1
|
Li X, Xiong Q, Yang Q, Shi J, Han Y, Dong Y, Qian J, Qian Z, Wang H, Wang T, Wu F. PTPRO inhibits LPS-induced apoptosis in alveolar epithelial cells. Biochem Biophys Res Commun 2024; 718:150083. [PMID: 38735138 DOI: 10.1016/j.bbrc.2024.150083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/03/2024] [Accepted: 05/07/2024] [Indexed: 05/14/2024]
Abstract
Acute lung injury (ALI) and its severe manifestation, acute respiratory distress syndrome (ARDS), represent critical clinical syndromes with multifactorial origins, notably stemming from sepsis within intensive care units (ICUs). Despite their high mortality rates, no selective cure is available beside ventilation support. Apoptosis plays a complex and pivotal role in the pathophysiology of acute lung injury. Excessive apoptosis of alveolar epithelial and microvascular endothelial cells can lead to disruption of lung epithelial barrier integrity, impairing the body's ability to exchange blood and gas. At the same time, apoptosis of damaged or dysfunctional cells, including endothelial and epithelial cells, can help maintain tissue integrity and accelerate recovery from organ pro-inflammatory stress. The balance between pro-survival and pro-apoptotic signals in lung injury determines patient outcomes, making the modulation of apoptosis an area of intense research in the quest for more effective therapies. Here we found that protein tyrosine phosphatase receptor type O (PTPRO), a poorly understood receptor-like protein tyrosine phosphatase, is consistently upregulated in multiple tissue types of mice under septic conditions and in the lung alveolar epithelial cells. PTPRO reduction by its selective short-interfering RNA (siRNA) leads to excessive apoptosis in lung alveolar epithelial cells without affecting cell proliferation. Consistently PTPRO overexpression by a DNA construct attenuates apoptotic signaling induced by LPS. These effects of PTPTO on cellular apoptosis are dependent on an ErbB2/PI3K/Akt/NFκB signaling pathway. Here we revealed a novel regulatory pathway of cellular apoptosis by PTPRO in lung alveolar epithelial cells during sepsis.
Collapse
Affiliation(s)
- Xuemeng Li
- Anhui Provincial Key Laboratory of Immunology in Chronic Diseases, Anhui Provincial Key Laboratory of Infection and Immunology, and Department of Laboratory Medicine, Bengbu Medical University, Bengbu, Anhui Province, China
| | - Qianqian Xiong
- Anhui Provincial Key Laboratory of Immunology in Chronic Diseases, Anhui Provincial Key Laboratory of Infection and Immunology, and Department of Laboratory Medicine, Bengbu Medical University, Bengbu, Anhui Province, China
| | - Qingqing Yang
- Anhui Provincial Key Laboratory of Immunology in Chronic Diseases, Anhui Provincial Key Laboratory of Infection and Immunology, and Department of Laboratory Medicine, Bengbu Medical University, Bengbu, Anhui Province, China
| | - Jing Shi
- Anhui Provincial Key Laboratory of Immunology in Chronic Diseases, Anhui Provincial Key Laboratory of Infection and Immunology, and Department of Laboratory Medicine, Bengbu Medical University, Bengbu, Anhui Province, China
| | - Yuhong Han
- Department of Clinical Laboratory, The Second People's Hospital of Fuyang City, Fuyang, Anhui Province, China
| | - Yishu Dong
- Anhui Provincial Key Laboratory of Immunology in Chronic Diseases, Anhui Provincial Key Laboratory of Infection and Immunology, and Department of Laboratory Medicine, Bengbu Medical University, Bengbu, Anhui Province, China
| | - Jun Qian
- Anhui Provincial Key Laboratory of Immunology in Chronic Diseases, Anhui Provincial Key Laboratory of Infection and Immunology, and Department of Laboratory Medicine, Bengbu Medical University, Bengbu, Anhui Province, China
| | - Zhongqing Qian
- Anhui Provincial Key Laboratory of Immunology in Chronic Diseases, Anhui Provincial Key Laboratory of Infection and Immunology, and Department of Laboratory Medicine, Bengbu Medical University, Bengbu, Anhui Province, China
| | - Hongtao Wang
- Anhui Provincial Key Laboratory of Immunology in Chronic Diseases, Anhui Provincial Key Laboratory of Infection and Immunology, and Department of Laboratory Medicine, Bengbu Medical University, Bengbu, Anhui Province, China
| | - Ting Wang
- Department of Internal Medicine, University of Arizona, Phoenix, AZ, USA
| | - Fengjiao Wu
- Anhui Provincial Key Laboratory of Immunology in Chronic Diseases, Anhui Provincial Key Laboratory of Infection and Immunology, and Department of Laboratory Medicine, Bengbu Medical University, Bengbu, Anhui Province, China.
| |
Collapse
|
2
|
Neupane S, Aryal YP, Kwak HJ, Lee SG, Kim TY, Pokharel E, Kim JY, Kim JH, Sohn WJ, An SY, An CH, Jung JK, Ha JH, Yamamoto H, Cho SW, Lee S, Lee Y, Park KK, Min BK, Park C, Kwon TY, Cho SJ, Kim JY. Developmental roles of glomerular epithelial protein-1 in mice molar morphogenesis. Cell Tissue Res 2024; 395:53-62. [PMID: 37985496 DOI: 10.1007/s00441-023-03841-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 10/27/2023] [Indexed: 11/22/2023]
Abstract
Glomerular epithelial protein-1 (Glepp1), a R3 subtype family of receptor-type protein tyrosine phosphatases, plays important role in the activation of Src family kinases and regulates cellular processes such as cell proliferation, differentiation, and apoptosis. In this study, we firstly examined the functional evaluation of Glepp1 in tooth development and morphogenesis. The precise expression level and developmental function of Glepp1 were examined by RT-qPCR, in situ hybridization, and loss and gain of functional study using a range of in vitro organ cultivation methods. Expression of Glepp1 was detected in the developing tooth germs in cap and bell stage of tooth development. Knocking down Glepp1 at E13 for 2 days showed the altered expression levels of tooth development-related signaling molecules, including Bmps, Dspp, Fgf4, Lef1, and Shh. Moreover, transient knock down of Glepp1 revealed alterations in cellular physiology, examined by the localization patterns of Ki67 and E-cadherin. Similarly, knocking down of Glepp1 showed disrupted enamel rod and interrod formation in 3-week renal transplanted teeth. In addition, due to attrition of odontoblastic layers, the expression signals of Dspp and the localization of NESTIN were almost not detected after knock down of Glepp1; however, their expressions were increased after Glepp1 overexpression. Thus, our results suggested that Glepp1 plays modulating roles during odontogenesis by regulating the expression levels of signaling molecules and cellular events to achieve the proper structural formation of hard tissue matrices in mice molar development.
Collapse
Affiliation(s)
- Sanjiv Neupane
- Department of Biochemistry, School of Dentistry, Kyungpook National University, Daegu, Korea
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, USA
| | - Yam Prasad Aryal
- Department of Biochemistry, School of Dentistry, Kyungpook National University, Daegu, Korea
| | - Hee-Jin Kwak
- School of Biological Sciences, College of Natural Sciences, Chungbuk National University, Cheongju, Korea
| | - Sung-Gwon Lee
- School of Biological Sciences and Technology, Chonnam National University, Gwangju, Korea
| | - Tae-Young Kim
- Department of Biochemistry, School of Dentistry, Kyungpook National University, Daegu, Korea
| | - Elina Pokharel
- Department of Biochemistry, School of Dentistry, Kyungpook National University, Daegu, Korea
| | - Ji-Youn Kim
- Department of Dental Hygiene, Gachon University, Incheon, Korea
| | - Jung-Hyeuk Kim
- School of Biological Sciences, College of Natural Sciences, Chungbuk National University, Cheongju, Korea
| | - Wern-Joo Sohn
- Pre-Major of Cosmetics and Pharmaceutics, Daegu Haany University, Gyeongsan, Korea
| | - Seo-Young An
- Department of Oral and Maxillofacial Radiology, School of Dentistry, Kyungpook National University, Daegu, Korea
| | - Chang-Hyeon An
- Department of Oral and Maxillofacial Radiology, School of Dentistry, Kyungpook National University, Daegu, Korea
| | - Jae-Kwang Jung
- Department of Oral Medicine, School of Dentistry, Kyungpook National University, Daegu, Korea
| | - Jung-Hong Ha
- Department of Conservative Dentistry, School of Dentistry, Kyungpook National University, Daegu, Korea
| | - Hitoshi Yamamoto
- Department of Histology and Developmental Biology, Tokyo Dental College, Tokyo, Japan
| | - Sung-Won Cho
- Division of Anatomy and Developmental Biology, Department of Oral Biology, Yonsei University College of Dentistry, Seoul, Korea
| | - Sanggyu Lee
- School of Life Science, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, Korea
| | - Youngkyun Lee
- Department of Biochemistry, School of Dentistry, Kyungpook National University, Daegu, Korea
| | - Kwang-Kyun Park
- Professor Emeritus Department of Oral Biology, Yonsei University College of Dentistry, Seoul, Korea
| | - Bong-Ki Min
- Center for Research Facilities, Yeungnam University, Gyeongsan, Korea
| | - Chungoo Park
- School of Biological Sciences and Technology, Chonnam National University, Gwangju, Korea
| | - Tae-Yub Kwon
- Department of Dental Biomaterials, School of Dentistry, Kyungpook National University, Daegu, Korea
| | - Sung-Jin Cho
- School of Biological Sciences, College of Natural Sciences, Chungbuk National University, Cheongju, Korea.
