1
|
Haller R, Cai Y, de Buhr N, Rieder JC, Schlüter D, Baier C, Rohde H, von Köckritz-Blickwede M, Vital M, Winstel V. Transmissible Staphylococcus pseudintermedius thwarts neutrophil extracellular trap-driven containment to promote invasive disease. Emerg Microbes Infect 2025; 14:2482709. [PMID: 40172876 PMCID: PMC12001851 DOI: 10.1080/22221751.2025.2482709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 03/17/2025] [Accepted: 03/17/2025] [Indexed: 04/04/2025]
Abstract
Methicillin-resistant Staphylococcus pseudintermedius (MRSP) is an emerging zoonotic pathogen that causes a variety of clinical diseases in mammalian hosts. While it frequently causes infections in dogs and other domestic animals, accumulating evidence indicates that zoonotic spillover and cross-species transmission events favour local and invasive S. pseudintermedius infections in humans. However, immuno-evasive maneuvers that shape S. pseudintermedius pathogenicity and survival in diseased hosts remain enigmatic. Powered by multi-tech imaging and a mouse model of bloodstream infection, we illustrate that S. pseudintermedius adopted a virulence mechanism from predominant bacterial pathogens to surmount neutrophilic responses and neutrophil extracellular trap (NET)-mediated killing. Specifically, release of NucB, a thermostable nuclease, helps MRSP coping with the antimicrobial and pathogen-immobilizing properties of NETs and even promotes intra-neutrophil survival upon phagocytosis, thereby contributing to S. pseudintermedius pathogenesis and persistence within hepatic abscesses. Combined with the analysis of genetically distinct human clinical isolates, all of which display nuclease activity and features of resistance to NETosis-induced killing, our data highlight how zoonotic staphylococci overcome innate immune responses and concurrently uncover a mechanism that may exacerbate animal-borne MRSP infections in humans.
Collapse
Affiliation(s)
- Rita Haller
- Research Group Pathogenesis of Bacterial Infections; TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
| | - Yiyang Cai
- Research Group Pathogenesis of Bacterial Infections; TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
- Department of Internal Medicine V, Universities of Giessen and Marburg Lung Center, University Hospital Giessen, Justus Liebig University Giessen, Member of the German Center for Lung Research (DZL), Giessen, Germany
- German Center for Infection Research (DZIF), Partner Site Giessen-Marburg-Langen, Justus Liebig University Giessen, Giessen, Germany
- Institute of Medical Microbiology, Justus Liebig University Giessen, Giessen, Germany
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Giessen, Germany
- Institute for Lung Health (ILH), Justus Liebig University Giessen, Giessen, Germany
| | - Nicole de Buhr
- Institute of Biochemistry, University of Veterinary Medicine Hannover, Hannover, Germany
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Hannover, Germany
| | - Johanna C. Rieder
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Dirk Schlüter
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
- Cluster of Excellence-Resolving Infection Susceptibility (RESIST), (EXC 2155), Hannover Medical School, Hannover, Germany
| | - Claas Baier
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
| | - Holger Rohde
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Maren von Köckritz-Blickwede
- Institute of Biochemistry, University of Veterinary Medicine Hannover, Hannover, Germany
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Hannover, Germany
| | - Marius Vital
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
| | - Volker Winstel
- Research Group Pathogenesis of Bacterial Infections; TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
- Department of Internal Medicine V, Universities of Giessen and Marburg Lung Center, University Hospital Giessen, Justus Liebig University Giessen, Member of the German Center for Lung Research (DZL), Giessen, Germany
- German Center for Infection Research (DZIF), Partner Site Giessen-Marburg-Langen, Justus Liebig University Giessen, Giessen, Germany
- Institute of Medical Microbiology, Justus Liebig University Giessen, Giessen, Germany
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Giessen, Germany
- Institute for Lung Health (ILH), Justus Liebig University Giessen, Giessen, Germany
| |
Collapse
|
2
|
Verma M, Randhawa S, Bathla M, Teji N, Acharya A. Strategic use of nanomaterials as double-edged therapeutics to control carcinogenesis via regulation of dysbiosis and bacterial infection: current status and future prospects. J Mater Chem B 2025; 13:4770-4790. [PMID: 40192037 DOI: 10.1039/d4tb02409e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
The human microbiome plays a crucial role in modulating health and disease susceptibility through a complex network of interactions with the host. When the delicate balance of this microbial ecosystem is disrupted, it often correlates with the onset of systemic diseases. An over-abundance of pathogenic microorganisms within the microbiome has been implicated as a driving factor in the development of disease conditions such as diabetes, obesity, and chronic infections. It has been observed that microbiome dysbiosis perturbs metabolic, inflammatory, and immunological pathways, potentially facilitating carcinogenesis. Furthermore, the metabolites associated with microbial dysbiosis exert multifaceted effects, including metabolic interference, host DNA damage, and tumor promotion, further underscoring the microbiome's significance in several of the cancers. This new exploration of microbiome involvement in carcinogenesis needs additional patient sample analysis, which could provide new insights into cancer diagnosis and treatment. However, treating these diseases using drugs, traditional methods, etc. has resulted in multi-drug resistance, and this has eventually made the situation worrisome. This review highlights the importance of nanotechnology, which may tackle these pathogenic conditions simultaneously by targeting common receptors present in bacteria and cancer. Herein, we have explained how nanotechnology may come to the forefront for these treatments. It explores the potential of non-antibiotic disinfectants, i.e., nanoparticles (NPs) with dual targeting capabilities against microbes and cancer cells, using mechanisms such as ROS generation and DNA damage while minimizing the chances of drug resistance.
Collapse
Affiliation(s)
- Mohini Verma
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur (H.P.) 176061, India.
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Shiwani Randhawa
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur (H.P.) 176061, India.
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Manik Bathla
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur (H.P.) 176061, India.
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Nandini Teji
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur (H.P.) 176061, India.
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Amitabha Acharya
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur (H.P.) 176061, India.
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad-201002, India
| |
Collapse
|
3
|
Kates SL, Owen JR, Xie C, Ren Y, Muthukrishnan G, Schwarz EM. Vaccines: Do they have a role in orthopedic trauma? Injury 2024; 55 Suppl 6:111631. [PMID: 39482036 DOI: 10.1016/j.injury.2024.111631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/20/2024] [Accepted: 05/24/2024] [Indexed: 11/03/2024]
Abstract
Although vaccines have been hailed as one of the greatest advances in medicine based on their unparalleled cost-effectiveness in eradicating life-threatening infectious diseases, their role in orthopedic trauma-related infections is unclear. This is largely because vaccines are primarily made against pathogens that cause communicable diseases rather than opportunistic infections secondary to trauma, and most successful vaccines are against viruses rather than biofilm forming bacteria. Nonetheless, the tremendous costs to patients and healthcare systems warrant orthopedic trauma vaccine research, which has been a focal topic in recent international consensus meetings on musculoskeletal infection. This subject was also covered at the 2023 Osteosynthesis and Trauma Care Foundation (OTCF) meeting in Rome, Italy, and the purpose of this supplement article is to (1) highlight the osteoimmunology, animal models, translational research and clinical pilots that were discussed, (2) the proposed future directions that could lead to diagnostics and prognostics that are critically needed for evidence-based decision making, and (3) vaccines and passive-immunization strategies that could potentially be utilized to treat patients with orthopedic infections.
Collapse
Affiliation(s)
- Stephen L Kates
- Department of Orthopaedic Surgery, Virginia Commonwealth University, Richmond, VA, USA
| | - John R Owen
- Department of Orthopaedic Surgery, Virginia Commonwealth University, Richmond, VA, USA
| | - Chao Xie
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
| | - Youliang Ren
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
| | | | - Edward M Schwarz
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA.
| |
Collapse
|
4
|
Ji Y, Sun C, Wu S. Transcriptomic and Biochemical Analysis of the Antimicrobial Mechanism of Lipopeptide Iturin W against Staphylococcus aureus. Int J Mol Sci 2024; 25:9949. [PMID: 39337437 PMCID: PMC11432370 DOI: 10.3390/ijms25189949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/08/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
Staphylococcus aureus is one of the most serious pathogens threatening food safety and public health. We have previously showed that iturin W exhibited obvious antifungal activity on plant pathogens. In the present study, we found iturin W, especially C14 iturin W, showed strong antimicrobial activity against S. aureus, and the antimicrobial mechanism of C14 iturin W was further investigated by transcriptomic analysis and a related biochemical experiment. The results showed that C14 iturin W can reduce the expression levels of genes associated with the reactive oxygen species (ROS) scavenging enzyme and genes involved in arginine biosynthesis, thus leading to the increase in ROS levels of S. aureus. Furthermore, C14 iturin W can also interfere with proton dynamics, which is crucial for cells to regulate various biological possesses. Therefore, ROS accumulation and change in proton motive force are import ways for C14 iturin W to exert the antimicrobial activity. In addition, C14 iturin W can also reduce the expression levels of genes related to virulence factors and decrease the production of enterotoxins and hemolysins in S. aureus, indicating that C14 iturin W has a good potential in food and pharmaceutical fields to reduce the harm caused by S. aureus in the future.
Collapse
Affiliation(s)
- Yingyu Ji
- College of Life Sciences, Qingdao University, Qingdao 266071, China;
| | - Chaomin Sun
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China;
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
- Center of Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Shimei Wu
- College of Life Sciences, Qingdao University, Qingdao 266071, China;
| |
Collapse
|
5
|
Vozza EG, Kelly AM, Daly CM, O'Rourke SA, Carlile SR, Morris B, Dunne A, McLoughlin RM. Type 1 interferons promote Staphylococcus aureus nasal colonization by inducing phagocyte apoptosis. Cell Death Discov 2024; 10:403. [PMID: 39271670 PMCID: PMC11399434 DOI: 10.1038/s41420-024-02173-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 08/23/2024] [Accepted: 09/02/2024] [Indexed: 09/15/2024] Open
Abstract
Staphylococcus aureus is an important human commensal which persistently colonizes up to 30% of the human population, predominantly within the nasal cavity. The commensal lifestyle of S. aureus is complex, and the mechanisms underpinning colonization are not fully understood. S. aureus can induce an immunosuppressive environment in the nasal tissue (NT) by driving IL-10 and IL-27 to facilitate nasal colonization, indicating that S. aureus has the capacity to modulate the local immune environment for its commensal habitation. Mounting evidence suggests commensal bacteria drive type 1 interferons (IFN-I) to establish an immunosuppressive environment and whilst S. aureus can induce IFN-I during infection, its role in colonization has not yet been examined. Here, we show that S. aureus preferentially induces IFN signaling in macrophages. This IFN-I in turn upregulates expression of proapoptotic genes within macrophages culminating in caspase-3 cleavage. Importantly, S. aureus was found to drive phagocytic cell apoptosis in the nasal tissue during nasal colonization in an IFN-I dependent manner with colonization significantly reduced under caspase-3 inhibition. Overall, loss of IFN-I signaling significantly diminished S. aureus nasal colonization implicating a pivotal role for IFN-I in controlling S. aureus persistence during colonization through its ability to induce phagocyte apoptosis. Together, this study reveals a novel strategy utilized by S. aureus to circumvent host immunity in the nasal mucosa to facilitate nasal colonization.
