1
|
Abou Staiteieh S, Faddoul N, Hayar B, Houshaymi B, Darwiche N, Abou Merhi R. Primary effusion lymphoma: therapeutic strategies targeting viral and cellular mechanisms. Expert Rev Anticancer Ther 2025; 25:363-381. [PMID: 40033827 DOI: 10.1080/14737140.2025.2474728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 01/31/2025] [Accepted: 02/27/2025] [Indexed: 03/05/2025]
Abstract
INTRODUCTION Primary effusion lymphoma (PEL) is a rare subtype of B-cell lymphoma primarily affecting immunocompromised and elderly individuals. Given the dismal survival rates associated with traditional treatments, studying novel therapeutic approaches to improve patient outcomes is critical. AREAS COVERED This review focuses on developing therapeutic options for PEL that target particular viral and cellular mechanisms involved in PEL pathogenesis. Since the CHOP regimen was associated with a lower median survival rate, alternative treatments, including stem cell transplantation, have also been explored, but have generally produced unsatisfactory results. Therefore, novel therapeutic agents are under investigation, including antiretroviral drugs targeting viral pathways and treatments targeting particular cellular processes, such as DNA damage, epigenetics, apoptotic, and immune-modulatory pathways showing promising outcomes in preclinical and clinical research, increasing PEL treatment efficacy while minimizing toxicity. In this review, we conducted a comprehensive literature search using PubMed, and Google Scholar for studies published between 1989 and 2024. EXPERT OPINION Further research is needed to refine the appropriate combination methods and strategies behind drug interactions. Targeted therapies could be investigated further to improve therapeutic efficacy and reduce toxicity in this type of lymphoma.
Collapse
Affiliation(s)
- Soumaiah Abou Staiteieh
- Genomics and Surveillance Biotherapy Laboratory, Biology Department, Faculty of Sciences, R. Hariri Campus, Lebanese University, Hadath, Lebanon
- Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut, Lebanon
| | - Nouria Faddoul
- Genomics and Surveillance Biotherapy Laboratory, Biology Department, Faculty of Sciences, R. Hariri Campus, Lebanese University, Hadath, Lebanon
| | - Berthe Hayar
- Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut, Lebanon
| | - Bilal Houshaymi
- Genomics and Surveillance Biotherapy Laboratory, Biology Department, Faculty of Sciences, R. Hariri Campus, Lebanese University, Hadath, Lebanon
| | - Nadine Darwiche
- Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut, Lebanon
| | - Raghida Abou Merhi
- Genomics and Surveillance Biotherapy Laboratory, Biology Department, Faculty of Sciences, R. Hariri Campus, Lebanese University, Hadath, Lebanon
| |
Collapse
|
2
|
Shifflett KW, Dittmer DP. Mouse models of Kaposi sarcoma-associated herpesvirus (KSHV). Virology 2025; 603:110384. [PMID: 39837218 PMCID: PMC11788063 DOI: 10.1016/j.virol.2024.110384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 12/18/2024] [Accepted: 12/29/2024] [Indexed: 01/23/2025]
Abstract
Infection with Kaposi sarcoma-associated herpesvirus (KSHV) is a prerequisite for the development of several human cancers, including Kaposi sarcoma and primary effusion lymphoma. Efficient long-term infection with KSHV and subsequent virally induced cell transformation is limited to humans, resulting in a lack of small animal models for KSHV-driven malignancies. Various attempts to create a mouse model for KSHV include infection of humanized mice, generating transgenic mice that ectopically express viral proteins, and grafting KSHV-infected tumor, primary, or immortalized cells onto immunodeficient mice. While no single mouse model can recapitulate the full range of KSHV-associated pathologies described in humans, each model adds an essential piece to the complete picture of KSHV infection and oncogenesis.
Collapse
Affiliation(s)
- Kyle W Shifflett
- Lineberger Comprehensive Cancer Center and Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, USA
| | - Dirk P Dittmer
- Lineberger Comprehensive Cancer Center and Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, USA.
| |
Collapse
|
3
|
Losay VA, Damania B. Unraveling the Kaposi Sarcoma-Associated Herpesvirus (KSHV) Lifecycle: An Overview of Latency, Lytic Replication, and KSHV-Associated Diseases. Viruses 2025; 17:177. [PMID: 40006930 PMCID: PMC11860327 DOI: 10.3390/v17020177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/18/2025] [Accepted: 01/23/2025] [Indexed: 02/27/2025] Open
Abstract
Kaposi sarcoma-associated herpesvirus (KSHV) is an oncogenic gammaherpesvirus and the etiological agent of several diseases. These include the malignancies Kaposi sarcoma (KS), primary effusion lymphoma (PEL), and multicentric Castleman disease (MCD), as well as the inflammatory disorder KSHV inflammatory cytokine syndrome (KICS). The KSHV lifecycle is characterized by two phases: a default latent phase and a lytic replication cycle. During latency, the virus persists as an episome within host cells, expressing a limited subset of viral genes to evade immune surveillance while promoting cellular transformation. The lytic phase, triggered by various stimuli, results in the expression of the full viral genome, production of infectious virions, and modulation of the tumor microenvironment. Both phases of the KSHV lifecycle play crucial roles in driving viral pathogenesis, influencing oncogenesis and immune evasion. This review dives into the intricate world of the KSHV lifecycle, focusing on the molecular mechanisms that drive its latent and lytic phases, their roles in disease progression, and current therapeutic strategies.
Collapse
Affiliation(s)
- Victor A. Losay
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA;
- Department of Pharmacology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Blossom Damania
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA;
- Department of Pharmacology, University of North Carolina, Chapel Hill, NC 27599, USA
- Department of Microbiology & Immunology, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
4
|
Cano P, Seltzer T, Seltzer J, Peng A, Landis J, Pluta L, Dittmer DP. Viral Load Measurements for Kaposi Sarcoma Herpesvirus (KSHV/HHV8): Review and an Updated Assay. J Med Virol 2024; 96:e70105. [PMID: 39648698 PMCID: PMC12042282 DOI: 10.1002/jmv.70105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/26/2024] [Accepted: 11/19/2024] [Indexed: 12/10/2024]
Abstract
"When you can measure what you are speaking about, and express it in numbers, you know something about it." is a famous quote attributed to Lord Kelvin. This sentiment puts viral load measurements at the center of virology. Viral load, or more precisely, DNA copy number measurements, are also used to follow infections with human herpesviruses, such as Kaposi sarcoma herpesvirus (KSHV) and Epstein-Barr Virus (EBV). EBV and KSHV are associated with human cancers, and determining their DNA copy numbers in the context of cancer prediction and progression on therapy is of fundamental scientific and translational interest. Yet, there is no generally accepted assay for KSHV DNA quantitation, and KSHV viral load is not used in clinical decision-making. Here, we review the history of KSHV DNA detection assays, explore factors that affect sensitivity and specificity, and describe an automated, high-throughput, real-time quantitative polymerase chain reaction (PCR) assay for KSHV and EBV. In conjunction with a digital PCR assay using the same primer/probe combination, we describe how to determine the absolute KSHV genome copy numbers in plasma, peripheral blood mononuclear cells, saliva, and other easily accessible body fluids.
