1
|
Schneider P, Crump NT, Arentsen-Peters STCJM, Smith AL, Hagelaar R, Adriaanse FRS, Bos RS, de Jong A, Nierkens S, Koopmans B, Milne TA, Pieters R, Stam RW. Modelling acquired resistance to DOT1L inhibition exhibits the adaptive potential of KMT2A-rearranged acute lymphoblastic leukemia. Exp Hematol Oncol 2023; 12:81. [PMID: 37740239 PMCID: PMC10517487 DOI: 10.1186/s40164-023-00445-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 09/11/2023] [Indexed: 09/24/2023] Open
Abstract
In KMT2A-rearranged acute lymphoblastic leukemia (ALL), an aggressive malignancy, oncogenic KMT2A-fusion proteins inappropriately recruit DOT1L to promote leukemogenesis, highlighting DOT1L as an attractive therapeutic target. Unfortunately, treatment with the first-in-class DOT1L inhibitor pinometostat eventually leads to non-responsiveness. To understand this we established acquired pinometostat resistance in pediatric KMT2A::AFF1+ B-ALL cells. Interestingly, these cells became mostly independent of DOT1L-mediated H3K79 methylation, but still relied on the physical presence of DOT1L, HOXA9 and the KMT2A::AFF1 fusion. Moreover, these cells selectively lost the epigenetic regulation and expression of various KMT2A-fusion target genes such as PROM1/CD133, while other KMT2A::AFF1 target genes, including HOXA9 and CDK6 remained unaffected. Concomitantly, these pinometostat-resistant cells showed upregulation of several myeloid-associated genes, including CD33 and LILRB4/CD85k. Taken together, this model comprehensively shows the adaptive potential of KMT2A-rearranged ALL cells upon losing dependency on one of its main oncogenic properties.
Collapse
Affiliation(s)
- Pauline Schneider
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Nicholas T Crump
- MRC Molecular Haematology Unit, Radcliffe Department of Medicine, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
- Hugh and Josseline Langmuir Centre for Myeloma Research, Centre for Haematology, Department of Immunology and Inflammation, Imperial College London, London, UK
| | | | - Alastair L Smith
- MRC Molecular Haematology Unit, Radcliffe Department of Medicine, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Rico Hagelaar
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | | | - Romy S Bos
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Anja de Jong
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Stefan Nierkens
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Bianca Koopmans
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Thomas A Milne
- MRC Molecular Haematology Unit, Radcliffe Department of Medicine, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Rob Pieters
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Ronald W Stam
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands.
| |
Collapse
|
2
|
Padam KSR, Chakrabarty S, Kabekkodu SP, Paul B, Hunter KD, Radhakrishnan R. In silico analysis of HOX-associated transcription factors as potential regulators of oral cancer. Oral Surg Oral Med Oral Pathol Oral Radiol 2021; 132:72-79. [PMID: 33741282 DOI: 10.1016/j.oooo.2021.01.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 12/03/2020] [Accepted: 01/05/2021] [Indexed: 12/13/2022]
Abstract
OBJECTIVE The objective of this study was identification of the transcription factor binding sites (TFBS) in the promoter of HOX genes and elucidation of the comprehensive interaction of transcription factors (TFs)/genes with HOX. METHODOLOGY Promoter sequences of HOXA3, HOXA5, HOXA9, HOXA10, HOXA13, HOXB5, HOXC10, HOXC12, and HOXD10 were analyzed to predict the TFBS and their targets using TRANSFAC, TRRUST, and Harmonizome. Functional analysis of the processed data sets was carried out using DAVID and GATHER gene annotation tools. A network of regulatory interactions was constructed using NetworkAnalyst and a comprehensive illustration of the TF-gene network was constructed with HOX as a central hub using the Encyclopedia of DNA Elements chromatin immunoprecipitation sequencing data. Further, the enriched network was constructed to elucidate the roles of these genes in the various pathways. RESULTS Binding sites for E2F1, HNF3α, SP3, and KLF6 were common to promoter regions of all of the HOX genes. The functional annotation and pathway analysis elucidated the regulatory activity of a distinct set of TF-genes in interaction with HOX. A P value ≤.05 and false discovery rate ≤0.01 were considered statistically significant. CONCLUSION We have confirmed that the predicted TFBSs in the HOX gene promoters function in transcriptional regulation by modulating target gene activity. TF-gene interactions are crucial to understanding oral carcinogenesis.
Collapse
Affiliation(s)
- Kanaka Sai Ram Padam
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Sanjiban Chakrabarty
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Shama Prasada Kabekkodu
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Bobby Paul
- Department of Bioinformatics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Keith D Hunter
- Academic Unit of Oral and Maxillofacial Medicine and Pathology, School of Clinical Dentistry, University of Sheffield, Sheffield, UK
| | - Raghu Radhakrishnan
- Department of Oral Pathology, Manipal College of Dental Sciences, Manipal, Manipal Academy of Higher Education, Manipal, India.
| |
Collapse
|
3
|
Rai N, Singh AK, Singh SK, Gaurishankar B, Kamble SC, Mishra P, Kotiya D, Barik S, Atri N, Gautam V. Recent technological advancements in stem cell research for targeted therapeutics. Drug Deliv Transl Res 2020; 10:1147-1169. [DOI: 10.1007/s13346-020-00766-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
4
|
Rarani FZ, Borhani F, Rashidi B. Endometrial pinopode biomarkers: Molecules and microRNAs. J Cell Physiol 2018; 233:9145-9158. [PMID: 29968908 DOI: 10.1002/jcp.26852] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Accepted: 05/10/2018] [Indexed: 12/12/2022]
Abstract
Ultrastructural changes on the apical surface of the luminal epithelium of the uterus are known as pinopodes. Their morphology in species and in special species is associated with different results about size, duration, and percentage of surface area covered by pinopodes. The content of pinopodes is different in rodents and humans. In mice and rats pinopodes have many vacuoles and no organelle that extends to the actin stalk above the microvilli. Human pinopodes do not have a large vacuole and contain the golgi complex, a rough endoplasmic reticulum, secretory vesicles, and mitochondria that extend from the entire cell surface. It has been suggested that pinopodes are good markers of endometrial receptivity and implantation window. There are several molecular markers related to the presence of pinopodes, including integrins, leukemia inhibiting factor (LIF), l-selectin, HOXA10, glutaredoxin, glycodelinA, heparin-binding epidermal growth factor, mucins, and microRNAs (miRNAs). Multiple lines of evidence have indicated that miRNAs could affect the expression of LIF and pinopodes in the endometrium and these molecules play key roles in implantation window processes. Here, we have summarized the morphology and function of pinopodes. Moreover, we have highlighted several molecules in relation to pinopodes that could be used as biomarkers.