Collapse
Affiliation(s)
- Emilio G Vozza
- Host-Pathogen Interactions Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Alanna M Kelly
- Host-Pathogen Interactions Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Clíodhna M Daly
- Host-Pathogen Interactions Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Sinead A O'Rourke
- Molecular Immunology Group, School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
| | - Simon R Carlile
- Host-Pathogen Interactions Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Brenda Morris
- Host-Pathogen Interactions Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Aisling Dunne
- Molecular Immunology Group, School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
| | - Rachel M McLoughlin
- Host-Pathogen Interactions Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
6
|
Jiang X, Fu T, Huang L. PANoptosis: a new insight for oral diseases. Mol Biol Rep 2024; 51:960. [PMID: 39235684 DOI: 10.1007/s11033-024-09901-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 08/28/2024] [Indexed: 09/06/2024]
Abstract
PANoptosis, a burgeoning area of research, is a unique type of programmed cell death typified by pyroptosis, apoptosis, and necroptosis, yet it defies singular classification by any one mode of death. The assembly and activation of PANoptosomes are pivotal processes in PANoptosis, with several PANoptosomes already identified. Linkages between PANoptosis and the pathophysiology of various systemic illnesses are established, with increasing recognition of its association with oral ailments. This paper aims to deepen understanding by conducting a comprehensive analysis of the molecular pathways driving PANoptosis and exploring its potential implications in oral diseases.
Collapse
Affiliation(s)
- Xinyi Jiang
- Department of Orthodontics, Stomatological Hospital of Chongqing Medical University, #426 SongShiBeiRd., YuBei, Chongqing, 401147, People's Republic of China
- Chongqing Key Laboratory of Oral Diseases, Chongqing, China
| | - Tingting Fu
- Department of Orthodontics, Stomatological Hospital of Chongqing Medical University, #426 SongShiBeiRd., YuBei, Chongqing, 401147, People's Republic of China
- Chongqing Key Laboratory of Oral Diseases, Chongqing, China
| | - Lan Huang
- Department of Orthodontics, Stomatological Hospital of Chongqing Medical University, #426 SongShiBeiRd., YuBei, Chongqing, 401147, People's Republic of China.
- Chongqing Key Laboratory of Oral Diseases, Chongqing, China.
| |
Collapse
|
7
|
Lai CH, Wong MY, Huang TY, Kao CC, Lin YH, Lu CH, Huang YK. Exploration of agr types, virulence-associated genes, and biofilm formation ability in Staphylococcus aureus isolates from hemodialysis patients with vascular access infections. Front Cell Infect Microbiol 2024; 14:1367016. [PMID: 38681224 PMCID: PMC11045986 DOI: 10.3389/fcimb.2024.1367016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 03/21/2024] [Indexed: 05/01/2024] Open
Abstract
Introduction Staphylococcus aureus, is a pathogen commonly encountered in both community and hospital settings. Patients receiving hemodialysis treatment face an elevated risk of vascular access infections (VAIs) particularly Staphylococcus aureus, infection. This heightened risk is attributed to the characteristics of Staphylococcus aureus, , enabling it to adhere to suitable surfaces and form biofilms, thereby rendering it resistant to external interventions and complicating treatment efforts. Methods Therefore this study utilized PCR and microtiter dish biofilm formation assay to determine the difference in the virulence genes and biofilm formation among in our study collected of 103 Staphylococcus aureus, isolates from hemodialysis patients utilizing arteriovenous grafts (AVGs), tunneled cuffed catheters (TCCs), and arteriovenous fistulas (AVFs) during November 2013 to December 2021. Results Our findings revealed that both MRSA and MSSA isolates exhibited strong biofilm production capabilities. Additionally, we confirmed the presence of agr types and virulence genes through PCR analysis. The majority of the collected isolates were identified as agr type I. However, agr type II isolates displayed a higher average number of virulence genes, with MRSA isolates exhibiting a variety of virulence genes. Notably, combinations of biofilm-associated genes, such as eno-clfA-clfB-fib-icaA-icaD and eno-clfA-clfB-fib-fnbB-icaA-icaD, were prevalent among Staphylococcus aureus, isolates obtained from vascular access infections. Discussion These insights contribute to a better understanding of the molecular characteristics associated with Staphylococcus aureus, infections in hemodialysis patients and provided more targeted and effective treatment approaches.
Collapse
Affiliation(s)
- Chi-Hsiang Lai
- Division of Thoracic and Cardiovascular Surgery, Chiayi Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Min Yi Wong
- Division of Thoracic and Cardiovascular Surgery, Chiayi Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Tsung-Yu Huang
- Division of Infectious Diseases, Department of Internal Medicine, Chiayi Chang Gung Memorial Hospital, Chiayi, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chih-Chen Kao
- Division of Thoracic and Cardiovascular Surgery, Chiayi Chang Gung Memorial Hospital, Chiayi, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yu-Hui Lin
- Division of Thoracic and Cardiovascular Surgery, Chiayi Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Chu-Hsueh Lu
- Division of Thoracic and Cardiovascular Surgery, Chiayi Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Yao-Kuang Huang
- Division of Thoracic and Cardiovascular Surgery, Chiayi Chang Gung Memorial Hospital, Chiayi, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Division of Cardiovascular Surgery, New Taipei Municipal TuCheng Hospital, New Taipei, Taiwan
- Division of Thoracic and Cardiovascular Surgery, Chiayi Hospital, Ministry of Health and Welfare, Chiayi, Taiwan
| |
Collapse
|
8
|
Winstel V, Abt ER, Le TM, Radu CG. Targeting host deoxycytidine kinase mitigates Staphylococcus aureus abscess formation. eLife 2024; 12:RP91157. [PMID: 38512723 PMCID: PMC10957174 DOI: 10.7554/elife.91157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024] Open
Abstract
Host-directed therapy (HDT) is an emerging approach to overcome antimicrobial resistance in pathogenic microorganisms. Specifically, HDT targets host-encoded factors required for pathogen replication and survival without interfering with microbial growth or metabolism, thereby eliminating the risk of resistance development. By applying HDT and a drug repurposing approach, we demonstrate that (R)-DI-87, a clinical-stage anticancer drug and potent inhibitor of mammalian deoxycytidine kinase (dCK), mitigates Staphylococcus aureus abscess formation in organ tissues upon invasive bloodstream infection. Mechanistically, (R)-DI-87 shields phagocytes from staphylococcal death-effector deoxyribonucleosides that target dCK and the mammalian purine salvage pathway-apoptosis axis. In this manner, (R)-DI-87-mediated protection of immune cells amplifies macrophage infiltration into deep-seated abscesses, a phenomenon coupled with enhanced pathogen control, ameliorated immunopathology, and reduced disease severity. Thus, pharmaceutical blockade of dCK represents an advanced anti-infective intervention strategy against which staphylococci cannot develop resistance and may help to fight fatal infectious diseases in hospitalized patients.
Collapse
Affiliation(s)
- Volker Winstel
- Research Group Pathogenesis of Bacterial Infections; TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection ResearchHannoverGermany
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical SchoolHannoverGermany
| | - Evan R Abt
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, UCLALos AngelesUnited States
| | - Thuc M Le
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, UCLALos AngelesUnited States
| | - Caius G Radu
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, UCLALos AngelesUnited States
| |
Collapse
|
9
|
Li X, Hu L, Naeem A, Xiao S, Yang M, Shang H, Zhang J. Neutrophil Extracellular Traps in Tumors and Potential Use of Traditional Herbal Medicine Formulations for Its Regulation. Int J Nanomedicine 2024; 19:2851-2877. [PMID: 38529365 PMCID: PMC10961241 DOI: 10.2147/ijn.s449181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 02/28/2024] [Indexed: 03/27/2024] Open
Abstract
Neutrophil extracellular traps (NETs) are extracellular fibers composed of deoxyribonucleic acid (DNA) and decorated proteins produced by neutrophils. Recently, NETs have been associated with the development of many diseases, including tumors. Herein, we reviewed the correlation between NETs and tumors. In addition, we detailed active compounds from traditional herbal medicine formulations that inhibit NETs, related nanodrug delivery systems, and antibodies that serve as "guiding moieties" to ensure targeted delivery to NETs. Furthermore, we discussed the strategies used by pathogenic microorganisms to evade NETs.
Collapse
Affiliation(s)
- Xiang Li
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330006, People’s Republic of China
| | - Lei Hu
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330006, People’s Republic of China
| | - Abid Naeem
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330004, People’s Republic of China
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, School of Medical Technology, Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing, 100081, People’s Republic of China
| | - Shanghua Xiao
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330004, People’s Republic of China
| | - Ming Yang
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330004, People’s Republic of China
| | - Hongming Shang
- Department of Biochemistry & Chemical Biology, Vanderbilt University, Nashville, TN, USA
| | - Jing Zhang
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330006, People’s Republic of China
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330004, People’s Republic of China
| |
Collapse
|
10
|
Cotten KL, Davis KM. Bacterial heterogeneity and antibiotic persistence: bacterial mechanisms utilized in the host environment. Microbiol Mol Biol Rev 2023; 87:e0017422. [PMID: 37962348 PMCID: PMC10732018 DOI: 10.1128/mmbr.00174-22] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2023] Open
Abstract
SUMMARYAntibiotic persistence, or the ability of small subsets of bacteria to survive prolonged antibiotic treatment, is an underappreciated cause of antibiotic treatment failure. Over the past decade, researchers have discovered multiple different stress responses and mechanisms that can promote antibiotic persistence. However, many of these studies have been completed in culture-based systems that fail to truly replicate the complexities of the host environment, and it is unclear whether the mechanisms defined in in vitro studies are applicable during host infection. In this review, we focus our discussion on recent studies that utilize a mixture of ex vivo culture systems and animal models to understand what stressors in the host environment are important for inducing antibiotic persistence. Different host stressors are involved depending on the anatomical niche the bacteria reside in and whether the host immune system is primed to generate a more robust response against bacteria, which can result in differing downstream effects on antibiotic susceptibility. Bacterial pathogens can also utilize specific strategies to reprogram their metabolism, which is vital for transitioning into an antibiotic-persistent state within host tissues. Importantly, we highlight that more attention is needed to establish guidelines for in vivo work on antibiotic persistence, particularly when identifying antibiotic-persistent subpopulations and distinguishing these phenotypes from antibiotic tolerance. Studying antibiotic persistence in the context of the host environment will be crucial for developing tools and strategies to target antibiotic-persistent bacteria and increase the efficacy of antibiotic treatment.
