1
|
Sun Y, Fu C, Gu L, Zhao H, Feng Y, Jin C. Sex-related differences and associated transcriptional signatures in the brain ventricular system and cerebrospinal fluid development in full-term neonates. Biol Sex Differ 2025; 16:35. [PMID: 40414938 PMCID: PMC12103790 DOI: 10.1186/s13293-025-00719-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Accepted: 05/18/2025] [Indexed: 05/27/2025] Open
Abstract
BACKGROUND The cerebrospinal fluid (CSF) is known to serve as a unique environment for neurodevelopment, with specific proteins secreted by epithelial cells of the choroid plexus (CP) playing crucial roles in cortical development and cell differentiation. Sex-related differences in the brain in early life have been widely identified, but few studies have investigated the neonatal CSF system and associated transcriptional signatures. METHODS This study included 75 full-term neonates [44 males and 31 females; gestational age (GA) = 37-42 weeks] without significant MRI abnormalities from the dHCP (developing Human Connectome Project) database. Deep-learning automated segmentation was used to measure various metrics of the brain ventricular system and CSF. Sex-related differences and relationships with postnatal age were analyzed by linear regression. Correlations between the CP and CSF space metrics were also examined. LASSO regression was further applied to identify the key genes contributing to the sex-related CSF system differences by using regional gene expression data from the Allen Human Brain Atlas. RESULTS Right lateral ventricles [2.42 ± 0.98 vs. 2.04 ± 0.45 cm3 (mean ± standard deviation), p = 0.036] and right CP (0.16 ± 0.07 vs. 0.13 ± 0.04 cm3, p = 0.024) were larger in males, with a stronger volume correlation (male/female correlation coefficients r: 0.798 vs. 0.649, p < 1 × 10- 4). No difference was found in total CSF volume, while peripheral CSF (male/female β: 1.218 vs. 1.064) and CP (male/female β: 0.008 vs. 0.005) exhibited relatively faster growth in males. Additionally, the volumes of the lateral ventricular system, third ventricle, peripheral CSF, and total CSF were significantly correlated with their corresponding CP volume (r: 0.362 to 0.799, p < 0.05). DERL2 (Degradation in Endoplasmic Reticulum Protein 2) (r = 0.1319) and MRPL48 (Mitochondrial Large Ribosomal Subunit Protein) (r=-0.0370) were identified as potential key genes associated with sex-related differences in CSF system. CONCLUSION Male neonates present larger volumes and faster growth of the right lateral ventricle, likely linked to corresponding CP volume and growth pattern. The downregulation of DERL2 and upregulation of MRPL48 may contribute to these sex-related variations in the CSF system, suggesting a molecular basis for sex-specific brain development.
Collapse
Affiliation(s)
- Yuxin Sun
- Department of Radiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, P. R. China
- Shaanxi Engineering Research Center of Computational Imaging and Medical Intelligence, Xi'an, P. R. China
- Xi'an Key Laboratory of Medical Computational Imaging, Xi'an, China
| | - Chenxin Fu
- Department of Radiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, P. R. China
- Shaanxi Engineering Research Center of Computational Imaging and Medical Intelligence, Xi'an, P. R. China
- Xi'an Key Laboratory of Medical Computational Imaging, Xi'an, China
| | - Lifan Gu
- Department of Radiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, P. R. China
- Shaanxi Engineering Research Center of Computational Imaging and Medical Intelligence, Xi'an, P. R. China
- Xi'an Key Laboratory of Medical Computational Imaging, Xi'an, China
| | - Huifang Zhao
- Department of Radiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, P. R. China
- Shaanxi Engineering Research Center of Computational Imaging and Medical Intelligence, Xi'an, P. R. China
- Xi'an Key Laboratory of Medical Computational Imaging, Xi'an, China
| | - Yuying Feng
- Department of Radiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, P. R. China
- Shaanxi Engineering Research Center of Computational Imaging and Medical Intelligence, Xi'an, P. R. China
- Xi'an Key Laboratory of Medical Computational Imaging, Xi'an, China
| | - Chao Jin
- Department of Radiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, P. R. China.
- Shaanxi Engineering Research Center of Computational Imaging and Medical Intelligence, Xi'an, P. R. China.
- Xi'an Key Laboratory of Medical Computational Imaging, Xi'an, China.
| |
Collapse
|
2
|
Murao N, Matsuda T, Kadowaki H, Matsushita Y, Tanimoto K, Katagiri T, Nakashima K, Nishitoh H. The Derlin-1-Stat5b axis maintains homeostasis of adult hippocampal neurogenesis. EMBO Rep 2024; 25:3678-3706. [PMID: 39080439 PMCID: PMC11316036 DOI: 10.1038/s44319-024-00205-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 06/28/2024] [Accepted: 07/02/2024] [Indexed: 08/11/2024] Open
Abstract
Adult neural stem cells (NSCs) in the hippocampal dentate gyrus continuously proliferate and generate new neurons throughout life. Although various functions of organelles are closely related to the regulation of adult neurogenesis, the role of endoplasmic reticulum (ER)-related molecules in this process remains largely unexplored. Here we show that Derlin-1, an ER-associated degradation component, spatiotemporally maintains adult hippocampal neurogenesis through a mechanism distinct from its established role as an ER quality controller. Derlin-1 deficiency in the mouse central nervous system leads to the ectopic localization of newborn neurons and impairs NSC transition from active to quiescent states, resulting in early depletion of hippocampal NSCs. As a result, Derlin-1-deficient mice exhibit phenotypes of increased seizure susceptibility and cognitive dysfunction. Reduced Stat5b expression is responsible for adult neurogenesis defects in Derlin-1-deficient NSCs. Inhibition of histone deacetylase activity effectively induces Stat5b expression and restores abnormal adult neurogenesis, resulting in improved seizure susceptibility and cognitive dysfunction in Derlin-1-deficient mice. Our findings indicate that the Derlin-1-Stat5b axis is indispensable for the homeostasis of adult hippocampal neurogenesis.
Collapse
Affiliation(s)
- Naoya Murao
- Laboratory of Biochemistry and Molecular Biology, Department of Medical Sciences, University of Miyazaki, Miyazaki, Japan
| | - Taito Matsuda
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hisae Kadowaki
- Laboratory of Biochemistry and Molecular Biology, Department of Medical Sciences, University of Miyazaki, Miyazaki, Japan
| | - Yosuke Matsushita
- Division of Genome Medicine, Tokushima University, Tokushima, Japan
- National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - Kousuke Tanimoto
- High-risk Infectious Disease Control, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Toyomasa Katagiri
- Division of Genome Medicine, Tokushima University, Tokushima, Japan
- National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - Kinichi Nakashima
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| | - Hideki Nishitoh
- Laboratory of Biochemistry and Molecular Biology, Department of Medical Sciences, University of Miyazaki, Miyazaki, Japan.
- Frontier Science Research Center, University of Miyazaki, Miyazaki, Japan.
| |
Collapse
|
3
|
Liu L, Wu J, Yan Y, Cheng S, Yu S, Wang Y. DERL2 (derlin 2) stabilizes BAG6 (BAG cochaperone 6) in chemotherapy resistance of cholangiocarcinoma. J Physiol Biochem 2024; 80:81-97. [PMID: 37815698 PMCID: PMC10810035 DOI: 10.1007/s13105-023-00986-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 09/12/2023] [Indexed: 10/11/2023]
Abstract
DERL2 (derlin 2) is a critical component of the endoplasmic reticulum quality control pathway system whose mutations play an important role in carcinogenesis, including cholangiocarcinoma (CHOL). However, its role and its underlying mechanism have yet to be elucidated. Herein, we revealed that DERL2 was highly expressed in CHOL and considered as an independent prognostic indicator for inferior survival in CHOL. DERL2 ectopically expressed in CHOL cells promoted cell proliferation and colony formation rates, and depleting DERL2 in CHOL cells curbed tumor growth in vitro and in vivo. More interestingly, the knockout of DERL2 augmented the growth-inhibitory effect of gemcitabine chemotherapy on CHOL cells by inducing cell apoptosis. Mechanistically, we discovered that DERL2 interacted with BAG6 (BAG cochaperone 6), thereby extending its half-life and reinforcing the oncogenic role of BAG6 in CHOL progression.
Collapse
Affiliation(s)
- Luzheng Liu
- Department of Interventional Radiology and Vascular Surgery, The Second Affiliated Hospital of Hainan Medical University, Hainan, 570311, China
| | - Jincai Wu
- Department of Hepatobiliary and Pancreatic Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Hainan, 570311, China
| | - Yanggang Yan
- Department of Interventional Radiology and Vascular Surgery, The Second Affiliated Hospital of Hainan Medical University, Hainan, 570311, China
| | - Shoucai Cheng
- Department of Interventional Radiology and Vascular Surgery, The Second Affiliated Hospital of Hainan Medical University, Hainan, 570311, China
| | - Shuyong Yu
- Department of Gastrointestinal Surgery, Hainan Cancer Hospital, Hainan, 570312, China.
| | - Yong Wang
- Department of Interventional Radiology and Vascular Surgery, The Second Affiliated Hospital of Hainan Medical University, Hainan, 570311, China.
| |
Collapse
|
4
|
Wang HH, Lin LL, Li ZJ, Wei X, Askander O, Cappuccio G, Hashem MO, Hubert L, Munnich A, Alqahtani M, Pang Q, Burmeister M, Lu Y, Poirier K, Besmond C, Sun S, Brunetti-Pierri N, Alkuraya FS, Qi L. Hypomorphic variants of SEL1L-HRD1 ER-associated degradation are associated with neurodevelopmental disorders. J Clin Invest 2024; 134:e170054. [PMID: 37943610 PMCID: PMC10786691 DOI: 10.1172/jci170054] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 11/08/2023] [Indexed: 11/12/2023] Open
Abstract
Recent studies using cell type-specific knockout mouse models have improved our understanding of the pathophysiological relevance of suppressor of lin-12-like-HMG-CoA reductase degradation 1 (SEL1L-HRD1) endoplasmic reticulum-associated (ER-associated) degradation (ERAD); however, its importance in humans remains unclear, as no disease variant has been identified. Here, we report the identification of 3 biallelic missense variants of SEL1L and HRD1 (or SYVN1) in 6 children from 3 independent families presenting with developmental delay, intellectual disability, microcephaly, facial dysmorphisms, hypotonia, and/or ataxia. These SEL1L (p.Gly585Asp, p.Met528Arg) and HRD1 (p.Pro398Leu) variants were hypomorphic and impaired ERAD function at distinct steps of ERAD, including substrate recruitment (SEL1L p.Gly585Asp), SEL1L-HRD1 complex formation (SEL1L p.Met528Arg), and HRD1 activity (HRD1 p.Pro398Leu). Our study not only provides insights into the structure-function relationship of SEL1L-HRD1 ERAD, but also establishes the importance of SEL1L-HRD1 ERAD in humans.
