1
|
Gobbo F, Martelli F, Di Virgilio A, Demaria E, Sarli G, Migliaccio AR. The Variation in the Traits Ameliorated by Inhibitors of JAK1/2, TGF-β, P-Selectin, and CXCR1/CXCR2 in the Gata1low Model Suggests That Myelofibrosis Should Be Treated by These Drugs in Combination. Int J Mol Sci 2024; 25:7703. [PMID: 39062946 PMCID: PMC11277099 DOI: 10.3390/ijms25147703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/25/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024] Open
Abstract
Studies conducted on animal models have identified several therapeutic targets for myelofibrosis, the most severe of the myeloproliferative neoplasms. Unfortunately, many of the drugs which were effective in pre-clinical settings had modest efficacy when tested in the clinic. This discrepancy suggests that treatment for this disease requires combination therapies. To rationalize possible combinations, the efficacy in the Gata1low model of drugs currently used for these patients (the JAK1/2 inhibitor Ruxolitinib) was compared with that of drugs targeting other abnormalities, such as p27kip1 (Aplidin), TGF-β (SB431542, inhibiting ALK5 downstream to transforming growth factor beta (TGF-β) signaling and TGF-β trap AVID200), P-selectin (RB40.34), and CXCL1 (Reparixin, inhibiting the CXCL1 receptors CXCR1/2). The comparison was carried out by expressing the endpoints, which had either already been published or had been retrospectively obtained for this study, as the fold change of the values in the corresponding vehicles. In this model, only Ruxolitinib was found to decrease spleen size, only Aplidin and SB431542/AVID200 increased platelet counts, and with the exception of AVID200, all the inhibitors reduced fibrosis and microvessel density. The greatest effects were exerted by Reparixin, which also reduced TGF-β content. None of the drugs reduced osteopetrosis. These results suggest that future therapies for myelofibrosis should consider combining JAK1/2 inhibitors with drugs targeting hematopoietic stem cells (p27Kip1) or the pro-inflammatory milieu (TGF-β or CXCL1).
Collapse
Affiliation(s)
- Francesca Gobbo
- Department of Veterinary Medical Sciences, Alma Mater Studiorum University, 40126 Bologna, Italy; (F.G.); (G.S.)
| | - Fabrizio Martelli
- National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, 00161 Rome, Italy; (F.M.); (A.D.V.)
| | - Antonio Di Virgilio
- National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, 00161 Rome, Italy; (F.M.); (A.D.V.)
| | - Elena Demaria
- Department of Medical and Surgical Sciences, Alma Mater Studiorum University, 40126 Bologna, Italy;
| | - Giuseppe Sarli
- Department of Veterinary Medical Sciences, Alma Mater Studiorum University, 40126 Bologna, Italy; (F.G.); (G.S.)
| | - Anna Rita Migliaccio
- Altius Institute for Biomedical Sciences, Seattle, WA 98121, USA
- Institute of Nanotechnology, National Research Council (Cnr-NANOTEC), c/o Campus Ecotekne, 73100 Lecce, Italy
| |
Collapse
|
2
|
Legátová A, Pelantová M, Rösel D, Brábek J, Škarková A. The emerging role of microtubules in invasion plasticity. Front Oncol 2023; 13:1118171. [PMID: 36860323 PMCID: PMC9969133 DOI: 10.3389/fonc.2023.1118171] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 01/31/2023] [Indexed: 02/17/2023] Open
Abstract
The ability of cells to switch between different invasive modes during metastasis, also known as invasion plasticity, is an important characteristic of tumor cells that makes them able to resist treatment targeted to a particular invasion mode. Due to the rapid changes in cell morphology during the transition between mesenchymal and amoeboid invasion, it is evident that this process requires remodeling of the cytoskeleton. Although the role of the actin cytoskeleton in cell invasion and plasticity is already quite well described, the contribution of microtubules is not yet fully clarified. It is not easy to infer whether destabilization of microtubules leads to higher invasiveness or the opposite since the complex microtubular network acts differently in diverse invasive modes. While mesenchymal migration typically requires microtubules at the leading edge of migrating cells to stabilize protrusions and form adhesive structures, amoeboid invasion is possible even in the absence of long, stable microtubules, albeit there are also cases of amoeboid cells where microtubules contribute to effective migration. Moreover, complex crosstalk of microtubules with other cytoskeletal networks participates in invasion regulation. Altogether, microtubules play an important role in tumor cell plasticity and can be therefore targeted to affect not only cell proliferation but also invasive properties of migrating cells.
Collapse
Affiliation(s)
- Anna Legátová
- Department of Cell Biology, Charles University, Prague, Czechia,Biotechnology and Biomedicine Centre of the Academy of Sciences and Charles University (BIOCEV), Vestec u Prahy, Czechia
| | - Markéta Pelantová
- Department of Cell Biology, Charles University, Prague, Czechia,Biotechnology and Biomedicine Centre of the Academy of Sciences and Charles University (BIOCEV), Vestec u Prahy, Czechia
| | - Daniel Rösel
- Department of Cell Biology, Charles University, Prague, Czechia,Biotechnology and Biomedicine Centre of the Academy of Sciences and Charles University (BIOCEV), Vestec u Prahy, Czechia
| | - Jan Brábek
- Department of Cell Biology, Charles University, Prague, Czechia,Biotechnology and Biomedicine Centre of the Academy of Sciences and Charles University (BIOCEV), Vestec u Prahy, Czechia
| | - Aneta Škarková
- Department of Cell Biology, Charles University, Prague, Czechia,Biotechnology and Biomedicine Centre of the Academy of Sciences and Charles University (BIOCEV), Vestec u Prahy, Czechia,*Correspondence: Aneta Škarková,
| |
Collapse
|
3
|
Luan L, Li N, Zhang K, Wang X, Pan H. Diversin upregulates the proliferative ability of colorectal cancer by inducing cell cycle proteins. Exp Mol Pathol 2023; 129:104850. [PMID: 36623636 DOI: 10.1016/j.yexmp.2023.104850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 12/13/2022] [Accepted: 01/05/2023] [Indexed: 01/09/2023]
Abstract
Colorectal cancer (CRC) is a common gastrointestinal tumour with increasing incidence worldwide. However, the underlying molecular mechanism of CRC proliferation is not completely clear. Diversin,as an ankyrin repeat-containing protein, is upregulated in various solid tumours and accelerates cancer progression by promoting cell proliferation and increasing S phase fraction of cells. In this study, 71 CRC samples and corresponding adjacent tissue samples were included. The expression of diversin in tissues was verified via immunohistochemical analysis. The MTS assay and flow cytometry (FCM) was used to measure cell proliferation and cell cycle. Results of immunohistochemical analysis revealed that diversin was highly expressed in human CRC tissues and was significantly associated with tumour differentiation, clinical stage and lymph node metastasis. The analysis based on the CRC data from The Cancer Genome Atlas (TCGA) database showed that a high expression of diversin correlated with the poor prognosis of CRC. Results of the MTS assay indicated that the overexpression of diversin promoted the proliferation of CRC cells, while its downregulation had an inhibitory effect on CRC cell proliferation. FCM analysises presented that diversin increased the flux of the CRC cell cycle from G1 to S and regulated cycle-related proteins, namely, P21, P27, cyclin E, CDK2, cyclin D and CDK4. The results suggest that diversin contributes to CRC proliferation that involves the distribution of the cell cycle. In CRC tissues, the expression of diversin has closely related to the prognosis. The higher the expression levels of diversin, the worse the prognosis. In vitro, diversin could increase the proliferative ability of CRC cells through the G1-S checkpoint and JNK signalling pathway, confirming that diversin contributes to CRC development.
Collapse
Affiliation(s)
- Lan Luan
- Department of Pathology, Central Hospital Affiliated to Shenyang Medical College, Shenyang, PR China
| | - Nanyang Li
- Department of Pathology, Central Hospital Affiliated to Shenyang Medical College, Shenyang, PR China
| | - Keyuan Zhang
- Department of Pathology, Central Hospital Affiliated to Shenyang Medical College, Shenyang, PR China
| | - Xiaojie Wang
- Department of Pathology, Central Hospital Affiliated to Shenyang Medical College, Shenyang, PR China
| | - Hai Pan
- Central Laboratory, Department of Neurosurgery and Dean's office, Central Hospital Affiliated to Shenyang Medical College, Shenyang, PR China.
| |
Collapse
|
4
|
Beeken J, Kessels S, Rigo JM, Alpizar YA, Nguyen L, Brône B. p27 kip1 Modulates the Morphology and Phagocytic Activity of Microglia. Int J Mol Sci 2022; 23:10432. [PMID: 36142366 PMCID: PMC9499407 DOI: 10.3390/ijms231810432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/02/2022] [Accepted: 09/05/2022] [Indexed: 11/24/2022] Open
Abstract
p27kip1 is a multifunctional protein that promotes cell cycle exit by blocking the activity of cyclin/cyclin-dependent kinase complexes as well as migration and motility via signaling pathways that converge on the actin and microtubule cytoskeleton. Despite the broad characterization of p27kip1 function in neural cells, little is known about its relevance in microglia. Here, we studied the role of p27kip1 in microglia using a combination of in vitro and in situ approaches. While the loss of p27kip1 did not affect microglial density in the cerebral cortex, it altered their morphological complexity in situ. However, despite the presence of p27kip1 in microglial processes, as shown by immunofluorescence in cultured cells, loss of p27kip1 did not change microglial process motility and extension after applying laser-induced brain damage in cortical brain slices. Primary microglia lacking p27kip1 showed increased phagocytic uptake of synaptosomes, while a cell cycle dead variant negatively affected phagocytosis. These findings indicate that p27kip1 plays specific roles in microglia.
Collapse
Affiliation(s)
- Jolien Beeken
- UHasselt, Hasselt University, BIOMED, 3500 Hasselt, Belgium
- Laboratory of Molecular Regulation of Neurogenesis, GIGA-Stem Cells, Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège, C.H.U. Sar-Tilman, 4000 Liège, Belgium
| | - Sofie Kessels
- UHasselt, Hasselt University, BIOMED, 3500 Hasselt, Belgium
| | | | | | - Laurent Nguyen
- Laboratory of Molecular Regulation of Neurogenesis, GIGA-Stem Cells, Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège, C.H.U. Sar-Tilman, 4000 Liège, Belgium
| | - Bert Brône
- UHasselt, Hasselt University, BIOMED, 3500 Hasselt, Belgium
| |
Collapse
|
5
|
Sgubin M, Pegoraro S, Pellarin I, Ros G, Sgarra R, Piazza S, Baldassarre G, Belletti B, Manfioletti G. HMGA1 positively regulates the microtubule-destabilizing protein stathmin promoting motility in TNBC cells and decreasing tumour sensitivity to paclitaxel. Cell Death Dis 2022; 13:429. [PMID: 35504904 PMCID: PMC9065117 DOI: 10.1038/s41419-022-04843-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 03/30/2022] [Accepted: 04/06/2022] [Indexed: 12/14/2022]
Abstract
High Mobility Group A1 (HMGA1) is an architectural chromatin factor involved in the regulation of gene expression and a master regulator in Triple Negative Breast Cancer (TNBC). In TNBC, HMGA1 is overexpressed and coordinates a gene network that controls cellular processes involved in tumour development, progression, and metastasis formation. Here, we find that the expression of HMGA1 and of the microtubule-destabilizing protein stathmin correlates in breast cancer (BC) patients. We demonstrate that HMGA1 depletion leads to a downregulation of stathmin expression and activity on microtubules resulting in decreased TNBC cell motility. We show that this pathway is mediated by the cyclin-dependent kinase inhibitor p27kip1 (p27). Indeed, the silencing of HMGA1 expression in TNBC cells results both in an increased p27 protein stability and p27-stathmin binding. When the expression of both HMGA1 and p27 is silenced, we observe a significant rescue in cell motility. These data, obtained in cellular models, were validated in BC patients. In fact, we find that patients with high levels of both HMGA1 and stathmin and low levels of p27 have a statistically significant lower survival probability in terms of relapse-free survival (RFS) and distant metastasis-free survival (DMFS) with respect to the patient group with low HMGA1, low stathmin, and high p27 expression levels. Finally, we show in an in vivo xenograft model that depletion of HMGA1 chemo-sensitizes tumour cells to paclitaxel, a drug that is commonly used in TNBC treatments. This study unveils a new interaction among HMGA1, p27, and stathmin that is critical in BC cell migration. Moreover, our data suggest that taxol-based treatments may be more effective in reducing the tumour burden when tumour cells express low levels of HMGA1.
Collapse
Affiliation(s)
- Michela Sgubin
- grid.5133.40000 0001 1941 4308Department of Life Sciences, University of Trieste, Trieste, Italy ,grid.418321.d0000 0004 1757 9741Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, National Cancer Institute, Aviano, Italy
| | - Silvia Pegoraro
- grid.5133.40000 0001 1941 4308Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Ilenia Pellarin
- grid.418321.d0000 0004 1757 9741Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, National Cancer Institute, Aviano, Italy
| | - Gloria Ros
- grid.5133.40000 0001 1941 4308Department of Life Sciences, University of Trieste, Trieste, Italy ,grid.5970.b0000 0004 1762 9868Present Address: International School for Advanced Studies (SISSA), Area of Neuroscience Trieste, Trieste, Italy
| | - Riccardo Sgarra
- grid.5133.40000 0001 1941 4308Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Silvano Piazza
- grid.425196.d0000 0004 1759 4810International Centre for Genetic Engineering and Biotechnology (ICGEB), Padriciano 99, Trieste, Italy
| | - Gustavo Baldassarre
- grid.418321.d0000 0004 1757 9741Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, National Cancer Institute, Aviano, Italy
| | - Barbara Belletti
- grid.418321.d0000 0004 1757 9741Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, National Cancer Institute, Aviano, Italy
| | - Guidalberto Manfioletti
- grid.5133.40000 0001 1941 4308Department of Life Sciences, University of Trieste, Trieste, Italy
| |
Collapse
|
6
|
Regulation of GDF9 and CDKN1B expression in Tibetan sheep testes during different stages of maturity. Gene Expr Patterns 2021; 43:119218. [PMID: 34826605 DOI: 10.1016/j.gep.2021.119218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 11/18/2021] [Accepted: 11/18/2021] [Indexed: 11/24/2022]
Abstract
Normal spermatogenesis is heavily dependent on the balance of germ cell proliferation, differentiation and apoptosis. Growth differentiation factor 9 (GDF9) and cyclin-dependent kinase inhibitor 1 B (CDKN1B) are strongly associated with cell cycle transition from G0/G1 to S and G2/M phase and hence regulating the growth and development of testicular germ cells and somatic cells. The current study was aimed at seeking out scientific evidence to determine if GDF9 and CDKN1B gene expression functions in the development of Tibetan sheep testes. To this end, developmental testes were derived from three-month-old (pre-puberty), one-year-old (sexual maturity), and three-year-old (adult) Tibetan sheep and then the expression and localization patterns of GDF9 and CDKN1B in these testes were evaluated using quantitative real-time PCR (qRT-PCR), Western blot and immunofluorescence. qRT-PCR and Western blot results showed that GDF9 and CDKN1B were detected in the testes throughout the different developmental stages. The abundance of GDF9 mRNA and protein in the testes of one- and three-year-old Tibetan sheep were higher than that in the testes of three-month-old Tibetan sheep; the mRNA and protein abundance of the CDKN1B gene in three-month-old Tibetan sheep testes were higher than that in the testes of the one-and three-year-old sheep. Moreover, immunofluorescence results suggested that the GDF9 protein was expressed in spermatogonia and Leydig cells, and that the CDKN1B protein was localized mainly in Leydig cells with some in the seminiferous epithelium throughout developmental stages. This indicated a novel role of the GDF9 and CDKN1B genes in Leydig cell development over and above their known roles in germ cell development. These findings have significant implications for our understanding of the molecular mechanisms of GDF9 and CDKN1B genes in Tibetan sheep spermatogenesis.