Collapse
Affiliation(s)
- Katherine L. Cotten
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Kimberly Michele Davis
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| |
Collapse
|
11
|
Winstel V, Abt ER, Le TM, Radu CG. Targeting host deoxycytidine kinase mitigates Staphylococcus aureus abscess formation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.18.553822. [PMID: 37645972 PMCID: PMC10462150 DOI: 10.1101/2023.08.18.553822] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Host-directed therapy (HDT) is an emerging approach to overcome antimicrobial resistance in pathogenic microorganisms. Specifically, HDT targets host-encoded factors required for pathogen replication and survival without interfering with microbial growth or metabolism, thereby eliminating the risk of resistance development. By applying HDT and a drug repurposing approach, we demonstrate that (R)-DI-87, a clinical-stage anti-cancer drug and potent inhibitor of mammalian deoxycytidine kinase (dCK), mitigates Staphylococcus aureus abscess formation in organ tissues upon invasive bloodstream infection. Mechanistically, (R)-DI-87 shields phagocytes from staphylococcal death-effector deoxyribonucleosides that target dCK and the mammalian purine salvage pathway-apoptosis axis. In this manner, (R)-DI-87-mediated protection of immune cells amplifies macrophage infiltration into deep-seated abscesses, a phenomenon coupled with enhanced pathogen control, ameliorated immunopathology, and reduced disease severity. Thus, pharmaceutical blockade of dCK represents an advanced anti-infective intervention strategy against which staphylococci cannot develop resistance and may help to fight fatal infectious diseases in hospitalized patients.
Collapse
Affiliation(s)
- Volker Winstel
- Research Group Pathogenesis of Bacterial Infections; TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
| | - Evan R. Abt
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, UCLA, Los Angeles, United States of America
| | - Thuc M. Le
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, UCLA, Los Angeles, United States of America
| | - Caius G. Radu
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, UCLA, Los Angeles, United States of America
| |
Collapse
|
12
|
Schwermann N, Haller R, Koch S, Grassl GA, Winstel V. Pathogen-driven nucleotide overload triggers mitochondria-centered cell death in phagocytes. PLoS Pathog 2023; 19:e1011892. [PMID: 38157331 PMCID: PMC10756532 DOI: 10.1371/journal.ppat.1011892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 12/08/2023] [Indexed: 01/03/2024] Open
Abstract
Staphylococcus aureus is a dangerous pathogen that evolved refined immuno-evasive strategies to antagonize host immune responses. This involves the biogenesis of death-effector deoxyribonucleosides, which kill infectious foci-penetrating macrophages. However, the exact mechanisms whereby staphylococcal death-effector deoxyribonucleosides and coupled imbalances of intracellular deoxyribonucleotide species provoke immune cell death remain elusive. Here, we report that S. aureus systematically promotes an overload of deoxyribonucleotides to trigger mitochondrial rupture in macrophages, a fatal event that induces assembly of the caspase-9-processing apoptosome and subsequent activation of the intrinsic pathway of apoptosis. Remarkably, genetic disruption of this cascade not only helps macrophages coping with death-effector deoxyribonucleoside-mediated cytotoxicity but also enhances their infiltration into abscesses thereby ameliorating pathogen control and infectious disease outcomes in laboratory animals. Combined with the discovery of protective alleles in human CASP9, these data highlight the role of mitochondria-centered apoptosis during S. aureus infection and suggest that gene polymorphisms may shape human susceptibility toward a predominant pathogen.
Collapse
Affiliation(s)
- Nicoletta Schwermann
- Research Group Pathogenesis of Bacterial Infections; TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
| | - Rita Haller
- Research Group Pathogenesis of Bacterial Infections; TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
| | - Sebastian Koch
- Research Group Pathogenesis of Bacterial Infections; TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
| | - Guntram A. Grassl
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
- German Center for Infection Research (DZIF), partner site Hannover-Braunschweig, Hannover, Germany
| | - Volker Winstel
- Research Group Pathogenesis of Bacterial Infections; TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
13
|
Qu WQ, Fan JX, Zheng DW, Gu HY, Yu YF, Yan X, Zhao K, Hu ZB, Qi BW, Zhang XZ, Yu AX. Deep-penetration functionalized cuttlefish ink nanoparticles for combating wound infections with synergetic photothermal-immunologic therapy. Biomaterials 2023; 301:122231. [PMID: 37418854 DOI: 10.1016/j.biomaterials.2023.122231] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 07/09/2023]
Abstract
The challenge of wound infections post-surgery and open trauma caused by multidrug-resistant bacteria poses a constant threat to clinical treatment. As a promising antimicrobial treatment, photothermal therapy can effectively resolve the problem of drug resistance in conventional antibiotic antimicrobial therapy. Here, we report a deep-penetration functionalized cuttlefish ink nanoparticle (CINP) for photothermal and immunological therapy of wound infections. CINP is decorated with zwitterionic polymer (ZP, namely sulfobetaine methacrylate-methacrylate copolymer) to form CINP@ZP nanoparticles. Natural CINP is found to not only exhibit photothermal destruction of methicillin-resistant Staphylococcus aureus (MRSA) and Escherichia coli (E. coli), but also trigger macrophages-related innate immunity and enhance their antibacterial functions. The ZP coating on the surface of CINP enables nanoparticles to penetrate into deeply infected wound environment. In addition, CINP@ZP is further integrated into the thermosensitive Pluronic F127 gel (CINP@ZP-F127). After in situ spraying gel, CINP@ZP-F127 is also documented notable antibacterial effects in mice wound models infected with MRSA and E. coli. Collectively, this approach combining of photothermal therapy with immunotherapy can promote delivery efficiency of nanoparticles to the deep foci of infective wounds, and effectively eliminate wound infections.
Collapse
Affiliation(s)
- Wen-Qiang Qu
- Department of Orthopedic Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, PR China
| | - Jin-Xuan Fan
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072, PR China
| | - Di-Wei Zheng
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072, PR China
| | - Hui-Yun Gu
- Department of Orthopedic Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, PR China
| | - Yi-Feng Yu
- Department of Orthopedic Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, PR China
| | - Xiao Yan
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072, PR China
| | - Kai Zhao
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072, PR China
| | - Zhong-Bao Hu
- Department of Orthopedic Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, PR China
| | - Bai-Wen Qi
- Department of Orthopedic Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, PR China
| | - Xian-Zheng Zhang
- Department of Orthopedic Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, PR China; Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072, PR China.
| | - Ai-Xi Yu
- Department of Orthopedic Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, PR China.
| |
Collapse
|
14
|
Cheung GYC, Otto M. Virulence Mechanisms of Staphylococcal Animal Pathogens. Int J Mol Sci 2023; 24:14587. [PMID: 37834035 PMCID: PMC10572719 DOI: 10.3390/ijms241914587] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/20/2023] [Accepted: 09/23/2023] [Indexed: 10/15/2023] Open
Abstract
Staphylococci are major causes of infections in mammals. Mammals are colonized by diverse staphylococcal species, often with moderate to strong host specificity, and colonization is a common source of infection. Staphylococcal infections of animals not only are of major importance for animal well-being but have considerable economic consequences, such as in the case of staphylococcal mastitis, which costs billions of dollars annually. Furthermore, pet animals can be temporary carriers of strains infectious to humans. Moreover, antimicrobial resistance is a great concern in livestock infections, as there is considerable antibiotic overuse, and resistant strains can be transferred to humans. With the number of working antibiotics continuously becoming smaller due to the concomitant spread of resistant strains, alternative approaches, such as anti-virulence, are increasingly being investigated to treat staphylococcal infections. For this, understanding the virulence mechanisms of animal staphylococcal pathogens is crucial. While many virulence factors have similar functions in humans as animals, there are increasingly frequent reports of host-specific virulence factors and mechanisms. Furthermore, we are only beginning to understand virulence mechanisms in animal-specific staphylococcal pathogens. This review gives an overview of animal infections caused by staphylococci and our knowledge about the virulence mechanisms involved.
Collapse
Affiliation(s)
| | - Michael Otto
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 50 South Drive, Bethesda, MD 20814, USA;
| |
Collapse
|
15
|
Jin M, He B, Cai X, Lei Z, Sun T. Research progress of nanoparticle targeting delivery systems in bacterial infections. Colloids Surf B Biointerfaces 2023; 229:113444. [PMID: 37453264 DOI: 10.1016/j.colsurfb.2023.113444] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/28/2023] [Accepted: 07/05/2023] [Indexed: 07/18/2023]
Abstract
Bacterial infection is a huge threat to the health of human beings and animals. The abuse of antibiotics have led to the occurrence of bacterial multidrug resistance, which have become a difficult problem in the treatment of clinical infections. Given the outstanding advantages of nanodrug delivery systems in cancer treatment, many scholars have begun to pay attention to their application in bacterial infections. However, due to the similarity of the microenvironment between bacterial infection lesions and cancer sites, the targeting and accuracy of traditional microenvironment-responsive nanocarriers are questionable. Therefore, finding new specific targets has become a new development direction of nanocarriers in bacterial prevention and treatment. This article reviews the infectious microenvironment induced by bacteria and a series of virulence factors of common pathogenic bacteria and their physiological functions, which may be used as potential targets to improve the targeting accuracy of nanocarriers in lesions.
