1
|
Werbenko E, de Gorter DJJ, Kleimann S, Beckmann D, Waltereit-Kracke V, Reinhardt J, Geers F, Paruzel P, Hansen U, Pap T, Stradal TEB, Dankbar B. Hem1 is essential for ruffled border formation in osteoclasts and efficient bone resorption. Sci Rep 2024; 14:8109. [PMID: 38582757 PMCID: PMC10998871 DOI: 10.1038/s41598-024-58110-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 03/25/2024] [Indexed: 04/08/2024] Open
Abstract
Bone resorption is highly dependent on the dynamic rearrangement of the osteoclast actin cytoskeleton to allow formation of actin rings and a functional ruffled border. Hem1 is a hematopoietic-specific subunit of the WAVE-complex which regulates actin polymerization and is crucial for lamellipodia formation in hematopoietic cell types. However, its role in osteoclast differentiation and function is still unknown. Here, we show that although the absence of Hem1 promotes osteoclastogenesis, the ability of Hem1-/- osteoclasts to degrade bone was severely impaired. Global as well as osteoclast-specific deletion of Hem1 in vivo revealed increased femoral trabecular bone mass despite elevated numbers of osteoclasts in vivo. We found that the resorption defect derived from the morphological distortion of the actin-rich sealing zone and ruffled border deformation in Hem1-deficient osteoclasts leading to impaired vesicle transport and increased intracellular acidification. Collectively, our data identify Hem1 as a yet unknown key player in bone remodeling by regulating ruffled border formation and consequently the resorptive capacity of osteoclasts.
Collapse
Affiliation(s)
- Eugenie Werbenko
- Institute of Musculoskeletal Medicine, University Hospital Muenster, Albert-Schweitzer-Campus 1, Building D3, 48149, Muenster, Germany
| | - David J J de Gorter
- Institute of Musculoskeletal Medicine, University Hospital Muenster, Albert-Schweitzer-Campus 1, Building D3, 48149, Muenster, Germany
| | - Simon Kleimann
- Institute of Musculoskeletal Medicine, University Hospital Muenster, Albert-Schweitzer-Campus 1, Building D3, 48149, Muenster, Germany
| | - Denise Beckmann
- Institute of Musculoskeletal Medicine, University Hospital Muenster, Albert-Schweitzer-Campus 1, Building D3, 48149, Muenster, Germany
| | - Vanessa Waltereit-Kracke
- Institute of Musculoskeletal Medicine, University Hospital Muenster, Albert-Schweitzer-Campus 1, Building D3, 48149, Muenster, Germany
| | - Julia Reinhardt
- Institute of Musculoskeletal Medicine, University Hospital Muenster, Albert-Schweitzer-Campus 1, Building D3, 48149, Muenster, Germany
| | - Fabienne Geers
- Institute of Musculoskeletal Medicine, University Hospital Muenster, Albert-Schweitzer-Campus 1, Building D3, 48149, Muenster, Germany
| | - Peter Paruzel
- Institute of Musculoskeletal Medicine, University Hospital Muenster, Albert-Schweitzer-Campus 1, Building D3, 48149, Muenster, Germany
| | - Uwe Hansen
- Institute of Musculoskeletal Medicine, University Hospital Muenster, Albert-Schweitzer-Campus 1, Building D3, 48149, Muenster, Germany
| | - Thomas Pap
- Institute of Musculoskeletal Medicine, University Hospital Muenster, Albert-Schweitzer-Campus 1, Building D3, 48149, Muenster, Germany
| | - Theresia E B Stradal
- Department of Cell Biology, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
| | - Berno Dankbar
- Institute of Musculoskeletal Medicine, University Hospital Muenster, Albert-Schweitzer-Campus 1, Building D3, 48149, Muenster, Germany.
| |
Collapse
|
2
|
Reed AE, Peraza J, van den Haak F, Hernandez ER, Gibbs RA, Chinn IK, Lupski JR, Marchi E, Reshef R, Alobeid B, Mace EM, Orange JS. β-Actin G342D as a Cause of NK Cell Deficiency Impairing Lytic Synapse Termination. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:962-973. [PMID: 38315012 PMCID: PMC11337350 DOI: 10.4049/jimmunol.2300671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 01/09/2024] [Indexed: 02/07/2024]
Abstract
NK cell deficiency (NKD) occurs when an individual's major clinical immunodeficiency derives from abnormal NK cells and is associated with several genetic etiologies. Three categories of β-actin-related diseases with over 60 ACTB (β-actin) variants have previously been identified, none with a distinct NK cell phenotype. An individual with mild developmental delay, macrothrombocytopenia, and susceptibility to infections, molluscum contagiosum virus, and EBV-associated lymphoma had functional NKD for over a decade. A de novo ACTB variant encoding G342D β-actin was identified and was consistent with the individual's developmental and platelet phenotype. This novel variant also was found to have direct impact in NK cells because its expression in the human NK cell line YTS (YTS-NKD) caused increased cell spreading in lytic immune synapses created on activating surfaces. YTS-NKD cells were able to degranulate and perform cytotoxicity, but they demonstrated defective serial killing because of prolonged conjugation to the killed target cell and thus were effectively unable to terminate lytic synapses. G342D β-actin results in a novel, to our knowledge, mechanism of functional NKD via increased synaptic spreading and defective lytic synapse termination with resulting impaired serial killing, leading to overall reductions in NK cell cytotoxicity.
Collapse
Affiliation(s)
- Abigail E Reed
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY
| | - Jackeline Peraza
- Department of Biology, Barnard College of Columbia University, New York, NY
| | - Frederique van den Haak
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY
| | - Evelyn R Hernandez
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY
| | - Richard A Gibbs
- Department of Molecular and Human Genetics, Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX
| | - Ivan K Chinn
- Division of Immunology, Allergy and Retrovirology, Department of Pediatrics, Texas Children's Hospital and Baylor College of Medicine, Houston, TX
| | - James R Lupski
- Department of Molecular and Human Genetics, Human Genome Sequencing Center, Texas Children's Hospital and Baylor College of Medicine, Houston, TX
- Department of Pediatrics, Texas Children's Hospital and Baylor College of Medicine, Houston, TX
| | - Enrica Marchi
- Division of Hematology-Oncology, Department of Medicine, NCI Designated Cancer Center, University of Virginia, Charlottesville, VA
| | - Ran Reshef
- Blood and Marrow Transplantation and Cell Therapy Program, Columbia University Irving Medical Center, New York, NY
| | - Bachir Alobeid
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY
| | - Emily M Mace
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY
| | - Jordan S Orange
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY
| |
Collapse
|
3
|
Franz F, Tapia-Rojo R, Winograd-Katz S, Boujemaa-Paterski R, Li W, Unger T, Albeck S, Aponte-Santamaria C, Garcia-Manyes S, Medalia O, Geiger B, Gräter F. Allosteric activation of vinculin by talin. Nat Commun 2023; 14:4311. [PMID: 37463895 DOI: 10.1038/s41467-023-39646-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 06/22/2023] [Indexed: 07/20/2023] Open
Abstract
The talin-vinculin axis is a key mechanosensing component of cellular focal adhesions. How talin and vinculin respond to forces and regulate one another remains unclear. By combining single-molecule magnetic tweezers experiments, Molecular Dynamics simulations, actin-bundling assays, and adhesion assembly experiments in live cells, we here describe a two-ways allosteric network within vinculin as a regulator of the talin-vinculin interaction. We directly observe a maturation process of vinculin upon talin binding, which reinforces the binding to talin at a rate of 0.03 s-1. This allosteric transition can compete with force-induced dissociation of vinculin from talin only at forces up to 10 pN. Mimicking the allosteric activation by mutation yields a vinculin molecule that bundles actin and localizes to focal adhesions in a force-independent manner. Hence, the allosteric switch confines talin-vinculin interactions and focal adhesion build-up to intermediate force levels. The 'allosteric vinculin mutant' is a valuable molecular tool to further dissect the mechanical and biochemical signalling circuits at focal adhesions and elsewhere.
Collapse
Affiliation(s)
- Florian Franz
- Heidelberg Institute for Theoretical Studies (HITS), Schloß-Wolfsbrunnenweg 35, 69118, Heidelberg, Germany
- Interdisciplinary Center for Scientific Computing (IWR), Heidelberg University, Mathematikon, INF 205, 69120, Heidelberg, Germany
| | - Rafael Tapia-Rojo
- Department of Physics, Randall Centre for Cell and Molecular Biophysics, Centre for the Physical Science of Life and London Centre for Nanotechnology, King's College London, Strand, WC2R 2LS London, UK.
- Single Molecule Mechanobiology Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, London, UK.
| | - Sabina Winograd-Katz
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | | | - Wenhong Li
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Tamar Unger
- The Dana and Yossie Hollander Center for Structural Proteomics, Weizmann Institute of Science, Rehovot, Israel
| | - Shira Albeck
- The Dana and Yossie Hollander Center for Structural Proteomics, Weizmann Institute of Science, Rehovot, Israel
| | - Camilo Aponte-Santamaria
- Heidelberg Institute for Theoretical Studies (HITS), Schloß-Wolfsbrunnenweg 35, 69118, Heidelberg, Germany
- Interdisciplinary Center for Scientific Computing (IWR), Heidelberg University, Mathematikon, INF 205, 69120, Heidelberg, Germany
| | - Sergi Garcia-Manyes
- Department of Physics, Randall Centre for Cell and Molecular Biophysics, Centre for the Physical Science of Life and London Centre for Nanotechnology, King's College London, Strand, WC2R 2LS London, UK
- Single Molecule Mechanobiology Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, London, UK
| | - Ohad Medalia
- Department of Biochemistry, University of Zurich, 8057, Zurich, Switzerland.
| | - Benjamin Geiger
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel.
| | - Frauke Gräter
- Heidelberg Institute for Theoretical Studies (HITS), Schloß-Wolfsbrunnenweg 35, 69118, Heidelberg, Germany.
- Interdisciplinary Center for Scientific Computing (IWR), Heidelberg University, Mathematikon, INF 205, 69120, Heidelberg, Germany.
- IMSEAM, Heidelberg University, INF 225, 69120, Heidelberg, Germany.
| |
Collapse
|
4
|
Li S, Lei H, Li J, Sun A, Ahmed Z, Duan H, Chen L, Zhang B, Lei C, Yi K. Analysis of genetic diversity and selection signals in Chaling cattle of southern China using whole-genome scan. Anim Genet 2023; 54:284-294. [PMID: 36864643 DOI: 10.1111/age.13305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 01/12/2023] [Accepted: 01/30/2023] [Indexed: 03/04/2023]
Abstract
China has diversified resources of indigenous cattle, which are classified into Northern, Central, and Southern groups according to their geographical distribution. Chaling cattle belong to Southern group. This breed is famous for the production of good quality meat with elite meat grades. To analyze the genetic diversity of Chaling cattle, 20 samples were sequenced using whole-genome resequencing technology, along with 138 published whole-genome sequencing data of Indian indicine cattle, Chinese indicine cattle, East Asian taurine cattle, Eurasian taurine cattle, and European taurine cattle as control. It was found that Chaling cattle originated from Chinese indicine cattle. The genetic diversity of Chaling cattle is higher than that of Indian indicine cattle, East Asian taurine cattle, Eurasian taurine cattle, and European taurine cattle, but lower than that of Chinese indicine cattle and Xiangxi cattle. Annotating the selection signals obtained by composite likelihood ratio, θπ, FST , π-ratio, and XP-EHH methods, several genes associated with immunity, heat tolerance, reproduction, growth, and meat quality showed strong selection signals. In general, this study provides a theoretical basis for analyzing the genetic mechanism of Chaling cattle with excellent adaptability, rough feeding tolerance, good immune performance, and good meat quality. This work lays a foundation for genetic breeding of Chaling cattle in future.
Collapse
Affiliation(s)
- Shuang Li
- Hunan Institute of Animal and Veterinary Science, Changsha, Hunan, China.,Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Hong Lei
- Hunan Institute of Animal and Veterinary Science, Changsha, Hunan, China
| | - Jianbo Li
- Hunan Institute of Animal and Veterinary Science, Changsha, Hunan, China
| | - Ao Sun
- Hunan Institute of Animal and Veterinary Science, Changsha, Hunan, China
| | - Zulfiqar Ahmed
- Department of Livestock and Poultry Production, Faculty of Veterinary and Animal Science, University of Poonch Rawalakot, Azad Kashmir, Pakistan
| | - Hongfeng Duan
- Hunan Institute of Animal and Veterinary Science, Changsha, Hunan, China
| | - Lin Chen
- Chaling County Agricultural Development Corporation Ltd, Chaling, Hunan, China
| | - Baizhong Zhang
- Hunan Institute of Animal and Veterinary Science, Changsha, Hunan, China
| | - Chuzhao Lei
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Kangle Yi
- Hunan Institute of Animal and Veterinary Science, Changsha, Hunan, China
| |
Collapse
|
5
|
LPA suppresses T cell function by altering the cytoskeleton and disrupting immune synapse formation. Proc Natl Acad Sci U S A 2022; 119:e2118816119. [PMID: 35394866 PMCID: PMC9169816 DOI: 10.1073/pnas.2118816119] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Cancer and chronic infections often increase levels of the bioactive lipid, lysophosphatidic acid (LPA), that we have demonstrated acts as an inhibitory ligand upon binding LPAR5 on CD8 T cells, suppressing cytotoxic activity and tumor control. This study, using human and mouse primary T lymphocytes, reveals how LPA disrupts antigen-specific CD8 T cell:target cell immune synapse (IS) formation and T cell function via competing for cytoskeletal regulation. Specifically, we find upon antigen-specific T cell:target cell formation, IP3R1 localizes to the IS by a process dependent on mDia1 and actin and microtubule polymerization. LPA not only inhibited IP3R1 from reaching the IS but also altered T cell receptor (TCR)–induced localization of RhoA and mDia1 impairing F-actin accumulation and altering the tubulin code. Consequently, LPA impeded calcium store release and IS-directed cytokine secretion. Thus, targeting LPA signaling in chronic inflammatory conditions may rescue T cell function and promote antiviral and antitumor immunity.