Collapse
Affiliation(s)
- Fahimeh Zamani Rarani
- Department of Anatomical Sciences, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Fatemeh Borhani
- Department of Basic Sciences, Faculty of Medicine, Gonabad University of Medical Sciences, Gonabad, Iran.,Department of Basic Sciences, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bahman Rashidi
- Department of Anatomical Sciences, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
5
|
Karapetsas A, Tokamani M, Evangelou C, Sandaltzopoulos R. The homeodomain transcription factor MEIS1 triggers chemokine expression and is involved in CD8+ T-lymphocyte infiltration in early stage ovarian cancer. Mol Carcinog 2018; 57:1251-1263. [DOI: 10.1002/mc.22840] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 04/20/2018] [Accepted: 05/23/2018] [Indexed: 12/14/2022]
Affiliation(s)
- Athanasios Karapetsas
- Department of Molecular Biology and Genetics; Democritus University of Thrace; Alexandroupolis Greece
| | - Maria Tokamani
- Department of Molecular Biology and Genetics; Democritus University of Thrace; Alexandroupolis Greece
| | - Christos Evangelou
- Department of Molecular Biology and Genetics; Democritus University of Thrace; Alexandroupolis Greece
| | - Raphael Sandaltzopoulos
- Department of Molecular Biology and Genetics; Democritus University of Thrace; Alexandroupolis Greece
| |
Collapse
|
6
|
Megakaryocyte lineage development is controlled by modulation of protein acetylation. PLoS One 2018; 13:e0196400. [PMID: 29698469 PMCID: PMC5919413 DOI: 10.1371/journal.pone.0196400] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Accepted: 04/12/2018] [Indexed: 12/11/2022] Open
Abstract
Treatment with lysine deacetylase inhibitors (KDACi) for haematological malignancies, is accompanied by haematological side effects including thrombocytopenia, suggesting that modulation of protein acetylation affects normal myeloid development, and specifically megakaryocyte development. In the current study, utilising ex-vivo differentiation of human CD34+ haematopoietic progenitor cells, we investigated the effects of two functionally distinct KDACi, valproic acid (VPA), and nicotinamide (NAM), on megakaryocyte differentiation, and lineage choice decisions. Treatment with VPA increased the number of megakaryocyte/erythroid progenitors (MEP), accompanied by inhibition of megakaryocyte differentiation, whereas treatment with NAM accelerated megakaryocyte development, and stimulated polyploidisation. Treatment with both KDACi resulted in no significant effects on erythrocyte differentiation, suggesting that the effects of KDACi primarily affect megakaryocyte lineage development. H3K27Ac ChIP-sequencing analysis revealed that genes involved in myeloid development, as well as megakaryocyte/erythroid (ME)-lineage differentiation are uniquely modulated by specific KDACi treatment. Taken together, our data reveal distinct effects of specific KDACi on megakaryocyte development, and ME-lineage decisions, which can be partially explained by direct effects on promoter acetylation of genes involved in myeloid differentiation.
Collapse
|
7
|
Gan T, Li BE, Mishra BP, Jones KL, Ernst P. MLL1 Promotes IL-7 Responsiveness and Survival during B Cell Differentiation. THE JOURNAL OF IMMUNOLOGY 2018; 200:1682-1691. [PMID: 29351999 DOI: 10.4049/jimmunol.1701572] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 12/18/2017] [Indexed: 12/15/2022]
Abstract
B lymphocyte differentiation is an exquisitely regulated homeostatic process resulting in continuous production of appropriately selected B cells. Relatively small changes in gene expression can result in deregulation of this process, leading to acute lymphocytic leukemia (ALL), immune deficiency, or autoimmunity. Translocation of MLL1 (KMT2A) often results in a pro-B cell ALL, but little is known about its role in normal B cell differentiation. Using a Rag1-cre mouse knock-in to selectively delete Mll1 in developing lymphocytes, we show that B cell, but not T cell, homeostasis depends on MLL1. Mll1-/- B progenitors fail to differentiate efficiently through the pro- to pre-B cell transition, resulting in a persistent reduction in B cell populations. Cells inefficiently transit the pre-BCR checkpoint, despite normal to higher levels of pre-BCR components, and rearranged IgH expression fails to rescue this differentiation block. Instead of IgH-rearrangement defects, we find that Mll1-/- pre-B cells exhibit attenuated RAS/MAPK signaling downstream of the pre-BCR, which results in reduced survival in physiologic levels of IL-7. Genome-wide expression data illustrate that MLL1 is connected to B cell differentiation and IL-7-dependent survival through a complex transcriptional network. Overall, our data demonstrate that wild-type MLL1 is a regulator of pre-BCR signaling and B cell differentiation and further suggest that targeting its function in pro-B cell ALL may be more broadly effective than previously anticipated.
Collapse
Affiliation(s)
- Tao Gan
- Department of Genetics, Geisel School of Medicine at Dartmouth, Hanover, NH 03755
| | - Bin E Li
- Department of Genetics, Geisel School of Medicine at Dartmouth, Hanover, NH 03755
| | - Bibhu P Mishra
- Department of Genetics, Geisel School of Medicine at Dartmouth, Hanover, NH 03755
| | - Kenneth L Jones
- Hematology/Oncology/Bone Marrow Transplant Section, Department of Pediatrics, University of Colorado, Denver/Anschutz Medical Campus, Aurora, CO 80045; and.,Department of Pharmacology, University of Colorado, Denver/Anschutz Medical Campus, Aurora, CO 80045
| | - Patricia Ernst
- Hematology/Oncology/Bone Marrow Transplant Section, Department of Pediatrics, University of Colorado, Denver/Anschutz Medical Campus, Aurora, CO 80045; and .,Department of Pharmacology, University of Colorado, Denver/Anschutz Medical Campus, Aurora, CO 80045
| |
Collapse
|
8
|
A knock-in mouse strain facilitates dynamic tracking and enrichment of MEIS1. Blood Adv 2017; 1:2225-2235. [PMID: 29296870 DOI: 10.1182/bloodadvances.2017010355] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 10/10/2017] [Indexed: 12/13/2022] Open
Abstract
Myeloid ecotropic viral integration site 1 (MEIS1), a HOX transcription cofactor, is a critical regulator of normal hematopoiesis, and its overexpression is implicated in a wide range of leukemias. Using the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein-9 (Cas9) gene-editing system, we generated a knock-in transgenic mouse line in which a green fluorescent protein (GFP) reporter and a hemagglutinin (HA) epitope tag are inserted near the translational start site of endogenous Meis1. This novel reporter strain readily enables tracking of MEIS1 expression at single-cell-level resolution via the fluorescence reporter GFP, and facilitates MEIS1 detection and purification via the HA epitope tag. This new Meis1 reporter mouse line provides powerful new approaches to track Meis1-expressing hematopoietic cells and to explore Meis1 function and regulation during normal and leukemic hematopoiesis.
Collapse
|
9
|
Song F, Wang H, Wang Y. Myeloid ecotropic viral integration site 1 inhibits cell proliferation, invasion or migration in human gastric cancer. Oncotarget 2017; 8:90050-90060. [PMID: 29163810 PMCID: PMC5685731 DOI: 10.18632/oncotarget.21376] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 09/05/2017] [Indexed: 11/25/2022] Open
Abstract
Myeloid ecotropic viral integration site 1 (MEIS1) has been identified to be a potential tumor suppressor in some cancers. However, the mechanisms underlying MEIS1-induced cancer development and progression were not clear. Here, we investigated the expression and role of MEIS1 in gastric cancer. In vivo, we analyzed tumor growth using nude mice model. In the present study, MEIS1 expression was obviously decreased in GC cell lines compared with that in normal gastric cell lines (all p<0.001). MEIS1 overexpression inhibited cell proliferation and G1/S transition accompanied by decreased Cyclin D1 and Cyclin A expression. Furthermore, MEIS1 overexpression decreased the expression of Survivin, and induced cell apoptosis (p<0.001). Transwell migration assay revealed that MEIS1 affects cell invasion and migration, and inhibited epithelial-mesenchymal transition (EMT). Finally, MEIS1 inhibits MKN28 cell growth in nude mice model. In conclusion, our study suggested that MEIS1 plays an important role in regulating cell survival, proliferation, anchorage-independent growth, cell cycle, apoptosis and metastasis. Thus, MEIS1 might be recommended as an effective target for GC patients.