Collapse
Affiliation(s)
- Ming Jin
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China; Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
| | - Bin He
- Institute of Animal Husbandry and Veterinary, Wuhan Academy of Agricultural Sciences, China
| | - Xiaoli Cai
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China; Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
| | - Zhixin Lei
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China; Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China.
| | - Taolei Sun
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China; Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China.
| |
Collapse
|
16
|
Schwermann N, Winstel V. Functional diversity of staphylococcal surface proteins at the host-microbe interface. Front Microbiol 2023; 14:1196957. [PMID: 37275142 PMCID: PMC10232760 DOI: 10.3389/fmicb.2023.1196957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 04/21/2023] [Indexed: 06/07/2023] Open
Abstract
Surface proteins of Gram-positive pathogens are key determinants of virulence that substantially shape host-microbe interactions. Specifically, these proteins mediate host invasion and pathogen transmission, drive the acquisition of heme-iron from hemoproteins, and subvert innate and adaptive immune cell responses to push bacterial survival and pathogenesis in a hostile environment. Herein, we briefly review and highlight the multi-facetted roles of cell wall-anchored proteins of multidrug-resistant Staphylococcus aureus, a common etiological agent of purulent skin and soft tissue infections as well as severe systemic diseases in humans. In particular, we focus on the functional diversity of staphylococcal surface proteins and discuss their impact on the variety of clinical manifestations of S. aureus infections. We also describe mechanistic and underlying principles of staphylococcal surface protein-mediated immune evasion and coupled strategies S. aureus utilizes to paralyze patrolling neutrophils, macrophages, and other immune cells. Ultimately, we provide a systematic overview of novel therapeutic concepts and anti-infective strategies that aim at neutralizing S. aureus surface proteins or sortases, the molecular catalysts of protein anchoring in Gram-positive bacteria.
Collapse
Affiliation(s)
- Nicoletta Schwermann
- Research Group Pathogenesis of Bacterial Infections, TWINCORE, Centre for Experimental and Clinical Infection Research, a Joint Venture Between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
| | - Volker Winstel
- Research Group Pathogenesis of Bacterial Infections, TWINCORE, Centre for Experimental and Clinical Infection Research, a Joint Venture Between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
17
|
Bobrovskyy M, Chen X, Missiakas D. The Type 7b Secretion System of S. aureus and Its Role in Colonization and Systemic Infection. Infect Immun 2023; 91:e0001523. [PMID: 37039657 PMCID: PMC10187124 DOI: 10.1128/iai.00015-23] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 03/14/2023] [Indexed: 04/12/2023] Open
Abstract
Staphylococcus aureus bears a type 7b secretion system (T7bSS) that assembles in the bacterial envelope to promote the secretion of WXG-like proteins and toxic effectors bearing LXG domains. Cognate immunity proteins bind cytosolic effectors to mute their toxicity prior to secretion. T7b-secreted factors have been associated with the pathogenesis of staphylococcal disease and intraspecies competition. We identified earlier strain WU1, an S. aureus ST88 isolate that caused outbreaks of skin and soft tissue infections in mouse breeding facilities. WU1 was also found to persistently colonize the nasopharynx of animals, suggesting a strong host adaptation. In this manner, WU1 colonization and infectivity in mice resembles that of methicillin-sensitive and -resistant S. aureus strains in humans, where nasal carriage is a major risk factor for invasive infections. Here, animals were colonized with wild-type or T7-deficient WU1 strains or combinations thereof. Absence of the T7bSS did not affect colonization in the nasopharynx of animals, and although fluctuations were observed in weekly samplings, the wild-type strain did not replace the T7-deficient strain in cocolonization experiments. Bloodstream infection with a T7b-deficient strain resulted in enhanced survival and reduced bacterial loads and abscesses in soft tissues compared to infection with wild-type WU1. Together, experiments using a mouse-adapted strain suggest that the T7bSS of S. aureus is an important contributor to the pathogenesis of invasive disease.
Collapse
Affiliation(s)
- Maksym Bobrovskyy
- Department of Microbiology, University of Chicago, Chicago, Illinois, USA
| | - Xinhai Chen
- Howard Taylor Ricketts Laboratory, University of Chicago, Lemont, Illinois, USA
| | - Dominique Missiakas
- Department of Microbiology, University of Chicago, Chicago, Illinois, USA
- Howard Taylor Ricketts Laboratory, University of Chicago, Lemont, Illinois, USA
| |
Collapse
|
18
|
Chen X, Gula H, Pius T, Ou C, Gomozkova M, Wang LX, Schneewind O, Missiakas D. Immunoglobulin G subclasses confer protection against Staphylococcus aureus bloodstream dissemination through distinct mechanisms in mouse models. Proc Natl Acad Sci U S A 2023; 120:e2220765120. [PMID: 36972444 PMCID: PMC10083571 DOI: 10.1073/pnas.2220765120] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 03/03/2023] [Indexed: 03/29/2023] Open
Abstract
Antibodies bind target molecules with exquisite specificity. The removal of these targets is mediated by the effector functions of antibodies. We reported earlier that the monoclonal antibody (mAb) 3F6 promotes opsonophagocytic killing of Staphylococcus aureus in blood and reduces bacterial replication in animals. Here, we generated mouse immunoglobulin G (mIgG) subclass variants and observed a hierarchy in protective efficacy 3F6-mIgG2a > 3F6-mIgG1 ≥ 3F6-mIgG2b >> 3F6-mIgG3 following bloodstream challenge of C57BL/6J mice. This hierarchy was not observed in BALB/cJ mice: All IgG subclasses conferred similar protection. IgG subclasses differ in their ability to activate complement and interact with Fcγ receptors (FcγR) on immune cells. 3F6-mIgG2a-dependent protection was lost in FcγR-deficient, but not in complement-deficient C57BL/6J animals. Measurements of the relative ratio of FcγRIV over complement receptor 3 (CR3) on neutrophils suggest the preferential expression of FcγRIV in C57BL/6 mice and of CR3 in BALB/cJ mice. To determine the physiological significance of these differing ratios, blocking antibodies against FcγRIV or CR3 were administered to animals before challenge. Correlating with the relative abundance of each receptor, 3F6-mIgG2a-dependent protection in C57BL/6J mice showed a greater reliance for FcγRIV while protection in BALB/cJ mice was only impaired upon neutralization of CR3. Thus, 3F6-based clearance of S. aureus in mice relies on a strain-specific contribution of variable FcγR- and complement-dependent pathways. We surmise that these variabilities are the result of genetic polymorphism(s) that may be encountered in other mammals including humans and may have clinical implications in predicting the efficacy of mAb-based therapies.
Collapse
Affiliation(s)
- Xinhai Chen
- Department of Microbiology, Howard Taylor Ricketts Laboratory, The University of Chicago, Lemont, IL60439
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen518132, China
| | - Haley Gula
- Department of Microbiology, Howard Taylor Ricketts Laboratory, The University of Chicago, Lemont, IL60439
| | - Tonu Pius
- Department of Microbiology, Howard Taylor Ricketts Laboratory, The University of Chicago, Lemont, IL60439
| | - Chong Ou
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD20742
| | - Margaryta Gomozkova
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD20742
| | - Lai-Xi Wang
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD20742
| | - Olaf Schneewind
- Department of Microbiology, Howard Taylor Ricketts Laboratory, The University of Chicago, Lemont, IL60439
| | - Dominique Missiakas
- Department of Microbiology, Howard Taylor Ricketts Laboratory, The University of Chicago, Lemont, IL60439
| |
Collapse
|
19
|
Souche A, Vandenesch F, Doléans-Jordheim A, Moreau K. How Staphylococcus aureus and Pseudomonas aeruginosa Hijack the Host Immune Response in the Context of Cystic Fibrosis. Int J Mol Sci 2023; 24:ijms24076609. [PMID: 37047579 PMCID: PMC10094765 DOI: 10.3390/ijms24076609] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023] Open
Abstract
Cystic fibrosis (CF) is a serious genetic disease that leads to premature death, mainly due to impaired lung function. CF lungs are characterized by ongoing inflammation, impaired immune response, and chronic bacterial colonization. Staphylococcus aureus (SA) and Pseudomonas aeruginosa (PA) are the two most predominant bacterial agents of these chronic infections. Both can colonize the lungs for years by developing host adaptation strategies. In this review, we examined the mechanisms by which SA and PA adapt to the host immune response. They are able to bypass the physical integrity of airway epithelia, evade recognition, and then modulate host immune cell proliferation. They also modulate the immune response by regulating cytokine production and by counteracting the activity of neutrophils and other immune cells. Inhibition of the immune response benefits not only the species that implements them but also other species present, and we therefore discuss how these mechanisms can promote the establishment of coinfections in CF lungs.
Collapse
Affiliation(s)
- Aubin Souche
- Centre International de Recherche en Infectiologie, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, 69007 Lyon, France
- Institut des Agents Infectieux, Hospices Civils de Lyon, 69002 Lyon, France
| | - François Vandenesch
- Centre International de Recherche en Infectiologie, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, 69007 Lyon, France
- Institut des Agents Infectieux, Hospices Civils de Lyon, 69002 Lyon, France
| | - Anne Doléans-Jordheim
- Centre International de Recherche en Infectiologie, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, 69007 Lyon, France
- Institut des Agents Infectieux, Hospices Civils de Lyon, 69002 Lyon, France
| | - Karen Moreau
- Centre International de Recherche en Infectiologie, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, 69007 Lyon, France
| |
Collapse
|
20
|
Abstract
Human and murine neutrophils differ with respect to representation in blood, receptors, nuclear morphology, signaling pathways, granule proteins, NADPH oxidase regulation, magnitude of oxidant and hypochlorous acid production, and their repertoire of secreted molecules. These differences often matter and can undermine extrapolations from murine studies to clinical care, as illustrated by several failed therapeutic interventions based on mouse models. Likewise, coevolution of host and pathogen undercuts fidelity of murine models of neutrophil-predominant human infections. However, murine systems that accurately model the human condition can yield insights into human biology difficult to obtain otherwise. The challenge for investigators who employ murine systems is to distinguish models from pretenders and to know when the mouse provides biologically accurate insights. Testing with human neutrophils observations made in murine systems would provide a safeguard but is not always possible. At a minimum, studies that use exclusively murine neutrophils should have accurate titles supported by data and restrict conclusions to murine neutrophils and not encompass all neutrophils. For now, the integration of evidence from studies of neutrophil biology performed using valid murine models coupled with testing in vitro of human neutrophils combines the best of both approaches to elucidate the mysteries of human neutrophil biology.