Collapse
|
6
|
Complete Model of Vinculin Suggests the Mechanism of Activation by Helical Super-Bundle Unfurling. Protein J 2022; 41:55-70. [PMID: 35006498 DOI: 10.1007/s10930-022-10040-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/02/2022] [Indexed: 12/24/2022]
Abstract
To shed light onto the activation mechanism of vinculin, we carried out a detailed refinement of chicken vinculin and compared it to the human protein which is greater than 95% identical. Refinement resulted in a complete and significantly improved model. This model includes important elements such as a pro-rich strap region (PRR) and C-terminus. The conformation of the PRR stabilized by its inter- and intra-molecular contacts shows a dynamic, but relatively stable motif that constitutes a docking platform for multiple molecules. The contact of the C-terminus with the PRR suggests that phosphorylation of Tyr1065 might control activation and membrane binding. Improved electron densities showed the presence of large solvent molecules such as phosphates/sulfates and a head-group of PIP2. The improved model allowed for a computational stability analysis to be performed by the program Corex/Best which located numerous hot-spots of increased and decreased stability. Proximity of the identified binding sites for regulatory partners involved in inducing or suppressing the activation of vinculin to the unstable elements sheds new light onto the activation pathway and differential activation. This stability analysis suggests that the activation pathway proceeds by unfurling of the super-bundle built from four bundles of helices without separation of the Vt region (840-1066) from the head. According to our mechanism, when activating proteins bind at the strap region a separation of N and C terminal bundles occurs, followed by unfurling of the super-bundle and flattening of the general shape of the molecule, which exposes the interaction sites for binding of auxiliary proteins.
Collapse
|
7
|
Dupré L, Boztug K, Pfajfer L. Actin Dynamics at the T Cell Synapse as Revealed by Immune-Related Actinopathies. Front Cell Dev Biol 2021; 9:665519. [PMID: 34249918 PMCID: PMC8266300 DOI: 10.3389/fcell.2021.665519] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 04/06/2021] [Indexed: 01/21/2023] Open
Abstract
The actin cytoskeleton is composed of dynamic filament networks that build adaptable local architectures to sustain nearly all cellular activities in response to a myriad of stimuli. Although the function of numerous players that tune actin remodeling is known, the coordinated molecular orchestration of the actin cytoskeleton to guide cellular decisions is still ill defined. T lymphocytes provide a prototypical example of how a complex program of actin cytoskeleton remodeling sustains the spatio-temporal control of key cellular activities, namely antigen scanning and sensing, as well as polarized delivery of effector molecules, via the immunological synapse. We here review the unique knowledge on actin dynamics at the T lymphocyte synapse gained through the study of primary immunodeficiences caused by mutations in genes encoding actin regulatory proteins. Beyond the specific roles of individual actin remodelers, we further develop the view that these operate in a coordinated manner and are an integral part of multiple signaling pathways in T lymphocytes.
Collapse
Affiliation(s)
- Loïc Dupré
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases (LBI-RUD), Vienna, Austria.,Department of Dermatology, Medical University of Vienna, Vienna, Austria.,Toulouse Institute for Infectious and Inflammatory Diseases (INFINITy), INSERM, CNRS, Toulouse III Paul Sabatier University, Toulouse, France
| | - Kaan Boztug
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases (LBI-RUD), Vienna, Austria.,St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria.,CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria.,Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria.,St. Anna Children's Hospital, Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| | - Laurène Pfajfer
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases (LBI-RUD), Vienna, Austria.,Department of Dermatology, Medical University of Vienna, Vienna, Austria.,Toulouse Institute for Infectious and Inflammatory Diseases (INFINITy), INSERM, CNRS, Toulouse III Paul Sabatier University, Toulouse, France.,St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
| |
Collapse
|
8
|
Stahnke S, Döring H, Kusch C, de Gorter DJJ, Dütting S, Guledani A, Pleines I, Schnoor M, Sixt M, Geffers R, Rohde M, Müsken M, Kage F, Steffen A, Faix J, Nieswandt B, Rottner K, Stradal TEB. Loss of Hem1 disrupts macrophage function and impacts migration, phagocytosis, and integrin-mediated adhesion. Curr Biol 2021; 31:2051-2064.e8. [PMID: 33711252 DOI: 10.1016/j.cub.2021.02.043] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 10/12/2020] [Accepted: 02/17/2021] [Indexed: 12/22/2022]
Abstract
Hematopoietic-specific protein 1 (Hem1) is an essential subunit of the WAVE regulatory complex (WRC) in immune cells. WRC is crucial for Arp2/3 complex activation and the protrusion of branched actin filament networks. Moreover, Hem1 loss of function in immune cells causes autoimmune diseases in humans. Here, we show that genetic removal of Hem1 in macrophages diminishes frequency and efficacy of phagocytosis as well as phagocytic cup formation in addition to defects in lamellipodial protrusion and migration. Moreover, Hem1-null macrophages displayed strong defects in cell adhesion despite unaltered podosome formation and concomitant extracellular matrix degradation. Specifically, dynamics of both adhesion and de-adhesion as well as concomitant phosphorylation of paxillin and focal adhesion kinase (FAK) were significantly compromised. Accordingly, disruption of WRC function in non-hematopoietic cells coincided with both defects in adhesion turnover and altered FAK and paxillin phosphorylation. Consistently, platelets exhibited reduced adhesion and diminished integrin αIIbβ3 activation upon WRC removal. Interestingly, adhesion phenotypes, but not lamellipodia formation, were partially rescued by small molecule activation of FAK. A full rescue of the phenotype, including lamellipodia formation, required not only the presence of WRCs but also their binding to and activation by Rac. Collectively, our results uncover that WRC impacts on integrin-dependent processes in a FAK-dependent manner, controlling formation and dismantling of adhesions, relevant for properly grabbing onto extracellular surfaces and particles during cell edge expansion, like in migration or phagocytosis.
Collapse
Affiliation(s)
- Stephanie Stahnke
- Department of Cell Biology, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
| | - Hermann Döring
- Zoological Institute, Technische Universität Braunschweig, Braunschweig, Germany
| | - Charly Kusch
- Institute of Experimental Biomedicine, University Hospital and Rudolf Virchow Center, University of Würzburg, Würzburg, Germany
| | - David J J de Gorter
- Institute of Molecular Cell Biology, Westphalian Wilhelms University Münster WWU, Münster, Germany
| | - Sebastian Dütting
- Institute of Experimental Biomedicine, University Hospital and Rudolf Virchow Center, University of Würzburg, Würzburg, Germany
| | - Aleks Guledani
- Institute of Molecular Cell Biology, Westphalian Wilhelms University Münster WWU, Münster, Germany
| | - Irina Pleines
- Institute of Experimental Biomedicine, University Hospital and Rudolf Virchow Center, University of Würzburg, Würzburg, Germany
| | - Michael Schnoor
- Department for Molecular Biomedicine, Centre for Investigation and Advanced Studies of the National Polytechnic Institute (Cinvestav-IPN), 07360 Mexico City, Mexico
| | - Michael Sixt
- Institute of Science and Technology IST Austria, Klosterneuburg, Austria
| | - Robert Geffers
- Genome Analytics Group, Helmholtz Center for Infection Research HZI, Braunschweig, Germany
| | - Manfred Rohde
- Central Facility for Microscopy, Helmholtz Center for Infection Research HZI, Braunschweig, Germany
| | - Mathias Müsken
- Central Facility for Microscopy, Helmholtz Center for Infection Research HZI, Braunschweig, Germany
| | - Frieda Kage
- Zoological Institute, Technische Universität Braunschweig, Braunschweig, Germany
| | - Anika Steffen
- Department of Cell Biology, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
| | - Jan Faix
- Institute for Biophysical Chemistry, Hannover Medical School MHH, 30625 Hannover, Germany
| | - Bernhard Nieswandt
- Institute of Experimental Biomedicine, University Hospital and Rudolf Virchow Center, University of Würzburg, Würzburg, Germany
| | - Klemens Rottner
- Department of Cell Biology, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany; Zoological Institute, Technische Universität Braunschweig, Braunschweig, Germany
| | - Theresia E B Stradal
- Department of Cell Biology, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany.
| |
Collapse
|
9
|
Sun H, Zhi K, Hu L, Fan Z. The Activation and Regulation of β2 Integrins in Phagocytes and Phagocytosis. Front Immunol 2021; 12:633639. [PMID: 33868253 PMCID: PMC8044391 DOI: 10.3389/fimmu.2021.633639] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 03/11/2021] [Indexed: 01/10/2023] Open
Abstract
Phagocytes, which include neutrophils, monocytes, macrophages, and dendritic cells, protect the body by removing foreign particles, bacteria, and dead or dying cells. Phagocytic integrins are greatly involved in the recognition of and adhesion to specific antigens on cells and pathogens during phagocytosis as well as the recruitment of immune cells. β2 integrins, including αLβ2, αMβ2, αXβ2, and αDβ2, are the major integrins presented on the phagocyte surface. The activation of β2 integrins is essential to the recruitment and phagocytic function of these phagocytes and is critical for the regulation of inflammation and immune defense. However, aberrant activation of β2 integrins aggravates auto-immune diseases, such as psoriasis, arthritis, and multiple sclerosis, and facilitates tumor metastasis, making them double-edged swords as candidates for therapeutic intervention. Therefore, precise regulation of phagocyte activities by targeting β2 integrins should promote their host defense functions with minimal side effects on other cells. Here, we reviewed advances in the regulatory mechanisms underlying β2 integrin inside-out signaling, as well as the roles of β2 integrin activation in phagocyte functions.
Collapse
Affiliation(s)
- Hao Sun
- Department of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Kangkang Zhi
- Department of Vascular Surgery, Changzheng Hospital, Shanghai, China
| | - Liang Hu
- Department of Cardiology, Cardiovascular Institute of Zhengzhou University, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhichao Fan
- Department of Immunology, School of Medicine, UConn Health, Farmington, CT, United States
| |
Collapse
|
10
|
Ben-Shmuel A, Sabag B, Biber G, Barda-Saad M. The Role of the Cytoskeleton in Regulating the Natural Killer Cell Immune Response in Health and Disease: From Signaling Dynamics to Function. Front Cell Dev Biol 2021; 9:609532. [PMID: 33598461 PMCID: PMC7882700 DOI: 10.3389/fcell.2021.609532] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 01/11/2021] [Indexed: 01/13/2023] Open
Abstract
Natural killer (NK) cells are innate lymphoid cells, which play key roles in elimination of virally infected and malignant cells. The balance between activating and inhibitory signals derived from NK surface receptors govern the NK cell immune response. The cytoskeleton facilitates most NK cell effector functions, such as motility, infiltration, conjugation with target cells, immunological synapse assembly, and cytotoxicity. Though many studies have characterized signaling pathways that promote actin reorganization in immune cells, it is not completely clear how particular cytoskeletal architectures at the immunological synapse promote effector functions, and how cytoskeletal dynamics impact downstream signaling pathways and activation. Moreover, pioneering studies employing advanced imaging techniques have only begun to uncover the architectural complexity dictating the NK cell activation threshold; it is becoming clear that a distinct organization of the cytoskeleton and signaling receptors at the NK immunological synapse plays a decisive role in activation and tolerance. Here, we review the roles of the actin cytoskeleton in NK cells. We focus on how actin dynamics impact cytolytic granule secretion, NK cell motility, and NK cell infiltration through tissues into inflammatory sites. We will also describe the additional cytoskeletal components, non-muscle Myosin II and microtubules that play pivotal roles in NK cell activity. Furthermore, special emphasis will be placed on the role of the cytoskeleton in assembly of immunological synapses, and how mutations or downregulation of cytoskeletal accessory proteins impact NK cell function in health and disease.
