1
|
Børud B, Koomey M. Sweet complexity: O-linked protein glycosylation in pathogenic Neisseria. Front Cell Infect Microbiol 2024; 14:1407863. [PMID: 38808060 PMCID: PMC11130364 DOI: 10.3389/fcimb.2024.1407863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 04/29/2024] [Indexed: 05/30/2024] Open
Abstract
The genus Neisseria, which colonizes mucosal surfaces, includes both commensal and pathogenic species that are exclusive to humans. The two pathogenic Neisseria species are closely related but cause quite different diseases, meningococcal sepsis and meningitis (Neisseria meningitidis) and sexually transmitted gonorrhea (Neisseria gonorrhoeae). Although obvious differences in bacterial niches and mechanisms for transmission exists, pathogenic Neisseria have high levels of conservation at the levels of nucleotide sequences, gene content and synteny. Species of Neisseria express broad-spectrum O-linked protein glycosylation where the glycoproteins are largely transmembrane proteins or lipoproteins localized on the cell surface or in the periplasm. There are diverse functions among the identified glycoproteins, for example type IV biogenesis proteins, proteins involved in antimicrobial resistance, as well as surface proteins that have been suggested as vaccine candidates. The most abundant glycoprotein, PilE, is the major subunit of pili which are an important colonization factor. The glycans attached can vary extensively due to phase variation of protein glycosylation (pgl) genes and polymorphic pgl gene content. The exact roles of glycosylation in Neisseria remains to be determined, but increasing evidence suggests that glycan variability can be a strategy to evade the human immune system. In addition, pathogenic and commensal Neisseria appear to have significant glycosylation differences. Here, the current knowledge and implications of protein glycosylation genes, glycan diversity, glycoproteins and immunogenicity in pathogenic Neisseria are summarized and discussed.
Collapse
Affiliation(s)
- Bente Børud
- Department of Bacteriology, Division for Infection Control and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Michael Koomey
- Department of Biosciences, Section for Genetics and Evolutionary Biology, University of Oslo, Oslo, Norway
| |
Collapse
|
2
|
Mikucki A, Kahler CM. Microevolution and Its Impact on Hypervirulence, Antimicrobial Resistance, and Vaccine Escape in Neisseria meningitidis. Microorganisms 2023; 11:3005. [PMID: 38138149 PMCID: PMC10745880 DOI: 10.3390/microorganisms11123005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/07/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023] Open
Abstract
Neisseria meningitidis is commensal of the human pharynx and occasionally invades the host, causing the life-threatening illness invasive meningococcal disease. The meningococcus is a highly diverse and adaptable organism thanks to natural competence, a propensity for recombination, and a highly repetitive genome. These mechanisms together result in a high level of antigenic variation to invade diverse human hosts and evade their innate and adaptive immune responses. This review explores the ways in which this diversity contributes to the evolutionary history and population structure of the meningococcus, with a particular focus on microevolution. It examines studies on meningococcal microevolution in the context of within-host evolution and persistent carriage; microevolution in the context of meningococcal outbreaks and epidemics; and the potential of microevolution to contribute to antimicrobial resistance and vaccine escape. A persistent theme is the idea that the process of microevolution contributes to the development of new hyperinvasive meningococcal variants. As such, microevolution in this species has significant potential to drive future public health threats in the form of hypervirulent, antibiotic-resistant, vaccine-escape variants. The implications of this on current vaccination strategies are explored.
Collapse
Affiliation(s)
- August Mikucki
- Marshall Centre for Infectious Diseases Research and Training, School of Biomedical Sciences, University of Western Australia, Perth, WA 6009, Australia;
- Wesfarmers Centre of Vaccines and Infectious Diseases, Telethon Kids Institute, University of Western Australia, Perth, WA 6009, Australia
| | - Charlene M. Kahler
- Marshall Centre for Infectious Diseases Research and Training, School of Biomedical Sciences, University of Western Australia, Perth, WA 6009, Australia;
- Wesfarmers Centre of Vaccines and Infectious Diseases, Telethon Kids Institute, University of Western Australia, Perth, WA 6009, Australia
| |
Collapse
|
3
|
Shikov AE, Savina IA, Nizhnikov AA, Antonets KS. Recombination in Bacterial Genomes: Evolutionary Trends. Toxins (Basel) 2023; 15:568. [PMID: 37755994 PMCID: PMC10534446 DOI: 10.3390/toxins15090568] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/02/2023] [Accepted: 09/07/2023] [Indexed: 09/28/2023] Open
Abstract
Bacterial organisms have undergone homologous recombination (HR) and horizontal gene transfer (HGT) multiple times during their history. These processes could increase fitness to new environments, cause specialization, the emergence of new species, and changes in virulence. Therefore, comprehensive knowledge of the impact and intensity of genetic exchanges and the location of recombination hotspots on the genome is necessary for understanding the dynamics of adaptation to various conditions. To this end, we aimed to characterize the functional impact and genomic context of computationally detected recombination events by analyzing genomic studies of any bacterial species, for which events have been detected in the last 30 years. Genomic loci where the transfer of DNA was detected pertained to mobile genetic elements (MGEs) housing genes that code for proteins engaged in distinct cellular processes, such as secretion systems, toxins, infection effectors, biosynthesis enzymes, etc. We found that all inferences fall into three main lifestyle categories, namely, ecological diversification, pathogenesis, and symbiosis. The latter primarily exhibits ancestral events, thus, possibly indicating that adaptation appears to be governed by similar recombination-dependent mechanisms.
Collapse
Affiliation(s)
- Anton E. Shikov
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology (ARRIAM), 196608 St. Petersburg, Russia; (A.E.S.); (I.A.S.); (A.A.N.)
- Faculty of Biology, St. Petersburg State University (SPbSU), 199034 St. Petersburg, Russia
| | - Iuliia A. Savina
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology (ARRIAM), 196608 St. Petersburg, Russia; (A.E.S.); (I.A.S.); (A.A.N.)
| | - Anton A. Nizhnikov
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology (ARRIAM), 196608 St. Petersburg, Russia; (A.E.S.); (I.A.S.); (A.A.N.)
- Faculty of Biology, St. Petersburg State University (SPbSU), 199034 St. Petersburg, Russia
| | - Kirill S. Antonets
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology (ARRIAM), 196608 St. Petersburg, Russia; (A.E.S.); (I.A.S.); (A.A.N.)
- Faculty of Biology, St. Petersburg State University (SPbSU), 199034 St. Petersburg, Russia
| |
Collapse
|
4
|
Jen FEC, Abrahams JL, Schulz BL, Lamelas A, Pluschke G, Jennings MP. High-Frequency Changes in Pilin Glycosylation Patterns during Neisseria meningitidis Serogroup a Meningitis Outbreaks in the African Meningitis Belt. ACS Infect Dis 2023; 9:1451-1457. [PMID: 37467082 PMCID: PMC10425976 DOI: 10.1021/acsinfecdis.3c00149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Indexed: 07/21/2023]
Abstract
In the meningitis belt of sub-Saharan Africa, there are cyclic meningococcal epidemics that coincide with clonal waves of Neisseria meningitidis carriage and invasive disease. In the framework of longitudinal colonization and disease studies in Ghana and Burkina Faso, meningococcal isolates belonging to the closely related hypervirulent A:ST-5, A:ST-7, and A:ST-2859 clones have been collected from 1998 to 2011 during meningococcal outbreaks. A comparative whole-genome sequencing study with 100 of these isolates identified the pilin glycosylation (pgl) locus as one hot spot of recombination. Frequent exchange of pgl genes in N. meningitidis by lateral gene transfer results in differences in the glycosylation patterns of pilin and other cell surface glycoproteins. In this study, we looked at both recombination and phase variation of the pgl genes of these clinical isolates and analyzed the glycan structures resulting from different pgl alleles and their variable expression. Our results indicate that the basal O-linked sugar of the glycans expressed by these isolates is masked by various additional mono- or disaccharide structures whose expression is highly variable due to the phase-variable expression of pgl genes. We also observed a distinct glycoform in two isolates with pgl loci that were modified by recombination. These data suggest that variation in N. meningitidis protein glycosylation could be crucial for bacterial adaptation to evade herd immunity in semi-immune populations. Investigating pilin glycosylation in N. meningitidis can shed light on the mechanisms by which this pathogen evades the host immune response, and may help identify potential targets for novel therapies and vaccines.
Collapse
Affiliation(s)
- Freda E-C Jen
- Institute for Glycomics, Griffith University, Gold Coast, QLD 4222, Australia
| | - Jodie L Abrahams
- Institute for Glycomics, Griffith University, Gold Coast, QLD 4222, Australia
| | - Benjamin L Schulz
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Araceli Lamelas
- Swiss Tropical and Public Health Institute, Basel 4051, Switzerland
- University of Basel, Basel 4051, Switzerland
| | - Gerd Pluschke
- Swiss Tropical and Public Health Institute, Basel 4051, Switzerland
- University of Basel, Basel 4051, Switzerland
| | - Michael P Jennings
- Institute for Glycomics, Griffith University, Gold Coast, QLD 4222, Australia
| |
Collapse
|
5
|
Næss LM, Maugesten IS, Caugant DA, Kassu A, Aseffa A, Børud B. Genetic, Functional, and Immunogenic Analyses of the O-Linked Protein Glycosylation System in Neisseria meningitidis Serogroup A ST-7 Isolates. J Bacteriol 2023; 205:e0045822. [PMID: 36852982 PMCID: PMC10029716 DOI: 10.1128/jb.00458-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 02/02/2023] [Indexed: 03/01/2023] Open
Abstract
Neisseria meningitidis exhibits a general O-linked protein glycosylation system in which pili and other extracytoplasmic proteins are glycosylated. To investigate glycan antigenicity in humans and the significance of high glycan diversity on immune escape mechanisms, we exploited serogroup A meningococcal strains and serum samples obtained from laboratory-confirmed Ethiopian patients with meningococcal disease. The 37 meningococcal isolates were sequenced, and their protein glycosylation (pgl) genotypes and protein glycosylation phenotypes were investigated in detail. An insertion sequence (IS1655) element in pglH reduced glycan variability in the majority of isolates, while phase variation strengthened glycan variability and microheterogeneity. Homologous recombination events within the pgl genes were identified in eight of the 37 isolates, and the phenotypic consequences ranged from none detected to altered glycoforms in two of the isolates in which the whole pgl locus was exchanged. Immunoblotting of sera against a complete panel of glycan-expressing mutant strains demonstrated that most of these patient sera had IgG antibodies against various neisserial protein glycan antigens. Furthermore, using a bactericidal assay comparing a wild-type meningococcal A strain and a glycosylation-null variant strain, we showed that these protein glycan antigens interfere with bactericidal killing by antibodies in patient sera. Altogether, we were largely able to link pgl genotype with glycosylation phenotype. Our study reveals that protein glycans seem to contribute to the ability of N. meningitidis to resist the bactericidal activity of human serum, possibly by masking protein epitopes important for bactericidal killing and thus protection against meningococcal disease. IMPORTANCE Bacterial meningitis is a serious global health problem, and one of the major causative organisms is Neisseria meningitidis. Extensive variability in protein glycan structure and antigenicity is due to phase variation of protein glycosylation genes and polymorphic gene content and function. The exact role(s) of glycosylation in Neisseria remains to be determined, but increasing evidence, supported by this study, suggests that glycan variability can be a strategy to escape the human immune system. The complexity of the O-linked protein glycosylation system requires further studies to fully comprehend how these bacteria utilize variation in pgl genes to produce such high glycoform diversity and to evade the human immune response.
Collapse
Affiliation(s)
- Lisbeth M. Næss
- Division of Infection Control, Norwegian Institute of Public Health, Oslo, Norway
| | - Ingunn S. Maugesten
- Division of Infection Control, Norwegian Institute of Public Health, Oslo, Norway
| | - Dominique A. Caugant
- Division of Infection Control, Norwegian Institute of Public Health, Oslo, Norway
- Department of Community Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Afework Kassu
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - Abraham Aseffa
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - Bente Børud
- Division of Infection Control, Norwegian Institute of Public Health, Oslo, Norway
| |
Collapse
|
6
|
van Belkum A, Almeida C, Bardiaux B, Barrass SV, Butcher SJ, Çaykara T, Chowdhury S, Datar R, Eastwood I, Goldman A, Goyal M, Happonen L, Izadi-Pruneyre N, Jacobsen T, Johnson PH, Kempf VAJ, Kiessling A, Bueno JL, Malik A, Malmström J, Meuskens I, Milner PA, Nilges M, Pamme N, Peyman SA, Rodrigues LR, Rodriguez-Mateos P, Sande MG, Silva CJ, Stasiak AC, Stehle T, Thibau A, Vaca DJ, Linke D. Host-Pathogen Adhesion as the Basis of Innovative Diagnostics for Emerging Pathogens. Diagnostics (Basel) 2021; 11:diagnostics11071259. [PMID: 34359341 PMCID: PMC8305138 DOI: 10.3390/diagnostics11071259] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/19/2021] [Accepted: 06/21/2021] [Indexed: 12/18/2022] Open
Abstract
Infectious diseases are an existential health threat, potentiated by emerging and re-emerging viruses and increasing bacterial antibiotic resistance. Targeted treatment of infectious diseases requires precision diagnostics, especially in cases where broad-range therapeutics such as antibiotics fail. There is thus an increasing need for new approaches to develop sensitive and specific in vitro diagnostic (IVD) tests. Basic science and translational research are needed to identify key microbial molecules as diagnostic targets, to identify relevant host counterparts, and to use this knowledge in developing or improving IVD. In this regard, an overlooked feature is the capacity of pathogens to adhere specifically to host cells and tissues. The molecular entities relevant for pathogen–surface interaction are the so-called adhesins. Adhesins vary from protein compounds to (poly-)saccharides or lipid structures that interact with eukaryotic host cell matrix molecules and receptors. Such interactions co-define the specificity and sensitivity of a diagnostic test. Currently, adhesin-receptor binding is typically used in the pre-analytical phase of IVD tests, focusing on pathogen enrichment. Further exploration of adhesin–ligand interaction, supported by present high-throughput “omics” technologies, might stimulate a new generation of broadly applicable pathogen detection and characterization tools. This review describes recent results of novel structure-defining technologies allowing for detailed molecular analysis of adhesins, their receptors and complexes. Since the host ligands evolve slowly, the corresponding adhesin interaction is under selective pressure to maintain a constant receptor binding domain. IVD should exploit such conserved binding sites and, in particular, use the human ligand to enrich the pathogen. We provide an inventory of methods based on adhesion factors and pathogen attachment mechanisms, which can also be of relevance to currently emerging pathogens, including SARS-CoV-2, the causative agent of COVID-19.