Collapse
Affiliation(s)
- Huilun H. Wang
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, University of Virginia, Charlottesville, Virginia, USA
- Department of Molecular & Integrative Physiology and
| | - Liangguang L. Lin
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, University of Virginia, Charlottesville, Virginia, USA
- Department of Molecular & Integrative Physiology and
| | - Zexin J. Li
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, University of Virginia, Charlottesville, Virginia, USA
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Xiaoqiong Wei
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, University of Virginia, Charlottesville, Virginia, USA
- Department of Molecular & Integrative Physiology and
| | - Omar Askander
- Hopital Cheik Zaïd, Hopital Universitaire International RABAT, Morocco
| | - Gerarda Cappuccio
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy
- Department of Translational Medicine, University of Naples Federico II, Naples, Italy
| | - Mais O. Hashem
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Laurence Hubert
- Imagine Institute, INSERM UMR1163, Paris, France
- Université Paris Cité, Paris, France
| | | | - Mashael Alqahtani
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Qi Pang
- Department of Neurosurgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Margit Burmeister
- Michigan Neuroscience Institute and Departments of Computational Medicine & Bioinformatics, Psychiatry, and Human Genetics, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - You Lu
- Department of Molecular & Integrative Physiology and
| | | | | | - Shengyi Sun
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia, USA
| | - Nicola Brunetti-Pierri
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy
- Department of Translational Medicine, University of Naples Federico II, Naples, Italy
- Scuola Superiore Meridionale (SSM, School of Advanced Studies), Genomics and Experimental Medicine Program, University of Naples Federico II, Naples, Italy
| | - Fowzan S. Alkuraya
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
- Department of Pediatrics, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | - Ling Qi
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, University of Virginia, Charlottesville, Virginia, USA
- Department of Molecular & Integrative Physiology and
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
5
|
Peterson BG, Hwang J, Russ JE, Schroeder JW, Freddolino PL, Baldridge RD. Deep mutational scanning highlights a role for cytosolic regions in Hrd1 function. Cell Rep 2023; 42:113451. [PMID: 37980570 PMCID: PMC10751623 DOI: 10.1016/j.celrep.2023.113451] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 10/10/2023] [Accepted: 11/01/2023] [Indexed: 11/21/2023] Open
Abstract
Misfolded endoplasmic reticulum (ER) proteins are degraded through a process called ER-associated degradation (ERAD). Soluble, lumenal ERAD targets are recognized, retrotranslocated across the ER membrane, ubiquitinated, extracted from the membrane, and degraded by the proteasome using an ERAD pathway containing a ubiquitin ligase called Hrd1. To determine how Hrd1 mediates these processes, we developed a deep mutational scanning approach to identify residues involved in Hrd1 function, including those exclusively required for lumenal degradation. We identify several regions required for different Hrd1 functions. Most surprisingly, we find two cytosolic regions of Hrd1 required for lumenal ERAD substrate degradation. Using in vivo and in vitro approaches, we define roles for disordered regions between structural elements that are required for Hrd1 autoubiquitination and substrate interaction. Our results demonstrate that disordered cytosolic regions promote substrate retrotranslocation by controlling Hrd1 activation and establishing directionality of retrotranslocation for lumenal substrate across the ER membrane.
Collapse
Affiliation(s)
- Brian G Peterson
- Department of Biological Chemistry, University of Michigan Medical School, 1150 W Medical Center Drive, Ann Arbor, MI 48109, USA
| | - Jiwon Hwang
- Department of Biological Chemistry, University of Michigan Medical School, 1150 W Medical Center Drive, Ann Arbor, MI 48109, USA
| | - Jennifer E Russ
- Department of Biological Chemistry, University of Michigan Medical School, 1150 W Medical Center Drive, Ann Arbor, MI 48109, USA
| | - Jeremy W Schroeder
- Department of Biological Chemistry, University of Michigan Medical School, 1150 W Medical Center Drive, Ann Arbor, MI 48109, USA
| | - P Lydia Freddolino
- Department of Biological Chemistry, University of Michigan Medical School, 1150 W Medical Center Drive, Ann Arbor, MI 48109, USA; Cellular and Molecular Biology Program, University of Michigan Medical School, 1150 W Medical Center Drive, Ann Arbor, MI 48109, USA; Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Ryan D Baldridge
- Department of Biological Chemistry, University of Michigan Medical School, 1150 W Medical Center Drive, Ann Arbor, MI 48109, USA; Cellular and Molecular Biology Program, University of Michigan Medical School, 1150 W Medical Center Drive, Ann Arbor, MI 48109, USA.
| |
Collapse
|
6
|
Peterson BG, Hwang J, Russ JE, Schroeder J, Freddolino PL, Baldridge RD. Deep mutational scanning highlights a new role for cytosolic regions in Hrd1 function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.03.535444. [PMID: 37066402 PMCID: PMC10103981 DOI: 10.1101/2023.04.03.535444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Misfolded endoplasmic reticulum proteins are degraded through a process called endoplasmic reticulum associated degradation (ERAD). Soluble, lumenal ERAD targets are recognized, retrotranslocated across the ER membrane, ubiquitinated, extracted from the membrane, and degraded by the proteasome using an ERAD pathway containing a ubiquitin ligase called Hrd1. To determine how Hrd1 mediates these processes, we developed a deep mutational scanning approach to identify residues involved in Hrd1 function, including those exclusively required for lumenal degradation. We identified several regions required for different Hrd1 functions. Most surprisingly, we found two cytosolic regions of Hrd1 required for lumenal ERAD substrate degradation. Using in vivo and in vitro approaches, we defined roles for disordered regions between structural elements that were required for Hrd1's ability to autoubiquitinate and interact with substrate. Our results demonstrate that disordered cytosolic regions promote substrate retrotranslocation by controlling Hrd1 activation and establishing directionality of retrotranslocation for lumenal substrate across the endoplasmic reticulum membrane.
Collapse
Affiliation(s)
- Brian G. Peterson
- Department of Biological Chemistry, University of Michigan Medical School, 1150 W Medical Center Drive, Ann Arbor, MI 48109, USA
| | - Jiwon Hwang
- Department of Biological Chemistry, University of Michigan Medical School, 1150 W Medical Center Drive, Ann Arbor, MI 48109, USA
| | - Jennifer E. Russ
- Department of Biological Chemistry, University of Michigan Medical School, 1150 W Medical Center Drive, Ann Arbor, MI 48109, USA
| | - Jeremy Schroeder
- Department of Biological Chemistry, University of Michigan Medical School, 1150 W Medical Center Drive, Ann Arbor, MI 48109, USA
| | - Peter L. Freddolino
- Department of Biological Chemistry, University of Michigan Medical School, 1150 W Medical Center Drive, Ann Arbor, MI 48109, USA
- Cellular and Molecular Biology Program, University of Michigan Medical School, 1150 W Medical Center Drive, Ann Arbor, MI 48109, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School
| | - Ryan D. Baldridge
- Department of Biological Chemistry, University of Michigan Medical School, 1150 W Medical Center Drive, Ann Arbor, MI 48109, USA
- Cellular and Molecular Biology Program, University of Michigan Medical School, 1150 W Medical Center Drive, Ann Arbor, MI 48109, USA
| |
Collapse
|
7
|
Zhang S, Pei Z, Lei C, Zhu S, Deng K, Zhou J, Yang J, Lu D, Sun X, Xu C, Xu C. Detection of cryptic balanced chromosomal rearrangements using high-resolution optical genome mapping. J Med Genet 2023; 60:274-284. [PMID: 35710108 DOI: 10.1136/jmedgenet-2022-108553] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 05/28/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND Chromosomal rearrangements have profound consequences in diverse human genetic diseases. Currently, the detection of balanced chromosomal rearrangements (BCRs) mainly relies on routine cytogenetic G-banded karyotyping. However, cryptic BCRs are hard to detect by karyotyping, and the risk of miscarriage or delivering abnormal offspring with congenital malformations in carrier couples is significantly increased. In the present study, we aimed to investigate the potential of single-molecule optical genome mapping (OGM) in unravelling cryptic chromosomal rearrangements. METHODS Eleven couples with normal karyotypes that had abortions/affected offspring with unbalanced rearrangements were enrolled. Ultra-high-molecular-weight DNA was isolated from peripheral blood cells and processed via OGM. The genome assembly was performed followed by variant calling and annotation. Meanwhile, multiple detection strategies, including FISH, long-range-PCR amplicon-based next-generation sequencing and Sanger sequencing were implemented to confirm the results obtained from OGM. RESULTS High-resolution OGM successfully detected cryptic reciprocal translocation in all recruited couples, which was consistent with the results of FISH and sequencing. All high-confidence cryptic chromosomal translocations detected by OGM were confirmed by sequencing analysis of rearrangement breakpoints. Moreover, OGM revealed additional complex rearrangement events such as inverted aberrations, further refining potential genetic interpretation. CONCLUSION To the best of our knowledge, this is the first study wherein OGM facilitate the rapid and robust detection of cryptic chromosomal reciprocal translocations in clinical practice. With the excellent performance, our findings suggest that OGM is well qualified as an accurate, comprehensive and first-line method for detecting cryptic BCRs in routine clinical testing.