Collapse
Affiliation(s)
- Aviad Ben-Shmuel
- Laboratory of Molecular and Applied Immunology, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Batel Sabag
- Laboratory of Molecular and Applied Immunology, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Guy Biber
- Laboratory of Molecular and Applied Immunology, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Mira Barda-Saad
- Laboratory of Molecular and Applied Immunology, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| |
Collapse
|
11
|
Mastio J, Saeed MB, Wurzer H, Krecke M, Westerberg LS, Thomas C. Higher Incidence of B Cell Malignancies in Primary Immunodeficiencies: A Combination of Intrinsic Genomic Instability and Exocytosis Defects at the Immunological Synapse. Front Immunol 2020; 11:581119. [PMID: 33240268 PMCID: PMC7680899 DOI: 10.3389/fimmu.2020.581119] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 10/09/2020] [Indexed: 12/11/2022] Open
Abstract
Congenital defects of the immune system called primary immunodeficiency disorders (PID) describe a group of diseases characterized by a decrease, an absence, or a malfunction of at least one part of the immune system. As a result, PID patients are more prone to develop life-threatening complications, including cancer. PID currently include over 400 different disorders, however, the variety of PID-related cancers is narrow. We discuss here reasons for this clinical phenotype. Namely, PID can lead to cell intrinsic failure to control cell transformation, failure to activate tumor surveillance by cytotoxic cells or both. As the most frequent tumors seen among PID patients stem from faulty lymphocyte development leading to leukemia and lymphoma, we focus on the extensive genomic alterations needed to create the vast diversity of B and T lymphocytes with potential to recognize any pathogen and why defects in these processes lead to malignancies in the immunodeficient environment of PID patients. In the second part of the review, we discuss PID affecting tumor surveillance and especially membrane trafficking defects caused by altered exocytosis and regulation of the actin cytoskeleton. As an impairment of these membrane trafficking pathways often results in dysfunctional effector immune cells, tumor cell immune evasion is elevated in PID. By considering new anti-cancer treatment concepts, such as transfer of genetically engineered immune cells, restoration of anti-tumor immunity in PID patients could be an approach to complement standard therapies.
Collapse
Affiliation(s)
- Jérôme Mastio
- Department of Oncology, Cytoskeleton and Cancer Progression, Luxembourg Institute of Health, Luxembourg City, Luxembourg
| | - Mezida B Saeed
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Hannah Wurzer
- Department of Oncology, Cytoskeleton and Cancer Progression, Luxembourg Institute of Health, Luxembourg City, Luxembourg
| | - Max Krecke
- Department of Oncology, Cytoskeleton and Cancer Progression, Luxembourg Institute of Health, Luxembourg City, Luxembourg
| | - Lisa S Westerberg
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Clément Thomas
- Department of Oncology, Cytoskeleton and Cancer Progression, Luxembourg Institute of Health, Luxembourg City, Luxembourg
| |
Collapse
|
12
|
Cook SA, Comrie WA, Poli MC, Similuk M, Oler AJ, Faruqi AJ, Kuhns DB, Yang S, Vargas-Hernández A, Carisey AF, Fournier B, Anderson DE, Price S, Smelkinson M, Abou Chahla W, Forbes LR, Mace EM, Cao TN, Coban-Akdemir ZH, Jhangiani SN, Muzny DM, Gibbs RA, Lupski JR, Orange JS, Cuvelier GDE, Al Hassani M, Al Kaabi N, Al Yafei Z, Jyonouchi S, Raje N, Caldwell JW, Huang Y, Burkhardt JK, Latour S, Chen B, ElGhazali G, Rao VK, Chinn IK, Lenardo MJ. HEM1 deficiency disrupts mTORC2 and F-actin control in inherited immunodysregulatory disease. Science 2020; 369:202-207. [PMID: 32647003 PMCID: PMC8383235 DOI: 10.1126/science.aay5663] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 01/21/2020] [Accepted: 05/29/2020] [Indexed: 12/22/2022]
Abstract
Immunodeficiency often coincides with hyperactive immune disorders such as autoimmunity, lymphoproliferation, or atopy, but this coincidence is rarely understood on a molecular level. We describe five patients from four families with immunodeficiency coupled with atopy, lymphoproliferation, and cytokine overproduction harboring mutations in NCKAP1L, which encodes the hematopoietic-specific HEM1 protein. These mutations cause the loss of the HEM1 protein and the WAVE regulatory complex (WRC) or disrupt binding to the WRC regulator, Arf1, thereby impairing actin polymerization, synapse formation, and immune cell migration. Diminished cortical actin networks caused by WRC loss led to uncontrolled cytokine release and immune hyperresponsiveness. HEM1 loss also blocked mechanistic target of rapamycin complex 2 (mTORC2)-dependent AKT phosphorylation, T cell proliferation, and selected effector functions, leading to immunodeficiency. Thus, the evolutionarily conserved HEM1 protein simultaneously regulates filamentous actin (F-actin) and mTORC2 signaling to achieve equipoise in immune responses.
Collapse
Affiliation(s)
- Sarah A Cook
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, and Clinical Genomics Program, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - William A Comrie
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, and Clinical Genomics Program, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
- Neomics Pharmaceuticals, LLC, Gaithersburg, MD, USA
| | - M Cecilia Poli
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
- Section of Pediatric Immunology, Allergy, and Retrovirology, Texas Children's Hospital, Houston, TX, USA
- Program of Immunogenetics and Translational Immunology, Instituto de Ciencias e Innovación en Medicina, Facultad de Medicina, Clínica Alemana-Universidad del Desarrollo, Santiago, Chile
| | - Morgan Similuk
- Division of Intramural Research, NIAID, NIH, Bethesda, MD, USA
| | - Andrew J Oler
- Bioinformatics and Computational Biosciences Branch, Office of Cyber Infrastructure and Computational Biology, NIAID, NIH, Bethesda, MD, USA
| | - Aiman J Faruqi
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, and Clinical Genomics Program, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Douglas B Kuhns
- Neutrophil Monitoring Laboratory, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Sheng Yang
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, USA
| | - Alexander Vargas-Hernández
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
- Section of Pediatric Immunology, Allergy, and Retrovirology, Texas Children's Hospital, Houston, TX, USA
| | - Alexandre F Carisey
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
- Section of Pediatric Immunology, Allergy, and Retrovirology, Texas Children's Hospital, Houston, TX, USA
| | - Benjamin Fournier
- Laboratory of Lymphocyte Activation and Susceptibility to EBV, INSERM UMR 1163, Paris, France
- University Paris Descartes Sorbonne Paris Cité, Institut des Maladies Génétiques-IMAGINE, Paris, France
| | - D Eric Anderson
- Advanced Mass Spectrometry Facility, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, MD, USA
| | - Susan Price
- Laboratory of Clinical Immunology and Microbiology, NIAID, NIH, Bethesda, MD, USA
| | - Margery Smelkinson
- Biological Imaging Section, Research Technologies Branch, NIAID, NIH, Bethesda, MD, USA
| | - Wadih Abou Chahla
- Department of Pediatric Hematology, Jeanne de Flandre Hospital, Centre Hospitalier Universitaire (CHU), Lille, France
| | - Lisa R Forbes
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
- Section of Pediatric Immunology, Allergy, and Retrovirology, Texas Children's Hospital, Houston, TX, USA
| | - Emily M Mace
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY, USA
| | - Tram N Cao
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
- Section of Pediatric Immunology, Allergy, and Retrovirology, Texas Children's Hospital, Houston, TX, USA
| | - Zeynep H Coban-Akdemir
- Baylor-Hopkins Center for Mendelian Genomics, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Shalini N Jhangiani
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - Donna M Muzny
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - Richard A Gibbs
- Baylor-Hopkins Center for Mendelian Genomics, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - James R Lupski
- Baylor-Hopkins Center for Mendelian Genomics, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - Jordan S Orange
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY, USA
| | - Geoffrey D E Cuvelier
- Section of Pediatric Hematology/Oncology/BMT, CancerCare Manitoba, University of Manitoba, Winnipeg, MB, Canada
| | - Moza Al Hassani
- Sheikh Khalifa Medical City, Abu Dhabi Healthcare Company (SEHA), Abu Dhabi, United Arab Emirates
| | - Nawal Al Kaabi
- Sheikh Khalifa Medical City, Abu Dhabi Healthcare Company (SEHA), Abu Dhabi, United Arab Emirates
| | - Zain Al Yafei
- Sheikh Khalifa Medical City, Abu Dhabi Healthcare Company (SEHA), Abu Dhabi, United Arab Emirates
| | - Soma Jyonouchi
- Division of Allergy and Immunology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Nikita Raje
- Division of Allergy, Immunology, Pulmonary, and Sleep Medicine, Children's Mercy Hospital, Kansas City, MO, USA
- Department of Internal Medicine and Pediatrics, University of Missouri Kansas City, Kansas City, MO, USA
| | - Jason W Caldwell
- Section of Pulmonary, Critical Care, Allergy and Immunological Diseases, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Yanping Huang
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia Research Institute and Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Janis K Burkhardt
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia Research Institute and Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sylvain Latour
- Laboratory of Lymphocyte Activation and Susceptibility to EBV, INSERM UMR 1163, Paris, France
- University Paris Descartes Sorbonne Paris Cité, Institut des Maladies Génétiques-IMAGINE, Paris, France
| | - Baoyu Chen
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, USA
| | - Gehad ElGhazali
- Sheikh Khalifa Medical City, Abu Dhabi Healthcare Company (SEHA), Abu Dhabi, United Arab Emirates
| | - V Koneti Rao
- Laboratory of Clinical Immunology and Microbiology, NIAID, NIH, Bethesda, MD, USA
| | - Ivan K Chinn
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
- Section of Pediatric Immunology, Allergy, and Retrovirology, Texas Children's Hospital, Houston, TX, USA
| | - Michael J Lenardo
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, and Clinical Genomics Program, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA.
| |
Collapse
|
13
|
Context-Dependent Role of Vinculin in Neutrophil Adhesion, Motility and Trafficking. Sci Rep 2020; 10:2142. [PMID: 32034208 PMCID: PMC7005776 DOI: 10.1038/s41598-020-58882-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 01/22/2020] [Indexed: 11/22/2022] Open
Abstract
Neutrophils are innate immune effector cells that traffic from the circulation to extravascular sites of inflammation. β2 integrins are important mediators of the processes involved in neutrophil recruitment. Although neutrophils express the cytoskeletal protein vinculin, they do not form mature focal adhesions. Here, we characterize the role of vinculin in β2 integrin-dependent neutrophil adhesion, migration, mechanosensing, and recruitment. We observe that knockout of vinculin attenuates, but does not completely abrogate, neutrophil adhesion, spreading, and crawling under static conditions. However, we also found that vinculin deficiency does not affect these behaviors in the presence of forces from fluid flow. In addition, we identify a role for vinculin in mechanosensing, as vinculin-deficient neutrophils exhibit attenuated spreading on stiff, but not soft, substrates. Consistent with these findings, we observe that in vivo neutrophil recruitment into the inflamed peritoneum of mice remains intact in the absence of vinculin. Together, these data suggest that while vinculin regulates some aspects of neutrophil adhesion and spreading, it may be dispensable for β2 integrin-dependent neutrophil recruitment in vivo.
Collapse
|
14
|
Kluger C, Braun L, Sedlak SM, Pippig DA, Bauer MS, Miller K, Milles LF, Gaub HE, Vogel V. Different Vinculin Binding Sites Use the Same Mechanism to Regulate Directional Force Transduction. Biophys J 2020; 118:1344-1356. [PMID: 32109366 PMCID: PMC7091509 DOI: 10.1016/j.bpj.2019.12.042] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 12/17/2019] [Accepted: 12/30/2019] [Indexed: 12/18/2022] Open
Abstract
Vinculin is a universal adaptor protein that transiently reinforces the mechanical stability of adhesion complexes. It stabilizes mechanical connections that cells establish between the actomyosin cytoskeleton and the extracellular matrix via integrins or to neighboring cells via cadherins, yet little is known regarding its mechanical design. Vinculin binding sites (VBSs) from different nonhomologous actin-binding proteins use conserved helical motifs to associate with the vinculin head domain. We studied the mechanical stability of such complexes by pulling VBS peptides derived from talin, α-actinin, and Shigella IpaA out of the vinculin head domain. Experimental data from atomic force microscopy single-molecule force spectroscopy and steered molecular dynamics (SMD) simulations both revealed greater mechanical stability of the complex for shear-like than for zipper-like pulling configurations. This suggests that reinforcement occurs along preferential force directions, thus stabilizing those cytoskeletal filament architectures that result in shear-like pulling geometries. Large force-induced conformational changes in the vinculin head domain, as well as protein-specific fine-tuning of the VBS sequence, including sequence inversion, allow for an even more nuanced force response.
Collapse
Affiliation(s)
- Carleen Kluger
- Lehrstuhl für Angewandte Physik and Center for NanoScience, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Lukas Braun
- Laboratory of Applied Mechanobiology, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Steffen M Sedlak
- Lehrstuhl für Angewandte Physik and Center for NanoScience, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Diana A Pippig
- Lehrstuhl für Angewandte Physik and Center for NanoScience, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Magnus S Bauer
- Lehrstuhl für Angewandte Physik and Center for NanoScience, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Ken Miller
- Lehrstuhl für Angewandte Physik and Center for NanoScience, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Lukas F Milles
- Lehrstuhl für Angewandte Physik and Center for NanoScience, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Hermann E Gaub
- Lehrstuhl für Angewandte Physik and Center for NanoScience, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Viola Vogel
- Laboratory of Applied Mechanobiology, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
15
|
Blumenthal D, Burkhardt JK. Multiple actin networks coordinate mechanotransduction at the immunological synapse. J Cell Biol 2020; 219:e201911058. [PMID: 31977034 PMCID: PMC7041673 DOI: 10.1083/jcb.201911058] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 12/31/2019] [Accepted: 01/02/2020] [Indexed: 12/26/2022] Open
Abstract
Activation of naive T cells by antigen-presenting cells (APCs) is an essential step in mounting an adaptive immune response. It is known that antigen recognition and T cell receptor (TCR) signaling depend on forces applied by the T cell actin cytoskeleton, but until recently, the underlying mechanisms have been poorly defined. Here, we review recent advances in the field, which show that specific actin-dependent structures contribute to the process in distinct ways. In essence, T cell priming involves a tug-of-war between the cytoskeletons of the T cell and the APC, where the actin cytoskeleton serves as a mechanical intermediate that integrates force-dependent signals. We consider each of the relevant actin-rich T cell structures separately and address how they work together at the topologically and temporally complex cell-cell interface. In addition, we address how this mechanobiology can be incorporated into canonical immunological models to improve how these models explain T cell sensitivity and antigenic specificity.
