1
|
De Vincenti AP, Bonafina A, Ledda F, Paratcha G. Lrig1 regulates cell fate specification of glutamatergic neurons via FGF-driven Jak2/Stat3 signaling in cortical progenitors. Development 2024; 151:dev202879. [PMID: 39250533 DOI: 10.1242/dev.202879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 08/07/2024] [Indexed: 09/11/2024]
Abstract
The cell-intrinsic mechanisms underlying the decision of a stem/progenitor cell to either proliferate or differentiate remain incompletely understood. Here, we identify the transmembrane protein Lrig1 as a physiological homeostatic regulator of FGF2-driven proliferation and self-renewal of neural progenitors at early-to-mid embryonic stages of cortical development. We show that Lrig1 is expressed in cortical progenitors (CPs), and its ablation caused expansion and increased proliferation of radial/apical progenitors and of neurogenic transit-amplifying Tbr2+ intermediate progenitors. Notably, our findings identify a previously unreported EGF-independent mechanism through which Lrig1 negatively regulates neural progenitor proliferation by modulating the FGF2-induced IL6/Jak2/Stat3 pathway, a molecular cascade that plays a pivotal role in the generation and maintenance of CPs. Consistently, Lrig1 knockout mice showed a significant increase in the density of pyramidal glutamatergic neurons placed in superficial layers 2 and 3 of the postnatal neocortex. Together, these results support a model in which Lrig1 regulates cortical neurogenesis by influencing the cycling activity of a set of progenitors that are temporally specified to produce upper layer glutamatergic neurons.
Collapse
Affiliation(s)
- Ana Paula De Vincenti
- Laboratorio de Neurociencia Molecular y Celular, Instituto de Biología Celular y Neurociencias (IBCN)-CONICET-UBA, Facultad de Medicina. Universidad de Buenos Aires (UBA), Buenos Aires CP1121, Argentina
| | - Antonela Bonafina
- Laboratorio de Neurociencia Molecular y Celular, Instituto de Biología Celular y Neurociencias (IBCN)-CONICET-UBA, Facultad de Medicina. Universidad de Buenos Aires (UBA), Buenos Aires CP1121, Argentina
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires, Buenos Aires C1405 BWE, Argentina
| | - Fernanda Ledda
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires, Buenos Aires C1405 BWE, Argentina
| | - Gustavo Paratcha
- Laboratorio de Neurociencia Molecular y Celular, Instituto de Biología Celular y Neurociencias (IBCN)-CONICET-UBA, Facultad de Medicina. Universidad de Buenos Aires (UBA), Buenos Aires CP1121, Argentina
| |
Collapse
|
2
|
Morgan HJ, Olivero C, Shorning BY, Gibbs A, Phillips AL, Ananthan L, Lim AXH, Martuscelli L, Borgogna C, De Andrea M, Hufbauer M, Goodwin R, Akgül B, Gariglio M, Patel GK. HPV8-induced STAT3 activation led keratinocyte stem cell expansion in human actinic keratoses. JCI Insight 2024; 9:e177898. [PMID: 38916963 PMCID: PMC11383611 DOI: 10.1172/jci.insight.177898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 06/20/2024] [Indexed: 06/27/2024] Open
Abstract
Despite epidermal turnover, the skin is host to a complex array of microbes, including viruses, such as HPV, which must infect and manipulate skin keratinocyte stem cells (KSCs) to survive. This crosstalk between the virome and KSC populations remains largely unknown. Here, we investigated the effect of HPV8 on KSCs using various mouse models. We observed that the HPV8 early region gene E6 specifically caused Lrig1+ hair follicle junctional zone KSC proliferation and expansion, which would facilitate viral transmission. Within Lrig1+ KSCs specifically, HPV8 E6 bound intracellular p300 to phosphorylate the STAT3 transcriptional regulatory node. This induced ΔNp63 expression, resulting in KSC expansion into the overlying epidermis. HPV8 was associated with 70% of human actinic keratoses. Together, these results define the "hit-and-run" mechanism for HPV8 in human actinic keratosis as an expansion of KSCs, which lack melanosome protection and are thus susceptible to sun light-induced malignant transformation.
Collapse
Affiliation(s)
- Huw J Morgan
- European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Carlotta Olivero
- European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Boris Y Shorning
- European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Alex Gibbs
- European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Alexandra L Phillips
- European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Lokapriya Ananthan
- European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Annabelle Xiao Hui Lim
- European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Licia Martuscelli
- Department of Translational Medicine, University of Eastern Piedmont, Novara, Italy
| | - Cinzia Borgogna
- Department of Translational Medicine, University of Eastern Piedmont, Novara, Italy
| | - Marco De Andrea
- Viral Pathogenesis Unit, Department of Public Health and Pediatric Sciences, University of Turin Medical School, Turin, Italy
- Intrinsic Immunity Unit, Translational Research Centre for Autoimmune and Allergic Diseases, University of Eastern Piedmont, Novara, Italy
| | - Martin Hufbauer
- Institute of Virology, University of Cologne, Medical Faculty and University Hospital Cologne, Cologne, Germany
| | - Richard Goodwin
- Department of Dermatology, Aneurin Bevan University Health Board, Royal Gwent Hospital, Newport, United Kingdom
| | - Baki Akgül
- Institute of Virology, University of Cologne, Medical Faculty and University Hospital Cologne, Cologne, Germany
| | - Marisa Gariglio
- Department of Translational Medicine, University of Eastern Piedmont, Novara, Italy
| | - Girish K Patel
- European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
3
|
Ta HM, Roy D, Zhang K, Alban T, Juric I, Dong J, Parthasarathy PB, Patnaik S, Delaney E, Gilmour C, Zakeri A, Shukla N, Rupani A, Phoon YP, Liu C, Avril S, Gastman B, Chan T, Wang LL. LRIG1 engages ligand VISTA and impairs tumor-specific CD8 + T cell responses. Sci Immunol 2024; 9:eadi7418. [PMID: 38758807 PMCID: PMC11334715 DOI: 10.1126/sciimmunol.adi7418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 04/25/2024] [Indexed: 05/19/2024]
Abstract
Immune checkpoint blockade is a promising approach to activate antitumor immunity and improve the survival of patients with cancer. V-domain immunoglobulin suppressor of T cell activation (VISTA) is an immune checkpoint target; however, the downstream signaling mechanisms are elusive. Here, we identify leucine-rich repeats and immunoglobulin-like domains 1 (LRIG1) as a VISTA binding partner, which acts as an inhibitory receptor by engaging VISTA and suppressing T cell receptor signaling pathways. Mice with T cell-specific LRIG1 deletion developed superior antitumor responses because of expansion of tumor-specific cytotoxic T lymphocytes (CTLs) with increased effector function and survival. Sustained tumor control was associated with a reduction of quiescent CTLs (TCF1+ CD62Lhi PD-1low) and a reciprocal increase in progenitor and memory-like CTLs (TCF1+ PD-1+). In patients with melanoma, elevated LRIG1 expression on tumor-infiltrating CD8+ CTLs correlated with resistance to immunotherapies. These results delineate the role of LRIG1 as an inhibitory immune checkpoint receptor and propose a rationale for targeting the VISTA/LRIG1 axis for cancer immunotherapy.
Collapse
Affiliation(s)
- Hieu Minh Ta
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Dia Roy
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Keman Zhang
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Tyler Alban
- Center for Immunotherapy and Precision Immuno-Oncology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Ivan Juric
- Center for Immunotherapy and Precision Immuno-Oncology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Juan Dong
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Prerana B. Parthasarathy
- Center for Immunotherapy and Precision Immuno-Oncology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Sachin Patnaik
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Elizabeth Delaney
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Cassandra Gilmour
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Amin Zakeri
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Nidhi Shukla
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Amit Rupani
- Center for Immunotherapy and Precision Immuno-Oncology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Yee Peng Phoon
- Center for Immunotherapy and Precision Immuno-Oncology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Caini Liu
- Department of Inflammation and Immunology, Cleveland Clinic Lerner College of Medicine, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Stefanie Avril
- Department of Pathology, University Hospitals Cleveland Medical Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Case Comprehensive Cancer Center, Cleveland, OH, USA
| | - Brian Gastman
- Center for Immunotherapy and Precision Immuno-Oncology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Timothy Chan
- Center for Immunotherapy and Precision Immuno-Oncology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
- Case Comprehensive Cancer Center, Cleveland, OH, USA
| | - Li Lily Wang
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, USA
- Case Comprehensive Cancer Center, Cleveland, OH, USA
| |
Collapse
|
4
|
HYPOTHESIS: Do LRIG Proteins Regulate Stem Cell Quiescence by Promoting BMP Signaling? Stem Cell Rev Rep 2023; 19:59-66. [PMID: 35969315 PMCID: PMC9823064 DOI: 10.1007/s12015-022-10442-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/05/2022] [Indexed: 01/29/2023]
Abstract
Leucine-rich repeats and immunoglobulin-like domains (LRIG) proteins are evolutionarily conserved integral membrane proteins. Mammalian LRIG1 regulates stem cell quiescence in various tissue compartments, including compartments in the epidermis, oral mucosa, intestines, neural system, and incisors. The planarian LRIG1 homolog regulates the quiescence of multipotent neoblasts. The mechanism through which LRIG proteins regulate stem cell quiescence has not been well documented, although it is generally assumed that LRIG1 regulates the epidermal growth factor receptor (EGFR) or other receptor tyrosine kinases. However, Lrig-null (Lrig1-/-;Lrig2-/-; and Lrig3-/-) mouse embryonic fibroblasts (MEFs) have been recently found to exhibit apparently normal receptor tyrosine kinase functions. Moreover, bone morphogenetic protein (BMP) signaling has been shown to depend on LRIG1 and LRIG3 expression. BMPs are well-known regulators of stem cell quiescence. Here, we hypothesize that LRIG1 might regulate stem cell quiescence by promoting BMP signaling. HYPOTHESIS: Based on recent findings, it is hypothesized that LRIG1 regulates stem cell quiescence in mammalian tissues as well as in planarian neoblasts by promoting BMP signaling.
Collapse
|
5
|
Abstract
The epidermal growth factor (EGF) system has allowed chemists, biologists, and clinicians to improve our understanding of cell production and cancer therapy. The discovery of EGF led to the recognition of cell surface receptors capable of controlling the proliferation and survival of cells. The detailed structures of the EGF-like ligand and the responses of their receptors (EGFR-family) has revealed the conformational and aggregation changes whereby ligands activate the intracellular kinase domains. Biophysical analysis has revealed the preformed clustering of different EGFR-family members and the processes which occur on ligand binding. Understanding these receptor activation processes and the consequential cytoplasmic signaling has allowed the development of inhibitors which are revolutionizing cancer therapy. This Review describes the recent progress in our understanding of the activation of the EGFR-family, the effects of signaling from the EGFR-family on cell proliferation, and the targeting of the EGFR-family in cancer treatment.
Collapse
Affiliation(s)
- Antony W Burgess
- Honorary Laboratory Head, Personalized Oncology Division, WEHI, Parkville3050, Australia.,Professor Emeritus, Departments of Medical Biology and Surgery (Royal Melbourne Hospital), University of Melbourne, Melbourne3052, Australia.,The Brain Cancer Centre at WEHI, Parkville3052, Australia
| |
Collapse
|
6
|
Burgess AW. Regulation of Signaling from the Epidermal Growth Factor Family. THE JOURNAL OF PHYSICAL CHEMISTRY C 2022. [DOI: 10.1021/acs.jpcc.2c04156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Affiliation(s)
- Antony W. Burgess
- Honorary Laboratory Head, Personalized Oncology Division, WEHI, Parkville 3050, Australia
- Professor Emeritus, Departments of Medical Biology and Surgery (Royal Melbourne Hospital), University of Melbourne, Melbourne 3052, Australia
- The Brain Cancer Centre at WEHI, Parkville 3052, Australia
| |
Collapse
|
7
|
Umeh-Garcia M, O'Geen H, Simion C, Gephart MH, Segal DJ, Sweeney CA. Aberrant promoter methylation contributes to LRIG1 silencing in basal/triple-negative breast cancer. Br J Cancer 2022; 127:436-448. [PMID: 35440669 PMCID: PMC9346006 DOI: 10.1038/s41416-022-01812-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 03/16/2022] [Accepted: 03/29/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND LRIG1, the founding member of the LRIG (leucine-rich repeat and immunoglobulin-like domain) family of transmembrane proteins, is a negative regulator of receptor tyrosine kinases and a tumour suppressor. Decreased LRIG1 expression is consistently observed in cancer, across diverse tumour types, and is linked to poor patient prognosis. However, mechanisms by which LRIG1 is repressed are not fully understood. Silencing of LRIG1 through promoter CpG island methylation has been reported in colorectal and cervical cancer but studies in breast cancer remain limited. METHODS In silico analysis of human breast cancer patient data were used to demonstrate a correlation between DNA methylation and LRIG1 silencing in basal/triple-negative breast cancer, and its impact on patient survival. LRIG1 gene expression, protein abundance, and methylation enrichment were examined by quantitative reverse-transcription PCR, immunoblotting, and methylation immunoprecipitation, respectively, in breast cancer cell lines in vitro. We examined the impact of global demethylation on LRIG1 expression and methylation enrichment using 5-aza-2'-deoxycytidine. We also examined the effects of targeted demethylation of the LRIG1 CpG island, and transcriptional activation of LRIG1 expression, using the RNA guided deadCas9 transactivation system. RESULTS Across breast cancer subtypes, LRIG1 expression is lowest in the basal/triple-negative subtype so we investigated whether differential methylation may contribute to this. Indeed, we find that LRIG1 CpG island methylation is most prominent in basal/triple-negative cell lines and patient samples. Use of the global demethylating agent 5-aza-2'-deoxycytidine decreases methylation leading to increased LRIG1 transcript expression in basal/triple-negative cell lines, while having no effect on LRIG1 expression in luminal/ER-positive cell lines. Using a CRISPR/deadCas9 (dCas9)-based targeting approach, we demonstrate that TET1-mediated demethylation (Tet1-dCas9) along with VP64-mediated transcriptional activation (VP64-dCas9) at the CpG island, increased endogenous LRIG1 expression in basal/triple-negative breast cancer cells, without transcriptional upregulation at predicted off-target sites. Activation of LRIG1 by the dCas9 transactivation system significantly increased LRIG1 protein abundance, reduced site-specific methylation, and reduced cancer cell viability. Our findings suggest that CRISPR-mediated targeted activation may be a feasible way to restore LRIG1 expression in cancer. CONCLUSIONS Our study contributes novel insight into mechanisms which repress LRIG1 in triple-negative breast cancer and demonstrates for the first time that targeted de-repression of LRIG1 in cancer cells is possible. Understanding the epigenetic mechanisms associated with repression of tumour suppressor genes holds potential for the advancement of therapeutic approaches.
Collapse
Affiliation(s)
- Maxine Umeh-Garcia
- Department of Biochemistry and Molecular Medicine, University of California, Davis, CA, USA.