Collapse
Affiliation(s)
- Patricio Cano
- Lineberger Comprehensive Cancer Center and Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, 450 West Dr. Rm #12-046, CB#7295, Chapel Hill, NC 27599
| | - Tischan Seltzer
- Lineberger Comprehensive Cancer Center and Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, 450 West Dr. Rm #12-046, CB#7295, Chapel Hill, NC 27599
| | - Jedediah Seltzer
- Lineberger Comprehensive Cancer Center and Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, 450 West Dr. Rm #12-046, CB#7295, Chapel Hill, NC 27599
| | - Alice Peng
- Lineberger Comprehensive Cancer Center and Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, 450 West Dr. Rm #12-046, CB#7295, Chapel Hill, NC 27599
| | - Justin Landis
- Lineberger Comprehensive Cancer Center and Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, 450 West Dr. Rm #12-046, CB#7295, Chapel Hill, NC 27599
| | - Linda Pluta
- Lineberger Comprehensive Cancer Center and Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, 450 West Dr. Rm #12-046, CB#7295, Chapel Hill, NC 27599
| | - Dirk P. Dittmer
- Lineberger Comprehensive Cancer Center and Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, 450 West Dr. Rm #12-046, CB#7295, Chapel Hill, NC 27599
| |
Collapse
|
5
|
Hossain MA. Targeting the RAS upstream and downstream signaling pathway for cancer treatment. Eur J Pharmacol 2024; 979:176727. [PMID: 38866361 DOI: 10.1016/j.ejphar.2024.176727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 06/05/2024] [Accepted: 06/06/2024] [Indexed: 06/14/2024]
Abstract
Cancer often involves the overactivation of RAS/RAF/MEK/ERK (MAPK) and PI3K-Akt-mTOR pathways due to mutations in genes like RAS, RAF, PTEN, and PIK3CA. Various strategies are employed to address the overactivation of these pathways, among which targeted therapy emerges as a promising approach. Directly targeting specific proteins, leads to encouraging results in cancer treatment. For instance, RTK inhibitors such as imatinib and afatinib selectively target these receptors, hindering ligand binding and reducing signaling initiation. These inhibitors have shown potent efficacy against Non-Small Cell Lung Cancer. Other inhibitors, like lonafarnib targeting Farnesyltransferase and GGTI 2418 targeting geranylgeranyl Transferase, disrupt post-translational modifications of proteins. Additionally, inhibition of proteins like SOS, SH2 domain, and Ras demonstrate promising anti-tumor activity both in vivo and in vitro. Targeting downstream components with RAF inhibitors such as vemurafenib, dabrafenib, and sorafenib, along with MEK inhibitors like trametinib and binimetinib, has shown promising outcomes in treating cancers with BRAF-V600E mutations, including myeloma, colorectal, and thyroid cancers. Furthermore, inhibitors of PI3K (e.g., apitolisib, copanlisib), AKT (e.g., ipatasertib, perifosine), and mTOR (e.g., sirolimus, temsirolimus) exhibit promising efficacy against various cancers such as Invasive Breast Cancer, Lymphoma, Neoplasms, and Hematological malignancies. This review offers an overview of small molecule inhibitors targeting specific proteins within the RAS upstream and downstream signaling pathways in cancer.
Collapse
Affiliation(s)
- Md Arafat Hossain
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh.
| |
Collapse
|
6
|
Panwar V, Singh A, Bhatt M, Tonk RK, Azizov S, Raza AS, Sengupta S, Kumar D, Garg M. Multifaceted role of mTOR (mammalian target of rapamycin) signaling pathway in human health and disease. Signal Transduct Target Ther 2023; 8:375. [PMID: 37779156 PMCID: PMC10543444 DOI: 10.1038/s41392-023-01608-z] [Citation(s) in RCA: 245] [Impact Index Per Article: 122.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/25/2023] [Accepted: 08/14/2023] [Indexed: 10/03/2023] Open
Abstract
The mammalian target of rapamycin (mTOR) is a protein kinase that controls cellular metabolism, catabolism, immune responses, autophagy, survival, proliferation, and migration, to maintain cellular homeostasis. The mTOR signaling cascade consists of two distinct multi-subunit complexes named mTOR complex 1/2 (mTORC1/2). mTOR catalyzes the phosphorylation of several critical proteins like AKT, protein kinase C, insulin growth factor receptor (IGF-1R), 4E binding protein 1 (4E-BP1), ribosomal protein S6 kinase (S6K), transcription factor EB (TFEB), sterol-responsive element-binding proteins (SREBPs), Lipin-1, and Unc-51-like autophagy-activating kinases. mTOR signaling plays a central role in regulating translation, lipid synthesis, nucleotide synthesis, biogenesis of lysosomes, nutrient sensing, and growth factor signaling. The emerging pieces of evidence have revealed that the constitutive activation of the mTOR pathway due to mutations/amplification/deletion in either mTOR and its complexes (mTORC1 and mTORC2) or upstream targets is responsible for aging, neurological diseases, and human malignancies. Here, we provide the detailed structure of mTOR, its complexes, and the comprehensive role of upstream regulators, as well as downstream effectors of mTOR signaling cascades in the metabolism, biogenesis of biomolecules, immune responses, and autophagy. Additionally, we summarize the potential of long noncoding RNAs (lncRNAs) as an important modulator of mTOR signaling. Importantly, we have highlighted the potential of mTOR signaling in aging, neurological disorders, human cancers, cancer stem cells, and drug resistance. Here, we discuss the developments for the therapeutic targeting of mTOR signaling with improved anticancer efficacy for the benefit of cancer patients in clinics.
Collapse
Affiliation(s)
- Vivek Panwar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Shoolini University, Solan, Himachal Pradesh, 173229, India
| | - Aishwarya Singh
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University Uttar Pradesh, Sector-125, Noida, Uttar Pradesh, 201313, India
| | - Manini Bhatt
- Department of Biomedical Engineering, Indian Institute of Technology, Ropar, Punjab, 140001, India
| | - Rajiv K Tonk
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi, 110017, India
| | - Shavkatjon Azizov
- Laboratory of Biological Active Macromolecular Systems, Institute of Bioorganic Chemistry, Academy of Sciences Uzbekistan, Tashkent, 100125, Uzbekistan
- Faculty of Life Sciences, Pharmaceutical Technical University, 100084, Tashkent, Uzbekistan
| | - Agha Saquib Raza
- Rajive Gandhi Super Speciality Hospital, Tahirpur, New Delhi, 110093, India
| | - Shinjinee Sengupta
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University Uttar Pradesh, Sector-125, Noida, Uttar Pradesh, 201313, India.
| | - Deepak Kumar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Shoolini University, Solan, Himachal Pradesh, 173229, India.
| | - Manoj Garg
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University Uttar Pradesh, Sector-125, Noida, Uttar Pradesh, 201313, India.
| |
Collapse
|
7
|
Li X, Wang F, Zhang X, Sun Q, Kuang E. Suppression of KSHV lytic replication and primary effusion lymphoma by selective RNF5 inhibition. PLoS Pathog 2023; 19:e1011103. [PMID: 36656913 PMCID: PMC9888681 DOI: 10.1371/journal.ppat.1011103] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 01/31/2023] [Accepted: 01/06/2023] [Indexed: 01/20/2023] Open
Abstract
Primary effusion lymphoma (PEL), a rare aggressive B-cell lymphoma in immunosuppressed patients, is etiologically associated with oncogenic γ-herpesvirus infection. Chemotherapy is commonly used to treat PEL but usually results in poor prognosis and survival; thus, novel therapies and drug development are urgently needed for PEL treatment. Here, we demonstrated that inhibition of Ring finger protein 5 (RNF5), an ER-localized E3 ligase, suppresses multiple cellular pathways and lytic replication of Kaposi sarcoma-associated herpesvirus (KSHV) in PEL cells. RNF5 interacts with and induces Ephrin receptors A3 (EphA3) and EphA4 ubiquitination and degradation. RNF5 inhibition increases the levels of EphA3 and EphA4, thereby reducing ERK and Akt activation and KSHV lytic replication. RNF5 inhibition decreased PEL xenograft tumor growth and downregulated viral gene expression, cell cycle gene expression, and hedgehog signaling in xenograft tumors. Our study suggests that RNF5 plays the critical roles in KSHV lytic infection and tumorigenesis of primary effusion lymphoma.