Collapse
Affiliation(s)
- Alex van Belkum
- BioMérieux, Open Innovation & Partnerships, 38390 La Balme Les Grottes, France;
- Correspondence: (A.v.B.); (D.L.)
| | | | - Benjamin Bardiaux
- Institut Pasteur, Structural Biology and Chemistry, 75724 Paris, France; (B.B.); (N.I.-P.); (T.J.); (M.N.)
| | - Sarah V. Barrass
- Department of Biological Sciences, University of Helsinki, 00014 Helsinki, Finland; (S.V.B.); (S.J.B.); (A.G.)
| | - Sarah J. Butcher
- Department of Biological Sciences, University of Helsinki, 00014 Helsinki, Finland; (S.V.B.); (S.J.B.); (A.G.)
| | - Tuğçe Çaykara
- Centre for Nanotechnology and Smart Materials, 4760-034 Vila Nova de Famalicão, Portugal; (T.Ç.); (C.J.S.)
| | - Sounak Chowdhury
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, 22242 Lund, Sweden; (S.C.); (L.H.); (J.M.)
| | - Rucha Datar
- BioMérieux, Microbiology R&D, 38390 La Balme Les Grottes, France;
| | | | - Adrian Goldman
- Department of Biological Sciences, University of Helsinki, 00014 Helsinki, Finland; (S.V.B.); (S.J.B.); (A.G.)
- School of Biomedical Sciences, University of Leeds, Leeds LS2 9JT, UK; (P.H.J.); (A.K.); (J.L.B.); (A.M.); (P.A.M.); (S.A.P.)
| | - Manisha Goyal
- BioMérieux, Open Innovation & Partnerships, 38390 La Balme Les Grottes, France;
| | - Lotta Happonen
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, 22242 Lund, Sweden; (S.C.); (L.H.); (J.M.)
| | - Nadia Izadi-Pruneyre
- Institut Pasteur, Structural Biology and Chemistry, 75724 Paris, France; (B.B.); (N.I.-P.); (T.J.); (M.N.)
| | - Theis Jacobsen
- Institut Pasteur, Structural Biology and Chemistry, 75724 Paris, France; (B.B.); (N.I.-P.); (T.J.); (M.N.)
| | - Pirjo H. Johnson
- School of Biomedical Sciences, University of Leeds, Leeds LS2 9JT, UK; (P.H.J.); (A.K.); (J.L.B.); (A.M.); (P.A.M.); (S.A.P.)
| | - Volkhard A. J. Kempf
- Institute for Medical Microbiology and Infection Control, University Hospital, Goethe-University, 60596 Frankfurt am Main, Germany; (V.A.J.K.); (A.T.); (D.J.V.)
| | - Andreas Kiessling
- School of Biomedical Sciences, University of Leeds, Leeds LS2 9JT, UK; (P.H.J.); (A.K.); (J.L.B.); (A.M.); (P.A.M.); (S.A.P.)
| | - Juan Leva Bueno
- School of Biomedical Sciences, University of Leeds, Leeds LS2 9JT, UK; (P.H.J.); (A.K.); (J.L.B.); (A.M.); (P.A.M.); (S.A.P.)
| | - Anchal Malik
- School of Biomedical Sciences, University of Leeds, Leeds LS2 9JT, UK; (P.H.J.); (A.K.); (J.L.B.); (A.M.); (P.A.M.); (S.A.P.)
| | - Johan Malmström
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, 22242 Lund, Sweden; (S.C.); (L.H.); (J.M.)
| | - Ina Meuskens
- Department of Biosciences, University of Oslo, 0316 Oslo, Norway;
| | - Paul A. Milner
- School of Biomedical Sciences, University of Leeds, Leeds LS2 9JT, UK; (P.H.J.); (A.K.); (J.L.B.); (A.M.); (P.A.M.); (S.A.P.)
| | - Michael Nilges
- Institut Pasteur, Structural Biology and Chemistry, 75724 Paris, France; (B.B.); (N.I.-P.); (T.J.); (M.N.)
| | - Nicole Pamme
- School of Mathematics and Physical Sciences, University of Hull, Hull HU6 7RX, UK; (N.P.); (P.R.-M.)
| | - Sally A. Peyman
- School of Biomedical Sciences, University of Leeds, Leeds LS2 9JT, UK; (P.H.J.); (A.K.); (J.L.B.); (A.M.); (P.A.M.); (S.A.P.)
| | - Ligia R. Rodrigues
- CEB—Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; (L.R.R.); (M.G.S.)
| | - Pablo Rodriguez-Mateos
- School of Mathematics and Physical Sciences, University of Hull, Hull HU6 7RX, UK; (N.P.); (P.R.-M.)
| | - Maria G. Sande
- CEB—Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; (L.R.R.); (M.G.S.)
| | - Carla Joana Silva
- Centre for Nanotechnology and Smart Materials, 4760-034 Vila Nova de Famalicão, Portugal; (T.Ç.); (C.J.S.)
| | - Aleksandra Cecylia Stasiak
- Interfaculty Institute of Biochemistry, University of Tübingen, 72076 Tübingen, Germany; (A.C.S.); (T.S.)
| | - Thilo Stehle
- Interfaculty Institute of Biochemistry, University of Tübingen, 72076 Tübingen, Germany; (A.C.S.); (T.S.)
| | - Arno Thibau
- Institute for Medical Microbiology and Infection Control, University Hospital, Goethe-University, 60596 Frankfurt am Main, Germany; (V.A.J.K.); (A.T.); (D.J.V.)
| | - Diana J. Vaca
- Institute for Medical Microbiology and Infection Control, University Hospital, Goethe-University, 60596 Frankfurt am Main, Germany; (V.A.J.K.); (A.T.); (D.J.V.)
| | - Dirk Linke
- Department of Biosciences, University of Oslo, 0316 Oslo, Norway;
- Correspondence: (A.v.B.); (D.L.)
| |
Collapse
|
7
|
Holmes JC, Green LR, Oldfield NJ, Turner DP, Bayliss CD. Rapid Transmission of a Hyper-Virulent Meningococcal Clone Due to High Effective Contact Numbers and Super Spreaders. Front Genet 2020; 11:579411. [PMID: 33365047 PMCID: PMC7750637 DOI: 10.3389/fgene.2020.579411] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 11/11/2020] [Indexed: 11/13/2022] Open
Abstract
Rapid transmission, a critical contributory factor in outbreaks of invasive meningococcal disease, requires naïve populations of sufficient size and intermingling. We examined genomic variability and transmission dynamics in a student population subject to an 11-fold increase in carriage of a hypervirulent Neisseria meningitidis serogroup W ST-11 clone. Phylogenetic clusters, mutation and recombination rates were derived by bioinformatic analyses of whole-genome sequencing data. Transmission dynamics were determined by combining observed carriage rates, cluster sizes and distributions with simple SIS models. Between 9 and 15 genetically-distinct clusters were detected and associated with seven residential halls. Clusters had low mutation accumulation rates and infrequent recombination events. Modeling indicated that effective contacts decreased from 10 to 2 per day between the start and mid-point of the university term. Transmission rates fluctuated between 1 and 4% while the R(t) for carriage decreased from an initial rate of 47 to 1. Decreases in transmission values correlated with a rise in vaccine-induced immunity. Observed carriage dynamics could be mimicked by populations containing 20% of super spreaders with 2.3-fold higher effective contact rates. We conclude that spread of this hypervirulent ST-11 meningococcal clone depends on the levels of effective contacts and immunity rather than genomic variability. Additionally, we propose that super-spreaders enhance meningococcal transmission and that a 70% MenACWY immunization level is sufficient to retard, but not fully prevent, meningococcal spread in close-contact populations.
Collapse
Affiliation(s)
- Jonathan C. Holmes
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Luke R. Green
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Neil J. Oldfield
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - David P.J. Turner
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Christopher D. Bayliss
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| |
Collapse
|
8
|
Kremer PH, Lees JA, Ferwerda B, Bijlsma MW, MacAlasdair N, van der Ende A, Brouwer MC, Bentley SD, van de Beek D. Diversification in immunogenicity genes caused by selective pressures in invasive meningococci. Microb Genom 2020; 6:mgen000422. [PMID: 32776867 PMCID: PMC7643973 DOI: 10.1099/mgen.0.000422] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 07/26/2020] [Indexed: 11/21/2022] Open
Abstract
We studied population genomics of 486 Neisseria meningitidis isolates causing meningitis in the Netherlands during the period 1979-2003 and 2006-2013 using whole-genome sequencing to evaluate the impact of a hyperendemic period of serogroup B invasive disease. The majority of serogroup B isolates belonged to ST-41/44 (41 %) and ST-32 complex (16 %). Comparing the time periods, before and after the decline of serogroup B invasive disease, there was a decrease of ST-41/44 complex sequences (P=0.002). We observed the expansion of a sub-lineage within ST-41/44 complex sequences being associated with isolation from the 1979-2003 time period (P=0.014). Isolates belonging to this sub-lineage expansion within ST-41/44 complex were marked by four antigen allele variants. Presence of these allele variants was associated with isolation from the 1979-2003 time period after correction for multiple testing (Wald test, P=0.0043 for FetA 1-5; P=0.0035 for FHbp 14; P=0.012 for PorA 7-2.4 and P=0.0031 for NHBA two peptide allele). These sequences were associated with 4CMenB vaccine coverage (Fisher's exact test, P<0.001). Outside of the sub-lineage expansion, isolates with markedly lower levels of predicted vaccine coverage clustered in phylogenetic groups showing a trend towards isolation in the 2006-2013 time period (P=0.08). In conclusion, we show the emergence and decline of a sub-lineage expansion within ST-41/44 complex isolates concurrent with a hyperendemic period in meningococcal meningitis. The expansion was marked by specific antigen peptide allele combinations. We observed preliminary evidence for decreasing 4CMenB vaccine coverage in the post-hyperendemic period.
Collapse
Affiliation(s)
- Philip H.C. Kremer
- Amsterdam UMC, University of Amsterdam, Department of Neurology, Amsterdam Neuroscienc, Amsterdam, The Netherlands
| | - John A. Lees
- Parasites and Microbes, Wellcome Sanger Institute, Hixton, Cambridge, UK
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College London, London, UK
| | - Bart Ferwerda
- Amsterdam UMC, University of Amsterdam, Department of Neurology, Amsterdam Neuroscienc, Amsterdam, The Netherlands
| | - Merijn W. Bijlsma
- Amsterdam UMC, University of Amsterdam, Department of Neurology, Amsterdam Neuroscienc, Amsterdam, The Netherlands
| | - Neil MacAlasdair
- Parasites and Microbes, Wellcome Sanger Institute, Hixton, Cambridge, UK
| | - Arie van der Ende
- Amsterdam UMC, Department of Medical Microbiology and the Netherlands Reference Laboratory for Bacterial Meningitis, Amsterdam, The Netherlands
| | - Matthijs C. Brouwer
- Amsterdam UMC, University of Amsterdam, Department of Neurology, Amsterdam Neuroscienc, Amsterdam, The Netherlands
| | - Stephen D. Bentley
- Parasites and Microbes, Wellcome Sanger Institute, Hixton, Cambridge, UK
| | - Diederik van de Beek
- Amsterdam UMC, University of Amsterdam, Department of Neurology, Amsterdam Neuroscienc, Amsterdam, The Netherlands
| |
Collapse
|
9
|
Retchless AC, Fox LM, Maiden MCJ, Smith V, Harrison LH, Glennie L, Harrison OB, Wang X. Toward a Global Genomic Epidemiology of Meningococcal Disease. J Infect Dis 2020; 220:S266-S273. [PMID: 31671445 DOI: 10.1093/infdis/jiz279] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Whole-genome sequencing (WGS) is invaluable for studying the epidemiology of meningococcal disease. Here we provide a perspective on the use of WGS for meningococcal molecular surveillance and outbreak investigation, where it helps to characterize pathogens, predict pathogen traits, identify emerging pathogens, and investigate pathogen transmission during outbreaks. Standardization of WGS workflows has facilitated their implementation by clinical and public health laboratories (PHLs), but further development is required for metagenomic shotgun sequencing and targeted sequencing to be widely available for culture-free characterization of bacterial meningitis pathogens. Internet-accessible servers are being established to support bioinformatics analysis, data management, and data sharing among PHLs. However, establishing WGS capacity requires investments in laboratory infrastructure and technical knowledge, which is particularly challenging in resource-limited regions, including the African meningitis belt. Strategic WGS implementation is necessary to monitor the molecular epidemiology of meningococcal disease in these regions and construct a global view of meningococcal disease epidemiology.