Collapse
Affiliation(s)
- Fei Song
- Department of General Surgery, Shandong Provincial Third Hospital, Jinan, Shandong, China
| | - Hong Wang
- Department of General Surgery, Shandong Provincial Third Hospital, Jinan, Shandong, China
| | - Yingying Wang
- Department of Gynecologic Oncology, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Sciences, Jinan, Shandong, China
| |
Collapse
|
10
|
Blasi F, Bruckmann C, Penkov D, Dardaei L. A tale of TALE, PREP1, PBX1, and MEIS1: Interconnections and competition in cancer. Bioessays 2017; 39. [DOI: 10.1002/bies.201600245] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Francesco Blasi
- IFOM, Foundation FIRC (Italian Foundation for Cancer Research) Institute of Molecular Oncology; Milan Italy
| | - Chiara Bruckmann
- IFOM, Foundation FIRC (Italian Foundation for Cancer Research) Institute of Molecular Oncology; Milan Italy
| | - Dmitry Penkov
- IFOM, Foundation FIRC (Italian Foundation for Cancer Research) Institute of Molecular Oncology; Milan Italy
| | - Leila Dardaei
- Massachusetts General Hospital Cancer Center; Charlestown MA USA
- Department of Medicine; Harvard Medical School; Boston MA USA
| |
Collapse
|
11
|
Zhu J, Cui L, Xu A, Yin X, Li F, Gao J. MEIS1 inhibits clear cell renal cell carcinoma cells proliferation and in vitro invasion or migration. BMC Cancer 2017; 17:176. [PMID: 28270206 PMCID: PMC5341457 DOI: 10.1186/s12885-017-3155-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 02/23/2017] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Myeloid ecotropic viral integration site 1 (MEIS1) protein plays a synergistic causative role in acute myeloid leukemia (AML). However, MEIS1 has also shown to be a potential tumor suppressor in some other cancers, such as non-small-cell lung cancer (NSCLC) and prostate cancer. Although multiple roles of MEIS1 in cancer development and progression have been identified, there is an urgent demand to discover more functions of this molecule for further therapeutic design. METHODS MEIS1 was overexpressed via adenovirus vector in clear cell renal cell carcinoma (ccRCC) cells. Western blot and real-time qPCR (quantitative Polymerase Chain Reaction) was performed to examine the protein and mRNA levels of MEIS1. Cell proliferation, survival, in vitro migration and invasion were tested by MTT, colony formation, soft-agar, transwell (in vitro invasion/migration) assays, and tumor in vivo growthwas measured on nude mice model. In addition, flow-cytometry analysis was used to detect cell cycle arrest or non-apoptotic cell death of ccRCC cells induced by MEIS1. RESULTS MEIS1 exhibits a decreased expression in ccRCC cell lines than that in non-tumor cell lines. MEIS1 overexpression inhibits ccRCC cells proliferation and induces G1/S arrest concomitant with marked reduction of G1/S transition regulators, Cyclin D1 and Cyclin A. Moreover, MEIS1-1 overexpression also induces non-apoptotic cell death of ccRCC cells via decreasing the levels of pro-survival regulators Survivin and BCL-2. Transwell migration assay (TMA) shows that MEIS1 attenuates in vitro invasion and migration of ccRCC cells with down-regulated epithelial-mesenchymal transition (EMT) process. Further, in nude mice model, MEIS1 inhibits the in vivo growth of Caki-1 cells. CONCLUSIONS By investigating the role of MEIS1 in ccRCC cells' survival, proliferation, anchorage-independent growth, cell cycle progress, apoptosis and metastasis, in the present work, we propose that MEIS1 may play an important role in clear cell renal cell carcinoma (ccRCC) development.
Collapse
Affiliation(s)
- Jie Zhu
- Department of Urology, Chinese PLA Medical School/Chinese PLA General Hospital, Beijing, 100853 People’s Republic of China
| | - Liang Cui
- Department of Urology, Chinese PLA Medical School/Chinese PLA General Hospital, Beijing, 100853 People’s Republic of China
- Department of Urology, Civil Aviation General Hospital/Civil Aviation Medical College of Peking University, Beijing, 100123 People’s Republic of China
| | - Axiang Xu
- Department of Urology, Chinese PLA Medical School/Chinese PLA General Hospital, Beijing, 100853 People’s Republic of China
| | - Xiaotao Yin
- Department of Urology, Chinese PLA Medical School/Chinese PLA General Hospital, Beijing, 100853 People’s Republic of China
| | - Fanglong Li
- Department of Urology, Chinese PLA Medical School/Chinese PLA General Hospital, Beijing, 100853 People’s Republic of China
| | - Jiangping Gao
- Department of Urology, Chinese PLA Medical School/Chinese PLA General Hospital, Beijing, 100853 People’s Republic of China
| |
Collapse
|
12
|
Zhang J, Han B, Li X, Bies J, Jiang P, Koller RP, Wolff L. Distal regulation of c-myb expression during IL-6-induced differentiation in murine myeloid progenitor M1 cells. Cell Death Dis 2016; 7:e2364. [PMID: 27607579 PMCID: PMC5059869 DOI: 10.1038/cddis.2016.267] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 07/25/2016] [Accepted: 07/29/2016] [Indexed: 12/31/2022]
Abstract
The c-Myb transcription factor is a major regulator that controls differentiation and proliferation of hematopoietic progenitor cells, which is frequently deregulated in hematological diseases, such as lymphoma and leukemia. Understanding of the mechanisms regulating the transcription of c-myb gene is challenging as it lacks a typical promoter and multiple factors are involved. Our previous studies identified some distal regulatory elements in the upstream regions of c-myb gene in murine myeloid progenitor M1 cells, but the detailed mechanisms still remain unclear. In the present study, we found that a cell differentiation-related DNase1 hypersensitive site is located at a -28k region upstream of c-myb gene and that transcription factors Hoxa9, Meis1 and PU.1 bind to the -28k region. Circular chromosome conformation capture (4C) assay confirmed the interaction between the -28k region and the c-myb promoter, which is supported by the enrichment of CTCF and Cohesin. Our analysis also points to a critical role for Hoxa9 and PU.1 in distal regulation of c-myb expression in murine myeloid cells and cell differentiation. Overexpression of Hoxa9 disrupted the IL-6-induced differentiation of M1 cells and upregulated c-myb expression through binding of the -28k region. Taken together, our results provide an evidence for critical role of the -28k region in distal regulatory mechanism for c-myb gene expression during differentiation of myeloid progenitor M1 cells.
Collapse
Affiliation(s)
- Junfang Zhang
- Key Laboratory of Aquacultural Resources and Utilization, Ministry of Education, College of Fishery and Life Science, Shanghai Ocean University, No.999 Huchenghuan Road, Pudong New District, Shanghai 201306, China
| | - Bingshe Han
- Key Laboratory of Aquacultural Resources and Utilization, Ministry of Education, College of Fishery and Life Science, Shanghai Ocean University, No.999 Huchenghuan Road, Pudong New District, Shanghai 201306, China
| | - Xiaoxia Li
- Key Laboratory of Aquacultural Resources and Utilization, Ministry of Education, College of Fishery and Life Science, Shanghai Ocean University, No.999 Huchenghuan Road, Pudong New District, Shanghai 201306, China
| | - Juraj Bies
- Laboratory of Cellular Oncology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Penglei Jiang
- Key Laboratory of Aquacultural Resources and Utilization, Ministry of Education, College of Fishery and Life Science, Shanghai Ocean University, No.999 Huchenghuan Road, Pudong New District, Shanghai 201306, China
| | - Richard P Koller
- Laboratory of Cellular Oncology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Linda Wolff
- Laboratory of Cellular Oncology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| |
Collapse
|
13
|
Moghbeli M, Rad A, Farshchian M, Taghehchian N, Gholamin M, Abbaszadegan MR. Correlation Between Meis1 and Msi1 in Esophageal Squamous Cell Carcinoma. J Gastrointest Cancer 2016; 47:273-277. [PMID: 27142513 DOI: 10.1007/s12029-016-9824-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
PURPOSE Homeobox (HOX) transcription factors are critical regulators of cell fate, stem cell functions, and gastrointestinal development. They require three-amino acid loop extension (TALE) homeodomain proteins such as Meis1 to enhance their transcriptional efficiencies. There are complicated associations between different signaling pathways such as the Wnt and NOTCH and tumor progression. It has been investigated that GSK-3 as an important component of the Wnt pathway facilitates the expression of HOX target genes. Therefore, in the present study, we assessed the probable correlation between Wnt, NOTCH, and HOX genes in esophageal squamous cell carcinoma (ESCC) progression and metastasis through the correlational study between the Msi1 as an important activator for both of the NOTCH and Wnt pathways and Meis1. METHODS Levels of Meis1 and Msi1 messenger RNA (mRNA) expression in 51 ESCC patients were compared to the normal tissues using real-time polymerase chain reaction. RESULTS Only 3 out of 51 (5.9 %) cases had Meis1/Msi1 overexpression and also 3/51 (5.9 %) cases had Meis1/Msi1 underexpression. There was a significant correlation between the Msi1 and Mesi1 mRNA expression (p = 0.037). All of the Msi1/Meis1 underexpressed tumors were poorly differentiated (p = 0.003). Meis1 under/Msi1 overexpressed cases also were in T3 tumor depth of invasion (p = 0.019). And there was a significant correlation between the Msi1/Meis1 underexpression and gender (p = 0.045). CONCLUSIONS Our results show that Meis1 may have a positive feedback with Msi1 during the ESCC progression.
