacteria were analyzed using multiplex quantitative real-time PCR (qPCR). The PTB and TB groups were compared, and a PTB prediction model was created using bacterial risk scores using machine learning techniques (decision tree and support vector machine). The predictive performance of the model was validated using random subsampling. RESULTS Bacterial risk scoring model showed significant differences (P < 0.001). The PTB risk was low when the Lactobacillus iners ratio was 0.812 or more. In groups with a ratio under 0.812, moderate and high risk was classified as a U. parvum ratio of 4.6 × 10-3 . The sensitivity and specificity of the PTB prediction model using bacteria risk score were 71% and 59%, respectively, and 77% and 67%, respectively, when white blood cell (WBC) data were included. CONCLUSION Using machine learning, the bacterial risk score in CVF can be used to predict PTB.
Collapse
Affiliation(s)
- Sunwha Park
- Department of Obstetrics and Gynecology, College of Medicine, Ewha Medical Research Institute, Ewha Womans University, Seoul, Korea
| | | | - Hanna Heo
- Department of Obstetrics and Gynecology, College of Medicine, Ewha Medical Research Institute, Ewha Womans University, Seoul, Korea
| | - Gain Lee
- Department of Obstetrics and Gynecology, College of Medicine, Ewha Medical Research Institute, Ewha Womans University, Seoul, Korea.,System Health & Engineering Major in Graduate School (BK21 Plus Program, Seoul, Korea
| | - Soo Min Kim
- Department of Obstetrics and Gynecology, College of Medicine, Ewha Medical Research Institute, Ewha Womans University, Seoul, Korea.,System Health & Engineering Major in Graduate School (BK21 Plus Program, Seoul, Korea
| | - AbuZar Ansari
- Department of Obstetrics and Gynecology, College of Medicine, Ewha Medical Research Institute, Ewha Womans University, Seoul, Korea
| | - Young-Ah You
- Department of Obstetrics and Gynecology, College of Medicine, Ewha Medical Research Institute, Ewha Womans University, Seoul, Korea
| | - Yun Ji Jung
- Department of Obstetrics and Gynecology, College of Medicine, Yonsei University, Seoul, Korea
| | - Young-Han Kim
- Department of Obstetrics and Gynecology, College of Medicine, Yonsei University, Seoul, Korea
| | | | - Young Ju Kim
- Department of Obstetrics and Gynecology, College of Medicine, Ewha Medical Research Institute, Ewha Womans University, Seoul, Korea.,System Health & Engineering Major in Graduate School (BK21 Plus Program, Seoul, Korea
| |
Collapse
|
31
|
Longitudinal Profiling of the Macaque Vaginal Microbiome Reveals Similarities to Diverse Human Vaginal Communities. mSystems 2021; 6:6/2/e01322-20. [PMID: 33906914 PMCID: PMC8092128 DOI: 10.1128/msystems.01322-20] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The vaginal microbiota plays an important role in women's reproductive and urogenital health. It is now well accepted that a "healthy" vaginal microbiome is dominated by Lactobacillus species. Disturbances in this microbial community can lead to several adverse outcomes, including pelvic inflammatory disease and bacterial vaginosis (BV), as well as increased susceptibility to sexually transmitted infections, miscarriage, and preterm births. However, vaginal communities, especially those of women in the developing world, can be comprised of a diverse set of microorganisms in the absence of overt clinical symptoms. The implications of these diverse vaginal microbiomes for women's health remain poorly understood. Rhesus macaques are an excellent translational animal model to address these questions due to significant physiological and genetic homology with humans. In this study, we performed a longitudinal analysis of clinical and microbiome data from 16 reproductive-age female rhesus macaques. At both the taxonomic and functional levels, the rhesus macaque vaginal microbiome was most similar to that of women who harbor a diverse vaginal community associated with asymptomatic/symptomatic bacterial vaginosis. Specifically, rhesus macaque vaginal microbiomes harbored a diverse set of anaerobic Gram-negative bacteria, including Sneathia, Prevotella, Porphyromonas, and Mobiluncus Interestingly, some animals were transiently colonized by Lactobacillus and some with Gardnerella Our in-depth and comprehensive analysis highlights the importance of the model to understand the health implications of a diverse vaginal microbiome and test interventions for manipulating this community.IMPORTANCE It is widely accepted that the "healthy" vaginal microbiome of women in the developed world is dominated by Lactobacillus species. However, in the developing world, many asymptomatic women harbor diverse vaginal microbial communities that are typically associated with bacterial vaginosis. Many questions remain about the drivers and health implications of a diverse vaginal microbial community. Rhesus macaques provide an excellent translational model to address these questions due to significant physiological and genetic homology with humans. In this study, we performed a longitudinal analysis of clinical and microbiome data from a large cohort of reproductive-age rhesus macaques. At the taxonomic, genomic, and functional levels, the rhesus macaque vaginal microbiome was most similar to that of humans, who harbor a diverse vaginal community associated with asymptomatic/symptomatic bacterial vaginosis. Our in-depth and comprehensive analysis highlights the utility of macaques as a model to study diverse vaginal community state types and test interventions for manipulating the vaginal microbiome.