- Department Neurosurgery, Stanford University, Stanford, CA, USA.
| | | | - Catalina Simion
- Department of Biochemistry and Molecular Medicine, University of California, Davis, CA, USA
| | | | - David J Segal
- Department of Biochemistry and Molecular Medicine, University of California, Davis, CA, USA
- Genome Center, University of California, Davis, CA, USA
| | - Colleen A Sweeney
- Department of Biochemistry and Molecular Medicine, University of California, Davis, CA, USA.
| |
Collapse
|
8
|
Liu Y, Zhang L, Mei R, Ai M, Pang R, Xia D, Chen L, Zhong L. The Role of SliTrk5 in Central Nervous System. BIOMED RESEARCH INTERNATIONAL 2022; 2022:4678026. [PMID: 35872846 PMCID: PMC9303146 DOI: 10.1155/2022/4678026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 06/06/2022] [Accepted: 06/23/2022] [Indexed: 11/18/2022]
Abstract
SLIT and NTRK-like protein-5 (SliTrk5) is one of the six members of SliTrk protein family, which is widely expressed in the central nervous system (CNS), regulating and participating in many essential steps of central nervous system development, including axon and dendritic growth, neuron differentiation, and synaptogenesis. SliTrk5, as a neuron transmembrane protein, contains two important conservative domains consisting of leucine repeats (LRRs) located at the amino terminal in the extracellular region and tyrosine residues (Tyr) located at the carboxyl terminal in the intracellular domains. These special structures make SliTrk5 play an important role in the pathological process of the CNS. A large number of studies have shown that SliTrk5 may be involved in the pathogenesis of CNS diseases, such as obsessive-compulsive-disorder (OCD), attention deficit/hyperactivity disorder (ADHD), glioma, autism spectrum disorders (ASDs), and Parkinson's disease (PD). Targeting SliTrk5 is expected to become a new target for the treatment of CNS diseases, promoting the functional recovery of CNS. The purpose of this article is to review the current research progression of the role of SliTrk5 in CNS and its potential mechanisms in CNS diseases.
Collapse
Affiliation(s)
- Yan Liu
- Department of Neurology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China
| | - Linming Zhang
- Department of Neurology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China
- Yunnan Provincial Clinical Research Center for Neurological Disease, Kunming, Yunnan 650032, China
| | - Rong Mei
- Department of Neurology, The First People's Hospital of Yunnan Province, Kunming, Yunnan 650034, China
| | - Mingda Ai
- Department of Neurology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China
| | - Ruijing Pang
- Department of Neurology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China
| | - Di Xia
- Department of Neurology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China
| | - Ling Chen
- Department of Neurology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China
- Yunnan Provincial Clinical Research Center for Neurological Disease, Kunming, Yunnan 650032, China
| | - Lianmei Zhong
- Department of Neurology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China
- Department of Neurology, The First People's Hospital of Yunnan Province, Kunming, Yunnan 650034, China
| |
Collapse
|
9
|
De Vincenti AP, Alsina FC, Ferrero Restelli F, Hedman H, Ledda F, Paratcha G. Lrig1 and Lrig3 cooperate to control Ret receptor signaling, sensory axonal growth and epidermal innervation. Development 2021; 148:271159. [PMID: 34338291 DOI: 10.1242/dev.197020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 07/05/2021] [Indexed: 11/20/2022]
Abstract
Negative feedback loops represent a regulatory mechanism that guarantees that signaling thresholds are compatible with a physiological response. Previously, we established that Lrig1 acts through this mechanism to inhibit Ret activity. However, it is unclear whether other Lrig family members play similar roles. Here, we show that Lrig1 and Lrig3 are co-expressed in Ret-positive mouse dorsal root ganglion (DRG) neurons. Lrig3, like Lrig1, interacts with Ret and inhibits GDNF/Ret signaling. Treatment of DRG neurons with GDNF ligands induces a significant increase in the expression of Lrig1 and Lrig3. Our findings show that, whereas a single deletion of either Lrig1 or Lrig3 fails to promote Ret-mediated axonal growth, haploinsufficiency of Lrig1 in Lrig3 mutants significantly potentiates Ret signaling and axonal growth of DRG neurons in response to GDNF ligands. We observe that Lrig1 and Lrig3 act redundantly to ensure proper cutaneous innervation of nonpeptidergic axons and behavioral sensitivity to cold, which correlates with a significant increase in the expression of the cold-responsive channel TrpA1. Together, our findings provide insights into the in vivo functions through which Lrig genes control morphology, connectivity and function in sensory neurons.
Collapse
Affiliation(s)
- Ana Paula De Vincenti
- Laboratorio de Neurociencia Molecular y Celular, Instituto de Biología Celular y Neurociencias (IBCN)-CONICET-UBA, Facultad de Medicina, Universidad de Buenos Aires (UBA), Buenos Aires, CP1121, Argentina
| | - Fernando C Alsina
- Laboratorio de Neurociencia Molecular y Celular, Instituto de Biología Celular y Neurociencias (IBCN)-CONICET-UBA, Facultad de Medicina, Universidad de Buenos Aires (UBA), Buenos Aires, CP1121, Argentina
| | - Facundo Ferrero Restelli
- Laboratorio de Neurociencia Molecular y Celular, Instituto de Biología Celular y Neurociencias (IBCN)-CONICET-UBA, Facultad de Medicina, Universidad de Buenos Aires (UBA), Buenos Aires, CP1121, Argentina
| | - Håkan Hedman
- Oncology Research Laboratory, Department of Radiation Sciences, Umeå University, Umeå, 901 87, Sweden
| | - Fernanda Ledda
- Laboratorio de Neurociencia Molecular y Celular, Instituto de Biología Celular y Neurociencias (IBCN)-CONICET-UBA, Facultad de Medicina, Universidad de Buenos Aires (UBA), Buenos Aires, CP1121, Argentina.,Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires, Buenos Aires, C1405, Argentina
| | - Gustavo Paratcha
- Laboratorio de Neurociencia Molecular y Celular, Instituto de Biología Celular y Neurociencias (IBCN)-CONICET-UBA, Facultad de Medicina, Universidad de Buenos Aires (UBA), Buenos Aires, CP1121, Argentina
| |
Collapse
|
10
|
Hita FJ, Bekinschtein P, Ledda F, Paratcha G. Leucine-rich repeats and immunoglobulin-like domains 1 deficiency affects hippocampal dendrite complexity and impairs cognitive function. Dev Neurobiol 2021; 81:774-785. [PMID: 34114331 DOI: 10.1002/dneu.22840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 06/07/2021] [Accepted: 06/08/2021] [Indexed: 11/06/2022]
Abstract
Leucine-rich repeat (LRR) transmembrane proteins have been directly linked to neurodevelopmental and cognitive disorders. We have previously shown that the LRR transmembrane protein, leucine-rich repeats and immunoglobulin-like domains 1 (Lrig1), is a physiological regulator of dendrite complexity of hippocampal pyramidal neurons and social behavior. In this study, we performed a battery of behavioral tests to evaluate spatial memory and cognitive capabilities in Lrig1 mutant mice. The cognitive assessment demonstrated deficits in recognition and spatial memory, evaluated by novel object recognition and object location tests. Moreover, we found that Lrig1-deficient mice present specific impairments in the processing of similar but not dissimilar locations in a spatial pattern separation task, which was correlated with an enhanced dendritic growth and branching of Doublecortin-positive immature granule cells of the dentate gyrus. Altogether, these findings indicate that Lrig1 plays an essential role in controlling morphological and functional plasticity in the hippocampus.
Collapse
Affiliation(s)
- Francisco Javier Hita
- Instituto de Biología Celular y Neurociencias "Prof. E. De Robertis"(IBCN)- CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Pedro Bekinschtein
- Instituto de Neurociencias Cognitiva y Traslacional (INCYT), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Instituto de Neurología Cognitiva (INECO), Universidad Favaloro, Buenos Aires, Argentina
| | - Fernanda Ledda
- Instituto de Biología Celular y Neurociencias "Prof. E. De Robertis"(IBCN)- CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina.,Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires, Buenos Aires, Argentina
| | - Gustavo Paratcha
- Instituto de Biología Celular y Neurociencias "Prof. E. De Robertis"(IBCN)- CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina.,Facultad de Medicina, I° U.A. Histología, Embriología, Biología Celular y Genética, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
11
|
Ji Y, Kumar R, Gokhale A, Chao HP, Rycaj K, Chen X, Li Q, Tang DG. LRIG1, a regulator of stem cell quiescence and a pleiotropic feedback tumor suppressor. Semin Cancer Biol 2021; 82:120-133. [PMID: 33476721 PMCID: PMC8286266 DOI: 10.1016/j.semcancer.2020.12.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 12/04/2020] [Accepted: 12/16/2020] [Indexed: 12/14/2022]
Abstract
LRIG1, leucine-rich repeats and immunoglobulin-like domains protein 1, was discovered more than 20 years ago and has been shown to be downregulated or lost, and to function as a tumor suppressor in several cancers. Another well-reported biological function of LRIG1 is to regulate and help enforce the quiescence of adult stem cells (SCs). In both contexts, LRIG1 regulates SC quiescence and represses tumor growth via, primarily, antagonizing the expression and activities of ERBB and other receptor tyrosine kinases (RTKs). We have recently reported that in treatment-naïve human prostate cancer (PCa), LRIG1 is primarily regulated by androgen receptor (AR) and is prominently overexpressed. In castration-resistant PCa (CRPC), both LRIG1 and AR expression becomes heterogeneous and, frequently, discordant. Importantly, in both androgen-dependent PCa and CRPC models, LRIG1 exhibits tumor-suppressive functions. Moreover, LRIG1 induction inhibits the growth of pre-established AR+ and AR− PCa. Here, upon a brief introduction of the LRIG1 and the LRIG family, we provide an updated overview on LRIG1 functions in regulating SC quiescence and repressing tumor development. We further highlight the expression, regulation and functions of LRIG1 in treatment-naïve PCa and CRPC. We conclude by offering the perspectives of identifying novel cancer-specific LRIG1-interacting signaling partners and developing LRIG1-based anti-cancer therapeutics and diagnostic/prognostic biomarkers.
Collapse
Affiliation(s)
- Yibing Ji
- Department of Pharmacology & Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA.
| | - Rahul Kumar
- Department of Pharmacology & Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Abhiram Gokhale
- Department of Pharmacology & Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Hseu-Ping Chao
- Department of Epigenetics & Mol. Carcinogenesis, the University of Texas M.D Anderson Cancer Center, Smithville, TX 78957, USA
| | - Kiera Rycaj
- Department of Pharmacology & Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; Department of Epigenetics & Mol. Carcinogenesis, the University of Texas M.D Anderson Cancer Center, Smithville, TX 78957, USA
| | - Xin Chen
- Department of Pharmacology & Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Qiuhui Li
- Department of Pharmacology & Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA.
| | - Dean G Tang
- Department of Pharmacology & Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; Department of Epigenetics & Mol. Carcinogenesis, the University of Texas M.D Anderson Cancer Center, Smithville, TX 78957, USA.
| |
Collapse
|
12
|
LRIG1 is a conserved EGFR regulator involved in melanoma development, survival and treatment resistance. Oncogene 2021; 40:3707-3718. [PMID: 33947959 PMCID: PMC8154585 DOI: 10.1038/s41388-021-01808-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 04/08/2021] [Accepted: 04/20/2021] [Indexed: 02/03/2023]
Abstract
Leucine-rich repeats and immunoglobulin-like domains 1 (LRIG1) is a pan-negative regulator of receptor tyrosine kinase (RTK) signaling and a tumor suppressor in several cancers, but its involvement in melanoma is largely unexplored. Here, we aim to determine the role of LRIG1 in melanoma tumorigenesis, RTK signaling, and BRAF inhibitor resistance. We find that LRIG1 is downregulated during early tumorigenesis and that LRIG1 affects activation of the epidermal growth factor receptor (EGFR) in melanoma cells. LRIG1-dependent regulation of EGFR signaling is evolutionary conserved to the roundworm C. elegans, where negative regulation of the EGFR-Ras-Raf pathway by sma-10/LRIG completely depends on presence of the receptor let-23/EGFR. In a cohort of metastatic melanoma patients, we observe an association between LRIG1 and survival in the triple wild-type subtype and in tumors with high EGFR expression. During in vitro development of BRAF inhibitor resistance, LRIG1 expression decreases; and mimics LRIG1 knockout cells for increased EGFR expression. Treating resistant cells with recombinant LRIG1 suppresses AKT activation and proliferation. Together, our results show that sma-10/LRIG is a conserved regulator of RTK signaling, add to our understanding of LRIG1 in melanoma and identifies recombinant LRIG1 as a potential therapeutic against BRAF inhibitor-resistant melanoma.
Collapse
|
13
|
Joosten SPJ, Spaargaren M, Clevers H, Pals ST. Hepatocyte growth factor/MET and CD44 in colorectal cancer: partners in tumorigenesis and therapy resistance. Biochim Biophys Acta Rev Cancer 2020; 1874:188437. [PMID: 32976979 DOI: 10.1016/j.bbcan.2020.188437] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 09/09/2020] [Accepted: 09/09/2020] [Indexed: 12/12/2022]
Abstract
Intestinal epithelial self-renewal is a tightly controlled process, which is critically dependent on WNT signalling. Aberrant activation of the WNT pathway in intestinal stem cells (ISCs) results in constitutive transcription of target genes, which collectively drive malignant transformation in colorectal cancer (CRC). However, the contribution of individual genes to intestinal homeostasis and tumorigenesis often is incompletely defined. Here, we discuss converging evidence indicating that the receptor tyrosine kinase (RTK) MET and its ligand hepatocyte growth factor (HGF) play a major role in the intestinal damage response, as well as in intestinal tumorigenesis, by controlling the proliferation, survival, motility, and stemness of normal and neoplastic intestinal epithelial cells. These activities of MET are promoted by specific CD44 isoforms expressed by ISCs. The accrued data indicate that MET and the EGFR have overlapping roles in the biology of intestinal epithelium and that metastatic CRCs can exploit this redundancy to escape from EGFR-targeted treatments, co-opting HGF/MET/CD44v signalling. Hence, targeting both pathways may be required for effective treatment of (a subset of) CRCs. The RTK identity of MET, the distinctive 'plasminogen-like' structure and activation mode of its ligand HGF, and the specific collaboration of MET with CD44, provide several unique targeting options, which merit further exploration.
Collapse
Affiliation(s)
- Sander P J Joosten
- Department of Pathology and Cancer Center Amsterdam (CCA), Amsterdam University Medical Centers, Loc. AMC, the Netherlands
| | - Marcel Spaargaren
- Department of Pathology and Cancer Center Amsterdam (CCA), Amsterdam University Medical Centers, Loc. AMC, the Netherlands
| | - Hans Clevers
- Hubrecht Institute, University of Utrecht, Utrecht, the Netherlands
| | - Steven T Pals
- Department of Pathology and Cancer Center Amsterdam (CCA), Amsterdam University Medical Centers, Loc. AMC, the Netherlands..
| |
Collapse
|
14
|
Smith PS, Whitworth J, West H, Cook J, Gardiner C, Lim DHK, Morrison PJ, Hislop RG, Murray E, Tischkowitz M, Warren AY, Woodward ER, Maher ER. Characterization of renal cell carcinoma-associated constitutional chromosome abnormalities by genome sequencing. Genes Chromosomes Cancer 2020; 59:333-347. [PMID: 31943436 PMCID: PMC7187337 DOI: 10.1002/gcc.22833] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 01/09/2020] [Accepted: 01/09/2020] [Indexed: 12/21/2022] Open
Abstract
Constitutional translocations, typically involving chromosome 3, have been recognized as a rare cause of inherited predisposition to renal cell carcinoma (RCC) for four decades. However, knowledge of the molecular basis of this association is limited. We have characterized the breakpoints by genome sequencing (GS) of constitutional chromosome abnormalities in five individuals who presented with RCC. In one individual with constitutional t(10;17)(q11.21;p11.2), the translocation breakpoint disrupted two genes: the known renal tumor suppressor gene (TSG) FLCN (and clinical features of Birt‐Hogg‐Dubé syndrome were detected) and RASGEF1A. In four cases, the rearrangement breakpoints did not disrupt known inherited RCC genes. In the second case without chromosome 3 involvement, the translocation breakpoint in an individual with a constitutional t(2;17)(q21.1;q11.2) mapped 12 Kb upstream of NLK. Interestingly, NLK has been reported to interact indirectly with FBXW7 and a previously reported RCC‐associated translocation breakpoint disrupted FBXW7. In two cases of constitutional chromosome 3 translocations, no candidate TSGs were identified in the vicinity of the breakpoints. However, in an individual with a constitutional chromosome 3 inversion, the 3p breakpoint disrupted the FHIT TSG (which has been reported previously to be disrupted in two apparently unrelated families with an RCC‐associated t(3;8)(p14.2;q24.1). These findings (a) expand the range of constitutional chromosome rearrangements that may be associated with predisposition to RCC, (b) confirm that chromosome rearrangements not involving chromosome 3 can predispose to RCC, (c) suggest that a variety of molecular mechanisms are involved the pathogenesis of translocation‐associated RCC, and (d) demonstrate the utility of GS for investigating such cases.