| | - Jae-Young Kim
- Department of Biochemistry, School of Dentistry, Kyungpook National University, Daegu, Korea.
| |
Collapse
|
3
|
Liu XW, Hong MJ, Qu YY. Study on the Relationship Between PTPRO Methylation in Plasma and Efficacy Neoadjuvant Chemotherapy in Patients with Early Breast Cancer. Int J Womens Health 2023; 15:1673-1680. [PMID: 37937223 PMCID: PMC10627070 DOI: 10.2147/ijwh.s428038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 10/07/2023] [Indexed: 11/09/2023] Open
Abstract
Objective This study aimed to explore the correlation between PTPRO methylation in plasma and the efficacy of neoadjuvant chemotherapy (NAC) for early breast cancer (BC). Methods Eighty-two patients with early BC undergoing NAC were included. PTPRO methylation status in plasma before and after NAC was detected using methylation-specific PCR and the relationship between PTPRO methylation and NAC efficacy was analyzed. Results The rate of pathologic complete response (pCR) was only 25.0% (12/48) in patients with positive PTPRO methylation result before NAC, but 61 0.8% (21/34) in pre-NAC methylation-negative patients (OR = 0.24, 95% CI: 0.09-0.65, P = 0.005). In addition, the pCR rate was 12.1% (4/33) in patients with positive PTPRO methylation results both before and after NAC, but 53.3% (8/15) in patients with pre-NAC positive methylation and post-NAC negative methylation results (OR = 0.12, 95% CI: 0.03-0.52, P = 0.004). Conclusion Plasma PTPRO methylation is a potential biomarker for predicting the efficacy of NAC in early BC.
Collapse
Affiliation(s)
- Xiang-Wei Liu
- Department of Breast Surgery, The First People’s Hospital of Foshan, Foshan, 528000, People’s Republic of China
| | - Mei-Juan Hong
- Ultrasound Diagnosis and Treatment Center, The First People’s Hospital of Foshan, Foshan, 528000, People’s Republic of China
| | - Yan-Yu Qu
- Departmentof Pathology, The Second People’s Hospital of Foshan, Foshan, 528000, People’s Republic of China
| |
Collapse
|
4
|
Dong H, Lin W, Du L, Yao Z, Luo Y, Li F, Chen S, Huang Y, Ren H, Cai S, Chen Y, Tang H, Qiu X, Pan Y, Huang X, Zhang D, Gao S, Yeung SCJ, Zhang H. PTPRO suppresses lymph node metastasis of esophageal carcinoma by dephosphorylating MET. Cancer Lett 2023:216283. [PMID: 37331584 DOI: 10.1016/j.canlet.2023.216283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 06/06/2023] [Accepted: 06/15/2023] [Indexed: 06/20/2023]
Abstract
Protein tyrosine phosphatase receptor-type O (PTPRO) is a membrane-bound tyrosine phosphatase. Notably, epigenetically silenced PTPRO due to promoter hypermethylation is frequently linked to malignancies. In this study, we used cellular and animal models, and patient samples to demonstrate that PTPRO can suppress the metastasis of esophageal squamous cell carcinoma (ESCC). Mechanistically, PTPRO can inhibit MET-mediated metastasis by dephosphorylating Y1234/1235 in the kinase activation loop of MET. Patients with PTPROlow/p-METhigh had significantly poor prognosis, suggesting that PTPROlow/p-METhigh can serve as an independent prognostic factor for patients with ESCC.
Collapse
Affiliation(s)
- Hongmei Dong
- Institute of Precision Cancer Medicine and Pathology, And Department of Pathology, School of Medicine, And Minister of Education Key Laboratory of Tumor Molecular Biology, Jinan University, Guangzhou, Guangdong, China; Department of General Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Wan Lin
- Cancer Research Center, Shantou University Medical College, Shantou, Guangdong, China
| | - Liang Du
- Institute of Precision Cancer Medicine and Pathology, And Department of Pathology, School of Medicine, And Minister of Education Key Laboratory of Tumor Molecular Biology, Jinan University, Guangzhou, Guangdong, China
| | - Zhimeng Yao
- Institute of Precision Cancer Medicine and Pathology, And Department of Pathology, School of Medicine, And Minister of Education Key Laboratory of Tumor Molecular Biology, Jinan University, Guangzhou, Guangdong, China; Department of Urology Surgery, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, Guangdong, China
| | - Yichen Luo
- Institute of Precision Cancer Medicine and Pathology, And Department of Pathology, School of Medicine, And Minister of Education Key Laboratory of Tumor Molecular Biology, Jinan University, Guangzhou, Guangdong, China
| | - Feifei Li
- Department of Oncology, People's Hospital of Leshan, Leshan, Sichuan, China
| | - Shuanglong Chen
- Institute of Precision Cancer Medicine and Pathology, And Department of Pathology, School of Medicine, And Minister of Education Key Laboratory of Tumor Molecular Biology, Jinan University, Guangzhou, Guangdong, China
| | - Yiteng Huang
- Health Care Center, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Hongzheng Ren
- Department of Pathology, Gongli Hospital, Naval Medical University, Shanghai, China; Department of Pathology, Heping Hospital, Changzhi Medical College, Changzhi, Shanxi, China
| | - Songwang Cai
- Department of Thoracic Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Yexi Chen
- Department of General Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Hui Tang
- Department of Central Laboratory, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China; Department of Clinical Laboratory, The Fifth Affiliated Hospital of Jinan University (Heyuan Shenhe People's Hospital), Heyuan, Guangdong, China
| | - Xiaofu Qiu
- Department of Urology, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong, China
| | - Yunlong Pan
- Department of General Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Xingxu Huang
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center of Nanjing University, Nanjing, Jiangsu, China
| | - Dianzheng Zhang
- Department of Biomedical Sciences, Philadelphia College of Osteopathic Medicine, Philadelphia, PA, USA
| | - Shegan Gao
- College of Clinical Medicine, The First Affiliated Hospital of Henan University of Science and Technology, Henan Key Laboratory of Cancer Epigenetics, Luoyang, Henan, China.
| | - Sai-Ching Jim Yeung
- Department of Emergency Medicine, University of Texas MD Anderson Cancer Center and Department of Endocrine Neoplasia and Hormonal Disorders, University of Texas MD Anderson Cancer Center, Houston, USA.
| | - Hao Zhang
- Institute of Precision Cancer Medicine and Pathology, And Department of Pathology, School of Medicine, And Minister of Education Key Laboratory of Tumor Molecular Biology, Jinan University, Guangzhou, Guangdong, China; Department of General Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China.
| |
Collapse
|
5
|
Wang L, Paudel BB, McKnight RA, Janes KA. Nucleocytoplasmic transport of active HER2 causes fractional escape from the DCIS-like state. Nat Commun 2023; 14:2110. [PMID: 37055441 PMCID: PMC10102026 DOI: 10.1038/s41467-023-37914-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 04/05/2023] [Indexed: 04/15/2023] Open
Abstract
Activation of HER2/ErbB2 coincides with escape from ductal carcinoma in situ (DCIS) premalignancy and disrupts 3D organization of cultured breast-epithelial spheroids. The 3D phenotype is infrequent, however, and mechanisms for its incomplete penetrance have been elusive. Using inducible HER2/ErbB2-EGFR/ErbB1 heterodimers, we match phenotype penetrance to the frequency of co-occurring transcriptomic changes and uncover a reconfiguration in the karyopherin network regulating ErbB nucleocytoplasmic transport. Induction of the exportin CSE1L inhibits nuclear accumulation of ErbBs, whereas nuclear ErbBs silence the importin KPNA1 by inducing miR-205. When these negative feedbacks are incorporated into a validated systems model of nucleocytoplasmic transport, steady-state localization of ErbB cargo becomes ultrasensitive to initial CSE1L abundance. Erbb2-driven carcinomas with Cse1l deficiency outgrow less irregularly from mammary ducts, and NLS-attenuating mutants or variants of HER2 favor escape in 3D culture. We conclude here that adaptive nucleocytoplasmic relocalization of HER2 creates a systems-level molecular switch at the premalignant-to-malignant transition.
Collapse
Affiliation(s)
- Lixin Wang
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| | - B Bishal Paudel
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| | - R Anthony McKnight
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
- Olympus Veran Technologies, St. Louis, MO, USA
| | - Kevin A Janes
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA.
- Department of Biochemistry & Molecular Genetics, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
6
|
Atlas E, Dimitrova V. Bisphenol S and Bisphenol A disrupt morphogenesis of MCF-12A human mammary epithelial cells. Sci Rep 2019; 9:16005. [PMID: 31690802 PMCID: PMC6831626 DOI: 10.1038/s41598-019-52505-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 10/18/2019] [Indexed: 02/06/2023] Open
Abstract
Breast cancer is one of the most common cancers diagnosed in women worldwide. Genetic predisposition, such as breast cancer 1 (BRCA1) mutations, account for a minor percentage of the total breast cancer incidences. And thus, many life style factors have also been linked to the disease such as smoking, alcohol consumption and obesity. Emerging studies show that environmental pollutants may also play a role. Bisphenol-A (BPA) has been suspected to contribute to breast cancer development, and has been shown to affect mammary gland development amongst other effects. This prompted its replacement with other bisphenol analogs such as, bisphenol-S (BPS). In this study we used the human mammary epithelial cells, MCF-12A, grown in extracellular matrix to investigate the ability of BPA and BPS to disrupt mammary epithelial cells organization. We show that both BPA and BPS were equipotent in disrupting the organization of the acinar structures, despite BPS being less oestrogenic by other assays. Further, treatment with both compounds enabled the cells to invade the lumen of the structures. This study shows that BPS and BPA are environmental pollutants that may affect mammary development and may contribute to the development of breast cancer.