Collapse
Affiliation(s)
- Xiaojuan Li
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
- College of Clinical Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Fan Wang
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Xiaolin Zhang
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Qinqin Sun
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Ersheng Kuang
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
- Key Laboratory of Tropical Disease Control (Sun Yat-Sen University), Ministry of Education, Guangzhou, China
- * E-mail:
| |
Collapse
|
8
|
Zhang S, Lee SH, Nie L, Huang Y, Zou G, Jung Y, Jun S, Zhang J, Lien EM, Chen J, Park J. Lysosomal TMEM9-LAMTOR4-controlled mTOR signaling integrity is required for mammary tumorigenesis. CANCER COMMUNICATIONS (LONDON, ENGLAND) 2022; 43:159-163. [PMID: 36336962 PMCID: PMC9859727 DOI: 10.1002/cac2.12382] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 09/16/2022] [Accepted: 10/20/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Shengzhe Zhang
- Department of Experimental Radiation OncologyDivision of Radiation Oncologythe University of Texas MD Anderson Cancer CenterHoustonTX77030USA
| | - Sung Ho Lee
- Department of Experimental Radiation OncologyDivision of Radiation Oncologythe University of Texas MD Anderson Cancer CenterHoustonTX77030USA
| | - Litong Nie
- Department of Experimental Radiation OncologyDivision of Radiation Oncologythe University of Texas MD Anderson Cancer CenterHoustonTX77030USA
| | - Yuanjian Huang
- Department of Experimental Radiation OncologyDivision of Radiation Oncologythe University of Texas MD Anderson Cancer CenterHoustonTX77030USA
| | - Gengyi Zou
- Department of Experimental Radiation OncologyDivision of Radiation Oncologythe University of Texas MD Anderson Cancer CenterHoustonTX77030USA
| | - Youn‐Sang Jung
- Department of Experimental Radiation OncologyDivision of Radiation Oncologythe University of Texas MD Anderson Cancer CenterHoustonTX77030USA
| | - Sohee Jun
- Department of Experimental Radiation OncologyDivision of Radiation Oncologythe University of Texas MD Anderson Cancer CenterHoustonTX77030USA
| | - Jie Zhang
- Department of Experimental Radiation OncologyDivision of Radiation Oncologythe University of Texas MD Anderson Cancer CenterHoustonTX77030USA
| | - Esther M. Lien
- Department of Experimental Radiation OncologyDivision of Radiation Oncologythe University of Texas MD Anderson Cancer CenterHoustonTX77030USA
| | - Junjie Chen
- Department of Experimental Radiation OncologyDivision of Radiation Oncologythe University of Texas MD Anderson Cancer CenterHoustonTX77030USA
| | - Jae‐Il Park
- Department of Experimental Radiation OncologyDivision of Radiation Oncologythe University of Texas MD Anderson Cancer CenterHoustonTX77030USA,Graduate School of Biomedical Sciencesthe University of Texas MD Anderson Cancer CenterHoustonTX77030USA,Program in Genetics and Epigeneticsthe University of Texas MD Anderson Cancer CenterHoustonTX77030USA
| |
Collapse
|
9
|
Karlstaedt A, Taegtmeyer H. Cardio-Onco-Metabolism - Metabolic vulnerabilities in cancer and the heart. J Mol Cell Cardiol 2022; 171:71-80. [PMID: 35777454 PMCID: PMC10193535 DOI: 10.1016/j.yjmcc.2022.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 02/05/2022] [Accepted: 06/21/2022] [Indexed: 10/17/2022]
Abstract
Cancer and cardiovascular diseases (CVDs) are the leading cause of death worldwide. Metabolic remodeling is a hallmark of both cancer and the failing heart. Tumors reprogram metabolism to optimize nutrient utilization and meet increased demands for energy provision, biosynthetic pathways, and proliferation. Shared risk factors for cancer and CVDs suggest intersecting mechanisms for disease pathogenesis and progression. In this review, we aim to highlight the role of metabolic remodeling in cancer and its potential to impair cardiac function. Understanding these mechanisms will help us develop biomarkers, better therapies, and identify patients at risk of developing heart disease after surviving cancer.
Collapse
Affiliation(s)
- Anja Karlstaedt
- Smidt Heart Institute, Department of Cardiology, Cedars Sinai Medical Center, Los Angeles, California, USA.
| | - Heinrich Taegtmeyer
- Department of Internal Medicine, Division of Cardiology, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, Texas, USA
| |
Collapse
|
10
|
Temaj G, Saha S, Dragusha S, Ejupi V, Buttari B, Profumo E, Beqa L, Saso L. Ribosomopathies and cancer: pharmacological implications. Expert Rev Clin Pharmacol 2022; 15:729-746. [PMID: 35787725 DOI: 10.1080/17512433.2022.2098110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION The ribosome is a ribonucleoprotein organelle responsible for protein synthesis, and its biogenesis is a highly coordinated process that involves many macromolecular components. Any acquired or inherited impairment in ribosome biogenesis or ribosomopathies is associated with the development of different cancers and rare genetic diseases. Interference with multiple steps of protein synthesis has been shown to promote tumor cell death. AREAS COVERED We discuss the current insights about impaired ribosome biogenesis and their secondary consequences on protein synthesis, transcriptional and translational responses, proteotoxic stress, and other metabolic pathways associated with cancer and rare diseases. Studies investigating the modulation of different therapeutic chemical entities targeting cancer in in vitro and in vivo models have also been detailed. EXPERT OPINION Despite the association between inherited mutations affecting ribosome biogenesis and cancer biology, the development of therapeutics targeting the essential cellular machinery has only started to emerge. New chemical entities should be designed to modulate different checkpoints (translating oncoproteins, dysregulation of specific ribosome-assembly machinery, ribosomal stress, and rewiring ribosomal functions). Although safe and effective therapies are lacking, consideration should also be given to using existing drugs alone or in combination for long-term safety, with known risks for feasibility in clinical trials and synergistic effects.
Collapse
Affiliation(s)
| | - Sarmistha Saha
- Department of Cardiovascular, Endocrine-metabolic Diseases, and Aging, Italian National Institute of Health, Rome, Italy
| | | | - Valon Ejupi
- College UBT, Faculty of Pharmacy, Prishtina, Kosovo
| | - Brigitta Buttari
- Department of Cardiovascular, Endocrine-metabolic Diseases, and Aging, Italian National Institute of Health, Rome, Italy
| | - Elisabetta Profumo
- Department of Cardiovascular, Endocrine-metabolic Diseases, and Aging, Italian National Institute of Health, Rome, Italy
| | - Lule Beqa
- College UBT, Faculty of Pharmacy, Prishtina, Kosovo
| | - Luciano Saso
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Italy
| |
Collapse
|
11
|
Ding Z, Shen H, Xu K, Wu Y, Wang S, Yi F, Wang D, Liu Y. Comprehensive Analysis of mTORC1 Signaling Pathway–Related Genes in the Prognosis of HNSCC and the Response to Chemotherapy and Immunotherapy. Front Mol Biosci 2022; 9:792482. [PMID: 35573741 PMCID: PMC9100579 DOI: 10.3389/fmolb.2022.792482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 03/14/2022] [Indexed: 12/24/2022] Open
Abstract
Objective: The mammalian target of the rapamycin complex 1 (mTORC1) signaling pathway has emerged as a crucial player in the oncogenesis and development of head and neck squamous cell carcinoma (HNSCC), however, to date, no relevant gene signature has been identified. Therefore, we aimed to construct a novel gene signature based on the mTORC1 pathway for predicting the outcomes of patients with HNSCC and their response to treatment. Methods: The gene expression and clinical data were retrieved from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. The key prognostic genes associated with the mTORC1 pathway were screened by univariate Cox regression analyses. A prognostic signature was then established based on significant factors identified in the multivariate Cox regression analysis. The performance of the multigene signature was evaluated by the Kaplan–Meier (K–M) survival analysis and receiver operating characteristic (ROC) analysis. Based on the median risk score, patients were categorized into high- and low-risk groups. Subsequently, a hybrid prognostic nomogram was constructed and estimated by a calibration plot and decision curve analysis. Furthermore, immune cell infiltration and therapeutic responses were compared between the two risk groups. Finally, we measured the expression levels of seven genes by quantitative real-time polymerase chain reaction (qRT-PCR) and immunohistochemistry (IHC). Results: The mTORC1 pathway–based signature was constructed using the seven identified genes (SEC11A, CYB5B, HPRT1, SLC2A3, SC5D, CORO1A, and PIK3R3). Patients in the high-risk group exhibited a lower overall survival (OS) rate than those in the low-risk group in both datasets. Through the univariate and multivariate Cox regression analyses, this gene signature was confirmed to be an independent prognostic risk factor for HNSCC. The constructed nomogram based on age, American Joint Committee on Cancer (AJCC) stage, and the risk score exhibited satisfactory performance in predicting the OS. In addition, immune cell infiltration and chemotherapeutic and immunotherapeutic responses differed significantly between the two risk groups. The expression levels of SEC11A and CYB5B were higher in HNSCC tissues than in normal tissues. Conclusion: Our study established and verified an mTORC1 signaling pathway–related gene signature that could be used as a novel prognostic factor for HNSCC.