Collapse
Affiliation(s)
- Philip S Smith
- Department of Medical Genetics, University of Cambridge and NIHR Cambridge Biomedical Research Centre, Cancer Research UK Cambridge Centre, Cambridge Biomedical Campus, Cambridge, UK
| | - James Whitworth
- Department of Medical Genetics, University of Cambridge and NIHR Cambridge Biomedical Research Centre, Cancer Research UK Cambridge Centre, Cambridge Biomedical Campus, Cambridge, UK
| | - Hannah West
- Department of Medical Genetics, University of Cambridge and NIHR Cambridge Biomedical Research Centre, Cancer Research UK Cambridge Centre, Cambridge Biomedical Campus, Cambridge, UK
| | - Jacqueline Cook
- Department of Clinical Genetics, Sheffield Children's Hospital, Sheffield, UK
| | - Carol Gardiner
- West of Scotland Genetics Services, Queen Elizabeth University Hospital, Glasgow, UK
| | - Derek H K Lim
- West Midlands Regional Genetics Service, Birmingham Women's and Children's National Health Service (NHS) Foundation Trust, Birmingham, UK
| | - Patrick J Morrison
- Northern Ireland Regional Genetics Service, Belfast City Hospital, Belfast Health & Social Care Trust, Belfast, UK
| | - R Gordon Hislop
- East of Scotland Regional Genetics Service, Ninewells Hospital, Dundee, UK
| | - Emily Murray
- East of Scotland Regional Genetics Service, Ninewells Hospital, Dundee, UK
| | -
- NIHR BioResource, Cambridge University Hospitals, Cambridge Biomedical Campus, Cambridge, UK
| | - Marc Tischkowitz
- Department of Medical Genetics, University of Cambridge and NIHR Cambridge Biomedical Research Centre, Cancer Research UK Cambridge Centre, Cambridge Biomedical Campus, Cambridge, UK
| | - Anne Y Warren
- Department of Histopathology, Cambridge University NHS Foundation Trust and Cancer Research UK Cambridge Centre, Cambridge, UK
| | - Emma R Woodward
- Manchester Centre for Genomic Medicine and NW Laboratory Genetics Hub, Manchester University Hospitals NHS Foundation Trust, Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Health Innovation Manchester, Manchester, UK
| | - Eamonn R Maher
- Department of Medical Genetics, University of Cambridge and NIHR Cambridge Biomedical Research Centre, Cancer Research UK Cambridge Centre, Cambridge Biomedical Campus, Cambridge, UK
| |
Collapse
|
15
|
Dong M, Xiao Q, Hu J, Cheng F, Zhang P, Zong W, Tang Q, Li X, Mao F, He Y, Yu X, Wan F, Lei T, Guo D, Wang B. Targeting LRIG2 overcomes resistance to EGFR inhibitor in glioblastoma by modulating GAS6/AXL/SRC signaling. Cancer Gene Ther 2020; 27:878-897. [PMID: 31988476 DOI: 10.1038/s41417-020-0163-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 12/21/2019] [Accepted: 01/14/2020] [Indexed: 01/18/2023]
Abstract
Epidermal growth factor receptor (EGFR) gene amplification and mutation occurs most frequently in glioblastoma (GBM). However, EGFR-tyrosine kinase inhibitors (TKIs), including gefitinib, have not yet shown clear clinical benefit and the underlying mechanisms remain largely unexplored. We previously demonstrated that LRIG2 plays a protumorigenic role and functions as a modulator of multiple oncogenic receptor tyrosine kinases (RTKs) in GBM. We therefore hypothesized that LRIG2 might mediate the resistance to EGFR inhibitor through modulating other RTK signaling. In this study, we report that LRIG2 is induced by EGFR inhibitor in gefitinib-treated GBM xenografts or cell lines and promotes resistance to EGFR inhibition by driving cell cycle progression and inhibiting apoptosis in GBM cells. Mechanistically, LRIG2 increases the secretion of growth-arrest specific 6 (GAS6) and stabilizes AXL by preventing its proteasome-mediated degradation, leading to enhancement of the gefitinib-induced activation of AXL and then reactivation of the gefitinib-inhibited SRC. Targeting LRIG2 significantly sensitizes the GBM cells to gefitinib, and inhibition of the downstream GAS6/AXL/SRC signaling abrogates LRIG2-mediated gefitinib resistance in vitro and in vivo. Collectively, our findings uncover a novel mechanism in resistance to EGFR inhibition and provide a potential therapeutic strategy to overcome resistance to EGFR inhibition in GBM.
Collapse
Affiliation(s)
- Minhai Dong
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Qungen Xiao
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Jinyang Hu
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Fangling Cheng
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Po Zhang
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Weifeng Zong
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Qiaoying Tang
- Department of Ultrasound, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Xiaopeng Li
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Feng Mao
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Yue He
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Xingjiang Yu
- Department of Histology and Embryology, College of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Feng Wan
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Ting Lei
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Dongsheng Guo
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
| | - Baofeng Wang
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
| |
Collapse
|
16
|
Li Q, Liu B, Chao HP, Ji Y, Lu Y, Mehmood R, Jeter C, Chen T, Moore JR, Li W, Liu C, Rycaj K, Tracz A, Kirk J, Calhoun-Davis T, Xiong J, Deng Q, Huang J, Foster BA, Gokhale A, Chen X, Tang DG. LRIG1 is a pleiotropic androgen receptor-regulated feedback tumor suppressor in prostate cancer. Nat Commun 2019; 10:5494. [PMID: 31792211 PMCID: PMC6889295 DOI: 10.1038/s41467-019-13532-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Accepted: 11/06/2019] [Indexed: 12/13/2022] Open
Abstract
LRIG1 has been reported to be a tumor suppressor in gastrointestinal tract and epidermis. However, little is known about the expression, regulation and biological functions of LRIG1 in prostate cancer (PCa). We find that LRIG1 is overexpressed in PCa, but its expression correlates with better patient survival. Functional studies reveal strong tumor-suppressive functions of LRIG1 in both AR+ and AR- xenograft models, and transgenic expression of LRIG1 inhibits tumor development in Hi-Myc and TRAMP models. LRIG1 also inhibits castration-resistant PCa and exhibits therapeutic efficacy in pre-established tumors. We further show that 1) AR directly transactivates LRIG1 through binding to several AR-binding sites in LRIG1 locus, and 2) LRIG1 dampens ERBB expression in a cell type-dependent manner and inhibits ERBB2-driven tumor growth. Collectively, our study indicates that LRIG1 represents a pleiotropic AR-regulated feedback tumor suppressor that functions to restrict oncogenic signaling from AR, Myc, ERBBs, and, likely, other oncogenic drivers.
Collapse
Affiliation(s)
- Qiuhui Li
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedicine of Ministry of Education (KLOBM), School and Hospital of Stomatology, Wuhan University, 430079, Wuhan, China
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas M.D. Anderson Cancer Center, Science Park, Smithville, TX, 78957, USA
| | - Bigang Liu
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas M.D. Anderson Cancer Center, Science Park, Smithville, TX, 78957, USA
| | - Hsueh-Ping Chao
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas M.D. Anderson Cancer Center, Science Park, Smithville, TX, 78957, USA
| | - Yibing Ji
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Yue Lu
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas M.D. Anderson Cancer Center, Science Park, Smithville, TX, 78957, USA
| | - Rashid Mehmood
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Collene Jeter
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas M.D. Anderson Cancer Center, Science Park, Smithville, TX, 78957, USA
| | - Taiping Chen
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas M.D. Anderson Cancer Center, Science Park, Smithville, TX, 78957, USA
| | - John R Moore
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas M.D. Anderson Cancer Center, Science Park, Smithville, TX, 78957, USA
| | - Wenqian Li
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas M.D. Anderson Cancer Center, Science Park, Smithville, TX, 78957, USA
| | - Can Liu
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas M.D. Anderson Cancer Center, Science Park, Smithville, TX, 78957, USA
| | - Kiera Rycaj
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas M.D. Anderson Cancer Center, Science Park, Smithville, TX, 78957, USA
| | - Amanda Tracz
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Jason Kirk
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Tammy Calhoun-Davis
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas M.D. Anderson Cancer Center, Science Park, Smithville, TX, 78957, USA
| | - Jie Xiong
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas M.D. Anderson Cancer Center, Science Park, Smithville, TX, 78957, USA
| | - Qu Deng
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas M.D. Anderson Cancer Center, Science Park, Smithville, TX, 78957, USA
| | - Jiaoti Huang
- Department of Pathology, Duke University of School of Medicine, Durham, NC, 27710, USA
| | - Barbara A Foster
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Abhiram Gokhale
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Xin Chen
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA.
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas M.D. Anderson Cancer Center, Science Park, Smithville, TX, 78957, USA.
- Department of Oncology, Tongji Hospital, Tongji Medical School, Huazhong University of Science and Technology (HUST), 430030, Wuhan, China.
| | - Dean G Tang
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA.
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas M.D. Anderson Cancer Center, Science Park, Smithville, TX, 78957, USA.
- Cancer Stem Cell Institute, Research Center for Translational Medicine, East Hospital, Tongji University School of Medicine, 200120, Shanghai, China.
| |
Collapse
|
17
|
Karlsson T, Kvarnbrink S, Holmlund C, Botling J, Micke P, Henriksson R, Johansson M, Hedman H. LMO7 and LIMCH1 interact with LRIG proteins in lung cancer, with prognostic implications for early-stage disease. Lung Cancer 2018; 125:174-184. [PMID: 30429017 DOI: 10.1016/j.lungcan.2018.09.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 09/20/2018] [Accepted: 09/21/2018] [Indexed: 10/28/2022]
Abstract
OBJECTIVES The human leucine-rich repeats and immunoglobulin-like domains (LRIG) protein family comprises the integral membrane proteins LRIG1, LRIG2 and LRIG3. LRIG1 is frequently down-regulated in human cancer, and high levels of LRIG1 in tumor tissue are associated with favorable clinical outcomes in several tumor types including non-small cell lung cancer (NSCLC). Mechanistically, LRIG1 negatively regulates receptor tyrosine kinases and functions as a tumor suppressor. However, the details of the molecular mechanisms involved are poorly understood, and even less is known about the functions of LRIG2 and LRIG3. The aim of this study was to further elucidate the functions and molecular interactions of the LRIG proteins. MATERIALS AND METHODS A yeast two-hybrid screen was performed using a cytosolic LRIG3 peptide as bait. In transfected human cells, co-immunoprecipitation and co-localization experiments were performed. Proximity ligation assay was performed to investigate interactions between endogenously expressed proteins. Expression levels of LMO7 and LIMCH1 in normal and malignant lung tissue were investigated using qRT-PCR and through in silico analyses of public data sets. Finally, a clinical cohort comprising 355 surgically treated NSCLC cases was immunostained for LMO7. RESULTS In the yeast two-hybrid screen, the two paralogous proteins LMO7 and LIMCH1 were identified as interaction partners to LRIG3. LMO7 and LIMCH1 co-localized and co-immunoprecipitated with both LRIG1 and LRIG3. Endogenously expressed LMO7 was in close proximity of both LRIG1 and LRIG3. LMO7 and LIMCH1 were highly expressed in normal lung tissue and down-regulated in malignant lung tissue. LMO7 immunoreactivity was shown to be a negative prognostic factor in LRIG1 positive tumors, predicting poor patient survival. CONCLUSION These findings suggest that LMO7 and LIMCH1 physically interact with LRIG proteins and that expression of LMO7 is of clinical importance in NSCLC.
Collapse
Affiliation(s)
- Terese Karlsson
- Department of Radiation Sciences, Oncology, Umeå University, SE-901 87, Umeå, Sweden
| | - Samuel Kvarnbrink
- Department of Radiation Sciences, Oncology, Umeå University, SE-901 87, Umeå, Sweden.
| | - Camilla Holmlund
- Department of Radiation Sciences, Oncology, Umeå University, SE-901 87, Umeå, Sweden
| | - Johan Botling
- Department of Immunology, Genetics and Pathology, Molecular and Morphological Pathology, Uppsala University, SE-751 85, Uppsala, Sweden
| | - Patrick Micke
- Department of Immunology, Genetics and Pathology, Molecular and Morphological Pathology, Uppsala University, SE-751 85, Uppsala, Sweden
| | - Roger Henriksson
- Department of Radiation Sciences, Oncology, Umeå University, SE-901 87, Umeå, Sweden
| | - Mikael Johansson
- Department of Radiation Sciences, Oncology, Umeå University, SE-901 87, Umeå, Sweden
| | - Håkan Hedman
- Department of Radiation Sciences, Oncology, Umeå University, SE-901 87, Umeå, Sweden
| |
Collapse
|
18
|
Zhang Q, Shi W, Wang Q, Zhu Y, Zhai C, Wang J, Yan X, Chai L, Li M. Clinicopathological and prognostic significance of leucine-rich repeats and immunoglobulin-like domains protein 1 (LRIG1) in malignant tumors: A meta-analysis. J Cancer 2018; 9:2895-2909. [PMID: 30123358 PMCID: PMC6096372 DOI: 10.7150/jca.24749] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 06/09/2018] [Indexed: 01/11/2023] Open
Abstract
Background: Accumulating studies have demonstrated that the expression of leucine-rich repeats and immunoglobulin-like domains protein1 (LRIG1) is associated with various types of tumors. However, the conclusions of previous studies are not completely consistent. Thus, we conducted this meta-analysis to further explore the authentic value of LRIG1 in cancer outcome and clinical significance. Methods: We systematically searched electronic databases including PubMed, Web of Science, Embase, Chinese National Knowledge Infrastructure and Wanfang database. The hazard ratios (HRs), odds ratio (OR) and 95 % confidence intervals (CI) were calculated for effect measures. Results: 16 qualified studies involving 2043 patients with cancer were enrolled. High LRIG1 expression was associated with a good prognosis in malignant tumors (HR: 0.49, 95% CI=0.39-0.59). Furthermore, positive expression rate of LRIG1 was distinctly lower in cancer tissues than that in normal tissues (OR: 0.09, 95% CI=0.05-0.17). Positive LRIG1 expression was definitely related with smaller tumor size (OR: 1.64, 95% CI=1.11-2.42), early tumor stage (OR: 3.67, 95% CI=1.87-7.21), well degree of differentiation (OR: 4.35, 95% CI=2.12-8.93) and negative recurrence (OR: 0.29, 95% CI=0.16-0.53). Conclusions: LRIG1 expression was associated with a good prognosis in terms of overall survival (OS) and might act as a predictive factor for characteristics of cancer patients.