Collapse
Affiliation(s)
- Meysam Moghbeli
- Division of Human Genetics, Immunology Research Center, Avicenna Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Abolfazl Rad
- Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Moein Farshchian
- Molecular Medicine Research Department, ACECR-Khorasan Razavi Branch, Mashhad, Iran
| | - Negin Taghehchian
- Division of Human Genetics, Immunology Research Center, Avicenna Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mehran Gholamin
- Division of Human Genetics, Immunology Research Center, Avicenna Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Reza Abbaszadegan
- Division of Human Genetics, Immunology Research Center, Avicenna Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
- Medical Genetics Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
14
|
Histone deacetylase inhibitors induce leukemia gene expression in cord blood hematopoietic stem cells expanded ex vivo. Int J Hematol 2016; 105:37-43. [DOI: 10.1007/s12185-016-2075-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2016] [Revised: 08/08/2016] [Accepted: 08/09/2016] [Indexed: 01/06/2023]
|
15
|
Genetic and Epigenetic Mechanisms That Maintain Hematopoietic Stem Cell Function. Stem Cells Int 2015; 2016:5178965. [PMID: 26798358 PMCID: PMC4699043 DOI: 10.1155/2016/5178965] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 09/03/2015] [Accepted: 09/09/2015] [Indexed: 01/15/2023] Open
Abstract
All hematopoiesis cells develop from multipotent progenitor cells. Hematopoietic stem cells (HSC) have the ability to develop into all blood lineages but also maintain their stemness. Different molecular mechanisms have been identified that are crucial for regulating quiescence and self-renewal to maintain the stem cell pool and for inducing proliferation and lineage differentiation. The stem cell niche provides the microenvironment to keep HSC in a quiescent state. Furthermore, several transcription factors and epigenetic modifiers are involved in this process. These create modifications that regulate the cell fate in a more or less reversible and dynamic way and contribute to HSC homeostasis. In addition, HSC respond in a unique way to DNA damage. These mechanisms also contribute to the regulation of HSC function and are essential to ensure viability after DNA damage. How HSC maintain their quiescent stage during the entire life is still matter of ongoing research. Here we will focus on the molecular mechanisms that regulate HSC function.
Collapse
|
16
|
Abstract
Apoptosis is a cellular suicide program, which is on the one hand used to remove superfluous cells thereby promoting tissue or organ morphogenesis. On the other hand, the programmed killing of cells is also critical when potentially harmful cells emerge in a developing or adult organism thereby endangering survival. Due to its critical role apoptosis is tightly controlled, however so far, its regulation on the transcriptional level is less studied and understood. Hox genes, a highly conserved gene family encoding homeodomain transcription factors, have crucial roles in development. One of their prominent functions is to shape animal body plans by eliciting different developmental programs along the anterior-posterior axis. To this end, Hox proteins transcriptionally regulate numerous processes in a coordinated manner, including cell-type specification, differentiation, motility, proliferation as well as apoptosis. In this review, we will focus on how Hox proteins control organismal morphology and function by regulating the apoptotic machinery. We will first focus on well-established paradigms of Hox-apoptosis interactions and summarize how Hox transcription factors control morphological outputs and differentially shape tissues along the anterior-posterior axis by fine-tuning apoptosis in a healthy organism. We will then discuss the consequences when this interaction is disturbed and will conclude with some ideas and concepts emerging from these studies.
Collapse
|
17
|
Kocabas F, Xie L, Xie J, Yu Z, DeBerardinis RJ, Kimura W, Thet S, Elshamy AF, Abouellail H, Muralidhar S, Liu X, Chen C, Sadek HA, Zhang CC, Zheng J. Hypoxic metabolism in human hematopoietic stem cells. Cell Biosci 2015. [PMID: 26221532 PMCID: PMC4517642 DOI: 10.1186/s13578-015-0020-3] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Background Adult hematopoietic stem cells (HSCs) are maintained in a microenvironment, known as niche in the endosteal regions of the bone marrow. This stem cell niche with low oxygen tension requires HSCs to adopt a unique metabolic profile. We have recently demonstrated that mouse long-term hematopoietic stem cells (LT-HSCs) utilize glycolysis instead of mitochondrial oxidative phosphorylation as their main energy source. However, the metabolic phenotype of human hematopoietic progenitor and stem cells (HPSCs) remains unknown. Results We show that HPSCs have a similar metabolic phenotype, as shown by high rates of glycolysis, and low rates of oxygen consumption. Fractionation of human mobilized peripheral blood cells based on their metabolic footprint shows that cells with a low mitochondrial potential are highly enriched for HPSCs. Remarkably, low MP cells had much better repopulation ability as compared to high MP cells. Moreover, similar to their murine counterparts, we show that Hif-1α is upregulated in human HPSCs, where it is transcriptionally regulated by Meis1. Finally, we show that Meis1 and its cofactors Pbx1 and HoxA9 play an important role in transcriptional activation of Hif-1α in a cooperative manner. Conclusions These findings highlight the unique metabolic properties of human HPSCs and the transcriptional network that regulates their metabolic phenotype. Electronic supplementary material The online version of this article (doi:10.1186/s13578-015-0020-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Fatih Kocabas
- Department of Internal Medicine, Division of Cardiology, UT Southwestern Medical Center at Dallas, Dallas, TX 75390 USA.,Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, 34755 Turkey
| | - Li Xie
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital / Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China.,Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Chongqing South Road 280, Shanghai, 200025 China
| | - Jingjing Xie
- Bingzhou Medical University, Taishan Scholar Program, Yantai, 264003 China
| | - Zhuo Yu
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital / Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China.,Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Chongqing South Road 280, Shanghai, 200025 China
| | - Ralph J DeBerardinis
- Departments of Pediatrics and Genetics, UT Southwestern Medical Center at Dallas, Dallas, TX 75390 USA
| | - Wataru Kimura
- Department of Internal Medicine, Division of Cardiology, UT Southwestern Medical Center at Dallas, Dallas, TX 75390 USA
| | - SuWannee Thet
- Department of Internal Medicine, Division of Cardiology, UT Southwestern Medical Center at Dallas, Dallas, TX 75390 USA
| | - Ahmed F Elshamy
- Department of Clinical Pathology, El Galaa Hospital, Cairo, Egypt
| | | | - Shalini Muralidhar
- Department of Internal Medicine, Division of Cardiology, UT Southwestern Medical Center at Dallas, Dallas, TX 75390 USA
| | - Xiaoye Liu
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Chongqing South Road 280, Shanghai, 200025 China
| | - Chiqi Chen
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital / Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
| | - Hesham A Sadek
- Department of Internal Medicine, Division of Cardiology, UT Southwestern Medical Center at Dallas, Dallas, TX 75390 USA
| | - Cheng Cheng Zhang
- Departments of Physiology and Developmental Biology, UT Southwestern Medical Center at Dallas, 5323 Harry Hines Blvd, Dallas, TX 75390 USA
| | - Junke Zheng
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital / Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China.,Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Chongqing South Road 280, Shanghai, 200025 China
| |
Collapse
|
18
|
Zhou J, Zhang X, Wang Y, Guan Y. PU.1 affects proliferation of the human acute myeloid leukemia U937 cell line by directly regulating MEIS1. Oncol Lett 2015; 10:1912-1918. [PMID: 26622774 DOI: 10.3892/ol.2015.3404] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2014] [Accepted: 05/29/2015] [Indexed: 02/06/2023] Open
Abstract
The transcription factor PU.1 is a member of the ETS family, which is expressed in a wide variety of hematopoietic lineages. Accumulating evidence has indicated that PU.1 plays a key role in hematopoiesis, and reduced expression of PU.1 leads to the pathogenesis of human myeloid leukemia. As a multi-functional factor, PU.1 is also required for mixed lineage leukemia (MLL) stem cell potential and the development of MLL. However, the function of PU.1 in human non-MLL leukemia and its molecular mechanism remains poorly understood. In the present study, PU.1 siRNA was demonstrated to efficiently inhibit the transcription level of oncogene MEIS1 in the human acute myeloid non-MLL leukemia U937 cell line. In addition, PU.1, as a positive regulator of MEIS1, performed a crucial role in maintaining cell proliferation. Using electrophoretic mobility shift assay, chromatin immunoprecipitation analysis and luciferase reporter assay, previously unexplored evidence that PU.1 activated the MEIS1 promoter through a conserved binding motif in vitro and in vivo was further defined. Overall, the present study provides insight into the molecular mechanism of the contribution of PU.1 to the pathogenesis of non-MLL U937 cells, which is mediated by direct regulation of MEIS1 transcription. The present data reveal the possibility of developing an alternative therapy for non-MLL leukemia by targeting PU.1-mediated MEIS1 gene activation.