Collapse
|
32
|
Larkin AA, Garcia CA, Garcia N, Brock ML, Lee JA, Ustick LJ, Barbero L, Carter BR, Sonnerup RE, Talley LD, Tarran GA, Volkov DL, Martiny AC. High spatial resolution global ocean metagenomes from Bio-GO-SHIP repeat hydrography transects. Sci Data 2021; 8:107. [PMID: 33863919 PMCID: PMC8052323 DOI: 10.1038/s41597-021-00889-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 03/12/2021] [Indexed: 11/09/2022] Open
Abstract
Detailed descriptions of microbial communities have lagged far behind physical and chemical measurements in the marine environment. Here, we present 971 globally distributed surface ocean metagenomes collected at high spatio-temporal resolution. Our low-cost metagenomic sequencing protocol produced 3.65 terabases of data, where the median number of base pairs per sample was 3.41 billion. The median distance between sampling stations was 26 km. The metagenomic libraries described here were collected as a part of a biological initiative for the Global Ocean Ship-based Hydrographic Investigations Program, or "Bio-GO-SHIP." One of the primary aims of GO-SHIP is to produce high spatial and vertical resolution measurements of key state variables to directly quantify climate change impacts on ocean environments. By similarly collecting marine metagenomes at high spatiotemporal resolution, we expect that this dataset will help answer questions about the link between microbial communities and biogeochemical fluxes in a changing ocean.
Collapse
Affiliation(s)
- Alyse A Larkin
- Department of Earth System Science, University of California at Irvine, Irvine, CA, USA
| | - Catherine A Garcia
- Department of Earth System Science, University of California at Irvine, Irvine, CA, USA
| | - Nathan Garcia
- Department of Earth System Science, University of California at Irvine, Irvine, CA, USA
| | - Melissa L Brock
- Department of Ecology and Evolutionary Biology, University of California at Irvine, Irvine, CA, USA
| | - Jenna A Lee
- Department of Earth System Science, University of California at Irvine, Irvine, CA, USA
| | - Lucas J Ustick
- Department of Ecology and Evolutionary Biology, University of California at Irvine, Irvine, CA, USA
| | - Leticia Barbero
- NOAA Atlantic Oceanographic and Meteorological Laboratory, Miami, FL, USA
- Cooperative Institute for Marine & Atmospheric Studies, University of Miami, Miami, FL, USA
| | - Brendan R Carter
- NOAA Pacific Marine Environmental Laboratory, Seattle, WA, USA
- Cooperative Institute for Climate, Ocean, and Ecosystem Studies, University of Washington, Seattle, WA, USA
| | - Rolf E Sonnerup
- NOAA Pacific Marine Environmental Laboratory, Seattle, WA, USA
- Cooperative Institute for Climate, Ocean, and Ecosystem Studies, University of Washington, Seattle, WA, USA
| | - Lynne D Talley
- Climate, Atmospheric Sciences, and Physical Oceanography Division, Scripps Institution of Oceanography, University of California, San Diego, CA, USA
| | | | - Denis L Volkov
- NOAA Atlantic Oceanographic and Meteorological Laboratory, Miami, FL, USA
- Cooperative Institute for Marine & Atmospheric Studies, University of Miami, Miami, FL, USA
| | - Adam C Martiny
- Department of Earth System Science, University of California at Irvine, Irvine, CA, USA.