Collapse
Affiliation(s)
- Adam C Retchless
- Division of Bacterial Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - LeAnne M Fox
- Division of Bacterial Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | | | - Vincent Smith
- Meningitis Research Foundation, Bristol, United Kingdom
| | - Lee H Harrison
- Infectious Diseases Epidemiology Research Unit, University of Pittsburgh, Pittsburgh, Pennsylvania.,Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Linda Glennie
- Meningitis Research Foundation, Bristol, United Kingdom
| | - Odile B Harrison
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Xin Wang
- Division of Bacterial Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| |
Collapse
|
10
|
Localized Hypermutation is the Major Driver of Meningococcal Genetic Variability during Persistent Asymptomatic Carriage. mBio 2020; 11:mBio.03068-19. [PMID: 32209693 PMCID: PMC7157529 DOI: 10.1128/mbio.03068-19] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Host persistence of bacteria is facilitated by mutational and recombinatorial processes that counteract loss of genetic variation during transmission and selection from evolving host responses. Genetic variation was investigated during persistent asymptomatic carriage of Neisseria meningitidis Interrogation of whole-genome sequences for paired isolates from 25 carriers showed that de novo mutations were infrequent, while horizontal gene transfer occurred in 16% of carriers. Examination of multiple isolates per time point enabled separation of sporadic and transient allelic variation from directional variation. A comprehensive comparative analysis of directional allelic variation with hypermutation of simple sequence repeats and hyperrecombination of class 1 type IV pilus genes detected an average of seven events per carrier and 2:1 bias for changes due to localized hypermutation. Directional genetic variation was focused on the outer membrane with 69% of events occurring in genes encoding enzymatic modifiers of surface structures or outer membrane proteins. Multiple carriers exhibited directional and opposed switching of allelic variants of the surface-located Opa proteins that enables continuous expression of these adhesins alongside antigenic variation. A trend for switching from PilC1 to PilC2 expression was detected, indicating selection for specific alterations in the activities of the type IV pilus, whereas phase variation of restriction modification (RM) systems, as well as associated phasevarions, was infrequent. We conclude that asymptomatic meningococcal carriage on mucosal surfaces is facilitated by frequent localized hypermutation and horizontal gene transfer affecting genes encoding surface modifiers such that optimization of adhesive functions occurs alongside escape of immune responses by antigenic variation.IMPORTANCE Many bacterial pathogens coexist with host organisms, rarely causing disease while adapting to host responses. Neisseria meningitidis, a major cause of meningitis and septicemia, is a frequent persistent colonizer of asymptomatic teenagers/young adults. To assess how genetic variation contributes to host persistence, whole-genome sequencing and hypermutable sequence analyses were performed on multiple isolates obtained from students naturally colonized with meningococci. High frequencies of gene transfer were observed, occurring in 16% of carriers and affecting 51% of all nonhypermutable variable genes. Comparative analyses showed that hypermutable sequences were the major mechanism of variation, causing 2-fold more changes in gene function than other mechanisms. Genetic variation was focused on genes affecting the outer membrane, with directional changes in proteins responsible for bacterial adhesion to host surfaces. This comprehensive examination of genetic plasticity in individual hosts provides a significant new platform for rationale design of approaches to prevent the spread of this pathogen.
Collapse
|
11
|
Reconstruction of Dispersal Patterns of Hypervirulent Meningococcal Strains of Serogroup C:cc11 by Phylogenomic Time Trees. J Clin Microbiol 2019; 58:JCM.01351-19. [PMID: 31666361 PMCID: PMC6935922 DOI: 10.1128/jcm.01351-19] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 10/15/2019] [Indexed: 01/01/2023] Open
Abstract
Neisseria meningitidis is one of the few commensal bacteria that can even cause large epidemics of invasive meningococcal disease (IMD). N. meningitis serogroup C belonging to the hypervirulent clonal complex 11 (cc11) represents an important public health threat worldwide. We reconstructed the dispersal patterns of hypervirulent meningococcal strains of serogroup C:cc11 by phylogenomic time trees. Neisseria meningitidis is one of the few commensal bacteria that can even cause large epidemics of invasive meningococcal disease (IMD). N. meningitis serogroup C belonging to the hypervirulent clonal complex 11 (cc11) represents an important public health threat worldwide. We reconstructed the dispersal patterns of hypervirulent meningococcal strains of serogroup C:cc11 by phylogenomic time trees. In particular, we focused the attention on the epidemic dynamics of C:P1.5.1,10-8:F3-6;ST-11(cc11) meningococci causing outbreaks, as occurred in the Tuscany region, Italy, in 2015 to 2016. A phylogeographic analysis was performed through a Bayesian method on 103 Italian and 208 foreign meningococcal genomes. The C:P1.5.1,10-8:F3-6;ST-11(cc11) genotype dated back to 1995 (1992 to 1998) in the United Kingdom. Two main clades of the hypervirulent genotype were identified in Italy. The Tuscany outbreak isolates were included in different clusters in a specific subclade which originated in the United Kingdom around 2011 and was introduced in Tuscany in 2013 to 2014. In this work, phylogeographic analysis allowed the identification of multiple introductions of these strains in several European countries and connections with extra-European areas. Whole-genome sequencing (WGS) combined with phylogeography enables us to track the dissemination of meningococci and their transmission. The C:P1.5.1,10-8:F3-6;ST-11(cc11) genotype analysis revealed how a hypervirulent strain may be introduced in previously naïve areas, causing a large and long-lasting outbreak.
Collapse
|
12
|
Genetic determinants of genus-level glycan diversity in a bacterial protein glycosylation system. PLoS Genet 2019; 15:e1008532. [PMID: 31869330 PMCID: PMC6959607 DOI: 10.1371/journal.pgen.1008532] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 01/14/2020] [Accepted: 11/22/2019] [Indexed: 12/27/2022] Open
Abstract
The human pathogens N. gonorrhoeae and N. meningitidis display robust intra- and interstrain glycan diversity associated with their O-linked protein glycosylation (pgl) systems. In an effort to better understand the evolution and function of protein glycosylation operating there, we aimed to determine if other human-restricted, Neisseria species similarly glycosylate proteins and if so, to assess the levels of glycoform diversity. Comparative genomics revealed the conservation of a subset of genes minimally required for O-linked protein glycosylation glycan and established those pgl genes as core genome constituents of the genus. In conjunction with mass spectrometric–based glycan phenotyping, we found that extant glycoform repertoires in N. gonorrhoeae, N. meningitidis and the closely related species N. polysaccharea and N. lactamica reflect the functional replacement of a progenitor glycan biosynthetic pathway. This replacement involved loss of pgl gene components of the primordial pathway coincident with the acquisition of two exogenous glycosyltransferase genes. Critical to this discovery was the identification of a ubiquitous but previously unrecognized glycosyltransferase gene (pglP) that has uniquely undergone parallel but independent pseudogenization in N. gonorrhoeae and N. meningitidis. We suggest that the pseudogenization events are driven by processes of compositional epistasis leading to gene decay. Additionally, we documented instances where inter-species recombination influences pgl gene status and creates discordant genetic interactions due ostensibly to the multi-locus nature of pgl gene networks. In summary, these findings provide a novel perspective on the evolution of protein glycosylation systems and identify phylogenetically informative, genetic differences associated with Neisseria species. Bacteria express a remarkable diversity of sugars and oligosaccharides in conjunction with protein glycosylation systems. Currently however, little is known about the evolutionary processes and selective forces shaping glycan biosynthetic pathways. The closely related bacterial pathogens Neisseria gonorrhoeae and Neisseria meningitidis remain serious sources of human disease and these species express antigenically variable oligosaccharides as components of their broad-spectrum, O‐linked protein glycosylation (pgl) systems. With the exception of isolates of Neisseria elongata subspecies glycolytica, the status of such post-translational modifications in related commensal species colonizing humans remains largely undefined. Here, we exploit new data from further studies of protein glycosylation in Neisseria elongata subspecies glycolytica to address these concerns. Employing comparative genomics and glycan phenotyping, we show that related pgl systems are indeed expressed by all human-restricted Neisseria species but identify unique gene gain and loss events as well as loss-of-function polymorphisms that accommodate a dramatic shift in glycoform structure occurring across the genus. These findings constitute novel perspectives on both the evolution of protein glycosylation systems in general and the macroevolutionary processes occurring in related bacterial species residing within a single host.
Collapse
|
13
|
Saltykova A, Mattheus W, Bertrand S, Roosens NHC, Marchal K, De Keersmaecker SCJ. Detailed Evaluation of Data Analysis Tools for Subtyping of Bacterial Isolates Based on Whole Genome Sequencing: Neisseria meningitidis as a Proof of Concept. Front Microbiol 2019; 10:2897. [PMID: 31921072 PMCID: PMC6930190 DOI: 10.3389/fmicb.2019.02897] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 12/02/2019] [Indexed: 12/19/2022] Open
Abstract
Whole genome sequencing is increasingly recognized as the most informative approach for characterization of bacterial isolates. Success of the routine use of this technology in public health laboratories depends on the availability of well-characterized and verified data analysis methods. However, multiple subtyping workflows are now often being used for a single organism, and differences between them are not always well described. Moreover, methodologies for comparison of subtyping workflows, and assessment of their performance are only beginning to emerge. Current work focuses on the detailed comparison of WGS-based subtyping workflows and evaluation of their suitability for the organism and the research context in question. We evaluated the performance of pipelines used for subtyping of Neisseria meningitidis, including the currently widely applied cgMLST approach and different SNP-based methods. In addition, the impact of the use of different tools for detection and filtering of recombinant regions and of different reference genomes were tested. Our benchmarking analysis included both assessment of technical performance of the pipelines and functional comparison of the generated genetic distance matrices and phylogenetic trees. It was carried out using replicate sequencing datasets of high- and low-coverage, consisting mainly of isolates belonging to the clonal complex 269. We demonstrated that cgMLST and some of the SNP-based subtyping workflows showed very good performance characteristics and highly similar genetic distance matrices and phylogenetic trees with isolates belonging to the same clonal complex. However, only two of the tested workflows demonstrated reproducible results for a group of more closely related isolates. Additionally, results of the SNP-based subtyping workflows were to some level dependent on the reference genome used. Interestingly, the use of recombination-filtering software generally reduced the similarity between the gene-by-gene and SNP-based methodologies for subtyping of N. meningitidis. Our study, where N. meningitidis was taken as an example, clearly highlights the need for more benchmarking comparative studies to eventually contribute to a justified use of a specific WGS data analysis workflow within an international public health laboratory context.
Collapse
Affiliation(s)
- Assia Saltykova
- Transversal Activities in Applied Genomics, Sciensano, Brussels, Belgium
- IDLab, IMEC, Department of Information Technology, Ghent University, Ghent, Belgium
| | - Wesley Mattheus
- Belgian National Reference Centre for Neisseria, Human Bacterial Diseases, Sciensano, Brussels, Belgium
| | - Sophie Bertrand
- Belgian National Reference Centre for Neisseria, Human Bacterial Diseases, Sciensano, Brussels, Belgium
| | | | - Kathleen Marchal
- IDLab, IMEC, Department of Information Technology, Ghent University, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, VIB, Ghent University, Ghent, Belgium
| | | |
Collapse
|
14
|
Caugant DA, Brynildsrud OB. Neisseria meningitidis: using genomics to understand diversity, evolution and pathogenesis. Nat Rev Microbiol 2019; 18:84-96. [PMID: 31705134 DOI: 10.1038/s41579-019-0282-6] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/25/2019] [Indexed: 01/30/2023]
Abstract
Meningococcal disease remains an important cause of morbidity and death worldwide despite the development and increasing implementation of effective vaccines. Elimination of the disease is hampered by the enormous diversity and antigenic variability of the causative agent, Neisseria meningitidis, one of the most variable bacteria in nature. These features are attained mainly through high rates of horizontal gene transfer and alteration of protein expression through phase variation. The recent availability of whole-genome sequencing (WGS) of large-scale collections of N. meningitidis isolates from various origins, databases to facilitate storage and sharing of WGS data and the concomitant development of effective bioinformatics tools have led to a much more thorough understanding of the diversity of the species, its evolution and population structure and how virulent traits may emerge. Implementation of WGS is already contributing to enhanced epidemiological surveillance and is essential to ascertain the impact of vaccination strategies. This Review summarizes the recent advances provided by WGS studies in our understanding of the biology of N. meningitidis and the epidemiology of meningococcal disease.
Collapse
Affiliation(s)
- Dominique A Caugant
- Division for Infection Control and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway. .,Department of Community Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.
| | - Ola B Brynildsrud
- Division for Infection Control and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway.,Department of Food Safety and Infection Biology, Faculty of Veterinary Science, Norwegian University of Life Science, Oslo, Norway
| |
Collapse
|
15
|
Yoshimura D, Kajitani R, Gotoh Y, Katahira K, Okuno M, Ogura Y, Hayashi T, Itoh T. Evaluation of SNP calling methods for closely related bacterial isolates and a novel high-accuracy pipeline: BactSNP. Microb Genom 2019; 5. [PMID: 31099741 PMCID: PMC6562250 DOI: 10.1099/mgen.0.000261] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Bacteria are highly diverse, even within a species; thus, there have been many studies which classify a single species into multiple types and analyze the genetic differences between them. Recently, the use of whole-genome sequencing (WGS) has been popular for these analyses, and the identification of single-nucleotide polymorphisms (SNPs) between isolates is the most basic analysis performed following WGS. The performance of SNP-calling methods therefore has a significant effect on the accuracy of downstream analyses, such as phylogenetic tree inference. In particular, when closely related isolates are analyzed, e.g. in outbreak investigations, some SNP callers tend to detect a high number of false-positive SNPs compared with the limited number of true SNPs among isolates. However, the performances of various SNP callers in such a situation have not been validated sufficiently. Here, we show the results of realistic benchmarks of commonly used SNP callers, revealing that some of them exhibit markedly low accuracy when target isolates are closely related. As an alternative, we developed a novel pipeline BactSNP, which utilizes both assembly and mapping information and is capable of highly accurate and sensitive SNP calling in a single step. BactSNP is also able to call SNPs among isolates when the reference genome is a draft one or even when the user does not input the reference genome. BactSNP is available at https://github.com/IEkAdN/BactSNP.