Collapse
Affiliation(s)
- Jing Zhou
- Laboratory of Genome Variations and Precision Bio-Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, P.R. China ; Department of Immunology and Infectious Diseases, The Forsyth Institute, Cambridge, MA 02142, USA
| | - Xiaofeng Zhang
- Department of Chemistry, University of Massachusetts Boston, Boston, MA 02125, USA
| | - Yuhua Wang
- Department of Immunology and Infectious Diseases, The Forsyth Institute, Cambridge, MA 02142, USA ; Department of Prosthodontics, Ninth People's Hospital, College of Stomatology, School of Medicine, Shanghai Jiao Tong University, Shanghai Key Laboratory of Stomatology, Shanghai 200011, P.R. China
| | - Yinghui Guan
- Respiratory Department, 2nd Branch of First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
19
|
Cui L, Li M, Feng F, Yang Y, Hang X, Cui J, Gao J. MEIS1 functions as a potential AR negative regulator. Exp Cell Res 2014; 328:58-68. [DOI: 10.1016/j.yexcr.2014.08.023] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Revised: 08/15/2014] [Accepted: 08/17/2014] [Indexed: 02/07/2023]
|
20
|
Zeddies S, Jansen SBG, di Summa F, Geerts D, Zwaginga JJ, van der Schoot CE, von Lindern M, Thijssen-Timmer DC. MEIS1 regulates early erythroid and megakaryocytic cell fate. Haematologica 2014; 99:1555-64. [PMID: 25107888 DOI: 10.3324/haematol.2014.106567] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
MEIS1 is a transcription factor expressed in hematopoietic stem and progenitor cells and in mature megakaryocytes. This biphasic expression of MEIS1 suggests that the function of MEIS1 in stem cells is distinct from its function in lineage committed cells. Mouse models show that Meis1 is required for renewal of stem cells, but the function of MEIS1 in human hematopoietic progenitor cells has not been investigated. We show that two MEIS1 splice variants are expressed in hematopoietic progenitor cells. Constitutive expression of both variants directed human hematopoietic progenitors towards a megakaryocyte-erythrocyte progenitor fate. Ectopic expression of either MEIS1 splice variant in common myeloid progenitor cells, and even in granulocyte-monocyte progenitors, resulted in increased erythroid differentiation at the expense of granulocyte and macrophage differentiation. Conversely, silencing MEIS1 expression in progenitor cells induced a block in erythroid expansion and decreased megakaryocytic colony formation capacity. Gene expression profiling revealed that both MEIS1 splice variants induce a transcriptional program enriched for erythroid and megakaryocytic genes. Our results indicate that MEIS1 expression induces lineage commitment towards a megakaryocyte-erythroid progenitor cell fate in common myeloid progenitor cells through activation of genes that define a megakaryocyte-erythroid-specific gene expression program.
Collapse
Affiliation(s)
| | | | | | - Dirk Geerts
- Department of Pediatric Oncology, Erasmus Medical Center Rotterdam, Sanquin Blood Supply, Leiden, The Netherlands
| | - Jaap J Zwaginga
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center and the Jon J van Rood Center for Clinical Transfusion Research, Sanquin Blood Supply, Leiden, The Netherlands
| | - C Ellen van der Schoot
- Department of Experimental Immunohematology, Sanquin Research and Landsteiner Laboratory, Academic Medical Center Amsterdam, Sanquin Blood Supply, Leiden, The Netherlands
| | | | | |
Collapse
|
21
|
Luque-Baena RM, Urda D, Subirats JL, Franco L, Jerez JM. Application of genetic algorithms and constructive neural networks for the analysis of microarray cancer data. Theor Biol Med Model 2014; 11 Suppl 1:S7. [PMID: 25077572 PMCID: PMC4108856 DOI: 10.1186/1742-4682-11-s1-s7] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Background Extracting relevant information from microarray data is a very complex task due to the characteristics of the data sets, as they comprise a large number of features while few samples are generally available. In this sense, feature selection is a very important aspect of the analysis helping in the tasks of identifying relevant genes and also for maximizing predictive information. Methods Due to its simplicity and speed, Stepwise Forward Selection (SFS) is a widely used feature selection technique. In this work, we carry a comparative study of SFS and Genetic Algorithms (GA) as general frameworks for the analysis of microarray data with the aim of identifying group of genes with high predictive capability and biological relevance. Six standard and machine learning-based techniques (Linear Discriminant Analysis (LDA), Support Vector Machines (SVM), Naive Bayes (NB), C-MANTEC Constructive Neural Network, K-Nearest Neighbors (kNN) and Multilayer perceptron (MLP)) are used within both frameworks using six free-public datasets for the task of predicting cancer outcome. Results Better cancer outcome prediction results were obtained using the GA framework noting that this approach, in comparison to the SFS one, leads to a larger selection set, uses a large number of comparison between genetic profiles and thus it is computationally more intensive. Also the GA framework permitted to obtain a set of genes that can be considered to be more biologically relevant. Regarding the different classifiers used standard feedforward neural networks (MLP), LDA and SVM lead to similar and best results, while C-MANTEC and k-NN followed closely but with a lower accuracy. Further, C-MANTEC, MLP and LDA permitted to obtain a more limited set of genes in comparison to SVM, NB and kNN, and in particular C-MANTEC resulted in the most robust classifier in terms of changes in the parameter settings. Conclusions This study shows that if prediction accuracy is the objective, the GA-based approach lead to better results respect to the SFS approach, independently of the classifier used. Regarding classifiers, even if C-MANTEC did not achieve the best overall results, the performance was competitive with a very robust behaviour in terms of the parameters of the algorithm, and thus it can be considered as a candidate technique for future studies.
Collapse
|
22
|
Luque-Baena RM, Urda D, Gonzalo Claros M, Franco L, Jerez JM. Robust gene signatures from microarray data using genetic algorithms enriched with biological pathway keywords. J Biomed Inform 2014; 49:32-44. [PMID: 24480647 DOI: 10.1016/j.jbi.2014.01.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Revised: 01/09/2014] [Accepted: 01/16/2014] [Indexed: 12/12/2022]
Abstract
Genetic algorithms are widely used in the estimation of expression profiles from microarrays data. However, these techniques are unable to produce stable and robust solutions suitable to use in clinical and biomedical studies. This paper presents a novel two-stage evolutionary strategy for gene feature selection combining the genetic algorithm with biological information extracted from the KEGG database. A comparative study is carried out over public data from three different types of cancer (leukemia, lung cancer and prostate cancer). Even though the analyses only use features having KEGG information, the results demonstrate that this two-stage evolutionary strategy increased the consistency, robustness and accuracy of a blind discrimination among relapsed and healthy individuals. Therefore, this approach could facilitate the definition of gene signatures for the clinical prognosis and diagnostic of cancer diseases in a near future. Additionally, it could also be used for biological knowledge discovery about the studied disease.