Collapse
Affiliation(s)
- Qianqian Zhang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Wenhua Shi
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Qingting Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Yanting Zhu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Cui Zhai
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Jian Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Xin Yan
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Limin Chai
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Manxiang Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| |
Collapse
|
19
|
Xiao Q, Dong M, Cheng F, Mao F, Zong W, Wu K, Wang H, Xie R, Wang B, Lei T, Guo D. LRIG2 promotes the proliferation and cell cycle progression of glioblastoma cells in vitro and in vivo through enhancing PDGFRβ signaling. Int J Oncol 2018; 53:1069-1082. [PMID: 30015847 PMCID: PMC6065455 DOI: 10.3892/ijo.2018.4482] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 06/29/2018] [Indexed: 01/12/2023] Open
Abstract
The leucine-rich repeats and immunoglobulin-like domains (LRIG) gene family, comprising LRIG1, 2 and 3, encodes integral membrane proteins. It has been well established that LRIG1 negatively regulates multiple growth factor signaling pathways and is considered to be a tumor suppressor; however, the biological functions of LRIG2 remain largely unexplored. It was previously demonstrated that LRIG2 positively regulates epidermal growth factor receptor (EGFR) signaling, the most common aberrant receptor tyrosine kinase (RTK) signaling in glioblastoma multiforme (GBM), which promotes GBM growth. In the present study, the effect of LRIG2 on the proliferation of GBM cells was further addressed, as well as the possible mechanisms underlying the regulatory effect of LRIG2 on platelet-derived growth factor receptor β (PDGFRβ) signaling, another common oncogenic RTK signaling pathway in GBM. First, the expression levels of endogenous LRIG2 and PDGFRβ were found to vary notably in human GBM, and the LRIG2 expression level was positively correlated with the expression level of PDGFRβ. Furthermore, to the best of our knowledge, this is the first study to demonstrate that LRIG2 promoted the PDGF-BB-induced proliferation of GBM cells in vitro and in vivo through regulating the PDGFRβ signaling-mediated cell cycle progression. Mechanistically, LRIG2 has the ability to physically interact with PDGFRβ, promoting the total expression and the activation of PDGFRβ, and enhancing its downstream signaling pathways of Akt and signal transducer and activator of transcription 3 and the effectors of key regulators of cell cycle progression, resulting in increased GBM cell proliferation. Collectively, these data indicated that LRIG2 may serve as a tumor promoter gene in gliomagenesis by positively regulating PDGFRβ signaling, another important oncogenic RTK signaling pathway, in addition to the previously reported EGFR signaling in GBM modulated by LRIG2, and validated LRIG2 as a promising therapeutic target for the treatment of GBM characterized by multiple aberrant RTK signaling.
Collapse
Affiliation(s)
- Qungen Xiao
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Minhai Dong
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Fangling Cheng
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Feng Mao
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Weifeng Zong
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Kang Wu
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Heping Wang
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Ruifan Xie
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Baofeng Wang
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Ting Lei
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Dongsheng Guo
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| |
Collapse
|
20
|
Kölling M, Seeger H, Haddad G, Kistler A, Nowak A, Faulhaber-Walter R, Kielstein J, Haller H, Fliser D, Mueller T, Wüthrich RP, Lorenzen JM. The Circular RNA ciRs-126 Predicts Survival in Critically Ill Patients With Acute Kidney Injury. Kidney Int Rep 2018; 3:1144-1152. [PMID: 30197981 PMCID: PMC6127441 DOI: 10.1016/j.ekir.2018.05.012] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 05/09/2018] [Accepted: 05/28/2018] [Indexed: 02/08/2023] Open
Abstract
Introduction Circular RNAs (circRNAs) have recently been described as novel noncoding regulators of gene expression. They might have an impact on microRNA expression by their sponging activity. The detectability in blood of these RNA transcripts has been demonstrated in patients with cancer and cardiovascular disease. We tested the hypothesis that circulating circRNAs in blood of critically ill patients with acute kidney injury (AKI) at inception of renal replacement therapy may also be dysregulated and associated with patient survival. Methods We performed a global circRNA expression analysis using RNA isolated from blood of patients with AKI as well as controls. This global screen revealed several dysregulated circRNAs in patients with AKI. Most highly increased circRNA-array−based transcripts as well as expression of the circRNA target miR-126-5p were confirmed in blood of 109 patients with AKI, 30 age-matched healthy controls, 25 critically ill non-AKI patients, and 20 patients on maintenance hemodialysis by quantitative real-time polymerase chain reaction. Results Circulating concentrations of 3 novel circRNAs were amplified in blood of patients with AKI and in controls. Circular RNA sponge of miR-126 (or ciRs-126) was most highly altered compared to healthy controls and disease controls (fold change of 52.1). ciRs-126 was shown to bioinformatically sponge miR-126-5p, which was found to be highly suppressed in AKI patients and hypoxic endothelial cells. Cox regression and Kaplan−Meier curve analysis revealed ciRs-126 as an independent predictor of 28-day survival (P < 0.01). Conclusion Circulating concentrations of circRNAs in patients with AKI are detectable. ciRs-126 may potentially sponge miR-126-5p and acts as a predictor of mortality in this patient cohort.
Collapse
Affiliation(s)
- Malte Kölling
- Division of Nephrology, University Hospital Zürich, Zürich, Switzerland
| | - Harald Seeger
- Division of Nephrology, University Hospital Zürich, Zürich, Switzerland
| | - George Haddad
- Division of Nephrology, University Hospital Zürich, Zürich, Switzerland
| | | | - Albina Nowak
- Department of Internal Medicine, University Hospital Zürich and University of Zürich, Zürich, Switzerland
| | - Robert Faulhaber-Walter
- Department of Medicine, Division of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany
| | - Jan Kielstein
- Department of Medicine, Division of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany
| | - Hermann Haller
- Department of Medicine, Division of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany
| | - Danilo Fliser
- Saarland University Medical Centre, Homburg/Saar, Germany
| | - Thomas Mueller
- Division of Nephrology, University Hospital Zürich, Zürich, Switzerland
| | - Rudolf P Wüthrich
- Division of Nephrology, University Hospital Zürich, Zürich, Switzerland
| | - Johan M Lorenzen
- Division of Nephrology, University Hospital Zürich, Zürich, Switzerland
| |
Collapse
|
21
|
Essential Role of Linx/Islr2 in the Development of the Forebrain Anterior Commissure. Sci Rep 2018; 8:7292. [PMID: 29739947 PMCID: PMC5940738 DOI: 10.1038/s41598-018-24064-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 03/27/2018] [Indexed: 12/14/2022] Open
Abstract
Linx is a member of the leucine-rich repeat and immunoglobulin family of membrane proteins which has critical roles in the development of the peripheral nervous system and forebrain connectivity. A previous study showed that Linx is expressed in projection neurons in the cortex and in cells that comprise the passage to the prethalamus that form the internal capsule, indicating the involvement of Linx in axon guidance and cell-cell communication. In this study, we found that Linx-deficient mice develop severe hydrocephalus and die perinatally by unknown mechanisms. Importantly, mice heterozygous for the linx gene exhibited defects in the development of the anterior commissure in addition to hydrocephalus, indicating haploinsufficiency of the linx gene in forebrain development. In N1E-115 neuroblastoma cells and primary cultured hippocampal neurons, Linx depletion led to impaired neurite extension and an increase in cell body size. Consistent with this, but of unknown significance, we found that Linx interacts with and upregulates the activity of Rho-kinase, a modulator of many cellular processes including cytoskeletal organization. These data suggest a role for Linx in the regulation of complex forebrain connectivity, and future identification of its extracellular ligand(s) will help clarify this function.
Collapse
|
22
|
Zhou L, Li X, Zhou F, Jin Z, Chen D, Wang P, Zhang S, Zhuge Y, Shang Y, Zou X. Downregulation of leucine-rich repeats and immunoglobulin-like domains 1 by microRNA-20a modulates gastric cancer multidrug resistance. Cancer Sci 2018; 109:1044-1054. [PMID: 29450946 PMCID: PMC5891193 DOI: 10.1111/cas.13538] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 01/28/2018] [Accepted: 02/11/2018] [Indexed: 12/13/2022] Open
Abstract
Multidrug resistance (MDR) significantly restricts the clinical efficacy of gastric cancer (GC) chemotherapy, and it is critical to search novel targets to predict and overcome MDR. Leucine-rich repeats and immunoglobulin-like domains 1 (LRIG1) has been proved to be correlated with drug resistance in several cancers. The present study revealed that LRIG1 was overexpressed in chemosensitive GC tissues and decreased expression of LRIG1 predicted poor survival in GC patients. We observed that upregulation of LRIG1 enhanced chemosensitivity in GC cells. Interestingly, miR-20a, which was overexpressed in GC MDR cell lines and tissues, was identified to regulate LRIG1 expression by directly targeting its 3' untranslated region. We also found that inhibition of miR-20a suppressed GC MDR, and upregulation showed opposite effects. Moreover, we demonstrated that the miR-20a/LRIG1 axis regulated GC cell MDR through epidermal growth factor receptor (EGFR)-mediated PI3K/AKT and MAPK/ERK signaling pathways. Finally, LRIG1 expression in human GC tissues is inversely correlated with miR-20a and EGFR. Taken together, the newly identified miR-20a/LRIG1/EGFR link provides insight into the MDR process of GC, and targeting this axis represents a novel potential therapeutic strategy to block GC chemoresistance.
Collapse
Affiliation(s)
- Lin Zhou
- Department of GastroenterologyNanjing Drum Tower HospitalThe Affiliated Hospital of Nanjing University Medical SchoolNanjingChina
- Jiangsu Clinical Medical Center of Digestive DiseaseNanjingChina
| | - Xiaowei Li
- State Key Laboratory of Cancer Biology & Xijing Hospital of Digestive DiseasesXijing HospitalThe Fourth Military Medical UniversityXi'anChina
| | - Fan Zhou
- Department of GastroenterologyNanjing Drum Tower HospitalThe Affiliated Hospital of Nanjing University Medical SchoolNanjingChina
- Jiangsu Clinical Medical Center of Digestive DiseaseNanjingChina
| | - Zhi'an Jin
- The Second Outpatient Department of Chengdu Army Region AuthorityChengduChina
| | - Di Chen
- State Key Laboratory of Cancer Biology & Xijing Hospital of Digestive DiseasesXijing HospitalThe Fourth Military Medical UniversityXi'anChina
| | - Pin Wang
- Department of GastroenterologyNanjing Drum Tower HospitalThe Affiliated Hospital of Nanjing University Medical SchoolNanjingChina
- Jiangsu Clinical Medical Center of Digestive DiseaseNanjingChina
| | - Shu Zhang
- Department of GastroenterologyNanjing Drum Tower HospitalThe Affiliated Hospital of Nanjing University Medical SchoolNanjingChina
- Jiangsu Clinical Medical Center of Digestive DiseaseNanjingChina
| | - Yuzheng Zhuge
- Department of GastroenterologyNanjing Drum Tower HospitalThe Affiliated Hospital of Nanjing University Medical SchoolNanjingChina
- Jiangsu Clinical Medical Center of Digestive DiseaseNanjingChina
| | - Yulong Shang
- State Key Laboratory of Cancer Biology & Xijing Hospital of Digestive DiseasesXijing HospitalThe Fourth Military Medical UniversityXi'anChina
| | - Xiaoping Zou
- Department of GastroenterologyNanjing Drum Tower HospitalThe Affiliated Hospital of Nanjing University Medical SchoolNanjingChina
- Jiangsu Clinical Medical Center of Digestive DiseaseNanjingChina
| |
Collapse
|
23
|
Lindquist D, Alsina FC, Herdenberg C, Larsson C, Höppener J, Wang N, Paratcha G, Tarján M, Tot T, Henriksson R, Hedman H. LRIG1 negatively regulates RET mutants and is downregulated in thyroid cancer. Int J Oncol 2018; 52:1189-1197. [PMID: 29436694 PMCID: PMC5843404 DOI: 10.3892/ijo.2018.4273] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 01/24/2018] [Indexed: 12/18/2022] Open
Abstract
Papillary thyroid carcinoma (PTC) and medullary thyroid carcinoma (MTC) are characterized by genomic rearrangements and point mutations in the proto-oncogene RET. Leucine-rich repeats and immunoglobulin-like domains 1 (LRIG1) is a suppressor of various receptor tyrosine kinases, including RET. LRIG1 expression levels are associated with patient survival in many cancer types. In the present study, we investigated whether the oncogenic RET mutants RET2A (C634R) and RET2B (M918T) were regulated by LRIG1, and the possible effects of LRIG1 expression in thyroid cancer were investigated in three different clinical cohorts and in a RET2B-driven mouse model of MTC. LRIG1 was shown to physically interact with both RET2A and RET2B and to restrict their ligand-independent activation. LRIG1 mRNA levels were downregulated in PTC and MTC compared to normal thyroid gland tissue. There was no apparent association between LRIG1 RNA or protein expression levels and patient survival in the studied cohorts. The transgenic RET2B mice developed pre-cancerous medullary thyroid lesions at a high frequency (36%); however, no overt cancers were observed. There was no significant difference in the incidence of pre-cancerous lesions between Lrig1 wild-type and Lrig1-deficient RET2B mice. In conclusion, the findings that LRIG1 is a negative regulator of RET2A and RET2B and is also downregulated in PTC and MTC may suggest that LRIG1 functions as a thyroid tumor suppressor.
Collapse
Affiliation(s)
- David Lindquist
- Oncology Research Laboratory, Department of Radiation Sciences, Umeå University, SE-90187 Umeå, Sweden
| | - Fernando C Alsina
- Institute of Cell Biology and Neuroscience (IBCN)-CONICET, School of Medicine, University of Buenos Aires (UBA), Buenos Aires 1121, Argentina
| | - Carl Herdenberg
- Oncology Research Laboratory, Department of Radiation Sciences, Umeå University, SE-90187 Umeå, Sweden
| | - Catharina Larsson
- Department of Oncology-Pathology, Karolinska Institutet, Cancer Center Karolinska, Karolinska University Hospital, 171 76 Stockholm, Sweden
| | - Jo Höppener
- University Medical Center Utrecht, Division of Biomedical Genetics and Laboratory of Translational Immunology, 3508 GA Utrecht, The Netherlands
| | - Na Wang
- Department of Oncology-Pathology, Karolinska Institutet, Cancer Center Karolinska, Karolinska University Hospital, 171 76 Stockholm, Sweden
| | - Gustavo Paratcha
- Institute of Cell Biology and Neuroscience (IBCN)-CONICET, School of Medicine, University of Buenos Aires (UBA), Buenos Aires 1121, Argentina
| | - Miklós Tarján
- Department of Pathology and Clinical Cytology, Central Hospital Falun, 791 82 Falun, Sweden
| | - Tibor Tot
- Department of Pathology and Clinical Cytology, Central Hospital Falun, 791 82 Falun, Sweden
| | - Roger Henriksson
- Oncology Research Laboratory, Department of Radiation Sciences, Umeå University, SE-90187 Umeå, Sweden
| | - Håkan Hedman
- Oncology Research Laboratory, Department of Radiation Sciences, Umeå University, SE-90187 Umeå, Sweden
| |
Collapse
|
24
|
Mao F, Holmlund C, Faraz M, Wang W, Bergenheim T, Kvarnbrink S, Johansson M, Henriksson R, Hedman H. Lrig1 is a haploinsufficient tumor suppressor gene in malignant glioma. Oncogenesis 2018; 7:13. [PMID: 29391393 PMCID: PMC5833707 DOI: 10.1038/s41389-017-0012-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 11/09/2017] [Indexed: 11/19/2022] Open
Abstract
Recently, a genome-wide association study showed that a single nucleotide polymorphism (SNP) —rs11706832—in intron 2 of the human LRIG1 (Leucine-rich repeats and immunoglobulin-like domains 1) gene is associated with susceptibility to glioma. However, the mechanism by which rs11706832 affects glioma risk remains unknown; additionally, it is unknown whether the expression levels of LRIG1 are a relevant determinant of gliomagenesis. Here, we investigated the role of Lrig1 in platelet-derived growth factor (PDGF)-induced experimental glioma in mice by introducing mono-allelic and bi-allelic deletions of Lrig1 followed by inducing gliomagenesis via intracranial retroviral transduction of PDGFB in neural progenitor cells. Lrig1 was expressed in PDGFB-induced gliomas in wild-type mice as assessed using in situ hybridization. Intriguingly, Lrig1-heterozygous mice developed higher grade gliomas than did wild-type mice (grade IV vs. grade II/III, p = 0.002). Reciprocally, the ectopic expression of LRIG1 in the TB107 high-grade human glioma (glioblastoma, grade IV) cell line decreased the invasion of orthotopic tumors in immunocompromised mice in vivo and reduced cell migration in vitro. Concomitantly, the activity of the receptor tyrosine kinase MET was downregulated, which partially explained the reduction in cell migration. In summary, Lrig1 is a haploinsufficient suppressor of PDGFB-driven glioma, possibly in part via negative regulation of MET-driven cell migration and invasion. Thus, for the first time, changes in physiological Lrig1 expression have been linked to gliomagenesis, whereby the SNP rs11706832 may affect glioma risk by regulating LRIG1 expression.