Collapse
Affiliation(s)
- Dai Yoshimura
- 1School of Life Science and Technology, Tokyo Institute of Technology, Tokyo, Japan
| | - Rei Kajitani
- 1School of Life Science and Technology, Tokyo Institute of Technology, Tokyo, Japan
| | - Yasuhiro Gotoh
- 2Department of Bacteriology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Katsuyuki Katahira
- 2Department of Bacteriology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Miki Okuno
- 1School of Life Science and Technology, Tokyo Institute of Technology, Tokyo, Japan
| | - Yoshitoshi Ogura
- 2Department of Bacteriology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tetsuya Hayashi
- 2Department of Bacteriology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takehiko Itoh
- 1School of Life Science and Technology, Tokyo Institute of Technology, Tokyo, Japan
| |
Collapse
|
16
|
Mueller JE. Meningococcal strain evolution, dusty dry air and respiratory tract infections: An explosive relationship. EBioMedicine 2019; 42:34-35. [PMID: 30935890 PMCID: PMC6491798 DOI: 10.1016/j.ebiom.2019.03.067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 03/25/2019] [Indexed: 11/26/2022] Open
|
17
|
Topaz N, Caugant DA, Taha MK, Brynildsrud OB, Debech N, Hong E, Deghmane AE, Ouédraogo R, Ousmane S, Gamougame K, Njanpop-Lafourcade BM, Diarra S, Fox LM, Wang X. Phylogenetic relationships and regional spread of meningococcal strains in the meningitis belt, 2011-2016. EBioMedicine 2019; 41:488-496. [PMID: 30846392 PMCID: PMC6443582 DOI: 10.1016/j.ebiom.2019.02.054] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 02/15/2019] [Accepted: 02/26/2019] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Historically, the major cause of meningococcal epidemics in the meningitis belt of sub-Saharan Africa has been Neisseria meningitidis serogroup A (NmA), but the incidence has been substantially reduced since the introduction of a serogroup A conjugate vaccine starting in 2010. We performed whole-genome sequencing on isolates collected post-2010 to assess their phylogenetic relationships and inter-country transmission. METHODS A total of 716 invasive meningococcal isolates collected between 2011 and 2016 from 11 meningitis belt countries were whole-genome sequenced for molecular characterization by the three WHO Collaborating Centers for Meningitis. FINDINGS We identified three previously-reported clonal complexes (CC): CC11 (n = 434), CC181 (n = 62) and CC5 (n = 90) primarily associated with NmW, NmX, and NmA, respectively, and an emerging CC10217 (n = 126) associated with NmC. CC11 expanded throughout the meningitis belt independent of the 2000 Hajj outbreak strain, with isolates from Central African countries forming a distinct sub-lineage within this expansion. Two major sub-lineages were identified for CC181 isolates, one mainly expanding in West African countries and the other found in Chad. CC10217 isolates from the large outbreaks in Nigeria and Niger were more closely related than those from the few cases in Mali and Burkina Faso. INTERPRETATIONS Whole-genome based phylogenies revealed geographically distinct strain circulation as well as inter-country transmission events. Our results stress the importance of continued meningococcal molecular surveillance in the region, as well as the development of an affordable vaccine targeting these strains. FUND: Meningitis Research Foundation; CDC's Office of Advanced Molecular Detection; GAVI, the Vaccine Alliance.
Collapse
Affiliation(s)
- Nadav Topaz
- Meningitis and Vaccine Preventable Diseases Branch, Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, United States
| | - Dominique A Caugant
- Division for Infection Control and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway; Department of Community Medicine and Global Health, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Muhamed-Kheir Taha
- Institut Pasteur, Invasive Bacterial Infections Unit and WHO collaborating Centre for meningitis, Paris, France
| | - Ola Brønstad Brynildsrud
- Division for Infection Control and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Nadia Debech
- Division for Infection Control and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Eva Hong
- Institut Pasteur, Invasive Bacterial Infections Unit and WHO collaborating Centre for meningitis, Paris, France
| | - Ala-Eddine Deghmane
- Institut Pasteur, Invasive Bacterial Infections Unit and WHO collaborating Centre for meningitis, Paris, France
| | - Rasmata Ouédraogo
- Centre Hospitalier Universitaire Pédiatrique Charles de Gaulle, Ouagadougou 01, Burkina Faso
| | - Sani Ousmane
- Centre de Recherche Médicale et Sanitaire, CERMES, Niamey, Niger
| | | | | | - Seydou Diarra
- Institut National de Recherche en Santé Publique, Bamako 00223, Mali
| | - LeAnne M Fox
- Meningitis and Vaccine Preventable Diseases Branch, Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, United States
| | - Xin Wang
- Meningitis and Vaccine Preventable Diseases Branch, Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, United States.
| |
Collapse
|
18
|
Guo Q, Mustapha MM, Chen M, Qu D, Zhang X, Chen M, Doi Y, Wang M, Harrison LH. Evolution of Sequence Type 4821 Clonal Complex Meningococcal Strains in China from Prequinolone to Quinolone Era, 1972-2013. Emerg Infect Dis 2019; 24:683-690. [PMID: 29553310 PMCID: PMC5875256 DOI: 10.3201/eid2404.171744] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The expansion of hypervirulent sequence type 4821 clonal complex (CC4821) lineage Neisseria meningitidis bacteria has led to a shift in meningococcal disease epidemiology in China, from serogroup A (MenA) to MenC. Knowledge of the evolution and genetic origin of the emergent MenC strains is limited. In this study, we subjected 76 CC4821 isolates collected across China during 1972–1977 and 2005–2013 to phylogenetic analysis, traditional genotyping, or both. We show that successive recombination events within genes encoding surface antigens and acquisition of quinolone resistance mutations possibly played a role in the emergence of CC4821 as an epidemic clone in China. MenC and MenB CC4821 strains have spread across China and have been detected in several countries in different continents. Capsular switches involving serogroups B and C occurred among epidemic strains, raising concerns regarding possible increases in MenB disease, given that vaccines in use in China do not protect against MenB.
Collapse
|
19
|
Disrupted Synthesis of a Di- N-acetylated Sugar Perturbs Mature Glycoform Structure and Microheterogeneity in the O-Linked Protein Glycosylation System of Neisseria elongata subsp. glycolytica. J Bacteriol 2018; 201:JB.00522-18. [PMID: 30322851 DOI: 10.1128/jb.00522-18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 10/04/2018] [Indexed: 12/21/2022] Open
Abstract
The genus Neisseria includes three major species of importance to human health and disease (Neisseria gonorrhoeae, Neisseria meningitidis, and Neisseria lactamica) that express broad-spectrum O-linked protein glycosylation (Pgl) systems. The potential for related Pgl systems in other species in the genus, however, remains to be determined. Using a strain of Neisseria elongata subsp. glycolytica, a unique tetrasaccharide glycoform consisting of di-N-acetylbacillosamine and glucose as the first two sugars followed by a rare sugar whose mass spectrometric fragmentation profile was most consistent with di-N-acetyl hexuronic acid and a N-acetylhexosamine at the nonreducing end has been identified. Based on established mechanisms for UDP-di-N-acetyl hexuronic acid biosynthesis found in other microbes, we searched for genes encoding related pathway components in the N. elongata subsp. glycolytica genome. Here, we detail the identification of such genes and the ensuing glycosylation phenotypes engendered by their inactivation. While the findings extend the conservative nature of microbial UDP-di-N-acetyl hexuronic acid biosynthesis, mutant glycosylation phenotypes reveal unique, relaxed specificities of the glycosyltransferases and oligosaccharyltransferases to incorporate pathway intermediate UDP-sugars into mature glycoforms.IMPORTANCE Broad-spectrum protein glycosylation (Pgl) systems are well recognized in bacteria and archaea. Knowledge of how these systems relate structurally, biochemically, and evolutionarily to one another and to others associated with microbial surface glycoconjugate expression is still incomplete. Here, we detail reverse genetic efforts toward characterization of protein glycosylation mutants of N. elongata subsp. glycolytica that define the biosynthesis of a conserved but relatively rare UDP-sugar precursor. The results show both a significant degree of intra- and transkingdom conservation in the utilization of UDP-di-N-acetyl-glucuronic acid and singular properties related to the relaxed specificities of the N. elongata subsp. glycolytica system.
Collapse
|
20
|
Pandey A, Cleary DW, Laver JR, Gorringe A, Deasy AM, Dale AP, Morris PD, Didelot X, Maiden MCJ, Read RC. Microevolution of Neisseria lactamica during nasopharyngeal colonisation induced by controlled human infection. Nat Commun 2018; 9:4753. [PMID: 30420631 PMCID: PMC6232127 DOI: 10.1038/s41467-018-07235-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 10/17/2018] [Indexed: 12/31/2022] Open
Abstract
Neisseria lactamica is a harmless coloniser of the infant respiratory tract, and has a mutually-excluding relationship with the pathogen Neisseria meningitidis. Here we report controlled human infection with genomically-defined N. lactamica and subsequent bacterial microevolution during 26 weeks of colonisation. We find that most mutations that occur during nasopharyngeal carriage are transient indels within repetitive tracts of putative phase-variable loci associated with host-microbe interactions (pgl and lgt) and iron acquisition (fetA promotor and hpuA). Recurrent polymorphisms occurred in genes associated with energy metabolism (nuoN, rssA) and the CRISPR-associated cas1. A gene encoding a large hypothetical protein was often mutated in 27% of the subjects. In volunteers who were naturally co-colonised with meningococci, recombination altered allelic identity in N. lactamica to resemble meningococcal alleles, including loci associated with metabolism, outer membrane proteins and immune response activators. Our results suggest that phase variable genes are often mutated during carriage-associated microevolution.
Collapse
Affiliation(s)
- Anish Pandey
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, SO166YD, UK.
| | - David W Cleary
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, SO166YD, UK
- Southampton NIHR Biomedical Research Centre, University Hospital Southampton, Southampton, SO166YD, UK
- Institute for Life Sciences, University of Southampton, Southampton, SO166YD, UK
| | - Jay R Laver
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, SO166YD, UK
| | | | - Alice M Deasy
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, S103JF, UK
- Department of Cardiology, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, S103JF, UK
| | - Adam P Dale
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, SO166YD, UK
- Southampton NIHR Biomedical Research Centre, University Hospital Southampton, Southampton, SO166YD, UK
| | - Paul D Morris
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, S103JF, UK
- Department of Cardiology, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, S103JF, UK
| | - Xavier Didelot
- School of Public Health, Faculty of Medicine, Imperial College London, London, SW72AZ, UK
- Department of Statistics, School of Life Sciences, Gibbet Hill Campus, University of Warwick, Coventry, CV4 7AL, UK
| | - Martin C J Maiden
- Department of Zoology, Peter Medawar Building, University of Oxford, Oxford, OX13SY, UK
| | - Robert C Read
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, SO166YD, UK.
- Southampton NIHR Biomedical Research Centre, University Hospital Southampton, Southampton, SO166YD, UK.
- Institute for Life Sciences, University of Southampton, Southampton, SO166YD, UK.
| |
Collapse
|
21
|
Whaley MJ, Joseph SJ, Retchless AC, Kretz CB, Blain A, Hu F, Chang HY, Mbaeyi SA, MacNeil JR, Read TD, Wang X. Whole genome sequencing for investigations of meningococcal outbreaks in the United States: a retrospective analysis. Sci Rep 2018; 8:15803. [PMID: 30361650 PMCID: PMC6202316 DOI: 10.1038/s41598-018-33622-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 09/13/2018] [Indexed: 01/14/2023] Open
Abstract
Although rare in the U.S., outbreaks due to Neisseria meningitidis do occur. Rapid, early outbreak detection is important for timely public health response. In this study, we characterized U.S. meningococcal isolates (N = 201) from 15 epidemiologically defined outbreaks (2009-2015) along with temporally and geographically matched sporadic isolates using multilocus sequence typing, pulsed-field gel electrophoresis (PFGE), and six whole genome sequencing (WGS) based methods. Recombination-corrected maximum likelihood (ML) and Bayesian phylogenies were reconstructed to identify genetically related outbreak isolates. All WGS analysis methods showed high degree of agreement and distinguished isolates with similar or indistinguishable PFGE patterns, or the same strain genotype. Ten outbreaks were caused by a single strain; 5 were due to multiple strains. Five sporadic isolates were phylogenetically related to 2 outbreaks. Analysis of 9 outbreaks using timed phylogenies identified the possible origin and estimated the approximate time that the most recent common ancestor emerged for outbreaks analyzed. U.S. meningococcal outbreaks were caused by single- or multiple-strain introduction, with organizational outbreaks mainly caused by a clonal strain and community outbreaks by divergent strains. WGS can infer linkage of meningococcal cases when epidemiological links are uncertain. Accurate identification of outbreak-associated cases requires both WGS typing and epidemiological data.