Collapse
Affiliation(s)
| | - Janis K. Burkhardt
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia Research Institute and Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
16
|
Saeed MB, Record J, Westerberg LS. Two sides of the coin: Cytoskeletal regulation of immune synapses in cancer and primary immune deficiencies. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2020; 356:1-97. [DOI: 10.1016/bs.ircmb.2020.06.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
17
|
Chen C, Manso AM, Ross RS. Talin and Kindlin as Integrin-Activating Proteins: Focus on the Heart. Pediatr Cardiol 2019; 40:1401-1409. [PMID: 31367953 PMCID: PMC7590617 DOI: 10.1007/s00246-019-02167-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 07/18/2019] [Indexed: 01/11/2023]
Abstract
Integrin receptors enable cells to sense and respond to their chemical and physical environment. As a class of membrane receptors, they provide a dynamic, tightly regulated link between the extracellular matrix or cellular counter-receptors and intracellular cytoskeletal and signaling networks. They enable transmission of mechanical force across the plasma membrane, and particularly for cardiomyocytes, may sense the mechanical load placed on cells. Talins and Kindlins are two families of FERM-domain proteins which bind the cytoplasmic tail of integrins, recruit cytoskeletal and signaling proteins involved in mechano-transduction, and those which synergize to activate integrins, allowing the integrins to physically change and bind to extracellular ligands. In this review, we will discuss the roles of talin and kindlin, particularly as integrin activators, with a focus on cardiac myocytes.
Collapse
Affiliation(s)
- Chao Chen
- Department of Medicine/Cardiology, UCSD School of Medicine, La Jolla, CA, 92093, USA
- Department of Medicine/Cardiology, Veterans Administration Healthcare, San Diego, CA, 92161, USA
| | - Ana Maria Manso
- Department of Medicine/Cardiology, UCSD School of Medicine, La Jolla, CA, 92093, USA
- Department of Medicine/Cardiology, Veterans Administration Healthcare, San Diego, CA, 92161, USA
| | - Robert S Ross
- Department of Medicine/Cardiology, UCSD School of Medicine, La Jolla, CA, 92093, USA.
- Department of Medicine/Cardiology, Veterans Administration Healthcare, San Diego, CA, 92161, USA.
- University of California, San Diego, Biomedical Research Facility 2, Room 2A-17, 9500 Gilman Drive #0613-C, La Jolla, CA, 92093-0613, USA.
| |
Collapse
|
18
|
Cassioli C, Baldari CT. A Ciliary View of the Immunological Synapse. Cells 2019; 8:E789. [PMID: 31362462 PMCID: PMC6721628 DOI: 10.3390/cells8080789] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 07/15/2019] [Accepted: 07/25/2019] [Indexed: 12/28/2022] Open
Abstract
The primary cilium has gone from being a vestigial organelle to a crucial signaling hub of growing interest given the association between a group of human disorders, collectively known as ciliopathies, and defects in its structure or function. In recent years many ciliogenesis proteins have been observed at extraciliary sites in cells and likely perform cilium-independent functions ranging from regulation of the cytoskeleton to vesicular trafficking. Perhaps the most striking example is the non-ciliated T lymphocyte, in which components of the ciliary machinery are repurposed for the assembly and function of the immunological synapse even in the absence of a primary cilium. Furthermore, the specialization traits described at the immunological synapse are similar to those seen in the primary cilium. Here, we review common regulators and features shared by the immunological synapse and the primary cilium that document the remarkable homology between these structures.
Collapse
Affiliation(s)
- Chiara Cassioli
- Department of Life Sciences, University of Siena, 53100 Siena, Italy
| | - Cosima T Baldari
- Department of Life Sciences, University of Siena, 53100 Siena, Italy.
| |
Collapse
|
19
|
Hammer JA, Wang JC, Saeed M, Pedrosa AT. Origin, Organization, Dynamics, and Function of Actin and Actomyosin Networks at the T Cell Immunological Synapse. Annu Rev Immunol 2019; 37:201-224. [PMID: 30576253 PMCID: PMC8343269 DOI: 10.1146/annurev-immunol-042718-041341] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The engagement of a T cell with an antigen-presenting cell (APC) or activating surface results in the formation within the T cell of several distinct actin and actomyosin networks. These networks reside largely within a narrow zone immediately under the T cell's plasma membrane at its site of contact with the APC or activating surface, i.e., at the immunological synapse. Here we review the origin, organization, dynamics, and function of these synapse-associated actin and actomyosin networks. Importantly, recent insights into the nature of these actin-based cytoskeletal structures were made possible in several cases by advances in light microscopy.
Collapse
Affiliation(s)
- John A Hammer
- Cell Biology and Physiology Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, USA;
| | - Jia C Wang
- Cell Biology and Physiology Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, USA;
| | - Mezida Saeed
- Cell Biology and Physiology Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, USA;
| | - Antonio T Pedrosa
- Cell Biology and Physiology Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, USA;
| |
Collapse
|
20
|
Ben-Shmuel A, Joseph N, Sabag B, Barda-Saad M. Lymphocyte mechanotransduction: The regulatory role of cytoskeletal dynamics in signaling cascades and effector functions. J Leukoc Biol 2019; 105:1261-1273. [DOI: 10.1002/jlb.mr0718-267r] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 12/19/2018] [Accepted: 01/21/2019] [Indexed: 12/20/2022] Open
Affiliation(s)
- Aviad Ben-Shmuel
- Laboratory of Molecular and Applied Immunology; Bar-Ilan University; The Mina and Everard Goodman Faculty of Life Sciences; Ramat-Gan Israel
| | - Noah Joseph
- Laboratory of Molecular and Applied Immunology; Bar-Ilan University; The Mina and Everard Goodman Faculty of Life Sciences; Ramat-Gan Israel
| | - Batel Sabag
- Laboratory of Molecular and Applied Immunology; Bar-Ilan University; The Mina and Everard Goodman Faculty of Life Sciences; Ramat-Gan Israel
| | - Mira Barda-Saad
- Laboratory of Molecular and Applied Immunology; Bar-Ilan University; The Mina and Everard Goodman Faculty of Life Sciences; Ramat-Gan Israel
| |
Collapse
|
21
|
Roy NH, Burkhardt JK. The Actin Cytoskeleton: A Mechanical Intermediate for Signal Integration at the Immunological Synapse. Front Cell Dev Biol 2018; 6:116. [PMID: 30283780 PMCID: PMC6156151 DOI: 10.3389/fcell.2018.00116] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 08/27/2018] [Indexed: 12/22/2022] Open
Abstract
The immunological synapse (IS) is a specialized structure that serves as a platform for cell-cell communication between a T cell and an antigen-presenting cell (APC). Engagement of the T cell receptor (TCR) with cognate peptide-MHC complexes on the APC activates the T cell and instructs its differentiation. Proper T cell activation also requires engagement of additional receptor-ligand pairs, which promote sustained adhesion and deliver costimulatory signals. These events are orchestrated by T cell actin dynamics, which organize IS components and facilitate their signaling. The actin network flows from the edge of the cell inward, driving the centralization of TCR microclusters and providing the force to activate the integrin LFA-1. We recently showed that engagement of LFA-1 slows actin flow, and that this affects TCR signaling. This study highlights the physical nature of the IS, and contributes to a growing appreciation in the field that mechanosensing and mechanotransduction are essential for IS function. Additionally, it is becoming clear that there are multiple types of actin structures at the IS that promote signaling in distinct ways. How the different actin structures contribute to force production and mechanotransduction is just beginning to be explored. In this Perspective, we will feature recent work from our lab and others, that collectively points toward a model in which actin dynamics drive mechanical signaling and receptor crosstalk during T cell activation.
Collapse
Affiliation(s)
- Nathan H Roy
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia Research Institute, Philadelphia, PA, United States
| | - Janis K Burkhardt
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia Research Institute, Philadelphia, PA, United States.,Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
22
|
Arumugham VB, Ulivieri C, Onnis A, Finetti F, Tonello F, Ladant D, Baldari CT. Compartmentalized Cyclic AMP Production by the Bordetella pertussis and Bacillus anthracis Adenylate Cyclase Toxins Differentially Affects the Immune Synapse in T Lymphocytes. Front Immunol 2018; 9:919. [PMID: 29765373 PMCID: PMC5938339 DOI: 10.3389/fimmu.2018.00919] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 04/13/2018] [Indexed: 01/01/2023] Open
Abstract
A central feature of the immune synapse (IS) is the tight compartmentalization of membrane receptors and signaling mediators that is functional for its ability to coordinate T cell activation. Second messengers centrally implicated in this process, such as Ca2+ and diacyl glycerol, also undergo compartmentalization at the IS. Current evidence suggests a more complex scenario for cyclic AMP (cAMP), which acts both as positive and as negative regulator of T-cell antigen receptor (TCR) signaling and which, as such, must be subjected to a tight spatiotemporal control to allow for signaling at the IS. Here, we have used two bacterial adenylate cyclase toxins that produce cAMP at different subcellular localizations as the result of their distinct routes of cell invasion, namely Bordetella pertussis CyaA and Bacillus anthracis edema toxin (ET), to address the ability of the T cell to confine cAMP to the site of production and to address the impact of compartmentalized cAMP production on IS assembly and function. We show that CyaA, which produces cAMP close to the synaptic membrane, affects IS stability by modulating not only the distribution of LFA-1 and its partners talin and L-plastin, as previously partly reported but also by promoting the sustained synaptic accumulation of the A-kinase adaptor protein ezrin and protein kinase A while suppressing the β-arrestin-mediated recruitment of phosphodiesterase 4B. These effects are dependent on the catalytic activity of the toxin and can be reproduced by treatment with a non-hydrolyzable cAMP analog. Remarkably, none of these effects are elicited by ET, which produces cAMP at a perinuclear localization, despite its ability to suppress TCR signaling and T cell activation through its cAMP-elevating activity. These results show that the IS responds solely to local elevations of cAMP and provide evidence that potent compartmentalization mechanisms are operational in T cells to contain cAMP close to the site of production, even when produced at supraphysiological levels.
Collapse
Affiliation(s)
| | | | - Anna Onnis
- Department of Life Sciences, University of Siena, Siena, Italy
| | | | - Fiorella Tonello
- Neuroscience Institute, Italian National Research Council, Padua, Italy
| | - Daniel Ladant
- Department of Structural Biology and Chemistry, Institut Pasteur, Paris, France
| | | |
Collapse
|
23
|
Lim SP, Ioannou N, Ramsay AG, Darling D, Gäken J, Mufti GJ. miR-181c-BRK1 axis plays a key role in actin cytoskeleton-dependent T cell function. J Leukoc Biol 2018; 103:855-866. [PMID: 29656550 DOI: 10.1002/jlb.1a0817-325rr] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 02/07/2018] [Accepted: 02/15/2018] [Indexed: 01/23/2023] Open
Abstract
MicroRNAs are short endogenous noncoding RNAs that play pivotal roles in a diverse range of cellular processes. The miR-181 family is important in T cell development, proliferation, and activation. In this study, we have identified BRK1 as a potential target of miR-181c using a dual selection functional assay and have showed that miR-181c regulates BRK1 by translational inhibition. Given the importance of miR-181 in T cell function and the potential role of BRK1 in the involvement of WAVE2 complex and actin polymerization in T cells, we therefore investigated the influence of miR-181c-BRK1 axis in T cell function. Stimulation of PBMC derived CD3+ T cells resulted in reduced miR-181c expression and up-regulation of BRK1 protein expression, suggesting that miR-181c-BRK1 axis is important in T cell activation. We further showed that overexpression of miR-181c or suppression of BRK1 resulted in inhibition of T cell activation and actin polymerization coupled with defective lamellipodia generation and immunological synapse formation. Additionally, we found that BRK1 silencing led to reduced expressions of other proteins in the WAVE2 complex, suggesting that the impairment of T cell actin dynamics was a result of the instability of the WAVE2 complex following BRK1 depletion. Collectively, we demonstrated that miR-181c reduces BRK1 protein expression level and highlighted the important role of miR-181c-BRK1 axis in T cell activation and actin polymerization-mediated T cell functions.