Collapse
Affiliation(s)
- Ella Atlas
- Environmental Health Science and Research Bureau, Health Canada, 50 Colombine Driveway, Ottawa, Canada. .,Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Canada.
| | - Valeria Dimitrova
- Environmental Health Science and Research Bureau, Health Canada, 50 Colombine Driveway, Ottawa, Canada.,Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Canada
| |
Collapse
|
7
|
Abe Y, Tada A, Isoyama J, Nagayama S, Yao R, Adachi J, Tomonaga T. Improved phosphoproteomic analysis for phosphosignaling and active-kinome profiling in Matrigel-embedded spheroids and patient-derived organoids. Sci Rep 2018; 8:11401. [PMID: 30061712 PMCID: PMC6065387 DOI: 10.1038/s41598-018-29837-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 06/04/2018] [Indexed: 11/17/2022] Open
Abstract
Many attempts have been made to reproduce the three-dimensional (3D) cancer behavior. For that purpose, Matrigel, an extracellular matrix from Engelbreth-Holm-Swarm mouse sarcoma cell, is widely used in 3D cancer models such as scaffold-based spheroids and patient-derived organoids. However, severe ion suppression caused by contaminants from Matrigel hampers large-scale phosphoproteomics. In the present study, we successfully performed global phosphoproteomics from Matrigel-embedded spheroids and organoids. Using acetone precipitations of tryptic peptides, we identified more than 20,000 class 1 phosphosites from HCT116 spheroids. Bioinformatic analysis revealed that phosphoproteomic status are significantly affected by the method used for the recovery from the Matrigel, i.e., Dispase or Cell Recovery Solution. Furthermore, we observed the activation of several phosphosignalings only in spheroids and not in adherent cells which are coincident with previous study using 3D culture. Finally, we demonstrated that our protocol enabled us to identify more than 20,000 and nearly 3,000 class 1 phosphosites from 1.4 mg and 150 μg of patient-derived organoid, respectively. Additionally, we were able to quantify phosphosites with high reproducibility (r = 0.93 to 0.95). Our phosphoproteomics protocol is useful for analyzing the phosphosignalings of 3D cancer behavior and would be applied for precision medicine with patient-derived organoids.
Collapse
Affiliation(s)
- Yuichi Abe
- Laboratory of Proteome Research, National Institute of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka, 567-0085, Japan.,Laboratory of Proteomics for Drug Discovery, Center for Drug Design Research, National Institute of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka, 567-0085, Japan
| | - Asa Tada
- Laboratory of Proteome Research, National Institute of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka, 567-0085, Japan.,Laboratory of Proteomics for Drug Discovery, Center for Drug Design Research, National Institute of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka, 567-0085, Japan
| | - Junko Isoyama
- Laboratory of Proteome Research, National Institute of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka, 567-0085, Japan.,Laboratory of Proteomics for Drug Discovery, Center for Drug Design Research, National Institute of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka, 567-0085, Japan
| | - Satoshi Nagayama
- Department of Gastroenterological Surgery, Cancer Institute Hospital, Japanese Foundation for Cancer Research, 135-8550, Tokyo, Japan
| | - Ryoji Yao
- Division of Cell Biology, Cancer Institute, Japanese Foundation for Cancer Research, 135-8550, Tokyo, Japan
| | - Jun Adachi
- Laboratory of Proteome Research, National Institute of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka, 567-0085, Japan.,Laboratory of Proteomics for Drug Discovery, Center for Drug Design Research, National Institute of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka, 567-0085, Japan
| | - Takeshi Tomonaga
- Laboratory of Proteome Research, National Institute of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka, 567-0085, Japan. .,Laboratory of Proteomics for Drug Discovery, Center for Drug Design Research, National Institute of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka, 567-0085, Japan.
| |
Collapse
|
8
|
Contribution of three-dimensional architecture and tumor-associated fibroblasts to hepcidin regulation in breast cancer. Oncogene 2018; 37:4013-4032. [PMID: 29695834 PMCID: PMC6054540 DOI: 10.1038/s41388-018-0243-y] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 02/02/2018] [Accepted: 03/06/2018] [Indexed: 01/08/2023]
Abstract
Hepcidin is a peptide hormone that negatively regulates iron efflux and plays an important role in controlling the growth of breast tumors. In patients with breast cancer, the combined expression of hepcidin and its membrane target, ferroportin, predict disease outcome. However, mechanisms that control hepcidin expression in breast cancer cells remain largely unknown. Here we use three-dimensional breast cancer spheroids derived from cell lines and breast cancer patients to probe mechanisms of hepcidin regulation in breast cancer. We observe that the extent of hepcidin induction and pathways of its regulation are markedly changed in breast cancer cells grown in three dimensions. In monolayer culture, BMPs, particularly BMP6, regulate hepcidin transcription. When breast cancer cells are grown as spheroids, there is a >10 fold induction in hepcidin transcripts. Microarray analysis combined with knockdown experiments reveal that GDF-15 is the primary mediator of this change. The increase in hepcidin as breast cells develop a three-dimensional architecture increases intracellular iron, as indicated by an increase in the iron storage protein ferritin. Immunohistochemical staining of human breast tumors confirms that both GDF-15 and hepcidin are expressed in breast cancer specimens. Further, levels of GDF-15 are significantly correlated with levels of hepcidin at both the mRNA and protein level in patient samples, consistent with a role for GDF-15 in control of hepcidin in human breast tumors. Inclusion of tumor-associated fibroblasts in breast cancer spheroids further induces hepcidin. This induction is mediated by fibroblast-dependent secretion of IL-6. Breast cancer cells grown as spheroids are uniquely receptive to IL-6-dependent induction of hepcidin by tumor-associated fibroblasts, since IL-6 does not induce hepcidin in cells grown as monolayers. Collectively, our results suggest a new paradigm for tumor-mediated control of iron through the control of hepcidin by tumor architecture and the breast tumor microenvironment.
Collapse
|
9
|
Modhukur V, Iljasenko T, Metsalu T, Lokk K, Laisk-Podar T, Vilo J. MethSurv: a web tool to perform multivariable survival analysis using DNA methylation data. Epigenomics 2018; 10:277-288. [DOI: 10.2217/epi-2017-0118] [Citation(s) in RCA: 198] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Aim: To develop a web tool for survival analysis based on CpG methylation patterns. Materials & methods: We utilized methylome data from ‘The Cancer Genome Atlas’ and used the Cox proportional-hazards model to develop an interactive web interface for survival analysis. Results: MethSurv enables survival analysis for a CpG located in or around the proximity of a query gene. For further mining, cluster analysis for a query gene to associate methylation patterns with clinical characteristics and browsing of top biomarkers for each cancer type are provided. MethSurv includes 7358 methylomes from 25 different human cancers. Conclusion: The MethSurv tool is a valuable platform for the researchers without programming skills to perform the initial assessment of methylation-based cancer biomarkers.
Collapse
Affiliation(s)
| | - Tatjana Iljasenko
- Institute of Computer Science, University of Tartu, 50409 Tartu, Estonia
| | - Tauno Metsalu
- Institute of Computer Science, University of Tartu, 50409 Tartu, Estonia
| | - Kaie Lokk
- United Laboratories of Tartu University Hospital, Tartu University Hospital, 50406 Tartu, Estonia
| | - Triin Laisk-Podar
- Competence Centre on Health Technologies, 50410 Tartu, Estonia
- Women's Clinic, Institute of Clinical Medicine, University of Tartu, 50406 Tartu, Estonia
| | - Jaak Vilo
- Institute of Computer Science, University of Tartu, 50409 Tartu, Estonia
- Health Data Analytics, Software Technologies & Applications Competence Center STACC, Ülikooli 2, 51003 Tartu, Estonia
| |
Collapse
|
10
|
Zhang S, Fan G, Hao Y, Hammell M, Wilkinson JE, Tonks NK. Suppression of protein tyrosine phosphatase N23 predisposes to breast tumorigenesis via activation of FYN kinase. Genes Dev 2017; 31:1939-1957. [PMID: 29066500 PMCID: PMC5710140 DOI: 10.1101/gad.304261.117] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 10/06/2017] [Indexed: 12/18/2022]
Abstract
Zhang et al. identified PTPN23 as a suppressor of cell motility and invasion in mammary epithelial and breast cancer cells. They validated the underlying mechanism of PTPN23 function in breast tumorigenesis as that of a key phosphatase that normally suppresses the activity of FYN in two different models. Disruption of the balanced modulation of reversible tyrosine phosphorylation has been implicated in the etiology of various human cancers, including breast cancer. Protein Tyrosine Phosphatase N23 (PTPN23) resides in chromosomal region 3p21.3, which is hemizygously or homozygously lost in some breast cancer patients. In a loss-of-function PTPome screen, our laboratory identified PTPN23 as a suppressor of cell motility and invasion in mammary epithelial and breast cancer cells. Now, our TCGA (The Cancer Genome Atlas) database analyses illustrate a correlation between low PTPN23 expression and poor survival in breast cancers of various subtypes. Therefore, we investigated the tumor-suppressive function of PTPN23 in an orthotopic transplantation mouse model. Suppression of PTPN23 in Comma 1Dβ cells induced breast tumors within 56 wk. In PTPN23-depleted tumors, we detected hyperphosphorylation of the autophosphorylation site tyrosine in the SRC family kinase (SFK) FYN as well as Tyr142 in β-catenin. We validated the underlying mechanism of PTPN23 function in breast tumorigenesis as that of a key phosphatase that normally suppresses the activity of FYN in two different models. We demonstrated that tumor outgrowth from PTPN23-deficient BT474 cells was suppressed in a xenograft model in vivo upon treatment with AZD0530, an SFK inhibitor. Furthermore, double knockout of FYN and PTPN23 via CRISPR/CAS9 also attenuated tumor outgrowth from PTPN23 knockout Cal51 cells. Overall, this mechanistic analysis of the tumor-suppressive function of PTPN23 in breast cancer supports the identification of FYN as a therapeutic target for breast tumors with heterozygous or homozygous loss of PTPN23.