- Department of Ecology and Evolutionary Biology, University of California at Irvine, Irvine, CA, USA.
| |
Collapse
|
33
|
Laghi L, Zagonari S, Patuelli G, Zhu C, Foschi C, Morselli S, Pedna MF, Sambri V, Marangoni A. Vaginal metabolic profiles during pregnancy: Changes between first and second trimester. PLoS One 2021; 16:e0249925. [PMID: 33831087 PMCID: PMC8031435 DOI: 10.1371/journal.pone.0249925] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 03/26/2021] [Indexed: 12/11/2022] Open
Abstract
During pregnancy, the vaginal microbiome plays an important role in both maternal and neonatal health outcomes. Throughout pregnancy, the vaginal microbial composition undergoes significant changes, including a decrease in overall diversity and enrichment with Lactobacillus spp. In turn, the modifications in the microbial profiles are associated with shifts in the composition of vaginal metabolites. In this study, we characterized the vaginal metabolic profiles throughout pregnancy at two different gestational ages, correlating them with a microscopic evaluation of the vaginal bacterial composition. A total of 67 Caucasian pregnant women presenting to the Family Advisory Health Centres of Ravenna (Italy) were enrolled and a vaginal swab was collected at gestational ages 9–13 weeks (first trimester) and 20–24 weeks (second trimester). The composition of the vaginal microbiome was assessed by Nugent score and women were divided in ‘H’ (normal lactobacilli-dominated microbiota), ‘I’ (intermediate microbiota), and ‘BV’ (bacterial vaginosis) groups. Starting from the cell-free supernatants of the vaginal swabs, a metabolomic analysis was performed by means of a 1H-NMR spectroscopy. From the first to the second trimester, a greater number of women showed a normal lactobacilli-dominated microbiota, with a reduction of cases of dysbiosis. These microbial shifts were associated with profound changes in the vaginal metabolic profiles. Over the weeks, a significant reduction in the levels of BV-associated metabolites (e.g. acetate, propionate, tyramine, methylamine, putrescine) was observed. At the same time, the vaginal metabolome was characterized by higher concentrations of lactate and of several amino acids (e.g. tryptophan, threonine, isoleucine, leucine), typically found in healthy vaginal conditions. Over time, the vaginal metabolome became less diverse and more homogeneous: in the second trimester, women with BV showed metabolic profiles more similar to the healthy/intermediate groups, compared to the first trimester. Our data could help unravel the role of vaginal metabolites in the pathophysiology of pregnancy.
Collapse
Affiliation(s)
- Luca Laghi
- Department of Agro-Food Science and Technology, Centre of Foodomics, University of Bologna, Cesena, Italy
| | | | | | - Chenglin Zhu
- Department of Agro-Food Science and Technology, Centre of Foodomics, University of Bologna, Cesena, Italy
| | - Claudio Foschi
- Microbiology, DIMES, University of Bologna, Bologna, Italy
- * E-mail:
| | - Sara Morselli
- Microbiology, DIMES, University of Bologna, Bologna, Italy
| | - Maria Federica Pedna
- Unit of Microbiology, Greater Romagna Hub Laboratory, Pievesestina di Cesena, Italy
| | - Vittorio Sambri
- Microbiology, DIMES, University of Bologna, Bologna, Italy
- Unit of Microbiology, Greater Romagna Hub Laboratory, Pievesestina di Cesena, Italy
| | | |
Collapse
|
34
|
Chen X, Lu Y, Chen T, Li R. The Female Vaginal Microbiome in Health and Bacterial Vaginosis. Front Cell Infect Microbiol 2021; 11:631972. [PMID: 33898328 PMCID: PMC8058480 DOI: 10.3389/fcimb.2021.631972] [Citation(s) in RCA: 164] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 03/19/2021] [Indexed: 12/11/2022] Open
Abstract
The vaginal microbiome is an intricate and dynamic microecosystem that constantly undergoes fluctuations during the female menstrual cycle and the woman's entire life. A healthy vaginal microbiome is dominated by Lactobacillus which produce various antimicrobial compounds. Bacterial vaginosis (BV) is characterized by the loss or sharp decline in the total number of Lactobacillus and a corresponding marked increase in the concentration of anaerobic microbes. BV is a highly prevalent disorder of the vaginal microbiota among women of reproductive age globally. BV is confirmed to be associated with adverse gynecologic and obstetric outcomes, such as sexually transmitted infections, pelvic inflammatory disease, and preterm birth. Gardnerella vaginalis is the most common microorganism identified from BV. It is the predominant microbe in polymicrobial biofilms that could shelter G. vaginalis and other BV-associated microbes from adverse host environments. Many efforts have been made to increase our understanding of the vaginal microbiome in health and BV. Thus, improved novel and accurate diagnosis and therapeutic strategies for BV have been developed. This review covers the features of vaginal microbiome, BV, BV-associated diseases, and various strategies of diagnosis and treatment of BV, with an emphasis on recent research progresses.