Collapse
Affiliation(s)
- Shok Ping Lim
- Department of Haemato-Oncology, Division of Cancer Studies, Faculty of Life Sciences & Medicine, King's College London, London, United Kingdom
| | - Nikolaos Ioannou
- Department of Haemato-Oncology, Division of Cancer Studies, Faculty of Life Sciences & Medicine, King's College London, London, United Kingdom
| | - Alan G Ramsay
- Department of Haemato-Oncology, Division of Cancer Studies, Faculty of Life Sciences & Medicine, King's College London, London, United Kingdom
| | - David Darling
- Department of Haemato-Oncology, Division of Cancer Studies, Faculty of Life Sciences & Medicine, King's College London, London, United Kingdom
| | - Joop Gäken
- Department of Haemato-Oncology, Division of Cancer Studies, Faculty of Life Sciences & Medicine, King's College London, London, United Kingdom
| | - Ghulam J Mufti
- Department of Haemato-Oncology, Division of Cancer Studies, Faculty of Life Sciences & Medicine, King's College London, London, United Kingdom.,Department of Haemato-Oncology, King's College Hospital, London, United Kingdom
| |
Collapse
|
24
|
Bertoni A, Alabiso O, Galetto AS, Baldanzi G. Integrins in T Cell Physiology. Int J Mol Sci 2018; 19:E485. [PMID: 29415483 PMCID: PMC5855707 DOI: 10.3390/ijms19020485] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Revised: 01/19/2018] [Accepted: 02/02/2018] [Indexed: 11/16/2022] Open
Abstract
From the thymus to the peripheral lymph nodes, integrin-mediated interactions with neighbor cells and the extracellular matrix tune T cell behavior by organizing cytoskeletal remodeling and modulating receptor signaling. LFA-1 (αLβ2 integrin) and VLA-4 (α4β1 integrin) play a key role throughout the T cell lifecycle from thymocyte differentiation to lymphocyte extravasation and finally play a fundamental role in organizing immune synapse, providing an essential costimulatory signal for the T cell receptor. Apart from tuning T cell signaling, integrins also contribute to homing to specific target organs as exemplified by the importance of α4β7 in maintaining the gut immune system. However, apart from those well-characterized examples, the physiological significance of the other integrin dimers expressed by T cells is far less understood. Thus, integrin-mediated cell-to-cell and cell-to-matrix interactions during the T cell lifespan still represent an open field of research.
Collapse
Affiliation(s)
- Alessandra Bertoni
- Department of Translational Medicine and Institute for Research and Cure of Autoimmune Diseases, University of Piemonte Orientale, 28100 Novara, Italy.
| | - Oscar Alabiso
- Department of Translational Medicine, University of Eastern Piedmont, Novara-Italy and Oncology Division, University Hospital "Maggiore della Carità", 28100 Novara, Italy.
| | - Alessandra Silvia Galetto
- Department of Translational Medicine, University of Eastern Piedmont, Novara 28100-Italy and Palliative Care Division, A.S.L., 13100 Vercelli, Italy.
| | - Gianluca Baldanzi
- Department of Translational Medicine and Institute for Research and Cure of Autoimmune Diseases, University of Piemonte Orientale, 28100 Novara, Italy.
| |
Collapse
|
25
|
Jankowska KI, Williamson EK, Roy NH, Blumenthal D, Chandra V, Baumgart T, Burkhardt JK. Integrins Modulate T Cell Receptor Signaling by Constraining Actin Flow at the Immunological Synapse. Front Immunol 2018; 9:25. [PMID: 29403502 PMCID: PMC5778112 DOI: 10.3389/fimmu.2018.00025] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 01/04/2018] [Indexed: 11/25/2022] Open
Abstract
Full T cell activation requires coordination of signals from multiple receptor–ligand pairs that interact in parallel at a specialized cell–cell contact site termed the immunological synapse (IS). Signaling at the IS is intimately associated with actin dynamics; T cell receptor (TCR) engagement induces centripetal flow of the T cell actin network, which in turn enhances the function of ligand-bound integrins by promoting conformational change. Here, we have investigated the effects of integrin engagement on actin flow, and on associated signaling events downstream of the TCR. We show that integrin engagement significantly decelerates centripetal flow of the actin network. In primary CD4+ T cells, engagement of either LFA-1 or VLA-4 by their respective ligands ICAM-1 and VCAM-1 slows actin flow. Slowing is greatest when T cells interact with low mobility integrin ligands, supporting a predominately drag-based mechanism. Using integrin ligands presented on patterned surfaces, we demonstrate that the effects of localized integrin engagement are distributed across the actin network, and that focal adhesion proteins, such as talin, vinculin, and paxillin, are recruited to sites of integrin engagement. Further analysis shows that talin and vinculin are interdependent upon one another for recruitment, and that ongoing actin flow is required. Suppression of vinculin or talin partially relieves integrin-dependent slowing of actin flow, indicating that these proteins serve as molecular clutches that couple engaged integrins to the dynamic actin network. Finally, we found that integrin-dependent slowing of actin flow is associated with reduction in tyrosine phosphorylation downstream of the TCR, and that this modulation of TCR signaling depends on expression of talin and vinculin. More generally, we found that integrin-dependent effects on actin retrograde flow were strongly correlated with effects on TCR signaling. Taken together, these studies support a model in which ligand-bound integrins engage the actin cytoskeletal network via talin and vinculin, and tune TCR signaling events by modulating actin dynamics at the IS.
Collapse
Affiliation(s)
- Katarzyna I Jankowska
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia and Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States
| | - Edward K Williamson
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia and Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States
| | - Nathan H Roy
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia and Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States
| | - Daniel Blumenthal
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia and Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States
| | - Vidhi Chandra
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia and Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States
| | - Tobias Baumgart
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, United States
| | - Janis K Burkhardt
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia and Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
26
|
Rotty JD, Brighton HE, Craig SL, Asokan SB, Cheng N, Ting JP, Bear JE. Arp2/3 Complex Is Required for Macrophage Integrin Functions but Is Dispensable for FcR Phagocytosis and In Vivo Motility. Dev Cell 2017; 42:498-513.e6. [PMID: 28867487 DOI: 10.1016/j.devcel.2017.08.003] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 06/19/2017] [Accepted: 08/02/2017] [Indexed: 11/18/2022]
Abstract
The Arp2/3 complex nucleates branched actin, forming networks involved in lamellipodial protrusion, phagocytosis, and cell adhesion. We derived primary bone marrow macrophages lacking Arp2/3 complex (Arpc2-/-) and directly tested its role in macrophage functions. Despite protrusion and actin assembly defects, Arpc2-/- macrophages competently phagocytose via FcR and chemotax toward CSF and CX3CL1. However, CR3 phagocytosis and fibronectin haptotaxis, both integrin-dependent processes, are disrupted. Integrin-responsive actin assembly and αM/β2 integrin localization are compromised in Arpc2-/- cells. Using an in vivo system to observe endogenous monocytes migrating toward full-thickness ear wounds we found that Arpc2-/- monocytes maintain cell speeds and directionality similar to control. Our work reveals that the Arp2/3 complex is not a general requirement for phagocytosis or chemotaxis but is a critical driver of integrin-dependent processes. We demonstrate further that cells lacking Arp2/3 complex function in vivo remain capable of executing important physiological responses that require rapid directional motility.
Collapse
Affiliation(s)
- Jeremy D Rotty
- UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Hailey E Brighton
- UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Stephanie L Craig
- UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Sreeja B Asokan
- UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Ning Cheng
- UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Oral Biology Curriculum, School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jenny P Ting
- UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Oral Biology Curriculum, School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - James E Bear
- UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
27
|
Hu X, Margadant FM, Yao M, Sheetz MP. Molecular stretching modulates mechanosensing pathways. Protein Sci 2017; 26:1337-1351. [PMID: 28474792 DOI: 10.1002/pro.3188] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 04/26/2017] [Accepted: 04/27/2017] [Indexed: 01/21/2023]
Abstract
For individual cells in tissues to create the diverse forms of biological organisms, it is necessary that they must reliably sense and generate the correct forces over the correct distances and directions. There is considerable evidence that the mechanical aspects of the cellular microenvironment provide critical physical parameters to be sensed. How proteins sense forces and cellular geometry to create the correct morphology is not understood in detail but protein unfolding appears to be a major component in force and displacement sensing. Thus, the crystallographic structure of a protein domain provides only a starting point to then analyze what will be the effects of physiological forces through domain unfolding or catch-bond formation. In this review, we will discuss the recent studies of cytoskeletal and adhesion proteins that describe protein domain dynamics. Forces applied to proteins can activate or inhibit enzymes, increase or decrease protein-protein interactions, activate or inhibit protein substrates, induce catch bonds and regulate interactions with membranes or nucleic acids. Further, the dynamics of stretch-relaxation can average forces or movements to reliably regulate morphogenic movements. In the few cases where single molecule mechanics are studied under physiological conditions such as titin and talin, there are rapid cycles of stretch-relaxation that produce mechanosensing signals. Fortunately, the development of new single molecule and super-resolution imaging methods enable the analysis of single molecule mechanics in physiologically relevant conditions. Thus, we feel that stereotypical changes in cell and tissue shape involve mechanosensing that can be analyzed at the nanometer level to determine the molecular mechanisms involved.
Collapse
Affiliation(s)
- Xian Hu
- Mechanobiology Institute, National University of Singapore, Singapore, 117411.,Department of Biosciences, University of Oslo, Oslo, 0316, Norway
| | | | - Mingxi Yao
- Mechanobiology Institute, National University of Singapore, Singapore, 117411
| | - Michael Patrick Sheetz
- Mechanobiology Institute, National University of Singapore, Singapore, 117411.,Department of Biological Sciences, University of Columbia, New York, 10027
| |
Collapse
|
28
|
Klann JE, Remedios KA, Kim SH, Metz PJ, Lopez J, Mack LA, Zheng Y, Ginsberg MH, Petrich BG, Chang JT. Talin Plays a Critical Role in the Maintenance of the Regulatory T Cell Pool. THE JOURNAL OF IMMUNOLOGY 2017; 198:4639-4651. [PMID: 28515282 DOI: 10.4049/jimmunol.1601165] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 04/14/2017] [Indexed: 12/22/2022]
Abstract
Talin, a cytoskeletal protein essential in mediating integrin activation, has been previously shown to be involved in the regulation of T cell proliferation and function. In this study, we describe a role for talin in maintaining the homeostasis and survival of the regulatory T (Treg) cell pool. T cell-specific deletion of talin in Tln1fl/flCd4Cre mice resulted in spontaneous lymphocyte activation, primarily due to numerical and functional deficiencies of Treg cells in the periphery. Peripheral talin-deficient Treg cells were unable to maintain high expression of IL-2Rα, resulting in impaired IL-2 signaling and ultimately leading to increased apoptosis through downregulation of prosurvival proteins Bcl-2 and Mcl-1. The requirement for talin in maintaining high IL-2Rα expression by Treg cells was due, in part, to integrin LFA-1-mediated interactions between Treg cells and dendritic cells. Collectively, our data suggest a critical role for talin in Treg cell-mediated maintenance of immune homeostasis.
Collapse
Affiliation(s)
- Jane E Klann
- Department of Medicine, University of California San Diego, La Jolla, CA 92093
| | - Kelly A Remedios
- Department of Medicine, University of California San Diego, La Jolla, CA 92093
| | - Stephanie H Kim
- Department of Medicine, University of California San Diego, La Jolla, CA 92093
| | - Patrick J Metz
- Department of Medicine, University of California San Diego, La Jolla, CA 92093
| | - Justine Lopez
- Department of Medicine, University of California San Diego, La Jolla, CA 92093
| | - Lauren A Mack
- Nomis Foundation Laboratories for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA 92037; and
| | - Ye Zheng
- Nomis Foundation Laboratories for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA 92037; and
| | - Mark H Ginsberg
- Department of Medicine, University of California San Diego, La Jolla, CA 92093
| | - Brian G Petrich
- Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Emory University School of Medicine, Atlanta, GA 30322
| | - John T Chang
- Department of Medicine, University of California San Diego, La Jolla, CA 92093;
| |
Collapse
|
29
|
A conformational change within the WAVE2 complex regulates its degradation following cellular activation. Sci Rep 2017; 7:44863. [PMID: 28332566 PMCID: PMC5362955 DOI: 10.1038/srep44863] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 02/08/2017] [Indexed: 11/08/2022] Open
Abstract
WASp family Verprolin-homologous protein-2 (WAVE2), a member of the Wiskott-Aldrich syndrome protein (WASp) family of actin nucleation promoting factors, is a central regulator of actin cytoskeleton polymerization and dynamics. Multiple signaling pathways operate via WAVE2 to promote the actin-nucleating activity of the actin-related protein 2/3 (Arp2/3) complex. WAVE2 exists as a part of a pentameric protein complex known as the WAVE regulatory complex (WRC), which is unstable in the absence of its individual proteins. While the involvement of WAVE2 in actin polymerization has been well documented, its negative regulation mechanism is poorly characterized to date. Here, we demonstrate that WAVE2 undergoes ubiquitylation in a T-cell activation dependent manner, followed by proteasomal degradation. The WAVE2 ubiquitylation site was mapped to lysine 45, located at the N-terminus where WAVE2 binds to the WRC. Using Förster resonance energy transfer (FRET), we reveal that the autoinhibitory conformation of the WRC maintains the stability of WAVE2 in resting cells; the release of autoinhibition following T-cell activation facilitates the exposure of WAVE2 to ubiquitylation, leading to its degradation. The dynamic conformational structures of WAVE2 during cellular activation dictate its degradation.