Collapse
Affiliation(s)
- Siwei Zhang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA.,Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York 11794, USA
| | - Gaofeng Fan
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA.,School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Yuan Hao
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Molly Hammell
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - John Erby Wilkinson
- Unit for Laboratory Animal Medicine, Department of Pathology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Nicholas K Tonks
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| |
Collapse
|
11
|
Meeusen B, Janssens V. Tumor suppressive protein phosphatases in human cancer: Emerging targets for therapeutic intervention and tumor stratification. Int J Biochem Cell Biol 2017; 96:98-134. [PMID: 29031806 DOI: 10.1016/j.biocel.2017.10.002] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 10/04/2017] [Accepted: 10/05/2017] [Indexed: 02/06/2023]
Abstract
Aberrant protein phosphorylation is one of the hallmarks of cancer cells, and in many cases a prerequisite to sustain tumor development and progression. Like protein kinases, protein phosphatases are key regulators of cell signaling. However, their contribution to aberrant signaling in cancer cells is overall less well appreciated, and therefore, their clinical potential remains largely unexploited. In this review, we provide an overview of tumor suppressive protein phosphatases in human cancer. Along their mechanisms of inactivation in defined cancer contexts, we give an overview of their functional roles in diverse signaling pathways that contribute to their tumor suppressive abilities. Finally, we discuss their emerging roles as predictive or prognostic markers, their potential as synthetic lethality targets, and the current feasibility of their reactivation with pharmacologic compounds as promising new cancer therapies. We conclude that their inclusion in clinical practice has obvious potential to significantly improve therapeutic outcome in various ways, and should now definitely be pushed forward.
Collapse
Affiliation(s)
- Bob Meeusen
- Laboratory of Protein Phosphorylation & Proteomics, Dept. of Cellular & Molecular Medicine, Faculty of Medicine, KU Leuven & Leuven Cancer Institute (LKI), KU Leuven, Belgium
| | - Veerle Janssens
- Laboratory of Protein Phosphorylation & Proteomics, Dept. of Cellular & Molecular Medicine, Faculty of Medicine, KU Leuven & Leuven Cancer Institute (LKI), KU Leuven, Belgium.
| |
Collapse
|
12
|
Metabolic re-wiring of isogenic breast epithelial cell lines following epithelial to mesenchymal transition. Cancer Lett 2017; 396:117-129. [DOI: 10.1016/j.canlet.2017.03.019] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 03/03/2017] [Accepted: 03/12/2017] [Indexed: 12/22/2022]
|
13
|
Ming F, Sun Q. Epigenetically silenced PTPRO functions as a prognostic marker and tumor suppressor in human lung squamous cell carcinoma. Mol Med Rep 2017; 16:746-754. [PMID: 28586036 PMCID: PMC5482203 DOI: 10.3892/mmr.2017.6665] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 03/16/2017] [Indexed: 12/18/2022] Open
Abstract
Protein tyrosine phosphatase receptor-type O (PTPRO), a member of the PTP family, has been frequently reported as potential tumor suppressor in many types of cancer. However, the exact function of PTPRO in lung squamous cell carcinoma (LSCC) remains unclear. Bisulfite sequencing and methylation specific polymerase chain reaction (PCR) were used to identify the methylation status of PTPRO in LSCC cells, and quantitative methylation specific PCR was used to evaluate the methylation levels of PTPRO in LSCC patients. Stably expressing PTPRO vectors were constructed and transfected into H520 and SK-MES-1 cells, followed by MTT and colony formation assays, and analysis of tumor weight and volume in in vivo mouse xenograft models. The present study demonstrated that the CpG island of PTPRO exon 1 was obviously hypermethylated in LSCC cells and tissues. The mRNA expression of PTPRO could be restored by treatment with a demethylation agent. Increased methylation and decreased mRNA levels of PTPRO were observed in LSCC samples compared with adjacent healthy tissues, and were associated with poor prognosis of patients. The mRNA expression of PTPRO was negatively correlated with its methylation level in tumors. Functionally, ectopic PTPRO expression in LSCC cells significantly inhibited the proliferation rates, and colony formation, in comparison with control and non-transfected cells. In vivo assays confirmed the inhibitory effect of PTPRO on LSCC cell growth. In conclusion, these data provided evidence that epigenetic regulation of PTPRO impairs its tumor suppressor role in LSCC, and restoration of PTPRO may be a potential therapeutic strategy.
Collapse
Affiliation(s)
- Fei Ming
- Department of Thoracic Surgery, Hubei Cancer Hospital, Wuhan, Hubei 430000, P.R. China
| | - Qianqiang Sun
- Department of Thoracic Surgery, Hubei Cancer Hospital, Wuhan, Hubei 430000, P.R. China
| |
Collapse
|
14
|
Gargiulo L, May M, Rivero EM, Copsel S, Lamb C, Lydon J, Davio C, Lanari C, Lüthy IA, Bruzzone A. A Novel Effect of β-Adrenergic Receptor on Mammary Branching Morphogenesis and its Possible Implications in Breast Cancer. J Mammary Gland Biol Neoplasia 2017; 22:43-57. [PMID: 28074314 DOI: 10.1007/s10911-017-9371-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 01/02/2017] [Indexed: 12/20/2022] Open
Abstract
Understanding the mechanisms that govern normal mammary gland development is crucial to the comprehension of breast cancer etiology. β-adrenergic receptors (β-AR) are targets of endogenous catecholamines such as epinephrine that have gained importance in the context of cancer biology. Differences in β2-AR expression levels may be responsible for the effects of epinephrine on tumor vs non-tumorigenic breast cell lines, the latter expressing higher levels of β2-AR. To study regulation of the breast cell phenotype by β2-AR, we over-expressed β2-AR in MCF-7 breast cancer cells and knocked-down the receptor in non-tumorigenic MCF-10A breast cells. In MCF-10A cells having knocked-down β2-AR, epinephrine increased cell proliferation and migration, similar to the response by tumor cells. In contrast, in MCF-7 cells overexpressing the β2-AR, epinephrine decreased cell proliferation and migration and increased adhesion, mimicking the response of the non-tumorigenic MCF-10A cells, thus underscoring that β2-AR expression level is a key player in cell behavior. β-adrenergic stimulation with isoproterenol induced differentiation of breast cells growing in 3-dimension cell culture, and also the branching of murine mammary epithelium in vivo. Branching induced by isoproterenol was abolished in fulvestrant or tamoxifen-treated mice, demonstrating that the effect of β-adrenergic stimulation on branching is dependent on the estrogen receptor (ER). An ER-independent effect of isoproterenol on lumen architecture was nonetheless found. Isoproterenol significantly increased the expression of ERα, Ephrine-B1 and fibroblast growth factors in the mammary glands of mice, and in MCF-10A cells. In a poorly differentiated murine ductal carcinoma, isoproterenol also decreased tumor growth and induced tumor differentiation. This study highlights that catecholamines, through β-AR activation, seem to be involved in mammary gland development, inducing mature duct formation. Additionally, this differentiating effect could be resourceful in a breast tumor context.
Collapse
Affiliation(s)
- Lucía Gargiulo
- Instituto de Biología y Medicina Experimental-CONICET, Vuelta de Obligado 2490, C1428ADN, Buenos Aires, CABA, Argentina
| | - María May
- Instituto de Biología y Medicina Experimental-CONICET, Vuelta de Obligado 2490, C1428ADN, Buenos Aires, CABA, Argentina
| | - Ezequiel M Rivero
- Instituto de Biología y Medicina Experimental-CONICET, Vuelta de Obligado 2490, C1428ADN, Buenos Aires, CABA, Argentina
| | - Sabrina Copsel
- Instituto de Biología y Medicina Experimental-CONICET, Vuelta de Obligado 2490, C1428ADN, Buenos Aires, CABA, Argentina
- Laboratorio de Farmacología de Receptores, Departamento de Farmacología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junin 956, 1113, Buenos Aires, CABA, Argentina
| | - Caroline Lamb
- Instituto de Biología y Medicina Experimental-CONICET, Vuelta de Obligado 2490, C1428ADN, Buenos Aires, CABA, Argentina
| | - John Lydon
- Department of Molecular & Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Carlos Davio
- Laboratorio de Farmacología de Receptores, Departamento de Farmacología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junin 956, 1113, Buenos Aires, CABA, Argentina
| | - Claudia Lanari
- Instituto de Biología y Medicina Experimental-CONICET, Vuelta de Obligado 2490, C1428ADN, Buenos Aires, CABA, Argentina
| | - Isabel A Lüthy
- Instituto de Biología y Medicina Experimental-CONICET, Vuelta de Obligado 2490, C1428ADN, Buenos Aires, CABA, Argentina
| | - Ariana Bruzzone
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), CONICET-Universidad Nacional del Sur, Camino La Carrindanga km 7, 8000, Bahía Blanca, Argentina.