Collapse
Affiliation(s)
- Melissa J Whaley
- Meningitis and Vaccine Preventable Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Sandeep J Joseph
- Meningitis and Vaccine Preventable Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Adam C Retchless
- Meningitis and Vaccine Preventable Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Cecilia B Kretz
- Meningitis and Vaccine Preventable Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Amy Blain
- Meningitis and Vaccine Preventable Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Fang Hu
- Meningitis and Vaccine Preventable Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - How-Yi Chang
- Meningitis and Vaccine Preventable Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Sarah A Mbaeyi
- Meningitis and Vaccine Preventable Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Jessica R MacNeil
- Meningitis and Vaccine Preventable Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Timothy D Read
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Xin Wang
- Meningitis and Vaccine Preventable Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA.
| |
Collapse
|
22
|
Lamelas A, Hamid AWM, Dangy JP, Hauser J, Jud M, Röltgen K, Hodgson A, Junghanss T, Harris SR, Parkhill J, Bentley SD, Pluschke G. Loss of Genomic Diversity in a Neisseria meningitidis Clone Through a Colonization Bottleneck. Genome Biol Evol 2018; 10:2102-2109. [PMID: 30060167 PMCID: PMC6110524 DOI: 10.1093/gbe/evy152] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/26/2018] [Indexed: 01/11/2023] Open
Abstract
Neisseria meningitidis is the leading cause of epidemic meningitis in the "meningitis belt" of Africa, where clonal waves of colonization and disease are observed. Point mutations and horizontal gene exchange lead to constant diversification of meningococcal populations during clonal spread. Maintaining a high genomic diversity may be an evolutionary strategy of meningococci that increases chances of fixing occasionally new highly successful "fit genotypes". We have performed a longitudinal study of meningococcal carriage and disease in northern Ghana by analyzing cerebrospinal fluid samples from all suspected meningitis cases and monitoring carriage of meningococci by twice yearly colonization surveys. In the framework of this study, we observed complete replacement of an A: sequence types (ST)-2859 clone by a W: ST-2881 clone. However, after a gap of 1 year, A: ST-2859 meningococci re-emerged both as colonizer and meningitis causing agent. Our whole genome sequencing analyses compared the A population isolated prior to the W colonization and disease wave with the re-emerging A meningococci. This analysis revealed expansion of one clone differing in only one nonsynonymous SNP from several isolates already present in the original A: ST-2859 population. The colonization bottleneck caused by the competing W meningococci thus resulted in a profound reduction in genomic diversity of the A meningococcal population.
Collapse
Affiliation(s)
- Araceli Lamelas
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Switzerland
- Red de Estudios Moleculares Avanzados, Instituto de Ecología A. C., Xalapa, Veracruz, México
| | - Abdul-Wahab M Hamid
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Switzerland
- Navrongo Health Research Centre, Ministry of Health, Navrongo, Ghana
| | - Jean-Pierre Dangy
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Switzerland
| | - Julia Hauser
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Switzerland
| | - Maja Jud
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Switzerland
| | - Katharina Röltgen
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Switzerland
| | - Abraham Hodgson
- Navrongo Health Research Centre, Ministry of Health, Navrongo, Ghana
- Research and Development Division, Ghana Health Service, Accra, Ghana
| | - Thomas Junghanss
- Section of Clinical Tropical Medicine, University Hospital Heidelberg, Germany
| | - Simon R Harris
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Julian Parkhill
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Stephen D Bentley
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Gerd Pluschke
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Switzerland
| |
Collapse
|
23
|
Genotypic and Phenotypic Characterization of the O-Linked Protein Glycosylation System Reveals High Glycan Diversity in Paired Meningococcal Carriage Isolates. J Bacteriol 2018; 200:JB.00794-17. [PMID: 29555702 DOI: 10.1128/jb.00794-17] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Accepted: 03/14/2018] [Indexed: 01/15/2023] Open
Abstract
Species within the genus Neisseria display significant glycan diversity associated with the O-linked protein glycosylation (pgl) systems due to phase variation and polymorphic genes and gene content. The aim of this study was to examine in detail the pgl genotype and glycosylation phenotype in meningococcal isolates and the changes occurring during short-term asymptomatic carriage. Paired meningococcal isolates derived from 50 asymptomatic meningococcal carriers, taken about 2 months apart, were analyzed with whole-genome sequencing. The O-linked protein glycosylation genes were characterized in detail using the Genome Comparator tool at the https://pubmlst.org/ database. Immunoblotting with glycan-specific antibodies (Abs) was used to investigate the protein glycosylation phenotype. All major pgl locus polymorphisms identified in Neisseria meningitidis to date were present in our isolate collection, with the variable presence of pglG and pglH, both in combination with either pglB or pglB2 We identified significant changes and diversity in the pgl genotype and/or glycan phenotype in 96% of the paired isolates. There was also a high degree of glycan microheterogeneity, in which different variants of glycan structures were found at a given glycoprotein. The main mechanism responsible for the observed differences was phase-variable expression of the involved glycosyltransferases and the O-acetyltransferase. To our knowledge, this is the first characterization of the pgl genotype and glycosylation phenotype in a larger strain collection. This report thus provides important insight into glycan diversity in N. meningitidis and into the phase variability changes that influence the expressed glycoform repertoire during meningococcal carriage.IMPORTANCE Bacterial meningitis is a serious global health problem, and one of the major causative organisms is Neisseria meningitidis, which is also a common commensal in the upper respiratory tract of healthy humans. In bacteria, numerous loci involved in biosynthesis of surface-exposed antigenic structures that are involved in the interaction between bacteria and host are frequently subjected to homologous recombination and phase variation. These mechanisms are well described in Neisseria, and phase variation provides the ability to change these structures reversibly in response to the environment. Protein glycosylation systems are becoming widely identified in bacteria, and yet little is known about the mechanisms and evolutionary forces influencing glycan composition during carriage and disease.
Collapse
|
24
|
Retchless AC, Congo-Ouédraogo M, Kambiré D, Vuong J, Chen A, Hu F, Ba AK, Ouédraogo AS, Hema-Ouangraoua S, Patel JC, Traoré RO, Sangaré L, Wang X. Molecular characterization of invasive meningococcal isolates in Burkina Faso as the relative importance of serogroups X and W increases, 2008-2012. BMC Infect Dis 2018; 18:337. [PMID: 30021533 PMCID: PMC6052536 DOI: 10.1186/s12879-018-3247-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 07/10/2018] [Indexed: 12/30/2022] Open
Abstract
Background Neisseria meningitidis serogroup A disease in Burkina Faso has greatly decreased following introduction of a meningococcal A conjugate vaccine in 2010, yet other serogroups continue to pose a risk of life-threatening disease. Capsule switching among epidemic-associated serogroup A N. meningitidis strains could allow these lineages to persist despite vaccination. The introduction of new strains at the national or sub-national levels could affect the epidemiology of disease. Methods Isolates collected from invasive meningococcal disease in Burkina Faso between 2008 and 2012 were characterized by serogrouping and molecular typing. Genome sequences from a subset of isolates were used to infer phylogenetic relationships. Results The ST-5 clonal complex (CC5) was identified only among serogroup A isolates, which were rare after 2010. CC181 and CC11 were the most common clonal complexes after 2010, having serogroup X and W isolates, respectively. Whole-genome phylogenetic analysis showed that the CC181 isolates collected during and after the epidemic of 2010 formed a single clade that was closely related to isolates collected in Niger during 2005 and Burkina Faso during 2007. Geographic population structure was identified among the CC181 isolates, where pairs of isolates collected from the same region of Burkina Faso within a single year had less phylogenetic diversity than the CC181 isolate collection as a whole. However, the reduction of phylogenetic diversity within a region did not extend across multiple years. Instead, CC181 isolates collected during the same year had lower than average diversity, even when collected from different regions, indicating geographic mixing of strains across years. The CC11 isolates were primarily collected during the epidemic of 2012, with sparse sampling during 2011. These isolates belong to a clade that includes previously described isolates collected in Burkina Faso, Mali, and Niger from 2011 to 2015. Similar to CC181, reduced phylogenetic diversity was observed among CC11 isolate pairs collected from the same regions during a single year. Conclusions The population of disease-associated N. meningitidis strains within Burkina Faso was highly dynamic between 2008 and 2012, reflecting both vaccine-imposed selection against serogroup A strains and potentially complex clonal waves of serogroup X and serogroup W strains. Electronic supplementary material The online version of this article (10.1186/s12879-018-3247-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Adam C Retchless
- Meningitis and Vaccine Preventable Diseases Branch, Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, USA
| | | | - Dinanibè Kambiré
- Centre Hospitalier Universitaire Pédiatrique Charles de Gaulle, Ouagadougou, Burkina Faso
| | - Jeni Vuong
- Meningitis and Vaccine Preventable Diseases Branch, Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, USA
| | - Alex Chen
- Meningitis and Vaccine Preventable Diseases Branch, Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, USA
| | - Fang Hu
- Meningitis and Vaccine Preventable Diseases Branch, Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, USA
| | - Absetou Ky Ba
- Laboratoire National de Santé Public, Ouagadougou, Burkina Faso
| | | | | | - Jaymin C Patel
- Meningitis and Vaccine Preventable Diseases Branch, Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, USA.,Epidemic Intelligence Service, Centers for Disease Control and Prevention, Atlanta, USA
| | | | - Lassana Sangaré
- Centre Hospitalier Universitaire Yalgado Ouédraogo, Ouagadougou, Burkina Faso
| | - Xin Wang
- Meningitis and Vaccine Preventable Diseases Branch, Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, USA.
| |
Collapse
|
25
|
Stubenrauch CJ, Dougan G, Lithgow T, Heinz E. Constraints on lateral gene transfer in promoting fimbrial usher protein diversity and function. Open Biol 2018; 7:rsob.170144. [PMID: 29142104 PMCID: PMC5717340 DOI: 10.1098/rsob.170144] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 10/05/2017] [Indexed: 12/16/2022] Open
Abstract
Fimbriae are long, adhesive structures widespread throughout members of the family Enterobacteriaceae. They are multimeric extrusions, which are moved out of the bacterial cell through an integral outer membrane protein called usher. The complex folding mechanics of the usher protein were recently revealed to be catalysed by the membrane-embedded translocation and assembly module (TAM). Here, we examine the diversity of usher proteins across a wide range of extraintestinal (ExPEC) and enteropathogenic (EPEC) Escherichia coli, and further focus on a so far undescribed chaperone–usher system, with this usher referred to as UshC. The fimbrial system containing UshC is distributed across a discrete set of EPEC types, including model strains like E2348/67, as well as ExPEC ST131, currently the most prominent multi-drug-resistant uropathogenic E. coli strain worldwide. Deletion of the TAM from a naive strain of E. coli results in a drastic time delay in folding of UshC, which can be observed for a protein from EPEC as well as for two introduced proteins from related organisms, Yersinia and Enterobacter. We suggest that this models why the TAM machinery is essential for efficient folding of proteins acquired via lateral gene transfer.
Collapse
Affiliation(s)
- Christopher J Stubenrauch
- Infection and Immunity Program, Department of Microbiology, Monash University, Clayton 3800, Australia
| | - Gordon Dougan
- Infection Genomics Program, Wellcome Trust Sanger Institute, Hinxton CB10 1SA, UK
| | - Trevor Lithgow
- Infection and Immunity Program, Department of Microbiology, Monash University, Clayton 3800, Australia
| | - Eva Heinz
- Infection Genomics Program, Wellcome Trust Sanger Institute, Hinxton CB10 1SA, UK
| |
Collapse
|
26
|
Mustapha MM, Harrison LH. Insights into seasonal dynamics of bacterial meningitis. LANCET GLOBAL HEALTH 2018; 4:e345-6. [PMID: 27198826 DOI: 10.1016/s2214-109x(16)30078-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Accepted: 05/03/2016] [Indexed: 11/25/2022]
Affiliation(s)
- Mustapha M Mustapha
- Microbial Genomic Epidemiology Laboratory, Infectious Diseases Epidemiology Research Unit, Graduate School of Public Health and School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Lee H Harrison
- Microbial Genomic Epidemiology Laboratory, Infectious Diseases Epidemiology Research Unit, Graduate School of Public Health and School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| |
Collapse
|
27
|
Mustapha MM, Harrison LH. Vaccine prevention of meningococcal disease in Africa: Major advances, remaining challenges. Hum Vaccin Immunother 2018; 14:1107-1115. [PMID: 29211624 DOI: 10.1080/21645515.2017.1412020] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Africa historically has had the highest incidence of meningococcal disease with high endemic rates and periodic epidemics. The meningitis belt, a region of sub-Saharan Africa extending from Senegal to Ethiopia, has experienced large, devastating epidemics. However, dramatic shifts in the epidemiology of meningococcal disease have occurred recently. For instance, meningococcal capsular group A (NmA) epidemics in the meningitis belt have essentially been eliminated by use of conjugate vaccine. However, NmW epidemics have emerged and spread across the continent since 2000; NmX epidemics have occurred sporadically, and NmC recently emerged in Nigeria and Niger. Outside the meningitis belt, NmB predominates in North Africa, while NmW followed by NmB predominate in South Africa. Improved surveillance is necessary to address the challenges of this changing epidemiologic picture. A low-cost, multivalent conjugate vaccine covering NmA and the emergent and prevalent meningococcal capsular groups C, W, and X in the meningitis belt is a pressing need.