Collapse
|
30
|
Role of Drebrin at the Immunological Synapse. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1006:271-280. [PMID: 28865025 DOI: 10.1007/978-4-431-56550-5_15] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Although drebrin was first described in neurons, it is also expressed in cells of the immune system, such as T lymphocytes and mast cells. Another member of the drebrin family of proteins, mammalian actin-binding protein 1 (mAbp-1) is more widely expressed and plays important roles in the function of macrophages, polymorphonuclear neutrophils, and B lymphocytes. We will briefly discuss on the function of mAbp-1 and drebrin in immune cells with emphasis on T cells. Specifically, drebrin enables the immune responses of CD4+ T lymphocytes. T cells are activated after the recognition of an antigen presented by antigen-presenting cells through cognate cell-cell contacts called immunological synapses (IS). In CD4+ T cells, drebrin associates with the chemokine receptor CXCR4, and both molecules redistribute to the IS displaying similar dynamics. Through its interaction with CXCR4 and the actin cytoskeleton, drebrin regulates T cell activation. CD4+ T cells are one of the main targets for the human immunodeficiency virus (HIV)-1. This virus utilizes the IS structure to be transmitted to uninfected cells, forming cell-cell contacts called virological synapses (VS). Interestingly, drebrin negatively regulates HIV-1 infection of CD4+ T lymphocytes, by regulating actin polymerization at the VS.
Collapse
|
31
|
Fan Z, Ley K. Leukocyte arrest: Biomechanics and molecular mechanisms of β2 integrin activation. Biorheology 2016; 52:353-77. [PMID: 26684674 DOI: 10.3233/bir-15085] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Integrins are a group of heterodimeric transmembrane receptors that play essential roles in cell-cell and cell-matrix interaction. Integrins are important in many physiological processes and diseases. Integrins acquire affinity to their ligand by undergoing molecular conformational changes called activation. Here we review the molecular biomechanics during conformational changes of integrins, integrin functions in leukocyte biorheology (adhesive functions during rolling and arrest) and molecules involved in integrin activation.
Collapse
Affiliation(s)
- Zhichao Fan
- Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA
| | - Klaus Ley
- Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA.,Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
32
|
Hepatitis B Virus Protein X Induces Degradation of Talin-1. Viruses 2016; 8:v8100281. [PMID: 27775586 PMCID: PMC5086613 DOI: 10.3390/v8100281] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 10/06/2016] [Accepted: 10/09/2016] [Indexed: 12/27/2022] Open
Abstract
In the infected human hepatocyte, expression of the hepatitis B virus (HBV) accessory protein X (HBx) is essential to maintain viral replication in vivo. HBx critically interacts with the host damaged DNA binding protein 1 (DDB1) and the associated ubiquitin ligase machinery, suggesting that HBx functions by inducing the degradation of host proteins. To identify such host proteins, we systematically analyzed the HBx interactome. One HBx interacting protein, talin-1 (TLN1), was proteasomally degraded upon HBx expression. Further analysis showed that TLN1 levels indeed modulate HBV transcriptional activity in an HBx-dependent manner. This indicates that HBx-mediated TLN1 degradation is essential and sufficient to stimulate HBV replication. Our data show that TLN1 can act as a viral restriction factor that suppresses HBV replication, and suggest that the HBx relieves this restriction by inducing TLN1 degradation.
Collapse
|
33
|
Hartzell CA, Jankowska KI, Burkhardt JK, Lewis RS. Calcium influx through CRAC channels controls actin organization and dynamics at the immune synapse. eLife 2016; 5. [PMID: 27440222 PMCID: PMC4956410 DOI: 10.7554/elife.14850] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Accepted: 06/13/2016] [Indexed: 11/21/2022] Open
Abstract
T cell receptor (TCR) engagement opens Ca2+ release-activated Ca2+ (CRAC) channels and triggers formation of an immune synapse between T cells and antigen-presenting cells. At the synapse, actin reorganizes into a concentric lamellipod and lamella with retrograde actin flow that helps regulate the intensity and duration of TCR signaling. We find that Ca2+ influx is required to drive actin organization and dynamics at the synapse. Calcium acts by promoting actin depolymerization and localizing actin polymerization and the actin nucleation promotion factor WAVE2 to the periphery of the lamellipod while suppressing polymerization elsewhere. Ca2+-dependent retrograde actin flow corrals ER tubule extensions and STIM1/Orai1 complexes to the synapse center, creating a self-organizing process for CRAC channel localization. Our results demonstrate a new role for Ca2+ as a critical regulator of actin organization and dynamics at the synapse, and reveal potential feedback loops through which Ca2+ influx may modulate TCR signaling. DOI:http://dx.doi.org/10.7554/eLife.14850.001 An effective immune response requires the immune system to rapidly recognize and respond to foreign invaders. Immune cells known as T cells recognize infection through a protein on their surface known as the T cell receptor. The T cell receptor binds to foreign proteins displayed on the surface of other cells. This interaction initiates a chain of events, including the opening of calcium channels embedded in the T cell membrane known as CRAC channels, which allows calcium ions to flow into the cell. These events ultimately lead to the activation of the T cell, enabling it to mount an immune response against the foreign invader. As part of the activation process, the T cell spreads over the surface of the cell that is displaying foreign proteins to form an extensive interface known as an immune synapse. The movement of the T cell's internal skeleton (the cytoskeleton) is crucial for the formation and function of the synapse. Actin filaments, a key component of the cytoskeleton, flow from the edge of the synapse toward the center; these rearrangements of the actin cytoskeleton help to transport clusters of T cell receptors to the center of the synapse and enable the T cell receptors to transmit signals that lead to the T cell being activated. It is not entirely clear how the binding of T cell receptors to foreign proteins drives the actin rearrangements, but there is indirect evidence suggesting that calcium ions may be involved. Hartzell et al. have now investigated the interactions between calcium and the actin cytoskeleton at the immune synapse in human T cells. T cells were placed on glass so that they formed immune synapse-like connections with the surface, and actin movements at the synapse were visualized using a specialized type of fluorescence microscopy. When calcium ions were prevented from entering the T cell, the movement of actin stopped almost entirely. Thus, the flow of calcium ions into the T cell through CRAC channels is essential for driving the actin movements that underlie immune synapse development and T cell activation. In further experiments, Hartzell et al. tracked the movements of CRAC channels and actin at the synapse and found that actin filaments create a constricting “corral” that concentrates CRAC channels in the center of the synapse. Thus, by driving cytoskeleton movement, calcium ions also help to organize calcium channels at the immune synapse. Future work will focus on identifying the actin remodeling proteins that enable calcium ions to control this process. DOI:http://dx.doi.org/10.7554/eLife.14850.002
Collapse
Affiliation(s)
- Catherine A Hartzell
- Immunology Program, Stanford University, Stanford, United States.,Department of Molecular and Cellular Physiology, Stanford University, Stanford, United States
| | - Katarzyna I Jankowska
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia Research Institute, Philadelphia, United States.,Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
| | - Janis K Burkhardt
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia Research Institute, Philadelphia, United States.,Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
| | - Richard S Lewis
- Immunology Program, Stanford University, Stanford, United States.,Department of Molecular and Cellular Physiology, Stanford University, Stanford, United States
| |
Collapse
|
34
|
Kabanova A, Sanseviero F, Candi V, Gamberucci A, Gozzetti A, Campoccia G, Bocchia M, Baldari CT. Human Cytotoxic T Lymphocytes Form Dysfunctional Immune Synapses with B Cells Characterized by Non-Polarized Lytic Granule Release. Cell Rep 2016; 15:9-18. [PMID: 27052167 DOI: 10.1016/j.celrep.2016.02.084] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 12/18/2015] [Accepted: 02/23/2016] [Indexed: 11/29/2022] Open
Abstract
Suppression of the cytotoxic T cell (CTL) immune response has been proposed as one mechanism for immune evasion in cancer. In this study, we have explored the underlying basis for CTL suppression in the context of B cell malignancies. We document that human B cells have an intrinsic ability to resist killing by freshly isolated cytotoxic T cells (CTLs), but are susceptible to lysis by IL-2 activated CTL blasts and CTLs isolated from immunotherapy-treated patients with chronic lymphocytic leukemia (CLL). Impaired killing was associated with the formation of dysfunctional non-lytic immune synapses characterized by the presence of defective linker for activation of T cells (LAT) signaling and non-polarized release of the lytic granules transported by ADP-ribosylation factor-like protein 8 (Arl8). We propose that non-lytic degranulation of CTLs are a key regulatory mechanism of evasion through which B cells may interfere with the formation of functional immune synapses by CTLs.
Collapse
Affiliation(s)
- Anna Kabanova
- Department of Life Sciences, University of Siena, via Aldo Moro 2, Siena 53100, Italy.
| | - Francesca Sanseviero
- Department of Life Sciences, University of Siena, via Aldo Moro 2, Siena 53100, Italy
| | - Veronica Candi
- Hematology Unit, University of Siena, viale Bracci 16, Siena 53100, Italy
| | - Alessandra Gamberucci
- Department of Molecular and Developmental Medicine, University of Siena, via Aldo Moro 2, Siena 53100, Italy
| | | | - Giuseppe Campoccia
- Department of Immune Haematology and Transfusion Medicine, University Hospital of Siena, viale Bracci 16, Siena 53100, Italy
| | - Monica Bocchia
- Hematology Unit, University of Siena, viale Bracci 16, Siena 53100, Italy
| | | |
Collapse
|
35
|
Comrie WA, Burkhardt JK. Action and Traction: Cytoskeletal Control of Receptor Triggering at the Immunological Synapse. Front Immunol 2016; 7:68. [PMID: 27014258 PMCID: PMC4779853 DOI: 10.3389/fimmu.2016.00068] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2015] [Accepted: 02/12/2016] [Indexed: 01/03/2023] Open
Abstract
It is well known that F-actin dynamics drive the micron-scale cell shape changes required for migration and immunological synapse (IS) formation. In addition, recent evidence points to a more intimate role for the actin cytoskeleton in promoting T cell activation. Mechanotransduction, the conversion of mechanical input into intracellular biochemical changes, is thought to play a critical role in several aspects of immunoreceptor triggering and downstream signal transduction. Multiple molecules associated with signaling events at the IS have been shown to respond to physical force, including the TCR, costimulatory molecules, adhesion molecules, and several downstream adapters. In at least some cases, it is clear that the relevant forces are exerted by dynamics of the T cell actomyosin cytoskeleton. Interestingly, there is evidence that the cytoskeleton of the antigen-presenting cell also plays an active role in T cell activation, by countering the molecular forces exerted by the T cell at the IS. Since actin polymerization is itself driven by TCR and costimulatory signaling pathways, a complex relationship exists between actin dynamics and receptor activation. This review will focus on recent advances in our understanding of the mechanosensitive aspects of T cell activation, paying specific attention to how F-actin-directed forces applied from both sides of the IS fit into current models of receptor triggering and activation.
Collapse
Affiliation(s)
- William A Comrie
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania , Philadelphia, PA , USA
| | - Janis K Burkhardt
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania , Philadelphia, PA , USA
| |
Collapse
|
36
|
Janssen WJM, Geluk HCA, Boes M. F-actin remodeling defects as revealed in primary immunodeficiency disorders. Clin Immunol 2016; 164:34-42. [PMID: 26802313 DOI: 10.1016/j.clim.2016.01.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 01/15/2016] [Accepted: 01/19/2016] [Indexed: 10/22/2022]
Abstract
Primary immunodeficiencies (PIDs) are a heterogeneous group of immune-related diseases. PIDs develop due to defects in gene-products that have consequences to immune cell function. A number of PID-proteins is involved in the remodeling of filamentous actin (f-actin) to support the generation of a contact zone between the antigen-specific T cell and antigen presenting cell (APC): the immunological synapse (IS). IS formation is the first step towards T-cell activation and essential for clonal expansion and acquisition of effector function. We here evaluated PIDs in which aberrant f-actin-driven IS formation may contribute to the PID disease phenotypes as seen in patients. We review examples of such contributions to PID phenotypes from literature, and highlight cases in which PID-proteins were evaluated for a role in f-actin polymerization and IS formation. We conclude with the proposition that patient groups might benefit from stratifying them in distinct functional groups in regard to their f-actin remodeling phenotypes in lymphocytes.
Collapse
Affiliation(s)
- W J M Janssen
- Laboratory of Translational Immunology, University Medical Center Utrecht, Wilhelmina Children's Hospital, Utrecht, The Netherlands
| | - H C A Geluk
- Laboratory of Translational Immunology, University Medical Center Utrecht, Wilhelmina Children's Hospital, Utrecht, The Netherlands
| | - M Boes
- Laboratory of Translational Immunology, University Medical Center Utrecht, Wilhelmina Children's Hospital, Utrecht, The Netherlands.
| |
Collapse
|
37
|
Dupré L, Houmadi R, Tang C, Rey-Barroso J. T Lymphocyte Migration: An Action Movie Starring the Actin and Associated Actors. Front Immunol 2015; 6:586. [PMID: 26635800 PMCID: PMC4649030 DOI: 10.3389/fimmu.2015.00586] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 11/02/2015] [Indexed: 12/14/2022] Open
Abstract
The actin cytoskeleton is composed of a dynamic filament meshwork that builds the architecture of the cell to sustain its fundamental properties. This physical structure is characterized by a continuous remodeling, which allows cells to accomplish complex motility steps such as directed migration, crossing of biological barriers, and interaction with other cells. T lymphocytes excel in these motility steps to ensure their immune surveillance duties. In particular, actin cytoskeleton remodeling is a key to facilitate the journey of T lymphocytes through distinct tissue environments and to tune their stop and go behavior during the scanning of antigen-presenting cells. The molecular mechanisms controlling actin cytoskeleton remodeling during T lymphocyte motility have been only partially unraveled, since the function of many actin regulators has not yet been assessed in these cells. Our review aims to integrate the current knowledge into a comprehensive picture of how the actin cytoskeleton drives T lymphocyte migration. We will present the molecular actors that control actin cytoskeleton remodeling, as well as their role in the different T lymphocyte motile steps. We will also highlight which challenges remain to be addressed experimentally and which approaches appear promising to tackle them.