Collapse
Affiliation(s)
- Shuo Zhang
- Shanghai Ji Ai Genetics & IVF Institute, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Zhenle Pei
- Shanghai Ji Ai Genetics & IVF Institute, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Caixia Lei
- Shanghai Ji Ai Genetics & IVF Institute, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Saijuan Zhu
- Shanghai Ji Ai Genetics & IVF Institute, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Ke Deng
- Shanghai Ji Ai Genetics & IVF Institute, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Jing Zhou
- Shanghai Ji Ai Genetics & IVF Institute, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Jingmin Yang
- State Key Laboratory of Genetic Engineering, School of Life Science, Fudan University, Shanghai, China.,NHC Key Laboratory of Birth Defects and Reproductive Health, Chongqing Key Laboratory of Birth Defects and Reproductive Health, Chongqing Population and Family Planning, Science and Technology Research Institute, Chongqing, China
| | - Daru Lu
- State Key Laboratory of Genetic Engineering, School of Life Science, Fudan University, Shanghai, China.,NHC Key Laboratory of Birth Defects and Reproductive Health, Chongqing Key Laboratory of Birth Defects and Reproductive Health, Chongqing Population and Family Planning, Science and Technology Research Institute, Chongqing, China
| | - Xiaoxi Sun
- Shanghai Ji Ai Genetics & IVF Institute, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Chenming Xu
- Shanghai Ji Ai Genetics & IVF Institute, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Congjian Xu
- Shanghai Ji Ai Genetics & IVF Institute, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| |
Collapse
|
8
|
Bhaduri S, Scott NA, Neal SE. The Role of the Rhomboid Superfamily in ER Protein Quality Control: From Mechanisms and Functions to Diseases. Cold Spring Harb Perspect Biol 2023; 15:a041248. [PMID: 35940905 PMCID: PMC9899648 DOI: 10.1101/cshperspect.a041248] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The endoplasmic reticulum (ER) is an essential organelle in eukaryotic cells and is a major site for protein folding, modification, and lipid synthesis. Perturbations within the ER, such as protein misfolding and high demand for protein folding, lead to dysregulation of the ER protein quality control network and ER stress. Recently, the rhomboid superfamily has emerged as a critical player in ER protein quality control because it has diverse cellular functions, including ER-associated degradation (ERAD), endosome Golgi-associated degradation (EGAD), and ER preemptive quality control (ERpQC). This breadth of function both illustrates the importance of the rhomboid superfamily in health and diseases and emphasizes the necessity of understanding their mechanisms of action. Because dysregulation of rhomboid proteins has been implicated in various diseases, such as neurological disorders and cancers, they represent promising potential therapeutic drug targets. This review provides a comprehensive account of the various roles of rhomboid proteins in the context of ER protein quality control and discusses their significance in health and disease.
Collapse
Affiliation(s)
- Satarupa Bhaduri
- School of Biological Sciences, the Section of Cell and Developmental Biology, University of California San Diego, La Jolla, California 92093, USA
| | - Nicola A Scott
- School of Biological Sciences, the Section of Cell and Developmental Biology, University of California San Diego, La Jolla, California 92093, USA
| | - Sonya E Neal
- School of Biological Sciences, the Section of Cell and Developmental Biology, University of California San Diego, La Jolla, California 92093, USA
| |
Collapse
|
9
|
Lin L, Lin G, Lin H, Chen L, Chen X, Lin Q, Xu Y, Zeng Y. Integrated profiling of endoplasmic reticulum stress-related DERL3 in the prognostic and immune features of lung adenocarcinoma. Front Immunol 2022; 13:906420. [PMID: 36275646 PMCID: PMC9585215 DOI: 10.3389/fimmu.2022.906420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 09/15/2022] [Indexed: 11/29/2022] Open
Abstract
Background DERL3 has been implicated as an essential element in the degradation of misfolded lumenal glycoproteins induced by endoplasmic reticulum (ER) stress. However, the correlation of DERL3 expression with the malignant phenotype of lung adenocarcinoma (LUAD) cells is unclear and remains to be elucidated. Herein, we investigated the interaction between the DERL3 and LUAD pathological process. Methods The Cancer Genome Atlas (TCGA) database was utilized to determine the genetic alteration of DERL3 in stage I LUAD. Clinical LUAD samples including carcinoma and adjacent tissues were obtained and were further extracted to detect DERL3 mRNA expression via RT-qPCR. Immunohistochemistry was performed to evaluate the protein expression of DERL3 in LUAD tissues. The GEPIA and TIMER website were used to evaluate the correlation between DERL3 and immune cell infiltration. We further used the t-SNE map to visualize the distribution of DERL3 in various clusters at the single-cell level via TISCH database. The potential mechanisms of the biological process mediated by DERL3 in LUAD were conducted via KEGG and GSEA. Results It was indicated that DERL3 was predominantly elevated in carcinoma compared with adjacent tissues in multiple kinds of tumors from the TCGA database, especially in LUAD. Immunohistochemistry validated that DERL3 was also upregulated in LUAD tissues compared with adjacent tissues from individuals. DERL3 was preliminarily found to be associated with immune infiltration via the TIMER database. Further, the t-SNE map revealed that DERL3 was predominantly enriched in plasma cells of the B cell population. It was demonstrated that DERL3 high-expressed patients presented significantly worse response to chemotherapy and immunotherapy. GSEA and KEGG results indicated that DERL3 was positively correlated with B cell activation and unfolded protein response (UPR). Conclusion Our findings indicated that DERL3 might play an essential role in the endoplasmic reticulum-associated degradation (ERAD) process in LUAD. Moreover, DERL3 may act as a promising immune biomarker, which could predict the efficacy of immunotherapy in LUAD.
Collapse
Affiliation(s)
- Lanlan Lin
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
- Respiratory Medicine Center of Fujian Province, Quanzhou, China
- The Second Clinical College, Fujian Medical University, Quanzhou, China
| | - Guofu Lin
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
- Respiratory Medicine Center of Fujian Province, Quanzhou, China
- The Second Clinical College, Fujian Medical University, Quanzhou, China
| | - Hai Lin
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
- Respiratory Medicine Center of Fujian Province, Quanzhou, China
- The Second Clinical College, Fujian Medical University, Quanzhou, China
| | - Luyang Chen
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
- Respiratory Medicine Center of Fujian Province, Quanzhou, China
- The Second Clinical College, Fujian Medical University, Quanzhou, China
| | - Xiaohui Chen
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
- Respiratory Medicine Center of Fujian Province, Quanzhou, China
- The Second Clinical College, Fujian Medical University, Quanzhou, China
| | - Qinhui Lin
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
- Respiratory Medicine Center of Fujian Province, Quanzhou, China
| | - Yuan Xu
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
- Respiratory Medicine Center of Fujian Province, Quanzhou, China
- Clinical Research Unit, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
- *Correspondence: Yiming Zeng, ; Yuan Xu,
| | - Yiming Zeng
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
- Respiratory Medicine Center of Fujian Province, Quanzhou, China
- Clinical Research Unit, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
- *Correspondence: Yiming Zeng, ; Yuan Xu,
| |
Collapse
|
10
|
Iturrate A, Rivera-Barahona A, Flores CL, Otaify GA, Elhossini R, Perez-Sanz ML, Nevado J, Tenorio-Castano J, Triviño JC, Garcia-Gonzalo FR, Piceci-Sparascio F, De Luca A, Martínez L, Kalaycı T, Lapunzina P, Altunoglu U, Aglan M, Abdalla E, Ruiz-Perez VL. Mutations in SCNM1 cause orofaciodigital syndrome due to minor intron splicing defects affecting primary cilia. Am J Hum Genet 2022; 109:1828-1849. [PMID: 36084634 PMCID: PMC9606384 DOI: 10.1016/j.ajhg.2022.08.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 08/12/2022] [Indexed: 01/25/2023] Open
Abstract
Orofaciodigital syndrome (OFD) is a genetically heterogeneous ciliopathy characterized by anomalies of the oral cavity, face, and digits. We describe individuals with OFD from three unrelated families having bi-allelic loss-of-function variants in SCNM1 as the cause of their condition. SCNM1 encodes a protein recently shown to be a component of the human minor spliceosome. However, so far the effect of loss of SCNM1 function on human cells had not been assessed. Using a comparative transcriptome analysis between fibroblasts derived from an OFD-affected individual harboring SCNM1 mutations and control fibroblasts, we identified a set of genes with defective minor intron (U12) processing in the fibroblasts of the affected subject. These results were reproduced in SCNM1 knockout hTERT RPE-1 (RPE-1) cells engineered by CRISPR-Cas9-mediated editing and in SCNM1 siRNA-treated RPE-1 cultures. Notably, expression of TMEM107 and FAM92A encoding primary cilia and basal body proteins, respectively, and that of DERL2, ZC3H8, and C17orf75, were severely reduced in SCNM1-deficient cells. Primary fibroblasts containing SCNM1 mutations, as well as SCNM1 knockout and SCNM1 knockdown RPE-1 cells, were also found with abnormally elongated cilia. Conversely, cilia length and expression of SCNM1-regulated genes were restored in SCNM1-deficient fibroblasts following reintroduction of SCNM1 via retroviral delivery. Additionally, functional analysis in SCNM1-retrotransduced fibroblasts showed that SCNM1 is a positive mediator of Hedgehog (Hh) signaling. Our findings demonstrate that defective U12 intron splicing can lead to a typical ciliopathy such as OFD and reveal that primary cilia length and Hh signaling are regulated by the minor spliceosome through SCNM1 activity.