Collapse
|
7
|
The human T-cell leukemia virus type-1 tax oncoprotein dissociates NF-κB p65 RelA-Stathmin complexes and causes catastrophic mitotic spindle damage and genomic instability. Virology 2019; 535:83-101. [PMID: 31299491 DOI: 10.1016/j.virol.2019.07.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 06/21/2019] [Accepted: 07/02/2019] [Indexed: 12/23/2022]
Abstract
Genomic instability is a hallmark of many cancers; however, the molecular etiology of chromosomal dysregulation is not well understood. The human T-cell leukemia virus type-1 (HTLV-1) oncoprotein Tax activates NF-κB-signaling and induces DNA-damage and aberrant chromosomal segregation through diverse mechanisms which contribute to viral carcinogenesis. Intriguingly, Stathmin/oncoprotein-18 (Op-18) depolymerizes tubulin and interacts with the p65RelA subunit and functions as a cofactor for NF-κB-dependent transactivation. We thus hypothesized that the dissociation of p65RelA-Stathmin/Op-18 complexes by Tax could lead to the catastrophic destabilization of microtubule (MT) spindle fibers during mitosis and provide a novel mechanistic link between NF-κB-signaling and genomic instability. Here we report that the inhibition of Stathmin expression by the retroviral latency protein, p30II, or knockdown with siRNA-stathmin, dampens Tax-mediated NF-κB transactivation and counters Tax-induced genomic instability and cytotoxicity. The Tax-G148V mutant, defective for NF-κB activation, exhibited reduced p65RelA-Stathmin binding and diminished genomic instability and cytotoxicity. Dominant-negative inhibitors of NF-κB also prevented Tax-induced multinucleation and apoptosis. Moreover, cell clones containing the infectious HTLV-1 ACH. p30II mutant provirus, impaired for p30II production, exhibited increased multinucleation and the accumulation of cytoplasmic tubulin aggregates following nocodozole-treatment. These findings allude to a mechanism whereby NF-κB-signaling regulates tubulin dynamics and mitotic instability through the modulation of p65RelA-Stathmin/Op-18 interactions, and support the notion that p30II enhances the survival of Tax-expressing HTLV-1-transformed cells.
Collapse
|
8
|
Kawauchi T, Nabeshima YI. Growth Arrest Triggers Extra-Cell Cycle Regulatory Function in Neurons: Possible Involvement of p27 kip1 in Membrane Trafficking as Well as Cytoskeletal Regulation. Front Cell Dev Biol 2019; 7:64. [PMID: 31080801 PMCID: PMC6497764 DOI: 10.3389/fcell.2019.00064] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 04/09/2019] [Indexed: 11/30/2022] Open
Abstract
Cell cycle regulation is essential for the development of multicellular organisms, but many cells in adulthood, including neurons, exit from cell cycle. Although cell cycle-related proteins are suppressed after cell cycle exit in general, recent studies have revealed that growth arrest triggers extra-cell cycle regulatory function (EXCERF) in some cell cycle proteins, such as p27(kip1), p57(kip2), anaphase-promoting complex/cyclosome (APC/C), and cyclin E. While p27 is known to control G1 length and cell cycle exit via inhibition of cyclin-dependent kinase (CDK) activities, p27 acquires additional cytoplasmic functions in growth-arrested neurons. Here, we introduce the EXCERFs of p27 in post-mitotic neurons, mainly focusing on its actin and microtubule regulatory functions. We also show that a small amount of p27 is associated with the Golgi apparatus positive for Rab6, p115, and GM130, but not endosomes positive for Rab5, Rab7, Rab8, Rab11, SNX6, or LAMTOR1. p27 is also colocalized with Dcx, a microtubule-associated protein. Based on these results, we discuss here the possible role of p27 in membrane trafficking and microtubule-dependent transport in post-mitotic cortical neurons. Collectively, we propose that growth arrest leads to two different fates in cell cycle proteins; either suppressing their expression or activating their EXCERFs. The latter group of proteins, including p27, play various roles in neuronal migration, morphological changes and axonal transport, whereas the re-activation of the former group of proteins in post-mitotic neurons primes for cell death.
Collapse
Affiliation(s)
- Takeshi Kawauchi
- Laboratory of Molecular Life Science, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe (FBRI), Kobe, Japan.,Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Yo-Ichi Nabeshima
- Laboratory of Molecular Life Science, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe (FBRI), Kobe, Japan
| |
Collapse
|
9
|
Rampioni Vinciguerra GL, Citron F, Segatto I, Belletti B, Vecchione A, Baldassarre G. p27kip1 at the crossroad between actin and microtubule dynamics. Cell Div 2019; 14:2. [PMID: 30976290 PMCID: PMC6442415 DOI: 10.1186/s13008-019-0045-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 03/19/2019] [Indexed: 12/11/2022] Open
Abstract
The p27kip1 protein, mainly known as a negative regulator of cell proliferation, has also been involved in the control of other cellular processes, including the regulation of cytoskeleton dynamics. Notably, these two functions involve distinct protein domains, residing in the N- and C-terminal halves, respectively. In the last two decades, p27kip1 has been reported to interact with microtubule and acto-myosin cytoskeletons, both in direct and indirect ways, overall drawing a picture in which several factors play their role either in synergy or in contrast one with another. As a result, the role of p27kip1 in cytoskeleton dynamics has been implicated in cell migration, both in physiologic and in neoplastic contexts, modulating cytokinesis, lipid raft trafficking, and neuronal development. Recently, two distinct papers have further reported a central role for p27kip1 in the control of microtubule stability and post-translational modifications, dissecting the interaction between p27kip1 and α-tubulin-acetyl-transferase (α-TAT), an enzyme involved in the stability of microtubules, and protein-regulator of cytokinesis 1 (PRC1), a nuclear regulator of the central spindle during mitosis. In light of these recent evidences, we will comment on the role of p27kip1 on cytoskeleton regulation and its implication for cancer progression.
Collapse
Affiliation(s)
- Gian Luca Rampioni Vinciguerra
- 1Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, National Cancer Institute, 33081 Aviano, Italy.,2Faculty of Medicine and Psychology, Department of Clinical and Molecular Medicine, University of Rome "Sapienza", Santo Andrea Hospital, 00189 Rome, Italy
| | - Francesca Citron
- 1Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, National Cancer Institute, 33081 Aviano, Italy
| | - Ilenia Segatto
- 1Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, National Cancer Institute, 33081 Aviano, Italy
| | - Barbara Belletti
- 1Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, National Cancer Institute, 33081 Aviano, Italy
| | - Andrea Vecchione
- 2Faculty of Medicine and Psychology, Department of Clinical and Molecular Medicine, University of Rome "Sapienza", Santo Andrea Hospital, 00189 Rome, Italy
| | - Gustavo Baldassarre
- 1Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, National Cancer Institute, 33081 Aviano, Italy
| |
Collapse
|
10
|
Segatto I, Zompit MDM, Citron F, D'Andrea S, Vinciguerra GLR, Perin T, Berton S, Mungo G, Schiappacassi M, Marchini C, Amici A, Vecchione A, Baldassarre G, Belletti B. Stathmin Is Required for Normal Mouse Mammary Gland Development and Δ16HER2-Driven Tumorigenesis. Cancer Res 2018; 79:397-409. [PMID: 30478213 DOI: 10.1158/0008-5472.can-18-2488] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 10/17/2018] [Accepted: 11/19/2018] [Indexed: 11/16/2022]
Abstract
Postnatal development of the mammary gland relies on the maintenance of oriented cell division and apicobasal polarity, both of which are often deregulated in cancer. The microtubule (MT) network contributes to control these processes; however, very little is known about the impact of altered MT dynamics in the development of a complex organ and on the role played by MT-interacting proteins such as stathmin. In this study, we report that female stathmin knock-out (STM KO) mice are unable to nurse their litters due to frank impairment of mammary gland development. In mouse mammary epithelial cells, loss of stathmin compromised the trafficking of polarized proteins and the achievement of proper apicobasal polarity. In particular, prolactin receptor internalization and localization was altered in STM KO mammary epithelial cells, leading to decreased protein stability and downmodulation of the Prl/PrlR/STAT5 signaling pathway. Absence of stathmin induced alterations in mitotic spindle orientation, accumulation of mitotic defects, and apoptosis, overall contributing to tissue disorganization and further decreasing the expansion of the mammary epithelial compartment. Loss of stathmin in MMTV-Δ16HER2 transgenic mice decreased the incidence and increased the latency of these very aggressive mammary carcinomas. Collectively, these data identify the essential mammary protein stathmin as protumorigenic and suggest it may serve as a potential therapeutic target in breast cancer. SIGNIFICANCE: Stathmin expression is critical to maintain oriented cell division and apicobasal polarity in normal mammary glands and to establish a protumorigenic program that eventually sustains HER2-positive breast cancer formation in mice.
Collapse
Affiliation(s)
- Ilenia Segatto
- Unit of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, National Cancer Institute, Aviano, Italy
| | - Mara De Marco Zompit
- Unit of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, National Cancer Institute, Aviano, Italy
| | - Francesca Citron
- Unit of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, National Cancer Institute, Aviano, Italy
| | - Sara D'Andrea
- Unit of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, National Cancer Institute, Aviano, Italy
| | - Gian Luca Rampioni Vinciguerra
- Unit of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, National Cancer Institute, Aviano, Italy.,Faculty of Medicine and Psychology, Department of Clinical and Molecular Medicine, University of Rome "Sapienza" Sant'Andrea Hospital, Rome, Italy
| | - Tiziana Perin
- Unit of Pathology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, National Cancer Institute, Aviano, Italy
| | - Stefania Berton
- Unit of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, National Cancer Institute, Aviano, Italy
| | - Giorgia Mungo
- Unit of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, National Cancer Institute, Aviano, Italy
| | - Monica Schiappacassi
- Unit of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, National Cancer Institute, Aviano, Italy
| | - Cristina Marchini
- Department of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| | - Augusto Amici
- Department of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| | - Andrea Vecchione
- Faculty of Medicine and Psychology, Department of Clinical and Molecular Medicine, University of Rome "Sapienza" Sant'Andrea Hospital, Rome, Italy
| | - Gustavo Baldassarre
- Unit of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, National Cancer Institute, Aviano, Italy.
| | - Barbara Belletti
- Unit of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, National Cancer Institute, Aviano, Italy.
| |
Collapse
|
11
|
De Marco C, Rinaldo N, De Vita F, Forzati F, Caira E, Iovane V, Paciello O, Montanaro D, D'Andrea S, Baldassarre G, Papparella S, Malanga D, Baldi A, Viglietto G. The T197A Knock-in Model of Cdkn1b Gene to Study the Effects of p27 Restoration In Vivo. Mol Cancer Ther 2018; 18:482-493. [PMID: 30425132 DOI: 10.1158/1535-7163.mct-18-0134] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 08/07/2018] [Accepted: 11/08/2018] [Indexed: 11/16/2022]
Abstract
The CDK inhibitor, p27kip1, encoded by the Cdkn1b gene can negatively modulate cell proliferation. The control of p27 activity during the cell cycle is regulated at multiple levels, including transcription, translation, and protein stability. The last residue of p27 (threonine 198 in human, threonine 197 in mouse) is involved in the control of protein stability. We have generated a murine knock-in model (Cdkn1b T197A) in which threonine 197 is replaced by alanine, which renders p27 protein highly unstable due to a high rate of proteasomal degradation. Expectedly, Cdkn1b T197A/T197A mice present with increased body size and weight, organomegaly, and multiple organ hyperplasia, similar to what is observed in Cdkn1b KO/KO mice. We investigated the effects exerted by the restoration of normal levels of p27 protein in the tissue of Cdkn1b T197A/T197A mice. We found that proteasome inhibition with bortezomib rescues the hyperplasia induced by the lack of p27 expression in Cdkn1b T197A/T197A but not in Cdkn1b KO/KO mice. However, BAY 11-7082, a proteasome inhibitor that stabilizes IκB but not p27, fails to rescue hyperplasia in Cdkn1b T197A/T197A mice. Bortezomib increases p27 half-life and reduces the proliferation in MEFs derived from Cdkn1b T197A/T197A but not from Cdkn1b WT/WT mice, whereas BAY 11-7082 had no effect on the protein levels of p27 and on the proliferation rate of Cdkn1b T197A/T197A MEFs.The results presented here demonstrate that Cdkn1b T197A/T197A mice represent an attractive in vivo model to investigate whether the targeting of p27 degradation machinery might prove beneficial in the treatment of a variety of human proliferative disorders caused by increased turnover of p27 protein.