Collapse
Affiliation(s)
- R M Luque-Baena
- Departmento de Lenguajes y Ciencias de la Computación, University of Málaga, Bulevar Louis Pasteur, 35, 29071 Málaga, Spain.
| | - D Urda
- Departmento de Lenguajes y Ciencias de la Computación, University of Málaga, Bulevar Louis Pasteur, 35, 29071 Málaga, Spain; Instituto de Investigación Biomédica de Málaga (IBIMA), Málaga, Spain.
| | - M Gonzalo Claros
- Supercomputing and Bioinformatics Centre, University of Málaga, C/ Severo Ochoa, 34, 29590 Málaga, Spain.
| | - L Franco
- Departmento de Lenguajes y Ciencias de la Computación, University of Málaga, Bulevar Louis Pasteur, 35, 29071 Málaga, Spain; Instituto de Investigación Biomédica de Málaga (IBIMA), Málaga, Spain.
| | - J M Jerez
- Departmento de Lenguajes y Ciencias de la Computación, University of Málaga, Bulevar Louis Pasteur, 35, 29071 Málaga, Spain; Instituto de Investigación Biomédica de Málaga (IBIMA), Málaga, Spain.
| |
Collapse
|
23
|
Su Z, Si W, Li L, Zhou B, Li X, Xu Y, Xu C, Jia H, Wang QK. MiR-144 regulates hematopoiesis and vascular development by targeting meis1 during zebrafish development. Int J Biochem Cell Biol 2014; 49:53-63. [PMID: 24448023 DOI: 10.1016/j.biocel.2014.01.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Revised: 12/24/2013] [Accepted: 01/07/2014] [Indexed: 12/12/2022]
Abstract
Hematopoiesis is a dynamic process by which peripheral blood lineages are developed. It is a process tightly regulated by many intrinsic and extrinsic factors, including transcriptional factors and signaling molecules. However, the epigenetic regulation of hematopoiesis, for example, regulation via microRNAs (miRNAs), remains incompletely understood. Here we show that miR-144 regulates hematopoiesis and vascular development in zebrafish. Overexpression of miR-144 inhibited primitive hematopoiesis as demonstrated by a reduced number of circulating blood cells, reduced o-dianisidine staining of hemoglobin, and reduced expression of hbαe1, hbβe1, gata1 and pu.1. Overexpression of miR-144 also inhibited definitive hematopoiesis as shown by reduced expression of runx1 and c-myb. Mechanistically, miR-144 regulates hematopoiesis by repressing expression of meis1 involved in hematopoiesis. Both real-time RT-PCR and Western blot analyses showed that overexpression of miR-144 repressed expression of meis1. Bioinformatic analysis predicts a target binding sequence for miR-144 at the 3'-UTR of meis1. Deletion of the miR-144 target sequence eliminated the repression of meis1 expression mediated by miR-144. The miR-144-mediated abnormal phenotypes were partially rescued by co-injection of meis1 mRNA and could be almost completely rescued by injection of both meis1 and gata1 mRNA. Finally, because meis1 is involved in vascular development, we tested the effect of miR-144 on vascular development. Overexpression of miR-144 resulted in abnormal vascular development of intersegmental vessels in transgenic zebrafish with Flk1p-EGFP, and the defect was rescued by co-injection of meis1 mRNA. These findings establish miR-144 as a novel miRNA that regulates hematopoiesis and vascular development by repressing expression of meis1.
Collapse
Affiliation(s)
- Zhenhong Su
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, PR China; Key Laboratory of Kidney Disease Pathogenesis and Intervention of Hubei Province, Key Discipline of Pharmacy of Hubei Department of Education, Medical College, Hubei Polytechnic University, Huangshi, Hubei, PR China
| | - Wenxia Si
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, PR China
| | - Lei Li
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, PR China
| | - Bisheng Zhou
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, PR China
| | - Xiuchun Li
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, PR China
| | - Yan Xu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, PR China
| | - Chengqi Xu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, PR China
| | - Haibo Jia
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, PR China
| | - Qing K Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, PR China; Center for Cardiovascular Genetics, Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA.
| |
Collapse
|
24
|
PU.1 is essential for MLL leukemia partially via crosstalk with the MEIS/HOX pathway. Leukemia 2013; 28:1436-48. [PMID: 24445817 DOI: 10.1038/leu.2013.384] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Revised: 11/22/2013] [Accepted: 12/12/2013] [Indexed: 01/07/2023]
Abstract
Mixed lineage leukemia (MLL) fusion proteins directly activate the expression of key downstream genes such as MEIS1, HOXA9 to drive an aggressive form of human leukemia. However, it is still poorly understood what additional transcriptional regulators, independent of the MLL fusion pathway, contribute to the development of MLL leukemia. Here we show that the transcription factor PU.1 is essential for MLL leukemia and is required for the growth of MLL leukemic cells via the promotion of cell-cycle progression and inhibition of apoptosis. Importantly, PU.1 expression is not under the control of MLL fusion proteins. We further identified a PU.1-governed 15-gene signature, which contains key regulators in the MEIS-HOX program (MEIS1, PBX3, FLT3, and c-KIT). PU.1 directly binds to the genomic loci of its target genes in vivo, and is required to maintain active expression of those genes in both normal hematopoietic stem and progenitor cells and in MLL leukemia. Finally, the clinical significance of the identified PU.1 signature was indicated by its ability to predict survival in acute myelogenous leukemia patients. Together, our findings demonstrate that PU.1 contributes to the development of MLL leukemia, partially via crosstalk with the MEIS/HOX pathway.
Collapse
|
25
|
Regulation of MEIS1 by distal enhancer elements in acute leukemia. Leukemia 2013; 28:138-46. [PMID: 24022755 PMCID: PMC5774621 DOI: 10.1038/leu.2013.260] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 08/22/2013] [Accepted: 08/29/2013] [Indexed: 11/15/2022]
Abstract
Aberrant activation of the three-amino-acid-loop extension (TALE) homeobox gene MEIS1 shortens the latency and accelerates the onset and progression of acute leukemia, yet the molecular mechanism underlying persistent activation of the MEIS1 gene in leukemia remains poorly understood. Here we used a combined comparative genomics analysis and an in vivo transgenic zebrafish assay to identify 6 regulatory DNA elements that are able to direct GFP expression in a spatiotemporal manner during zebrafish embryonic hematopoiesis. Analysis of chromatin characteristics and regulatory signatures suggest that many of these predicted elements are potential enhancers in mammalian hematopoiesis. Strikingly, one of the enhancer elements (E9) is a frequent integration site in retroviral induced mouse acute leukemia. The genomic region corresponding to enhancer E9 is differentially marked by H3K4 mono-methylation and H3K27 acetylation, hallmarks of active enhancers, in multiple leukemia cell lines. Decreased enrichment of these histone marks is associated with downregulation of MEIS1 expression during hematopoietic differentiation. Furthermore, MEIS1/HOXA9 transactivate this enhancer via a conserved binding motif in vitro, and participate in an autoregulatory loop that modulates MEIS1 expression in vivo. Our results suggest that an intronic enhancer regulates the expression of MEIS1 in hematopoiesis and contributes to its aberrant expression in acute leukemia.
Collapse
|
26
|
Abstract
The homeobox (HOX) genes are a highly conserved family of homeodomain-containing transcription factors that specify cell identity in early development and, subsequently, in a number of adult processes including hematopoiesis. The dysregulation of HOX genes is associated with a number of malignancies including acute myeloid leukemia (AML) and acute lymphoid leukemia (ALL), where they have been shown to support the immortalization of leukemic cells both as chimeric partners in fusion genes and when overexpressed in their wild-type form. This review covers our current understanding of the role of HOX genes in normal hematopoiesis, AML and ALL, with particular emphasis on the similarities and differences of HOX function in these contexts, their hematopoietic downstream gene targets and implications for therapy.