Collapse
Affiliation(s)
- Asier Iturrate
- Instituto de Investigaciones Biomédicas "Alberto Sols," Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, 28029 Madrid, Spain
| | - Ana Rivera-Barahona
- Instituto de Investigaciones Biomédicas "Alberto Sols," Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, 28029 Madrid, Spain,CIBER de Enfermedades Raras, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Carmen-Lisset Flores
- Instituto de Investigaciones Biomédicas "Alberto Sols," Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, 28029 Madrid, Spain
| | - Ghada A. Otaify
- Department of Clinical Genetics, Institute of Human Genetics and Genome Research, National Research Centre, Cairo, Egypt
| | - Rasha Elhossini
- Department of Clinical Genetics, Institute of Human Genetics and Genome Research, National Research Centre, Cairo, Egypt
| | - Marina L. Perez-Sanz
- Instituto de Investigaciones Biomédicas "Alberto Sols," Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, 28029 Madrid, Spain
| | - Julián Nevado
- CIBER de Enfermedades Raras, Instituto de Salud Carlos III, 28029 Madrid, Spain,Instituto de Genética Médica y Molecular (INGEMM), Hospital Universitario La Paz-IdiPAZ, ITHACA-ERN, 28046 Madrid, Spain
| | - Jair Tenorio-Castano
- CIBER de Enfermedades Raras, Instituto de Salud Carlos III, 28029 Madrid, Spain,Instituto de Genética Médica y Molecular (INGEMM), Hospital Universitario La Paz-IdiPAZ, ITHACA-ERN, 28046 Madrid, Spain
| | | | - Francesc R. Garcia-Gonzalo
- Instituto de Investigaciones Biomédicas "Alberto Sols," Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, 28029 Madrid, Spain,CIBER de Enfermedades Raras, Instituto de Salud Carlos III, 28029 Madrid, Spain,Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Madrid, 28029 Madrid, Spain,Área de Cáncer y Genética Molecular Humana, Instituto de Investigaciones del Hospital Universitario La Paz, 28046 Madrid, Spain
| | - Francesca Piceci-Sparascio
- Medical Genetics Division, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy,Department of Experimental Medicine, “Sapienza” University of Rome, 00161 Rome, Italy
| | - Alessandro De Luca
- Medical Genetics Division, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy
| | - Leopoldo Martínez
- Departamento de Cirugía Pediátrica. Hospital Universitario La Paz-IdiPAZ, ITHACA-ERN, 28046 Madrid, Spain
| | - Tugba Kalaycı
- Medical Genetics Department, Istanbul Medical Faculty, Istanbul University, Istanbul 34093, Turkey
| | - Pablo Lapunzina
- CIBER de Enfermedades Raras, Instituto de Salud Carlos III, 28029 Madrid, Spain,Instituto de Genética Médica y Molecular (INGEMM), Hospital Universitario La Paz-IdiPAZ, ITHACA-ERN, 28046 Madrid, Spain
| | - Umut Altunoglu
- Medical Genetics Department, Koç University School of Medicine, Istanbul 34450, Turkey
| | - Mona Aglan
- Department of Clinical Genetics, Institute of Human Genetics and Genome Research, National Research Centre, Cairo, Egypt
| | - Ebtesam Abdalla
- Department of Human Genetics, Medical Research Institute, Alexandria University, Alexandria, Egypt,Genetics Department, Armed Forces College of Medicine, Cairo, Egypt
| | - Victor L. Ruiz-Perez
- Instituto de Investigaciones Biomédicas "Alberto Sols," Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, 28029 Madrid, Spain,CIBER de Enfermedades Raras, Instituto de Salud Carlos III, 28029 Madrid, Spain,Instituto de Genética Médica y Molecular (INGEMM), Hospital Universitario La Paz-IdiPAZ, ITHACA-ERN, 28046 Madrid, Spain,Corresponding author
| |
Collapse
|
11
|
Sugiyama T, Murao N, Kadowaki H, Takao K, Miyakawa T, Matsushita Y, Katagiri T, Futatsugi A, Shinmyo Y, Kawasaki H, Sakai J, Shiomi K, Nakazato M, Takeda K, Mikoshiba K, Ploegh HL, Ichijo H, Nishitoh H. ERAD components Derlin-1 and Derlin-2 are essential for postnatal brain development and motor function. iScience 2021; 24:102758. [PMID: 34355142 PMCID: PMC8324814 DOI: 10.1016/j.isci.2021.102758] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 04/15/2021] [Accepted: 06/18/2021] [Indexed: 01/20/2023] Open
Abstract
Derlin family members (Derlins) are primarily known as components of the endoplasmic reticulum-associated degradation pathway that eliminates misfolded proteins. Here we report a function of Derlins in the brain development. Deletion of Derlin-1 or Derlin-2 in the central nervous system of mice impaired postnatal brain development, particularly of the cerebellum and striatum, and induced motor control deficits. Derlin-1 or Derlin-2 deficiency reduced neurite outgrowth in vitro and in vivo and surprisingly also inhibited sterol regulatory element binding protein 2 (SREBP-2)-mediated brain cholesterol biosynthesis. In addition, reduced neurite outgrowth due to Derlin-1 deficiency was rescued by SREBP-2 pathway activation. Overall, our findings demonstrate that Derlins sustain brain cholesterol biosynthesis, which is essential for appropriate postnatal brain development and function. Derlin-1 and Derlin-2 are essential for postnatal brain development and function Chemical chaperon does not ameliorate the phenotype of Derlin-deficient neuron Derlin regulates SREBP-2 activation and promotes brain cholesterol biosynthesis Derlin-mediated cholesterol biosynthesis is essential for neurite outgrowth
Collapse
Affiliation(s)
- Takashi Sugiyama
- Laboratory of Biochemistry and Molecular Biology, Department of Medical Sciences, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan
| | - Naoya Murao
- Laboratory of Biochemistry and Molecular Biology, Department of Medical Sciences, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan
| | - Hisae Kadowaki
- Laboratory of Biochemistry and Molecular Biology, Department of Medical Sciences, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan
| | - Keizo Takao
- Department of Behavioral Physiology, Faculty of Medicine, University of Toyama, Toyama 930-0194, Japan.,Research Center for Idling Brain Science, University of Toyama, Toyama, Japan.,Section of Behavioral Patterns, Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, Japan
| | - Tsuyoshi Miyakawa
- Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Aichi 470-1192, Japan
| | - Yosuke Matsushita
- Division of Genome Medicine, Institute for Genome Research, Tokushima University, Tokushima 770-8503, Japan
| | - Toyomasa Katagiri
- Division of Genome Medicine, Institute for Genome Research, Tokushima University, Tokushima 770-8503, Japan
| | - Akira Futatsugi
- Department of Basic Medical Sciences, Kobe City College of Nursing, 3-4 Gakuen-nishi-machi, Nishi-ku, Kobe 651-2103, Japan
| | - Yohei Shinmyo
- Department of Medical Neuroscience, Graduate School of Medical Sciences, Kanazawa University, Kanazawa 920-8640, Japan
| | - Hiroshi Kawasaki
- Department of Medical Neuroscience, Graduate School of Medical Sciences, Kanazawa University, Kanazawa 920-8640, Japan
| | - Juro Sakai
- Division of Metabolic Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo 153-8904, Japan.,Division of Molecular Physiology and Metabolism, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan
| | - Kazutaka Shiomi
- Division of Neurology, Respirology, Endocrinology, and Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan
| | - Masamitsu Nakazato
- Division of Neurology, Respirology, Endocrinology, and Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan
| | - Kohsuke Takeda
- Department of Cell Regulation, Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| | - Katsuhiko Mikoshiba
- RIKEN Center for Life Science Technologies (CLST), Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan.,Shanghai Institute for Advanced Immunochemical Studies (SIAIS), Shanghai Tech University, Shanghai, China.,Department of Biomolecular Science, Faculty of Science, Toho University, Funabashi, Japan
| | - Hidde L Ploegh
- Boston Children's Hospital and Harvard Medical School, 1 Blackfan Circle, Boston, MA 02115, USA
| | - Hidenori Ichijo
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Hideki Nishitoh
- Laboratory of Biochemistry and Molecular Biology, Department of Medical Sciences, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan.,Frontier Science Research Center, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan
| |
Collapse
|
12
|
Kang JA, Jeon YJ. How Is the Fidelity of Proteins Ensured in Terms of Both Quality and Quantity at the Endoplasmic Reticulum? Mechanistic Insights into E3 Ubiquitin Ligases. Int J Mol Sci 2021; 22:ijms22042078. [PMID: 33669844 PMCID: PMC7923238 DOI: 10.3390/ijms22042078] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/16/2021] [Accepted: 02/16/2021] [Indexed: 02/06/2023] Open
Abstract
The endoplasmic reticulum (ER) is an interconnected organelle that plays fundamental roles in the biosynthesis, folding, stabilization, maturation, and trafficking of secretory and transmembrane proteins. It is the largest organelle and critically modulates nearly all aspects of life. Therefore, in the endoplasmic reticulum, an enormous investment of resources, including chaperones and protein folding facilitators, is dedicated to adequate protein maturation and delivery to final destinations. Unfortunately, the folding and assembly of proteins can be quite error-prone, which leads to the generation of misfolded proteins. Notably, protein homeostasis, referred to as proteostasis, is constantly exposed to danger by flows of misfolded proteins and subsequent protein aggregates. To maintain proteostasis, the ER triages and eliminates terminally misfolded proteins by delivering substrates to the ubiquitin–proteasome system (UPS) or to the lysosome, which is termed ER-associated degradation (ERAD) or ER-phagy, respectively. ERAD not only eliminates misfolded or unassembled proteins via protein quality control but also fine-tunes correctly folded proteins via protein quantity control. Intriguingly, the diversity and distinctive nature of E3 ubiquitin ligases determine efficiency, complexity, and specificity of ubiquitination during ERAD. ER-phagy utilizes the core autophagy machinery and eliminates ERAD-resistant misfolded proteins. Here, we conceptually outline not only ubiquitination machinery but also catalytic mechanisms of E3 ubiquitin ligases. Further, we discuss the mechanistic insights into E3 ubiquitin ligases involved in the two guardian pathways in the ER, ERAD and ER-phagy. Finally, we provide the molecular mechanisms by which ERAD and ER-phagy conduct not only protein quality control but also protein quantity control to ensure proteostasis and subsequent organismal homeostasis.