Collapse
Affiliation(s)
- Carmela De Marco
- Department of Experimental and Clinical Medicine, University "Magna Graecia," Catanzaro, Italy
| | - Nicola Rinaldo
- Biogem S.c.a.r.l, Genetic Research Institute "Gaetano Salvatore," Ariano Irpino (AV), Italy
| | - Fernanda De Vita
- Biogem S.c.a.r.l, Genetic Research Institute "Gaetano Salvatore," Ariano Irpino (AV), Italy
| | - Floriana Forzati
- Institute of Experimental Endocrinology and Oncology "G. Salvatore"-CNR c/o Department of Molecular Medicine and Medical Biotechnology, University "Federico II," Naples, Italy
| | - Elvira Caira
- Department of Experimental and Clinical Medicine, University "Magna Graecia," Catanzaro, Italy
| | - Valentina Iovane
- Department of Veterinary Medicine and Animal Productions, University Federico II, Napoli, Italy
| | - Orlando Paciello
- Department of Veterinary Medicine and Animal Productions, University Federico II, Napoli, Italy
| | | | - Sara D'Andrea
- Molecular Oncology Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, Italy
| | - Gustavo Baldassarre
- Molecular Oncology Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, Italy
| | - Serenella Papparella
- Department of Veterinary Medicine and Animal Productions, University Federico II, Napoli, Italy
| | - Donatella Malanga
- Department of Experimental and Clinical Medicine, University "Magna Graecia," Catanzaro, Italy
| | | | - Giuseppe Viglietto
- Department of Experimental and Clinical Medicine, University "Magna Graecia," Catanzaro, Italy.
| |
Collapse
|
12
|
Cusan M, Mungo G, De Marco Zompit M, Segatto I, Belletti B, Baldassarre G. Landscape of CDKN1B Mutations in Luminal Breast Cancer and Other Hormone-Driven Human Tumors. Front Endocrinol (Lausanne) 2018; 9:393. [PMID: 30065701 PMCID: PMC6056726 DOI: 10.3389/fendo.2018.00393] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 06/25/2018] [Indexed: 12/15/2022] Open
Abstract
The CDKN1B gene encodes for the p27Kip1 protein, firstly characterized as a cyclin dependent kinase (CDK)-inhibitor. Germline CDKN1B pathogenic variants have been described in hereditary tumors, such as multiple endocrine neoplasia (MEN)-like syndromes and familial prostate cancer. Despite its central role in tumor progression, for a long time it has been proposed that CDKN1B was very rarely somatically mutated in human cancer and that its expression levels were almost exclusively regulated at post-transcriptional level. Yet, the advent of massive parallel sequencing has partially subverted this general understanding demonstrating that, at least in some types of cancer, CDKN1B is mutated in a significant percentage of analyzed samples. Recent works have demonstrated that CDKN1B can be genetically inactivated and this occurs particularly in sporadic luminal breast cancer, prostate cancer and small intestine neuroendocrine tumors. However, a clear picture of the extent and significance of CDKN1B mutations in human malignances is still lacking. To fill this gap, we interrogated the COSMIC, ICGC, cBioPortal, and TRANSFAC data portals and current literature in PubMed, and reviewed the mutational spectrum of CDKN1B in human cancers, interpreting the possible impact of these mutations on p27Kip1 protein function and tumor onset and progression.
Collapse
Affiliation(s)
| | | | | | | | | | - Gustavo Baldassarre
- Division of Molecular Oncology, CRO of Aviano, IRCCS, National Cancer Institute, Aviano, Italy
| |
Collapse
|
13
|
Bachs O, Gallastegui E, Orlando S, Bigas A, Morante-Redolat JM, Serratosa J, Fariñas I, Aligué R, Pujol MJ. Role of p27 Kip1 as a transcriptional regulator. Oncotarget 2018; 9:26259-26278. [PMID: 29899857 PMCID: PMC5995243 DOI: 10.18632/oncotarget.25447] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 05/01/2018] [Indexed: 12/16/2022] Open
Abstract
The protein p27Kip1 is a member of the Cip/Kip family of cyclin-dependent kinase (Cdk) inhibitors. It interacts with both the catalytic and the regulatory subunit (cyclin) and introduces a region into the catalytic cleave of the Cdk inducing its inactivation. Its inhibitory capacity can be modulated by specific tyrosine phosphorylations. p27Kip1 also behaves as a transcriptional regulator. It associates with specific chromatin domains through different transcription factors. ChIP on chip, ChIP-seq and expression microarray analysis allowed the identification of the transcriptional programs regulated by p27Kip1. Thus, important cellular functions as cell division cycle, respiration, RNA processing, translation and cell adhesion, are under p27Kip1 regulation. Moreover, genes involved in pathologies as cancer and neurodegeneration are also regulated by p27Kip1, suggesting its implication in these pathologies. The carboxyl moiety of p27Kip1 can associate with different proteins, including transcriptional regulators. In contrast, its NH2-terminal region specifically interacts with cyclin-Cdk complexes. The general mechanistic model of how p27Kip1 regulates transcription is that it associates by its COOH region to the transcriptional regulators on the chromatin and by the NH2-domain to cyclin-Cdk complexes. After Cdk activation it would phosphorylate the specific targets on the chromatin leading to gene expression. This model has been demonstrated to apply in the transcriptional regulation of p130/E2F4 repressed genes involved in cell cycle progression. We summarize in this review our current knowledge on the role of p27Kip1 in the regulation of transcription, on the transcriptional programs under its regulation and on its relevance in pathologies as cancer and neurodegeneration.
Collapse
Affiliation(s)
- Oriol Bachs
- Department of Biomedical Sciences, Faculty of Medicine, University of Barcelona, IDIBAPS, CIBERONC, Barcelona, Spain
| | - Edurne Gallastegui
- Department of Biomedical Sciences, Faculty of Medicine, University of Barcelona, IDIBAPS, CIBERONC, Barcelona, Spain
| | - Serena Orlando
- Department of Biomedical Sciences, Faculty of Medicine, University of Barcelona, IDIBAPS, CIBERONC, Barcelona, Spain
| | - Anna Bigas
- Program in Cancer Research, Institut Hospital Del Mar d'Investigacions Mèdiques (IMIM), CIBERONC, Barcelona, Spain
| | - José Manuel Morante-Redolat
- Departamento de Biología Celular, Biología Funcional y Antropología Física and ERI de Biotecnología y Biomedicina, CIBERNED, Universidad de Valencia, Valencia, Spain
| | - Joan Serratosa
- Department of Cerebral Ischemia and Neurodegeneration, Institut d'Investigacions Biomèdiques de Barcelona, Consejo Superior de Investigaciones Científicas (CSIC), IDIBAPS, Barcelona, Spain
| | - Isabel Fariñas
- Departamento de Biología Celular, Biología Funcional y Antropología Física and ERI de Biotecnología y Biomedicina, CIBERNED, Universidad de Valencia, Valencia, Spain
| | - Rosa Aligué
- Department of Biomedical Sciences, Faculty of Medicine, University of Barcelona, IDIBAPS, CIBERONC, Barcelona, Spain
| | - Maria Jesús Pujol
- Department of Biomedical Sciences, Faculty of Medicine, University of Barcelona, IDIBAPS, CIBERONC, Barcelona, Spain
| |
Collapse
|
14
|
Dall'Acqua A, Sonego M, Pellizzari I, Pellarin I, Canzonieri V, D'Andrea S, Benevol S, Sorio R, Giorda G, Califano D, Bagnoli M, Militello L, Mezzanzanica D, Chiappetta G, Armenia J, Belletti B, Schiappacassi M, Baldassarre G. CDK6 protects epithelial ovarian cancer from platinum-induced death via FOXO3 regulation. EMBO Mol Med 2018; 9:1415-1433. [PMID: 28778953 PMCID: PMC5623833 DOI: 10.15252/emmm.201607012] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Epithelial ovarian cancer (EOC) is an infrequent but highly lethal disease, almost invariably treated with platinum‐based therapies. Improving the response to platinum represents a great challenge, since it could significantly impact on patient survival. Here, we report that silencing or pharmacological inhibition of CDK6 increases EOC cell sensitivity to platinum. We observed that, upon platinum treatment, CDK6 phosphorylated and stabilized the transcription factor FOXO3, eventually inducing ATR transcription. Blockage of this pathway resulted in EOC cell death, due to altered DNA damage response accompanied by increased apoptosis. These observations were recapitulated in EOC cell lines in vitro, in xenografts in vivo, and in primary tumor cells derived from platinum‐treated patients. Consistently, high CDK6 and FOXO3 expression levels in primary EOC predict poor patient survival. Our data suggest that CDK6 represents an actionable target that can be exploited to improve platinum efficacy in EOC patients. As CDK4/6 inhibitors are successfully used in cancer patients, our findings can be immediately transferred to the clinic to improve the outcome of EOC patients.
Collapse
Affiliation(s)
- Alessandra Dall'Acqua
- Division of Molecular Oncology, CRO Aviano, IRCCS, National Cancer Institute, Aviano, Italy
| | - Maura Sonego
- Division of Molecular Oncology, CRO Aviano, IRCCS, National Cancer Institute, Aviano, Italy
| | - Ilenia Pellizzari
- Division of Molecular Oncology, CRO Aviano, IRCCS, National Cancer Institute, Aviano, Italy
| | - Ilenia Pellarin
- Division of Molecular Oncology, CRO Aviano, IRCCS, National Cancer Institute, Aviano, Italy
| | - Vincenzo Canzonieri
- Division of Pathology, CRO Aviano, IRCCS, National Cancer Institute, Aviano, Italy
| | - Sara D'Andrea
- Division of Molecular Oncology, CRO Aviano, IRCCS, National Cancer Institute, Aviano, Italy
| | - Sara Benevol
- Division of Molecular Oncology, CRO Aviano, IRCCS, National Cancer Institute, Aviano, Italy
| | - Roberto Sorio
- Division of Medical Oncology C, CRO Aviano, IRCCS, National Cancer Institute, Aviano, Italy
| | - Giorgio Giorda
- Division of Gynecology-Oncology, CRO Aviano, IRCCS, National Cancer Institute, Aviano, Italy
| | - Daniela Califano
- Genomica Funzionale, Istituto Nazionale Tumori -IRCCS- Fondazione G Pascale, Naples, Italy
| | - Marina Bagnoli
- Molecular Therapies Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori Milan, Milan, Italy
| | - Loredana Militello
- Division of Medical Oncology C, CRO Aviano, IRCCS, National Cancer Institute, Aviano, Italy
| | - Delia Mezzanzanica
- Molecular Therapies Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori Milan, Milan, Italy
| | - Gennaro Chiappetta
- Genomica Funzionale, Istituto Nazionale Tumori -IRCCS- Fondazione G Pascale, Naples, Italy
| | - Joshua Armenia
- Division of Molecular Oncology, CRO Aviano, IRCCS, National Cancer Institute, Aviano, Italy
| | - Barbara Belletti
- Division of Molecular Oncology, CRO Aviano, IRCCS, National Cancer Institute, Aviano, Italy
| | - Monica Schiappacassi
- Division of Molecular Oncology, CRO Aviano, IRCCS, National Cancer Institute, Aviano, Italy
| | - Gustavo Baldassarre
- Division of Molecular Oncology, CRO Aviano, IRCCS, National Cancer Institute, Aviano, Italy
| |
Collapse
|
15
|
Pellizzari I, Fabris L, Berton S, Segatto I, Citron F, D'Andrea S, Cusan M, Benevol S, Perin T, Massarut S, Canzonieri V, Schiappacassi M, Belletti B, Baldassarre G. p27kip1 expression limits H-Ras-driven transformation and tumorigenesis by both canonical and non-canonical mechanisms. Oncotarget 2018; 7:64560-64574. [PMID: 27579539 PMCID: PMC5323099 DOI: 10.18632/oncotarget.11656] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 07/19/2016] [Indexed: 12/15/2022] Open
Abstract
The tumor suppressor protein p27Kip1 plays a pivotal role in the control of cell growth and metastasis formation.Several studies pointed to different roles for p27Kip1 in the control of Ras induced transformation, although no explanation has been provided to elucidate these differences. We recently demonstrated that p27kip1 regulates H-Ras activity via its interaction with stathmin.Here, using in vitro and in vivo models, we show that p27kip1 is an important regulator of Ras induced transformation. In H-RasV12 transformed cells, p27kip1 suppressed cell proliferation and tumor growth via two distinct mechanisms: 1) inhibition of CDK activity and 2) impairment of MT-destabilizing activity of stathmin. Conversely, in K-Ras4BV12 transformed cells, p27kip1 acted mainly in a CDK-dependent but stathmin-independent manner.Using human cancer-derived cell lines and primary breast and sarcoma samples, we confirmed in human models what we observed in mice.Overall, we highlight a pathway, conserved from mouse to human, important in the regulation of H-Ras oncogenic activity that could have therapeutic and diagnostic implication in patients that may benefit from anti-H-Ras therapies.