Collapse
Affiliation(s)
- Feng Mao
- Department of Radiation Sciences, Oncology, Umeå University, Umeå, Sweden.,Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Camilla Holmlund
- Department of Radiation Sciences, Oncology, Umeå University, Umeå, Sweden
| | - Mahmood Faraz
- Department of Radiation Sciences, Oncology, Umeå University, Umeå, Sweden
| | - Wanzhong Wang
- Department of Pathology/Cytology, Karolinska University Hospital, Huddinge, Sweden
| | - Tommy Bergenheim
- Department of Pharmacology and Clinical Neuroscience, Section of Neurosurgery, Umeå University, Umeå, Sweden
| | - Samuel Kvarnbrink
- Department of Radiation Sciences, Oncology, Umeå University, Umeå, Sweden
| | - Mikael Johansson
- Department of Radiation Sciences, Oncology, Umeå University, Umeå, Sweden
| | - Roger Henriksson
- Department of Radiation Sciences, Oncology, Umeå University, Umeå, Sweden.,Regionalt Cancercentrum Stockholm Gotland, Karolinska, Stockholm, Sweden
| | - Håkan Hedman
- Department of Radiation Sciences, Oncology, Umeå University, Umeå, Sweden.
| |
Collapse
|
25
|
Faraz M, Herdenberg C, Holmlund C, Henriksson R, Hedman H. A protein interaction network centered on leucine-rich repeats and immunoglobulin-like domains 1 (LRIG1) regulates growth factor receptors. J Biol Chem 2018; 293:3421-3435. [PMID: 29317492 PMCID: PMC5836135 DOI: 10.1074/jbc.m117.807487] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 12/29/2017] [Indexed: 12/11/2022] Open
Abstract
Leucine-rich repeats and immunoglobulin-like domains 1 (LRIG1) is a tumor suppressor and a negative regulator of several receptor tyrosine kinases. The molecular mechanisms by which LRIG1 mediates its tumor suppressor effects and regulates receptor tyrosine kinases remain incompletely understood. Here, we performed a yeast two-hybrid screen to identify novel LRIG1-interacting proteins and mined data from the BioPlex (biophysical interactions of ORFeome-based complexes) protein interaction data repository. The putative LRIG1 interactors identified in the screen were functionally evaluated using a triple co-transfection system in which HEK293 cells were co-transfected with platelet-derived growth factor receptor α, LRIG1, and shRNAs against the identified LRIG1 interactors. The effects of the shRNAs on the ability of LRIG1 to down-regulate platelet-derived growth factor receptor α expression were evaluated. On the basis of these results, we present an LRIG1 protein interaction network with many newly identified components. The network contains the apparently functionally important LRIG1-interacting proteins RAB4A, PON2, GAL3ST1, ZBTB16, LRIG2, CNPY3, HLA-DRA, GML, CNPY4, LRRC40, and LRIG3, together with GLRX3, PTPRK, and other proteins. In silico analyses of The Cancer Genome Atlas data sets revealed consistent correlations between the expression of the transcripts encoding LRIG1 and its interactors ZBTB16 and PTPRK and inverse correlations between the transcripts encoding LRIG1 and GLRX3. We further studied the LRIG1 function–promoting paraoxonase PON2 and found that it co-localized with LRIG1 in LRIG1-transfected cells. The proposed LRIG1 protein interaction network will provide leads for future studies aiming to understand the molecular functions of LRIG1 and the regulation of growth factor signaling.
Collapse
Affiliation(s)
- Mahmood Faraz
- From the Oncology Research Laboratory, Department of Radiation Sciences, Umeå University, SE-90187 Umeå, Sweden
| | - Carl Herdenberg
- From the Oncology Research Laboratory, Department of Radiation Sciences, Umeå University, SE-90187 Umeå, Sweden
| | - Camilla Holmlund
- From the Oncology Research Laboratory, Department of Radiation Sciences, Umeå University, SE-90187 Umeå, Sweden
| | - Roger Henriksson
- From the Oncology Research Laboratory, Department of Radiation Sciences, Umeå University, SE-90187 Umeå, Sweden
| | - Håkan Hedman
- From the Oncology Research Laboratory, Department of Radiation Sciences, Umeå University, SE-90187 Umeå, Sweden
| |
Collapse
|
26
|
Neben CL, Lo M, Jura N, Klein OD. Feedback regulation of RTK signaling in development. Dev Biol 2017; 447:71-89. [PMID: 29079424 DOI: 10.1016/j.ydbio.2017.10.017] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 10/17/2017] [Accepted: 10/23/2017] [Indexed: 02/07/2023]
Abstract
Precise regulation of the amplitude and duration of receptor tyrosine kinase (RTK) signaling is critical for the execution of cellular programs and behaviors. Understanding these control mechanisms has important implications for the field of developmental biology, and in recent years, the question of how augmentation or attenuation of RTK signaling via feedback loops modulates development has become of increasing interest. RTK feedback regulation is also important for human disease research; for example, germline mutations in genes that encode RTK signaling pathway components cause numerous human congenital syndromes, and somatic alterations contribute to the pathogenesis of diseases such as cancers. In this review, we survey regulators of RTK signaling that tune receptor activity and intracellular transduction cascades, with a focus on the roles of these genes in the developing embryo. We detail the diverse inhibitory mechanisms utilized by negative feedback regulators that, when lost or perturbed, lead to aberrant increases in RTK signaling. We also discuss recent biochemical and genetic insights into positive regulators of RTK signaling and how these proteins function in tandem with negative regulators to guide embryonic development.
Collapse
Affiliation(s)
- Cynthia L Neben
- Department of Orofacial Sciences and Program in Craniofacial Biology, University of California, San Francisco, San Francisco 94143, USA
| | - Megan Lo
- Department of Orofacial Sciences and Program in Craniofacial Biology, University of California, San Francisco, San Francisco 94143, USA; Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Natalia Jura
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA.
| | - Ophir D Klein
- Department of Orofacial Sciences and Program in Craniofacial Biology, University of California, San Francisco, San Francisco 94143, USA; Department of Pediatrics and Institute for Human Genetics, University of California, San Francisco, San Francisco 94143, USA.
| |
Collapse
|
27
|
Mao F, Wang B, Xiao Q, Cheng F, Lei T, Guo D. LRIG proteins in glioma: Functional roles, molecular mechanisms, and potential clinical implications. J Neurol Sci 2017; 383:56-60. [PMID: 29246624 DOI: 10.1016/j.jns.2017.10.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 09/26/2017] [Accepted: 10/17/2017] [Indexed: 12/26/2022]
Abstract
Gliomas are the most common intracranial tumors of the nervous system. These tumors are characterized by unlimited cell proliferation and excessive invasiveness. Despite the advances in diagnostic imaging, microneurosurgical techniques, radiation therapy, and chemotherapy, significant increases in the progression free survival of glioma patients have not been achieved. Improvements in our understanding of the molecular subtypes of gliomas and the underlying alterations in specific signaling pathways may impact both the diagnosis and the treatment strategies for patients with gliomas. Growth factors and their corresponding receptor tyrosine kinases are associated with oncogenesis and development of tumors in numerous human cancer types, including glioma. Leucine-rich repeats and immunoglobulin-like domains (LRIG) are integral membrane proteins which contain three vertebrate members including LRIG1, LRIG2 and LRIG3. They mainly function as regulators of growth factor signaling. Specifically, LRIG1 has been identified as a tumor suppressor in human cancers. In contrast, LRIG2 appears to function as a tumor promoter, while LRIG3 appears to have a function similar to that of LRIG1. In the present review, we summarize the functional roles, molecular mechanisms, and clinical perspectives of LRIG proteins in gliomas and propose that these proteins may be useful in the future as targets for treatment and prognostication in glioma patients.
Collapse
Affiliation(s)
- Feng Mao
- Department of Neurosurgery and Sino-German Neuro-Oncology Molecular Laboratory, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Baofeng Wang
- Department of Neurosurgery and Sino-German Neuro-Oncology Molecular Laboratory, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qungen Xiao
- Department of Neurosurgery and Sino-German Neuro-Oncology Molecular Laboratory, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fangling Cheng
- Department of Neurosurgery and Sino-German Neuro-Oncology Molecular Laboratory, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ting Lei
- Department of Neurosurgery and Sino-German Neuro-Oncology Molecular Laboratory, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dongsheng Guo
- Department of Neurosurgery and Sino-German Neuro-Oncology Molecular Laboratory, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
28
|
Zhang Y, Liu Z, Yu S. Role and mechanism of action of LRIG1 in ovarian cancer cell line and VP16 drug-resistant cell line. Oncol Lett 2017; 14:4619-4624. [PMID: 28943962 PMCID: PMC5592861 DOI: 10.3892/ol.2017.6730] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 08/01/2017] [Indexed: 11/05/2022] Open
Abstract
We investigated the role of leucine-rich repeats and immunoglobulin-like domains (LRIG)-1 in ovarian cancer cell line and VP16 drug-resistant cell line to explore the possible mechanism of action. Human ovarian cancer cell line SKOV3 and the VP16 drug-resistant cell line SKOV3/VP16 were used to investigate whether LRIG1 affects the sensitivity of SKOV3 to drugs. RT-qPCR was used to detect the difference in LRIG1 expression between drug-resistant and wild-type cell lines. siRNA LRIG1 was designed and transfected to silence LRIG1 to investigate the mechanism by which LRIG1 affects the sensitivity of SKOV3 to drugs. Wild-type cells were transfected with SKOV3. The cells were divided into 3 groups (VP16, NC + VP16 and siRNA LRIG1 + VP16 treatment group). VP16 (IC50 value) was added 24 h after transfection. The CCK-8 method was used to detect the proliferation of each group at multiple time points (0, 24, 48 and 72 h). A colony-forming assay was used to detect cell proliferation and flow cytometry was used to detect cell apoptosis. The expression of LRIG1 was lower in the drug resistant cell line than that of the wild-type cell line. The expression of LRIG1 significantly decreased with the increase of VP16 concentration (P<0.05). The apoptotic rate was decreased but there was an increase on cell clones in the siLRIG1 + VP16-treated group as compared to VP16- and NC+ VP16-treated groups (P<0.05). The LRIG1 gene affects the sensitivity of SKOV3 cells to drug in a dose-related manner, indicating that the reduced expression of LRIG1 can inhibit cell apoptosis.
Collapse
Affiliation(s)
- Yaqi Zhang
- Department of Gynecology, Yidu Central Hospital of Weifang, Weifang, Shandong 262500, P.R. China
| | - Zhizhen Liu
- Department of Gynecology, Yidu Central Hospital of Weifang, Weifang, Shandong 262500, P.R. China
| | - Shunrui Yu
- Department of Gynecology, Yidu Central Hospital of Weifang, Weifang, Shandong 262500, P.R. China
| |
Collapse
|
29
|
Neirinckx V, Hedman H, Niclou SP. Harnessing LRIG1-mediated inhibition of receptor tyrosine kinases for cancer therapy. Biochim Biophys Acta Rev Cancer 2017; 1868:109-116. [PMID: 28259645 DOI: 10.1016/j.bbcan.2017.02.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 02/27/2017] [Accepted: 02/28/2017] [Indexed: 02/07/2023]
Abstract
Leucine-rich repeats and immunoglobulin-like domains containing protein 1 (LRIG1) is an endogenous feedback regulator of receptor tyrosine kinases (RTKs) and was recently shown to inhibit growth of different types of malignancies. Additionally, this multifaceted RTK inhibitor was reported to be a tumor suppressor, a stem cell regulator, and a modulator of different cellular phenotypes. This mini-review provides a concise and up-to-date summary about the known functions of LRIG1 and its related family members, with a special emphasis on underlying molecular mechanisms and the opportunities for harnessing its therapeutic potential against cancer.
Collapse
Affiliation(s)
- Virginie Neirinckx
- NorLux Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health, 1526, Luxembourg
| | - Hakan Hedman
- Oncology Research Laboratory, Department of Radiation Sciences, Umeå University, 90187 Umeå, Sweden
| | - Simone P Niclou
- NorLux Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health, 1526, Luxembourg; K.G. Jebsen Brain Tumour Research Centre, Department of Biomedicine, University of Bergen, 5020 Bergen, Norway.
| |
Collapse
|
30
|
Catenacci DVT, Liao WL, Zhao L, Whitcomb E, Henderson L, O'Day E, Xu P, Thyparambil S, Krizman D, Bengali K, Uzzell J, Darfler M, Cecchi F, Blackler A, Bang YJ, Hart J, Xiao SY, Lee SM, Burrows J, Hembrough T. Mass-spectrometry-based quantitation of Her2 in gastroesophageal tumor tissue: comparison to IHC and FISH. Gastric Cancer 2016; 19:1066-1079. [PMID: 26581548 PMCID: PMC4871781 DOI: 10.1007/s10120-015-0566-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 10/31/2015] [Indexed: 02/07/2023]
Abstract
BACKGROUND Trastuzumab has shown a survival benefit in cases of Her2-positive gastroesophageal cancer (GEC). Immunohistochemistry (IHC) and fluorescence in situ hybridization (FISH) currently determine eligibility for trastuzumab-based therapy. However, these low-throughput assays often produce discordant or equivocal results. METHODS We developed a targeted proteomic assay based on selected reaction monitoring mass spectrometry (SRM-MS) and quantified levels (amol/μg) of Her2-SRM protein in cell lines (n = 27) and GEC tissues (n = 139). We compared Her2-SRM protein expression with IHC/FISH, seeking to determine optimal SRM protein expression cutoffs in order to identify HER2 gene amplification. RESULTS After demonstrating assay development, precision, and stability, Her2-SRM protein measurement was observed to be highly concordant with the HER2/CEP17 ratio, particularly in a multivariate regression model adjusted for SRM expression of the covariates Met, Egfr, Her3, and HER2 heterogeneity, as well as their interactions (cell lines r (2) = 0.9842; FFPE r (2) = 0.7643). In GEC tissues, Her2-SRM protein was detected at any level in 71.2 % of cases. ROC curves demonstrated that Her2-SRM protein levels have a high specificity (100 %) at an upper-level cutoff of >750 amol/µg and sensitivity of 75 % at a lower-level cutoff of <450 amol/μg for identifying HER2 FISH-amplified tumors. An "equivocal zone" of 450-750 amol/µg of Her2-SRM protein was analogous to IHC2+ but represented fewer cases (9-16 % of cases versus 36-41 %). CONCLUSIONS Compared to IHC, targeted SRM-Her2 proteomics provided more objective and quantitative Her2 expression with excellent HER2/CEP17 FISH correlation and fewer equivocal cases. Along with its multiplex capability for other relevant oncoproteins, these results demonstrate a refined HER2 protein expression assay for clinical application.