| |
Collapse
|
15
|
Wakim J, Arman E, Becker-Herman S, Kramer MP, Bakos E, Shachar I, Elson A. The PTPROt tyrosine phosphatase functions as an obligate haploinsufficient tumor suppressor in vivo in B-cell chronic lymphocytic leukemia. Oncogene 2017; 36:3686-3694. [PMID: 28166196 DOI: 10.1038/onc.2016.523] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 12/02/2016] [Accepted: 12/22/2016] [Indexed: 01/30/2023]
Abstract
The tyrosine phosphatase PTPROt is a suggested tumor suppressor (TS) in B-cell chronic lymphocytic leukemia (CLL), and its expression is reduced in this disease. In order to examine how reduced PTPROt expression affects CLL in vivo we induced CLL in PTPROt-targeted mice. Unexpectedly, loss of both Ptprot alleles delayed disease detection and progression and lengthened survival relative to mice carrying two intact alleles, indicating that PTPROt fulfills a novel tumor-promoting role in CLL. Tumor cells from mice lacking PTPROt exhibited reduced B-cell receptor (BCR)-induced signaling, as well as increased apoptosis and autophagy. Inhibition of BCR/Src signaling in CLL cells induced their apoptosis, indicating that these findings are linked causally. These results suggest a cell-autonomous mechanism for the weakened CLL phenotype of PTPROt-deficient mice and uncover non-redundant roles for PTPROt in support of BCR signaling and survival of CLL cells. In contrast, loss of only one Ptprot allele induced earlier detection and progression of CLL and reduced survival, consistent with a tumor-suppressing role for PTPROt. Tumor cells from mice lacking one or both Ptprot allele exhibited increased interleukin-10 (IL-10) expression and signaling, factors known to support CLL; cells lacking one Ptprot alleles exhibited normal BCR signaling and cell death rates. We conclude that loss of one Ptprot allele promotes CLL, most likely by activating IL-10 signaling. Loss of both Ptprot alleles also reduces BCR signaling and increases cell death rates, offsetting the IL-10 effects and reducing the severity of the disease. PTPROt thus functions as an obligate haploinsufficient TS in CLL, where its expression levels determine its role as a promoter or inhibitor of the tumorigenic process in mice. Partial loss of PTPROt generates the strongest disease phenotype, suggesting that its intermediate expression levels in CLL are selected for.
Collapse
Affiliation(s)
- J Wakim
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot, Israel
| | - E Arman
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot, Israel
| | - S Becker-Herman
- Department of Immunology, The Weizmann Institute of Science, Rehovot, Israel
| | - M P Kramer
- Department of Immunology, The Weizmann Institute of Science, Rehovot, Israel
| | - E Bakos
- Department of Immunology, The Weizmann Institute of Science, Rehovot, Israel
| | - I Shachar
- Department of Immunology, The Weizmann Institute of Science, Rehovot, Israel
| | - A Elson
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
16
|
Dong H, Ma L, Gan J, Lin W, Chen C, Yao Z, Du L, Zheng L, Ke C, Huang X, Song H, Kumar R, Yeung SC, Zhang H. PTPRO represses ERBB2-driven breast oncogenesis by dephosphorylation and endosomal internalization of ERBB2. Oncogene 2017; 36:410-422. [PMID: 27345410 PMCID: PMC5269534 DOI: 10.1038/onc.2016.213] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 05/05/2016] [Accepted: 05/08/2016] [Indexed: 02/05/2023]
Abstract
The plasma membrane-associated tyrosine phosphatase PTPRO is frequently transcriptionally repressed in cancers and signifies poor prognosis of breast cancer patients. In this study, deletion of Ptpro in MMTV-Erbb2 transgenic mice dramatically shortened the mammary tumor latency and accelerated tumor growth due to loss of Ptpro within the breast cancer cells but not in surrounding tissue as confirmed by hetero-transplantation studies. Both in vitro and in vivo data demonstrated that the phosphatase activity was required for the inactivation of ERBB2 and its downstream signaling. PTPRO regulated the phosphorylation status of ERBB2 at Y1248. Co-immunoprecipitation and proximity ligation assay (Duolink) indicated that PTPRO directly physically interacted with ERBB2. Moreover, PTPRO phosphatase activity shortened the half-life of ERBB2 by increasing endocytotic degradation. PTPRO reexpression by demethylation treatment using 5-azacytidine reduced the proliferation and colony formation potential in ERBB2-positive breast cancer cells. Taken together, PTPRO inhibited ERBB2-driven breast cancer through dephosphorylation leading to dual effects of ERBB2 signaling suppression and endosomal internalization of ERBB2, Therefore, reexpression of PTPRO may be a potential therapy for ERBB2-overexpressing breast cancer.
Collapse
Affiliation(s)
- H Dong
- Cancer Research Center, Shantou University Medical College, Shantou, China
| | - L Ma
- Department of Gastroenterology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - J Gan
- Cancer Research Center, Shantou University Medical College, Shantou, China
| | - W Lin
- Cancer Research Center, Shantou University Medical College, Shantou, China
| | - C Chen
- Cancer Research Center, Shantou University Medical College, Shantou, China
| | - Z Yao
- Cancer Research Center, Shantou University Medical College, Shantou, China
| | - L Du
- Cancer Research Center, Shantou University Medical College, Shantou, China
| | - L Zheng
- Cancer Research Center, Shantou University Medical College, Shantou, China
| | - C Ke
- Cancer Research Center, Shantou University Medical College, Shantou, China
| | - X Huang
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center of Nanjing University, Nanjing, China
| | - H Song
- Department of Cell Biology, Xi'an Jiaotong University Suzhou Academy, Suzhou, China
| | - R Kumar
- Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, George Washington University, Washington DC, USA
| | - S C Yeung
- Cancer Research Center, Shantou University Medical College, Shantou, China
- Department of Emergency Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Endocrine Neoplasia and Hormonal Disorders, University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Endocrine Neoplasia and Hormonal Disorders, University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA. E-mail:
| | - H Zhang
- Cancer Research Center, Shantou University Medical College, Shantou, China
- Department of Biotherapy, Affiliated Cancer Hospital of Shantou University Medical College, Shantou, China
- Cancer Research Center, Shantou University Medical College, Xinling Road No. 22, Shantou 515041, ChinaE-mail:
| |
Collapse
|
17
|
A first approach to evaluate the cell dose in highly porous scaffolds by using a nondestructive metabolic method. Future Sci OA 2015; 1:FSO58. [PMID: 28031911 PMCID: PMC5137907 DOI: 10.4155/fso.15.58] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Background: In cell-based therapies, in vitro studies on biomimetic cell–scaffold constructs can facilitate the determination of the cell dose, a key factor in guaranteeing the effectiveness of the treatment. However, highly porous scaffolds do not allow a nondestructive evaluation of the cell number. Our objective was to develop a nondestructive method for human mesenchymal stem cells dose evaluation in a highly porous scaffold for bone regeneration. Materials & measurement method: Proliferation trend of human mesenchymal stem cells on Biocoral® scaffolds was measured by a resazurin-based assay here optimized for 3D cultures. The method allows to noninvasively follow the cell proliferation on biocorals over 3 weeks with very high reproducibility. Conclusion: This reliable method could be a powerful tool in cell-based therapies for cell dose determination. Stem cells regenerate damaged tissues when transplanted into the patient within matrices mimicking the tissues architecture and mechanical properties. Cell number needs to be appropriate to allow the cell survival in the new environment and to stimulate the cell differentiation into the new tissue. In vitro experiments give important hints to determine the appropriate number to transplant in the patient: in this study cells are grown on highly porous matrices for bone regeneration and their number is monitored over time by a method which does not perturb the system and which was here optimized and evaluated as highly reliable.
Collapse
|
18
|
Clocchiatti A, Di Giorgio E, Viviani G, Streuli C, Sgorbissa A, Picco R, Cutano V, Brancolini C. The MEF2-HDAC axis controls proliferation of mammary epithelial cells and acini formation in vitro. J Cell Sci 2015; 128:3961-76. [PMID: 26403201 DOI: 10.1242/jcs.170357] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 09/15/2015] [Indexed: 12/31/2022] Open
Abstract
The myocyte enhancer factor 2 and histone deacetylase (MEF2-HDAC) axis is a master regulator of different developmental programs and adaptive responses in adults. In this paper, we have investigated the contribution of the axis to the regulation of epithelial morphogenesis, using 3D organotypic cultures of MCF10A cells as a model. We have demonstrated that MEF2 transcriptional activity is upregulated during acini formation, which coincides with exit from the proliferative phase. Upregulation of the transcription of MEF2 proteins is coupled to downregulation of HDAC7, which occurs independently from changes in mRNA levels, and proteasome- or autophagy-mediated degradation. During acini formation, the MEF2-HDAC axis contributes to the promotion of cell cycle exit, through the engagement of the CDK inhibitor CDKN1A. Only in proliferating cells can HDAC7 bind to the first intron of the CDKN1A gene, a region characterized by epigenetic markers of active promoters and enhancers. In cells transformed by the oncogene HER2 (ERBB2), acini morphogenesis is altered, MEF2 transcription is repressed and HDAC7 is continuously expressed. Importantly, reactivation of MEF2 transcriptional activity in these cells, through the use of a HER2 inhibitor or by enhancing MEF2 function, corrected the proliferative defect and re-established normal acini morphogenesis.