Collapse
Affiliation(s)
| | | | | | - Rongguo Li
- Department of Clinical Laboratory, Jinan Maternity and Child Care Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
35
|
Key hepatic metabolic pathways are altered in germ-free mice during pregnancy. PLoS One 2021; 16:e0248351. [PMID: 33711049 PMCID: PMC7954286 DOI: 10.1371/journal.pone.0248351] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 02/24/2021] [Indexed: 12/13/2022] Open
Abstract
Pregnancy is associated with metabolic changes to accommodate the mother and her growing fetus. The microbiome has been shown to modulate host metabolism of endogenous and exogenous substances. However, the combined effects of pregnancy and the microbiome on host metabolism have not been investigated. The objective of this study was to investigate how the microbiome affects overall hepatic metabolic processes during pregnancy. We assessed these changes within 4 groups of C57BL/6 mice: conventional non-pregnant, conventional pregnant, germ-free non-pregnant, and germ-free pregnant mice. We performed RNA-seq analysis on liver tissues and LC-MS/MS analysis of the plasma to assess the effects of pregnancy and the microbiome on hepatic transcriptome and untargeted plasma metabolome to describe metabolic changes as results of both pregnancy and lack of microbiome. By integrating transcriptomics and metabolomics data, we identified eight metabolic pathways that were significantly enriched for differentially expressed genes associated with pregnancy in both conventional and germ-free mice. Notably, of the eight pathways, 4 pathways (retinol metabolism, arachidonic acid metabolism, linoleic acid metabolism, and steroid hormone biosynthesis) which are all critical for normal pregnancy and fetal development were affected by the germ-free status in pregnant mice, but not at all in non-pregnant mice, indicating that the alterations in these four pathways caused by the lack of microbiome are unique for pregnancy. These results provide novel insight into the role of the microbiome in modulating host metabolic processes critical for maternal health and fetal development during pregnancy.
Collapse
|
36
|
Mancabelli L, Tarracchini C, Milani C, Lugli GA, Fontana F, Turroni F, van Sinderen D, Ventura M. Vaginotypes of the human vaginal microbiome. Environ Microbiol 2021; 23:1780-1792. [PMID: 33615652 DOI: 10.1111/1462-2920.15441] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/17/2021] [Accepted: 02/20/2021] [Indexed: 12/18/2022]
Abstract
The human vaginal environment harbours a community of bacteria that plays an important role in maintaining vaginal health and in protecting this environment from various urogenital infections. This bacterial population, also known as vaginal microbiota, has been demonstrated to be dominated by members of the Lactobacillus genus. Several studies employing 16S rRNA gene-based amplicon sequencing have classified the vaginal microbiota into five distinct community state types (CSTs) or vaginotypes. To deepen our understanding of the vaginal microbiota we performed an in-depth meta-analysis of 1312 publicly available datasets concerning healthy vaginal microbiome information obtained by metagenomics sequencing. The analysis confirmed the predominance of taxa belonging to the Lactobacillus genus, followed by members of the genera Gardnerella, Vibrio and Atopobium. Moreover, the statistical robustness offered by this meta-analysis allowed us to disentangle the species-level composition of dominant and accessory taxa constituting each vaginotype and to revisit and refine the previously proposed CST classification. In addition, a functional characterization of the metagenomic datasets revealed particular genetic features associated with each assigned vaginotype.
Collapse
Affiliation(s)
- Leonardo Mancabelli
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Chiara Tarracchini
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Christian Milani
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy.,Interdepartmental Research Centre "Microbiome Research Hub", University of Parma, Parma, 43124, Italy
| | - Gabriele Andrea Lugli
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Federico Fontana
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Francesca Turroni
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy.,Interdepartmental Research Centre "Microbiome Research Hub", University of Parma, Parma, 43124, Italy
| | - Douwe van Sinderen
- APC Microbiome Institute and School of Microbiology, Bioscience Institute, National University of Ireland, Cork, Ireland
| | - Marco Ventura
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy.,Interdepartmental Research Centre "Microbiome Research Hub", University of Parma, Parma, 43124, Italy
| |
Collapse
|