Collapse
Affiliation(s)
- Daniel V T Catenacci
- Department of Medicine, Section of Hematology/Oncology, University of Chicago Medical Center, Chicago, IL, 60637, USA.
| | - Wei-Li Liao
- OncoPlex Diagnostics Inc., Rockville, MD, USA
- NantOmics, LLC, Culver City, CA, USA
| | - Lei Zhao
- Department of Pathology, University of Chicago, Chicago, IL, USA
| | - Emma Whitcomb
- Department of Pathology, University of Chicago, Chicago, IL, USA
| | - Les Henderson
- Department of Medicine, Section of Hematology/Oncology, University of Chicago Medical Center, Chicago, IL, 60637, USA
| | - Emily O'Day
- Department of Medicine, Section of Hematology/Oncology, University of Chicago Medical Center, Chicago, IL, 60637, USA
| | - Peng Xu
- Department of Medicine, Section of Hematology/Oncology, University of Chicago Medical Center, Chicago, IL, 60637, USA
| | - Sheeno Thyparambil
- OncoPlex Diagnostics Inc., Rockville, MD, USA
- NantOmics, LLC, Culver City, CA, USA
| | - David Krizman
- OncoPlex Diagnostics Inc., Rockville, MD, USA
- NantOmics, LLC, Culver City, CA, USA
| | - Kathleen Bengali
- OncoPlex Diagnostics Inc., Rockville, MD, USA
- NantOmics, LLC, Culver City, CA, USA
| | | | - Marlene Darfler
- OncoPlex Diagnostics Inc., Rockville, MD, USA
- NantOmics, LLC, Culver City, CA, USA
| | - Fabiola Cecchi
- OncoPlex Diagnostics Inc., Rockville, MD, USA
- NantOmics, LLC, Culver City, CA, USA
| | - Adele Blackler
- OncoPlex Diagnostics Inc., Rockville, MD, USA
- NantOmics, LLC, Culver City, CA, USA
| | - Yung-Jue Bang
- Seoul National University College of Medicine, Seoul, Korea
| | - John Hart
- Department of Pathology, University of Chicago, Chicago, IL, USA
| | - Shu-Yuan Xiao
- Department of Pathology, University of Chicago, Chicago, IL, USA
| | - Sang Mee Lee
- Department of Public Health Studies, University of Chicago, Chicago, IL, USA
| | - Jon Burrows
- OncoPlex Diagnostics Inc., Rockville, MD, USA
| | - Todd Hembrough
- OncoPlex Diagnostics Inc., Rockville, MD, USA
- NantOmics, LLC, Culver City, CA, USA
| |
Collapse
|
31
|
Ledda F, Paratcha G. Assembly of Neuronal Connectivity by Neurotrophic Factors and Leucine-Rich Repeat Proteins. Front Cell Neurosci 2016; 10:199. [PMID: 27555809 PMCID: PMC4977320 DOI: 10.3389/fncel.2016.00199] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 07/29/2016] [Indexed: 11/13/2022] Open
Abstract
Proper function of the nervous system critically relies on sophisticated neuronal networks interconnected in a highly specific pattern. The architecture of these connections arises from sequential developmental steps such as axonal growth and guidance, dendrite development, target determination, synapse formation and plasticity. Leucine-rich repeat (LRR) transmembrane proteins have been involved in cell-type specific signaling pathways that underlie these developmental processes. The members of this superfamily of proteins execute their functions acting as trans-synaptic cell adhesion molecules involved in target specificity and synapse formation or working in cis as cell-intrinsic modulators of neurotrophic factor receptor trafficking and signaling. In this review, we will focus on novel physiological mechanisms through which LRR proteins regulate neurotrophic factor receptor signaling, highlighting the importance of these modulatory events for proper axonal extension and guidance, tissue innervation and dendrite morphogenesis. Additionally, we discuss few examples linking this set of LRR proteins to neurodevelopmental and psychiatric disorders.
Collapse
Affiliation(s)
- Fernanda Ledda
- Division of Molecular and Cellular Neuroscience, Institute of Cell Biology and Neuroscience (IBCN)-CONICET, School of Medicine-University of Buenos Aires (UBA) Buenos Aires, Argentina
| | - Gustavo Paratcha
- Division of Molecular and Cellular Neuroscience, Institute of Cell Biology and Neuroscience (IBCN)-CONICET, School of Medicine-University of Buenos Aires (UBA) Buenos Aires, Argentina
| |
Collapse
|
32
|
Hellström M, Ericsson M, Johansson B, Faraz M, Anderson F, Henriksson R, Nilsson SK, Hedman H. Cardiac hypertrophy and decreased high-density lipoprotein cholesterol in Lrig3-deficient mice. Am J Physiol Regul Integr Comp Physiol 2016; 310:R1045-52. [PMID: 27009049 DOI: 10.1152/ajpregu.00309.2015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 03/21/2016] [Indexed: 11/22/2022]
Abstract
Genetic factors confer risk for cardiovascular disease. Recently, large genome-wide population studies have shown associations between genomic loci close to LRIG3 and heart failure and plasma high-density lipoprotein (HDL) cholesterol level. Here, we ablated Lrig3 in mice and investigated the importance of Lrig3 for heart function and plasma lipid levels. Quantitative reverse transcription-polymerase chain reaction (RT-PCR) was used to analyze Lrig3 expression in the hearts of wild-type and Lrig3-deficient mice. In addition, molecular, physiological, and functional parameters such as organ weights, heart rate, blood pressure, heart structure and function, gene expression in the heart, and plasma insulin, glucose, and lipid levels were evaluated. The Lrig3-deficient mice were smaller than the wild-type mice but otherwise appeared grossly normal. Lrig3 was expressed at detectable but relatively low levels in adult mouse hearts. At 9 mo of age, ad libitum-fed Lrig3-deficient mice had lower insulin levels than wild-type mice. At 12 mo of age, Lrig3-deficient mice exhibited increased blood pressure, and the Lrig3-deficient female mice displayed signs of cardiac hypertrophy as assessed by echocardiography, heart-to-body weight ratio, and expression of the cardiac hypertrophy marker gene Nppa. Additionally, Lrig3-deficient mice had reduced plasma HDL cholesterol and free glycerol. These findings in mice complement the human epidemiological results and suggest that Lrig3 may influence heart function and plasma lipid levels in mice and humans.
Collapse
Affiliation(s)
- Martin Hellström
- Department of Radiation Sciences, Oncology, Umeå University, Umeå, Sweden;
| | - Madelene Ericsson
- Department of Medical Biosciences, Physiological Chemistry, Umeå University, Umeå, Sweden
| | - Bengt Johansson
- Department of Public Health and Clinical Medicine, Medicine, Umeå University, Umeå, Sweden; and
| | - Mahmood Faraz
- Department of Radiation Sciences, Oncology, Umeå University, Umeå, Sweden
| | - Fredrick Anderson
- Department of Medical Biosciences, Physiological Chemistry, Umeå University, Umeå, Sweden
| | - Roger Henriksson
- Department of Radiation Sciences, Oncology, Umeå University, Umeå, Sweden; Regional Cancer Center Stockholm/Gotland, Stockholm, Sweden
| | - Stefan K Nilsson
- Department of Medical Biosciences, Physiological Chemistry, Umeå University, Umeå, Sweden
| | - Håkan Hedman
- Department of Radiation Sciences, Oncology, Umeå University, Umeå, Sweden
| |
Collapse
|
33
|
Alsina FC, Hita FJ, Fontanet PA, Irala D, Hedman H, Ledda F, Paratcha G. Lrig1 is a cell-intrinsic modulator of hippocampal dendrite complexity and BDNF signaling. EMBO Rep 2016; 17:601-16. [PMID: 26935556 DOI: 10.15252/embr.201541218] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 01/28/2016] [Indexed: 11/09/2022] Open
Abstract
Even though many extracellular factors have been identified as promoters of general dendritic growth and branching, little is known about the cell-intrinsic modulators that allow neurons to sculpt distinctive patterns of dendrite arborization. Here, we identify Lrig1, a nervous system-enriched LRR protein, as a key physiological regulator of dendrite complexity of hippocampal pyramidal neurons. Lrig1-deficient mice display morphological changes in proximal dendrite arborization and defects in social interaction. Specifically, knockdown of Lrig1 enhances both primary dendrite formation and proximal dendritic branching of hippocampal neurons, two phenotypes that resemble the effect of BDNF on these neurons. In addition, we show that Lrig1 physically interacts with TrkB and attenuates BDNF signaling. Gain and loss of function assays indicate that Lrig1 restricts BDNF-induced dendrite morphology. Together, our findings reveal a novel and essential role of Lrig1 in regulating morphogenic events that shape the hippocampal circuits and establish that the assembly of TrkB with Lrig1 represents a key mechanism for understanding how specific neuronal populations expand the repertoire of responses to BDNF during brain development.
Collapse
Affiliation(s)
- Fernando Cruz Alsina
- Division of Molecular and Cellular Neuroscience, Institute of Cell Biology and Neuroscience (IBCN)-CONICET School of Medicine University of Buenos Aires (UBA), Buenos Aires, Argentina
| | - Francisco Javier Hita
- Division of Molecular and Cellular Neuroscience, Institute of Cell Biology and Neuroscience (IBCN)-CONICET School of Medicine University of Buenos Aires (UBA), Buenos Aires, Argentina
| | - Paula Aldana Fontanet
- Division of Molecular and Cellular Neuroscience, Institute of Cell Biology and Neuroscience (IBCN)-CONICET School of Medicine University of Buenos Aires (UBA), Buenos Aires, Argentina
| | - Dolores Irala
- Division of Molecular and Cellular Neuroscience, Institute of Cell Biology and Neuroscience (IBCN)-CONICET School of Medicine University of Buenos Aires (UBA), Buenos Aires, Argentina
| | - Håkan Hedman
- Oncology Research Laboratory, Department of Radiation Sciences, Umeå University, Umeå, Sweden
| | - Fernanda Ledda
- Division of Molecular and Cellular Neuroscience, Institute of Cell Biology and Neuroscience (IBCN)-CONICET School of Medicine University of Buenos Aires (UBA), Buenos Aires, Argentina
| | - Gustavo Paratcha
- Division of Molecular and Cellular Neuroscience, Institute of Cell Biology and Neuroscience (IBCN)-CONICET School of Medicine University of Buenos Aires (UBA), Buenos Aires, Argentina
| |
Collapse
|
34
|
Wang Y, Shi C, Lu Y, Poulin EJ, Franklin JL, Coffey RJ. Loss of Lrig1 leads to expansion of Brunner glands followed by duodenal adenomas with gastric metaplasia. THE AMERICAN JOURNAL OF PATHOLOGY 2015; 185:1123-34. [PMID: 25794708 DOI: 10.1016/j.ajpath.2014.12.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 12/16/2014] [Accepted: 12/23/2014] [Indexed: 01/15/2023]
Abstract
Leucine-rich repeats and immunoglobulin-like domains 1 (LRIG1) is a pan-ErbB negative regulator and intestinal stem cell marker down-regulated in many malignancies. We previously reported that 14 of 16 Lrig1-CreERT2/CreERT2 (Lrig1(-/-)) mice developed duodenal adenomas, providing the first in vivo evidence that Lrig1 acts as a tumor suppressor. We extended this study to a larger cohort and found that 49 of 54 Lrig1(-/-) mice develop duodenal adenomas beginning at 3 months. Most adenomas were histologically low grade and overlaid expanded Brunner glands. There was morphologic and biochemical blurring of the boundary between the epithelium and Brunner glands with glandular coexpression of ErbB2, which is normally restricted to the epithelium, and the Brunner gland marker Mucin6. Some adenomas were high grade with reduced Brunner glands. At age 4 to 5 weeks, before adenoma formation, we observed enhanced proliferation in Brunner glands and, at 2 months, an increase in the size of the Brunner gland compartment. Elevated expression of the epidermal growth factor receptor (Egfr) ligands amphiregulin and β-cellulin, as well as Egfr and phosphorylated Egfr, was detected in adenomas compared with adjacent normal tissue. These adenomas expressed the gastric-specific genes gastrokine1 and mucin5ac, indicating gastric metaplasia. Moreover, we found that a subset of human duodenal tumors exhibited features of LRIG1(-/-) adenomas, including loss of LRIG1, gastric metaplasia (MUCIN5AC and MUCIN6), and increased amphiregulin and Egfr activity.
Collapse
Affiliation(s)
- Yang Wang
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Chanjuan Shi
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Yuanyuan Lu
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Emily J Poulin
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Jeffery L Franklin
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Robert J Coffey
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee; Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, Tennessee; Department of Veterans Affairs Medical Center, Nashville, Tennessee.
| |
Collapse
|
35
|
Meabon JS, de Laat R, Ieguchi K, Serbzhinsky D, Hudson MP, Huber BR, Wiley JC, Bothwell M. Intracellular LINGO-1 negatively regulates Trk neurotrophin receptor signaling. Mol Cell Neurosci 2015; 70:1-10. [PMID: 26546150 DOI: 10.1016/j.mcn.2015.11.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2015] [Revised: 10/08/2015] [Accepted: 11/02/2015] [Indexed: 11/30/2022] Open
Abstract
Neurotrophins, essential regulators of many aspects of neuronal differentiation and function, signal via four receptors, p75, TrkA, TrkB and TrkC. The three Trk paralogs are members of the LIG superfamily of membrane proteins, which share extracellular domains consisting of leucine-rich repeat and C2 Ig domains. Another LIG protein, LINGO-1 has been reported to bind and influence signaling of p75 as well as TrkA, TrkB and TrkC. Here we examine the manner in which LINGO-1 influences the function of TrkA, TrkB and TrkC. We report that Trk activation promotes Trk association with LINGO-1, and that this association promotes Trk degradation by a lysosomal mechanism. This mechanism resembles the mechanism by which another LIG protein, LRIG1, promotes lysosomal degradation of receptor tyrosine kinases such as the EGF receptor. We present evidence indicating that the Trk/LINGO-1 interaction occurs, in part, within recycling endosomes. We show that a mutant form of LINGO-1, with much of the extracellular domain deleted, has the capacity to enhance TrkA signaling in PC12 cells, possibly by acting as an inhibitor of Trk down-regulation by full length LINGO-1. We propose that LINGO-1 functions as a negative feedback regulator of signaling by cognate receptor tyrosine kinases including TrkA, TrkB and TrkC.
Collapse
Affiliation(s)
- James S Meabon
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA 98195, USA; Mental Illness Research Education and Clinical Center, VA Medical Center, Seattle, WA 98108, USA
| | | | - Katsuaki Ieguchi
- Department of Pharmacology, Tokyo Women's Medical University, Tokyo, Japan
| | | | - Mark P Hudson
- Department of Physiology & Biophysics, University of Washington, Seattle, WA 98195, USA
| | - B Russel Huber
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA 98195, USA
| | - Jesse C Wiley
- Department of Comparative Medicine, University of Washington, Seattle, WA 98195, USA
| | - Mark Bothwell
- Department of Physiology & Biophysics, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
36
|
Yokdang N, Hatakeyama J, Wald JH, Simion C, Tellez JD, Chang DZ, Swamynathan MM, Chen M, Murphy WJ, Carraway Iii KL, Sweeney C. LRIG1 opposes epithelial-to-mesenchymal transition and inhibits invasion of basal-like breast cancer cells. Oncogene 2015; 35:2932-47. [PMID: 26387542 PMCID: PMC4805527 DOI: 10.1038/onc.2015.345] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 06/24/2015] [Accepted: 08/04/2015] [Indexed: 01/04/2023]
Abstract
LRIG1, a member of the LRIG family of transmembrane leucine rich repeat-containing proteins, is a negative regulator of receptor tyrosine kinase signaling and a tumor suppressor. LRIG1 expression is broadly decreased in human cancer and in breast cancer, low expression of LRIG1 has been linked to decreased relapse-free survival. Recently, low expression of LRIG1 was revealed to be an independent risk factor for breast cancer metastasis and death. These findings suggest that LRIG1 may oppose breast cancer cell motility and invasion, cellular processes which are fundamental to metastasis. However, very little is known of LRIG1 function in this regard. In this study, we demonstrate that LRIG1 is down-regulated during epithelial to mesenchymal transition (EMT) of human mammary epithelial cells, suggesting that LRIG1 expression may represent a barrier to EMT. Indeed, depletion of endogenous LRIG1 in human mammary epithelial cells expands the stem cell population, augments mammosphere formation and accelerates EMT. Conversely, expression of LRIG1 in highly invasive Basal B breast cancer cells provokes a mesenchymal to epithelial transition accompanied by a dramatic suppression of tumorsphere formation and a striking loss of invasive growth in three-dimensional culture. LRIG1 expression perturbs multiple signaling pathways and represses markers and effectors of the mesenchymal state. Furthermore, LRIG1 expression in MDA-MB-231 breast cancer cells significantly slows their growth as tumors, providing the first in vivo evidence that LRIG1 functions as a growth suppressor in breast cancer.