Collapse
Affiliation(s)
- Zhao Ding
- Department of Otorhinolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Medical University, Hefei, China
- Graduate School of Anhui Medical University, Hefei, China
| | - Hailong Shen
- Department of Otorhinolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Medical University, Hefei, China
- Graduate School of Anhui Medical University, Hefei, China
| | - Ke Xu
- Department of Otorhinolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Medical University, Hefei, China
- Graduate School of Anhui Medical University, Hefei, China
| | - Yu Wu
- Department of Otorhinolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Department of Otolaryngology, General Hospital of Anhui Wanbei Coal Power Group, Suzhou, China
| | - Shuhao Wang
- Department of Otorhinolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Medical University, Hefei, China
- Graduate School of Anhui Medical University, Hefei, China
| | - Fangzheng Yi
- Department of Otorhinolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Medical University, Hefei, China
- Graduate School of Anhui Medical University, Hefei, China
| | - Daming Wang
- Department of Otorhinolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yehai Liu
- Department of Otorhinolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- *Correspondence: Yehai Liu,
| |
Collapse
|
12
|
Bhagya N, Chandrashekar KR. Autophagy and cancer: Can tetrandrine be a potent anticancer drug in the near future? Biomed Pharmacother 2022; 148:112727. [PMID: 35219119 DOI: 10.1016/j.biopha.2022.112727] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/14/2022] [Accepted: 02/15/2022] [Indexed: 11/02/2022] Open
Abstract
Autophagy is an essential catabolic process in mammalian cells to maintain cellular integrity and viability by degrading the old and damaged cell organelles and other contents with the help of lysosomes. Deregulation in autophagy can be one of the major contributors leading to the continuous cell proliferation and development of tumors. Tetrandrine, a bisbenzylisoquinoline alkaloid known to have potent bioactivities such as anticancer, antimicrobial, anti-inflammatory, antidiabetic, antioxidant, immunosuppressive, cardiovascular, and calcium channel blocking effects. The present review evaluated the effectiveness of tetrandrine in targeting key proteins in the autophagy pathway to induce anticancer effect based on the available literature. An attempt is also made to understand the influence of tetrandrine in regulating autophagy by mTOR dependant and mTOR-independent pathways. In addition, the review also highlights the limitations involved and future perspectives in developing tetrandrine as a chemotherapeutic drug to treat cancer.
Collapse
Affiliation(s)
- N Bhagya
- Yenepoya Research Center, Yenepoya (Deemed to be University), Deralakatte, Mangalore, Karnataka 575018, India
| | - K R Chandrashekar
- Yenepoya (Deemed to be University), Deralakatte, Mangalore, Karnataka 575018, India.
| |
Collapse
|
13
|
Primary Effusion Lymphoma: A Clinicopathologic Perspective. Cancers (Basel) 2022; 14:cancers14030722. [PMID: 35158997 PMCID: PMC8833393 DOI: 10.3390/cancers14030722] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/03/2021] [Accepted: 12/22/2021] [Indexed: 02/06/2023] Open
Abstract
Primary effusion lymphoma (PEL) is a rare, aggressive B-cell lymphoma that usually localizes to serous body cavities to subsequently form effusions in the absence of a discrete mass. Although some tumors can develop in extracavitary locations, the areas most often affected include the peritoneum, pleural space, and the pericardium. PEL is associated with the presence of human herpesvirus 8 (HHV8), also called the Kaposi sarcoma-associated herpesvirus (KSHV), with some variability in transformation potential suggested by frequent coinfection with the Epstein-Barr virus (EBV) (~80%), although the nature of the oncogenesis is unclear. Most patients suffering with this disease are to some degree immunocompromised (e.g., Human immunodeficiency virus (HIV) infection or post-solid organ transplantation) and, even with aggressive treatment, prognosis remains poor. There is no definitive guideline for the treatment of PEL, although CHOP-like regimens (cyclophosphamide, doxorubicin, vincristine, and prednisone) are frequently prescribed and, given the rarity of this disease, therapeutic focus is being redirected to personalized and targeted approaches in the experimental realm. Current clinical trials include the combination of lenalidomide and rituximab into the EPOCH regimen and the treatment of individuals with relapsed/refractory EBV-associated disease with tabelecleucel.
Collapse
|
14
|
Naimo E, Zischke J, Schulz TF. Recent Advances in Developing Treatments of Kaposi's Sarcoma Herpesvirus-Related Diseases. Viruses 2021; 13:1797. [PMID: 34578378 PMCID: PMC8473310 DOI: 10.3390/v13091797] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/30/2021] [Accepted: 09/01/2021] [Indexed: 12/27/2022] Open
Abstract
Kaposi-sarcoma-associated herpesvirus (KSHV) or human herpesvirus 8 (HHV-8) is the causative agent of several malignancies, including Kaposi's sarcoma (KS), primary effusion lymphoma (PEL), and multicentric Castleman's disease (MCD). Active KSHV replication has also been associated with a pathological condition called KSHV inflammatory cytokine syndrome (KICS), and KSHV may play a role in rare cases of post-transplant polyclonal lymphoproliferative disorders. Several commonly used herpesviral DNA polymerase inhibitors are active against KSHV in tissue culture. Unfortunately, they are not always efficacious against KSHV-induced diseases. To improve the outcome for the patients, new therapeutics need to be developed, including treatment strategies that target either viral proteins or cellular pathways involved in tumor growth and/or supporting the viral life cycle. In this review, we summarize the most commonly established treatments against KSHV-related diseases and review recent developments and promising new compounds that are currently under investigation or on the way to clinical use.
Collapse
Affiliation(s)
- Eleonora Naimo
- Institute of Virology, Hannover Medical School, 30625 Hannover, Germany; (E.N.); (J.Z.)
- German Centre for Infection Research, Hannover-Braunschweig Site, 38023 Braunschweig, Germany
| | - Jasmin Zischke
- Institute of Virology, Hannover Medical School, 30625 Hannover, Germany; (E.N.); (J.Z.)
- German Centre for Infection Research, Hannover-Braunschweig Site, 38023 Braunschweig, Germany
| | - Thomas F. Schulz
- Institute of Virology, Hannover Medical School, 30625 Hannover, Germany; (E.N.); (J.Z.)
- German Centre for Infection Research, Hannover-Braunschweig Site, 38023 Braunschweig, Germany
- Cluster of Excellence 2155 RESIST, Institute of Virology, Hannover Medical School, 30625 Hannover, Germany
| |
Collapse
|
15
|
Hematological cancers in individuals infected by HIV. Blood 2021; 139:995-1012. [PMID: 34469512 DOI: 10.1182/blood.2020005469] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 12/22/2020] [Indexed: 11/20/2022] Open
Abstract
HIV infection increases cancer risk and is linked to cancers associated to infectious agents classified as carcinogenic to humans by the International Agency for Research on Cancer. Lymphomas represent one of the most frequent malignancies among individuals infected by HIV. Diffuse large B-cell lymphoma remains a leading cancer after the introduction of combined antiretroviral therapy (cART). The incidence of other lymphomas including Burkitt lymphoma, primary effusion lymphomas, and plasmablastic lymphoma of the oral cavity remain stable, while the incidence of Hodgkin lymphoma and Kaposi sarcoma-associated herpesvirus (KSHV)-associated Multicentric Castleman Disease has increased. The heterogeneity of lymphomas in individuals infected by HIV likely depends on the complexity of involved pathogenetic mechanisms, i.e. HIV-induced immunosuppression, genetic abnormalities, cytokine dysregulation, co-infection with the gamma-herpesviruses, Epstein Barr virus and KSHV, and the dysregulation of the immune responses controlling these viruses. In the modern cART era, standard treatments for HIV-associated lymphoma including stem cell transplantation in relapsed/refractory disease, mirrors that of the general population. The combination of cART and anti neoplastic treatments has resulted in remarkable prolongation of long-term survival. However, oncolytic and immunotherapic strategies, and therapies targeting specific viral oncogenes will need to be developed primarily.
Collapse
|
16
|
Yu L, Wei J, Liu P. Attacking the PI3K/Akt/mTOR signaling pathway for targeted therapeutic treatment in human cancer. Semin Cancer Biol 2021; 85:69-94. [PMID: 34175443 DOI: 10.1016/j.semcancer.2021.06.019] [Citation(s) in RCA: 302] [Impact Index Per Article: 75.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 06/10/2021] [Accepted: 06/22/2021] [Indexed: 02/08/2023]
Abstract
Cancer is the second leading cause of human death globally. PI3K/Akt/mTOR signaling is one of the most frequently dysregulated signaling pathways observed in cancer patients that plays crucial roles in promoting tumor initiation, progression and therapy responses. This is largely due to that PI3K/Akt/mTOR signaling is indispensable for many cellular biological processes, including cell growth, metastasis, survival, metabolism, and others. As such, small molecule inhibitors targeting major kinase components of the PI3K/Akt/mTOR signaling pathway have drawn extensive attention and been developed and evaluated in preclinical models and clinical trials. Targeting a single kinase component within this signaling usually causes growth arrest rather than apoptosis associated with toxicity-induced adverse effects in patients. Combination therapies including PI3K/Akt/mTOR inhibitors show improved patient response and clinical outcome, albeit developed resistance has been reported. In this review, we focus on revealing the mechanisms leading to the hyperactivation of PI3K/Akt/mTOR signaling in cancer and summarizing efforts for developing PI3K/Akt/mTOR inhibitors as either mono-therapy or combination therapy in different cancer settings. We hope that this review will facilitate further understanding of the regulatory mechanisms governing dysregulation of PI3K/Akt/mTOR oncogenic signaling in cancer and provide insights into possible future directions for targeted therapeutic regimen for cancer treatment, by developing new agents, drug delivery systems, or combination regimen to target the PI3K/Akt/mTOR signaling pathway. This information will also provide effective patient stratification strategy to improve the patient response and clinical outcome for cancer patients with deregulated PI3K/Akt/mTOR signaling.
