1
|
Fernández-Parejo N, Lorenzo-Martín LF, García-Pedrero JM, Rodrigo JP, Dosil M, Bustelo XR. VAV2 orchestrates the interplay between regenerative proliferation and ribogenesis in both keratinocytes and oral squamous cell carcinoma. Sci Rep 2024; 14:4060. [PMID: 38374399 PMCID: PMC10876654 DOI: 10.1038/s41598-024-54808-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/16/2024] [Indexed: 02/21/2024] Open
Abstract
VAV2 is an activator of RHO GTPases that promotes and maintains regenerative proliferation-like states in normal keratinocytes and oral squamous cell carcinoma (OSCC) cells. Here, we demonstrate that VAV2 also regulates ribosome biogenesis in those cells, a program associated with poor prognosis of human papilloma virus-negative (HPV-) OSCC patients. Mechanistically, VAV2 regulates this process in a catalysis-dependent manner using a conserved pathway comprising the RAC1 and RHOA GTPases, the PAK and ROCK family kinases, and the c-MYC and YAP/TAZ transcription factors. This pathway directly promotes RNA polymerase I activity and synthesis of 47S pre-rRNA precursors. This process is further consolidated by the upregulation of ribosome biogenesis factors and the acquisition of the YAP/TAZ-dependent undifferentiated cell state. Finally, we show that RNA polymerase I is a therapeutic Achilles' heel for both keratinocytes and OSCC patient-derived cells endowed with high VAV2 catalytic activity. Collectively, these findings highlight the therapeutic potential of modulating VAV2 and the ribosome biogenesis pathways in both preneoplastic and late progression stages of OSCC.
Collapse
Affiliation(s)
- Natalia Fernández-Parejo
- Centro de Investigación del Cáncer and Instituto de Biología Molecular del Cáncer, CSIC and Universidad de Salamanca, 37007, Salamanca, Spain
- Centro de Investigación Biomédica en Red de Cáncer, 28029, Madrid, Spain
| | - L Francisco Lorenzo-Martín
- Centro de Investigación del Cáncer and Instituto de Biología Molecular del Cáncer, CSIC and Universidad de Salamanca, 37007, Salamanca, Spain
- Centro de Investigación Biomédica en Red de Cáncer, 28029, Madrid, Spain
- Laboratory of Stem Cell Bioengineering, École Polytechnique Fédérale de Lausanne, 1015, Lausanne, Switzerland
| | - Juana M García-Pedrero
- Centro de Investigación Biomédica en Red de Cáncer, 28029, Madrid, Spain
- Hospital Universitario Central de Asturias and Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Instituto Universitario de Oncología del Principado de Asturias, University of Oviedo, 33011, Oviedo, Spain
| | - Juan P Rodrigo
- Centro de Investigación Biomédica en Red de Cáncer, 28029, Madrid, Spain
- Hospital Universitario Central de Asturias and Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Instituto Universitario de Oncología del Principado de Asturias, University of Oviedo, 33011, Oviedo, Spain
| | - Mercedes Dosil
- Centro de Investigación del Cáncer and Instituto de Biología Molecular del Cáncer, CSIC and Universidad de Salamanca, 37007, Salamanca, Spain.
- Centro de Investigación Biomédica en Red de Cáncer, 28029, Madrid, Spain.
| | - Xosé R Bustelo
- Centro de Investigación del Cáncer and Instituto de Biología Molecular del Cáncer, CSIC and Universidad de Salamanca, 37007, Salamanca, Spain.
- Centro de Investigación Biomédica en Red de Cáncer, 28029, Madrid, Spain.