Collapse
Affiliation(s)
- Loïc Dupré
- INSERM, UMR 1043, Centre de Physiopathologie de Toulouse Purpan , Toulouse , France ; Université Toulouse III Paul-Sabatier , Toulouse , France ; CNRS, UMR 5282 , Toulouse , France
| | - Raïssa Houmadi
- INSERM, UMR 1043, Centre de Physiopathologie de Toulouse Purpan , Toulouse , France ; Université Toulouse III Paul-Sabatier , Toulouse , France ; CNRS, UMR 5282 , Toulouse , France
| | - Catherine Tang
- INSERM, UMR 1043, Centre de Physiopathologie de Toulouse Purpan , Toulouse , France ; Université Toulouse III Paul-Sabatier , Toulouse , France ; CNRS, UMR 5282 , Toulouse , France ; Master BIOTIN, Université Montpellier I , Montpellier , France
| | - Javier Rey-Barroso
- INSERM, UMR 1043, Centre de Physiopathologie de Toulouse Purpan , Toulouse , France ; Université Toulouse III Paul-Sabatier , Toulouse , France ; CNRS, UMR 5282 , Toulouse , France
| |
Collapse
|
38
|
Prolactin-Induced Protein regulates cell adhesion in breast cancer. Biochem Biophys Res Commun 2015; 468:850-6. [PMID: 26585492 DOI: 10.1016/j.bbrc.2015.11.043] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 11/09/2015] [Indexed: 02/06/2023]
Abstract
Prolactin-Induced Prolactin (PIP) is widely expressed in breast cancer and has key cellular functions in this disease that include promoting invasion and cell cycle progression. Notably, we have recently identified a strong association between PIP-binding partners and a number of cell functions that are involved in cell adhesion. Therefore in this study, we investigated the effect of PIP on the regulation of cell adhesion using PIP-silencing in breast cancer cell lines T-47D, BT-474, and MFM-223. Our findings suggest that PIP expression is necessary for cell adhesion in a process that shows variation in the pattern of PIP regulation of cell-matrix and cell-cell adhesions based on the types of adhesion surface and breast cancer cell line. In this respect, we observed that PIP-silencing markedly reduced cell adhesion to uncoated plates in all three cell lines. In addition, in T-47D and MFM-223 cells fibronectin matrix induced baseline adhesion and reversed the PIP-silencing mediated reduction of cell adhesion. However, in BT-474 cells we did not observe an induction of baseline adhesion by fibronectin and PIP-silencing led to a marked reduction in cell adhesion to both uncoated and fibronectin-coated plates. Furthermore, we observed a significant reduction in cell-cell adhesion of BT-474 cell line following PIP-silencing. To explain an underlying mechanism for PIP regulation of cell adhesion, we found that PIP expression is necessary for the formation of α-actinin/actin-rich podosomes at the adhesion-sites of breast cancer cells. In summary, this study suggests that PIP expression regulates the process of cell adhesion in breast cancer.
Collapse
|
39
|
Booij L, Casey KF, Antunes JM, Szyf M, Joober R, Israël M, Steiger H. DNA methylation in individuals with anorexia nervosa and in matched normal-eater controls: A genome-wide study. Int J Eat Disord 2015; 48:874-82. [PMID: 25808061 DOI: 10.1002/eat.22374] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 11/08/2014] [Accepted: 11/19/2014] [Indexed: 12/24/2022]
Abstract
OBJECTIVE Evidence associates anorexia nervosa (AN) with epigenetic alterations that could contribute to illness risk or entrenchment. We investigated the extent to which AN is associated with a distinct methylation profile compared to that seen in normal-eater women. METHOD Genome-wide methylation profiles, obtained using DNA from whole blood, were determined in 29 women currently ill with AN (10 with AN-restrictive type, 19 with AN-binge/purge type) and 15 normal-weight, normal-eater control women, using 450 K Illumina bead arrays. RESULTS Regardless of type, AN patients showed higher and less-variable global methylation patterns than controls. False Discovery Rate corrected comparisons identified 14 probes that were hypermethylated in women with AN relative to levels obtained in normal-eater controls, representing genes thought to be associated with histone acetylation, RNA modification, cholesterol storage and lipid transport, and dopamine and glutamate signaling. Age of onset was significantly associated with differential methylation in gene pathways involved in development of the brain and spinal cord, while chronicity of illness was significantly linked to differential methylation in pathways involved with synaptogenesis, neurocognitive deficits, anxiety, altered social functioning, and bowel, kidney, liver and immune function. DISCUSSION Although pre-existing differences cannot be ruled out, our findings are consistent with the idea of secondary alterations in methylation at genomic regions pertaining to social-emotional impairments and physical sequelae that are commonly seen in AN patients. Further investigation is needed to establish the clinical relevance of the affected genes in AN, and, importantly, reversibility of effects observed with nutritional rehabilitation and treatment.
Collapse
Affiliation(s)
- Linda Booij
- Department of Psychology, Queen's University, Kingston, ON, Canada, K7L 3N6.,Sainte-Justine Hospital Research Centre, University of Montreal, 3175, Chemin Côte Ste-Catherine, Montreal, QC, Canada, H3T 1C5.,Department of Psychiatry, McGill University, Montreal, QC, Canada, H3A1 A1
| | - Kevin F Casey
- Sainte-Justine Hospital Research Centre, University of Montreal, 3175, Chemin Côte Ste-Catherine, Montreal, QC, Canada, H3T 1C5
| | - Juliana M Antunes
- Eating Disorders Program, Douglas University Institute, 6875 LaSalle Boulevard, Montreal, Quebec, Canada, H4H 1R3
| | - Moshe Szyf
- Department of Pharmacology, McGill University, 1309-3655 Sir William Osler Promenade, Montreal, QC, Canada, H3G 1Y6
| | - Ridha Joober
- Department of Psychiatry, McGill University, Montreal, QC, Canada, H3A1 A1.,Research Centre, Douglas University Institute, 6875 LaSalle Boulevard, Montreal, Quebec, Canada, H4H 1R3
| | - Mimi Israël
- Department of Psychiatry, McGill University, Montreal, QC, Canada, H3A1 A1.,Eating Disorders Program, Douglas University Institute, 6875 LaSalle Boulevard, Montreal, Quebec, Canada, H4H 1R3.,Research Centre, Douglas University Institute, 6875 LaSalle Boulevard, Montreal, Quebec, Canada, H4H 1R3
| | - Howard Steiger
- Department of Psychiatry, McGill University, Montreal, QC, Canada, H3A1 A1.,Eating Disorders Program, Douglas University Institute, 6875 LaSalle Boulevard, Montreal, Quebec, Canada, H4H 1R3.,Research Centre, Douglas University Institute, 6875 LaSalle Boulevard, Montreal, Quebec, Canada, H4H 1R3
| |
Collapse
|
40
|
Osborne DG, Piotrowski JT, Dick CJ, Zhang JS, Billadeau DD. SNX17 affects T cell activation by regulating TCR and integrin recycling. THE JOURNAL OF IMMUNOLOGY 2015; 194:4555-66. [PMID: 25825439 DOI: 10.4049/jimmunol.1402734] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 03/02/2015] [Indexed: 11/19/2022]
Abstract
A key component in T cell activation is the endosomal recycling of receptors to the cell surface, thereby allowing continual integration of signaling and Ag recognition. One protein potentially involved in TCR transport is sorting nexin 17 (SNX17). SNX proteins have been found to bind proteins involved in T cell activation, but specifically the role of SNX17 in receptor recycling and T cell activation is unknown. Using immunofluorescence, we find that SNX17 colocalizes with TCR and localizes to the immune synapse in T- conjugates. Significantly, knockdown of the SNX17 resulted in fewer T-APC conjugates, lower CD69, TCR, and LFA-1 surface expression, as well as lower overall TCR recycling compared with control T cells. Lastly, we identified the 4.1/ezrin/radixin/moesin domain of SNX17 as being responsible in the binding and trafficking of TCR and LFA-1 to the cell surface. These data suggest that SNX17 plays a role in the maintenance of normal surface levels of activating receptors and integrins to permit optimum T cell activation at the immune synapse.
Collapse
Affiliation(s)
- Douglas G Osborne
- Department of Immunology, Mayo Clinic College of Medicine, Rochester, MN 55905;Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55905; andDivision of Oncology Research, Schulze Center for Novel Therapeutics, Mayo Clinic College of Medicine, Rochester, MN 55905
| | - Joshua T Piotrowski
- Department of Immunology, Mayo Clinic College of Medicine, Rochester, MN 55905;Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55905; andDivision of Oncology Research, Schulze Center for Novel Therapeutics, Mayo Clinic College of Medicine, Rochester, MN 55905
| | - Christopher J Dick
- Department of Immunology, Mayo Clinic College of Medicine, Rochester, MN 55905;Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55905; andDivision of Oncology Research, Schulze Center for Novel Therapeutics, Mayo Clinic College of Medicine, Rochester, MN 55905
| | - Jin-San Zhang
- Department of Immunology, Mayo Clinic College of Medicine, Rochester, MN 55905;Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55905; andDivision of Oncology Research, Schulze Center for Novel Therapeutics, Mayo Clinic College of Medicine, Rochester, MN 55905
| | - Daniel D Billadeau
- Department of Immunology, Mayo Clinic College of Medicine, Rochester, MN 55905;Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55905; andDivision of Oncology Research, Schulze Center for Novel Therapeutics, Mayo Clinic College of Medicine, Rochester, MN 55905
| |
Collapse
|
41
|
Kuokkanen E, Šuštar V, Mattila PK. Molecular control of B cell activation and immunological synapse formation. Traffic 2015; 16:311-26. [PMID: 25639463 DOI: 10.1111/tra.12257] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 12/29/2014] [Accepted: 12/29/2014] [Indexed: 02/01/2023]
Abstract
B cells form an essential part of the adaptive immune system by producing specific antibodies that can neutralize toxins and target infected or malignant cells for destruction. During B cell activation, a fundamental role is played by a specialized intercellular structure called the immunological synapse (IS). The IS serves as a platform for B cell recognition of foreign, often pathogenic, antigens on the surface of antigen-presenting cells (APC). This recognition is elicited by highly specific B cell receptors (BCR) that subsequently trigger carefully orchestrated intracellular signaling cascades that lead to cell activation. Furthermore, antigen internalization, essential for full B cell activation and differentiation into antibody producing effector cells or memory cells, occurs in the IS. Recent developments especially in various imaging-based methods have considerably advanced our understanding of the molecular control of B cell activation. Interestingly, the cellular cytoskeleton is emerging as a key player at several stages of B cell activation, including the initiation of receptor signaling. Here, we discuss the functions and molecular mechanisms of the IS and highlight the multifaceted role of the actin cytoskeleton in several aspects of B cell activation.
Collapse
Affiliation(s)
- Elina Kuokkanen
- Unit of Pathology, Institute of Biomedicine, University of Turku, Turku, Finland
| | | | | |
Collapse
|
42
|
Comrie WA, Babich A, Burkhardt JK. F-actin flow drives affinity maturation and spatial organization of LFA-1 at the immunological synapse. ACTA ACUST UNITED AC 2015; 208:475-91. [PMID: 25666810 PMCID: PMC4332248 DOI: 10.1083/jcb.201406121] [Citation(s) in RCA: 134] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The T cell actin network generates mechanical forces that regulate LFA-1 activity at the immunological synapse. Integrin-dependent interactions between T cells and antigen-presenting cells are vital for proper T cell activation, effector function, and memory. Regulation of integrin function occurs via conformational change, which modulates ligand affinity, and receptor clustering, which modulates valency. Here, we show that conformational intermediates of leukocyte functional antigen 1 (LFA-1) form a concentric array at the immunological synapse. Using an inhibitor cocktail to arrest F-actin dynamics, we show that organization of this array depends on F-actin flow and ligand mobility. Furthermore, F-actin flow is critical for maintaining the high affinity conformation of LFA-1, for increasing valency by recruiting LFA-1 to the immunological synapse, and ultimately for promoting intracellular cell adhesion molecule 1 (ICAM-1) binding. Finally, we show that F-actin forces are opposed by immobilized ICAM-1, which triggers LFA-1 activation through a combination of induced fit and tension-based mechanisms. Our data provide direct support for a model in which the T cell actin network generates mechanical forces that regulate LFA-1 activity at the immunological synapse.