Collapse
Affiliation(s)
- Le Yu
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | - Pengda Liu
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
17
|
Rivera-Soto R, Yu Y, Dittmer DP, Damania B. Combined Inhibition of Akt and mTOR Is Effective Against Non-Hodgkin Lymphomas. Front Oncol 2021; 11:670275. [PMID: 34221985 PMCID: PMC8253055 DOI: 10.3389/fonc.2021.670275] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 05/24/2021] [Indexed: 12/24/2022] Open
Abstract
Non-Hodgkin lymphoma (NHL) are a diverse group of hematological malignancies comprised of over 60 subtypes. These subtypes range from indolent to aggressive. The PI3K/Akt/mTOR pathway has been shown to contribute to cell survival and proliferation and is constitutively active in most NHL. MK-7075 (miransertib) and MK-4440 are small molecules that effectively inhibit Akt and have entered clinical development. Using in vitro and in vivo models of NHL, we explored targeting the kinase Akt with miransertib and MK-4440 alone or in combination with the mTORC1 inhibitor, rapamycin (sirolimus). Both Akt inhibitors inhibited the pathway and NHL proliferation in a subtype-dependent manner. However, these compounds had a minimal effect on the viability of primary B-cells. Importantly, the combination of miransertib and sirolimus synergistically reduced cell proliferation in NHL, including in one indolent subtype, e.g., follicular lymphoma (FL), and two aggressive subtypes, e.g., diffuse large B-cell lymphoma (DLBCL) and primary effusion lymphoma (PEL). To establish in vivo efficacy, we used several xenograft models of FL, DLBCL, and PEL. The results obtained in vivo were consistent with the in vitro studies. The FL xenograft was highly sensitive to the inhibition of Akt alone; however, the tumor burden of PEL xenografts was only significantly reduced when both Akt and mTORC1 were targeted. These data suggest that targeting the PI3K/Akt/mTOR pathway with Akt inhibitors such as miransertib in combination with mTOR inhibitors serves as a broadly applicable therapeutic in NHL.
Collapse
Affiliation(s)
- Ricardo Rivera-Soto
- Curriculum in Genetics and Molecular Biology and Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Yi Yu
- ArQule, Inc., A Wholly Owned Subsidiary of Merck & Co., Inc., Kenilworth, NJ, United States
| | - Dirk P. Dittmer
- Curriculum in Genetics and Molecular Biology and Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Blossom Damania
- Curriculum in Genetics and Molecular Biology and Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
18
|
Huang XL, Khan MI, Wang J, Ali R, Ali SW, Zahra QUA, Kazmi A, Lolai A, Huang YL, Hussain A, Bilal M, Li F, Qiu B. Role of receptor tyrosine kinases mediated signal transduction pathways in tumor growth and angiogenesis-New insight and futuristic vision. Int J Biol Macromol 2021; 180:739-752. [PMID: 33737188 DOI: 10.1016/j.ijbiomac.2021.03.075] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 03/13/2021] [Accepted: 03/13/2021] [Indexed: 12/18/2022]
Abstract
In the past two decades, significant progress has been made in the past two decades towards the understanding of the basic mechanisms underlying cancer growth and angiogenesis. In this context, receptor tyrosine kinases (RTKs) play a pivotal role in cell proliferation, differentiation, growth, motility, invasion, and angiogenesis, all of which contribute to tumor growth and progression. Mutations in RTKs lead to abnormal signal transductions in several pathways such as Ras-Raf, MEK-MAPK, PI3K-AKT and mTOR pathways, affecting a wide range of biological functions including cell proliferation, survival, migration and vascular permeability. Increasing evidence demonstrates that multiple kinases are involved in angiogenesis including RTKs such as vascular endothelial growth factor, platelet derived growth factor, epidermal growth factor, insulin-like growth factor-1, macrophage colony-stimulating factor, nerve growth factor, fibroblast growth factor, Hepatocyte Growth factor, Tie 1 & 2, Tek, Flt-3, Flt-4 and Eph receptors. Overactivation of RTKs and its downstream regulation is implicated in tumor initiation and angiogenesis, representing one of the hallmarks of cancer. This review discusses the role of RTKs, PI3K, and mTOR, their involvement, and their implication in pro-oncogenic cellular processes and angiogenesis with effective approaches and newly approved drugs to inhibit their unrestrained action.
Collapse
Affiliation(s)
- Xiao Lin Huang
- School of Computer Science and Technology, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Muhammad Imran Khan
- Hefei National Lab for Physical Sciences at the Microscale and the Centers for Biomedical Engineering, University of Science and Technology of China, Hefei, Anhui 230027, China.
| | - Jing Wang
- First Affiliated Hospital of University of Science and Technology of China Hefei, Anhui 230036, China
| | - Rizwan Ali
- Hefei National Lab for Physical Sciences at the Microscale and the Centers for Biomedical Engineering, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Syed Wajahat Ali
- Hefei National Lab for Physical Sciences at the Microscale and the Centers for Biomedical Engineering, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Qurat-Ul-Ain Zahra
- Hefei National Lab for Physical Sciences at the Microscale and the Centers for Biomedical Engineering, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Ahsan Kazmi
- Department of Pathology, Al-Nafees Medical College and Hospital, Isra University, Islamabad 45600, Pakistan
| | - Arbelo Lolai
- School of Computer Science and Technology, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Yu Lin Huang
- School of Computer Science and Technology, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Alamdar Hussain
- Department of Laboratory Medicine, Karolinska Institutet, Karolinska Hospital, Huddinge, SE 141 86 Stockholm, Sweden; Department of Biosciences, COMSATS Institute of Information Technology, Chak Shahzad Campus, Islamabad 44000, Pakistan
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China
| | - Fenfen Li
- Hefei National Lab for Physical Sciences at the Microscale and the Centers for Biomedical Engineering, University of Science and Technology of China, Hefei, Anhui 230027, China.
| | - Bensheng Qiu
- Hefei National Lab for Physical Sciences at the Microscale and the Centers for Biomedical Engineering, University of Science and Technology of China, Hefei, Anhui 230027, China.