Collapse
Affiliation(s)
- William M Nauseef
- Inflammation Program, Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
21
|
Exploring the Role of Staphylococcus aureus in Inflammatory Diseases. Toxins (Basel) 2022; 14:toxins14070464. [PMID: 35878202 PMCID: PMC9318596 DOI: 10.3390/toxins14070464] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 06/23/2022] [Accepted: 07/01/2022] [Indexed: 02/04/2023] Open
Abstract
Staphylococcus aureus is a very common Gram-positive bacterium, and S. aureus infections play an extremely important role in a variety of diseases. This paper describes the types of virulence factors involved, the inflammatory cells activated, the process of host cell death, and the associated diseases caused by S. aureus. S. aureus can secrete a variety of enterotoxins and other toxins to trigger inflammatory responses and activate inflammatory cells, such as keratinocytes, helper T cells, innate lymphoid cells, macrophages, dendritic cells, mast cells, neutrophils, eosinophils, and basophils. Activated inflammatory cells can express various cytokines and induce an inflammatory response. S. aureus can also induce host cell death through pyroptosis, apoptosis, necroptosis, autophagy, etc. This article discusses S. aureus and MRSA (methicillin-resistant S. aureus) in atopic dermatitis, psoriasis, pulmonary cystic fibrosis, allergic asthma, food poisoning, sarcoidosis, multiple sclerosis, and osteomyelitis. Summarizing the pathogenic mechanism of Staphylococcus aureus provides a basis for the targeted treatment of Staphylococcus aureus infection.
Collapse
|
22
|
Modified citrus pectin inhibits breast cancer development in mice by targeting tumor-associated macrophage survival and polarization in hypoxic microenvironment. Acta Pharmacol Sin 2022; 43:1556-1567. [PMID: 34462562 PMCID: PMC9160294 DOI: 10.1038/s41401-021-00748-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 07/20/2021] [Indexed: 02/07/2023]
Abstract
Large amounts of tumor-associated macrophages (TAM), which are predominately localized in hypoxia area of the tumor tissue, are associated with the malignant progression of the tumor. In the present study, we investigated the inhibitory effects of modified citrus pectin (MCP), a natural dietary polysaccharide, on the survival and polarization of TAM in relation to its inhibition on the growth and migration of breast cancer. M2 macrophages polarized from human monocyte THP-1 were chosen as a model for TAM. We showed that MCP (0.06%-1%) concentration-dependently suppressed the survival of TAM through inhibiting glucose uptake with a greater extent in hypoxia than in normoxia. Furthermore, MCP treatment decreased ROS level in TAM through its reducibility and inhibiting galectin-3 expression, leading to inhibition of glucose transporter-1 expression and glucose uptake. In addition, MCP suppressed M2-like polarization via inhibiting STAT3 phosphorylation. Moreover, the tumor-promoting effect of TAM could be restrained by MCP treatment as shown in human breast cancer MDA-MB-231 cells in vitro and in mouse breast cancer 4T1-luc orthotopic and metastasis models. In both tumor tissue and lung tissue of the mouse tumor models, the number of TAM was significantly decreased after MCP treatment. Taken together, MCP may be a promising agent for targeting TAM in tumor hypoxic microenvironment for breast cancer treatment.
Collapse
|
23
|
Tantawy E, Schwermann N, Ostermeier T, Garbe A, Bähre H, Vital M, Winstel V. Staphylococcus aureus Multiplexes Death-Effector Deoxyribonucleosides to Neutralize Phagocytes. Front Immunol 2022; 13:847171. [PMID: 35355997 PMCID: PMC8960049 DOI: 10.3389/fimmu.2022.847171] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Accepted: 02/09/2022] [Indexed: 12/24/2022] Open
Abstract
Adenosine synthase A (AdsA) is a key virulence factor of Staphylococcus aureus, a dangerous microbe that causes fatal diseases in humans. Together with staphylococcal nuclease, AdsA generates deoxyadenosine (dAdo) from neutrophil extracellular DNA traps thereby igniting caspase-3-dependent cell death in host immune cells that aim at penetrating infectious foci. Powered by a multi-technological approach, we here illustrate that the enzymatic activity of AdsA in abscess-mimicking microenvironments is not restricted to the biogenesis of dAdo but rather comprises excessive biosynthesis of deoxyguanosine (dGuo), a cytotoxic deoxyribonucleoside generated by S. aureus to eradicate macrophages of human and animal origin. Based on a genome-wide CRISPR-Cas9 knock-out screen, we further demonstrate that dGuo-induced cytotoxicity in phagocytes involves targeting of the mammalian purine salvage pathway-apoptosis axis, a signaling cascade that is concomitantly stimulated by staphylococcal dAdo. Strikingly, synchronous targeting of this route by AdsA-derived dGuo and dAdo boosts macrophage cell death, indicating that S. aureus multiplexes death-effector deoxyribonucleosides to maximize intra-host survival. Overall, these data provide unique insights into the cunning lifestyle of a deadly pathogen and may help to design therapeutic intervention strategies to combat multidrug-resistant staphylococci.
Collapse
Affiliation(s)
- Eshraq Tantawy
- Research Group Pathogenesis of Bacterial Infections, TWINCORE, Centre for Experimental and Clinical Infection Research, a Joint Venture Between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany.,Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
| | - Nicoletta Schwermann
- Research Group Pathogenesis of Bacterial Infections, TWINCORE, Centre for Experimental and Clinical Infection Research, a Joint Venture Between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany.,Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
| | - Tjorven Ostermeier
- Research Group Pathogenesis of Bacterial Infections, TWINCORE, Centre for Experimental and Clinical Infection Research, a Joint Venture Between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany.,Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
| | - Annette Garbe
- Research Core Unit Metabolomics, Hannover Medical School, Hannover, Germany
| | - Heike Bähre
- Research Core Unit Metabolomics, Hannover Medical School, Hannover, Germany
| | - Marius Vital
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
| | - Volker Winstel
- Research Group Pathogenesis of Bacterial Infections, TWINCORE, Centre for Experimental and Clinical Infection Research, a Joint Venture Between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany.,Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
24
|
Meyers S, Crescente M, Verhamme P, Martinod K. Staphylococcus aureus and Neutrophil Extracellular Traps: The Master Manipulator Meets Its Match in Immunothrombosis. Arterioscler Thromb Vasc Biol 2022; 42:261-276. [PMID: 35109674 PMCID: PMC8860219 DOI: 10.1161/atvbaha.121.316930] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Over the past 10 years, neutrophil extracellular traps (NETs) have become widely accepted as an integral player in immunothrombosis, due to their complex interplay with both pathogens and components of the coagulation system. While the release of NETs is an attempt by neutrophils to trap pathogens and constrain infections, NETs can have bystander effects on the host by inducing uncontrolled thrombosis, inflammation, and tissue damage. From an evolutionary perspective, pathogens have adapted to bypass the host innate immune response. Staphylococcus aureus (S. aureus), in particular, proficiently overcomes NET formation using several virulence factors. Here we review mechanisms of NET formation and how these are intertwined with platelet activation, the release of endothelial von Willebrand factor, and the activation of the coagulation system. We discuss the unique ability of S. aureus to modulate NET formation and alter released NETs, which helps S. aureus to escape from the host's defense mechanisms. We then discuss how platelets and the coagulation system could play a role in NET formation in S. aureus-induced infective endocarditis, and we explain how targeting these complex cellular interactions could reveal novel therapies to treat this disease and other immunothrombotic disorders.
Collapse
Affiliation(s)
- Severien Meyers
- Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, KU Leuven, Belgium (S.M., M.C., P.V., K.M.)
| | - Marilena Crescente
- Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, KU Leuven, Belgium (S.M., M.C., P.V., K.M.).,Department of Life Sciences, Manchester Metropolitan University, United Kingdom (M.C.)
| | - Peter Verhamme
- Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, KU Leuven, Belgium (S.M., M.C., P.V., K.M.)
| | - Kimberly Martinod
- Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, KU Leuven, Belgium (S.M., M.C., P.V., K.M.)
| |
Collapse
|
25
|
von Köckritz-Blickwede M, Winstel V. Molecular Prerequisites for Neutrophil Extracellular Trap Formation and Evasion Mechanisms of Staphylococcus aureus. Front Immunol 2022; 13:836278. [PMID: 35237275 PMCID: PMC8884242 DOI: 10.3389/fimmu.2022.836278] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 01/19/2022] [Indexed: 12/15/2022] Open
Abstract
NETosis is a multi-facetted cellular process that promotes the formation of neutrophil extracellular traps (NETs). NETs as web-like structures consist of DNA fibers armed with granular proteins, histones, and microbicidal peptides, thereby exhibiting pathogen-immobilizing and antimicrobial attributes that maximize innate immune defenses against invading microbes. However, clinically relevant pathogens often tolerate entrapment and even take advantage of the remnants of NETs to cause persistent infections in mammalian hosts. Here, we briefly summarize how Staphylococcus aureus, a high-priority pathogen and causative agent of fatal diseases in humans as well as animals, catalyzes and concurrently exploits NETs during pathogenesis and recurrent infections. Specifically, we focus on toxigenic and immunomodulatory effector molecules produced by staphylococci that prime NET formation, and further highlight the molecular and underlying principles of suicidal NETosis compared to vital NET-formation by viable neutrophils in response to these stimuli. We also discuss the inflammatory potential of NET-controlled microenvironments, as excessive expulsion of NETs from activated neutrophils provokes local tissue injury and may therefore amplify staphylococcal disease severity in hospitalized or chronically ill patients. Combined with an overview of adaptation and counteracting strategies evolved by S. aureus to impede NET-mediated killing, these insights may stimulate biomedical research activities to uncover novel aspects of NET biology at the host-microbe interface.