Collapse
Affiliation(s)
- Andrea Clocchiatti
- Dipartiment of Medical and Biological Sciences, Università degli Studi di Udine, P.le Kolbe 4, Udine 33100, Italy
| | - Eros Di Giorgio
- Dipartiment of Medical and Biological Sciences, Università degli Studi di Udine, P.le Kolbe 4, Udine 33100, Italy
| | - Giulia Viviani
- Dipartiment of Medical and Biological Sciences, Università degli Studi di Udine, P.le Kolbe 4, Udine 33100, Italy
| | - Charles Streuli
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Andrea Sgorbissa
- Dipartiment of Medical and Biological Sciences, Università degli Studi di Udine, P.le Kolbe 4, Udine 33100, Italy
| | - Raffaella Picco
- Dipartiment of Medical and Biological Sciences, Università degli Studi di Udine, P.le Kolbe 4, Udine 33100, Italy
| | - Valentina Cutano
- Dipartiment of Medical and Biological Sciences, Università degli Studi di Udine, P.le Kolbe 4, Udine 33100, Italy
| | - Claudio Brancolini
- Dipartiment of Medical and Biological Sciences, Università degli Studi di Udine, P.le Kolbe 4, Udine 33100, Italy
| |
Collapse
|
19
|
Asbagh LA, Vazquez I, Vecchione L, Budinska E, De Vriendt V, Baietti MF, Steklov M, Jacobs B, Hoe N, Singh S, Imjeti NS, Zimmermann P, Sablina A, Tejpar S. The tyrosine phosphatase PTPRO sensitizes colon cancer cells to anti-EGFR therapy through activation of SRC-mediated EGFR signaling. Oncotarget 2015; 5:10070-83. [PMID: 25301722 PMCID: PMC4259406 DOI: 10.18632/oncotarget.2458] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Inappropriate activation of epidermal growth factor receptor (EGFR) plays a causal role in many cancers including colon cancer. The activation of EGFR by phosphorylation is balanced by receptor kinase and protein tyrosine phosphatase activities. However, the mechanisms of negative EGFR regulation by tyrosine phosphatases remain largely unexplored. Our previous results indicate that protein tyrosine phosphatase receptor type O (PTPRO) is down-regulated in a subset of colorectal cancer (CRC) patients with a poor prognosis. Here we identified PTPRO as a phosphatase that negatively regulates SRC by directly dephosphorylating Y416 phosphorylation site. SRC activation triggered by PTPRO down-regulation induces phosphorylation of both EGFR at Y845 and the c-CBL ubiquitin ligase at Y731. Increased EGFR phosphorylation at Y845 promotes its receptor activity, whereas enhanced phosphorylation of c-CBL triggers its degradation promoting EGFR stability. Importantly, hyperactivation of SRC/EGFR signaling triggered by loss of PTPRO leads to high resistance of colon cancer to EGFR inhibitors. Our results not only highlight the PTPRO contribution in negative regulation of SRC/EGFR signaling but also suggest that tumors with low PTPRO expression may be therapeutically targetable by anti-SRC therapies.
Collapse
Affiliation(s)
- Layka Abbasi Asbagh
- Laboratory of Molecular Digestive Oncology, Department of Oncology, KU Leuven, Leuven, Belgium. Laboratory for Mechanisms of Cell Transformation, VIB Center for the Biology of Disease, VIB, Belgium. Center for Human Genetics, KU Leuven, Leuven, Belgium
| | - Iria Vazquez
- Laboratory for Mechanisms of Cell Transformation, VIB Center for the Biology of Disease, VIB, Belgium. Center for Human Genetics, KU Leuven, Leuven, Belgium
| | - Loredana Vecchione
- Laboratory of Molecular Digestive Oncology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Eva Budinska
- Institute of Biostatistics and Analyses, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Veerle De Vriendt
- Laboratory of Molecular Digestive Oncology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Maria Francesca Baietti
- Laboratory for Mechanisms of Cell Transformation, VIB Center for the Biology of Disease, VIB, Belgium. Center for Human Genetics, KU Leuven, Leuven, Belgium
| | - Mikhail Steklov
- Laboratory for Mechanisms of Cell Transformation, VIB Center for the Biology of Disease, VIB, Belgium. Center for Human Genetics, KU Leuven, Leuven, Belgium
| | - Bart Jacobs
- Laboratory of Molecular Digestive Oncology, Department of Oncology, KU Leuven, Leuven, Belgium
| | | | | | - Naga-Sailaja Imjeti
- Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068-CNRS UMR7258, Aix-Marseille Université, Institut Paoli-Calmettes, Marseille, France. Center for Human Genetics, KU Leuven, Leuven, Belgium
| | - Pascale Zimmermann
- Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068-CNRS UMR7258, Aix-Marseille Université, Institut Paoli-Calmettes, Marseille, France. Center for Human Genetics, KU Leuven, Leuven, Belgium
| | - Anna Sablina
- Laboratory for Mechanisms of Cell Transformation, VIB Center for the Biology of Disease, VIB, Belgium. Center for Human Genetics, KU Leuven, Leuven, Belgium
| | - Sabine Tejpar
- Laboratory of Molecular Digestive Oncology, Department of Oncology, KU Leuven, Leuven, Belgium
| |
Collapse
|
20
|
The protein tyrosine phosphatase DEP-1/PTPRJ promotes breast cancer cell invasion and metastasis. Oncogene 2015; 34:5536-47. [DOI: 10.1038/onc.2015.9] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Revised: 12/16/2014] [Accepted: 01/14/2015] [Indexed: 12/16/2022]
|
21
|
Dittrich A, Gautrey H, Browell D, Tyson-Capper A. The HER2 Signaling Network in Breast Cancer--Like a Spider in its Web. J Mammary Gland Biol Neoplasia 2014; 19:253-70. [PMID: 25544707 DOI: 10.1007/s10911-014-9329-5] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 12/14/2014] [Indexed: 12/21/2022] Open
Abstract
The human epidermal growth factor receptor 2 (HER2) is a major player in the survival and proliferation of tumour cells and is overexpressed in up to 30 % of breast cancer cases. A considerable amount of work has been undertaken to unravel the activity and function of HER2 to try and develop effective therapies that impede its action in HER2 positive breast tumours. Research has focused on exploring the HER2 activated phosphoinositide-3-kinase (PI3K)/AKT and rat sarcoma/mitogen-activated protein kinase (RAS/MAPK) pathways for therapies. Despite the advances, cases of drug resistance and recurrence of disease still remain a challenge to overcome. An important aspect for drug resistance is the complexity of the HER2 signaling network. This includes the crosstalk between HER2 and hormone receptors; its function as a transcription factor; the regulation of HER2 by protein-tyrosine phosphatases and a complex network of positive and negative feedback-loops. This review summarises the current knowledge of many different HER2 interactions to illustrate the complexity of the HER2 network from the transcription of HER2 to the effect of its downstream targets. Exploring the novel avenues of the HER2 signaling could yield a better understanding of treatment resistance and give rise to developing new and more effective therapies.
Collapse
Affiliation(s)
- A Dittrich
- Institute of Cellular Medicine, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | | | | | | |
Collapse
|
22
|
Jiang R, Chen D, Hou J, Tan Z, Wang Y, Huang X, Wang X, Sun B. Survival and inflammation promotion effect of PTPRO in fulminant hepatitis is associated with NF-κB activation. THE JOURNAL OF IMMUNOLOGY 2014; 193:5161-70. [PMID: 25339662 DOI: 10.4049/jimmunol.1303354] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Previous investigations demonstrated that protein tyrosine phosphatase, receptor type, O (PTPRO) acts as a tumor suppressor in liver cancer; however, little is known about its role in liver inflammation. Thus, we investigated the role of PTPRO in fulminant hepatitis (FH) using a Con A-induced mouse model. Significantly more severe liver damage, but attenuated inflammation, was detected in PTPRO-knockout (KO) mice, and PTPRO deficiency could confer this phenotype to wild-type mice in bone marrow transplantation. Moreover, hepatocytes with PTPRO depletion were more sensitive to TNF-α-induced apoptosis, and secretion of cytokines was significantly decreased in both T and NK/NKT cells and led to marked impairment of NF-κB activation. Intriguingly, wild-type and PTPRO-KO cells responded equally to TNF-α in activation of IKK, but NF-κB activation was clearly decreased in PTPRO-KO cells. PTPRO associated with ErbB2, and loss of PTPRO potentiated activation of the ErbB2/Akt/GSK-3β/β-catenin cascade. Increased β-catenin formed a complex with NF-κB and attenuated its nuclear translocation and activation. Importantly, in humans, PTPRO was much decreased in FH, and this was associated with enhanced β-catenin accumulation but reduced IFN-γ secretion. Taken together, our study identified a novel PTPRO/ErbB2/Akt/GSK-3β/β-catenin/NF-κB axis in FH, which suggests that PTPRO may have therapeutic potential in this liver disease.