Collapse
Affiliation(s)
- Mustapha M Mustapha
- a Microbial Genomic Epidemiology Laboratory, Infectious Diseases Epidemiology Research Unit, University of Pittsburgh , Pittsburgh , Pennsylvania , USA
| | - Lee H Harrison
- a Microbial Genomic Epidemiology Laboratory, Infectious Diseases Epidemiology Research Unit, University of Pittsburgh , Pittsburgh , Pennsylvania , USA
| |
Collapse
|
28
|
Ispasanie E, Micoli F, Lamelas A, Keller D, Berti F, De Riccio R, Di Benedettoi R, Rondini S, Pluschke G. Spontaneous point mutations in the capsule synthesis locus leading to structural and functional changes of the capsule in serogroup A meningococcal populations. Virulence 2018; 9:1138-1149. [PMID: 30067453 PMCID: PMC6086313 DOI: 10.1080/21505594.2018.1467710] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 04/13/2018] [Indexed: 01/09/2023] Open
Abstract
Whole genome sequencing analysis of 100 Neisseria meningitidis serogroup A isolates has revealed that the csaABCD-ctrABCD-ctrEF capsule polysaccharide synthesis locus represents a spontaneous point mutation hotspot. Structural and functional properties of the capsule of 11 carriage and two disease isolates with non-synonymous point mutations or stop codons in capsule synthesis genes were analyzed for their capsular polysaccharide expression, recognition by antibodies and sensitivity to bactericidal killing. Eight of eleven carriage isolates presenting capsule locus mutations expressed no or reduced amounts of capsule. One isolate with a stop codon in the O-acetyltransferase gene expressed non-O-acetylated polysaccharide, and was not recognized by anti-capsule antibodies. Capsule and O-acetylation deficient mutants were resistant to complement deposition and killing mediated by anti-capsular antibodies, but not by anti-lipopolysaccharide antibodies. Two capsule polymerase mutants, one carriage and one case isolate, showed capsule over-expression and increased resistance against bactericidal activity of both capsule- and lipopolysaccharide-specific antibodies. Meningococci have developed multiple strategies for changing capsule expression and structure, which is relevant both for colonization and virulence. Here we show that point mutations in the capsule synthesis genes substantially contribute to the repertoire of genetic mechanisms in natural populations leading to variability in capsule expression.
Collapse
Affiliation(s)
- Emma Ispasanie
- Swiss Tropical and Public Health Institute, Molecular Immunology Unit, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | | | - Araceli Lamelas
- Red de Estudios Moleculares Avanzados, Instituto de Ecologia, A.C., Veracruz, México
| | - Dominique Keller
- Swiss Tropical and Public Health Institute, Molecular Immunology Unit, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | | | | | | | | | - Gerd Pluschke
- Swiss Tropical and Public Health Institute, Molecular Immunology Unit, Basel, Switzerland
- University of Basel, Basel, Switzerland
| |
Collapse
|
29
|
Klemm E, Dougan G. Advances in Understanding Bacterial Pathogenesis Gained from Whole-Genome Sequencing and Phylogenetics. Cell Host Microbe 2017; 19:599-610. [PMID: 27173928 DOI: 10.1016/j.chom.2016.04.015] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 04/20/2016] [Accepted: 04/22/2016] [Indexed: 01/07/2023]
Abstract
The development of next-generation sequencing as a cost-effective technology has facilitated the analysis of bacterial population structure at a whole-genome level and at scale. From these data, phylogenic trees have been constructed that define population structures at a local, national, and global level, providing a framework for genetic analysis. Although still at an early stage, these approaches have yielded progress in several areas, including pathogen transmission mapping, the genetics of niche colonization and host adaptation, as well as gene-to-phenotype association studies. Antibiotic resistance has proven to be a major challenge in the early 21(st) century, and phylogenetic analyses have uncovered the dramatic effect that the use of antibiotics has had on shaping bacterial population structures. An update on insights into bacterial evolution from comparative genomics is provided in this review.
Collapse
Affiliation(s)
- Elizabeth Klemm
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Gordon Dougan
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK.
| |
Collapse
|
30
|
Buckwalter CM, Currie EG, Tsang RSW, Gray-Owen SD. Discordant Effects of Licensed Meningococcal Serogroup B Vaccination on Invasive Disease and Nasal Colonization in a Humanized Mouse Model. J Infect Dis 2017; 215:1590-1598. [PMID: 28368526 DOI: 10.1093/infdis/jix162] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 03/23/2017] [Indexed: 11/12/2022] Open
Abstract
Background The multicomponent meningococcal serogroup B vaccine (4CMenB) is an outer membrane vesicle and recombinant protein-based vaccine licensed to protect against serogroup B meningococcal disease. It remains unknown whether this vaccine will prevent carriage or transmission, key aspects in long-term vaccine success and disease eradication. Methods Using a "humanized" transgenic mouse model of nasal colonization, we took a systematic approach to estimate the potential for carriage prevention against antigenically diverse Neisseria meningitidis strains and to compare this protection to an invasive meningococcal disease challenge model. Results The 4CMenB vaccine prevented morbidity and mortality after lethal invasive doses of all meningococcal strains tested. Immunization effectively prevented carriage with only 1 of 4 single antigen-matched strains but reduced or prevented nasal colonization by all 4 isolates with multiple cross-reacting antigens. Each immunized mouse had substantial immunoglobulin G targeting the challenge strains, indicating that antibody correlates with protection against sepsis but not nasal carriage. Conclusions Immunization with the 4CMenB vaccine elicits a robust humoral response that correlates with protection against invasive challenge but not with prevention of asymptomatic colonization. This suggests that widespread use of this vaccine will reduce morbidity and mortality rates in immunized individuals, with the potential to contribute to herd protection against a subset of strains.
Collapse
Affiliation(s)
| | - Elissa G Currie
- Department of Molecular Genetics, University of Toronto, Ontario and
| | - Raymond S W Tsang
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba
| | - Scott D Gray-Owen
- Department of Molecular Genetics, University of Toronto, Ontario and
| |
Collapse
|
31
|
Lamelas A, Hauser J, Dangy JP, Hamid AWM, Röltgen K, Abdul Sater MR, Hodgson A, Sie A, Junghanss T, Harris SR, Parkhill J, Bentley SD, Pluschke G. Emergence and genomic diversification of a virulent serogroup W:ST-2881(CC175) Neisseria meningitidis clone in the African meningitis belt. Microb Genom 2017; 3:e000120. [PMID: 29026659 PMCID: PMC5610715 DOI: 10.1099/mgen.0.000120] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 05/10/2017] [Indexed: 12/21/2022] Open
Abstract
Countries of the African 'meningitis belt' are susceptible to meningococcal meningitis outbreaks. While in the past major epidemics have been primarily caused by serogroup A meningococci, W strains are currently responsible for most of the cases. After an epidemic in Mecca in 2000, W:ST-11 strains have caused many outbreaks worldwide. An unrelated W:ST-2881 clone was described for the first time in 2002, with the first meningitis cases caused by these bacteria reported in 2003. Here we describe results of a comparative whole-genome analysis of 74 W:ST-2881 strains isolated within the framework of two longitudinal colonization and disease studies conducted in Ghana and Burkina Faso. Genomic data indicate that the W:ST-2881 clone has emerged from Y:ST-175(CC175) bacteria by capsule switching. The circulating W:ST-2881 populations were composed of a variety of closely related but distinct genomic variants with no systematic differences between colonization and disease isolates. Two distinct and geographically clustered phylogenetic clonal variants were identified in Burkina Faso and a third in Ghana. On the basis of the presence or absence of 17 recombination fragments, the Ghanaian variant could be differentiated into five clusters. All 25 Ghanaian disease isolates clustered together with 23 out of 40 Ghanaian isolates associated with carriage within one cluster, indicating that W:ST-2881 clusters differ in virulence. More than half of the genes affected by horizontal gene transfer encoded proteins of the 'cell envelope' and the 'transport/binding protein' categories, which indicates that exchange of non-capsular antigens plays an important role in immune evasion.
Collapse
Affiliation(s)
- Araceli Lamelas
- 1Swiss Tropical and Public Health Institute, Socinstrasse 57, 4051 Basel, Switzerland.,2Red de Estudios Moleculares Avanzados, Instituto de Ecologia, Veracruz, Mexico
| | - Julia Hauser
- 1Swiss Tropical and Public Health Institute, Socinstrasse 57, 4051 Basel, Switzerland.,3University of Basel, Basel, Switzerland
| | - Jean-Pierre Dangy
- 1Swiss Tropical and Public Health Institute, Socinstrasse 57, 4051 Basel, Switzerland.,3University of Basel, Basel, Switzerland
| | - Abdul-Wahab M Hamid
- 3University of Basel, Basel, Switzerland.,4Navrongo Health Research Centre, Navrongo, Ghana
| | - Katharina Röltgen
- 1Swiss Tropical and Public Health Institute, Socinstrasse 57, 4051 Basel, Switzerland.,3University of Basel, Basel, Switzerland
| | - Mohamad R Abdul Sater
- 1Swiss Tropical and Public Health Institute, Socinstrasse 57, 4051 Basel, Switzerland.,3University of Basel, Basel, Switzerland
| | | | - Ali Sie
- 5Center de Recherche en Sante de Nouna, Nouna, Burkina Faso
| | - Thomas Junghanss
- 6Section of Clinical Tropical Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Simon R Harris
- 7Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Julian Parkhill
- 7Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Stephen D Bentley
- 7Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Gerd Pluschke
- 1Swiss Tropical and Public Health Institute, Socinstrasse 57, 4051 Basel, Switzerland.,3University of Basel, Basel, Switzerland
| |
Collapse
|
32
|
Gianchecchi E, Piccini G, Torelli A, Rappuoli R, Montomoli E. An unwanted guest:Neisseria meningitidis– carriage, risk for invasive disease and the impact of vaccination with insight on Italy incidence. Expert Rev Anti Infect Ther 2017; 15:689-701. [DOI: 10.1080/14787210.2017.1333422] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
| | - Giulia Piccini
- VisMederi Srl, Siena, Italy
- Department of Life Sciences, University of Siena, Siena, Italy
| | - Alessandro Torelli
- VisMederi Srl, Siena, Italy
- Department of Life Sciences, University of Siena, Siena, Italy
| | | | - Emanuele Montomoli
- VisMederi Srl, Siena, Italy
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| |
Collapse
|
33
|
Diallo K, Gamougam K, Daugla DM, Harrison OB, Bray JE, Caugant DA, Lucidarme J, Trotter CL, Hassan-King M, Stuart JM, Manigart O, Greenwood BM, Maiden MCJ. Hierarchical genomic analysis of carried and invasive serogroup A Neisseria meningitidis during the 2011 epidemic in Chad. BMC Genomics 2017; 18:398. [PMID: 28532434 PMCID: PMC5441073 DOI: 10.1186/s12864-017-3789-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 05/12/2017] [Indexed: 12/12/2022] Open
Abstract
Background Serogroup A Neisseria meningitidis (NmA) was the cause of the 2011 meningitis epidemics in Chad. This bacterium, often carried asymptomatically, is considered to be an “accidental pathogen”; however, the transition from carriage to disease phenotype remains poorly understood. This study examined the role genetic diversity might play in this transition by comparing genomes from geographically and temporally matched invasive and carried NmA isolates. Results All 23 NmA isolates belonged to the ST-5 clonal complex (cc5). Ribosomal MLST comparison with other publically available NmA:cc5 showed that isolates were closely related, although those from Chad formed two distinct branches and did not cluster with other NmA, based on their MLST profile, geographical and temporal location. Whole genome MLST (wgMLST) comparison identified 242 variable genes among all Chadian isolates and clustered them into three distinct phylogenetic groups (Clusters 1, 2, and 3): no systematic clustering by disease or carriage source was observed. There was a significant difference (p = 0.0070) between the mean age of the individuals from which isolates from Cluster 1 and Cluster 2 were obtained, irrespective of whether the person was a case or a carrier. Conclusions Whole genome sequencing provided high-resolution characterization of the genetic diversity of these closely related NmA isolates. The invasive meningococcal isolates obtained during the epidemic were not homogeneous; rather, a variety of closely related but distinct clones were circulating in the human population with some clones preferentially colonizing specific age groups, reflecting a potential age-related niche adaptation. Systematic genetic differences were not identified between carriage and disease isolates consistent with invasive meningococcal disease being a multi-factorial event resulting from changes in host-pathogen interactions along with the bacterium. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3789-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kanny Diallo
- Centre pour les Vaccins en Développement, Bamako, Mali. .,Department of Zoology, University of Oxford, Peter Medawar Building for Pathogen Research, South Parks Road, OX1 3SY, Oxford, UK.
| | | | | | - Odile B Harrison
- Department of Zoology, University of Oxford, Peter Medawar Building for Pathogen Research, South Parks Road, OX1 3SY, Oxford, UK
| | - James E Bray
- Department of Zoology, University of Oxford, Peter Medawar Building for Pathogen Research, South Parks Road, OX1 3SY, Oxford, UK
| | | | - Jay Lucidarme
- Vaccine Evaluation Unit, Public Health England, Manchester, UK
| | - Caroline L Trotter
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | | | - James M Stuart
- London School of Hygiene & Tropical Medicine, London, UK
| | | | | | - Martin C J Maiden
- Department of Zoology, University of Oxford, Peter Medawar Building for Pathogen Research, South Parks Road, OX1 3SY, Oxford, UK
| |
Collapse
|
34
|
Abstract
The protective effect of meningococcal vaccines targeting disease causing serogroups exemplified by the introduction of MenAfriVac™ in Africa, is well established and documented in large population-based studies. Due to the emergence of other meningococcal disease causing serogroups, novel vaccine formulations are needed. There is a high potential for novel nanotechnology-based meningococcal vaccine formulations that can provide wider vaccine coverage. The proposed meningococcal vaccine formulation contains spherical shaped micro and nanoparticles that are biological mimics of Niesseria meningitidis, therefore present to immune system as invader and elicit robust immune responses. Vaccine nanoparticles encapsulate meningococcal CPS polymers in a biodegradable material that slowly release antigens, therefore enhance antigen presentation by exerting antigen depot effect. The antigenicity of meningococcal vaccine delivered in nanoparticles is significantly higher when compared to vaccine delivered in solution. Preclinical studies are required to assess the immunogenicity of novel vaccine formulations. Therefore, implementing various in-vitro human immune cell-based assays that mimic in-vivo interactions, would provide good insight on optimal antigen dose, effective antigen presentation, facilitate screening of various vaccine and adjuvant combinations and predict in-vivo immunogenicity. This rapid approach is cost-effective and provides data required for the preclinical immunogenicity assessment of novel meningococcal vaccine formulations.