Collapse
Affiliation(s)
- Ilenia Pellizzari
- Division of Experimental Oncology 2, Department of Translational Research, CRO Aviano, National Cancer Institute, Aviano, Italy
| | - Linda Fabris
- Division of Experimental Oncology 2, Department of Translational Research, CRO Aviano, National Cancer Institute, Aviano, Italy.,Department of Experimental Therapeutics, M.D. Anderson Cancer Center, Houston, TX, USA
| | - Stefania Berton
- Division of Experimental Oncology 2, Department of Translational Research, CRO Aviano, National Cancer Institute, Aviano, Italy
| | - Ilenia Segatto
- Division of Experimental Oncology 2, Department of Translational Research, CRO Aviano, National Cancer Institute, Aviano, Italy
| | - Francesca Citron
- Division of Experimental Oncology 2, Department of Translational Research, CRO Aviano, National Cancer Institute, Aviano, Italy
| | - Sara D'Andrea
- Division of Experimental Oncology 2, Department of Translational Research, CRO Aviano, National Cancer Institute, Aviano, Italy
| | - Martina Cusan
- Division of Experimental Oncology 2, Department of Translational Research, CRO Aviano, National Cancer Institute, Aviano, Italy
| | - Sara Benevol
- Division of Experimental Oncology 2, Department of Translational Research, CRO Aviano, National Cancer Institute, Aviano, Italy
| | - Tiziana Perin
- Pathology Unit, CRO Aviano, National Cancer Institute, Aviano, Italy
| | - Samuele Massarut
- Breast Surgery Unit, CRO Aviano, National Cancer Institute, Aviano, Italy
| | | | - Monica Schiappacassi
- Division of Experimental Oncology 2, Department of Translational Research, CRO Aviano, National Cancer Institute, Aviano, Italy
| | - Barbara Belletti
- Division of Experimental Oncology 2, Department of Translational Research, CRO Aviano, National Cancer Institute, Aviano, Italy
| | - Gustavo Baldassarre
- Division of Experimental Oncology 2, Department of Translational Research, CRO Aviano, National Cancer Institute, Aviano, Italy
| |
Collapse
|
16
|
Defective p27 phosphorylation at serine 10 affects vascular reactivity and increases abdominal aortic aneurysm development via Cox-2 activation. J Mol Cell Cardiol 2018; 116:5-15. [PMID: 29408196 DOI: 10.1016/j.yjmcc.2018.01.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 01/10/2018] [Accepted: 01/15/2018] [Indexed: 12/31/2022]
Abstract
Phosphorylation at serine 10 (S10) is the major posttranslational modification of the tumor suppressor p27, and is reduced in both human and mouse atherosclerosis. Moreover, a lack of p27-phospho-S10 in apolipoprotein E-null mice (apoE-/-) leads to increased high-fat diet-induced atherosclerosis associated with endothelial dysfunction and augmented leukocyte recruitment. In this study, we analyzed whether p27-phospho-S10 modulates additional endothelial functions and associated pathologies. Defective p27-phospho-S10 increases COX-2 activity in mouse aortic endothelial cells without affecting other key regulators of vascular reactivity, reduces endothelium-dependent dilation, and increases arterial contractility. Lack of p27-phospho-S10 also elevates aortic COX-2 expression and thromboxane A2 production, increases aortic lumen diameter, and aggravates angiotensin II-induced abdominal aortic aneurysm development in apoE-/- mice. All these abnormal responses linked to defective p27-phospho-S10 are blunted by pharmacological inhibition of COX-2. These results demonstrate that defective p27-phospho-S10 modifies endothelial behavior and promotes aneurysm formation via COX-2 activation.
Collapse
|
17
|
Bencivenga D, Caldarelli I, Stampone E, Mancini FP, Balestrieri ML, Della Ragione F, Borriello A. p27 Kip1 and human cancers: A reappraisal of a still enigmatic protein. Cancer Lett 2017; 403:354-365. [DOI: 10.1016/j.canlet.2017.06.031] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 06/23/2017] [Accepted: 06/23/2017] [Indexed: 12/21/2022]
|
18
|
A single nucleotide polymorphism of cyclin-dependent kinase inhibitor 1B (p27 Kip1) associated with human vein graft failure affects growth of human venous adventitial cells but not smooth muscle cells. J Vasc Surg 2017; 67:309-317.e7. [PMID: 28526559 DOI: 10.1016/j.jvs.2016.12.113] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 12/12/2016] [Indexed: 01/09/2023]
Abstract
BACKGROUND Cyclin-dependent kinase inhibitor 1B (p27Kip1) is a cell-cycle inhibitor whose -838C>A single nucleotide polymorphism (rs36228499; hereafter called p27 SNP) has been associated with the clinical failure of peripheral vein grafts, but the functional effects of this SNP have not been demonstrated. METHODS Human saphenous vein adventitial cells and intimal/medial smooth muscle cells (SMCs) were derived from explants obtained at the time of lower extremity bypass operations. We determined the following in adventitial cells and SMCs as a function of the p27 SNP genotype: (1) p27 promoter activity, (2) p27 messenger (m)RNA and protein levels, and (3) growth and collagen gel contraction. Deoxyribonuclease I footprinting was also performed in adventitial cells and SMCs. RESULTS p27 promoter activity, deoxyribonuclease I footprinting, p27 mRNA levels, and p27 protein levels demonstrated that the p27 SNP is functional in adventitial cells and SMCs. Both cell types with the graft failure protective AA genotype had more p27 mRNA and protein. As predicted because of higher levels of p27 protein, adventitial cells with the AA genotype grew slower than those of the CC genotype. Unexpectedly, SMCs did not show this genotype-dependent growth response. CONCLUSIONS These results support the functionality of the p27 SNP in venous SMCs and adventitial cells, but an effect of the SNP on cell proliferation is limited to only adventitial cells. These data point to a potential role for adventitial cells in human vein graft failure and also suggest that SMCs express factors that interfere with the activity of p27.
Collapse
|
19
|
Jeannot P, Nowosad A, Perchey RT, Callot C, Bennana E, Katsube T, Mayeux P, Guillonneau F, Manenti S, Besson A. p27 Kip1 promotes invadopodia turnover and invasion through the regulation of the PAK1/Cortactin pathway. eLife 2017; 6. [PMID: 28287395 PMCID: PMC5388532 DOI: 10.7554/elife.22207] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Accepted: 03/09/2017] [Indexed: 12/29/2022] Open
Abstract
p27Kip1 (p27) is a cyclin-CDK inhibitor and negative regulator of cell proliferation. p27 also controls other cellular processes including migration and cytoplasmic p27 can act as an oncogene. Furthermore, cytoplasmic p27 promotes invasion and metastasis, in part by promoting epithelial to mesenchymal transition. Herein, we find that p27 promotes cell invasion by binding to and regulating the activity of Cortactin, a critical regulator of invadopodia formation. p27 localizes to invadopodia and limits their number and activity. p27 promotes the interaction of Cortactin with PAK1. In turn, PAK1 promotes invadopodia turnover by phosphorylating Cortactin, and expression of Cortactin mutants for PAK-targeted sites abolishes p27’s effect on invadopodia dynamics. Thus, in absence of p27, cells exhibit increased invadopodia stability due to impaired PAK1-Cortactin interaction, but their invasive capacity is reduced compared to wild-type cells. Overall, we find that p27 directly promotes cell invasion by facilitating invadopodia turnover via the Rac1/PAK1/Cortactin pathway. DOI:http://dx.doi.org/10.7554/eLife.22207.001 When animals develop from embryos to adults, or try to heal wounds later in life, their cells have to move. Moving means that the cells must invade into their surroundings, a dense network of proteins called the extracellular matrix. The cell first attaches to the extracellular matrix; degrades it; and then moves into the newly opened space. Cells have developed specialized structures called invadosomes to enable all these steps. Invadosomes are never static, they first assemble where cells interact with extracellular matrix, they then release proteins that loosen the matrix, and finally disassemble again to allow cells to move. Invadosomes in cancer cells often become overactive, and can allow the tumor cells to spread throughout the body. A lot of different proteins are involved in controlling how and when cells move. p27 is a well-known protein usually found in a cell’s nucleus along with the cell’s DNA. Inside the nucleus, p27 suppresses tumor growth by stopping cells from dividing. However, often in cancer cells p27 moves outside of the cell’s nucleus where it contributes to cell movement via an unknown mechanism. To answer how p27 controls cell invasion, Jeannot et al. used a biochemical technique to uncover which proteins p27 binds to when it is outside of the nucleus. One of its interaction partners was called Cortactin. This protein is known to be an important building block of invadosomes, and is involved in both the assembly and disassembly of these structures. In further experiments, Jeannot studied mouse cells with or without p27 and human cancer cells that can be grown in the laboratory. The experiments revealed that p27 promotes an enzyme called PAK1 to also bind to Cortactin. PAK1 then modified Cortactin, causing whole invadosomes to disassemble, which in turn allowed cells to de-attach from the matrix and move forward. In contrast, cells lacking p27 had more stable invadosomes, attached more strongly to the matrix and were better at degrading it, but could not invade as well as cells with p27. Overall these experiments showed a new way that p27 promotes cell invasion. The next steps will include finding out exactly how the modification of Cortactin causes the invadosomes to disassemble. Furthermore, it will be important to study whether forcing p27 back into the nucleus can reduce the spread of cancer cells in the body. DOI:http://dx.doi.org/10.7554/eLife.22207.002
Collapse
Affiliation(s)
- Pauline Jeannot
- INSERM UMR1037, Cancer Research Center of Toulouse, Toulouse, France.,Université Toulouse III Paul Sabatier, Toulouse, France.,CNRS ERL5294, Toulouse, France
| | - Ada Nowosad
- INSERM UMR1037, Cancer Research Center of Toulouse, Toulouse, France.,Université Toulouse III Paul Sabatier, Toulouse, France.,CNRS ERL5294, Toulouse, France
| | - Renaud T Perchey
- INSERM UMR1037, Cancer Research Center of Toulouse, Toulouse, France.,Université Toulouse III Paul Sabatier, Toulouse, France.,CNRS ERL5294, Toulouse, France
| | - Caroline Callot
- INSERM UMR1037, Cancer Research Center of Toulouse, Toulouse, France.,Université Toulouse III Paul Sabatier, Toulouse, France.,CNRS ERL5294, Toulouse, France
| | - Evangeline Bennana
- 3P5 proteomics facility of the Université Paris Descartes, Inserm U1016 Institut Cochin, Sorbonne Paris Cité, Paris, France
| | | | - Patrick Mayeux
- 3P5 proteomics facility of the Université Paris Descartes, Inserm U1016 Institut Cochin, Sorbonne Paris Cité, Paris, France
| | - François Guillonneau
- 3P5 proteomics facility of the Université Paris Descartes, Inserm U1016 Institut Cochin, Sorbonne Paris Cité, Paris, France
| | - Stéphane Manenti
- INSERM UMR1037, Cancer Research Center of Toulouse, Toulouse, France.,Université Toulouse III Paul Sabatier, Toulouse, France.,CNRS ERL5294, Toulouse, France
| | - Arnaud Besson
- INSERM UMR1037, Cancer Research Center of Toulouse, Toulouse, France.,Université Toulouse III Paul Sabatier, Toulouse, France.,CNRS ERL5294, Toulouse, France
| |
Collapse
|
20
|
Kukalev A, Ng YM, Ju L, Saidi A, Lane S, Mondragon A, Dormann D, Walker SE, Grey W, Ho PWL, Stephens DN, Carr AM, Lamsa K, Tse E, Yu VPCC. Deficiency of Cks1 Leads to Learning and Long-Term Memory Defects and p27 Dependent Formation of Neuronal Cofilin Aggregates. Cereb Cortex 2017; 27:11-23. [PMID: 28365778 PMCID: PMC5939225 DOI: 10.1093/cercor/bhw354] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Revised: 09/23/2016] [Indexed: 01/11/2023] Open
Abstract
In mitotic cells, the cyclin-dependent kinase (CDK) subunit protein CKS1 regulates S phase entry by mediating degradation of the CDK inhibitor p27. Although mature neurons lack mitotic CDKs, we found that CKS1 was actively expressed in post-mitotic neurons of the adult hippocampus. Interestingly, Cks1 knockout (Cks1-/-) mice exhibited poor long-term memory, and diminished maintenance of long-term potentiation in the hippocampal circuits. Furthermore, there was neuronal accumulation of cofilin-actin rods or cofilin aggregates, which are associated with defective dendritic spine maturation and synaptic loss. We further demonstrated that it was the increased p27 level that activated cofilin by suppressing the RhoA kinase-mediated inhibitory phosphorylation of cofilin, resulting in the formation of cofilin aggregates in the Cks1-/- neuronal cells. Consistent with reports that the peptidyl-prolyl-isomerase PIN1 competes with CKS1 for p27 binding, we found that inhibition of PIN1 diminished the formation of cofilin aggregates through decreasing p27 levels, thereby activating RhoA and increasing cofilin phosphorylation. Our results revealed that CKS1 is involved in normal glutamatergic synapse development and dendritic spine maturation in adult hippocampus through modulating p27 stability.
Collapse
Affiliation(s)
- Alexander Kukalev
- Eukaryotic Chromatin Dynamics Group
,
MRC Clinical Sciences Centre
,
Imperial College Hammersmith Campus
,
London W12 0NN
,
UK
- Department of Medical and Molecular Genetics
,
King's College London School of Medicine
,
Guy's Hospital
,
Great Maze Pond
,
London SE1 9RT
,
UK
- Current address:
Epigenetic Regulation and Chromatin Architecture Group
,
Berlin Institute for Medical Systems Biology, Max-Delbrück Centre for Molecular Medicine
,
Robert-Rössle Strasse
,
Berlin-Buch 13125
,
Germany
| | - Yiu-Ming Ng
- Department of Medical and Molecular Genetics
,
King's College London School of Medicine
,
Guy's Hospital
,
Great Maze Pond
,
London SE1 9RT
,
UK
- Division of Haematology
,
Department of Medicine
,
The University of Hong Kong
,
Hong Kong
| | - Limei Ju
- Genome Damage and Stability Centre
,
School of Life Sciences
,
University of Sussex
,
Falmer, Sussex BN1 9RQ
,
UK
| | - Amal Saidi
- Genome Damage and Stability Centre
,
School of Life Sciences
,
University of Sussex
,
Falmer, Sussex BN1 9RQ
,
UK
| | - Sophie Lane
- Eukaryotic Chromatin Dynamics Group
,
MRC Clinical Sciences Centre
,
Imperial College Hammersmith Campus
,
London W12 0NN
,
UK
| | - Angeles Mondragon
- Eukaryotic Chromatin Dynamics Group
,
MRC Clinical Sciences Centre
,
Imperial College Hammersmith Campus
,
London W12 0NN
,
UK
| | - Dirk Dormann
- Microscopy Facility
,
MRC Clinical Sciences Centre
,
Imperial College Hammersmith Campus
,
London W12 0NN
,
UK
| | - Sophie E. Walker
- School of Psychology
,
University of Sussex
,
Sussex, Brighton BN1 9QG
,
UK
| | - William Grey
- Department of Medical and Molecular Genetics
,
King's College London School of Medicine
,
Guy's Hospital
,
Great Maze Pond
,
London SE1 9RT
,
UK
| | - Philip Wing-Lok Ho
- Division of Neurology
,
Department of Medicine
,
University of Hong Kong
,
Hong Kong
| | - David N. Stephens
- School of Psychology
,
University of Sussex
,
Sussex, Brighton BN1 9QG
,
UK
| | - Antony M. Carr
- Genome Damage and Stability Centre
,
School of Life Sciences
,
University of Sussex
,
Falmer, Sussex BN1 9RQ
,
UK
| | - Karri Lamsa
- Department of Pharmacology
,
Oxford University
,
Oxford OX1 3QT
,
UK
- Current address:
Department of Physiology, Anatomy and Neuroscience
,
University of Szeged
,
Közép fasor 52
,
Szeged H-6726,Hungary
| | - Eric Tse
- Division of Haematology
,
Department of Medicine
,
The University of Hong Kong
,
Hong Kong
| | - Veronica P. C. C. Yu
- Eukaryotic Chromatin Dynamics Group
,
MRC Clinical Sciences Centre
,
Imperial College Hammersmith Campus
,
London W12 0NN
,
UK
- Department of Medical and Molecular Genetics
,
King's College London School of Medicine
,
Guy's Hospital
,
Great Maze Pond
,
London SE1 9RT
,
UK
| |
Collapse
|
21
|
Guo SJ, Zhang P, Wu LY, Zhang GN, Chen WD, Gao PJ. Adenovirus-Mediated Overexpression of Septin 2 Attenuates α-Smooth Muscle Actin Expression and Adventitial Myofibroblast Migration Induced by Angiotensin II. J Vasc Res 2016; 53:309-316. [PMID: 27974709 DOI: 10.1159/000452413] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 10/09/2016] [Indexed: 11/19/2022] Open
Abstract
Phenotypic transformation from adventitial fibroblasts (AFs) to myofibroblasts (MFs) is critical for vascular remodeling. Septin 2 was found to be downregulated during the differentiation of AFs to MFs induced by angiotensin II (Ang II); however, the role of septin 2 in this process is still unknown. In this study, we investigate whether septin 2 contributes to the adventitial MF phenotypic modulation caused by Ang II. The decreased level of septin 2 and the increased expression of α-smooth muscle actin (α-SMA), a marker of MFs, were readily observed in Ang II-stimulated MF differentiation. After gene transfer of septin 2, the expression of α-SMA was markedly decreased and the MF migration response to Ang II was inhibited. Furthermore, the inhibition of RhoA, another molecule involved in MF phenotypic modulation, decreased the motility of MFs and the expression of septin 2 triggered in Ang II. Finally, transfection of septin 2 rescued the level of acetyl-α-tubulin in MFs. These findings demonstrate that, as a downstream molecule of RhoA, septin 2 blunted the responses of AFs to Ang II by protecting α-tubulin acetylation, which suggests that septin 2 may serve as a potential therapeutic target for vascular injury.