Collapse
|
27
|
Dual actions of Meis1 inhibit erythroid progenitor development and sustain general hematopoietic cell proliferation. Blood 2012; 120:335-46. [PMID: 22665933 DOI: 10.1182/blood-2012-01-403139] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Myeloid ecotropic viral integration site 1 (Meis1) forms a heterodimer with Pbx1 that augments Hox-dependent gene expression and is associated with leukemogenesis and HSC self-renewal. Here we identified 2 independent actions of Meis1 in hematopoietic development: one regulating cellular proliferation and the other involved in megakaryocyte lineage development. First, we found that endogenous Mesp1 indirectly induces Meis1 and Meis2 in endothelial cells derived from embryonic stem cells. Overexpression of Meis1 and Meis2 greatly enhanced the formation of hematopoietic colonies from embryonic stem cells, with the exception of erythroid colonies, by maintaining hematopoietic progenitor cells in a state of proliferation. Second, overexpression of Meis1 repressed the development of early erythroid progenitors, acting in vivo at the megakaryocyte-erythroid progenitor stage to skew development away from erythroid generation and toward megakaryocyte development. This previously unrecognized action of Meis1 may explain the embryonic lethality observed in Meis1(-/-) mice that arises from failure of lymphatic-venous separation and can result as a consequence of defective platelet generation. These results show that Meis1 exerts 2 independent functions, with its role in proliferation of hematopoietic progenitors acting earlier in development from its influence on the fate choice at the megakaryocyte-erythroid progenitor between megakaryocytic and erythroid development.
Collapse
|
28
|
He M, Chen P, Arnovitz S, Li Y, Huang H, Neilly MB, Wei M, Rowley JD, Chen J, Li Z. Two isoforms of HOXA9 function differently but work synergistically in human MLL-rearranged leukemia. Blood Cells Mol Dis 2012; 49:102-6. [PMID: 22633751 DOI: 10.1016/j.bcmd.2012.05.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Accepted: 05/01/2012] [Indexed: 02/07/2023]
Abstract
HOXA9 plays a critical role in both normal hematopoiesis and leukemogenesis, particularly in the development and maintenance of mixed lineage leukemia (MLL)-rearranged leukemia. Through reverse transcription-polymerase chain reaction (RT-PCR) analysis of HOXA9 transcripts in human leukemia and normal bone marrow samples, we identified a truncated isoform of HOXA9, namely HOXA9T, and found that both HOXA9T and canonical HOXA9 were highly expressed in leukemia cell lines bearing MLL rearrangements, relative to human normal bone marrow cells or other subtypes of leukemia cells. A frameshift in HOXA9T in exon I causes a premature stop codon upstream of the PBX-binding domain and the homeodomain, which leads to the generation of a non-homeodomain-containing protein. Unlike the canonical HOXA9, HOXA9T alone cannot transform normal bone marrow progenitor cells. Moreover, HOXA9T cannot cooperate with MEIS1 to transform cells, despite the presence of a MEIS1-binding domain. Remarkably, although the truncated isoforms of many proteins function as dominant-negative competitors or inhibitors of their full-length counterparts, this is not the case for HOXA9T; instead, HOXA9T synergized with HOXA9 in transforming mouse normal bone marrow progenitor cells through promoting self-renewal and proliferation of the cells. Collectively, our data indicate that both truncated and full-length forms of HOXA9 are highly expressed in human MLL-rearranged leukemia, and the truncated isoform of HOXA9 might also play an oncogenic role by cooperating with canonical HOXA9 in cell transformation and leukemogenesis.
Collapse
Affiliation(s)
- Miao He
- Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, IL, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Mercer EM, Lin YC, Murre C. Factors and networks that underpin early hematopoiesis. Semin Immunol 2011; 23:317-25. [PMID: 21930392 DOI: 10.1016/j.smim.2011.08.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2010] [Accepted: 08/19/2011] [Indexed: 01/08/2023]
Abstract
Multiple trajectories have recently been described through which hematopoietic progenitor cells travel prior to becoming lineage-committed effectors. A wide spectrum of transcription factors has recently been identified that modulate developmental progression along such trajectories. Here we describe how distinct families of transcription factors act and are linked together to orchestrate early hematopoiesis.
Collapse
Affiliation(s)
- Elinore M Mercer
- Department of Molecular Biology, University of California, San Diego, La Jolla, CA 92093, United States.
| | | | | |
Collapse
|
30
|
Targeting levels or oligomerization of nucleophosmin 1 induces differentiation and loss of survival of human AML cells with mutant NPM1. Blood 2011; 118:3096-106. [PMID: 21719597 DOI: 10.1182/blood-2010-09-309674] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Nucleophosmin 1 (NPM1) is an oligomeric, nucleolar phosphoprotein that functions as a molecular chaperone for both proteins and nucleic acids. NPM1 is mutated in approximately one-third of patients with AML. The mutant NPM1c+ contains a 4-base insert that results in extra C-terminal residues encoding a nuclear export signal, which causes NPM1c+ to be localized in the cytoplasm. Here, we determined the effects of targeting NPM1 in cultured and primary AML cells. Treatment with siRNA to NPM1 induced p53 and p21, decreased the percentage of cells in S-phase of the cell cycle, as well as induced differentiation of the AML OCI-AML3 cells that express both NPMc+ and unmutated NPM1. Notably, knockdown of NPM1 by shRNA abolished lethal AML phenotype induced by OCI-AML3 cells in NOD/SCID mice. Knockdown of NPM1 also sensitized OCI-AML3 to all-trans retinoic acid (ATRA) and cytarabine. Inhibition of NPM1 oligomerization by NSC348884 induced apoptosis and sensitized OCI-AML3 and primary AML cells expressing NPM1c+ to ATRA. This effect was significantly less in AML cells coexpressing FLT3-ITD, or in AML or normal CD34+ progenitor cells expressing wild-type NPM1. Thus, attenuating levels or oligomerization of NPM1 selectively induces apoptosis and sensitizes NPM1c+ expressing AML cells to treatment with ATRA and cytarabine.
Collapse
|
31
|
Orlovsky K, Kalinkovich A, Rozovskaia T, Shezen E, Itkin T, Alder H, Ozer HG, Carramusa L, Avigdor A, Volinia S, Buchberg A, Mazo A, Kollet O, Largman C, Croce CM, Nakamura T, Lapidot T, Canaani E. Down-regulation of homeobox genes MEIS1 and HOXA in MLL-rearranged acute leukemia impairs engraftment and reduces proliferation. Proc Natl Acad Sci U S A 2011; 108:7956-7961. [PMID: 21518888 PMCID: PMC3093458 DOI: 10.1073/pnas.1103154108] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Rearrangements of the MLL (ALL1) gene are very common in acute infant and therapy-associated leukemias. The rearrangements underlie the generation of MLL fusion proteins acting as potent oncogenes. Several most consistently up-regulated targets of MLL fusions, MEIS1, HOXA7, HOXA9, and HOXA10 are functionally related and have been implicated in other types of leukemias. Each of the four genes was knocked down separately in the human precursor B-cell leukemic line RS4;11 expressing MLL-AF4. The mutant and control cells were compared for engraftment in NOD/SCID mice. Engraftment of all mutants into the bone marrow (BM) was impaired. Although homing was similar, colonization by the knockdown cells was slowed. Initially, both types of cells were confined to the trabecular area; this was followed by a rapid spread of the WT cells to the compact bone area, contrasted with a significantly slower process for the mutants. In vitro and in vivo BrdU incorporation experiments indicated reduced proliferation of the mutant cells. In addition, the CXCR4/SDF-1 axis was hampered, as evidenced by reduced migration toward an SDF-1 gradient and loss of SDF-1-augmented proliferation in culture. The very similar phenotype shared by all mutant lines implies that all four genes are involved and required for expansion of MLL-AF4 associated leukemic cells in mice, and down-regulation of any of them is not compensated by the others.