Collapse
Affiliation(s)
- Susu M Zughaier
- a Laboratory of Bacterial Pathogenesis , Department of Veterans Affairs Medical Center , Decatur , GA , USA.,b Department of Microbiology and Immunology , Emory University School of Medicine , Atlanta , GA , USA
| |
Collapse
|
35
|
Abstract
Whole-genome sequencing (WGS) of pathogens is becoming increasingly important not only for basic research but also for clinical science and practice. In virology, WGS is important for the development of novel treatments and vaccines, and for increasing the power of molecular epidemiology and evolutionary genomics. In this Opinion article, we suggest that WGS of viruses in a clinical setting will become increasingly important for patient care. We give an overview of different WGS methods that are used in virology and summarize their advantages and disadvantages. Although there are only partially addressed technical, financial and ethical issues in regard to the clinical application of viral WGS, this technique provides important insights into virus transmission, evolution and pathogenesis.
Collapse
Affiliation(s)
- Charlotte J. Houldcroft
- Department of Infection, UK; and the Division of Biological Anthropology, Immunity and Inflammation, Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, University of Cambridge, Cambridge CB2 3QG, UK.,
- and the Division of Biological Anthropology, University of Cambridge, Cambridge CB2 3QG, UK.,
| | - Mathew A. Beale
- Division of Infection and Immunity, University College London, London, WC1E 6BT UK
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, CB10 1SA Cambridge UK
| | - Judith Breuer
- Division of Infection and Immunity, University College London, London WC1E 6BT, UK; and at Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, UK.,
- and at Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, UK.,
| |
Collapse
|
36
|
Metabolic shift in the emergence of hyperinvasive pandemic meningococcal lineages. Sci Rep 2017; 7:41126. [PMID: 28112239 PMCID: PMC5282872 DOI: 10.1038/srep41126] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 12/15/2016] [Indexed: 12/15/2022] Open
Abstract
Hyperinvasive lineages of Neisseria meningitidis, which persist despite extensive horizontal genetic exchange, are a major cause of meningitis and septicaemia worldwide. Over the past 50 years one such lineage of meningococci, known as serogroup A, clonal complex 5 (A:cc5), has caused three successive pandemics, including epidemics in sub-Saharan Africa. Although the principal antigens that invoke effective immunity have remained unchanged, distinct A:cc5 epidemic clones have nevertheless emerged. An analysis of whole genome sequence diversity among 153 A:cc5 isolates identified eleven genetic introgression events in the emergence of the epidemic clones, which primarily involved variants of core genes encoding metabolic processes. The acquired DNA was identical to that found over many years in other, unrelated, hyperinvasive meningococci, suggesting that the epidemic clones emerged by acquisition of pre-existing metabolic gene variants, rather than ‘virulence’ associated or antigen-encoding genes. This is consistent with mathematical models which predict the association of transmission fitness with the emergence and maintenance of virulence in recombining commensal organisms.
Collapse
|
37
|
Agier L, Martiny N, Thiongane O, Mueller JE, Paireau J, Watkins ER, Irving TJ, Koutangni T, Broutin H. Towards understanding the epidemiology of Neisseria meningitidis in the African meningitis belt: a multi-disciplinary overview. Int J Infect Dis 2016; 54:103-112. [PMID: 27826113 DOI: 10.1016/j.ijid.2016.10.032] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 10/21/2016] [Accepted: 10/29/2016] [Indexed: 01/22/2023] Open
Abstract
OBJECTIVES Neisseria meningitidis is the major cause of seasonal meningitis epidemics in the African meningitis belt. In the changing context of a reduction in incidence of serogroup A and an increase in incidence of serogroups W and C and of Streptococcus pneumoniae, a better understanding of the determinants driving the disease transmission dynamics remains crucial to improving bacterial meningitis control. METHODS The literature was searched to provide a multi-disciplinary overview of the determinants of meningitis transmission dynamics in the African meningitis belt. RESULTS Seasonal hyperendemicity is likely predominantly caused by increased invasion rates, sporadic localized epidemics by increased transmission rates, and larger pluri-annual epidemic waves by changing population immunity. Carriage likely involves competition for colonization and cross-immunity. The duration of immunity likely depends on the acquisition type. Major risk factors include dust and low humidity, and presumably human contact rates and co-infections; social studies highlighted environmental and dietary factors, with supernatural explanations. CONCLUSIONS Efforts should focus on implementing multi-country, longitudinal seroprevalence and epidemiological studies, validating immune markers of protection, and improving surveillance, including more systematic molecular characterizations of the bacteria. Integrating climate and social factors into disease control strategies represents a high priority for optimizing the public health response and anticipating the geographic evolution of the African meningitis belt.
Collapse
Affiliation(s)
- Lydiane Agier
- Combining Health Information, Computation and Statistics, Lancaster Medical School, Lancaster University, Lancaster, UK.
| | - Nadège Martiny
- Centre de Recherches de Climatologie (CRC), UMR 6282 CNRS Biogeosciences, Université de Bourgogne, Dijon, France
| | - Oumy Thiongane
- Institut de Recherche pour le Développement, UMR INTERTRYP IRD-CIRAD, Antenne IRD Bobo Dioulasso, Bobo, Burkina Faso
| | - Judith E Mueller
- EHESP French School of Public Health, Sorbonne Paris Cité, Rennes, France; Unité de l'Epidémiologie des Maladies Emergentes, Institut Pasteur, Paris, France
| | - Juliette Paireau
- Unité de l'Epidémiologie des Maladies Emergentes, Institut Pasteur, Paris, France; Department of Ecology and Evolutionary Biology, Princeton Environmental Institute, Princeton University, Princeton, New Jersey, USA
| | | | - Tom J Irving
- School of Social and Community Medicine, University of Bristol, Bristol, UK
| | - Thibaut Koutangni
- EHESP French School of Public Health, Sorbonne Paris Cité, Rennes, France; Unité de l'Epidémiologie des Maladies Emergentes, Institut Pasteur, Paris, France
| | - Hélène Broutin
- MIVEGEC, UMR 590CNRS/224IRD/UM, Montpellier, France; Service de Parasitologie-Mycologie, Faculté de Médecine, Université Cheikh Anta Diop, Fann, Dakar, Senegal
| |
Collapse
|
38
|
Abstract
Gonorrhea is a sexually transmitted disease causing growing concern, with a substantial increase in reported incidence over the past few years in the United Kingdom and rising levels of resistance to a wide range of antibiotics. Understanding its epidemiology is therefore of major biomedical importance, not only on a population scale but also at the level of direct transmission. However, the molecular typing techniques traditionally used for gonorrhea infections do not provide sufficient resolution to investigate such fine-scale patterns. Here we sequenced the genomes of 237 isolates from two local collections of isolates from Sheffield and London, each of which was resolved into a single type using traditional methods. The two data sets were selected to have different epidemiological properties: the Sheffield data were collected over 6 years from a predominantly heterosexual population, whereas the London data were gathered within half a year and strongly associated with men who have sex with men. Based on contact tracing information between individuals in Sheffield, we found that transmission is associated with a median time to most recent common ancestor of 3.4 months, with an upper bound of 8 months, which we used as a criterion to identify likely transmission links in both data sets. In London, we found that transmission happened predominantly between individuals of similar age, sexual orientation, and location and also with the same HIV serostatus, which may reflect serosorting and associated risk behaviors. Comparison of the two data sets suggests that the London epidemic involved about ten times more cases than the Sheffield outbreak. The recent increases in gonorrhea incidence and antibiotic resistance are cause for public health concern. Successful intervention requires a better understanding of transmission patterns, which is not uncovered by traditional molecular epidemiology techniques. Here we studied two outbreaks that took place in Sheffield and London, United Kingdom. We show that whole-genome sequencing provides the resolution to investigate direct gonorrhea transmission between infected individuals. Combining genome sequencing with rich epidemiological information about infected individuals reveals the importance of several transmission routes and risk factors, which can be used to design better control measures.
Collapse
|
39
|
Gala RP, D'Souza M, Zughaier SM. Evaluation of various adjuvant nanoparticulate formulations for meningococcal capsular polysaccharide-based vaccine. Vaccine 2016; 34:3260-7. [PMID: 27177946 DOI: 10.1016/j.vaccine.2016.05.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 04/19/2016] [Accepted: 05/03/2016] [Indexed: 12/21/2022]
Abstract
Neisseria meningitidis is a leading cause of bacterial meningitis and sepsis and its capsular polysaccharides (CPS) are a major virulence factor in meningococcal infections and form the basis for serogroup designation and preventive vaccines. We have formulated a novel meningococcal nanoparticulate vaccine formulation that does not require chemical conjugation, but encapsulates meningococcal CPS polymers in a biodegradable material that slowly release antigens, thereby has antigen depot effect to enhance antigenicity. The novel vaccine formulation is inexpensive and can be stored as a dry powder with extended shelf life that does not require the cold-chain which facilitates storage and distribution. In order to enhance the antigenicity of meningococcal nanoparticulate vaccine, we screened various adjuvants formulated in nanoparticles, for their ability to potentiate antigen presentation by dendritic cells. Here, we report that MF59 and Alum are superior to TLR-based adjuvants in enhancing dendritic cell maturation and antigen presentation markers MHC I, MHC II, CD40, CD80 and CD86 in dendritic cells pulsed with meningococcal CPS nanoparticulate vaccine.
Collapse
Affiliation(s)
- Rikhav P Gala
- Vaccine Nanotechnology Laboratory, Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University, Atlanta, GA, USA
| | - Martin D'Souza
- Vaccine Nanotechnology Laboratory, Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University, Atlanta, GA, USA.
| | - Susu M Zughaier
- Department of Microbiology and Immunology, and Veterans Affairs Medical Center, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
40
|
Liguori A, Malito E, Lo Surdo P, Fagnocchi L, Cantini F, Haag AF, Brier S, Pizza M, Delany I, Bottomley MJ. Molecular Basis of Ligand-Dependent Regulation of NadR, the Transcriptional Repressor of Meningococcal Virulence Factor NadA. PLoS Pathog 2016; 12:e1005557. [PMID: 27105075 PMCID: PMC4841544 DOI: 10.1371/journal.ppat.1005557] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 03/17/2016] [Indexed: 11/18/2022] Open
Abstract
Neisseria adhesin A (NadA) is present on the meningococcal surface and contributes to adhesion to and invasion of human cells. NadA is also one of three recombinant antigens in the recently-approved Bexsero vaccine, which protects against serogroup B meningococcus. The amount of NadA on the bacterial surface is of direct relevance in the constant battle of host-pathogen interactions: it influences the ability of the pathogen to engage human cell surface-exposed receptors and, conversely, the bacterial susceptibility to the antibody-mediated immune response. It is therefore important to understand the mechanisms which regulate nadA expression levels, which are predominantly controlled by the transcriptional regulator NadR (Neisseria adhesin A Regulator) both in vitro and in vivo. NadR binds the nadA promoter and represses gene transcription. In the presence of 4-hydroxyphenylacetate (4-HPA), a catabolite present in human saliva both under physiological conditions and during bacterial infection, the binding of NadR to the nadA promoter is attenuated and nadA expression is induced. NadR also mediates ligand-dependent regulation of many other meningococcal genes, for example the highly-conserved multiple adhesin family (maf) genes, which encode proteins emerging with important roles in host-pathogen interactions, immune evasion and niche adaptation. To gain insights into the regulation of NadR mediated by 4-HPA, we combined structural, biochemical, and mutagenesis studies. In particular, two new crystal structures of ligand-free and ligand-bound NadR revealed (i) the molecular basis of ‘conformational selection’ by which a single molecule of 4-HPA binds and stabilizes dimeric NadR in a conformation unsuitable for DNA-binding, (ii) molecular explanations for the binding specificities of different hydroxyphenylacetate ligands, including 3Cl,4-HPA which is produced during inflammation, (iii) the presence of a leucine residue essential for dimerization and conserved in many MarR family proteins, and (iv) four residues (His7, Ser9, Asn11 and Phe25), which are involved in binding 4-HPA, and were confirmed in vitro to have key roles in the regulatory mechanism in bacteria. Overall, this study deepens our molecular understanding of the sophisticated regulatory mechanisms of the expression of nadA and other genes governed by NadR, dependent on interactions with niche-specific signal molecules that may play important roles during meningococcal pathogenesis. Serogroup B meningococcus (MenB) causes fatal sepsis and invasive meningococcal disease, particularly in young children and adolescents, as highlighted by recent MenB outbreaks in universities of the United States and Canada. The Bexsero vaccine protects against MenB and has recently been approved in > 35 countries worldwide. Neisseria adhesin A (NadA) present on the meningococcal surface can mediate binding to human cells and is one of the three MenB vaccine protein antigens. The amount of NadA exposed on the meningococcal surface also influences the antibody-mediated serum bactericidal response measured in vitro. A deep understanding of nadA expression is therefore important, otherwise the contribution of NadA to vaccine-induced protection against meningococcal meningitis may be underestimated. The abundance of surface-exposed NadA is regulated by the ligand-responsive transcriptional repressor NadR. Here, we present functional, biochemical and high-resolution structural data on NadR. Our studies provide detailed insights into how small molecule ligands, such as hydroxyphenylacetate derivatives, found in relevant host niches, modulate the structure and activity of NadR, by ‘conformational selection’ of inactive forms. These findings shed light on the regulation of NadR, a key MarR-family virulence factor of this important human pathogen.