Collapse
Affiliation(s)
- Shu-Jie Guo
- Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | | | | | | | | | | |
Collapse
|
22
|
De Marco C, Malanga D, Rinaldo N, De Vita F, Scrima M, Lovisa S, Fabris L, Carriero MV, Franco R, Rizzuto A, Baldassarre G, Viglietto G. Mutant AKT1-E17K is oncogenic in lung epithelial cells. Oncotarget 2016; 6:39634-50. [PMID: 26053093 PMCID: PMC4741851 DOI: 10.18632/oncotarget.4022] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Accepted: 05/13/2015] [Indexed: 12/19/2022] Open
Abstract
The hotspot E17K mutation in the pleckstrin homology domain of AKT1 occurs in approximately 0.6–2% of human lung cancers. In this manuscript, we sought to determine whether this AKT1 variant is a bona-fide activating mutation and plays a role in the development of lung cancer. Here we report that in immortalized human bronchial epithelial cells (BEAS-2B cells) mutant AKT1-E17K promotes anchorage-dependent and -independent proliferation, increases the ability to migrate, invade as well as to survive and duplicate in stressful conditions, leading to the emergency of cells endowed with the capability to form aggressive tumours at high efficiency. We provide also evidence that the molecular mechanism whereby AKT1-E17K is oncogenic in lung epithelial cells involves phosphorylation and consequent cytoplasmic delocalization of the cyclin-dependent kinase (cdk) inhibitor p27. In agreement with these results, cytoplasmic p27 is preferentially observed in primary NSCLCs with activated AKT and predicts poor survival.
Collapse
Affiliation(s)
- Carmela De Marco
- Department of Experimental and Clinical Medicine, University "Magna Graecia", Catanzaro, Italy.,BIOGEM-Institute of Genetic Research, Ariano Irpino, Italy
| | - Donatella Malanga
- Department of Experimental and Clinical Medicine, University "Magna Graecia", Catanzaro, Italy.,BIOGEM-Institute of Genetic Research, Ariano Irpino, Italy
| | - Nicola Rinaldo
- BIOGEM-Institute of Genetic Research, Ariano Irpino, Italy
| | | | | | - Sara Lovisa
- Experimental Oncology 2, Centro di Riferimento Oncologico, Aviano, Italy
| | - Linda Fabris
- Experimental Oncology 2, Centro di Riferimento Oncologico, Aviano, Italy
| | | | - Renato Franco
- Experimental Oncology, IRCCS Fondazione Pascale, Napoli, Italy
| | - Antonia Rizzuto
- Department of Medical and Surgical Sciences, University "Magna Graecia" Medical School, Catanzaro, Italy
| | | | - Giuseppe Viglietto
- Department of Experimental and Clinical Medicine, University "Magna Graecia", Catanzaro, Italy.,BIOGEM-Institute of Genetic Research, Ariano Irpino, Italy
| |
Collapse
|
23
|
Te Boekhorst V, Friedl P. Plasticity of Cancer Cell Invasion-Mechanisms and Implications for Therapy. Adv Cancer Res 2016; 132:209-64. [PMID: 27613134 DOI: 10.1016/bs.acr.2016.07.005] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cancer cell migration is a plastic and adaptive process integrating cytoskeletal dynamics, cell-extracellular matrix and cell-cell adhesion, as well as tissue remodeling. In response to molecular and physical microenvironmental cues during metastatic dissemination, cancer cells exploit a versatile repertoire of invasion and dissemination strategies, including collective and single-cell migration programs. This diversity generates molecular and physical heterogeneity of migration mechanisms and metastatic routes, and provides a basis for adaptation in response to microenvironmental and therapeutic challenge. We here summarize how cytoskeletal dynamics, protease systems, cell-matrix and cell-cell adhesion pathways control cancer cell invasion programs, and how reciprocal interaction of tumor cells with the microenvironment contributes to plasticity of invasion and dissemination strategies. We discuss the potential and future implications of predicted "antimigration" therapies that target cytoskeletal dynamics, adhesion, and protease systems to interfere with metastatic dissemination, and the options for integrating antimigration therapy into the spectrum of targeted molecular therapies.
Collapse
Affiliation(s)
- V Te Boekhorst
- David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - P Friedl
- David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX, United States; Radboud University Medical Centre, Nijmegen, The Netherlands; Cancer Genomics Center (CGC.nl), Utrecht, The Netherlands.
| |
Collapse
|
24
|
Fife CM, Sagnella SM, Teo WS, Po'uha ST, Byrne FL, Yeap YYC, Ng DCH, Davis TP, McCarroll JA, Kavallaris M. Stathmin mediates neuroblastoma metastasis in a tubulin-independent manner via RhoA/ROCK signaling and enhanced transendothelial migration. Oncogene 2016; 36:501-511. [DOI: 10.1038/onc.2016.220] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 04/13/2016] [Accepted: 05/15/2016] [Indexed: 12/26/2022]
|
25
|
Abstract
p27(Kip1) was first discovered as a key regulator of cell proliferation. The canonical function of p27(Kip1) is inhibition of cyclin-dependent kinase (CDK) activity. In addition to its initial identification as a CDK inhibitor, p27(Kip1) has also emerged as an intrinsically unstructured, multifunctional protein with numerous non-canonical, CDK-independent functions that exert influence on key processes such as cell cycle regulation, cytoskeletal dynamics and cellular plasticity, cell migration, and stem-cell proliferation and differentiation. Many of these non-canonical functions, depending on the cell-specific contexts such as oncogenic activation of signaling pathways, have the ability to turn pro-oncogenic in nature and even contribute to tumor-aggressiveness and metastasis. This review discusses the various non-canonical, CDK-independent mechanisms by which p27(Kip1) functions either as a tumor-suppressor or tumor-promoter.
Collapse
Affiliation(s)
- Savitha S Sharma
- a Gibbs Cancer Center & Research Institute , Spartanburg , SC , USA
| | - W Jackson Pledger
- a Gibbs Cancer Center & Research Institute , Spartanburg , SC , USA.,b Edward Via College of Osteopathic Medicine , Department of Molecular Medicine , Spartanburg , SC , USA
| |
Collapse
|
26
|
p27kip1 controls H-Ras/MAPK activation and cell cycle entry via modulation of MT stability. Proc Natl Acad Sci U S A 2015; 112:13916-21. [PMID: 26512117 DOI: 10.1073/pnas.1508514112] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The cyclin-dependent kinase (CDK) inhibitor p27(kip1) is a critical regulator of the G1/S-phase transition of the cell cycle and also regulates microtubule (MT) stability. This latter function is exerted by modulating the activity of stathmin, an MT-destabilizing protein, and by direct binding to MTs. We recently demonstrated that increased proliferation in p27(kip1)-null mice is reverted by concomitant deletion of stathmin in p27(kip1)/stathmin double-KO mice, suggesting that a CDK-independent function of p27(kip1) contributes to the control of cell proliferation. Whether the regulation of MT stability by p27(kip1) impinges on signaling pathway activation and contributes to the decision to enter the cell cycle is largely unknown. Here, we report that faster cell cycle entry of p27(kip1)-null cells was impaired by the concomitant deletion of stathmin. Using gene expression profiling coupled with bioinformatic analyses, we show that p27(kip1) and stathmin conjunctly control activation of the MAPK pathway. From a molecular point of view, we observed that p27(kip1), by controlling MT stability, impinges on H-Ras trafficking and ubiquitination levels, eventually restraining its full activation. Our study identifies a regulatory axis controlling the G1/S-phase transition, relying on the regulation of MT stability by p27(kip1) and finely controlling the spatiotemporal activation of the Ras-MAPK signaling pathway.
Collapse
|
27
|
Berton S, Pellizzari I, Fabris L, D'Andrea S, Segatto I, Canzonieri V, Marconi D, Schiappacassi M, Benevol S, Gattei V, Colombatti A, Belletti B, Baldassarre G. Genetic characterization of p27(kip1) and stathmin in controlling cell proliferation in vivo. Cell Cycle 2015; 13:3100-11. [PMID: 25486569 PMCID: PMC4612673 DOI: 10.4161/15384101.2014.949512] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The CDK inhibitor p27(kip1) is a critical regulator of cell cycle progression, but the mechanisms by which p27(kip1) controls cell proliferation in vivo are still not fully elucidated. We recently demonstrated that the microtubule destabilizing protein stathmin is a relevant p27(kip1) binding partner. To get more insights into the in vivo significance of this interaction, we generated p27(kip1) and stathmin double knock-out (DKO) mice. Interestingly, thorough characterization of DKO mice demonstrated that most of the phenotypes of p27(kip1) null mice linked to the hyper-proliferative behavior, such as the increased body and organ weight, the outgrowth of the retina basal layer and the development of pituitary adenomas, were reverted by co-ablation of stathmin. In vivo analyses showed a reduced proliferation rate in DKO compared to p27(kip1) null mice, linked, at molecular level, to decreased kinase activity of CDK4/6, rather than of CDK1 and CDK2. Gene expression profiling of mouse thymuses confirmed the phenotypes observed in vivo, showing that DKO clustered with WT more than with p27 knock-out tissue. Taken together, our results demonstrate that stathmin cooperates with p27(kip1) to control the early phase of G1 to S phase transition and that this function may be of particular relevance in the context of tumor progression.
Collapse
Affiliation(s)
- Stefania Berton
- a Department of Translational Research; Division of Experimental Oncology 2; CRO of Aviano, National Cancer Institute ; Aviano , Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Morley S, Hager MH, Pollan SG, Knudsen B, Di Vizio D, Freeman MR. Trading in your spindles for blebs: the amoeboid tumor cell phenotype in prostate cancer. Asian J Androl 2015; 16:530-5. [PMID: 24589458 PMCID: PMC4104075 DOI: 10.4103/1008-682x.122877] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
| | | | | | | | - Dolores Di Vizio
- Division of Cancer Biology and Therapeutics, Departments of Surgery, Medicine and Biomedical Sciences, and The Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA; Urological Diseases Research Center, Boston Children's Hospital and Department of Surgery, Harvard Medical School, Boston, MA, USA
| | - Michael R Freeman
- Division of Cancer Biology and Therapeutics, Departments of Surgery, Medicine and Biomedical Sciences, and The Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA; Urological Diseases Research Center, Boston Children's Hospital; Department of Surgery, Harvard Medical School, Boston, MA and Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| |
Collapse
|
29
|
Regulation of microtubule dynamics by DIAPH3 influences amoeboid tumor cell mechanics and sensitivity to taxanes. Sci Rep 2015; 5:12136. [PMID: 26179371 PMCID: PMC4503992 DOI: 10.1038/srep12136] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 05/05/2015] [Indexed: 12/20/2022] Open
Abstract
Taxanes are widely employed chemotherapies for patients with metastatic prostate and breast cancer. Here, we show that loss of Diaphanous-related formin-3 (DIAPH3), frequently associated with metastatic breast and prostate cancers, correlates with increased sensitivity to taxanes. DIAPH3 interacted with microtubules (MT), and its loss altered several parameters of MT dynamics as well as decreased polarized force generation, contractility, and response to substrate stiffness. Silencing of DIAPH3 increased the cytotoxic response to taxanes in prostate and breast cancer cell lines. Analysis of drug activity for tubulin-targeted agents in the NCI-60 cell line panel revealed a uniform positive correlation between reduced DIAPH3 expression and drug sensitivity. Low DIAPH3 expression correlated with improved relapse-free survival in breast cancer patients treated with chemotherapeutic regimens containing taxanes. Our results suggest that inhibition of MT stability arising from DIAPH3 downregulation enhances susceptibility to MT poisons, and that the DIAPH3 network potentially reports taxane sensitivity in human tumors.