| |
Collapse
|
2
|
Chen Y, Wu Y, Feng W, Luo X, Xiao B, Ding X, Gu Y, Lu Y, Yu Y. Vav2 promotes ductus arteriosus anatomic closure via the remodeling of smooth muscle cells by Rac1 activation. J Mol Med (Berl) 2023; 101:1567-1585. [PMID: 37804474 DOI: 10.1007/s00109-023-02377-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 08/16/2023] [Accepted: 09/18/2023] [Indexed: 10/09/2023]
Abstract
The ductus arteriosus (DA), bridging the aorta and pulmonary artery, immediately starts closing after birth. Remodeling of DA leads to anatomic obstruction to prevent repatency. Several histological changes, especially extracellular matrices (ECMs) deposition and smooth muscle cells (SMCs) migration bring to anatomic closure. The genetic etiology and mechanism of DA closure remain elusive. We have previously reported a novel copy number variant containing Vav2 in patent ductus arteriosus (PDA) patients, but its specific role in DA closure remains unknown. The present study revealed that the expression of Vav2 was reduced in human patent DA, and it was less enrichment in the adjacent aorta. Matrigel experiments demonstrated that Vav2 could promote SMC migration from PDA patient explants. Smooth muscle cells with Vav2 overexpression also presented an increased capacity in migration and downregulated contractile-related proteins. Meanwhile, SMCs with Vav2 overexpression exhibited higher expression of collagen III and lessened protein abundance of lysyl oxidase, and both changes are beneficial to DA remodeling. Overexpression of Vav2 resulted in increased activity of Rac1, Cdc42, and RhoA in SMCs. Further investigation noteworthily found that the above alterations caused by Vav2 overexpression were particularly reversed by Rac1 inhibitor. A heterozygous, rare Vav2 variant was identified in PDA patients. Compared with the wild type, this variant attenuated Vav2 protein expression and weakened the activation of downstream Rac1, further impairing its functions in SMCs. In conclusion, Vav2 functions as an activator for Rac1 in SMCs to promote SMCs migration, dedifferentiation, and ECMs production. Deleterious variant potentially induces Vav2 loss of function, further providing possible molecular mechanisms about Vav2 in PDA pathogenesis. These findings enriched the current genetic etiology of PDA, which may provide a novel target for prenatal diagnosis and treatment. KEY MESSAGES: Although we have proposed the potential association between Vav2 and PDA incidence through whole exome sequencing, the molecular mechanisms underlying Vav2 in PDA have never been reported. This work, for the first time, demonstrated that Vav2 was exclusively expressed in closed DAs. Moreover, we found that Vav2 participated in the process of anatomic closure by mediating SMCs migration, dedifferentiation, and ECMs deposition through Rac1 activation. Our findings first identified a deleterious Vav2 c.701C>T variant that affected its function in SMCs by impairing Rac1 activation, which may lead to PDA defect. Vav2 may become an early diagnosis and an effective intervention target for PDA clinical therapy.
Collapse
Affiliation(s)
- Yinghui Chen
- Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200092, China
| | - Yizhuo Wu
- Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200092, China
| | - Weiqi Feng
- Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200092, China
| | - Xueyang Luo
- Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200092, China
| | - Bing Xiao
- Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200092, China
| | - Xiaowei Ding
- Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200092, China
| | - Yongjia Gu
- Department of Stomatology, Shidong Hospital of Yangpu District, Shanghai, 200438, China.
| | - Yanan Lu
- Department of Pediatric Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200092, China.
| | - Yu Yu
- Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200092, China.
| |
Collapse
|
3
|
Lorenzo-Martín LF, Bustelo XR. The Rho GTPase exchange factor Vav2 promotes extensive age-dependent rewiring of the hair follicle stem cell transcriptome. Front Cell Dev Biol 2023; 11:1252834. [PMID: 37822868 PMCID: PMC10562702 DOI: 10.3389/fcell.2023.1252834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 09/11/2023] [Indexed: 10/13/2023] Open
Abstract
Both the number and regenerative activity of hair follicle stem cells (HFSCs) are regulated by Vav2, a GDP/GTP exchange factor involved in the catalytic stimulation of the GTPases Rac1 and RhoA. However, whether Vav2 signaling changes in HFSCs over the mouse lifespan is not yet known. Using a mouse knock-in mouse model, we now show that the expression of a catalytically active version of Vav2 (Vav2Onc) promotes an extensive rewiring of the overall transcriptome of HFSCs, the generation of new transcription factor hubs, and the synchronization of many transcriptional programs associated with specific HFSC states and well-defined signaling pathways. Interestingly, this transcriptome rewiring is not fixed in time, as it involves the induction of 15 gene expression waves with diverse distribution patterns during the life of the animals. These expression waves are consistent with the promotion by Vav2Onc of several functional HFSC states that differ from those normally observed in wild-type HFSCs. These results further underscore the role of Vav2 in the regulation of the functional state of HFSCs. They also indicate that, unlike other Vav2-dependent biological processes, the signaling output of this exchange factor is highly contingent on age-dependent intrinsic and/or extrinsic HFSC factors that shape the final biological readouts triggered in this cell type.