Collapse
Affiliation(s)
- N Yokdang
- Department of Biochemistry and Molecular Medicine, University of California, Davis, Sacramento, CA, USA
| | - J Hatakeyama
- Department of Biochemistry and Molecular Medicine, University of California, Davis, Sacramento, CA, USA
| | - J H Wald
- Department of Biochemistry and Molecular Medicine, University of California, Davis, Sacramento, CA, USA
| | - C Simion
- Department of Biochemistry and Molecular Medicine, University of California, Davis, Sacramento, CA, USA
| | - J D Tellez
- Department of Pathology and Laboratory Medicine, University of California, Davis, Sacramento, CA, USA
| | - D Z Chang
- Department of Biochemistry and Molecular Medicine, University of California, Davis, Sacramento, CA, USA
| | - M M Swamynathan
- Department of Biochemistry and Molecular Medicine, University of California, Davis, Sacramento, CA, USA
| | - M Chen
- Department of Pathology and Laboratory Medicine, University of California, Davis, Sacramento, CA, USA
| | - W J Murphy
- Department of Dermatology, University of California, Davis, Sacramento, CA, USA
| | - K L Carraway Iii
- Department of Biochemistry and Molecular Medicine, University of California, Davis, Sacramento, CA, USA
| | - C Sweeney
- Department of Biochemistry and Molecular Medicine, University of California, Davis, Sacramento, CA, USA
| |
Collapse
|
37
|
Genome-wide association study of colorectal cancer identifies six new susceptibility loci. Nat Commun 2015; 6:7138. [PMID: 26151821 DOI: 10.1038/ncomms8138] [Citation(s) in RCA: 128] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 04/10/2015] [Indexed: 12/21/2022] Open
Abstract
Genetic susceptibility to colorectal cancer is caused by rare pathogenic mutations and common genetic variants that contribute to familial risk. Here we report the results of a two-stage association study with 18,299 cases of colorectal cancer and 19,656 controls, with follow-up of the most statistically significant genetic loci in 4,725 cases and 9,969 controls from two Asian consortia. We describe six new susceptibility loci reaching a genome-wide threshold of P<5.0E-08. These findings provide additional insight into the underlying biological mechanisms of colorectal cancer and demonstrate the scientific value of large consortia-based genetic epidemiology studies.
Collapse
|
38
|
Decreased LRIG1 in fulvestrant-treated luminal breast cancer cells permits ErbB3 upregulation and increased growth. Oncogene 2015; 35:1143-52. [PMID: 26148232 PMCID: PMC4703573 DOI: 10.1038/onc.2015.169] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 02/18/2015] [Accepted: 02/22/2015] [Indexed: 12/14/2022]
Abstract
ErbB3, a member of the ErbB family of receptor tyrosine kinases, is a potent activator of phosphatidyl inositol-3 kinase (PI3K) and mTOR signaling, driving tumor cell survival and therapeutic resistance in breast cancers. In luminal breast cancers, ErbB3 upregulation following treatment with the anti-estrogen fulvestrant enhances PI3K/mTOR-mediated cell survival. However, the mechanism by which ErbB3 is upregulated in fulvestrant-treated cells is unknown. We found that ErbB3 protein levels and cell surface presentation were increased following fulvestrant treatment, focusing our attention on proteins that regulate ErbB3 at the cell surface, including Nrdp1, NEDD4, and LRIG1. Among these, only LRIG1 correlated positively with ERα, but inversely with ErbB3 in clinical breast cancer datasets. LRIG1, an estrogen-inducible ErbB down-regulator, was decreased in a panel of fulvestrant-treated luminal breast cancer cells. Ectopic LRIG1 expression from an estrogen-independent promoter uncoupled LRIG1 from estrogen regulation, thus sustaining LRIG1 and maintaining low ErbB3 levels in fulvestrant-treated cells. An LRIG1 mutant lacking the ErbB3 interaction motif was insufficient to down-regulate ErbB3. Importantly, LRIG1 overexpression improved fulvestrant-mediated growth inhibition, while cells expressing the LRIG1 mutant were poorly sensitive to fulvestrant, despite effective ERα down-regulation. Consistent with these results, LRIG1 expression correlated positively with increased disease-free survival in anti-estrogen-treated breast cancer patients. These data suggest that ERα-dependent expression of LRIG1 dampens ErbB3 signaling in luminal breast cancer cells, and by blocking ERα activity with fulvestrant, LRIG1 is decreased thus permitting ErbB3 accumulation, enhanced ErbB3 signaling to cell survival pathways, and blunting therapeutic response to fulvestrant.
Collapse
|
39
|
Song M, Giza J, Proenca CC, Jing D, Elliott M, Dincheva I, Shmelkov SV, Kim J, Schreiner R, Huang SH, Castrén E, Prekeris R, Hempstead BL, Chao MV, Dictenberg JB, Rafii S, Chen ZY, Rodriguez-Boulan E, Lee FS. Slitrk5 Mediates BDNF-Dependent TrkB Receptor Trafficking and Signaling. Dev Cell 2015; 33:690-702. [PMID: 26004511 DOI: 10.1016/j.devcel.2015.04.009] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 02/25/2015] [Accepted: 04/08/2015] [Indexed: 11/25/2022]
Abstract
Recent studies in humans and in genetic mouse models have identified Slit- and NTRK-like family (Slitrks) as candidate genes for neuropsychiatric disorders. All Slitrk isotypes are highly expressed in the CNS, where they mediate neurite outgrowth, synaptogenesis, and neuronal survival. However, the molecular mechanisms underlying these functions are not known. Here, we report that Slitrk5 modulates brain-derived neurotrophic factor (BDNF)-dependent biological responses through direct interaction with TrkB receptors. Under basal conditions, Slitrk5 interacts primarily with a transsynaptic binding partner, protein tyrosine phosphatase δ (PTPδ); however, upon BDNF stimulation, Slitrk5 shifts to cis-interactions with TrkB. In the absence of Slitrk5, TrkB has a reduced rate of ligand-dependent recycling and altered responsiveness to BDNF treatment. Structured illumination microscopy revealed that Slitrk5 mediates optimal targeting of TrkB receptors to Rab11-positive recycling endosomes through recruitment of a Rab11 effector protein, Rab11-FIP3. Thus, Slitrk5 acts as a TrkB co-receptor that mediates its BDNF-dependent trafficking and signaling.
Collapse
Affiliation(s)
- Minseok Song
- Department of Psychiatry, Weill Medical College of Cornell University, 1300 York Avenue, New York, NY 10065, USA
| | - Joanna Giza
- Department of Psychiatry, Weill Medical College of Cornell University, 1300 York Avenue, New York, NY 10065, USA
| | - Catia C Proenca
- Developmental and Molecular Pathways, Novartis Institutes for Biomedical Research, 4002 Basel, Switzerland
| | - Deqiang Jing
- Department of Psychiatry, Weill Medical College of Cornell University, 1300 York Avenue, New York, NY 10065, USA
| | - Mark Elliott
- Department of Psychiatry, University of California at San Francisco, 600 16th Street, San Francisco, CA 94158, USA
| | - Iva Dincheva
- Department of Psychiatry, Weill Medical College of Cornell University, 1300 York Avenue, New York, NY 10065, USA
| | - Sergey V Shmelkov
- Department of Biochemistry and Molecular Pharmacology, Langone Medical Center, Skirball Institute of Biomolecular Medicine, New York University School of Medicine, 540 First Avenue, New York, NY 10016, USA
| | - Jihye Kim
- Department of Psychiatry, Weill Medical College of Cornell University, 1300 York Avenue, New York, NY 10065, USA; Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Ryan Schreiner
- Dyson Vision Research Institute, Department of Ophthalmology, Weill Medical College of Cornell University, 1300 York Avenue, New York, NY 10065, USA
| | - Shu-Hong Huang
- Department of Neurobiology, Shandong Provincial Key Laboratory of Mental Disorders, School of Medicine and the Collaborative Innovation Center for Brain Science, Shandong University, No. 44 Wenhua Xi Road, Jinan, Shandong 250012, China
| | - Eero Castrén
- Neuroscience Centre, University of Helsinki, 00790 Helsinki, Finland
| | - Rytis Prekeris
- Department of Cell and Developmental Biology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Barbara L Hempstead
- Division of Hematology/Medical Oncology, Weill Medical College of Cornell University, 1300 York Avenue, New York, NY 10065, USA
| | - Moses V Chao
- Molecular Neurobiology Program, Skirball Institute of Biomolecular Medicine, New York University School of Medicine, 540 First Avenue, New York, NY 10016, USA
| | - Jason B Dictenberg
- AccelBio, DMC Advanced Biotechnology Incubator, Brooklyn, NY 11226, USA; Department of Cell Biology, SUNY Downstate Medical School, 450 Clarkson Avenue, Brooklyn, NY 11203, USA
| | - Shahin Rafii
- Department of Genetic Medicine, Weill Medical College of Cornell University, 1300 York Avenue, New York, NY 10065, USA
| | - Zhe-Yu Chen
- Department of Neurobiology, Shandong Provincial Key Laboratory of Mental Disorders, School of Medicine and the Collaborative Innovation Center for Brain Science, Shandong University, No. 44 Wenhua Xi Road, Jinan, Shandong 250012, China.
| | - Enrique Rodriguez-Boulan
- Dyson Vision Research Institute, Department of Ophthalmology, Weill Medical College of Cornell University, 1300 York Avenue, New York, NY 10065, USA.
| | - Francis S Lee
- Department of Psychiatry, Weill Medical College of Cornell University, 1300 York Avenue, New York, NY 10065, USA; Department of Pharmacology, Weill Medical College of Cornell University, 1300 York Avenue, New York, NY 10065, USA
| |
Collapse
|
40
|
Xu Y, Soo P, Walker F, Zhang HH, Redpath N, Tan CW, Nicola NA, Adams TE, Garrett TP, Zhang JG, Burgess AW. LRIG1 extracellular domain: structure and function analysis. J Mol Biol 2015; 427:1934-48. [PMID: 25765764 DOI: 10.1016/j.jmb.2015.03.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 02/05/2015] [Accepted: 03/03/2015] [Indexed: 12/25/2022]
Abstract
We have expressed and purified three soluble fragments of the human LRIG1-ECD (extracellular domain): the LRIG1-LRR (leucine-rich repeat) domain, the LRIG1-3Ig (immunoglobulin-like) domain, and the LRIG1-LRR-1Ig fragment using baculovirus vectors in insect cells. The two LRIG1 domains crystallised so that we have been able to determine the three-dimensional structures at 2.3Å resolution. We developed a three-dimensional structure for the LRIG1-ECD using homology modelling based on the LINGO-1 structure. The LRIG1-LRR domain and the LRIG1-LRR-1Ig fragment are monomers in solution, whereas the LRIG1-3Ig domain appears to be dimeric. We could not detect any binding of the LRIG1 domains or the LRIG1-LRR-1Ig fragment to the EGF receptor (EGFR), either in solution using biosensor analysis or when the EGFR was expressed on the cell surface. The FLAG-tagged LRIG1-LRR-1Ig fragment binds weakly to colon cancer cells regardless of the presence of EGFRs. Similarly, neither the soluble LRIG1-LRR nor the LRIG1-3Ig domains nor the full-length LRIG1 co-expressed in HEK293 cells inhibited ligand-stimulated activation of cell-surface EGFR.
Collapse
Affiliation(s)
- Yibin Xu
- Structural Biology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia; Cancer and Haematology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
| | - Priscilla Soo
- Cancer and Haematology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
| | - Francesca Walker
- Structural Biology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Hui Hua Zhang
- Structural Biology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
| | - Nicholas Redpath
- Cancer and Haematology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Chin Wee Tan
- Structural Biology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Nicos A Nicola
- Cancer and Haematology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Timothy E Adams
- CSIRO Manufacturing Flagship, Parkville, Victoria 3052, Australia
| | - Thomas P Garrett
- Structural Biology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Jian-Guo Zhang
- Cancer and Haematology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Antony W Burgess
- Structural Biology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia; Department of Surgery, RMH, University of Melbourne, Parkville, Victoria 3010, Australia.
| |
Collapse
|
41
|
Construction of human LRIG1-TAT fusions and TAT-mediated LRIG1 protein delivery. Biomed Pharmacother 2014; 69:396-401. [PMID: 25661388 DOI: 10.1016/j.biopha.2014.12.034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 12/10/2014] [Indexed: 11/23/2022] Open
Abstract
Human leucine-rich repeats and immunoglobulin-like domains (LRIG1) is a tumor suppressor in animals and also functions as an endogenous suppressor in human tumor. The level of LRIG1 expression is highly associated with patient survival in clinic. The exploration of LRIG1 as a protein drug is an important task. HIV-1 transactivator of transcription peptide (TAT) is an excellent candidate for protein transduction. In this study, human LRIG1 was cloned and LRIG1-TAT fusion gene was constructed. The fusion proteins were produced by an Escherichia coli strain and purified by Ni(2+)-resin. Western blot assay and immunofluorescence microscopy were employed for monitoring LRIG1-TAT protein transduction into human neuroblastoma cells. Cell proliferation and invasion were measured for evaluating the effect of LRIG1-TAT on neuroblastoma cell. Our data showed that LRIG1 protein can be delivered into cells or organs in living animals by TAT. One-time transduction of LRIG1 proteins into human neuroblastoma cells enhanced cell proliferation and increased cell invasion. In vivo transduction showed that LRIG1-TAT protein can be presented in living animal organs. Our experiments provide a new vision on LRIG1 applications and also offer a therapy window for revealing the intrinsic function of LRIG1 on cells.
Collapse
|
42
|
Shao LM, Yang JA, Wang YF, Wu P, Li JQ, Chen QX. MicroRNA-19a promotes glioma cell growth by repressing LRIG1. Int J Clin Exp Med 2014; 7:5067-5074. [PMID: 25664006 PMCID: PMC4307453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 11/25/2014] [Indexed: 06/04/2023]
Abstract
Growing evidence indicates that deregulation of miRNAs contributes to the development of glioma. In present study, we found that the level of miRNA-19a was significantly elevated in glioma tissues and cell lines. Moreover, down-regulation of miRNA-19a dramatically repressed glioma cell growth in vitro and in vivo. Meanwhile, the expression of LRIG1, a tumor suppressor in glioma, was increased following miRNA-19a knockdown. Furthermore, luciferase reporter assay confirmed that LRIG1 was a direct target of miRNA-19a. In addition, silencing of LRIG1 could reverse the suppressive effect of miRNA-19a inhibitor. Taken together, our results demonstrated that down-regulation of miRNA-19a could suppress the growth of glioma cells, at least in part, through up-regulating LRIG1.