Collapse
|
30
|
Chauvin S, Sobel A. Neuronal stathmins: A family of phosphoproteins cooperating for neuronal development, plasticity and regeneration. Prog Neurobiol 2015; 126:1-18. [DOI: 10.1016/j.pneurobio.2014.09.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 09/23/2014] [Accepted: 09/29/2014] [Indexed: 02/06/2023]
|
31
|
The N-terminal region of p27 inhibits HIF-1α protein translation in ribosomal protein S6-dependent manner by regulating PHLPP-Ras-ERK-p90RSK axis. Cell Death Dis 2014; 5:e1535. [PMID: 25412313 PMCID: PMC4260754 DOI: 10.1038/cddis.2014.496] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 10/15/2014] [Accepted: 10/20/2014] [Indexed: 12/15/2022]
Abstract
P27 was identified as a tumor suppressor nearly two decades, being implicated in cell-cycle control, differentiation, senescence, apoptosis and motility. Our present study, for the first time to the best of our knowledge, revealed a potential role of p27 in inhibiting S6-mediated hypoxia-inducible factor-1α (HIF-1α) protein translation, which contributed to the protection from environmental carcinogen (sodium arsenite)-induced cell transformation. Our findings showed that depletion of p27 expression by knockout and knockdown approaches efficiently enhanced S6 phosphorylation in arsenite response via overactivating Ras/Raf/MEK/ERK pathway, which consequently resulted in the stimulation of p90RSK (90 kDa ribosomal S6 kinase), a direct kinase for S6 phosphorylation. Although PI3K/AKT pathway was also involved in S6 activation, blocking AKT and p70S6K activation did not attenuate arsenite-induced S6 activation in p27−/− cells, suggesting p27 specifically targeted Ras/ERK pathway rather than PI3K/AKT pathway for inhibition of S6 activation in response to arsenite exposure. Further functional studies found that p27 had a negative role in cell transformation induced by chronic low-dose arsentie exposure. Mechanistic investigations showed that HIF-1α translation was upregulated in p27-deficient cells in an S6 phosphorylation-dependent manner and functioned as a driving force in arsenite-induced cell transformation. Knockdown of HIF-1α efficiently reversed arsenite-induced cell transformation in p27-depleted cells. Taken together, our findings provided strong evidence showing that by targeting Ras/ERK pathway, p27 provided a negative control over HIF-1α protein synthesis in an S6-dependent manner, and abrogated arsenite-induced cell transformation via downregulation of HIF-1α translation.
Collapse
|
32
|
Zhang D, Wang Y, Liang Y, Zhang M, Wei J, Zheng X, Li F, Meng Y, Zhu NW, Li J, Wu XR, Huang C. Loss of p27 upregulates MnSOD in a STAT3-dependent manner, disrupts intracellular redox activity and enhances cell migration. J Cell Sci 2014; 127:2920-33. [PMID: 24727615 DOI: 10.1242/jcs.148130] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Cell migration is a dynamic process that is central to a variety of physiological functions as well as disease pathogenesis. The modulation of cell migration by p27 (officially known as CDKN1B) has been reported, but the exact mechanism(s) whereby p27 interacts with downstream effectors that control cell migration have not been elucidated. By systematically comparing p27(+/+) mouse embryonic fibroblasts (MEFs) with genetically ablated p27(-/-) MEFs using wound-healing, transwell and time-lapse microscopic analyses, we provide direct evidence that p27 inhibits both directional and random cell migration. Identical results were obtained with normal and cancer epithelial cells using complementary knockdown and overexpression approaches. Additional studies revealed that overexpression of manganese superoxide dismutase (MnSOD, officially known as SOD2) and reduced intracellular oxidation played a key role in increased cell migration in p27-deficient cells. Furthermore, we identified signal transducer and activator of transcription 3 (STAT3) as the transcription factor responsible for p27-regulated MnSOD expression, which was further mediated by ERK- and ATF1-dependent transactivation of the cAMP response element (CRE) within the Stat3 promoter. Collectively, our data strongly indicate that p27 plays a crucial negative role in cell migration by inhibiting MnSOD expression in a STAT3-dependent manner.
Collapse
Affiliation(s)
- Dongyun Zhang
- Nelson Institute of Environmental Medicine, New York University School of Medicine, 57 Old Forge Road, Tuxedo, NY 10987, USA
| | - Yulei Wang
- Nelson Institute of Environmental Medicine, New York University School of Medicine, 57 Old Forge Road, Tuxedo, NY 10987, USA
| | - Yuguang Liang
- Nelson Institute of Environmental Medicine, New York University School of Medicine, 57 Old Forge Road, Tuxedo, NY 10987, USA
| | - Min Zhang
- Nelson Institute of Environmental Medicine, New York University School of Medicine, 57 Old Forge Road, Tuxedo, NY 10987, USA
| | - Jinlong Wei
- Nelson Institute of Environmental Medicine, New York University School of Medicine, 57 Old Forge Road, Tuxedo, NY 10987, USA
| | - Xiao Zheng
- Nelson Institute of Environmental Medicine, New York University School of Medicine, 57 Old Forge Road, Tuxedo, NY 10987, USA
| | - Fei Li
- Nelson Institute of Environmental Medicine, New York University School of Medicine, 57 Old Forge Road, Tuxedo, NY 10987, USA
| | - Yan Meng
- Nelson Institute of Environmental Medicine, New York University School of Medicine, 57 Old Forge Road, Tuxedo, NY 10987, USA
| | - Nina Wu Zhu
- Nelson Institute of Environmental Medicine, New York University School of Medicine, 57 Old Forge Road, Tuxedo, NY 10987, USA
| | - Jingxia Li
- Nelson Institute of Environmental Medicine, New York University School of Medicine, 57 Old Forge Road, Tuxedo, NY 10987, USA
| | - Xue-Ru Wu
- Departments of Urology and Pathology, New York University School of Medicine, and Veterans Affairs New York Harbor Healthcare System, Manhattan Campus, New York, NY 10010, USA
| | - Chuanshu Huang
- Nelson Institute of Environmental Medicine, New York University School of Medicine, 57 Old Forge Road, Tuxedo, NY 10987, USA
| |
Collapse
|
33
|
Segatto I, Berton S, Sonego M, Massarut S, Fabris L, Armenia J, Mileto M, Colombatti A, Vecchione A, Baldassarre G, Belletti B. p70S6 kinase mediates breast cancer cell survival in response to surgical wound fluid stimulation. Mol Oncol 2014; 8:766-80. [PMID: 24661902 PMCID: PMC5528623 DOI: 10.1016/j.molonc.2014.02.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 02/15/2014] [Indexed: 01/25/2023] Open
Abstract
In early breast cancer, local relapses represent a determinant and not simply an indicator of risk for distant relapse and death. Notably, 90% of local recurrences occur at or close to the same quadrant of the primary cancer. Relevance of PI3K/mTOR/p70S6K signaling in breast tumorigenesis is very well documented. However, the pathway/s involved in the process of breast cancer local relapse are not well understood. The ribosomal protein p70S6K has been implicated in breast cancer cell response to post‐surgical inflammation, supporting the hypothesis that it may be crucial also for breast cancer recurrence. Here, we show that p70S6K activity is required for the survival of breast cancer cells challenged in “hostile” microenvironments. We found that impairment of p70S6K activity in breast cancer cells strongly decreased their tumor take rate in nude mice. In line with this observation, if cells were challenged to grow in anchorage independence or in clonogenic assay, growth of colonies was strongly dependent on an intact p70S6K signaling. This in vitro finding was particularly evident when breast cancer cells were grown in the presence of wound fluids harvested following surgery from breast cancer patients, suggesting that the stimuli present in the post‐surgical setting at least partially relied on activity of p70S6K to stimulate breast cancer relapse. From a mechanistic point of view, our results indicated that p70S6K signaling was able to activate Gli1 and up‐regulate the anti‐apoptotic protein Bcl2, thereby activating a survival response in breast cancer cells challenged in hostile settings. Our work highlights a previously poorly recognized function of p70S6K in preserving breast cancer cell survival, which could eventually be responsible for local relapse and opens the way to the design of new and more specific therapies aiming to restrain the deleterious effects of wound response. p70S6K is activated in breast cancer cells exposed to post‐surgical wound fluids. p70S6K activity is necessary to prevent cell death in “hostile” environments. Inhibition of p70S6K1 leads to different outcomes respect to inhibition of mTOR. The p70S6K/Gli1/Bcl2 signaling axis is necessary to elicit a survival response. p70S6K represents a promising target to prevent breast cancer local recurrence.
Collapse
Affiliation(s)
- Ilenia Segatto
- Division of Experimental Oncology 2, CRO, National Cancer Institute, Aviano 33081, Italy
| | - Stefania Berton
- Division of Experimental Oncology 2, CRO, National Cancer Institute, Aviano 33081, Italy
| | - Maura Sonego
- Division of Experimental Oncology 2, CRO, National Cancer Institute, Aviano 33081, Italy
| | - Samuele Massarut
- Breast Surgery Unit, CRO, National Cancer Institute, Aviano 33081, Italy
| | - Linda Fabris
- Division of Experimental Oncology 2, CRO, National Cancer Institute, Aviano 33081, Italy
| | - Joshua Armenia
- Division of Experimental Oncology 2, CRO, National Cancer Institute, Aviano 33081, Italy
| | - Mario Mileto
- Breast Surgery Unit, CRO, National Cancer Institute, Aviano 33081, Italy
| | - Alfonso Colombatti
- Division of Experimental Oncology 2, CRO, National Cancer Institute, Aviano 33081, Italy; Department of Scienze Biologiche e Mediche, MATI Center of Excellence, University of Udine, 33100 Udine, Italy
| | - Andrea Vecchione
- Division of Pathology, University of Rome "La Sapienza", Sant' Andrea Hospital, Rome 00189, Italy
| | - Gustavo Baldassarre
- Division of Experimental Oncology 2, CRO, National Cancer Institute, Aviano 33081, Italy
| | - Barbara Belletti
- Division of Experimental Oncology 2, CRO, National Cancer Institute, Aviano 33081, Italy.
| |
Collapse
|
34
|
Unachukwu UJ, Sauane M, Vazquez M, Redenti S. Microfluidic generated EGF-gradients induce chemokinesis of transplantable retinal progenitor cells via the JAK/STAT and PI3kinase signaling pathways. PLoS One 2013; 8:e83906. [PMID: 24376770 PMCID: PMC3871684 DOI: 10.1371/journal.pone.0083906] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Accepted: 11/10/2013] [Indexed: 11/18/2022] Open
Abstract
A growing number of studies are evaluating retinal progenitor cell (RPC) transplantation as an approach to repair retinal degeneration and restore visual function. To advance cell-replacement strategies for a practical retinal therapy, it is important to define the molecular and biochemical mechanisms guiding RPC motility. We have analyzed RPC expression of the epidermal growth factor receptor (EGFR) and evaluated whether exposure to epidermal growth factor (EGF) can coordinate motogenic activity in vitro. Using Boyden chamber analysis as an initial high-throughput screen, we determined that RPC motility was optimally stimulated by EGF concentrations in the range of 20-400 ng/ml, with decreased stimulation at higher concentrations, suggesting concentration-dependence of EGF-induced motility. Using bioinformatics analysis of the EGF ligand in a retina-specific gene network pathway, we predicted a chemotactic function for EGF involving the MAPK and JAK-STAT intracellular signaling pathways. Based on targeted inhibition studies, we show that ligand binding, phosphorylation of EGFR and activation of the intracellular STAT3 and PI3kinase signaling pathways are necessary to drive RPC motility. Using engineered microfluidic devices to generate quantifiable steady-state gradients of EGF coupled with live-cell tracking, we analyzed the dynamics of individual RPC motility. Microfluidic analysis, including center of mass and maximum accumulated distance, revealed that EGF induced motility is chemokinetic with optimal activity observed in response to low concentration gradients. Our combined results show that EGFR expressing RPCs exhibit enhanced chemokinetic motility in the presence of low nanomole levels of EGF. These findings may serve to inform further studies evaluating the extent to which EGFR activity, in response to endogenous ligand, drives motility and migration of RPCs in retinal transplantation paradigms.
Collapse
Affiliation(s)
- Uchenna J. Unachukwu
- Biochemistry Doctoral Program, The Graduate School and University Center, City University of New York, New York, New York, United States of America
| | - Moira Sauane
- Department of Biological Sciences, Herbert Lehman College, City University of New York, Bronx, New York, United States of America
| | - Maribel Vazquez
- Department of Biomedical Engineering, City College of New York, City University of New York, New York, New York, United States of America
| | - Stephen Redenti
- Biochemistry Doctoral Program, The Graduate School and University Center, City University of New York, Department of Biological Sciences, Herbert Lehman College, City University of New York, Bronx, New York, United States of America
- * E-mail:
| |
Collapse
|
35
|
Ogden A, Rida PCG, Aneja R. Heading off with the herd: how cancer cells might maneuver supernumerary centrosomes for directional migration. Cancer Metastasis Rev 2013; 32:269-87. [PMID: 23114845 DOI: 10.1007/s10555-012-9413-5] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The complicity of centrosomes in carcinogenesis is unmistakable. Mounting evidence clearly implicates a robust correlation between centrosome amplification (CA) and malignant transformation in diverse tissue types. Furthermore, CA has been suggested as a marker of cancer aggressiveness, in particular the invasive phenotype, in breast and prostate cancers. One means by which CA promotes malignancy is through induction of transient spindle multipolarity during mitosis, which predisposes the cell to karyotypic changes arising from low-grade chromosome mis-segregation. It is well recognized that during cell migration in interphase, centrosome-mediated nucleation of a radial microtubule array is crucial for establishing a polarized Golgi apparatus, without which directionality is precluded. The question of how cancer cells maneuver their supernumerary centrosomes to achieve directionality during cell migration is virtually uncharted territory. Given that CA is a hallmark of cancers and has been correlated with cancer aggressiveness, malignant cells are presumably competent in managing their centrosome surfeit during directional migration, although the cellular logistics of this process remain unexplored. Another key angle worth pondering is whether an overabundance of centrosomes confers some advantage on cancer cells in terms of their migratory and invasive capabilities. Recent studies have uncovered a remarkable strategy that cancer cells employ to deal with the problem of excess centrosomes and ensure bipolar mitoses, viz., centrosome clustering. This review aims to change the narrative by exploring how an increased centrosome complement may, via aneuploidy-independent modulation of the microtubule cytoskeleton, enhance directional migration and invasion of malignant cells. We postulate that CA imbues cancer cells with cytoskeletal advantages that enhance cell polarization, Golgi-dependent vesicular trafficking, stromal invasion, and other aspects of metastatic progression. We also propose that centrosome declustering may represent a novel, cancer cell-specific antimetastatic strategy, as cancer cells may rely on centrosome clustering during migration as they do in mitosis. Elucidation of these details offers an exciting avenue for future research, as does investigating how CA may promote metastasis through enhanced directional migration.