Collapse
Affiliation(s)
- Ji An Kang
- Department of Biochemistry, College of Medicine, Chungnam National University, Daejeon 35015, Korea;
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Korea
| | - Young Joo Jeon
- Department of Biochemistry, College of Medicine, Chungnam National University, Daejeon 35015, Korea;
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Korea
- Correspondence:
| |
Collapse
|
13
|
Ninagawa S, George G, Mori K. Mechanisms of productive folding and endoplasmic reticulum-associated degradation of glycoproteins and non-glycoproteins. Biochim Biophys Acta Gen Subj 2020; 1865:129812. [PMID: 33316349 DOI: 10.1016/j.bbagen.2020.129812] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 12/09/2020] [Accepted: 12/09/2020] [Indexed: 12/22/2022]
Abstract
BACKGROUND The quality of proteins destined for the secretory pathway is ensured by two distinct mechanisms in the endoplasmic reticulum (ER): productive folding of newly synthesized proteins, which is assisted by ER-localized molecular chaperones and in most cases also by disulfide bond formation and transfer of an oligosaccharide unit; and ER-associated degradation (ERAD), in which proteins unfolded or misfolded in the ER are recognized and processed for delivery to the ER membrane complex, retrotranslocated through the complex with simultaneous ubiquitination, extracted by AAA-ATPase to the cytosol, and finally degraded by the proteasome. SCOPE OF REVIEW We describe the mechanisms of productive folding and ERAD, with particular attention to glycoproteins versus non-glycoproteins, and to yeast versus mammalian systems. MAJOR CONCLUSION Molecular mechanisms of the productive folding of glycoproteins and non-glycoproteins mediated by molecular chaperones and protein disulfide isomerases are well conserved from yeast to mammals. Additionally, mammals have gained an oligosaccharide structure-dependent folding cycle for glycoproteins. The molecular mechanisms of ERAD are also well conserved from yeast to mammals, but redundant expression of yeast orthologues in mammals has been encountered, particularly for components involved in recognition and processing of glycoproteins and components of the ER membrane complex involved in retrotranslocation and simultaneous ubiquitination of glycoproteins and non-glycoproteins. This may reflect an evolutionary consequence of increasing quantity or quality needs toward mammals. GENERAL SIGNIFICANCE The introduction of innovative genome editing technology into analysis of the mechanisms of mammalian ERAD, as exemplified here, will provide new insights into the pathogenesis of various diseases.
Collapse
Affiliation(s)
- Satoshi Ninagawa
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan.
| | - Ginto George
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Kazutoshi Mori
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan.
| |
Collapse
|
14
|
Adrain C, Cavadas M. The complex life of rhomboid pseudoproteases. FEBS J 2020; 287:4261-4283. [DOI: 10.1111/febs.15548] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/18/2020] [Accepted: 08/31/2020] [Indexed: 02/06/2023]
Affiliation(s)
- Colin Adrain
- Instituto Gulbenkian de Ciência (IGC) Oeiras Portugal
- Centre for Cancer Research and Cell Biology Queen's University Belfast UK
| | | |
Collapse
|
15
|
Kandel RR, Neal SE. The role of rhomboid superfamily members in protein homeostasis: Mechanistic insight and physiological implications. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2020; 1867:118793. [PMID: 32645330 PMCID: PMC7434706 DOI: 10.1016/j.bbamcr.2020.118793] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 05/30/2020] [Accepted: 07/01/2020] [Indexed: 12/11/2022]
Abstract
Cells are equipped with protein quality control pathways in order to maintain a healthy proteome; a process known as protein homeostasis. Dysfunction in protein homeostasis leads to the development of many diseases that are associated with proteinopathies. Recently, the rhomboid superfamily has attracted much attention concerning their involvement in protein homeostasis. While their functional role has become much clearer in the last few years, their systemic significance in mammals remains elusive. Here we delineate the current knowledge of rhomboids in protein quality control and how these functions are integrated at the organismal level.
Collapse
Affiliation(s)
- Rachel R Kandel
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA 92093, United States of America
| | - Sonya E Neal
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA 92093, United States of America.
| |
Collapse
|
16
|
Bhattacharya A, Qi L. ER-associated degradation in health and disease - from substrate to organism. J Cell Sci 2019; 132:132/23/jcs232850. [PMID: 31792042 DOI: 10.1242/jcs.232850] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The recent literature has revolutionized our view on the vital importance of endoplasmic reticulum (ER)-associated degradation (ERAD) in health and disease. Suppressor/enhancer of Lin-12-like (Sel1L)-HMG-coA reductase degradation protein 1 (Hrd1)-mediated ERAD has emerged as a crucial determinant of normal physiology and as a sentinel against disease pathogenesis in the body, in a largely substrate- and cell type-specific manner. In this Review, we highlight three features of ERAD, constitutive versus inducible ERAD, quality versus quantity control of ERAD and ERAD-mediated regulation of nuclear gene transcription, through which ERAD exerts a profound impact on a number of physiological processes.
Collapse
Affiliation(s)
- Asmita Bhattacharya
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48105, USA.,Graduate Program of Genetics, Genomics and Development, Cornell University, Ithaca, NY 14853, USA
| | - Ling Qi
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48105, USA .,Division of Metabolism, Endocrinology & Diabetes, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48105, USA
| |
Collapse
|
17
|
4-Phenylbutyric Acid Reduces Endoplasmic Reticulum Stress in Chondrocytes That Is Caused by Loss of the Protein Disulfide Isomerase ERp57. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:6404035. [PMID: 31781343 PMCID: PMC6875354 DOI: 10.1155/2019/6404035] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 09/01/2019] [Indexed: 01/30/2023]
Abstract
Objective The integrity of cartilage depends on the correct synthesis of extracellular matrix (ECM) components. In case of insufficient folding of proteins in the endoplasmic reticulum (ER) of chondrocytes, ECM proteins aggregate, ER stress evolves, and the unfolded protein response (UPR) is initiated. By this mechanism, chondrocytes relieve the stress condition or initiate cell death by apoptosis. Especially persistent ER stress has emerged as a pathogenic mechanism in cartilage diseases, such as chondrodysplasias and osteoarthritis. As pharmacological intervention is not available yet, it is of great interest to understand cartilage ER stress in detail and to develop therapeutics to intervene. Methods ERp57-deficient chondrocytes were generated by CRISPR/Cas9-induced KO. ER stress and autophagy were studied on mRNA and protein level as well as by transmission electron microscopy (TEM) in chondrocyte micromass or cartilage explant cultures of ERp57 KO mice. Thapsigargin (Tg), an inhibitor of the ER-residing Ca2+-ATPase, and 4-Phenylbutyric acid (4-PBA), a small molecular chemical chaperone, were applied to induce or inhibit ER stress. Results Our data reveal that the loss of the protein disulfide isomerase ERp57 is sufficient to induce ER stress in chondrocytes. 4-PBA efficiently diffuses into cartilage explant cultures and diminishes excessive ER stress in chondrocytes dose dependently, no matter if it is induced by ERp57 KO or stimulation with Tg. Conclusion ER-stress-related diseases have different sources; therefore, various targets for therapeutic treatment exist. In the future, 4-PBA may be used alone or in combination with other drugs for the treatment of ER-stress-related skeletal disorders in patients.
Collapse
|
18
|
Volpi VG, Ferri C, Fregno I, Del Carro U, Bianchi F, Scapin C, Pettinato E, Solda T, Feltri ML, Molinari M, Wrabetz L, D’Antonio M. Schwann cells ER-associated degradation contributes to myelin maintenance in adult nerves and limits demyelination in CMT1B mice. PLoS Genet 2019; 15:e1008069. [PMID: 30995221 PMCID: PMC6488099 DOI: 10.1371/journal.pgen.1008069] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 04/29/2019] [Accepted: 03/06/2019] [Indexed: 12/19/2022] Open
Abstract
In the peripheral nervous system (PNS) myelinating Schwann cells synthesize large amounts of myelin protein zero (P0) glycoprotein, an abundant component of peripheral nerve myelin. In humans, mutations in P0 cause the demyelinating Charcot-Marie-Tooth 1B (CMT1B) neuropathy, one of the most diffused genetic disorders of the PNS. We previously showed that several mutations, such as the deletion of serine 63 (P0-S63del), result in misfolding and accumulation of P0 in the endoplasmic reticulum (ER), with activation of the unfolded protein response (UPR). In addition, we observed that S63del mouse nerves display the upregulation of many ER-associated degradation (ERAD) genes, suggesting a possible involvement of this pathway in the clearance of the mutant P0. In ERAD in fact, misfolded proteins are dislocated from the ER and targeted for proteasomal degradation. Taking advantage of inducible cells that express the ER retained P0, here we show that the P0-S63del glycoprotein is degraded via ERAD. Moreover, we provide strong evidence that the Schwann cell-specific ablation of the ERAD factor Derlin-2 in S63del nerves exacerbates both the myelin defects and the UPR in vivo, unveiling a protective role for ERAD in CMT1B neuropathy. We also found that lack of Derlin-2 affects adult myelin maintenance in normal nerves, without compromising their development, pinpointing ERAD as a previously unrecognized player in preserving Schwann cells homeostasis in adulthood. Finally, we provide evidence that treatment of S63del peripheral nerve cultures with N-Acetyl-D-Glucosamine (GlcNAc), known to enhance protein quality control pathways in C.elegans, ameliorates S63del nerve myelination ex vivo. Overall, our study suggests that potentiating adaptive ER quality control pathways might represent an appealing strategy to treat both conformational and age-related PNS disorders. Charcot-Marie-Tooth neuropathies are a large family of peripheral nerve disorders, showing extensive clinical and genetic heterogeneity. Although strong advances have been made in the identification of genes and mutations involved, effective therapies are still lacking. Intracellular retention of abnormal proteins has been recently suggested as one of the pathogenetic events that might underlie several conformational neuropathies. To limit the toxic effects of accumulated mutant proteins, cells have developed efficient protein quality control systems aimed at optimizing both protein folding and degradation. Here we show that ER-associated degradation limits Schwann cells stress and myelin defects caused by the accumulation of a mutant myelin protein into the ER. In addition, we also describe for the first time the importance of Schwann cells ERAD in preserving myelin integrity in adult nerves, showing that genetic ERAD impairment leads to a late onset, motor-predominant, peripheral neuropathy in vivo. Effort in the design of strategies that potentiate ERAD and ER quality controls is therefore highly desirable.