Collapse
Affiliation(s)
- Runqiu Jiang
- Liver Transplantation Center of the First Affiliated Hospital and State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 210029, People's Republic of China; Key Laboratory of Living Donor Liver Transplantation, Ministry of Health, Nanjing 210029, People's Republic of China; and
| | - Dianyu Chen
- Liver Transplantation Center of the First Affiliated Hospital and State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 210029, People's Republic of China; Key Laboratory of Living Donor Liver Transplantation, Ministry of Health, Nanjing 210029, People's Republic of China; and
| | - Jiajie Hou
- Liver Transplantation Center of the First Affiliated Hospital and State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 210029, People's Republic of China; Key Laboratory of Living Donor Liver Transplantation, Ministry of Health, Nanjing 210029, People's Republic of China; and
| | - Zhongming Tan
- Liver Transplantation Center of the First Affiliated Hospital and State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 210029, People's Republic of China; Key Laboratory of Living Donor Liver Transplantation, Ministry of Health, Nanjing 210029, People's Republic of China; and
| | - Youjing Wang
- Liver Transplantation Center of the First Affiliated Hospital and State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 210029, People's Republic of China; Key Laboratory of Living Donor Liver Transplantation, Ministry of Health, Nanjing 210029, People's Republic of China; and
| | - Xingxu Huang
- Ministry of Education Key Laboratory of Model Animal for Disease Study, Model Animal Research Center of Nanjing University, Nanjing 210061, People's Republic of China
| | - Xuehao Wang
- Liver Transplantation Center of the First Affiliated Hospital and State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 210029, People's Republic of China; Key Laboratory of Living Donor Liver Transplantation, Ministry of Health, Nanjing 210029, People's Republic of China; and
| | - Beicheng Sun
- Liver Transplantation Center of the First Affiliated Hospital and State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 210029, People's Republic of China; Key Laboratory of Living Donor Liver Transplantation, Ministry of Health, Nanjing 210029, People's Republic of China; and
| |
Collapse
|
23
|
Li SY, Li R, Chen YL, Xiong LK, Wang HL, Rong L, Luo RC. Aberrant PTPRO methylation in tumor tissues as a potential biomarker that predicts clinical outcomes in breast cancer patients. BMC Genet 2014; 15:67. [PMID: 24919593 PMCID: PMC4062905 DOI: 10.1186/1471-2156-15-67] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 06/04/2014] [Indexed: 01/31/2023] Open
Abstract
Background Aberrant hypermethylation of gene promoter regions is a primary mechanism by which tumor suppressor genes become inactivated in breast cancer. Epigenetic inactivation of the protein tyrosine phosphatase receptor-type O gene (PTPRO) has been described in several types of cancer. Results We screened primary breast cancer tissues for PTPRO promoter hypermethylation and assessed potential associations with pathological features and patient outcome. We also evaluated its potential as a breast cancer biomarker. PTPRO methylation was observed in 53 of 98 (54%) breast cancer tissues but not in adjacent normal tissue. Among matched peripheral blood samples from breast cancer patients, 33 of 98 (34%) exhibited methylated PTPRO in plasma. In contrast, no methylated PTPRO was observed in normal peripheral blood from 30 healthy individuals. PTPRO methylation was positively associated with lymph node involvement (P = 0.014), poorly differentiated histology (P = 0.037), depth of invasion (P = 0.004), and HER2 amplification (P = 0.001). Multivariate analysis indicated that aberrant PTPRO methylation could serve as an independent predictor for overall survival hazard ratio (HR): 2.7; 95% CI: 1.1-6.2; P = 0.023), especially for patients with HER2-positive (hazard ratio (HR): 7.5; 95% CI: 1.8-31.3; P = 0.006), but not in ER + and PR + subpopulation. In addition, demethylation induced by 5-azacytidine led to gene reactivation in PTPRO-methylated and -silenced breast cancer cell lines. Conclusions Here, we report that tumor PTPRO methylation is a strong prognostic factor in breast cancer. Methylation of PTPRO silences its expression and plays an important role in breast carcinogenesis. The data we present here may provide insight into the development of novel therapies for breast cancer treatment. Additionally, detection of PTPRO methylation in peripheral blood of breast cancer patients may provide a noninvasive means to diagnose and monitor the disease.
Collapse
Affiliation(s)
- Shao-ying Li
- Department of Breast Surgery, Bao'an Maternal and Child Health Hospital, Shenzhen, People's Republic of China.
| | | | | | | | | | | | | |
Collapse
|
24
|
PTPRO plays a dual role in hepatic ischemia reperfusion injury through feedback activation of NF-κB. J Hepatol 2014; 60:306-12. [PMID: 24128416 DOI: 10.1016/j.jhep.2013.09.028] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Revised: 09/15/2013] [Accepted: 09/30/2013] [Indexed: 12/13/2022]
Abstract
BACKGROUND & AIMS Nuclear factor-κB (NF-κB) activation in hepatocytes and macrophages appeared as a double-edged-sword in hepatic ischemia reperfusion (IR) injury. Protein tyrosine phosphatase receptor type O (PTPRO) was recently identified as a potential activator of c-Src, which can in turn activate the NF-κB pathway. In this study, we aimed to determine the change and function of PTPRO in hepatocytes and macrophages during IR. METHODS Clinical patients with benign liver condition undergoing liver surgery were recruited in our study. Wild type (WT) and ptpro(-/-) C57BL/6 mice were processed to construct hepatic IR models. Isolated mouse hepatocytes and macrophages were treated with peroxide or TNFα in vitro. RESULTS In human and mouse IR models, PTPRO level was decreased in the early phase but reversed in the late phase. In vitro studies demonstrated that NF-κB up-regulated PTPRO transcription. Using ptpro(-/-) mice and primary cells, we found that PTPRO deficiency resulted in reduction of NF-κB activation in both hepatocytes and macrophages and was correlated to c-Src phosphorylation; PTPRO in hepatocytes alleviated, but PTPROt in macrophages exacerbated IR injury. CONCLUSIONS PTPRO activates NF-κB in a positive feedback manner, and plays a dual role in hepatic IR injury.
Collapse
|
25
|
Hsu SH, Motiwala T, Roy S, Claus R, Mustafa M, Plass C, Freitas MA, Ghoshal K, Jacob ST. Methylation of the PTPRO gene in human hepatocellular carcinoma and identification of VCP as its substrate. J Cell Biochem 2013; 114:1810-8. [PMID: 23533167 DOI: 10.1002/jcb.24525] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Accepted: 02/19/2013] [Indexed: 12/20/2022]
Abstract
We have previously reported that the gene encoding protein tyrosine phosphatase receptor type-O (PTPRO) is suppressed by promoter methylation in a rat model of hepatocellular carcinoma (HCC) and it functions as tumor suppressor in leukemia and lung cancer. Here, we explored the methylation and expression of PTPRO as well as its function in human HCC. MassARRAY analysis of primary human HCC and matching liver samples (n = 24) revealed significantly higher (P = 0.004) methylation density at the promoter CGI in tumors. Combined bisulfite restriction analysis (COBRA) of another set of human HCC samples (n = 17) demonstrated that the CGI was methylated in 29% of tumors where expression of PTPRO was lower than that in corresponding matching livers. A substrate-trapping mutant of PTPRO that stabilizes the bound substrates was used to identify its novel substrate(s). VCP/p97 was found to be a PTPRO substrate by mass spectrometry of the peptides pulled down by the substrate-trapping mutant of PTPRO. Tyrosyl dephosphorylation of VCP following ectopic expression of wild-type PTPRO in H293T and HepG2 cells confirmed that it is a bona fide substrate of PTPRO. Treatment of PTPRO overexpressing HepG2 cells with Doxorubicin, a DNA damaging drug commonly used in therapy of primary HCC, sensitized these cells to this potent anticancer drug that correlated with dephosphorylation of VCP. Taken together, these results demonstrate methylation and downregulation of PTPRO in a subset of primary human HCC and establish VCP as a novel functionally important substrate of this tyrosine phosphatase that could be a potential molecular target for HCC therapy.
Collapse
Affiliation(s)
- Shu-hao Hsu
- Department of Molecular & Cellular Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Huang YT, Li FF, Ke C, Li Z, Li ZT, Zou XF, Zheng XX, Chen YP, Zhang H. PTPRO promoter methylation is predictive of poorer outcome for HER2-positive breast cancer: indication for personalized therapy. J Transl Med 2013; 11:245. [PMID: 24090193 PMCID: PMC3852714 DOI: 10.1186/1479-5876-11-245] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Accepted: 09/25/2013] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Protein Tyrosine Phosphatase Receptor-type O (PTPRO) has recently been in the spotlight as a tumor suppressor, whose encoding gene is frequently methylated in cancers. We examined the methylation status of the PTPRO gene promoter in breast cancer and evaluated the correlation between PTPRO promoter methylation and both clinicopathological parameters and prognosis of breast cancer patients. METHODS Two hundred twenty-one formalin-fixed, paraffin-embedded (FFPE) tumor tissues, 20 FFPE normal adjacent tissues and 24 matched plasma samples, collected from primary breast cancer patients, were assessed for PTPRO gene promoter methylation using methylation-specific PCR. Associations of promoter methylation with clinicopathological parameters were evaluated. Kaplan-Meier survival analysis and Cox proportional hazards models were used to estimate the effect on survival. RESULTS 175 samples gave identifiable PCR products, of which 130 cases (74.3%) had PTPRO gene promoter methylation. PTPRO methylation correlated with higher histological grade (P = 0.028), but not other clinical parameters. Multivariate analysis indicated that overall survival (OS) was significantly poorer in HER2-positive, but not ER-positive patients with methylated-PTPRO. Methylated-PTPRO was detectable in matched plasma samples and only observed in plasma from patients whose corresponding primary tumors were also methylated. CONCLUSIONS PTPRO methylation is a common event in the primary breast cancer and can be reliably detected in peripheral blood samples. PTPRO methylation is associated with poor survival only in HER2-positive patients, suggesting use of PTPRO methylation as a prognostic factor for breast cancer and for optimizing individualized therapy for HER2-positive patients.