| |
Collapse
|
19
|
Song YF, Liu H, Bai JF, Ke HX, Li JT, Wang T, Yang YZ, Yin JJ, Feng R. [Primary effusion lymphoma in a HIV-negative patient: case report and literatures review]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2021; 41:685-688. [PMID: 32942826 PMCID: PMC7525169 DOI: 10.3760/cma.j.issn.0253-2727.2020.08.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Y F Song
- Department of Hematology, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - H Liu
- Department of Hematology, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - J F Bai
- Department of Hematology, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - H X Ke
- Department of Respiratory and Critical Care Medicine, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - J T Li
- Department of Hematology, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - T Wang
- Department of Hematology, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Y Z Yang
- Department of Hematology, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - J J Yin
- Department of Hematology, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - R Feng
- Department of Hematology, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, China
| |
Collapse
|
20
|
Kim YJ, Kim Y, Kumar A, Kim CW, Toth Z, Cho NH, Lee HR. Kaposi's sarcoma-associated herpesvirus latency-associated nuclear antigen dysregulates expression of MCL-1 by targeting FBW7. PLoS Pathog 2021; 17:e1009179. [PMID: 33471866 PMCID: PMC7816990 DOI: 10.1371/journal.ppat.1009179] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 11/22/2020] [Indexed: 12/11/2022] Open
Abstract
Primary effusion lymphoma (PEL) is an aggressive B cell lymphoma that is etiologically linked to Kaposi’s sarcoma-associated herpesvirus (KSHV). Despite standard multi-chemotherapy treatment, PEL continues to cause high mortality. Thus, new strategies to control PEL are needed urgently. Here, we show that a phosphodegron motif within the KSHV protein, latency-associated nuclear antigen (LANA), specifically interacts with E3 ubiquitin ligase FBW7, thereby competitively inhibiting the binding of the anti-apoptotic protein MCL-1 to FBW7. Consequently, LANA-FBW7 interaction enhances the stability of MCL-1 by preventing its proteasome-mediated degradation, which inhibits caspase-3-mediated apoptosis in PEL cells. Importantly, MCL-1 inhibitors markedly suppress colony formation on soft agar and tumor growth of KSHV+PEL/BCBL-1 in a xenograft mouse model. These results strongly support the conclusion that high levels of MCL-1 expression enable the oncogenesis of PEL cells and thus, MCL-1 could be a potential drug target for KSHV-associated PEL. This work also unravels a mechanism by which an oncogenic virus perturbs a key component of the ubiquitination pathway to induce tumorigenesis. Primary effusion lymphoma (PEL), a highly aggressive B cell lymphoma, is associated with Kaposi’s sarcoma-associated herpesvirus (KSHV). However, the underlying mechanisms that govern the aggressiveness of KSHV-associated PEL are poorly understood. Here, we demonstrate that KSHV LANA interacts with cellular ubiquitin E3 ligase FBW7, sequestering MCL-1 from FBW7, which reduces MCL-1 ubiquitination. As such, LANA potently stabilizes and increases MCL-1 protein, leading to inhibition of caspase-3-mediated apoptosis in PEL cells. Furthermore, MCL-1 inhibitors efficiently blocked PEL progression in mouse xenograft model. These results suggest that LANA acts as a proto-oncogene via deregulating tumor suppressor FBW7, which upregulates anti-apoptotic MCL-1 expression. This study suggests drugs that target MCL-1 may serve as an effective therapy against KSHV+ PEL.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Antigens, Viral/genetics
- Antigens, Viral/metabolism
- Apoptosis
- Cell Proliferation
- F-Box-WD Repeat-Containing Protein 7/genetics
- F-Box-WD Repeat-Containing Protein 7/metabolism
- Female
- Herpesvirus 8, Human/physiology
- Humans
- Lymphoma, Primary Effusion/genetics
- Lymphoma, Primary Effusion/metabolism
- Lymphoma, Primary Effusion/pathology
- Lymphoma, Primary Effusion/virology
- Mice
- Mice, Inbred NOD
- Mice, SCID
- Myeloid Cell Leukemia Sequence 1 Protein/genetics
- Myeloid Cell Leukemia Sequence 1 Protein/metabolism
- Nuclear Proteins/genetics
- Nuclear Proteins/metabolism
- Phosphorylation
- Sarcoma, Kaposi/genetics
- Sarcoma, Kaposi/metabolism
- Sarcoma, Kaposi/pathology
- Sarcoma, Kaposi/virology
- Tumor Cells, Cultured
- Ubiquitination
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Yeong Jun Kim
- Department of Biotechnology and Bioinformatics, College of Science and Technology, Korea University, Sejong, South Korea
| | - Yuri Kim
- Department of Microbiology and Immunology, Seoul National University college of Medicine, Seoul, South Korea
| | - Abhishek Kumar
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, Florida, United States of America
| | - Chan Woo Kim
- Department of Biotechnology and Bioinformatics, College of Science and Technology, Korea University, Sejong, South Korea
| | - Zsolt Toth
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, Florida, United States of America
| | - Nam Hyuk Cho
- Department of Microbiology and Immunology, Seoul National University college of Medicine, Seoul, South Korea
- Department of Biomedical Sciences, Seoul National University college of Medicine, Seoul, South Korea
| | - Hye-Ra Lee
- Department of Biotechnology and Bioinformatics, College of Science and Technology, Korea University, Sejong, South Korea
- Department of Lab Medicine, College of Medicine, Korea University, Seoul, South Korea
- * E-mail:
| |
Collapse
|
21
|
Calderon A, Soldan SS, De Leo A, Deng Z, Frase DM, Anderson EM, Zhang Y, Vladimirova O, Lu F, Leung JC, Murphy ME, Lieberman PM. Identification of Mubritinib (TAK 165) as an inhibitor of KSHV driven primary effusion lymphoma via disruption of mitochondrial OXPHOS metabolism. Oncotarget 2020; 11:4224-4242. [PMID: 33245718 PMCID: PMC7679036 DOI: 10.18632/oncotarget.27815] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 10/29/2020] [Indexed: 02/07/2023] Open
Abstract
KSHV-associated cancers have poor prognoses and lack therapeutics that selectively target viral gene functions. We developed a screening campaign to identify known drugs that could be repurposed for the treatment of KSHV-associated cancers. We focused on primary effusion lymphoma (PEL), which has particularly poor treatment outcomes. We developed a luciferase reporter assay to test the ability of drugs to inhibit DNA binding of the KSHV LANA DNA binding domain (DBD). In parallel, we screened drugs for selective inhibition of a KSHV+ PEL cells. While potent hits were identified in each assay, only one hit, Mubritinib, was found to score in both assays. Mubritinib caused PEL cells to undergo cell cycle arrest with accumulation of sub-G1 population and Annexin V. Mubritinib inhibited LANA binding to KSHV terminal repeat (TR) DNA in KSHV+ PEL cells, but did not lead to KSHV lytic cycle reactivation. Mubritinib was originally identified as a receptor tyrosine kinase (RTK) inhibitor selective for HER2/ErbB2. But recent studies have revealed that Mubritinib can also inhibit the electron transport chain (ETC) complex at nanomolar concentrations. We found that other related ETC complex inhibitors (Rotenone and Deguelin) exhibited PEL cell growth inhibition while RTK inhibitors failed. Seahorse analysis demonstrated that Mubritinib selectively inhibits the maximal oxygen consumption (OCR) in PEL cells and metabolomics revealed changes in ATP/ADP and ATP/AMP ratios. These findings indicate that PEL cells are selectively sensitive to ETC complex inhibitors and provide a rationale for repurposing Mubritinib for selective treatment of PEL.
Collapse
Affiliation(s)
| | | | | | - Zhong Deng
- The Wistar Institute, Philadelphia, PA 19146, USA
| | | | | | - Yue Zhang
- The Wistar Institute, Philadelphia, PA 19146, USA
| | | | - Fang Lu
- The Wistar Institute, Philadelphia, PA 19146, USA
| | | | | | | |
Collapse
|
22
|
Enhanced efficacy of JAK1 inhibitor with mTORC1/C2 targeting in smoldering/chronic adult T cell leukemia. Transl Oncol 2020; 14:100913. [PMID: 33129109 PMCID: PMC7585144 DOI: 10.1016/j.tranon.2020.100913] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/23/2020] [Accepted: 10/12/2020] [Indexed: 12/22/2022] Open
Abstract
IL-2Rα is expressed in the leukemic cells of smoldering/chronic ATL patients, leading to activation of the JAK/STAT pathway. JAK1 inhibition with Upadacitinib inhibited cell proliferation and phosphorylation of STAT5 in cytokine-dependent ATL model. Dual mTORC1/C2 inhibitor was more effective than the single mTORC1 inhibitor in the cytokine-dependent ATL model. The combination of JAKi and mTORi showed synergistic effect in xenografts and leukemic cells from smoldering/chronic ATL.
Adult T-cell leukemia (ATL) is an aggressive T-cell lymphoproliferative malignancy of regulatory T lymphocytes (Tregs), caused by human T-cell lymphotropic virus 1 (HTLV-1). Interleukin 2 receptor alpha (IL-2Rα) is expressed in the leukemic cells of smoldering/chronic ATL patients, leading to constitutive activation of the JAK/STAT pathway and spontaneous proliferation. The PI3K/AKT/mTOR pathway also plays a critical role in ATL cell survival and proliferation. We previously performed a high-throughput screen that demonstrated additive/synergistic activity of Ruxolitinib, a JAK1/2 inhibitor, with AZD8055, an mTORC1/C2 inhibitor. However, effects of unintended JAK2 inhibition with Ruxolitinib limits it therapeutic potential for ATL patients, which lead us to evaluate a JAK1-specific inhibitor. Here, we demonstrated that Upadacitinib, a JAK-1 inhibitor, inhibited the proliferation of cytokine-dependent ATL cell lines and the expression of p-STAT5. Combinations of Upadacitinib with either AZD8055 or Sapanisertib, mTORC1/C2 inhibitors, showed anti-proliferative effects against cytokine-dependent ATL cell lines and synergistic effect with reducing tumor growth in NSG mice bearing IL-2 transgenic tumors. Importantly, the combination of these two agents inhibited ex vivo spontaneous proliferation of ATL cells from patients with smoldering/chronic ATL. Combined targeting of JAK/STAT and PI3K/AKT/mTOR pathways represents a promising therapeutic intervention for patients with smoldering/chronic ATL.