Collapse
Affiliation(s)
- Angela Ogden
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA
| | | | | |
Collapse
|
36
|
A combination of paclitaxel and siRNA-mediated silencing of Stathmin inhibits growth and promotes apoptosis of nasopharyngeal carcinoma cells. Cell Oncol (Dordr) 2013; 37:53-67. [DOI: 10.1007/s13402-013-0163-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/18/2013] [Indexed: 12/30/2022] Open
|
37
|
Moros A, Bustany S, Cahu J, Saborit-Villarroya I, Martínez A, Colomer D, Sola B, Roué G. Antitumoral activity of lenalidomide in in vitro and in vivo models of mantle cell lymphoma involves the destabilization of cyclin D1/p27KIP1 complexes. Clin Cancer Res 2013; 20:393-403. [PMID: 24178620 DOI: 10.1158/1078-0432.ccr-13-1569] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Clinical responses to the immmunomodulatory drug lenalidomide have been observed in patients with relapsed/refractory mantle cell lymphoma (MCL), although its mechanism of action remains partially unknown. We investigated whether the expression and subcellular localization of cyclin D1, a major cell-cycle regulator overexpressed in MCL, and the cyclin-dependent kinase inhibitor p27(KIP1), could identify MCL cases sensitive to lenalidomide, and whether the compound could modulate cyclin D1/p27(KIP1) complexes in MCL cells. EXPERIMENTAL DESIGN MCL primary samples and cell lines were analyzed for subcellular levels of cyclin D1/p27(KIP1) complexes by Western blot, immunohistochemistry, immunoprecipitation, and flow cytometry. Activity of lenalidomide in vitro and its effect on cyclin D1/p27(KIP1) complexes were evaluated by real-time PCR, immunoprecipitation, immunofluorescence, and Western blot. In vivo validation was carried out in a mouse xenograft model of human MCL. RESULTS We found cyclin D1 and p27(KIP1) to be coordinately expressed in all the MCL samples tested. Immunoprecipitation analyses and siRNA assays suggested a direct role of cyclin D1 in the regulation of p27(KIP1) levels. The nuclear accumulation of both proteins correlated with MCL cell tumorigenicity in vivo, and sensitivity to lenalidomide activity in vitro and in vivo. Lenalidomide mechanism of action relied on cyclin D1 downregulation and disruption of cyclin D1/p27(KIP1) complexes, followed by cytosolic accumulation of p27(KIP1), cell proliferation arrest, apoptosis, and angiogenesis inhibition. CONCLUSIONS These results highlight a mechanism of action of lenalidomide in MCL cases with increased tumorigenicity in vivo, which is mediated by the dissociation of cyclin D1/p27(KIP1) complexes, and subsequent proliferation blockade and apoptosis induction.
Collapse
Affiliation(s)
- Alexandra Moros
- Authors' Affiliations: Hemato-oncology Department, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS); Hematopathology Unit, Hospital Clínic, Barcelona, Spain; and Normandie Univ, UNICAEN, MILPAT, Caen, France
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Wang D, Zhang H, Li M, Frid MG, Flockton AR, McKeon BA, Yeager ME, Fini MA, Morrell NW, Pullamsetti SS, Velegala S, Seeger W, McKinsey TA, Sucharov CC, Stenmark KR. MicroRNA-124 controls the proliferative, migratory, and inflammatory phenotype of pulmonary vascular fibroblasts. Circ Res 2013; 114:67-78. [PMID: 24122720 DOI: 10.1161/circresaha.114.301633] [Citation(s) in RCA: 159] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
RATIONALE Pulmonary hypertensive remodeling is characterized by excessive proliferation, migration, and proinflammatory activation of adventitial fibroblasts. In culture, fibroblasts maintain a similar activated phenotype. The mechanisms responsible for generation/maintenance of this phenotype remain unknown. OBJECTIVE We hypothesized that aberrant expression of microRNA-124 (miR-124) regulates this activated fibroblast phenotype and sought to determine the signaling pathways through which miR-124 exerts effects. METHODS AND RESULTS We detected significant decreases in miR-124 expression in fibroblasts isolated from calves and humans with severe pulmonary hypertension. Overexpression of miR-124 by mimic transfection significantly attenuated proliferation, migration, and monocyte chemotactic protein-1 expression of hypertensive fibroblasts, whereas anti-miR-124 treatment of control fibroblasts resulted in their increased proliferation, migration, and monocyte chemotactic protein-1 expression. Furthermore, the alternative splicing factor, polypyrimidine tract-binding protein 1, was shown to be a direct target of miR-124 and to be upregulated both in vivo and in vitro in bovine and human pulmonary hypertensive fibroblasts. The effects of miR-124 on fibroblast proliferation were mediated via direct binding to the 3' untranslated region of polypyrimidine tract-binding protein 1 and subsequent regulation of Notch1/phosphatase and tensin homolog/FOXO3/p21Cip1 and p27Kip1 signaling. We showed that miR-124 directly regulates monocyte chemotactic protein-1 expression in pulmonary hypertension/idiopathic pulmonary arterial hypertension fibroblasts. Furthermore, we demonstrated that miR-124 expression is suppressed by histone deacetylases and that treatment of hypertensive fibroblasts with histone deacetylase inhibitors increased miR-124 expression and decreased proliferation and monocyte chemotactic protein-1 production. CONCLUSIONS Stable decreases in miR-124 expression contribute to an epigenetically reprogrammed, highly proliferative, migratory, and inflammatory phenotype of hypertensive pulmonary adventitial fibroblasts. Thus, therapies directed at restoring miR-124 function, including histone deacetylase inhibitors, should be investigated.
Collapse
Affiliation(s)
- Daren Wang
- From the Department of Pediatrics (D.W., H.Z., M.L., M.G.F., A.R.F., B.A.K., M.E.Y., M.A.F.), Department of Medicine (T.A.M., C.C.S.), Department of Medicine and Pediatrics (K.R.S.), Department of Medicine (N.W.M.), Department of Lung Development and Remodeling (S.S.P., S.V., W.S.), Department of Medicine (H.Z.), University of Colorado Anschutz Medical Campus, Aurora, CO; University of Cambridge, Cambridge, United Kingdom (N.W.M.); Addenbrooke's & Papworth Hospitals, Cambridge, United Kingdom (N.W.M.); Max-Planck-Institute for Heart and Lung Research; University of Giessen and Marburg Lung Center, Bad Nauheim, Germany (S.S.P., S.V., W.S.); and Shengjing Hospital of China Medical University, Shenyang, China (H.Z.)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Montagner S, Orlandi EM, Merante S, Monticelli S. The role of miRNAs in mast cells and other innate immune cells. Immunol Rev 2013; 253:12-24. [PMID: 23550635 DOI: 10.1111/imr.12042] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
MicroRNAs (miRNAs) are a large class of small regulatory molecules able to control translation of target mRNAs and consequently to regulate various biological processes at a posttranscriptional level. Their importance is highlighted by the fact that altered miRNA expression is linked to a variety of human diseases, particularly cancer. Accordingly, miRNA biogenesis itself must be carefully regulated, both transcriptionally and posttranscriptionally. Here, we focus on the role of miRNAs in three lineages of myeloid cells important in both innate and acquired immunity: mast cells, macrophages, and dendritic cells. These three cell types are strategically located throughout the body tissues, where they can respond to foreign material, danger, and inflammatory signals. We discuss the role of miRNAs in these cell types, with a special focus on three of the most extensively studied miRNAs, namely miR-221, miR-146a, and miR-155. We also discuss the role of cell-to-cell transfer of miRNAs in dendritic cells, mast cells, and macrophages, and we speculate about possible future directions in the field.
Collapse
Affiliation(s)
- Sara Montagner
- Institute for Research in Biomedicine, Bellinzona, Switzerland
| | | | | | | |
Collapse
|
40
|
Ruiz-Ontañon P, Orgaz JL, Aldaz B, Elosegui-Artola A, Martino J, Berciano MT, Montero JA, Grande L, Nogueira L, Diaz-Moralli S, Esparís-Ogando A, Vazquez-Barquero A, Lafarga M, Pandiella A, Cascante M, Segura V, Martinez-Climent JA, Sanz-Moreno V, Fernandez-Luna JL. Cellular Plasticity Confers Migratory and Invasive Advantages to a Population of Glioblastoma-Initiating Cells that Infiltrate Peritumoral Tissue. Stem Cells 2013; 31:1075-85. [DOI: 10.1002/stem.1349] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Accepted: 01/19/2013] [Indexed: 01/28/2023]
|
41
|
Wei Z, Jiang X, Qiao H, Zhai B, Zhang L, Zhang Q, Wu Y, Jiang H, Sun X. STAT3 interacts with Skp2/p27/p21 pathway to regulate the motility and invasion of gastric cancer cells. Cell Signal 2013; 25:931-938. [PMID: 23333463 DOI: 10.1016/j.cellsig.2013.01.011] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Accepted: 01/10/2013] [Indexed: 12/20/2022]
Abstract
The interleukin-6 (IL-6)/Janus kinase 2 (JAK2)/signal transducer and activator of transcription 3 (STAT3) pathway mediates cell proliferation and migration. S-phase kinase-associated protein-2 (Skp2) catalyzes the ubiquitylation of p27 and p21. Here we investigated that the cross-talk of the two pathways regulates motility and invasion of gastric cancer SGC7901 and MGC803 cells. Both cell lines endogenously secret IL-6, and blockage of IL-6 or JAK2 inhibited the activation of JAK2 and STAT3. Depletion of STAT3 downregulated Skp2 expression, and thereby increased the expression of p27 and p21. The depletion of STAT3 inhibited the ability of cells to migrate and invade, and impaired the cellular cytoskeleton mainly microtubules; while the depletion of p27 partially restored the impaired ability to migrate, and reversed the impaired microfilaments, further inhibited the ability to invade, but had little effect on microtubules and cellular adhering ability of STAT3-depleted cells. STAT3 depletion inhibited the activity of RhoA and the interaction with stathmin, downregulated the expression of pFAK (phosphorylated focal adhesion kinase), acetylated-tubulin, RECK (reversion-inducing-cysteine-rich protein with kazal motifs) and Sp1, upregulated E-cadherin, and reduced the activities of MMP (matrix metalloproteinase)-2 and -9. The depletion of p27 increased RhoA (Ras homolog family member A) activity, upregulated RECK, and downregulated E-cadherin and Sp1 in STAT3-depleted cells. The results indicate that the interaction between STAT3 and Skp2/p27/p21 pathway plays an important role in mediating the motility, migration and invasion of gastric cancer cells, and inhibition of STAT3 may be a useful therapeutic approach for metastasis of gastric cancer, but caution needs to be taken for its effects on Skp2/p27/p21 pathway.
Collapse
Affiliation(s)
- Zheng Wei
- Key Laboratory of Hepatosplenic Surgery, Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Neill T, Jones HR, Crane-Smith Z, Owens RT, Schaefer L, Iozzo RV. Decorin induces rapid secretion of thrombospondin-1 in basal breast carcinoma cells via inhibition of Ras homolog gene family, member A/Rho-associated coiled-coil containing protein kinase 1. FEBS J 2013; 280:2353-68. [PMID: 23350987 DOI: 10.1111/febs.12148] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 01/07/2013] [Accepted: 01/14/2013] [Indexed: 01/28/2023]
Abstract
Pathological neovascularization relies on an imbalance between potent proangiogenic agents and equally effective antiangiogenic cues. Collectively, these factors contribute to an angiogenic niche within the tumor microenvironment. Oncogenic events and hypoxia contribute to augmented levels of angiokines, and thereby activate the so-called angiogenic switch to promote aggressive tumorigenic and metastatic growth. Soluble decorin functions as a paracrine pan-inhibitor of receptor tyrosine kinases, such as Met and epidermal growth factor receptor, and thus is capable of suppressing angiogenesis under normoxia. This leads to noncanonical repression of hypoxia-inducible factor 1-alpha and vascular endothelial growth factor A (VEGFA), and concurrent induction of thrombospondin-1. The substantial induction of endogenous tumor cell-derived thrombospondin-1, a potent antiangiogenic effector, led us to the discovery of an unexpected secretory phenotype occurring very rapidly (within 5 min) after decorin treatment of the triple-negative basal breast carcinoma cell line MDA-MB-231. Surprisingly, the effect was not mediated by Met receptor antagonism, as initially hypothesized, but required epidermal growth factor receptor signaling to achieve swift and robust thrombospondin-1 release. Furthermore, this effect was ultimately dependent on the prompt degradation of Ras homolog gene family member A, via the 26S proteasome, leading to direct inactivation of Rho-associated coiled-coil containing protein kinase 1. The latter led to derepression of thrombospondin-1 secretion. Collectively, these data provide a novel mechanistic role for Rho-associated coiled-coil containing protein kinase 1, in addition to providing the first conclusive evidence of decorin exclusively targeting a receptor tyrosine kinase to achieve a specific effect. The overall effects of soluble decorin on the tumor microenvironment would cause an immediately-early as well as a sustained antiangiogenic response in vivo.