Collapse
Affiliation(s)
- Yi-Teng Huang
- Department of Integrative Oncology, Affiliated Cancer Hospital of Shantou University Medical College, Shantou 515041, China
- Cancer Research Center, Shantou University Medical College, Shantou 515041, China
| | - Fei-Fei Li
- Department of Integrative Oncology, Affiliated Cancer Hospital of Shantou University Medical College, Shantou 515041, China
- Cancer Research Center, Shantou University Medical College, Shantou 515041, China
| | - Chen Ke
- Cancer Research Center, Shantou University Medical College, Shantou 515041, China
| | - Zhou Li
- Department of Integrative Oncology, Affiliated Cancer Hospital of Shantou University Medical College, Shantou 515041, China
- Cancer Research Center, Shantou University Medical College, Shantou 515041, China
| | - Zong-Tai Li
- Department of Integrative Oncology, Affiliated Cancer Hospital of Shantou University Medical College, Shantou 515041, China
- Cancer Research Center, Shantou University Medical College, Shantou 515041, China
| | - Xiao-Fang Zou
- Department of Integrative Oncology, Affiliated Cancer Hospital of Shantou University Medical College, Shantou 515041, China
- Cancer Research Center, Shantou University Medical College, Shantou 515041, China
| | - Xiao-Xuan Zheng
- Cancer Research Center, Shantou University Medical College, Shantou 515041, China
| | - Yu-Ping Chen
- Department of Thoracic Surgery, Affiliated Cancer Hospital of Shantou University Medical College, Shantou 515041, China
| | - Hao Zhang
- Department of Integrative Oncology, Affiliated Cancer Hospital of Shantou University Medical College, Shantou 515041, China
- Tumor Tissue Bank, Affiliated Cancer Hospital of Shantou University Medical College, Shantou 515041, China
- Cancer Research Center, Shantou University Medical College, Shantou 515041, China
| |
Collapse
|
27
|
Virag P, Fischer-Fodor E, Perde-Schrepler M, Brie I, Tatomir C, Balacescu L, Berindan-Neagoe I, Victor B, Balacescu O. Oxaliplatin induces different cellular and molecular chemoresistance patterns in colorectal cancer cell lines of identical origins. BMC Genomics 2013; 14:480. [PMID: 23865481 PMCID: PMC3776436 DOI: 10.1186/1471-2164-14-480] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Accepted: 07/02/2013] [Indexed: 12/15/2022] Open
Abstract
Background Cancer cells frequently adopt cellular and molecular alterations and acquire resistance to cytostatic drugs. Chemotherapy with oxaliplatin is among the leading treatments for colorectal cancer with a response rate of 50%, inducing intrastrand cross-links on the DNA. Despite of this drug’s efficiency, resistance develops in nearly all metastatic patients. Chemoresistance being of crucial importance for the drug’s clinical efficiency this study aimed to contribute to the identification and description of some cellular and molecular alterations induced by prolonged oxaliplatin therapy. Resistance to oxaliplatin was induced in Colo320 (Colo320R) and HT-29 (HT-29R) colorectal adenocarcinoma cell lines by exposing the cells to increasing concentrations of the drug. Alterations in morphology, cytotoxicity, DNA cross-links formation and gene expression profiles were assessed in the parental and resistant variants with microscopy, MTT, alkaline comet and pangenomic microarray assays, respectively. Results Morphology analysis revealed epithelial-to-mesenchymal transition in the resistant vs parental cells suggesting alterations of the cells’ adhesion complexes, through which they acquire increased invasiveness and adherence. Cytotoxicity measurements demonstrated resistance to oxaliplatin in both cell lines; Colo320 being more sensitive than HT-29 to this drug (P < 0.001). The treatment with oxaliplatin caused major DNA cross-links in both parental cell lines; in Colo320R small amounts of DNA cross-links were still detectable, while in HT-29R not. We identified 441 differentially expressed genes in Colo320R and 613 in HT-29R as compared to their parental counterparts (at least 1.5 -fold up- or down- regulation, p < 0.05). More disrupted functions and pathways were detected in HT-29R cell line than in Colo320R, involving genes responsible for apoptosis inhibition, cellular proliferation and epithelial-to-mesenchymal transition. Several upstream regulators were detected as activated in HT-29R cell line, but not in Colo320R. Conclusions Our findings revealed a more resistant phenotype in HT-29R as compared to Colo320R and different cellular and molecular chemoresistance patterns induced by prolonged treatment with oxaliplatin in cell lines with identical origins (colorectal adenocarcinomas).
Collapse
Affiliation(s)
- Piroska Virag
- The Oncology Institute Prof.Dr.I. Chiricuta, 400015 Republicii Str,, nr, 34-36, Cluj-Napoca, Romania.
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Nunes-Xavier CE, Martín-Pérez J, Elson A, Pulido R. Protein tyrosine phosphatases as novel targets in breast cancer therapy. Biochim Biophys Acta Rev Cancer 2013; 1836:211-26. [PMID: 23756181 DOI: 10.1016/j.bbcan.2013.06.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2013] [Accepted: 06/01/2013] [Indexed: 02/07/2023]
Abstract
Breast cancer is linked to hyperactivation of protein tyrosine kinases (PTKs), and recent studies have unveiled that selective tyrosine dephosphorylation by protein tyrosine phosphatases (PTPs) of specific substrates, including PTKs, may activate or inactivate oncogenic pathways in human breast cancer cell growth-related processes. Here, we review the current knowledge on the involvement of PTPs in breast cancer, as major regulators of breast cancer therapy-targeted PTKs, such as HER1/EGFR, HER2/Neu, and Src. The functional interplay between PTKs and PTK-activating or -inactivating PTPs, and its implications in novel breast cancer therapies based on targeting of specific PTPs, are discussed.
Collapse
Affiliation(s)
- Caroline E Nunes-Xavier
- BioCruces Health Research Institute, Hospital de Cruces, Plaza Cruces s/n, 48903 Barakaldo, Spain
| | | | | | | |
Collapse
|
29
|
Hendriks WJAJ, Pulido R. Protein tyrosine phosphatase variants in human hereditary disorders and disease susceptibilities. Biochim Biophys Acta Mol Basis Dis 2013; 1832:1673-96. [PMID: 23707412 DOI: 10.1016/j.bbadis.2013.05.022] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 05/14/2013] [Accepted: 05/16/2013] [Indexed: 12/18/2022]
Abstract
Reversible tyrosine phosphorylation of proteins is a key regulatory mechanism to steer normal development and physiological functioning of multicellular organisms. Phosphotyrosine dephosphorylation is exerted by members of the super-family of protein tyrosine phosphatase (PTP) enzymes and many play such essential roles that a wide variety of hereditary disorders and disease susceptibilities in man are caused by PTP alleles. More than two decades of PTP research has resulted in a collection of PTP genetic variants with corresponding consequences at the molecular, cellular and physiological level. Here we present a comprehensive overview of these PTP gene variants that have been linked to disease states in man. Although the findings have direct bearing for disease diagnostics and for research on disease etiology, more work is necessary to translate this into therapies that alleviate the burden of these hereditary disorders and disease susceptibilities in man.
Collapse
Affiliation(s)
- Wiljan J A J Hendriks
- Department of Cell Biology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands.
| | | |
Collapse
|
30
|
Lee H, Bennett AM. Receptor protein tyrosine phosphatase-receptor tyrosine kinase substrate screen identifies EphA2 as a target for LAR in cell migration. Mol Cell Biol 2013; 33:1430-41. [PMID: 23358419 PMCID: PMC3624262 DOI: 10.1128/mcb.01708-12] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Accepted: 01/23/2013] [Indexed: 01/08/2023] Open
Abstract
Receptor tyrosine kinases (RTKs) exist in equilibrium between tyrosyl-phosphorylated and dephosphorylated states. Despite a detailed understanding of how RTKs become tyrosyl phosphorylated, much less is known about RTK tyrosyl dephosphorylation. Receptor protein tyrosine phosphatases (RPTPs) can play essential roles in the dephosphorylation of RTKs. However, a complete understanding of the involvement of the RPTP subfamily in RTK tyrosyl dephosphorylation has not been established. In this study, we have employed a small interfering RNA (siRNA) screen to identify RPTPs in the human genome that serve as RTK phosphatases. We observed that each RPTP induced a unique fingerprint of tyrosyl phosphorylation among 42 RTKs. We identified EphA2 as a novel LAR substrate. LAR dephosphorylated EphA2 at phosphotyrosyl 930, uncoupling Nck1 from EphA2 and thereby attenuating EphA2-mediated cell migration. These results demonstrate that each RPTP exerts a unique regulatory fingerprint of RTK tyrosyl dephosphorylation and suggest a complex signaling interplay between RTKs and RPTPs. Furthermore, we observed that LAR modulates cell migration through EphA2 site-specific dephosphorylation.
Collapse
Affiliation(s)
| | - Anton M. Bennett
- Department of Pharmacology
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
31
|
Abstract
Cell polarization is an evolutionarily conserved process that facilitates asymmetric distribution of organelles and proteins and that is modified dynamically during physiological processes such as cell division, migration, and morphogenesis. The plasticity with which cells change their behavior and phenotype in response to cell intrinsic and extrinsic cues is an essential feature of normal physiology. In disease states such as cancer, cells lose their ability to behave normally in response to physiological cues. A molecular understanding of mechanisms that alter the behavior of cancer cells is limited. Cell polarity proteins are a recognized class of molecules that can receive and interpret both intrinsic and extrinsic signals to modulate cell behavior. In this review, we discuss how cell polarity proteins regulate a diverse array of biological processes and how they can contribute to alterations in the behavior of cancer cells.
Collapse
Affiliation(s)
- Senthil K Muthuswamy
- Ontario Cancer Institute, Campbell Family Institute for Breast Cancer Research, University of Toronto, Toronto M5G 2M9, Canada.
| | | |
Collapse
|