Collapse
Affiliation(s)
| | | | | | - Elias Shezen
- Immunology, Weizmann Institute of Science, Rehovot, 76100 Israel; Departments of
| | - Tomer Itkin
- Immunology, Weizmann Institute of Science, Rehovot, 76100 Israel; Departments of
| | | | - Hatice Gulcin Ozer
- Biomedical Informatics, Comprehensive Cancer Center, Ohio State University, Columbus, OH 43210
| | | | - Abraham Avigdor
- Hematology Division, Sheba Medical Center, Tel-Hashomer, 52621, Israel
| | | | | | - Alex Mazo
- Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19107; and
| | - Orit Kollet
- Immunology, Weizmann Institute of Science, Rehovot, 76100 Israel; Departments of
| | - Corey Largman
- Veteran Affairs Medical Center, San Francisco, CA 94121
| | | | | | - Tsvee Lapidot
- Immunology, Weizmann Institute of Science, Rehovot, 76100 Israel; Departments of
| | | |
Collapse
|
32
|
Cao N, Yao ZX. The hemangioblast: from concept to authentication. Anat Rec (Hoboken) 2011; 294:580-8. [PMID: 21370498 DOI: 10.1002/ar.21360] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Accepted: 01/13/2011] [Indexed: 11/06/2022]
Abstract
The hemangioblast hypothesis has been hotly debated for over a century. Hemangioblasts are defined as multipotent cells that can give rise to both hematopoietic cells and endothelial cells. The existence of hemangioblasts has now been confirmed and many important molecules and several signaling pathways are involved in their generation and differentiation. Fibroblast growth factor, renin-angiotensin system and runt-related transcription factor 1 (Runx1) direct the formation of hemangioblasts through highly selective gene expression patterns. On the other hand, the hemogenic endothelium theory and a newly discovered pattern of hematopoietic/endothelial differentiation make the genesis of hemangioblasts more complicated. But how hemangioblasts are formed and how hematopoietic cells or endothelial cells are derived from remains largely unknown. Here we summarize the current knowledge of the signaling pathways and molecules involved in hemangioblast development and suggest some future clinical applications.
Collapse
Affiliation(s)
- Nian Cao
- Department of Physiology, Third Military Medical University, Chongqing, China
| | | |
Collapse
|
33
|
Ji H, Ehrlich LIR, Seita J, Murakami P, Doi A, Lindau P, Lee H, Aryee MJ, Irizarry RA, Kim K, Rossi DJ, Inlay MA, Serwold T, Karsunky H, Ho L, Daley GQ, Weissman IL, Feinberg AP. Comprehensive methylome map of lineage commitment from haematopoietic progenitors. Nature 2010; 467:338-42. [PMID: 20720541 PMCID: PMC2956609 DOI: 10.1038/nature09367] [Citation(s) in RCA: 493] [Impact Index Per Article: 32.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2010] [Accepted: 07/26/2010] [Indexed: 12/11/2022]
Abstract
Epigenetic modifications must underlie lineage-specific differentiation as terminally differentiated cells express tissue-specific genes, but their DNA sequence is unchanged. Haematopoiesis provides a well-defined model to study epigenetic modifications during cell-fate decisions, as multipotent progenitors (MPPs) differentiate into progressively restricted myeloid or lymphoid progenitors. Although DNA methylation is critical for myeloid versus lymphoid differentiation, as demonstrated by the myeloerythroid bias in Dnmt1 hypomorphs, a comprehensive DNA methylation map of haematopoietic progenitors, or of any multipotent/oligopotent lineage, does not exist. Here we examined 4.6 million CpG sites throughout the genome for MPPs, common lymphoid progenitors (CLPs), common myeloid progenitors (CMPs), granulocyte/macrophage progenitors (GMPs), and thymocyte progenitors (DN1, DN2, DN3). Marked epigenetic plasticity accompanied both lymphoid and myeloid restriction. Myeloid commitment involved less global DNA methylation than lymphoid commitment, supported functionally by myeloid skewing of progenitors following treatment with a DNA methyltransferase inhibitor. Differential DNA methylation correlated with gene expression more strongly at CpG island shores than CpG islands. Many examples of genes and pathways not previously known to be involved in choice between lymphoid/myeloid differentiation have been identified, such as Arl4c and Jdp2. Several transcription factors, including Meis1, were methylated and silenced during differentiation, indicating a role in maintaining an undifferentiated state. Additionally, epigenetic modification of modifiers of the epigenome seems to be important in haematopoietic differentiation. Our results directly demonstrate that modulation of DNA methylation occurs during lineage-specific differentiation and defines a comprehensive map of the methylation and transcriptional changes that accompany myeloid versus lymphoid fate decisions.
Collapse
Affiliation(s)
- Hong Ji
- Center for Epigenetics and Department of Medicine, Johns Hopkins University School of Medicine, 570 Rangos, 725 N. Wolfe St., Baltimore, Maryland 21205, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Xiang P, Lo C, Argiropoulos B, Lai CB, Rouhi A, Imren S, Jiang X, Mager D, Humphries RK. Identification of E74-like factor 1 (ELF1) as a transcriptional regulator of the Hox cofactor MEIS1. Exp Hematol 2010; 38:798-8, 808.e1-2. [PMID: 20600580 PMCID: PMC3887005 DOI: 10.1016/j.exphem.2010.06.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Revised: 06/01/2010] [Accepted: 06/04/2010] [Indexed: 11/22/2022]
Abstract
OBJECTIVE Myeloid ectropic viral integration site 1 (MEIS1) is a Hox cofactor known for its role in development and is strongly linked to normal and leukemic hematopoiesis. Although previous studies have focused on identifying protein partners of MEIS1 and its transcriptionally regulated targets, little is known about the upstream transcriptional regulators of this tightly regulated gene. Understanding the regulation of MEIS1 is important to understanding normal hematopoiesis and leukemogenesis. MATERIALS AND METHODS Here we describe our studies focusing on the evolutionary conserved putative MEIS1 promoter region. Phylogenetic sequence analysis and reporter assays in MEIS1-expressing (K562) and nonexpressing (HL60) leukemic cell line models were used to identify key regulatory regions and potential transcription factor binding sites within the candidate promoter region followed by functional and expression studies of one identified regulator in both cell lines and primary human cord blood and leukemia samples. RESULTS Chromatin status of MEIS1 promoter region is associated with MEIS1 expression. Truncation and mutation studies coupled with reporter assays revealed that a conserved ETS family member binding site located 289 bp upstream of the annotated human MEIS1 transcription start site is required for promoter activity. Of the three ETS family members tested, only ELF1 was enriched on the MEIS1 promoter as assessed by both electrophoretic mobility shift assay and chromatin immunoprecipitation experiments in K562. This finding was confirmed in MEIS1-expressing primary human samples. Moreover, small interfering RNA-mediated knockdown of ELF1 in K562 cells was associated with a decreased MEIS1 expression. CONCLUSIONS We conclude that the ETS transcription factor ELF1 is an important positive regulator of MEIS1 expression.
Collapse
Affiliation(s)
- Ping Xiang
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Hu YL, Fong S, Largman C, Shen WF. HOXA9 regulates miR-155 in hematopoietic cells. Nucleic Acids Res 2010; 38:5472-8. [PMID: 20444872 PMCID: PMC2938212 DOI: 10.1093/nar/gkq337] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
HOXA9-mediated up-regulation of miR-155 was noted during an array-based analysis of microRNA expression in Hoxa9(-/-)bone marrow (BM) cells. HOXA9 induction of miR-155 was confirmed in these samples, as well as in wild-type versus Hoxa9-deficient marrow, using northern analysis and qRT-PCR. Infection of wild-type BM with HOXA9 expressing or GFP(+) control virus further confirmed HOXA9-mediated regulation of miR-155. miR-155 expression paralleled Hoxa9 mRNA expression in fractionated BM progenitors, being highest in the stem cell enriched pools. HOXA9 capacity to induce myeloid colony formation was blunted in miR-155-deficient BM cells, indicating that miR-155 is a downstream mediator of HOXA9 function in blood cells. Pu.1, an important regulator of myelopoiesis, was identified as a putative down stream target for miR-155. Although miR-155 was shown to down-regulate the Pu.1 protein, HOXA9 did not appear to modulate Pu.1 expression in murine BM cells.
Collapse
Affiliation(s)
- Yu-Long Hu
- Department of Medicine, Department of Veterans Affairs Medical Center and University of California, San Francisco, CA 94143, USA
| | | | | | | |
Collapse
|
36
|
Abstract
Hox genes, a highly conserved subgroup of the homeobox superfamily, have crucial roles in development, regulating numerous processes including apoptosis, receptor signalling, differentiation, motility and angiogenesis. Aberrations in Hox gene expression have been reported in abnormal development and malignancy, indicating that altered expression of Hox genes could be important for both oncogenesis and tumour suppression, depending on context. Therefore, Hox gene expression could be important in diagnosis and therapy.
Collapse
Affiliation(s)
- Nilay Shah
- Nilay Shah and Saraswati Sukumar are at the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | | |
Collapse
|