Collapse
Affiliation(s)
- William A Comrie
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia and Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104
| | - Alexander Babich
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia and Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104
| | - Janis K Burkhardt
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia and Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
43
|
Prolactin-induced protein is required for cell cycle progression in breast cancer. Neoplasia 2015; 16:329-42.e1-14. [PMID: 24862759 DOI: 10.1016/j.neo.2014.04.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 03/06/2014] [Accepted: 03/24/2014] [Indexed: 11/21/2022] Open
Abstract
Prolactin-induced protein (PIP) is expressed in the majority of breast cancers and is used for the diagnostic evaluation of this disease as a characteristic biomarker; however, the molecular mechanisms of PIP function in breast cancer have remained largely unknown. In this study, we carried out a comprehensive investigation of PIP function using PIP silencing in a broad group of breast cancer cell lines, analysis of expression microarray data, proteomic analysis using mass spectrometry, and biomarker studies on breast tumors. We demonstrated that PIP is required for the progression through G1 phase, mitosis, and cytokinesis in luminal A, luminal B, and molecular apocrine breast cancer cells. In addition, PIP expression is associated with a transcriptional signature enriched with cell cycle genes and regulates key genes in this process including cyclin D1, cyclin B1, BUB1, and forkhead box M1 (FOXM1). It is notable that defects in mitotic transition and cytokinesis following PIP silencing are accompanied by an increase in aneuploidy of breast cancer cells. Importantly, we have identified novel PIP-binding partners in breast cancer and shown that PIP binds to β-tubulin and is necessary for microtubule polymerization. Furthermore, PIP interacts with actin-binding proteins including Arp2/3 and is needed for inside-out activation of integrin-β1 mediated through talin. This study suggests that PIP is required for cell cycle progression in breast cancer and provides a rationale for exploring PIP inhibition as a therapeutic approach in breast cancer that can potentially target microtubule polymerization.
Collapse
|
44
|
Nanda SY, Hoang T, Patel P, Zhang H. Vinculin regulates assembly of talin: β3 integrin complexes. J Cell Biochem 2014; 115:1206-16. [PMID: 24446374 DOI: 10.1002/jcb.24772] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Accepted: 01/17/2014] [Indexed: 11/09/2022]
Abstract
Vinculin is a talin-binding protein that promotes integrin-mediated cell adhesion, but the mechanisms are not understood. Because talin is a direct activator of integrins, we asked whether and how vinculin regulates the formation of integrin: talin complexes. We report that VD1 (aa 1-258) and its talin-binding mutant, VD1A50I, bind directly and equally to several β integrin cytoplasmic tails (βCT). Results from competition assays show that VD1, but not VD1A50I, inhibits the interaction of talin (Tn) and talin rod (TnR), but not talin head (TnH) with β3CT. The inhibition observed could be the result of VD1 binding to one or more of the 11 vinculin binding sites (VBSs) in the TnR domain. Our studies demonstrate that VD1 binding to amino acids 482-911, a VBS rich region, in TnR perturbs the interaction of rod with β3CT. The integrin activation assays done using CHOA5 cells show that activated vinculin enhances αIIbβ3 integrin activation and that the effect is dependent on talin. The TnR domain however shows no integrin activation unlike TnH that shows enhanced integrin activation. The overall results indicate that activated vinculin promotes talin-mediated integrin activation by binding to accessible VBSs in TnR and thus displacing the TnR from the β3 subunit. The study presented, defines a novel direct interaction of VD1 with β3CT and provides an attractive explanation for vinculin's ability to potentiate integrin-mediated cell adhesion through directly binding to both TnR and the integrin cytoplasmic tail.
Collapse
Affiliation(s)
- Suman Yadav Nanda
- Department of Biological Chemistry, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | | | | | | |
Collapse
|
45
|
Verma NK, Kelleher D. Adaptor regulation of LFA-1 signaling in T lymphocyte migration: Potential druggable targets for immunotherapies? Eur J Immunol 2014; 44:3484-99. [PMID: 25251823 DOI: 10.1002/eji.201344428] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2013] [Revised: 09/16/2014] [Accepted: 09/22/2014] [Indexed: 01/24/2023]
Abstract
The integrin lymphocyte function associated antigen-1 (LFA-1) plays a key role in leukocyte trafficking and in adaptive immune responses through interactions with adhesive ligands, such as ICAM-1. Specific blockade of these interactions has validated LFA-1 as a therapeutic target in many chronic inflammatory diseases, however LFA-1 antagonists have not been clinically successful due to the development of a general immunosuppression, causing fatal side effects. Growing evidence has now established that LFA-1 mediates an array of intracellular signaling pathways by triggering a number of downstream molecules. In this context, a class of multimodular domain-containing proteins capable of recruiting two or more effector molecules, collectively known as "adaptor proteins," has emerged as important mediators in LFA-1 signal transduction. Here, we provide an overview of the adaptor proteins involved in the intracellular signaling cascades by which LFA-1 regulates T-cell motility and immune responses. The complexity of the LFA-1-associated signaling delineated in this review suggests that it may be an important and challenging focus for future research, enabling the identification of "tunable" targets for the development of immunotherapies.
Collapse
Affiliation(s)
- Navin K Verma
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore; Singapore Eye Research Institute, Singapore, Singapore
| | | |
Collapse
|
46
|
Pauker MH, Reicher B, Joseph N, Wortzel I, Jakubowicz S, Noy E, Perl O, Barda-Saad M. WASp family verprolin-homologous protein-2 (WAVE2) and Wiskott-Aldrich syndrome protein (WASp) engage in distinct downstream signaling interactions at the T cell antigen receptor site. J Biol Chem 2014; 289:34503-19. [PMID: 25342748 DOI: 10.1074/jbc.m114.591685] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
T cell antigen receptor (TCR) engagement has been shown to activate pathways leading to actin cytoskeletal polymerization and reorganization, which are essential for lymphocyte activation and function. Several actin regulatory proteins were implicated in regulating the actin machinery, such as members of the Wiskott-Aldrich syndrome protein (WASp) family. These include WASp and the WASp family verprolin-homologous protein-2 (WAVE2). Although WASp and WAVE2 share several structural features, the precise regulatory mechanisms and potential redundancy between them have not been fully characterized. Specifically, unlike WASp, the dynamic molecular interactions that regulate WAVE2 recruitment to the cell membrane and specifically to the TCR signaling complex are largely unknown. Here, we identify the molecular mechanism that controls the recruitment of WAVE2 in comparison with WASp. Using fluorescence resonance energy transfer (FRET) and novel triple-color FRET (3FRET) technology, we demonstrate how WAVE2 signaling complexes are dynamically regulated during lymphocyte activation in vivo. We show that, similar to WASp, WAVE2 recruitment to the TCR site depends on protein-tyrosine kinase, ZAP-70, and the adaptors LAT, SLP-76, and Nck. However, in contrast to WASp, WAVE2 leaves this signaling complex and migrates peripherally together with vinculin to the membrane leading edge. Our experiments demonstrate that WASp and WAVE2 differ in their dynamics and their associated proteins. Thus, this study reveals the differential mechanisms regulating the function of these cytoskeletal proteins.
Collapse
Affiliation(s)
- Maor H Pauker
- From the Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Barak Reicher
- From the Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Noah Joseph
- From the Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Inbal Wortzel
- From the Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Shlomi Jakubowicz
- From the Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Elad Noy
- From the Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Orly Perl
- From the Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Mira Barda-Saad
- From the Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| |
Collapse
|
47
|
Ophir MJ, Liu BC, Bunnell SC. The N terminus of SKAP55 enables T cell adhesion to TCR and integrin ligands via distinct mechanisms. ACTA ACUST UNITED AC 2014; 203:1021-41. [PMID: 24368808 PMCID: PMC3871428 DOI: 10.1083/jcb.201305088] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The T cell receptor (TCR) triggers the assembly of "SLP-76 microclusters," which mediate signals required for T cell activation. In addition to regulating integrin activation, we show that Src kinase-associated phosphoprotein of 55 kD (SKAP55) is required for microcluster persistence and movement, junctional stabilization, and integrin-independent adhesion via the TCR. These functions require the dimerization of SKAP55 and its interaction with the adaptor adhesion and degranulation-promoting adaptor protein (ADAP). A "tandem dimer" containing two ADAP-binding SKAP55 Src homology 3 (SH3) domains stabilized SLP-76 microclusters and promoted T cell adhesion via the TCR, but could not support adhesion to integrin ligands. Finally, the SKAP55 dimerization motif (DM) enabled the coimmunoprecipitation of the Rap1-dependent integrin regulator Rap1-GTP-interacting adaptor molecule (RIAM), the recruitment of talin into TCR-induced adhesive junctions, and "inside-out" signaling to β1 integrins. Our data indicate that SKAP55 dimers stabilize SLP-76 microclusters, couple SLP-76 to the force-generating systems responsible for microcluster movement, and enable adhesion via the TCR by mechanisms independent of RIAM, talin, and β1 integrins.
Collapse
Affiliation(s)
- Michael J Ophir
- Program in Immunology, Sackler School of Graduate Biomedical Sciences, and 2 Department of Integrative Physiology and Pathobiology, Tufts University School of Medicine, Boston, MA 02111
| | | | | |
Collapse
|
48
|
Kapus A, Janmey P. Plasma membrane--cortical cytoskeleton interactions: a cell biology approach with biophysical considerations. Compr Physiol 2013; 3:1231-81. [PMID: 23897686 DOI: 10.1002/cphy.c120015] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
From a biophysical standpoint, the interface between the cell membrane and the cytoskeleton is an intriguing site where a "two-dimensional fluid" interacts with an exceedingly complex three-dimensional protein meshwork. The membrane is a key regulator of the cytoskeleton, which not only provides docking sites for cytoskeletal elements through transmembrane proteins, lipid binding-based, and electrostatic interactions, but also serves as the source of the signaling events and molecules that control cytoskeletal organization and remolding. Conversely, the cytoskeleton is a key determinant of the biophysical and biochemical properties of the membrane, including its shape, tension, movement, composition, as well as the mobility, partitioning, and recycling of its constituents. From a cell biological standpoint, the membrane-cytoskeleton interplay underlies--as a central executor and/or regulator--a multitude of complex processes including chemical and mechanical signal transduction, motility/migration, endo-/exo-/phagocytosis, and other forms of membrane traffic, cell-cell, and cell-matrix adhesion. The aim of this article is to provide an overview of the tight structural and functional coupling between the membrane and the cytoskeleton. As biophysical approaches, both theoretical and experimental, proved to be instrumental for our understanding of the membrane/cytoskeleton interplay, this review will "oscillate" between the cell biological phenomena and the corresponding biophysical principles and considerations. After describing the types of connections between the membrane and the cytoskeleton, we will focus on a few key physical parameters and processes (force generation, curvature, tension, and surface charge) and will discuss how these contribute to a variety of fundamental cell biological functions.
Collapse
Affiliation(s)
- András Kapus
- Keenan Research Center, Li Ka Shing Knowledge Institute, St. Michael's Hospital and Department of Surgery, University of Toronto, Ontario, Canada.
| | | |
Collapse
|
49
|
Samstag Y, John I, Wabnitz GH. Cofilin: a redox sensitive mediator of actin dynamics during T-cell activation and migration. Immunol Rev 2013; 256:30-47. [PMID: 24117811 PMCID: PMC3884758 DOI: 10.1111/imr.12115] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cofilin is an actin-binding protein that depolymerizes and/or severs actin filaments. This dual function of cofilin makes it one of the major regulators of actin dynamics important for T-cell activation and migration. The activity of cofilin is spatio-temporally regulated. Its main control mechanisms comprise a molecular toolbox of phospho-, phospholipid, and redox regulation. Phosphorylated cofilin is inactive and represents the dominant cofilin fraction in the cytoplasm of resting human T cells. A fraction of dephosphorylated cofilin is kept inactive at the plasma membrane by binding to phosphatidylinositol 4,5-bisphosphate. Costimulation via the T-cell receptor/CD3 complex (signal 1) together with accessory receptors (signal 2) or triggering through the chemokine SDF1α (stromal cell-derived factor 1α) induce Ras-dependent dephosphorylation of cofilin, which is important for immune synapse formation, T-cell activation, and T-cell migration. Recently, it became evident that cofilin is also highly sensitive for microenvironmental changes, particularly for alterations in the redox milieu. Cofilin is inactivated by oxidation, provoking T-cell hyporesponsiveness or necrotic-like programmed cell death. In contrast, in a reducing environment, even phosphatidylinositol 4,5-bisphosphate-bound cofilin becomes active, leading to actin dynamics in the vicinity of the plasma membrane. In addition to the well-established three signals for T-cell activation, this microenvironmental control of cofilin delivers a modulating signal for T-cell-dependent immune reactions. This fourth modulating signal highly impacts both initial T-cell activation and the effector phase of T-cell-mediated immune responses.
Collapse
Affiliation(s)
- Yvonne Samstag
- Institute for Immunology, Ruprecht-Karls-UniversityHeidelberg, Germany
| | - Isabel John
- Institute for Immunology, Ruprecht-Karls-UniversityHeidelberg, Germany
| | - Guido H Wabnitz
- Institute for Immunology, Ruprecht-Karls-UniversityHeidelberg, Germany
| |
Collapse
|
50
|
Matalon O, Reicher B, Barda-Saad M. Wiskott-Aldrich syndrome protein - dynamic regulation of actin homeostasis: from activation through function and signal termination in T lymphocytes. Immunol Rev 2013; 256:10-29. [DOI: 10.1111/imr.12112] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Omri Matalon
- The Mina and Everard Goodman Faculty of Life Sciences; Bar-Ilan University; Ramat-Gan Israel
| | - Barak Reicher
- The Mina and Everard Goodman Faculty of Life Sciences; Bar-Ilan University; Ramat-Gan Israel
| | - Mira Barda-Saad
- The Mina and Everard Goodman Faculty of Life Sciences; Bar-Ilan University; Ramat-Gan Israel
| |
Collapse
|