Collapse
Affiliation(s)
| | | | | | - Luca Fagnocchi
- Istituto Nazionale di Genetica Molecolare “Romeo ed Enrica Invernizzi”, Milan, Italy
| | - Francesca Cantini
- CERM Magnetic Resonance Centre, University of Florence, Florence, Italy
| | - Andreas F. Haag
- Institute of Infection, Immunity & Inflammation, University of Glasgow, Glasgow, United Kingdom
| | | | | | | | | |
Collapse
|
41
|
Lonely planet: Multicellular organisms. Microbes Infect 2016; 18:221-3. [PMID: 26774335 DOI: 10.1016/j.micinf.2015.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 12/24/2015] [Indexed: 11/23/2022]
|
42
|
Anonsen JH, Vik Å, Børud B, Viburiene R, Aas FE, Kidd SWA, Aspholm M, Koomey M. Characterization of a Unique Tetrasaccharide and Distinct Glycoproteome in the O-Linked Protein Glycosylation System of Neisseria elongata subsp. glycolytica. J Bacteriol 2016; 198:256-67. [PMID: 26483525 PMCID: PMC4751800 DOI: 10.1128/jb.00620-15] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 10/14/2015] [Indexed: 12/30/2022] Open
Abstract
UNLABELLED Broad-spectrum O-linked protein glycosylation is well characterized in the major Neisseria species of importance to human health and disease. Within strains of Neisseria gonorrhoeae, N. meningitidis, and N. lactamica, protein glycosylation (pgl) gene content and the corresponding oligosaccharide structure are fairly well conserved, although intra- and interstrain variability occurs. The status of such systems in distantly related commensal species, however, remains largely unexplored. Using a strain of deeply branching Neisseria elongata subsp. glycolytica, a heretofore unrecognized tetrasaccharide glycoform consisting of di-N-acetylbacillosamine-glucose-di-N-acetyl hexuronic acid-N-acetylhexosamine (diNAcBac-Glc-diNAcHexA-HexNAc) was identified. Directed mutagenesis, mass spectrometric analysis, and glycan serotyping confirmed that the oligosaccharide is an extended version of the diNAcBac-Glc-based structure seen in N. gonorrhoeae and N. meningitidis generated by the successive actions of PglB, PglC, and PglD and glucosyltransferase PglH orthologues. In addition, a null mutation in the orthologue of the broadly conserved but enigmatic pglG gene precluded expression of the extended glycoform, providing the first evidence that its product is a functional glycosyltransferase. Despite clear evidence for a substantial number of glycoprotein substrates, the major pilin subunit of the endogenous type IV pilus was not glycosylated. The latter finding raises obvious questions as to the relative distribution of pilin glycosylation within the genus, how protein glycosylation substrates are selected, and the overall structure-function relationships of broad-spectrum protein glycosylation. Together, the results of this study provide a foundation upon which to assess neisserial O-linked protein glycosylation diversity at the genus level. IMPORTANCE Broad-spectrum protein glycosylation systems are well characterized in the pathogenic Neisseria species N. gonorrhoeae and N. meningitidis. A number of lines of evidence indicate that the glycan components in these systems are subject to diversifying selection and suggest that glycan variation may be driven in the context of glycosylation of the abundant and surface-localized pilin protein PilE, the major subunit of type IV pili. Here, we examined protein glycosylation in a distantly related, nonpathogenic neisserial species, Neisseria elongata subsp. glycolytica. This system has clear similarities to the systems found in pathogenic species but makes novel glycoforms utilizing a glycosyltransferase that is widely conserved at the genus level but whose function until now remained unknown. Remarkably, PilE pilin is not glycosylated in this species, a finding that raises important questions about the evolutionary trajectories and overall structure-function relationships of broad-spectrum protein glycosylation systems in bacteria.
Collapse
Affiliation(s)
| | - Åshild Vik
- Department of Biosciences, University of Oslo, Oslo, Norway
| | - Bente Børud
- Department of Biosciences, University of Oslo, Oslo, Norway
| | | | - Finn Erik Aas
- Department of Biosciences, University of Oslo, Oslo, Norway
| | - Shani W A Kidd
- Department of Biosciences, University of Oslo, Oslo, Norway
| | - Marina Aspholm
- Department of Biosciences, University of Oslo, Oslo, Norway
| | - Michael Koomey
- Department of Biosciences, University of Oslo, Oslo, Norway Center for Ecological and Evolutionary Synthesis, University of Oslo, Oslo, Norway
| |
Collapse
|
43
|
DNA Methylation Assessed by SMRT Sequencing Is Linked to Mutations in Neisseria meningitidis Isolates. PLoS One 2015; 10:e0144612. [PMID: 26656597 PMCID: PMC4676702 DOI: 10.1371/journal.pone.0144612] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 11/20/2015] [Indexed: 11/20/2022] Open
Abstract
The Gram-negative bacterium Neisseria meningitidis features extensive genetic variability. To present, proposed virulence genotypes are also detected in isolates from asymptomatic carriers, indicating more complex mechanisms underlying variable colonization modes of N. meningitidis. We applied the Single Molecule, Real-Time (SMRT) sequencing method from Pacific Biosciences to assess the genome-wide DNA modification profiles of two genetically related N. meningitidis strains, both of serogroup A. The resulting DNA methylomes revealed clear divergences, represented by the detection of shared and of strain-specific DNA methylation target motifs. The positional distribution of these methylated target sites within the genomic sequences displayed clear biases, which suggest a functional role of DNA methylation related to the regulation of genes. DNA methylation in N. meningitidis has a likely underestimated potential for variability, as evidenced by a careful analysis of the ORF status of a panel of confirmed and predicted DNA methyltransferase genes in an extended collection of N. meningitidis strains of serogroup A. Based on high coverage short sequence reads, we find phase variability as a major contributor to the variability in DNA methylation. Taking into account the phase variable loci, the inferred functional status of DNA methyltransferase genes matched the observed methylation profiles. Towards an elucidation of presently incompletely characterized functional consequences of DNA methylation in N. meningitidis, we reveal a prominent colocalization of methylated bases with Single Nucleotide Polymorphisms (SNPs) detected within our genomic sequence collection. As a novel observation we report increased mutability also at 6mA methylated nucleotides, complementing mutational hotspots previously described at 5mC methylated nucleotides. These findings suggest a more diverse role of DNA methylation and Restriction-Modification (RM) systems in the evolution of prokaryotic genomes.
Collapse
|
44
|
Gault J, Ferber M, Machata S, Imhaus AF, Malosse C, Charles-Orszag A, Millien C, Bouvier G, Bardiaux B, Péhau-Arnaudet G, Klinge K, Podglajen I, Ploy MC, Seifert HS, Nilges M, Chamot-Rooke J, Duménil G. Neisseria meningitidis Type IV Pili Composed of Sequence Invariable Pilins Are Masked by Multisite Glycosylation. PLoS Pathog 2015; 11:e1005162. [PMID: 26367394 PMCID: PMC4569582 DOI: 10.1371/journal.ppat.1005162] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 08/20/2015] [Indexed: 12/27/2022] Open
Abstract
The ability of pathogens to cause disease depends on their aptitude to escape the immune system. Type IV pili are extracellular filamentous virulence factors composed of pilin monomers and frequently expressed by bacterial pathogens. As such they are major targets for the host immune system. In the human pathogen Neisseria meningitidis, strains expressing class I pilins contain a genetic recombination system that promotes variation of the pilin sequence and is thought to aid immune escape. However, numerous hypervirulent clinical isolates express class II pilins that lack this property. This raises the question of how they evade immunity targeting type IV pili. As glycosylation is a possible source of antigenic variation it was investigated using top-down mass spectrometry to provide the highest molecular precision on the modified proteins. Unlike class I pilins that carry a single glycan, we found that class II pilins display up to 5 glycosylation sites per monomer on the pilus surface. Swapping of pilin class and genetic background shows that the pilin primary structure determines multisite glycosylation while the genetic background determines the nature of the glycans. Absence of glycosylation in class II pilins affects pilus biogenesis or enhances pilus-dependent aggregation in a strain specific fashion highlighting the extensive functional impact of multisite glycosylation. Finally, molecular modeling shows that glycans cover the surface of class II pilins and strongly decrease antibody access to the polypeptide chain. This strongly supports a model where strains expressing class II pilins evade the immune system by changing their sugar structure rather than pilin primary structure. Overall these results show that sequence invariable class II pilins are cloaked in glycans with extensive functional and immunological consequences. During infection pathogens and their host engage in a series of measures and counter-measures to promote their own survival: pathogens express virulence factors, the immune system targets these surface structures and pathogens modify them to evade detection. Like numerous bacterial pathogens, Neisseria meningitidis express type IV pili, long filamentous adhesive structures composed of pilins. Intriguingly the amino acid sequences of pilins from most hypervirulent strains do not vary, raising the question of how they evade the immune system. This study shows that the pilus structure is completely coated with sugars thus limiting access of antibodies to the pilin polypeptide chain. We propose that multisite glycosylation and thus variation in the type of sugar mediates immune evasion in these strains.
Collapse
MESH Headings
- Amino Acid Sequence
- Bacterial Adhesion
- Cell Line
- Cells, Cultured
- Conserved Sequence
- Endothelium, Vascular/cytology
- Endothelium, Vascular/immunology
- Endothelium, Vascular/microbiology
- Endothelium, Vascular/pathology
- Fimbriae Proteins/chemistry
- Fimbriae Proteins/genetics
- Fimbriae Proteins/metabolism
- Fimbriae, Bacterial/immunology
- Fimbriae, Bacterial/metabolism
- Fimbriae, Bacterial/ultrastructure
- Gene Deletion
- Glycosylation
- Host-Pathogen Interactions
- Human Umbilical Vein Endothelial Cells/cytology
- Human Umbilical Vein Endothelial Cells/immunology
- Human Umbilical Vein Endothelial Cells/microbiology
- Human Umbilical Vein Endothelial Cells/pathology
- Humans
- Immune Evasion
- Meningococcal Infections/immunology
- Meningococcal Infections/metabolism
- Meningococcal Infections/microbiology
- Meningococcal Infections/pathology
- Microscopy, Electron, Transmission
- Models, Molecular
- Neisseria meningitidis/immunology
- Neisseria meningitidis/metabolism
- Neisseria meningitidis/ultrastructure
- Protein Processing, Post-Translational
- Sequence Homology, Amino Acid
- Species Specificity
- Surface Properties
Collapse
Affiliation(s)
- Joseph Gault
- Structural Mass Spectrometry and Proteomics Unit, Institut Pasteur, CNRS UMR 3528, Paris, France
| | - Mathias Ferber
- Institut Pasteur, Unité de Bioinformatique Structurale, CNRS UMR 3528, Département de Biologie Structurale et Chimie, Paris, France
| | - Silke Machata
- INSERM, U970, Paris Cardiovascular Research Center, Paris, France
- Université Paris Descartes, Faculté de Médecine Paris Descartes, Paris, France
| | - Anne-Flore Imhaus
- INSERM, U970, Paris Cardiovascular Research Center, Paris, France
- Université Paris Descartes, Faculté de Médecine Paris Descartes, Paris, France
| | - Christian Malosse
- Structural Mass Spectrometry and Proteomics Unit, Institut Pasteur, CNRS UMR 3528, Paris, France
| | - Arthur Charles-Orszag
- INSERM, U970, Paris Cardiovascular Research Center, Paris, France
- Université Paris Descartes, Faculté de Médecine Paris Descartes, Paris, France
| | - Corinne Millien
- INSERM, U970, Paris Cardiovascular Research Center, Paris, France
- Université Paris Descartes, Faculté de Médecine Paris Descartes, Paris, France
| | - Guillaume Bouvier
- Institut Pasteur, Unité de Bioinformatique Structurale, CNRS UMR 3528, Département de Biologie Structurale et Chimie, Paris, France
| | - Benjamin Bardiaux
- Institut Pasteur, Unité de Bioinformatique Structurale, CNRS UMR 3528, Département de Biologie Structurale et Chimie, Paris, France
| | | | - Kelly Klinge
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - Isabelle Podglajen
- Service de Microbiologie, Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges-Pompidou, Paris, France
| | - Marie Cécile Ploy
- INSERM UMR1092, Faculté de Médecine, Université de Limoges, Limoges, France
| | - H. Steven Seifert
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - Michael Nilges
- Institut Pasteur, Unité de Bioinformatique Structurale, CNRS UMR 3528, Département de Biologie Structurale et Chimie, Paris, France
| | - Julia Chamot-Rooke
- Structural Mass Spectrometry and Proteomics Unit, Institut Pasteur, CNRS UMR 3528, Paris, France
| | - Guillaume Duménil
- INSERM, U970, Paris Cardiovascular Research Center, Paris, France
- Université Paris Descartes, Faculté de Médecine Paris Descartes, Paris, France
- * E-mail:
| |
Collapse
|