Collapse
Affiliation(s)
- Ling-Min Shao
- Department of Neurosurgery, Renmin Hospital of Wuhan University Wuhan 430060, China
| | - Ji-An Yang
- Department of Neurosurgery, Renmin Hospital of Wuhan University Wuhan 430060, China
| | - Yue-Fei Wang
- Department of Neurosurgery, Renmin Hospital of Wuhan University Wuhan 430060, China
| | - Peng Wu
- Department of Neurosurgery, Renmin Hospital of Wuhan University Wuhan 430060, China
| | - Ji-Qiang Li
- Department of Neurosurgery, Renmin Hospital of Wuhan University Wuhan 430060, China
| | - Qian-Xue Chen
- Department of Neurosurgery, Renmin Hospital of Wuhan University Wuhan 430060, China
| |
Collapse
|
43
|
Soluble LRIG2 ectodomain is released from glioblastoma cells and promotes the proliferation and inhibits the apoptosis of glioblastoma cells in vitro and in vivo in a similar manner to the full-length LRIG2. PLoS One 2014; 9:e111419. [PMID: 25353163 PMCID: PMC4213030 DOI: 10.1371/journal.pone.0111419] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 10/01/2014] [Indexed: 11/25/2022] Open
Abstract
The human leucine-rich repeats and immunoglobulin-like domains (LRIG) gene family contains LRIG1, 2 and 3, encoding integral membrane proteins with an ectodomain, a transmembrane domain and a cytoplasmic tail. LRIG1 negatively regulates multiple receptor tyrosine kinases signaling including the epidermal growth factor receptor (EGFR) and is a proposed tumor suppressor. The soluble LRIG1 ectodomain is demonstrated to be shed naturally and inhibit the progression of glioma. However, little is known regarding the functions of LRIG2. In oligodendroglioma, LRIG2 expression is associated with poor survival, suggesting that LRIG2 might have different functions compared with LRIG1. Since soluble LRIG1 ectodomain has a similar function to the full-length LRIG1, we hypothesize that the different roles exerted by LRIG2 and LRIG1 result from the difference of their ectodomains. Here, we addressed the functions of LRIG2 and LRIG2 ectodomain in the proliferation and apoptosis of glioma and the possible underlying mechanisms. Firstly, we found that LRIG2 expression levels positively correlated with the grade of glioma. Further, we demonstrated for the first time that soluble LRIG2 ectodomain was capable of being released from glioblastoma cells and exerted a pro-proliferative effect. Overexpression of LRIG2 ectodomain promoted the proliferation and inhibited the apoptosis of glioblastoma cells in vitro and in vivo in a similar manner to the full-length LRIG2. Both full-length LRIG2 and LRIG2 ectodomain were found to physically interact with EGFR, enhance the activation of EGFR and its downstream PI3 K/Akt pathway. To our knowledge, this is the first report demonstrating that soluble LRIG2 ectodomain is capable of being released from glioblastoma cells and exerts a similar role to the full-length LRIG2 in the regulation of EGFR signaling in the progression of glioblastoma. LRIG2 ectodomain, with potent pro-tumor effects, holds promise for providing a new therapeutic target for the treatment of glioblastoma.
Collapse
|
44
|
Abstract
BACKGROUND Optimal treatment decisions for cancer patients require reliable prognostic and predictive information. However, this information is inadequate in many cases. Several recent studies suggest that the leucine-rich repeats and immunoglobulin-like domains (LRIG) genes, transcripts, and proteins have prognostic implications in various cancer types. MATERIAL AND METHODS Relevant literature was identified on PubMed using the key words lrig1, lrig2, and lrig3. LRIG mRNA expression in cancer versus normal tissues was investigated using the Oncomine database. RESULTS The three human LRIG genes, LRIG1, LRIG2, and LRIG3, encode single-pass transmembrane proteins. LRIG1 is a negative regulator of growth factor signaling that has been shown to function as a tumor suppressor in vitro and in vivo in mice. The functions of LRIG2 and LRIG3 are less well defined. LRIG gene and protein expression are commonly dysregulated in human cancer. In early stage breast cancer, LRIG1 copy number was recently shown to predict early and late relapse in addition to overall survival; in nasopharyngeal carcinoma, loss of LRIG1 is also associated with poor survival. LRIG gene and protein expression have prognostic value in breast cancer, uterine cervical cancer, head-and-neck cancer, glioma, non-small cell lung cancer, prostate cancer, and cutaneous squamous cell carcinoma. In general, expression of LRIG1 and LRIG3 is associated with good survival, whereas expression of LRIG2 is associated with poor survival. Additionally, LRIG1 regulates cellular sensitivity to anti-cancer drugs, which indicates a possible role as a predictive marker. CONCLUSIONS LRIG gene statuses and mRNA and protein expression are clinically relevant prognostic indicators in several types of human cancer. We propose that LRIG analyses could become important when making informed and individualized clinical decisions regarding the management of cancer patients.
Collapse
MESH Headings
- Animals
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Breast Neoplasms/genetics
- Breast Neoplasms/metabolism
- Carcinoma, Non-Small-Cell Lung/genetics
- Carcinoma, Non-Small-Cell Lung/metabolism
- Carcinoma, Non-Small-Cell Lung/mortality
- Carcinoma, Squamous Cell/genetics
- Carcinoma, Squamous Cell/metabolism
- Carcinoma, Squamous Cell/mortality
- Down-Regulation
- Female
- Gene Expression
- Genes, Tumor Suppressor
- Glioma/genetics
- Glioma/metabolism
- Glioma/mortality
- Head and Neck Neoplasms/genetics
- Head and Neck Neoplasms/metabolism
- Humans
- Lung Neoplasms/genetics
- Lung Neoplasms/metabolism
- Lung Neoplasms/mortality
- Male
- Membrane Glycoproteins/genetics
- Membrane Glycoproteins/metabolism
- Membrane Proteins/genetics
- Membrane Proteins/metabolism
- Mice
- Nasopharyngeal Neoplasms/genetics
- Nasopharyngeal Neoplasms/metabolism
- Neoplasm Proteins/genetics
- Neoplasm Proteins/metabolism
- Neoplasm Recurrence, Local
- Neoplasms/genetics
- Neoplasms/metabolism
- Neoplasms/mortality
- Prognosis
- RNA, Messenger/metabolism
- Up-Regulation
- Uterine Cervical Neoplasms/genetics
- Uterine Cervical Neoplasms/metabolism
Collapse
Affiliation(s)
- David Lindquist
- Oncology Research Laboratory, Department of Radiation Sciences, Umeå University, Umeå, Sweden
| | - Samuel Kvarnbrink
- Oncology Research Laboratory, Department of Radiation Sciences, Umeå University, Umeå, Sweden
| | - Roger Henriksson
- Oncology Research Laboratory, Department of Radiation Sciences, Umeå University, Umeå, Sweden
| | - Håkan Hedman
- Oncology Research Laboratory, Department of Radiation Sciences, Umeå University, Umeå, Sweden
- Correspondence: H. Hedman, Oncology Research Laboratory, Department of Radiation Sciences, Umeå University, SE-90187 Umeå, Sweden. Tel: + 46 90 785 2881. E-mail:
| |
Collapse
|
45
|
Guo Z, Chen Q, Liu B, Tian D, Zhang S, Li M. LRIG1 enhances chemosensitivity by modulating BCL-2 expression and receptor tyrosine kinase signaling in glioma cells. Yonsei Med J 2014; 55:1196-205. [PMID: 25048475 PMCID: PMC4108802 DOI: 10.3349/ymj.2014.55.5.1196] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
PURPOSE Leucine-rich repeats and immunoglobulin-like domains 1 (LRIG1) are an inhibitor of receptor tyrosine kinases (RTKs) that was discovered in recent years, and many studies showed that LRIG1 is a tumor suppressor gene and may be related to tumor drug resistance. In this study, we explored whether LRIG1 protein expression can improve the chemosensitivity of glioma cells and what was its mechanism. MATERIALS AND METHODS We collected 93 cases of glioma tissues and detected the expression of LRIG1 and BCL-2. We constructed a multidrug resistance cell line U251/multidrug resistance (MDR) and examined the change of LRIG1 and BCL-2 at mRNA and protein expression levels. LRIG1 expression was upregulated in U251/MDR cells and we detected the change of multidrug resistance. Meanwhile, we changed the expression of LRIG1 and BCL-2 and explored the relationship between LRIG1 and BCL-2. Finally, we also explored the relationship between LRIG1 and RTKs. RESULTS LRIG1 was negatively correlated with BCL-2 expression in glioma tissue and U251/MDR cells, and upregulation of LRIG1 can enhance chemosensitivity and inhibit BCL-2 expression. Furthermore, LRIG1 was negatively correlated with RTKs in U251/MDR cells. CONCLUSION These results demonstrated that LRIG1 can improve chemosensitivity by modulating BCL-2 expression and RTK signaling in glioma cells.
Collapse
Affiliation(s)
- Zhentao Guo
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Qianxue Chen
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China.
| | - Baohui Liu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Daofeng Tian
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Shenqi Zhang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Mingchang Li
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
46
|
USP8 modulates ubiquitination of LRIG1 for Met degradation. Sci Rep 2014; 4:4980. [PMID: 24828152 PMCID: PMC4021411 DOI: 10.1038/srep04980] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Accepted: 04/28/2014] [Indexed: 11/09/2022] Open
Abstract
The Met receptor tyrosine kinase is an attractive target for cancer therapy as it promotes invasive tumor growth. SAIT301 is a novel anti-Met antibody, which induces LRIG1-mediated Met degradation and inhibits tumor growth. However, detailed downstream mechanism by which LRIG1 mediates target protein down-regulation is unknown. In the present study, we discovered that SAIT301 induces ubiquitination of LRIG1, which in turn promotes recruitment of Met and LRIG1 complex to the lysosome through its interaction with Hrs, resulting in concomitant degradation of both LRIG1 and Met. We also identified USP8 as a LRIG1-specific deubiquitinating enzyme, reporting the interaction between USP8 and LRIG1 for the first time. SAIT301 triggers degradation of LRIG1 by inhibiting the interaction of LRIG1 and USP8, which regulates ubiquitin modification and stability of LRIG1. In summary, SAIT301 employs ubiquitination of LRIG1 for its highly effective Met degradation. This unique feature of SAIT301 enables it to function as a fully antagonistic antibody without Met activation. We found that USP8 is involved in deubiquitination of LRIG1, influencing the efficiency of Met degradation. The relation of Met, LRIG1 and USP8 strongly supports the potential clinical benefit of a combination treatment of a USP8 inhibitor and a Met inhibitor, such as SAIT301.
Collapse
|
47
|
Lindquist D, Näsman A, Tarján M, Henriksson R, Tot T, Dalianis T, Hedman H. Expression of LRIG1 is associated with good prognosis and human papillomavirus status in oropharyngeal cancer. Br J Cancer 2014; 110:1793-800. [PMID: 24548859 PMCID: PMC3974094 DOI: 10.1038/bjc.2014.87] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Revised: 12/02/2013] [Accepted: 01/22/2014] [Indexed: 01/08/2023] Open
Abstract
Background: The incidence of human papillomavirus (HPV)-associated oropharyngeal cancer has increased rapidly during the past decades. HPV is typically associated with a favourable outcome; however, a need exists for new and more effective prognostic and predictive markers for this disease. Leucine-rich repeats and immunoglobulin-like domains (LRIG)-1 is a tumour suppressor protein that belongs to the LRIG family. LRIG1 expression has prognostic significance in various human cancers, including cervical cancer, where HPV is a key aetiological agent. Methods: The prognostic value of LRIG1 and LRIG2 immunoreactivity was investigated in tumour specimens from a Swedish cohort of patients with tonsillar and base of tongue oropharyngeal cancers, including 278 patients. Results: LRIG1 immunoreactivity correlated with disease-free survival and overall survival in univariate and multivariate analyses. Notably, patients with HPV-positive tumours with high LRIG1 staining intensity or a high percentage of LRIG1-positive cells showed a very good prognosis. Furthermore, LRIG1 expression correlated with HPV status, whereas LRIG2 expression inversely correlated with HPV status. Conclusions: Taken together, the results suggest that LRIG1 immunoreactivity could be a clinically important prognostic marker in HPV-associated oropharyngeal cancer.
Collapse
Affiliation(s)
- D Lindquist
- Department of Radiation Sciences, Umeå University, SE-901 87, Umeå, Sweden
| | - A Näsman
- Department of Oncology-Pathology, Karolinska Institute, SE-171 76, Stockholm, Sweden
| | - M Tarján
- Department of Pathology and Clinical Cytology, Central Hospital Falun, SE-791 29, Falun, Sweden
| | - R Henriksson
- Department of Radiation Sciences, Umeå University, SE-901 87, Umeå, Sweden
| | - T Tot
- Department of Pathology and Clinical Cytology, Central Hospital Falun, SE-791 29, Falun, Sweden
| | - T Dalianis
- Department of Oncology-Pathology, Karolinska Institute, SE-171 76, Stockholm, Sweden
| | - H Hedman
- Department of Radiation Sciences, Umeå University, SE-901 87, Umeå, Sweden
| |
Collapse
|
48
|
Simion C, Cedano-Prieto ME, Sweeney C. The LRIG family: enigmatic regulators of growth factor receptor signaling. Endocr Relat Cancer 2014; 21:R431-43. [PMID: 25183430 PMCID: PMC4182143 DOI: 10.1530/erc-14-0179] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The leucine-rich repeats and immunoglobulin-like domains (LRIG) family of transmembrane proteins contains three vertebrate members (LRIG1, LRIG2 and LRIG3) and one member each in flies (Lambik) and worms (Sma-10). LRIGs have stepped into the spotlight as essential regulators of growth factor receptors, including receptor tyrosine and serine/threonine kinases. LRIGs have been found to both negatively (LRIG1 and LRIG3) and positively (Sma-10 and LRIG3) regulate growth factor receptor expression and signaling, although the precise molecular mechanisms by which LRIGs function are not yet understood. The most is known about LRIG1, which was recently demonstrated to be a tumor suppressor. Indeed, in vivo experiments reinforce the essential link between LRIG1 and repression of its targets for tissue homeostasis. LRIG1 has also been identified as a stem cell marker and regulator of stem cell quiescence in a variety of tissues, discussed within. Comparably, less is known about LRIG2 and LRIG3, although studies to date suggest that their functions are largely distinct from that of LRIG1 and that they likely do not serve as growth/tumor suppressors. Finally, the translational applications of expressing soluble forms of LRIG1 in LRIG1-deficient tumors are being explored and hold tremendous promise.
Collapse
Affiliation(s)
- Catalina Simion
- Department of Biochemistry and Molecular MedicineUniversity of California Davis School of Medicine, 4645 2nd Avenue, Sacramento, California 95817, USA
| | - Maria Elvira Cedano-Prieto
- Department of Biochemistry and Molecular MedicineUniversity of California Davis School of Medicine, 4645 2nd Avenue, Sacramento, California 95817, USA
| | - Colleen Sweeney
- Department of Biochemistry and Molecular MedicineUniversity of California Davis School of Medicine, 4645 2nd Avenue, Sacramento, California 95817, USA
| |
Collapse
|
49
|
Winther M, Walmod PS. Neural cell adhesion molecules belonging to the family of leucine-rich repeat proteins. ADVANCES IN NEUROBIOLOGY 2014; 8:315-95. [PMID: 25300143 DOI: 10.1007/978-1-4614-8090-7_14] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Leucine-rich repeats (LRRs) are motifs that form protein-ligand interaction domains. There are approximately 140 human genes encoding proteins with extracellular LRRs. These encode cell adhesion molecules (CAMs), proteoglycans, G-protein-coupled receptors, and other types of receptors. Here we give a brief description of 36 proteins with extracellular LRRs that all can be characterized as CAMs or putative CAMs expressed in the nervous system. The proteins are involved in multiple biological processes in the nervous system including the proliferation and survival of cells, neuritogenesis, axon guidance, fasciculation, myelination, and the formation and maintenance of synapses. Moreover, the proteins are functionally implicated in multiple diseases including cancer, hearing impairment, glaucoma, Alzheimer's disease, multiple sclerosis, Parkinson's disease, autism spectrum disorders, schizophrenia, and obsessive-compulsive disorders. Thus, LRR-containing CAMs constitute a large group of proteins of pivotal importance for the development, maintenance, and regeneration of the nervous system.
Collapse
|
50
|
HER. Mol Oncol 2013. [DOI: 10.1017/cbo9781139046947.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|