Collapse
Affiliation(s)
- Maren von Köckritz-Blickwede
- Department of Biochemistry, University of Veterinary Medicine Hannover, Hannover, Germany
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Hannover, Germany
| | - Volker Winstel
- Research Group Pathogenesis of Bacterial Infections, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
- *Correspondence: Volker Winstel,
| |
Collapse
|
26
|
Wu KX, Wang XT, Hu XL, Jiang XY, Zhuang JC, Xu YZ, Lin LR, Tong ML, Yang TC, Liu LL. LncRNA-ENST00000421645 Upregulates Kank1 to Inhibit IFN-γ Expression and Promote T Cell Apoptosis in Neurosyphilis. Front Microbiol 2021; 12:749171. [PMID: 34917045 PMCID: PMC8669649 DOI: 10.3389/fmicb.2021.749171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 11/10/2021] [Indexed: 12/24/2022] Open
Abstract
Long non-coding RNAs are involved in many infectious diseases. Our previous studies showed that lncRNA-ENST00000421645 expression is increased in T lymphocytes of neurosyphilis patients compared to healthy controls. However, whether lncRNA-ENST00000421645 has biological functions remains unclear. The current study was undertaken to understand the mechanism of lncRNA-ENST00000421645 in T lymphocyte function in neurosyphilis patients. The lncRNA-ENST00000421645 pull-down assay showed that lncRNA-ENST00000421645 acted on the acetylase NAT10. The chromatin immunoprecipitation (ChIP)-PCR results showed that lncRNA-ENST00000421645 promoted the acetylation of histone H3K27 adjacent to the Kank1 promoter, thereby promoting Kank1 protein expression. Kank1 promotes 14-3-3 protein expression, inhibits NF-kB activation, inhibits IFN-γ secretion by T lymphocytes, and promotes T lymphocyte apoptosis. Taken together, our findings suggest a novel mechanism that LncRNA-ENST00000421645 upregulates Kank1 to inhibit IFN-γ expression and promote T cell apoptosis in neurosyphilis.
Collapse
Affiliation(s)
- Kai-Xuan Wu
- Center of Clinical Laboratory, School of Medical, Zhongshan Hospital, Xiamen University, Xiamen, China
| | - Xiao-Tong Wang
- Center of Clinical Laboratory, School of Medical, Zhongshan Hospital, Xiamen University, Xiamen, China
| | - Xin-Lin Hu
- Department of Dermatology, School of Medical, Zhongshan Hospital, Xiamen University, Xiamen, China
| | - Xiao-Yong Jiang
- Department of Dermatology, School of Medical, Zhongshan Hospital, Xiamen University, Xiamen, China
| | - Jing-Cong Zhuang
- Department of Neurology, School of Medical, Zhongshan Hospital, Xiamen University, Xiamen, China
| | - Yan-Zhu Xu
- Department of Dermatology, School of Medical, Zhongshan Hospital, Xiamen University, Xiamen, China
| | - Li-Rong Lin
- Center of Clinical Laboratory, School of Medical, Zhongshan Hospital, Xiamen University, Xiamen, China
| | - Man-Li Tong
- Center of Clinical Laboratory, School of Medical, Zhongshan Hospital, Xiamen University, Xiamen, China
| | - Tian-Ci Yang
- Center of Clinical Laboratory, School of Medical, Zhongshan Hospital, Xiamen University, Xiamen, China
| | - Li-Li Liu
- Center of Clinical Laboratory, School of Medical, Zhongshan Hospital, Xiamen University, Xiamen, China
| |
Collapse
|
27
|
Cheung GYC, Bae JS, Otto M. Pathogenicity and virulence of Staphylococcus aureus. Virulence 2021; 12:547-569. [PMID: 33522395 PMCID: PMC7872022 DOI: 10.1080/21505594.2021.1878688] [Citation(s) in RCA: 616] [Impact Index Per Article: 154.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 01/13/2021] [Accepted: 01/15/2021] [Indexed: 12/15/2022] Open
Abstract
Staphylococcus aureus is one of the most frequent worldwide causes of morbidity and mortality due to an infectious agent. This pathogen can cause a wide variety of diseases, ranging from moderately severe skin infections to fatal pneumonia and sepsis. Treatment of S. aureus infections is complicated by antibiotic resistance and a working vaccine is not available. There has been ongoing and increasing interest in the extraordinarily high number of toxins and other virulence determinants that S. aureus produces and how they impact disease. In this review, we will give an overview of how S. aureus initiates and maintains infection and discuss the main determinants involved. A more in-depth understanding of the function and contribution of S. aureus virulence determinants to S. aureus infection will enable us to develop anti-virulence strategies to counteract the lack of an anti-S. aureus vaccine and the ever-increasing shortage of working antibiotics against this important pathogen.
Collapse
Affiliation(s)
- Gordon Y. C. Cheung
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, U.S. National Institutes of Health, Bethesda, Maryland, USA
| | - Justin S. Bae
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, U.S. National Institutes of Health, Bethesda, Maryland, USA
| | - Michael Otto
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, U.S. National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
28
|
An Enzybiotic Regimen for the Treatment of Methicillin-Resistant Staphylococcus aureus Orthopaedic Device-Related Infection. Antibiotics (Basel) 2021; 10:antibiotics10101186. [PMID: 34680767 PMCID: PMC8533017 DOI: 10.3390/antibiotics10101186] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 09/21/2021] [Accepted: 09/24/2021] [Indexed: 12/31/2022] Open
Abstract
Orthopaedic device-related infection (ODRI) presents a significant challenge to the field of orthopaedic and trauma surgery. Despite extensive treatment involving surgical debridement and prolonged antibiotic therapy, outcomes remain poor. This is largely due to the unique abilities of Staphylococcus aureus, the most common causative agent of ODRI, to establish and protect itself within the host by forming biofilms on implanted devices and staphylococcal abscess communities (SACs). There is a need for novel antimicrobials that can readily target such features. Enzybiotics are a class of antimicrobial enzymes derived from bacteria and bacteriophages, which function by enzymatically degrading bacterial polymers essential to bacterial survival or biofilm formation. Here, we apply an enzybiotic-based combination regimen to a set of in vitro models as well as in a murine ODRI model to evaluate their usefulness in eradicating established S. aureus infection, compared to classical antibiotics. We show that two chimeric endolysins previously selected for their functional efficacy in human serum in combination with a polysaccharide depolymerase reduce bacterial CFU numbers 10,000-fold in a peg model and in an implant model of biofilm. The enzyme combination also completely eradicates S. aureus in a SAC in vitro model where classical antibiotics are ineffective. In an in vivo ODRI model in mice, the antibiofilm effects of this enzyme regimen are further enhanced when combined with a classical gentamicin/vancomycin treatment. In a mouse model of methicillin-resistant S. aureus (MRSA) ODRI following a fracture repair, a combined local enzybiotic/antibiotic treatment regimen showed a significant CFU reduction in the device and the surrounding soft tissue, as well as significant prevention of weight loss. These outcomes were superior to treatment with antibiotics alone. Overall, this study demonstrates that the addition of enzybiotics, which are distinguished by their extremely rapid killing efficacy and antibiofilm activities, can enhance the treatment of severe MRSA ODRI.
Collapse
|
29
|
From pyroptosis, apoptosis and necroptosis to PANoptosis: A mechanistic compendium of programmed cell death pathways. Comput Struct Biotechnol J 2021; 19:4641-4657. [PMID: 34504660 PMCID: PMC8405902 DOI: 10.1016/j.csbj.2021.07.038] [Citation(s) in RCA: 289] [Impact Index Per Article: 72.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/27/2021] [Accepted: 07/28/2021] [Indexed: 02/07/2023] Open
Abstract
Pyroptosis, apoptosis and necroptosis are the most genetically well-defined programmed cell death (PCD) pathways, and they are intricately involved in both homeostasis and disease. Although the identification of key initiators, effectors and executioners in each of these three PCD pathways has historically delineated them as distinct, growing evidence has highlighted extensive crosstalk among them. These observations have led to the establishment of the concept of PANoptosis, defined as an inflammatory PCD pathway regulated by the PANoptosome complex with key features of pyroptosis, apoptosis and/or necroptosis that cannot be accounted for by any of these PCD pathways alone. In this review, we provide a brief overview of the research history of pyroptosis, apoptosis and necroptosis. We then examine the intricate crosstalk among these PCD pathways to discuss the current evidence for PANoptosis. We also detail the molecular evidence for the assembly of the PANoptosome complex, a molecular scaffold for contemporaneous engagement of key molecules from pyroptosis, apoptosis, and/or necroptosis. PANoptosis is now known to be critically involved in many diseases, including infection, sterile inflammation and cancer, and future discovery of novel PANoptotic components will continue to broaden our understanding of the fundamental processes of cell death and inform the development of new therapeutics.
Collapse
|
30
|
Alphonse MP, Rubens JH, Ortines RV, Orlando NA, Patel AM, Dikeman D, Wang Y, Vuong I, Joyce DP, Zhang J, Mumtaz M, Liu H, Liu Q, Youn C, Patrick GJ, Ravipati A, Miller RJ, Archer NK, Miller LS. Pan-caspase inhibition as a potential host-directed immunotherapy against MRSA and other bacterial skin infections. Sci Transl Med 2021; 13:13/601/eabe9887. [PMID: 34233954 DOI: 10.1126/scitranslmed.abe9887] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 03/02/2021] [Accepted: 05/26/2021] [Indexed: 01/01/2023]
Abstract
Staphylococcus aureus causes most skin infections in humans, and the emergence of methicillin-resistant S. aureus (MRSA) strains is a serious public health threat. There is an urgent clinical need for nonantibiotic immunotherapies to treat MRSA infections and prevent the spread of antibiotic resistance. Here, we investigated the pan-caspase inhibitor quinoline-valine-aspartic acid-difluorophenoxymethyl ketone (Q-VD-OPH) for efficacy against MRSA skin infection in mice. A single systemic dose of Q-VD-OPH decreased skin lesion sizes and reduced bacterial burden compared with vehicle-treated or untreated mice. Although Q-VD-OPH inhibited inflammasome-dependent apoptosis-associated speck-like protein containing caspase activation and recruitment domain (ASC) speck formation and caspase-1-mediated interleukin-1β (IL-1β) production, Q-VD-OPH maintained efficacy in mice deficient in IL-1β, ASC, caspase-1, caspase-11, or gasdermin D. Thus, Q-VD-OPH efficacy was independent of inflammasome-mediated pyroptosis. Rather, Q-VD-OPH reduced apoptosis of monocytes and neutrophils. Moreover, Q-VD-OPH enhanced necroptosis of macrophages with concomitant increases in serum TNF and TNF-producing neutrophils, monocytes/macrophages, and neutrophils in the infected skin. Consistent with this, Q-VD-OPH lacked efficacy in mice deficient in TNF (with associated reduced neutrophil influx and necroptosis), in mice deficient in TNF/IL-1R and anti-TNF antibody-treated WT mice. In vitro studies revealed that combined caspase-3, caspase-8, and caspase-9 inhibition reduced apoptosis, and combined caspase-1, caspase-8, and caspase-11 inhibition increased TNF, suggesting a mechanism for Q-VD-OPH efficacy in vivo. Last, Q-VD-OPH also had a therapeutic effect against Streptococcus pyogenes and Pseudomonas aeruginosa skin infections in mice. Collectively, pan-caspase inhibition represents a potential host-directed immunotherapy against MRSA and other bacterial skin infections.