Collapse
Affiliation(s)
- Vera G. Volpi
- Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Cinzia Ferri
- Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Ilaria Fregno
- Instuitute for Research in Biomedicine, Faculty of Biomedical Sciences, Università della Svizzera italiana (USI), Bellinzona, Switzerland
- Department of Biology, Swiss Federal Institute of Technology, Zurich, Switzerland
| | - Ubaldo Del Carro
- Institute of Experimental Neurology (INSPE), Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Francesca Bianchi
- Institute of Experimental Neurology (INSPE), Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Cristina Scapin
- Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Emanuela Pettinato
- Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Tatiana Solda
- Instuitute for Research in Biomedicine, Faculty of Biomedical Sciences, Università della Svizzera italiana (USI), Bellinzona, Switzerland
| | - M. Laura Feltri
- Hunter James Kelly Research Institute, University at Buffalo, Buffalo, New York, United States of America
- Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, United States of America
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, United States of America
| | - Maurizio Molinari
- Instuitute for Research in Biomedicine, Faculty of Biomedical Sciences, Università della Svizzera italiana (USI), Bellinzona, Switzerland
- School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Lawrence Wrabetz
- Hunter James Kelly Research Institute, University at Buffalo, Buffalo, New York, United States of America
- Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, United States of America
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, United States of America
| | - Maurizio D’Antonio
- Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milan, Italy
- * E-mail:
| |
Collapse
|
19
|
Different Forms of ER Stress in Chondrocytes Result in Short Stature Disorders and Degenerative Cartilage Diseases: New Insights by Cartilage-Specific ERp57 Knockout Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:8421394. [PMID: 30647818 PMCID: PMC6311764 DOI: 10.1155/2018/8421394] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 11/13/2018] [Indexed: 02/06/2023]
Abstract
Cartilage is essential for skeletal development by endochondral ossification. The only cell type within the tissue, the chondrocyte, is responsible for the production of macromolecules for the extracellular matrix (ECM). Before proteins and proteoglycans are secreted, they undergo posttranslational modification and folding in the endoplasmic reticulum (ER). However, the ER folding capacity in the chondrocytes has to be balanced with physiological parameters like energy and oxygen levels. Specific cellular conditions, e.g., a high protein demand, or pathologic situations disrupt ER homeostasis and lead to the accumulation of poorly folded or misfolded proteins. This state is called ER stress and induces a cellular quality control system, the unfolded protein response (UPR), to restore homeostasis. Different mouse models with ER stress in chondrocytes display comparable skeletal phenotypes representing chondrodysplasias. Therefore, ER stress itself seems to be involved in the pathogenesis of these diseases. It is remarkable that chondrodysplasias with a comparable phenotype arise independent from the sources of ER stress, which are as follows: (1) mutations in ECM proteins leading to aggregation, (2) deficiencies in ER chaperones, (3) mutations in UPR signaling factors, or (4) deficiencies in the degradation of aggregated proteins. In any case, the resulting UPR substantially impairs ECM protein synthesis, chondrocyte proliferation, and/or differentiation or regulation of autophagy and apoptosis. Notably, chondrodysplasias arise no matter if single or multiple events are affected. We analyzed cartilage-specific ERp57 knockout mice and demonstrated that the deficiency of this single protein disulfide isomerase, which is responsible for formation of disulfide bridges in ECM glycoproteins, is sufficient to induce ER stress and to cause an ER stress-related bone phenotype. These mice therefore qualify as a novel model for the analysis of ER stress in chondrocytes. They give new insights in ER stress-related short stature disorders and enable the analysis of ER stress in other cartilage diseases, such as osteoarthritis.
Collapse
|
20
|
Hwang J, Qi L. Quality Control in the Endoplasmic Reticulum: Crosstalk between ERAD and UPR pathways. Trends Biochem Sci 2018; 43:593-605. [PMID: 30056836 PMCID: PMC6327314 DOI: 10.1016/j.tibs.2018.06.005] [Citation(s) in RCA: 395] [Impact Index Per Article: 56.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 05/30/2018] [Accepted: 06/11/2018] [Indexed: 01/14/2023]
Abstract
Endoplasmic reticulum (ER)-associated degradation (ERAD) and the unfolded protein response (UPR) are two key quality-control machineries in the cell. ERAD is responsible for the clearance of misfolded proteins in the ER for cytosolic proteasomal degradation, while UPR is activated in response to the accumulation of misfolded proteins. It has long been thought that ERAD is an integral part of UPR because expression of many ERAD genes is controlled by UPR; however, recent studies have suggested that ERAD has a direct role in controlling the protein turnover and abundance of IRE1α, the most conserved UPR sensor. Here, we review recent advances in our understanding of IRE1α activation and propose that UPR and ERAD engage in an intimate crosstalk to define folding capacity and maintain homeostasis in the ER.
Collapse
Affiliation(s)
- Jiwon Hwang
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48105, USA.
| | - Ling Qi
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48105, USA; Division of Metabolism, Endocrinology & Diabetes, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48105, USA.
| |
Collapse
|
21
|
Ren G, Tardi NJ, Matsuda F, Koh KH, Ruiz P, Wei C, Altintas MM, Ploegh H, Reiser J. Podocytes exhibit a specialized protein quality control employing derlin-2 in kidney disease. Am J Physiol Renal Physiol 2018; 314:F471-F482. [DOI: 10.1152/ajprenal.00691.2016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Podocytes are terminally differentiated cells of the kidney filtration barrier with a limited proliferative capacity and are the primary glomerular target for various sources of cellular stress. Accordingly, it is particularly important for podocytes to cope with stress efficiently to circumvent cell death and avoid compromising renal function. Improperly folded proteins within the endoplasmic reticulum (ER) are associated with increased cellular injury and cell death. To relieve ER stress, protein quality control mechanisms like ER-associated degradation (ERAD) are initiated. Derlin-2 is an important dislocation channel component in the ERAD pathway, having an indispensable role in clearing misfolded glycoproteins from the ER lumen. With studies linking ER stress to kidney disease, we investigated the role of derlin-2 in the susceptibility of podocytes to injury due to protein misfolding. We show that podocytes employ derlin-2 to mediate the ER quality control system to maintain cellular homeostasis in both mouse and human glomeruli. Patients with focal segmental glomerulosclerosis (FSGS) or diabetic nephropathy (DN) upregulate derlin-2 expression in response to glomerular injury, as do corresponding mouse models. In derlin-2-deficient podocytes, compensatory responses were lost under adriamycin (ADR)-induced ER dysfunction, and severe cellular injury ensued via a caspase-12-dependent pathway. Moreover, derlin-2 overexpression in vitro attenuated ADR-induced podocyte injury. Thus derlin-2 is part of a protein quality control mechanism that can rescue glomerular injury attributable to impaired protein folding pathways in the ER. Induction of derlin-2 expression in vivo may have applications in prevention and treatment of glomerular diseases.
Collapse
Affiliation(s)
- Guohui Ren
- Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois
| | - Nicholas J. Tardi
- Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois
| | | | - Kwi Hye Koh
- Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois
| | - Phillip Ruiz
- Department of Surgery, University of Miami School of Medicine, Miami, Florida
| | - Changli Wei
- Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois
| | - Mehmet M. Altintas
- Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois
| | - Hidde Ploegh
- Department of Biology, Whitehead Institute for Biomedical Research, Cambridge, Massachusetts
| | - Jochen Reiser
- Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois
| |
Collapse
|
22
|
Ledig S, Tewes A, Hucke J, Römer T, Kapczuk K, Schippert C, Hillemanns P, Wieacker P. Array-comparative genomic hybridization analysis in patients with Müllerian fusion anomalies. Clin Genet 2018; 93:640-646. [DOI: 10.1111/cge.13160] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 10/19/2017] [Accepted: 10/20/2017] [Indexed: 12/18/2022]
Affiliation(s)
- S. Ledig
- Institute of Human Genetics; Westfälische Wilhelms-Universität Münster (WWU); Münster Germany
| | - A.C. Tewes
- Institute of Human Genetics; Westfälische Wilhelms-Universität Münster (WWU); Münster Germany
| | - J. Hucke
- Department of Obstetrics and Gynecology; Agaplesion Bethesda Krankenhaus; Wuppertal Germany
| | - T. Römer
- Department of Obstetrics and Gynecology; Evangelisches Krankenhaus Köln-Weyertal; Köln-Weyertal Germany
| | - K. Kapczuk
- Division of Gynecology; Poznan University of Medical Sciences; Poznan Poland
| | - C. Schippert
- Department of Obstetrics and Gynecology; Medical School Hannover; Hannover Germany
| | - P. Hillemanns
- Department of Obstetrics and Gynecology; Medical School Hannover; Hannover Germany
| | - P. Wieacker
- Institute of Human Genetics; Westfälische Wilhelms-Universität Münster (WWU); Münster Germany
| |
Collapse
|
23
|
Hagiwara M, Ling J, Koenig PA, Ploegh HL. Posttranscriptional Regulation of Glycoprotein Quality Control in the Endoplasmic Reticulum Is Controlled by the E2 Ub-Conjugating Enzyme UBC6e. Mol Cell 2016; 63:753-67. [PMID: 27570074 DOI: 10.1016/j.molcel.2016.07.014] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 06/20/2016] [Accepted: 07/19/2016] [Indexed: 12/11/2022]
Abstract
ER-associated degradation (ERAD) is essential for protein quality control in the ER, not only when the ER is stressed, but also at steady state. We report a new layer of homeostatic control, in which ERAD activity itself is regulated posttranscriptionally and independently of the unfolded protein response by adjusting the endogenous levels of EDEM1, OS-9, and SEL1L (ERAD enhancers). Functional UBC6e requires its precise location in the ER to form a supramolecular complex with Derlin2. This complex targets ERAD enhancers for degradation, a function that depends on UBC6e's enzymatic activity. Ablation of UBC6e causes upregulation of active ERAD enhancers and so increases clearance not only of terminally misfolded substrates, but also of wild-type glycoproteins that fold comparatively slowly in vitro and in vivo. The levels of proteins that comprise the ERAD machinery are thus carefully tuned and adjusted to prevailing needs.