Collapse
|
23
|
Seltzer J, Moorad R, Schifano JM, Landis JT, Dittmer DP. Interleukin-1 Receptor-Associated Kinase (IRAK) Signaling in Kaposi Sarcoma-Associated Herpesvirus-Induced Primary Effusion Lymphoma. J Virol 2020; 94:e02123-19. [PMID: 32161170 PMCID: PMC7199399 DOI: 10.1128/jvi.02123-19] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 03/05/2020] [Indexed: 12/20/2022] Open
Abstract
Kaposi sarcoma-associated herpesvirus (KSHV) is necessary but not sufficient for primary effusion lymphoma (PEL) development. Alterations in cellular signaling pathways are also a characteristic of PEL. Other B cell lymphomas have acquired an oncogenic mutation in the myeloid differentiation primary response 88 (MYD88) gene. The MYD88 L265P mutant results in the activation of interleukin-1 receptor associated kinase (IRAK). To probe IRAK/MYD88 signaling in PEL, we employed CRISPR/Cas9 technology to generate stable deletion clones in BCBL-1Cas9 and BC-1Cas9 cells. To look for off-target effects, we determined the complete exome of the BCBL-1Cas9 and BC-1Cas9 cells. Deletion of either MYD88, IRAK4, or IRAK1 abolished interleukin-1 beta (IL-1β) signaling; however, we were able to grow stable subclones from each population. Transcriptome sequencing (RNA-seq) analysis of IRAK4 knockout cell lines (IRAK4 KOs) showed that the IRAK pathway induced cellular signals constitutively, independent of IL-1β stimulation, which was abrogated by deletion of IRAK4. Transient complementation with IRAK1 increased NF-κB activity in MYD88 KO, IRAK1 KO, and IRAK4 KO cells even in the absence of IL-1β. IL-10, a hallmark of PEL, was dependent on the IRAK pathway, as IRAK4 KOs showed reduced IL-10 levels. We surmise that, unlike B cell receptor (BCR) signaling, MYD88/IRAK signaling is constitutively active in PEL, but that under cell culture conditions, PEL rapidly became independent of this pathway.IMPORTANCE One hundred percent of primary effusion lymphoma (PEL) cases are associated with Kaposi sarcoma-associated herpesvirus (KSHV). PEL cell lines, such as BCBL-1, are the workhorse for understanding this human oncovirus and the host pathways that KSHV dysregulates. Understanding their function is important for developing new therapies as well as identifying high-risk patient groups. The myeloid differentiation primary response 88 (MYD88)/interleukin-1 receptor associated kinase (IRAK) pathway, which has progrowth functions in other B cell lymphomas, has not been fully explored in PEL. By performing CRISPR/Cas9 knockout (KO) studies targeting the IRAK pathway in PEL, we were able to determine that established PEL cell lines can circumvent the loss of IRAK1, IRAK4, and MYD88; however, the deletion clones are deficient in interleukin-10 (IL-10) production. Since IL-10 suppresses T cell function, this suggests that the IRAK pathway may serve a function in vivo and during early-stage development of PEL.
Collapse
Affiliation(s)
- Jedediah Seltzer
- Department of Microbiology and Immunology, Center for AIDS Research, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Razia Moorad
- Department of Microbiology and Immunology, Center for AIDS Research, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Jason M Schifano
- Department of Microbiology and Immunology, Center for AIDS Research, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Justin T Landis
- Department of Microbiology and Immunology, Center for AIDS Research, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Dirk P Dittmer
- Department of Microbiology and Immunology, Center for AIDS Research, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
24
|
He J, Ma J, Ren B, Liu A. Advances in systemic lupus erythematosus pathogenesis via mTOR signaling pathway. Semin Arthritis Rheum 2020; 50:314-320. [DOI: 10.1016/j.semarthrit.2019.09.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 08/31/2019] [Accepted: 09/25/2019] [Indexed: 12/16/2022]
|
25
|
Pringle ES, Wertman J, Melong N, Coombs AJ, Young AL, O’Leary D, Veinotte C, Robinson CA, Ha MN, Dellaire G, Druley TE, McCormick C, Berman JN. The Zebrafish Xenograft Platform-A Novel Tool for Modeling KSHV-Associated Diseases. Viruses 2019; 12:v12010012. [PMID: 31861850 PMCID: PMC7019925 DOI: 10.3390/v12010012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 12/17/2019] [Accepted: 12/18/2019] [Indexed: 12/11/2022] Open
Abstract
Kaposi’s sarcoma associated-herpesvirus (KSHV, also known as human herpesvirus-8) is a gammaherpesvirus that establishes life-long infection in human B lymphocytes. KSHV infection is typically asymptomatic, but immunosuppression can predispose KSHV-infected individuals to primary effusion lymphoma (PEL); a malignancy driven by aberrant proliferation of latently infected B lymphocytes, and supported by pro-inflammatory cytokines and angiogenic factors produced by cells that succumb to lytic viral replication. Here, we report the development of the first in vivo model for a virally induced lymphoma in zebrafish, whereby KSHV-infected PEL tumor cells engraft and proliferate in the yolk sac of zebrafish larvae. Using a PEL cell line engineered to produce the viral lytic switch protein RTA in the presence of doxycycline, we demonstrate drug-inducible reactivation from KSHV latency in vivo, which enabled real-time observation and evaluation of latent and lytic phases of KSHV infection. In addition, we developed a sensitive droplet digital PCR method to monitor latent and lytic viral gene expression and host cell gene expression in xenografts. The zebrafish yolk sac is not well vascularized, and by using fluorogenic assays, we confirmed that this site provides a hypoxic environment that may mimic the microenvironment of some human tumors. We found that PEL cell proliferation in xenografts was dependent on the host hypoxia-dependent translation initiation factor, eukaryotic initiation factor 4E2 (eIF4E2). This demonstrates that the zebrafish yolk sac is a functionally hypoxic environment, and xenografted cells must switch to dedicated hypoxic gene expression machinery to survive and proliferate. The establishment of the PEL xenograft model enables future studies that exploit the innate advantages of the zebrafish as a model for genetic and pharmacologic screens.
Collapse
Affiliation(s)
- Eric S. Pringle
- Department of Microbiology & Immunology, Dalhousie University, 5850 College Street, Halifax, NS B3H 4R2, Canada; (E.S.P.); (C.V.); (C.-A.R.)
- Beatrice Hunter Cancer Research Institute, 5850 College Street, Halifax, NS B3H 4R2, Canada;
| | - Jaime Wertman
- Department of Microbiology & Immunology, Dalhousie University, 5850 College Street, Halifax, NS B3H 4R2, Canada; (E.S.P.); (C.V.); (C.-A.R.)
| | - Nicole Melong
- CHEO Research Institute/Department of Pediatrics, University of Ottawa, Ottawa, ON K1H 8L1, Canada
| | - Andrew J. Coombs
- Department of Pediatrics, Dalhousie University, 5980 University Ave, Halifax, NS B3K 6R8, Canada;
| | - Andrew L. Young
- Division of Hematology and Oncology, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA (D.O.)
| | - David O’Leary
- Division of Hematology and Oncology, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA (D.O.)
| | - Chansey Veinotte
- Department of Microbiology & Immunology, Dalhousie University, 5850 College Street, Halifax, NS B3H 4R2, Canada; (E.S.P.); (C.V.); (C.-A.R.)
| | - Carolyn-Ann Robinson
- Department of Microbiology & Immunology, Dalhousie University, 5850 College Street, Halifax, NS B3H 4R2, Canada; (E.S.P.); (C.V.); (C.-A.R.)
| | - Michael N. Ha
- Department of Radiation Oncology, 5820 University Ave, Halifax, NS B3H 1V7, Canada;
| | - Graham Dellaire
- Beatrice Hunter Cancer Research Institute, 5850 College Street, Halifax, NS B3H 4R2, Canada;
- Department of Pathology, Dalhousie University, 5850 College Street, Halifax, NS B3H 4R2, Canada
| | - Todd E. Druley
- Division of Hematology and Oncology, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA (D.O.)
| | - Craig McCormick
- Department of Microbiology & Immunology, Dalhousie University, 5850 College Street, Halifax, NS B3H 4R2, Canada; (E.S.P.); (C.V.); (C.-A.R.)
- Beatrice Hunter Cancer Research Institute, 5850 College Street, Halifax, NS B3H 4R2, Canada;
- Correspondence: (C.M.); (J.N.B.)
| | - Jason N. Berman
- Department of Microbiology & Immunology, Dalhousie University, 5850 College Street, Halifax, NS B3H 4R2, Canada; (E.S.P.); (C.V.); (C.-A.R.)