Collapse
Affiliation(s)
- Martin P Alphonse
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Jessica H Rubens
- Divison of Pediatric Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, MD 21210, USA
| | - Roger V Ortines
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Nicholas A Orlando
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Aman M Patel
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Dustin Dikeman
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Yu Wang
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Ivan Vuong
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Daniel P Joyce
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Jeffrey Zhang
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Mohammed Mumtaz
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Haiyun Liu
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Qi Liu
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Christine Youn
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Garrett J Patrick
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Advaitaa Ravipati
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Robert J Miller
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Nathan K Archer
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA.
| | - Lloyd S Miller
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA.
| |
Collapse
|
31
|
Bünsow D, Tantawy E, Ostermeier T, Bähre H, Garbe A, Larsen J, Winstel V. Methicillin-resistant Staphylococcus pseudintermedius synthesizes deoxyadenosine to cause persistent infection. Virulence 2021; 12:989-1002. [PMID: 33779509 PMCID: PMC8018352 DOI: 10.1080/21505594.2021.1903691] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Methicillin-resistant Staphylococcus pseudintermedius (MRSP) is an emerging zoonotic pathogen of canine origin that causes an array of fatal diseases, including bacteremia and endocarditis. Despite large-scale genome sequencing projects have gained substantial insights into the genomic landscape of MRSP, current knowledge on virulence determinants that contribute to S. pseudintermedius pathogenesis during human or canine infection is very limited. Using a panel of genetically engineered MRSP variants and a mouse abscess model, we here identified the major secreted nuclease of S. pseudintermedius designated NucB and adenosine synthase A (AdsA) as two synergistically acting enzymes required for MRSP pathogenesis. Similar to Staphylococcus aureus, S. pseudintermedius requires nuclease secretion along with the activity of AdsA to degrade mammalian DNA for subsequent biosynthesis of cytotoxic deoxyadenosine. In this manner, S. pseudintermedius selectively kills macrophages during abscess formation thereby antagonizing crucial host immune cell responses. Ultimately, bioinformatics analyses revealed that NucB and AdsA are widespread in the global S. pseudintermedius population. Together, these data suggest that S. pseudintermedius deploys the canonical Nuc/AdsA pathway to persist during invasive disease and may aid in the development of new therapeutic strategies to combat infections caused by MRSP.
Collapse
Affiliation(s)
- Dorothea Bünsow
- Research Group Pathogenesis of Bacterial Infections; TWINCORE, Centre for Experimental and Clinical Infection Research, a Joint Venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany.,Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
| | - Eshraq Tantawy
- Research Group Pathogenesis of Bacterial Infections; TWINCORE, Centre for Experimental and Clinical Infection Research, a Joint Venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany.,Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
| | - Tjorven Ostermeier
- Research Group Pathogenesis of Bacterial Infections; TWINCORE, Centre for Experimental and Clinical Infection Research, a Joint Venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany.,Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
| | - Heike Bähre
- Research Core Unit Metabolomics, Hannover Medical School, Hannover, Germany
| | - Annette Garbe
- Research Core Unit Metabolomics, Hannover Medical School, Hannover, Germany
| | - Jesper Larsen
- Department of Bacteria, Parasites, and Fungi, Statens Serum Institut, Copenhagen, Denmark
| | - Volker Winstel
- Research Group Pathogenesis of Bacterial Infections; TWINCORE, Centre for Experimental and Clinical Infection Research, a Joint Venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany.,Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
32
|
Soe YM, Bedoui S, Stinear TP, Hachani A. Intracellular Staphylococcus aureus and host cell death pathways. Cell Microbiol 2021; 23:e13317. [PMID: 33550697 DOI: 10.1111/cmi.13317] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 01/22/2021] [Accepted: 01/23/2021] [Indexed: 12/13/2022]
Abstract
Staphylococcus aureus is a major opportunistic human pathogen that is globally prevalent. Although S. aureus and humans may have co-evolved to the point of commensalism, the bacterium is equipped with virulence factors causing devastating infections. The adoption of an intracellular lifestyle by S. aureus is an important facet of its pathogenesis. Occupying a privileged intracellular compartment permits evasion from the bactericidal actions of host immunity and antibiotics. However, this localization exposes S. aureus to cell-intrinsic processes comprising autophagy, metabolic challenges and clearance mechanisms orchestrated by host programmed cell death pathways (PCDs), including apoptosis, pyroptosis and necroptosis. Mounting evidence suggests that S. aureus deploys pathoadaptive mechanisms that modulate the expression of its virulence factors to prevent elimination through PCD pathways. In this review, we critically analyse the current literature on the interplay between S. aureus virulence factors with the key, intertwined nodes of PCD. We discuss how S. aureus adaptation to the human host plays an essential role in the evasion of PCD, and we consider future directions to study S. aureus-PCD interactions.
Collapse
Affiliation(s)
- Ye Mon Soe
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Sammy Bedoui
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Timothy P Stinear
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Abderrahman Hachani
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| |
Collapse
|
33
|
Missiakas D, Winstel V. Selective Host Cell Death by Staphylococcus aureus: A Strategy for Bacterial Persistence. Front Immunol 2021; 11:621733. [PMID: 33552085 PMCID: PMC7859115 DOI: 10.3389/fimmu.2020.621733] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 12/03/2020] [Indexed: 12/12/2022] Open
Abstract
Host cell death programs are fundamental processes that shape cellular homeostasis, embryonic development, and tissue regeneration. Death signaling and downstream host cell responses are not only critical to guide mammalian development, they often act as terminal responses to invading pathogens. Here, we briefly review and contrast how invading pathogens and specifically Staphylococcus aureus manipulate apoptotic, necroptotic, and pyroptotic cell death modes to establish infection. Rather than invading host cells, S. aureus subverts these cells to produce diffusible molecules that cause death of neighboring hematopoietic cells and thus shapes an immune environment conducive to persistence. The exploitation of cell death pathways by S. aureus is yet another virulence strategy that must be juxtaposed to mechanisms of immune evasion, autophagy escape, and tolerance to intracellular killing, and brings us closer to the true portrait of this pathogen for the design of effective therapeutics and intervention strategies.
Collapse
Affiliation(s)
- Dominique Missiakas
- Howard Taylor Ricketts Laboratory, Department of Microbiology, University of Chicago, Lemont, IL, United States
| | - Volker Winstel
- Research Group Pathogenesis of Bacterial Infections, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
34
|
Pidwill GR, Gibson JF, Cole J, Renshaw SA, Foster SJ. The Role of Macrophages in Staphylococcus aureus Infection. Front Immunol 2021; 11:620339. [PMID: 33542723 PMCID: PMC7850989 DOI: 10.3389/fimmu.2020.620339] [Citation(s) in RCA: 171] [Impact Index Per Article: 42.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 12/02/2020] [Indexed: 12/23/2022] Open
Abstract
Staphylococcus aureus is a member of the human commensal microflora that exists, apparently benignly, at multiple sites on the host. However, as an opportunist pathogen it can also cause a range of serious diseases. This requires an ability to circumvent the innate immune system to establish an infection. Professional phagocytes, primarily macrophages and neutrophils, are key innate immune cells which interact with S. aureus, acting as gatekeepers to contain and resolve infection. Recent studies have highlighted the important roles of macrophages during S. aureus infections, using a wide array of killing mechanisms. In defense, S. aureus has evolved multiple strategies to survive within, manipulate and escape from macrophages, allowing them to not only subvert but also exploit this key element of our immune system. Macrophage-S. aureus interactions are multifaceted and have direct roles in infection outcome. In depth understanding of these host-pathogen interactions may be useful for future therapeutic developments. This review examines macrophage interactions with S. aureus throughout all stages of infection, with special emphasis on mechanisms that determine infection outcome.
Collapse
Affiliation(s)
- Grace R. Pidwill
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom
- Florey Institute, University of Sheffield, Sheffield, United Kingdom
| | - Josie F. Gibson
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom
- Florey Institute, University of Sheffield, Sheffield, United Kingdom
- The Bateson Centre, University of Sheffield, Sheffield, United Kingdom
| | - Joby Cole
- Florey Institute, University of Sheffield, Sheffield, United Kingdom
- Department of Infection, Immunity and Cardiovascular Disease, Medical School, University of Sheffield, Sheffield, United Kingdom
| | - Stephen A. Renshaw
- Florey Institute, University of Sheffield, Sheffield, United Kingdom
- The Bateson Centre, University of Sheffield, Sheffield, United Kingdom
- Department of Infection, Immunity and Cardiovascular Disease, Medical School, University of Sheffield, Sheffield, United Kingdom
| | - Simon J. Foster
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom
- Florey Institute, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
35
|
Urwin L, Okurowska K, Crowther G, Roy S, Garg P, Karunakaran E, MacNeil S, Partridge LJ, Green LR, Monk PN. Corneal Infection Models: Tools to Investigate the Role of Biofilms in Bacterial Keratitis. Cells 2020; 9:E2450. [PMID: 33182687 PMCID: PMC7696224 DOI: 10.3390/cells9112450] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/06/2020] [Accepted: 11/07/2020] [Indexed: 12/15/2022] Open
Abstract
Bacterial keratitis is a corneal infection which may cause visual impairment or even loss of the infected eye. It remains a major cause of blindness in the developing world. Staphylococcus aureus and Pseudomonas aeruginosa are common causative agents and these bacterial species are known to colonise the corneal surface as biofilm populations. Biofilms are complex bacterial communities encased in an extracellular polymeric matrix and are notoriously difficult to eradicate once established. Biofilm bacteria exhibit different phenotypic characteristics from their planktonic counterparts, including an increased resistance to antibiotics and the host immune response. Therefore, understanding the role of biofilms will be essential in the development of new ophthalmic antimicrobials. A brief overview of biofilm-specific resistance mechanisms is provided, but this is a highly multifactorial and rapidly expanding field that warrants further research. Progression in this field is dependent on the development of suitable biofilm models that acknowledge the complexity of the ocular environment. Abiotic models of biofilm formation (where biofilms are studied on non-living surfaces) currently dominate the literature, but co-culture infection models are beginning to emerge. In vitro, ex vivo and in vivo corneal infection models have now been reported which use a variety of different experimental techniques and animal models. In this review, we will discuss existing corneal infection models and their application in the study of biofilms and host-pathogen interactions at the corneal surface.