Collapse
Affiliation(s)
| | - Jingjing Ling
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | | | - Hidde L Ploegh
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.
| |
Collapse
|
24
|
Lemberg MK, Adrain C. Inactive rhomboid proteins: New mechanisms with implications in health and disease. Semin Cell Dev Biol 2016; 60:29-37. [PMID: 27378062 DOI: 10.1016/j.semcdb.2016.06.022] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 06/25/2016] [Accepted: 06/30/2016] [Indexed: 12/23/2022]
Abstract
Rhomboids, proteases containing an unusual membrane-integral serine protease active site, were first identified in Drosophila, where they fulfill an essential role in epidermal growth factor receptor signaling, by cleaving membrane-tethered growth factor precursors. It has recently become apparent that eukaryotic genomes harbor conserved catalytically inactive rhomboid protease homologs, including derlins and iRhoms. Here we highlight how loss of proteolytic activity was followed in evolution by impressive functional diversification, enabling these pseudoproteases to fulfill crucial roles within the secretory pathway, including protein degradation, trafficking regulation, and inflammatory signaling. We distil the current understanding of the roles of rhomboid pseudoproteases in development and disease. Finally, we address mechanistically how versatile features of proteolytically active rhomboids have been elaborated to serve the sophisticated functions of their pseudoprotease cousins. By comparing functional and structural clues, we highlight common principles shared by the rhomboid superfamily, and make mechanistic predictions.
Collapse
Affiliation(s)
- Marius K Lemberg
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ-ZMBH Allianz, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany.
| | - Colin Adrain
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal.
| |
Collapse
|
25
|
Al-Tobasei R, Paneru B, Salem M. Genome-Wide Discovery of Long Non-Coding RNAs in Rainbow Trout. PLoS One 2016; 11:e0148940. [PMID: 26895175 PMCID: PMC4764514 DOI: 10.1371/journal.pone.0148940] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 01/23/2016] [Indexed: 02/07/2023] Open
Abstract
The ENCODE project revealed that ~70% of the human genome is transcribed. While only 1–2% of the RNAs encode for proteins, the rest are non-coding RNAs. Long non-coding RNAs (lncRNAs) form a diverse class of non-coding RNAs that are longer than 200nt. Emerging evidence indicates that lncRNAs play critical roles in various cellular processes including regulation of gene expression. LncRNAs show low levels of gene expression and sequence conservation, which make their computational identification in genomes difficult. In this study, more than two billion Illumina sequence reads were mapped to the genome reference using the TopHat and Cufflinks software. Transcripts shorter than 200nt, with more than 83–100 amino acids ORF, or with significant homologies to the NCBI nr-protein database were removed. In addition, a computational pipeline was used to filter the remaining transcripts based on a protein-coding-score test. Depending on the filtering stringency conditions, between 31,195 and 54,503 lncRNAs were identified, with only 421 matching known lncRNAs in other species. A digital gene expression atlas revealed 2,935 tissue-specific and 3,269 ubiquitously-expressed lncRNAs. This study annotates the lncRNA rainbow trout genome and provides a valuable resource for functional genomics research in salmonids.
Collapse
Affiliation(s)
- Rafet Al-Tobasei
- Computational Science Program, Middle Tennessee State University, Murfreesboro, TN, 37132, United States of America
| | - Bam Paneru
- Department of Biology and Molecular Biosciences Program, Middle Tennessee State University, Murfreesboro, TN, 37132, United States of America
| | - Mohamed Salem
- Computational Science Program, Middle Tennessee State University, Murfreesboro, TN, 37132, United States of America
- Department of Biology and Molecular Biosciences Program, Middle Tennessee State University, Murfreesboro, TN, 37132, United States of America
- * E-mail:
| |
Collapse
|
26
|
Hoelen H, Zaldumbide A, van Leeuwen WF, Torfs ECW, Engelse MA, Hassan C, Lebbink RJ, de Koning EJ, Resssing ME, de Ru AH, van Veelen PA, Hoeben RC, Roep BO, Wiertz EJHJ. Proteasomal Degradation of Proinsulin Requires Derlin-2, HRD1 and p97. PLoS One 2015; 10:e0128206. [PMID: 26107514 PMCID: PMC4479611 DOI: 10.1371/journal.pone.0128206] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Accepted: 04/24/2015] [Indexed: 01/28/2023] Open
Abstract
Patients with type 1 diabetes (T1D) suffer from beta-cell destruction by CD8+ T-cells that have preproinsulin as an important target autoantigen. It is of great importance to understand the molecular mechanism underlying the processing of preproinsulin into these CD8+ T-cell epitopes. We therefore studied a pathway that may contribute to the production of these antigenic peptides: degradation of proinsulin via ER associated protein degradation (ERAD). Analysis of the MHC class I peptide ligandome confirmed the presentation of the most relevant MHC class I-restricted diabetogenic epitopes in our cells: the signal peptide-derived sequence A15-A25 and the insulin B-chain epitopes H29-A38 and H34-V42. We demonstrate that specific silencing of Derlin-2, p97 and HRD1 by shRNAs increases steady state levels of proinsulin. This indicates that these ERAD constituents are critically involved in proinsulin degradation and may therefore also play a role in subsequent antigen generation. These ERAD proteins therefore represent interesting targets for novel therapies aiming at the reduction and possibly also prevention of beta-cell directed auto-immune reactions in T1D.
Collapse
Affiliation(s)
- Hanneke Hoelen
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Arnaud Zaldumbide
- Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Wouter F. van Leeuwen
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Ellen C. W. Torfs
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Marten A. Engelse
- Department of Nephrology, Leiden University Medical Center, Leiden, The Netherlands
| | - Chopie Hassan
- Department of Immunohematology & Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - Robert Jan Lebbink
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Eelco J. de Koning
- Department of Nephrology, Leiden University Medical Center, Leiden, The Netherlands
| | - Maaike E. Resssing
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
- Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Arnoud H. de Ru
- Department of Immunohematology & Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - Peter A. van Veelen
- Department of Immunohematology & Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - Rob C. Hoeben
- Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Bart O. Roep
- Department of Immunohematology & Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - Emmanuel J. H. J. Wiertz
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
- * E-mail:
| |
Collapse
|
27
|
Słomińska-Wojewódzka M, Sandvig K. The Role of Lectin-Carbohydrate Interactions in the Regulation of ER-Associated Protein Degradation. Molecules 2015; 20:9816-46. [PMID: 26023941 PMCID: PMC6272441 DOI: 10.3390/molecules20069816] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 05/20/2015] [Accepted: 05/21/2015] [Indexed: 01/08/2023] Open
Abstract
Proteins entering the secretory pathway are translocated across the endoplasmic reticulum (ER) membrane in an unfolded form. In the ER they are restricted to a quality control system that ensures correct folding or eventual degradation of improperly folded polypeptides. Mannose trimming of N-glycans on newly synthesized proteins plays an important role in the recognition and sorting of terminally misfolded glycoproteins for ER-associated protein degradation (ERAD). In this process misfolded proteins are retrotranslocated into the cytosol, polyubiquitinated, and eventually degraded by the proteasome. The mechanism by which misfolded glycoproteins are recognized and recruited to the degradation machinery has been extensively studied during last decade. In this review, we focus on ER degradation-enhancing α-mannosidase-like protein (EDEM) family proteins that seem to play a key role in the discrimination between proteins undergoing a folding process and terminally misfolded proteins directed for degradation. We describe interactions of EDEM proteins with other components of the ERAD machinery, as well as with various protein substrates. Carbohydrate-dependent interactions together with N-glycan-independent interactions seem to regulate the complex process of protein recognition and direction for proteosomal degradation.
Collapse
Affiliation(s)
| | - Kirsten Sandvig
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital, 0379 Oslo, Norway.
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, 0379 Oslo, Norway.
- Department of Biosciences, University of Oslo, 0316 Oslo, Norway.
| |
Collapse
|
28
|
Koenig PA, Nicholls PK, Schmidt FI, Hagiwara M, Maruyama T, Frydman GH, Watson N, Page DC, Ploegh HL. The E2 ubiquitin-conjugating enzyme UBE2J1 is required for spermiogenesis in mice. J Biol Chem 2014; 289:34490-502. [PMID: 25320092 DOI: 10.1074/jbc.m114.604132] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
ER-resident proteins destined for degradation are dislocated into the cytosol by components of the ER quality control machinery for proteasomal degradation. Dislocation substrates are ubiquitylated in the cytosol by E2 ubiquitin-conjugating/E3 ligase complexes. UBE2J1 is one of the well-characterized E2 enzymes that participate in this process. However, the physiological function of Ube2j1 is poorly defined. We find that Ube2j1(-/-) mice have reduced viability and fail to thrive early after birth. Male Ube2j1(-/-) mice are sterile due to a defect in late spermatogenesis. Ultrastructural analysis shows that removal of the cytoplasm is incomplete in Ube2j1(-/-) elongating spermatids, compromising the release of mature elongate spermatids into the lumen of the seminiferous tubule. Our findings identify an essential function for the ubiquitin-proteasome-system in spermiogenesis and define a novel, non-redundant physiological function for the dislocation step of ER quality control.
Collapse
Affiliation(s)
- Paul-Albert Koenig
- From the Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142
| | - Peter K Nicholls
- From the Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142
| | - Florian I Schmidt
- From the Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142
| | - Masatoshi Hagiwara
- From the Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142
| | - Takeshi Maruyama
- From the Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142
| | - Galit H Frydman
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Nicki Watson
- From the Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142
| | - David C Page
- From the Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142, Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, and Howard Hughes Medical Institute, Cambridge, Massachusetts 02142
| | - Hidde L Ploegh
- From the Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142, Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, and
| |
Collapse
|
29
|
Koenig PA, Ploegh HL. Protein quality control in the endoplasmic reticulum. F1000PRIME REPORTS 2014; 6:49. [PMID: 25184039 PMCID: PMC4108957 DOI: 10.12703/p6-49] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
THE TOPOLOGICAL BARRIERS DEFINED BY BIOLOGICAL MEMBRANES ARE NOT IMPERMEABLE: from small solutes to intact proteins, specialized transport and translocation mechanisms adjust to the cell's needs. Here, we review the removal of unwanted proteins from the endoplasmic reticulum (ER) and emphasize the need to extend observations from tissue culture models and simple eukaryotes to studies in whole animals. The variation in protein production and composition that characterizes different cell types and tissues requires tailor-made solutions to exert proper control over both protein synthesis and breakdown. The ER is an organelle essential to achieve and maintain such homeostasis.