Collapse
Affiliation(s)
- Thomas Neill
- Department of Pathology, Anatomy, and Cell Biology, and the Cancer Cell Biology and Signaling Program, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | | | | | | | | | |
Collapse
|
43
|
RNAi-mediated stathmin suppression reduces lung metastasis in an orthotopic neuroblastoma mouse model. Oncogene 2013; 33:882-90. [PMID: 23396365 DOI: 10.1038/onc.2013.11] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Revised: 11/25/2012] [Accepted: 12/03/2012] [Indexed: 12/13/2022]
Abstract
Metastatic neuroblastoma is an aggressive childhood cancer of neural crest origin. Stathmin, a microtubule destabilizing protein, is highly expressed in neuroblastoma although its functional role in this malignancy has not been addressed. Herein, we investigate stathmin's contribution to neuroblastoma tumor growth and metastasis. Small interfering RNA (siRNA)-mediated stathmin suppression in two independent neuroblastoma cell lines, BE(2)-C and SH-SY5Y, did not markedly influence cell proliferation, viability or anchorage-independent growth. In contrast, stathmin suppression significantly reduced cell migration and invasion in both the neuroblastoma cell lines. Stathmin suppression altered neuroblastoma cell morphology and this was associated with changes in the cytoskeleton, including increased tubulin polymer levels. Stathmin suppression also modulated phosphorylation of the actin-regulatory proteins, cofilin and myosin light chain (MLC). Treatment of stathmin-suppressed neuroblastoma cells with the ROCKI and ROCKII inhibitor, Y-27632, ablated MLC phosphorylation and returned the level of cofilin phosphorylation and cell invasion back to that of untreated control cells. ROCKII inhibition (H-1152) and siRNA suppression also reduced cofilin phosphorylation in stathmin-suppressed cells, indicating that ROCKII mediates stathmin's regulation of cofilin phosphorylation. This data demonstrates a link between stathmin and the regulation of cofilin and MLC phosphorylation via ROCK. To examine stathmin's role in neuroblastoma metastasis, stathmin short hairpin RNA (shRNA)\luciferase-expressing neuroblastoma cells were injected orthotopically into severe combined immunodeficiency-Beige mice, and tumor growth monitored by bioluminescent imaging. Stathmin suppression did not influence neuroblastoma cell engraftment or tumor growth. In contrast, stathmin suppression significantly reduced neuroblastoma lung metastases by 71% (P<0.008) compared with control. This is the first study to confirm a role for stathmin in hematogenous spread using a clinically relevant orthotopic cancer model, and has identified stathmin as an important contributor of cell invasion and metastasis in neuroblastoma.
Collapse
|
44
|
Schofield AV, Steel R, Bernard O. Rho-associated coiled-coil kinase (ROCK) protein controls microtubule dynamics in a novel signaling pathway that regulates cell migration. J Biol Chem 2012; 287:43620-9. [PMID: 23093407 DOI: 10.1074/jbc.m112.394965] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The two members of the Rho-associated coiled-coil kinase (ROCK1 and 2) family are established regulators of actin dynamics that are involved in the regulation of the cell cycle as well as cell motility and invasion. Here, we discovered a novel signaling pathway whereby ROCK regulates microtubule (MT) acetylation via phosphorylation of the tubulin polymerization promoting protein 1 (TPPP1/p25). We show that ROCK phosphorylation of TPPP1 inhibits the interaction between TPPP1 and histone deacetylase 6 (HDAC6), which in turn results in increased HDAC6 activity followed by a decrease in MT acetylation. As a consequence, we show that TPPP1 phosphorylation by ROCK increases cell migration and invasion via modulation of cellular acetyl MT levels. We establish here that the ROCK-TPPP1-HDAC6 signaling pathway is important for the regulation of cell migration and invasion.
Collapse
Affiliation(s)
- Alice V Schofield
- St. Vincent's Institute of Medical Research Cytoskeleton and Cancer Unit, University of Melbourne, 3065 Victoria, Australia
| | | | | |
Collapse
|
45
|
Tury A, Mairet-Coello G, DiCicco-Bloom E. The multiple roles of the cyclin-dependent kinase inhibitory protein p57(KIP2) in cerebral cortical neurogenesis. Dev Neurobiol 2012; 72:821-42. [PMID: 22076965 DOI: 10.1002/dneu.20999] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The members of the CIP/KIP family of cyclin-dependent kinase (CDK) inhibitory proteins (CKIs), including p57(KIP2), p27(KIP1), and p21(CIP1), block the progression of the cell cycle by binding and inhibiting cyclin/CDK complexes of the G1 phase. In addition to this well-characterized function, p57(KIP2) and p27(KIP1) have been shown to participate in an increasing number of other important cellular processes including cell fate and differentiation, cell motility and migration, and cell death/survival, both in peripheral and central nervous systems. Increasing evidence over the past few years has characterized the functions of the newest CIP/KIP member p57(KIP2) in orchestrating cell proliferation, differentiation, and migration during neurogenesis. Here, we focus our discussion on the multiple roles played by p57(KIP2) during cortical development, making comparisons to p27(KIP1) as well as the INK4 family of CKIs.
Collapse
Affiliation(s)
- Anna Tury
- Department of Neuroscience and Cell Biology, UMDNJ-Robert Wood Johnson Medical School, Piscataway, New Jersey, USA
| | | | | |
Collapse
|
46
|
D'Andrea S, Berton S, Segatto I, Fabris L, Canzonieri V, Colombatti A, Vecchione A, Belletti B, Baldassarre G. Stathmin is dispensable for tumor onset in mice. PLoS One 2012; 7:e45561. [PMID: 23029098 PMCID: PMC3447788 DOI: 10.1371/journal.pone.0045561] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Accepted: 08/20/2012] [Indexed: 11/18/2022] Open
Abstract
The microtubule-destabilizing protein stathmin is highly expressed in several types of tumor, thus deserving the name of oncoprotein 18. High levels of stathmin expression and/or activity favor the metastatic spreading and mark the most aggressive tumors, thus representing a realistic marker of poor prognosis. Stathmin is a downstream target of many signaling pathways, including Ras-MAPK, PI3K and p53, involved in both tumor onset and progression. We thus hypothesized that stathmin could also play a role during the early stages of tumorigenesis, an issue completely unexplored. In order to establish whether stathmin expression is necessary for tumor initiation, we challenged wild type (WT), stathmin heterozygous and stathmin knock-out (KO) mice with different carcinogens. Using well-defined mouse models of carcinogenesis of skin, bladder and muscle by the means of 7,12-dimethylbenz[α]antracene (DMBA)/12-O-tetradecanoylphorbol-13-acetate (TPA), N-butyl-N-(4-hydroxybutyl) nitrosamine (BBN) and 3-methylcholanthrylene (3MC) treatments, respectively, we demonstrated that knock-out of stathmin has no impact on the onset of cancer in mice. No significant difference was noticed either when the Ras oncogene was mutated (skin carcinogenesis model) or when the p53 pathway was inactivated (bladder carcinomas and fibrosarcomas). Finally, we concomitantly impinged on p53 and Ras pathways, by generating WT and stathmin KO mouse embryo fibroblasts transformed with papilloma virus large T antigen (LgTAg) plus the K-RasG12V oncogene. In vivo growth of xenografts from these transformed fibroblasts did not highlight any significant difference depending on the presence or absence of stathmin. Overall, our work demonstrates that stathmin expression is dispensable for tumor onset, at least in mice, thus making stathmin a virtually exclusive marker of aggressive disease and a promising therapeutic target for advanced cancers.
Collapse
Affiliation(s)
- Sara D'Andrea
- Division of Experimental Oncology 2, CRO, National Cancer Institute, Aviano, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Carney BK, Caruso Silva V, Cassimeris L. The microtubule cytoskeleton is required for a G2 cell cycle delay in cancer cells lacking stathmin and p53. Cytoskeleton (Hoboken) 2012; 69:278-89. [PMID: 22407961 DOI: 10.1002/cm.21024] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Revised: 02/24/2012] [Accepted: 02/29/2012] [Indexed: 12/25/2022]
Abstract
In several cancer cell lines, depleting the microtubule (MT)-destabilizing protein stathmin/oncoprotein18 leads to a G2 cell cycle delay and apoptosis. These phenotypes are observed only in synergy with low levels of p53, but the pathway(s) activated by stathmin depletion to delay the cell cycle are unknown. We found that stathmin depletion caused greater MT stability in synergy with loss of p53, measured by the levels of acetylated α-tubulin and the rate of centrosomal MT nucleation. Nocodazole or vinblastine-induced MT depolymerization abrogated the stathmin-depletion induced G2 delay, measured by the percentage of cells staining positive for several markers (TPX2, CDK1 with inhibitory phosphorylation), indicating that MTs are required to lengthen G2. Live cell imaging showed that stathmin depletion increased time in G2 without an impact on the duration of mitosis, indicating that the longer interphase duration is not simply a consequence of a previous slowed mitosis. In contrast, stabilization of MTs with paclitaxel (8 nM) slowed mitosis without lengthening the duration of interphase, demonstrating that increased MT stability alone is not sufficient to delay cells in G2.
Collapse
Affiliation(s)
- Bruce K Carney
- Department of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania 18015, USA
| | | | | |
Collapse
|
48
|
Yin Yang 1 plays an essential role in breast cancer and negatively regulates p27. THE AMERICAN JOURNAL OF PATHOLOGY 2012; 180:2120-33. [PMID: 22440256 DOI: 10.1016/j.ajpath.2012.01.037] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Revised: 01/10/2012] [Accepted: 01/24/2012] [Indexed: 02/06/2023]
Abstract
Yin Yang 1 (YY1) is highly expressed in various types of cancers and regulates tumorigenesis through multiple pathways. In the present study, we evaluated YY1 expression levels in breast cancer cell lines, a breast cancer TMA, and two gene arrays. We observed that, compared with normal samples, YY1 is generally overexpressed in breast cancer cells and tissues. In functional studies, depletion of YY1 inhibited the clonogenicity, migration, invasion, and tumor formation of breast cancer cells, but did not affect the clonogenicity of nontumorigenic cells. Conversely, ectopically expressed YY1 enhanced the migration and invasion of nontumorigenic MCF-10A breast cells. In both a monolayer culture condition and a three-dimensional Matrigel system, silenced YY1 expression changed the architecture of breast cancer MCF-7 cells to that resembling MCF-10A cells, whereas ectopically expressed YY1 in MCF-10A cells had the opposite effect. Furthermore, we detected an inverse correlation between YY1 and p27 expression in both breast cancer cells and xenograft tumors with manipulated YY1 expression. Counteracting the changes in p27 expression attenuated the effects of YY1 alterations on these cells. In addition, YY1 promoted p27 ubiquitination and physically interacted with p27. In conclusion, our data suggest that YY1 is an oncogene and identify p27 as a new target of YY1.
Collapse
|
49
|
Liu C, Bakeri H, Li T, Swaroop A. Regulation of retinal progenitor expansion by Frizzled receptors: implications for microphthalmia and retinal coloboma. Hum Mol Genet 2012; 21:1848-60. [PMID: 22228100 DOI: 10.1093/hmg/ddr616] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Nineteen Wnt ligands and 10 Frizzled (Fz) receptors mediate multiple distinct cellular events during neuronal development. However, their precise roles in cell-type specification and organogenesis are poorly delineated because of overlapping functions and expression profiles. Here, we have explored the role of two closely related Frizzled receptors, Fz5 and Fz8, in mouse retinal development. We previously showed that Fz5(-/-) mice exhibit mild coloboma and microphthalmia at ~50% penetrance. Fz8 expression overlaps with Fz5 in the neural retina and optic fissure/disc. Mice lacking Fz8 show minimal eye and retinal defects. The embryos lacking both Fz5 and Fz8 die early in development, but a majority of triallelic Fz5(-/-);Fz8(+/-) mutants survive until birth. The triallelic mutant develops severe retinal coloboma and microphthalmia with full penetrance. At the cellular level, impaired neurogenesis is indicated by increased early-born retinal neurons that result from accelerated cell cycle exit of progenitors. Deficiency of apical retinal neuroepithelium is indicated by altered localization of apical junction markers, such as atypical protein kinase C, RhoA and β-catenin. Hes1 expression, which is critical for retinal progenitor expansion, is down-regulated in the triallelic mutant mouse. Furthermore, blocking Frizzled receptors in cultured retinal explants led to basally shifted divisions of retinal progenitors. Together, our studies suggest a dose-dependent regulation of signaling by Fz5 and Fz8 in optic fissure/disc formation and progenitor expansion.
Collapse
Affiliation(s)
- Chunqiao Liu
- Neurobiology Neurodegeneration and Repair Laboratory, National Eye Institute, Bethesda, MD 20892, USA.
| | | | | | | |
Collapse
|
50
|
Mayoral RJ, Deho L, Rusca N, Bartonicek N, Saini HK, Enright AJ, Monticelli S. MiR-221 influences effector functions and actin cytoskeleton in mast cells. PLoS One 2011; 6:e26133. [PMID: 22022537 PMCID: PMC3192147 DOI: 10.1371/journal.pone.0026133] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2011] [Accepted: 09/20/2011] [Indexed: 02/01/2023] Open
Abstract
Mast cells have essential effector and immunoregulatory functions in IgE-associated allergic disorders and certain innate and adaptive immune responses, but the role of miRNAs in regulating mast cell functions is almost completely unexplored. To examine the role of the activation-induced miRNA miR-221 in mouse mast cells, we developed robust lentiviral systems for miRNA overexpression and depletion. While miR-221 favored mast cell adhesion and migration towards SCF or antigen in trans-well migration assays, as well as cytokine production and degranulation in response to IgE-antigen complexes, neither miR-221 overexpression, nor its ablation, interfered with mast cell differentiation. Transcriptional profiling of miR-221-overexpressing mast cells revealed modulation of many transcripts, including several associated with the cytoskeleton; indeed, miR-221 overexpression was associated with reproducible increases in cortical actin in mast cells, and with altered cellular shape and cell cycle in murine fibroblasts. Our bioinformatics analysis showed that this effect was likely mediated by the composite effect of miR-221 on many primary and secondary targets in resting cells. Indeed, miR-221-induced cellular alterations could not be recapitulated by knockdown of one of the major targets of miR-221. We propose a model in which miR-221 has two different roles in mast cells: in resting cells, basal levels of miR-221 contribute to the regulation of the cell cycle and cytoskeleton, a general mechanism probably common to other miR-221-expressing cell types, such as fibroblasts. Vice versa, upon induction in response to mast cell stimulation, miR-221 effects are mast cell-specific and activation-dependent, contributing to the regulation of degranulation, cytokine production and cell adherence. Our studies provide new insights into the roles of miR-221 in mast cell biology, and identify novel mechanisms that may contribute to mast cell-related pathological conditions, such as asthma, allergy and mastocytosis.
Collapse
Affiliation(s)
| | - Lorenzo Deho
- Institute for Research in Biomedicine, Bellinzona, Switzerland
| | - Nicole Rusca
- Institute for Research in Biomedicine, Bellinzona, Switzerland
| | - Nenad Bartonicek
- EMBL - European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Harpreet Kaur Saini
- EMBL - European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Anton J. Enright
- EMBL - European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Silvia Monticelli
- Institute for Research in Biomedicine, Bellinzona, Switzerland
- * E-mail:
| |
Collapse
|