Collapse
Affiliation(s)
- Lucy Urwin
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield S10 2RX, UK; (L.R.G.); (P.N.M.)
| | - Katarzyna Okurowska
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S1 3JD, UK; (K.O.); (G.C.); (E.K.)
- Sheffield Collaboratorium for Antimicrobial Resistance and Biofilms (SCARAB), University of Sheffield, Sheffield S1 3JD, UK; (S.M.); (L.J.P.)
| | - Grace Crowther
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S1 3JD, UK; (K.O.); (G.C.); (E.K.)
- Sheffield Collaboratorium for Antimicrobial Resistance and Biofilms (SCARAB), University of Sheffield, Sheffield S1 3JD, UK; (S.M.); (L.J.P.)
| | - Sanhita Roy
- Prof. Brien Holden Eye Research Centre, LV Prasad Eye Institute, Hyderabad 500034, India; (S.R.); (P.G.)
| | - Prashant Garg
- Prof. Brien Holden Eye Research Centre, LV Prasad Eye Institute, Hyderabad 500034, India; (S.R.); (P.G.)
| | - Esther Karunakaran
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S1 3JD, UK; (K.O.); (G.C.); (E.K.)
- Sheffield Collaboratorium for Antimicrobial Resistance and Biofilms (SCARAB), University of Sheffield, Sheffield S1 3JD, UK; (S.M.); (L.J.P.)
| | - Sheila MacNeil
- Sheffield Collaboratorium for Antimicrobial Resistance and Biofilms (SCARAB), University of Sheffield, Sheffield S1 3JD, UK; (S.M.); (L.J.P.)
- Department of Materials Science and Engineering, University of Sheffield, Sheffield S1 3JD, UK
| | - Lynda J. Partridge
- Sheffield Collaboratorium for Antimicrobial Resistance and Biofilms (SCARAB), University of Sheffield, Sheffield S1 3JD, UK; (S.M.); (L.J.P.)
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, UK
| | - Luke R. Green
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield S10 2RX, UK; (L.R.G.); (P.N.M.)
| | - Peter N. Monk
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield S10 2RX, UK; (L.R.G.); (P.N.M.)
- Sheffield Collaboratorium for Antimicrobial Resistance and Biofilms (SCARAB), University of Sheffield, Sheffield S1 3JD, UK; (S.M.); (L.J.P.)
| |
Collapse
|
36
|
Ríos-López AL, González GM, Hernández-Bello R, Sánchez-González A. Avoiding the trap: Mechanisms developed by pathogens to escape neutrophil extracellular traps. Microbiol Res 2020; 243:126644. [PMID: 33199088 DOI: 10.1016/j.micres.2020.126644] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 10/28/2020] [Accepted: 11/01/2020] [Indexed: 12/17/2022]
Abstract
Neutrophils are the first cells of the innate immune system that respond to infection by arriving at sites when pathogens have exceeded physical barriers. Among their response mechanisms against pathogens is the release of neutrophil extracellular traps (NETs), which are composed of deoxyribonucleic acid and antimicrobial proteins such as neutrophil elastase, myeloperoxidase, antimicrobial peptides, and other proteins in neutrophil granules. The formation of extracellular traps is considered an effective strategy to capture and, in some cases, neutralize pathogenic bacteria, fungi, parasites, or viruses. However, it is also known that pathogens can respond to NETs by expressing some virulence factors, thus evading the antimicrobial effect of these structures. These include the secretion of proteins to degrade the deoxyribonucleic acid scaffold, the formation of biofilms that impede the effect of NETs, or the modification of its membrane structure to avoid interaction with NETs. In this review, we discuss these mechanisms and summarize the different pathogens that employ one or more mechanisms to evade the NET-mediated neutrophil response.
Collapse
Affiliation(s)
- A L Ríos-López
- Departamento de Microbiología, Facultad de Medicina y Hospital Universitario "Dr. Jose Eleuterio Gonzalez", Universidad Autónoma de Nuevo León, Monterrey, Nuevo León, 64460, Mexico
| | - G M González
- Departamento de Microbiología, Facultad de Medicina y Hospital Universitario "Dr. Jose Eleuterio Gonzalez", Universidad Autónoma de Nuevo León, Monterrey, Nuevo León, 64460, Mexico
| | - R Hernández-Bello
- Departamento de Microbiología, Facultad de Medicina y Hospital Universitario "Dr. Jose Eleuterio Gonzalez", Universidad Autónoma de Nuevo León, Monterrey, Nuevo León, 64460, Mexico
| | - A Sánchez-González
- Departamento de Microbiología, Facultad de Medicina y Hospital Universitario "Dr. Jose Eleuterio Gonzalez", Universidad Autónoma de Nuevo León, Monterrey, Nuevo León, 64460, Mexico.
| |
Collapse
|
37
|
Doerflinger M, Deng Y, Whitney P, Salvamoser R, Engel S, Kueh AJ, Tai L, Bachem A, Gressier E, Geoghegan ND, Wilcox S, Rogers KL, Garnham AL, Dengler MA, Bader SM, Ebert G, Pearson JS, De Nardo D, Wang N, Yang C, Pereira M, Bryant CE, Strugnell RA, Vince JE, Pellegrini M, Strasser A, Bedoui S, Herold MJ. Flexible Usage and Interconnectivity of Diverse Cell Death Pathways Protect against Intracellular Infection. Immunity 2020; 53:533-547.e7. [PMID: 32735843 PMCID: PMC7500851 DOI: 10.1016/j.immuni.2020.07.004] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 06/12/2020] [Accepted: 07/02/2020] [Indexed: 12/31/2022]
Abstract
Programmed cell death contributes to host defense against pathogens. To investigate the relative importance of pyroptosis, necroptosis, and apoptosis during Salmonella infection, we infected mice and macrophages deficient for diverse combinations of caspases-1, -11, -12, and -8 and receptor interacting serine/threonine kinase 3 (RIPK3). Loss of pyroptosis, caspase-8-driven apoptosis, or necroptosis had minor impact on Salmonella control. However, combined deficiency of these cell death pathways caused loss of bacterial control in mice and their macrophages, demonstrating that host defense can employ varying components of several cell death pathways to limit intracellular infections. This flexible use of distinct cell death pathways involved extensive cross-talk between initiators and effectors of pyroptosis and apoptosis, where initiator caspases-1 and -8 also functioned as executioners when all known effectors of cell death were absent. These findings uncover a highly coordinated and flexible cell death system with in-built fail-safe processes that protect the host from intracellular infections.
Collapse
Affiliation(s)
- Marcel Doerflinger
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Yexuan Deng
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia; The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Paul Whitney
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia; Department of Microbiology and Immunology at the Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, VIC, Australia
| | - Ranja Salvamoser
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Sven Engel
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia; Department of Microbiology and Immunology at the Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, VIC, Australia
| | - Andrew J Kueh
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Lin Tai
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Annabell Bachem
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia; Department of Microbiology and Immunology at the Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, VIC, Australia
| | - Elise Gressier
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia; Department of Microbiology and Immunology at the Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, VIC, Australia
| | - Niall D Geoghegan
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Stephen Wilcox
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Kelly L Rogers
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Alexandra L Garnham
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Michael A Dengler
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Stefanie M Bader
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Gregor Ebert
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Jaclyn S Pearson
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC, Australia; Department of Molecular and Translational Research, Monash University, Clayton, VIC, Australia; Department of Microbiology, Monash University, Clayton, VIC, Australia
| | - Dominic De Nardo
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia; Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Nancy Wang
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia; Department of Microbiology and Immunology at the Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, VIC, Australia
| | - Chenying Yang
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia; Department of Microbiology and Immunology at the Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, VIC, Australia
| | - Milton Pereira
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA, USA; University of Cambridge, Cambridge, UK
| | | | - Richard A Strugnell
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia; Department of Microbiology and Immunology at the Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, VIC, Australia
| | - James E Vince
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Marc Pellegrini
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Andreas Strasser
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia.
| | - Sammy Bedoui
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia; Department of Microbiology and Immunology at the Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, VIC, Australia.
| | - Marco J Herold
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
38
|
Soh KY, Loh JMS, Proft T. Cell wall-anchored 5'-nucleotidases in Gram-positive cocci. Mol Microbiol 2020; 113:691-698. [PMID: 31872460 DOI: 10.1111/mmi.14442] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 12/17/2019] [Accepted: 12/18/2019] [Indexed: 11/29/2022]
Abstract
5'-nucleotidases (5'-NTs) are enzymes that catalyze the hydrolysis of nucleoside monophosphates to produce nucleosides and phosphate. Since the identification of adenosine synthase A (AdsA) in Staphylococcus aureus in 2009, several other 5'-NTs have been discovered in Gram-positive cocci, mainly in streptococci. Despite some differences in substrate specificity, pH range and metal ion requirements, all characterized 5'-NTs use AMP and ADP, and in some cases ATP, to produce the immunosuppressive adenosine, which dampens pro-inflammatory immune responses. Several 5'-NTs are also able to use dAMP as substrate to generate deoxy-adenosine which is cytotoxic for macrophages. A synergy between 5'-NTs and exonucleases which are commonly expressed in Gram-positive cocci has been described, where the nucleases provide dAMP as a cleavage product from DNA. Some of these nucleases produce dAMP by degrading the DNA backbone of neutrophil extracellular traps (NETs) resulting in a "double hit" strategy of immune evasion. This Micro Review provides an overview of the biochemical properties of Gram-positive cell wall-anchored 5'-NTs and their role as virulence factors. A potential use of 5'-NTs for vaccine development is also briefly discussed.
Collapse
Affiliation(s)
- Kar Yan Soh
- Department of Molecular Medicine & Pathology, School of Medical Sciences, The University of Auckland, Auckland, New Zealand.,Maurice Wilkins Centre for Biomolecular Discoveries, The University of Auckland, Auckland, New Zealand
| | - Jacelyn M S Loh
- Department of Molecular Medicine & Pathology, School of Medical Sciences, The University of Auckland, Auckland, New Zealand.,Maurice Wilkins Centre for Biomolecular Discoveries, The University of Auckland, Auckland, New Zealand
| | - Thomas Proft
- Department of Molecular Medicine & Pathology, School of Medical Sciences, The University of Auckland, Auckland, New Zealand.,Maurice Wilkins Centre for Biomolecular Discoveries, The University of Auckland, Auckland, New Zealand
| |
Collapse
|