Collapse
Affiliation(s)
- Paul-Albert Koenig
- Klinikum rechts der Isar, Technische Universität München, Institut für Klinische Chemie und Pathobiochemie, Ismaninger Straße22, 81675 MünchenGermany
| | - Hidde L. Ploegh
- Whitehead Institute for Biomedical Research9 Cambridge Center, Cambridge, 02142 MAUSA
| |
Collapse
|
30
|
Fisher E, Lake E, McLeod RS. Apolipoprotein B100 quality control and the regulation of hepatic very low density lipoprotein secretion. J Biomed Res 2014; 28:178-93. [PMID: 25013401 PMCID: PMC4085555 DOI: 10.7555/jbr.28.20140019] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 02/15/2014] [Indexed: 12/19/2022] Open
Abstract
Apolipoprotein B (apoB) is the main protein component of very low density lipoprotein (VLDL) and is necessary for the assembly and secretion of these triglyceride (TG)-rich particles. Following release from the liver, VLDL is converted to low density lipoprotein (LDL) in the plasma and increased production of VLDL can therefore play a detrimental role in cardiovascular disease. Increasing evidence has helped to establish VLDL assembly as a target for the treatment of dyslipidemias. Multiple factors are involved in the folding of the apoB protein and the formation of a secretion-competent VLDL particle. Failed VLDL assembly can initiate quality control mechanisms in the hepatocyte that target apoB for degradation. ApoB is a substrate for endoplasmic reticulum associated degradation (ERAD) by the ubiquitin proteasome system and for autophagy. Efficient targeting and disposal of apoB is a regulated process that modulates VLDL secretion and partitioning of TG. Emerging evidence suggests that significant overlap exists between these degradative pathways. For example, the insulin-mediated targeting of apoB to autophagy and postprandial activation of the unfolded protein response (UPR) may employ the same cellular machinery and regulatory cues. Changes in the quality control mechanisms for apoB impact hepatic physiology and pathology states, including insulin resistance and fatty liver. Insulin signaling, lipid metabolism and the hepatic UPR may impact VLDL production, particularly during the postprandial state. In this review we summarize our current understanding of VLDL assembly, apoB degradation, quality control mechanisms and the role of these processes in liver physiology and in pathologic states.
Collapse
Affiliation(s)
- Eric Fisher
- Biochemistry & Molecular Biology, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Elizabeth Lake
- Biochemistry & Molecular Biology, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Roger S McLeod
- Biochemistry & Molecular Biology, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada
| |
Collapse
|
31
|
Sel1L is indispensable for mammalian endoplasmic reticulum-associated degradation, endoplasmic reticulum homeostasis, and survival. Proc Natl Acad Sci U S A 2014; 111:E582-91. [PMID: 24453213 DOI: 10.1073/pnas.1318114111] [Citation(s) in RCA: 154] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Suppressor/Enhancer of Lin-12-like (Sel1L) is an adaptor protein for the E3 ligase hydroxymethylglutaryl reductase degradation protein 1 (Hrd1) involved in endoplasmic reticulum-associated degradation (ERAD). Sel1L's physiological importance in mammalian ERAD, however, remains to be established. Here, using the inducible Sel1L knockout mouse and cell models, we show that Sel1L is indispensable for Hrd1 stability, ER homeostasis, and survival. Acute loss of Sel1L leads to premature death in adult mice within 3 wk with profound pancreatic atrophy. Contrary to current belief, our data show that mammalian Sel1L is required for Hrd1 stability and ERAD function both in vitro and in vivo. Sel1L deficiency disturbs ER homeostasis, activates ER stress, attenuates translation, and promotes cell death. Serendipitously, using a biochemical approach coupled with mass spectrometry, we found that Sel1L deficiency causes the aggregation of both small and large ribosomal subunits. Thus, Sel1L is an indispensable component of the mammalian Hrd1 ERAD complex and ER homeostasis, which is essential for protein translation, pancreatic function, and cellular and organismal survival.
Collapse
|
32
|
Huang CH, Hsiao HT, Chu YR, Ye Y, Chen X. Derlin2 protein facilitates HRD1-mediated retro-translocation of sonic hedgehog at the endoplasmic reticulum. J Biol Chem 2013; 288:25330-25339. [PMID: 23867461 DOI: 10.1074/jbc.m113.455212] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Endoplasmic reticulum-associated degradation (ERAD) is an important system that eliminates misfolded proteins from the ER. Three derlins have been implicated in this process, but their precise function remains unknown. In this study, we report that although both derlin1 and derlin2 are capable of binding the ERAD-specific ubiquitin ligase HRD1, they associate with the HRD1-containing complex with different affinities. Accordingly, these derlins have nonredundant functions in ERAD with derlin2 being an essential functional partner for HRD1-mediated ERAD of SHH and NHK. We show that derlin2, but not derlin1 or derlin3, is required for ERAD of both glycosylated and nonglycosylated SHH, as well as NHK. Derlin2 appears to act at a post-targeting step for HRD1-dependent retro-translocation. Without derlin2, the assembly of HRD1 into a functional retro-translocation homo-oligomer proceeds normally, and substrate targeting to the HRD1 complex also occurs. However, the ERAD substrate SHH-C is largely trapped inside the ER lumen. These observations raise the possibility that derlin2 may regulate the movement of substrates through the HRD1-containing retro-translocon. Our study is the first to report that derlin2 functions with HRD1 in ERAD of certain substrates independent of their glycosylation status. The mammalian ERAD system may require multiple derlins that each functions with a distinct E3 partner to eliminate a specific subset of substrates. This is different from the model in Saccharomyces cerevisiae, in which Hrd1p alone is sufficient for retro-translocation.
Collapse
Affiliation(s)
- Chih-Hsiang Huang
- From the Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli, Taiwan 35053, Republic of China
| | - Hui-Ting Hsiao
- From the Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli, Taiwan 35053, Republic of China
| | - Yue-Ru Chu
- From the Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli, Taiwan 35053, Republic of China
| | - Yihong Ye
- the Laboratory of Molecular Biology, NIDDK, National Institutes of Health, Bethesda, Maryland 20892, and
| | - Xin Chen
- From the Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli, Taiwan 35053, Republic of China,; the Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan 40402, Republic of China.
| |
Collapse
|
33
|
Eura Y, Yanamoto H, Arai Y, Okuda T, Miyata T, Kokame K. Derlin-1 deficiency is embryonic lethal, Derlin-3 deficiency appears normal, and Herp deficiency is intolerant to glucose load and ischemia in mice. PLoS One 2012; 7:e34298. [PMID: 22479592 PMCID: PMC3315519 DOI: 10.1371/journal.pone.0034298] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Accepted: 02/27/2012] [Indexed: 12/21/2022] Open
Abstract
Accumulation of unfolded or misfolded proteins in the endoplasmic reticulum (ER) causes a cellular condition called ER stress. To overcome ER stress, unfolded proteins are eliminated by an ER-associated degradation (ERAD) system. To explore the physiological requirements for ERAD-related membrane proteins in mammals, we generated Derlin-1-, Derlin-3-, and Herp-deficient mice by gene targeting. Complete loss of Derlin-1 caused embryonic lethality at around E7-E8 (early somite stages). In contrast, Derlin-3- and Herp-deficient mice were born alive with the expected Mendelian frequency, and were superficially indistinguishable from wild-type mice. However, in the Derlin-3- and Herp-deficient mouse organs, the expression levels of ERAD-related proteins were affected under both normal and ER stress conditions; specific effects differed among the organs. Degradation of ERAD substrates was reduced in the Herp-deficient liver, and Herp-deficient mice exhibited impaired glucose tolerance and vulnerability to brain ischemic injury, both of which are known to be implicated in ER stress. Our findings indicate that ERAD or uncharacterized functions involving Derlin-1 are essential in early embryonic development. Derlin-3- and Herp-deficient mice may become useful model animals for investigations of the physiological contribution of ERAD under stressful or pathological conditions.
Collapse
Affiliation(s)
- Yuka Eura
- Department of Molecular Pathogenesis, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| | - Hiroji Yanamoto
- Laboratory of Neurology and Neurosurgery, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| | - Yuji Arai
- Department of Bioscience and Genetics, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| | - Tomohiko Okuda
- Department of Molecular Pathogenesis, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| | - Toshiyuki Miyata
- Department of Molecular Pathogenesis, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| | - Koichi Kokame
- Department of Molecular Pathogenesis, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
- * E-mail:
| |
Collapse
|
34
|
Guimaraes CP, Carette JE, Varadarajan M, Antos J, Popp MW, Spooner E, Brummelkamp TR, Ploegh HL. Identification of host cell factors required for intoxication through use of modified cholera toxin. ACTA ACUST UNITED AC 2012; 195:751-64. [PMID: 22123862 PMCID: PMC3257576 DOI: 10.1083/jcb.201108103] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We describe a novel labeling strategy to site-specifically attach fluorophores, biotin, and proteins to the C terminus of the A1 subunit (CTA1) of cholera toxin (CTx) in an otherwise correctly assembled and active CTx complex. Using a biotinylated N-linked glycosylation reporter peptide attached to CTA1, we provide direct evidence that ~12% of the internalized CTA1 pool reaches the ER. We also explored the sortase labeling method to attach the catalytic subunit of diphtheria toxin as a toxic warhead to CTA1, thus converting CTx into a cytolethal toxin. This new toxin conjugate enabled us to conduct a genetic screen in human cells, which identified ST3GAL5, SLC35A2, B3GALT4, UGCG, and ELF4 as genes essential for CTx intoxication. The first four encode proteins involved in the synthesis of gangliosides, which are known receptors for CTx. Identification and isolation of the ST3GAL5 and SLC35A2 mutant clonal cells uncover a previously unappreciated differential contribution of gangliosides to intoxication by CTx.
Collapse
Affiliation(s)
- Carla P Guimaraes
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | | | | | | | | | | | | | | |
Collapse
|