- CHEO Research Institute/Department of Pediatrics, University of Ottawa, Ottawa, ON K1H 8L1, Canada
- Department of Pediatrics, Dalhousie University, 5980 University Ave, Halifax, NS B3K 6R8, Canada;
- Correspondence: (C.M.); (J.N.B.)
| |
Collapse
|
26
|
Yuan L, Cook JR, Elsheikh TM. Primary effusion lymphoma in human immune deficiency (HIV)-negative non-organ transplant immunocompetent patients. Diagn Cytopathol 2019; 48:380-385. [PMID: 31846233 PMCID: PMC9291093 DOI: 10.1002/dc.24371] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 11/05/2019] [Accepted: 12/09/2019] [Indexed: 12/27/2022]
Abstract
Primary effusion lymphoma (PEL) is a rare non‐Hodgkin's lymphoma most commonly occurring in the context of human immune deficiency (HIV) infection. Herpes virus 8 (HHV‐8) has been associated with PEL and considered to be the etiologic agent. In addition, most cases (60%‐90%) also show evidence of Epstein‐Barr virus (EBV) infection. We describe here an elderly man who was HIV seronegative and immunocompetent, and presented with worsening weakness and ascites. The diagnosis of PEL was rendered cytologically and supported by the results of flow cytometry. The presence of HHV‐8 was demonstrated by immunohistochemistry, whereas EBV‐associated genetic material was absent by EBER ISH. No lymphadenopathy or organ involvement with lymphoma was found. Systemic chemotherapy with lenalidomide was started given the poor prognosis and commodities of severe coronary artery disease; however, the patient did not respond and succumbed to his disease in 4 months. We present detailed cytologic and clinical findings of this very rare occurrence, and review literature of all reported PEL cases of HIV‐negative, nontransplant, immunocompetent patients.
Collapse
Affiliation(s)
- Lisi Yuan
- Department of Pathology, Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, Ohio
| | - James R Cook
- Department of Laboratory Medicine, Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, Ohio
| | - Tarik M Elsheikh
- Department of Pathology, Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, Ohio
| |
Collapse
|
27
|
Kaposi's Sarcoma-Associated Herpesvirus Lytic Replication Interferes with mTORC1 Regulation of Autophagy and Viral Protein Synthesis. J Virol 2019; 93:JVI.00854-19. [PMID: 31375594 PMCID: PMC6803247 DOI: 10.1128/jvi.00854-19] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 07/30/2019] [Indexed: 12/20/2022] Open
Abstract
All viruses require host cell machinery to synthesize viral proteins. A host cell protein complex known as mechanistic target of rapamycin complex 1 (mTORC1) is a master regulator of protein synthesis. Under nutrient-rich conditions, mTORC1 is active and promotes protein synthesis to meet cellular anabolic demands. Under nutrient-poor conditions or under stress, mTORC1 is rapidly inhibited, global protein synthesis is arrested, and a cellular catabolic process known as autophagy is activated. Kaposi’s sarcoma-associated herpesvirus (KSHV) stimulates mTORC1 activity and utilizes host machinery to synthesize viral proteins. However, we discovered that mTORC1 activity was largely dispensable for viral protein synthesis, genome replication, and the release of infectious progeny. Likewise, during lytic replication, mTORC1 was no longer able to control autophagy. These findings suggest that KSHV undermines mTORC1-dependent cellular processes during the lytic cycle to ensure efficient viral replication. Mechanistic target of rapamycin complex 1 (mTORC1) is a master regulator of cellular metabolism. In nutrient-rich environments, mTORC1 kinase activity stimulates protein synthesis to meet cellular anabolic demands. Under nutrient-poor conditions or under stress, mTORC1 is rapidly inhibited, global protein synthesis is arrested, and a cellular catabolic process known as autophagy is activated. Kaposi’s sarcoma-associated herpesvirus (KSHV) encodes multiple proteins that stimulate mTORC1 activity or subvert autophagy, but precise roles for mTORC1 in different stages of KSHV infection remain incompletely understood. Here, we report that during latent and lytic stages of KSHV infection, chemical inhibition of mTORC1 caused eukaryotic initiation factor 4F (eIF4F) disassembly and diminished global protein synthesis, which indicated that mTORC1-mediated control of translation initiation was largely intact. We observed that mTORC1 was required for synthesis of the replication and transcription activator (RTA) lytic switch protein and reactivation from latency, but once early lytic gene expression had begun, mTORC1 was not required for genome replication, late gene expression, or the release of infectious progeny. Moreover, mTORC1 control of autophagy was dysregulated during lytic replication, whereby chemical inhibition of mTORC1 prevented ULK1 phosphorylation but did not affect autophagosome formation or rates of autophagic flux. Together, these findings suggest that mTORC1 is dispensable for viral protein synthesis and viral control of autophagy during lytic infection and that KSHV undermines mTORC1-dependent cellular processes during the lytic cycle to ensure efficient viral replication. IMPORTANCE All viruses require host cell machinery to synthesize viral proteins. A host cell protein complex known as mechanistic target of rapamycin complex 1 (mTORC1) is a master regulator of protein synthesis. Under nutrient-rich conditions, mTORC1 is active and promotes protein synthesis to meet cellular anabolic demands. Under nutrient-poor conditions or under stress, mTORC1 is rapidly inhibited, global protein synthesis is arrested, and a cellular catabolic process known as autophagy is activated. Kaposi’s sarcoma-associated herpesvirus (KSHV) stimulates mTORC1 activity and utilizes host machinery to synthesize viral proteins. However, we discovered that mTORC1 activity was largely dispensable for viral protein synthesis, genome replication, and the release of infectious progeny. Likewise, during lytic replication, mTORC1 was no longer able to control autophagy. These findings suggest that KSHV undermines mTORC1-dependent cellular processes during the lytic cycle to ensure efficient viral replication.
Collapse
|
28
|
Hua H, Kong Q, Zhang H, Wang J, Luo T, Jiang Y. Targeting mTOR for cancer therapy. J Hematol Oncol 2019; 12:71. [PMID: 31277692 PMCID: PMC6612215 DOI: 10.1186/s13045-019-0754-1] [Citation(s) in RCA: 601] [Impact Index Per Article: 100.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 06/14/2019] [Indexed: 02/05/2023] Open
Abstract
Mechanistic target of rapamycin (mTOR) is a protein kinase regulating cell growth, survival, metabolism, and immunity. mTOR is usually assembled into several complexes such as mTOR complex 1/2 (mTORC1/2). In cooperation with raptor, rictor, LST8, and mSin1, key components in mTORC1 or mTORC2, mTOR catalyzes the phosphorylation of multiple targets such as ribosomal protein S6 kinase β-1 (S6K1), eukaryotic translation initiation factor 4E binding protein 1 (4E-BP1), Akt, protein kinase C (PKC), and type-I insulin-like growth factor receptor (IGF-IR), thereby regulating protein synthesis, nutrients metabolism, growth factor signaling, cell growth, and migration. Activation of mTOR promotes tumor growth and metastasis. Many mTOR inhibitors have been developed to treat cancer. While some of the mTOR inhibitors have been approved to treat human cancer, more mTOR inhibitors are being evaluated in clinical trials. Here, we update recent advances in exploring mTOR signaling and the development of mTOR inhibitors for cancer therapy. In addition, we discuss the mechanisms underlying the resistance to mTOR inhibitors in cancer cells.
Collapse
Affiliation(s)
- Hui Hua
- State Key Laboratory of Biotherapy, Laboratory of Stem Cell Biology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Qingbin Kong
- Laboratory of Oncogene, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Hongying Zhang
- Laboratory of Oncogene, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Jiao Wang
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ting Luo
- Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yangfu Jiang
- Laboratory of Oncogene, Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
29
|
PI3K-AKT-mTOR and NFκB Pathways in Ovarian Cancer: Implications for Targeted Therapeutics. Cancers (Basel) 2019; 11:cancers11070949. [PMID: 31284467 PMCID: PMC6679095 DOI: 10.3390/cancers11070949] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 06/10/2019] [Accepted: 06/30/2019] [Indexed: 02/07/2023] Open
Abstract
Ovarian cancer is the most lethal gynecologic malignancy in the United States, with an estimated 22,530 new cases and 13,980 deaths in 2019. Recent studies have indicated that the phosphoinositol 3 kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR), as well as the nuclear factor-κ light chain enhancer of activated B cells (NFκB) pathways are highly mutated and/or hyper-activated in a majority of ovarian cancer patients, and are associated with advanced grade and stage disease and poor prognosis. In this review, we will investigate PI3K/AKT/mTOR and their interconnection with NFκB pathway in ovarian cancer cells.
Collapse
|