Collapse
Affiliation(s)
- L. Francisco Lorenzo-Martín
- Molecular Mechanisms of Cancer Program, Centro de Investigación del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC) and University of Salamanca, Salamanca, Spain
- Instituto de Biología Molecular y Celular del Cáncer, CSIC and University of Salamanca, Salamanca, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Salamanca, Spain
| | - Xosé R. Bustelo
- Molecular Mechanisms of Cancer Program, Centro de Investigación del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC) and University of Salamanca, Salamanca, Spain
- Instituto de Biología Molecular y Celular del Cáncer, CSIC and University of Salamanca, Salamanca, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Salamanca, Spain
| |
Collapse
|
4
|
Lorenzo-Martín LF, Menacho-Márquez M, Fernández-Parejo N, Rodríguez-Fdez S, Pascual G, Abad A, Crespo P, Dosil M, Benitah SA, Bustelo XR. The Rho guanosine nucleotide exchange factors Vav2 and Vav3 modulate epidermal stem cell function. Oncogene 2022; 41:3341-3354. [PMID: 35534539 PMCID: PMC9187518 DOI: 10.1038/s41388-022-02341-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 04/26/2022] [Accepted: 04/27/2022] [Indexed: 12/21/2022]
Abstract
It is known that Rho GTPases control different aspects of the biology of skin stem cells (SSCs). However, little information is available on the role of their upstream regulators under normal and tumorigenic conditions in this process. To address this issue, we have used here mouse models in which the activity of guanosine nucleotide exchange factors of the Vav subfamily has been manipulated using both gain- and loss-of-function strategies. These experiments indicate that Vav2 and Vav3 regulate the number, functional status, and responsiveness of hair follicle bulge stem cells. This is linked to gene expression programs related to the reinforcement of the identity and the quiescent state of normal SSCs. By contrast, in the case of cancer stem cells, they promote transcriptomal programs associated with the identity, activation state, and cytoskeletal remodeling. These results underscore the role of these Rho exchange factors in the regulation of normal and tumor epidermal stem cells.
Collapse
Affiliation(s)
- L Francisco Lorenzo-Martín
- Molecular Mechanisms of Cancer Program, Centro de Investigación del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)-University of Salamanca, 37007, Salamanca, Spain.,Instituto de Biología Molecular y Celular del Cáncer, CSIC-University of Salamanca, 37007, Salamanca, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 37007, Salamanca, Spain
| | - Mauricio Menacho-Márquez
- Molecular Mechanisms of Cancer Program, Centro de Investigación del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)-University of Salamanca, 37007, Salamanca, Spain.,Instituto de Biología Molecular y Celular del Cáncer, CSIC-University of Salamanca, 37007, Salamanca, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 37007, Salamanca, Spain
| | - Natalia Fernández-Parejo
- Molecular Mechanisms of Cancer Program, Centro de Investigación del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)-University of Salamanca, 37007, Salamanca, Spain.,Instituto de Biología Molecular y Celular del Cáncer, CSIC-University of Salamanca, 37007, Salamanca, Spain
| | - Sonia Rodríguez-Fdez
- Molecular Mechanisms of Cancer Program, Centro de Investigación del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)-University of Salamanca, 37007, Salamanca, Spain.,Instituto de Biología Molecular y Celular del Cáncer, CSIC-University of Salamanca, 37007, Salamanca, Spain
| | | | - Antonio Abad
- Molecular Mechanisms of Cancer Program, Centro de Investigación del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)-University of Salamanca, 37007, Salamanca, Spain.,Instituto de Biología Molecular y Celular del Cáncer, CSIC-University of Salamanca, 37007, Salamanca, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 37007, Salamanca, Spain
| | - Piero Crespo
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 37007, Salamanca, Spain.,Instituto de Biomedicina y Biotecnología de Cantabria, CSIC-University of Cantabria, 39011, Santander, Spain
| | - Mercedes Dosil
- Molecular Mechanisms of Cancer Program, Centro de Investigación del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)-University of Salamanca, 37007, Salamanca, Spain.,Instituto de Biología Molecular y Celular del Cáncer, CSIC-University of Salamanca, 37007, Salamanca, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 37007, Salamanca, Spain
| | | | - Xosé R Bustelo
- Molecular Mechanisms of Cancer Program, Centro de Investigación del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)-University of Salamanca, 37007, Salamanca, Spain. .,Instituto de Biología Molecular y Celular del Cáncer, CSIC-University of Salamanca, 37007, Salamanca, Spain. .,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 37007, Salamanca, Spain.
| |
Collapse
|
5
|
Rodríguez-Fdez S, Bustelo XR. Rho GTPases in Skeletal Muscle Development and Homeostasis. Cells 2021; 10:cells10112984. [PMID: 34831205 PMCID: PMC8616218 DOI: 10.3390/cells10112984] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 10/29/2021] [Accepted: 10/29/2021] [Indexed: 02/07/2023] Open
Abstract
Rho guanosine triphosphate hydrolases (GTPases) are molecular switches that cycle between an inactive guanosine diphosphate (GDP)-bound and an active guanosine triphosphate (GTP)-bound state during signal transduction. As such, they regulate a wide range of both cellular and physiological processes. In this review, we will summarize recent work on the role of Rho GTPase-regulated pathways in skeletal muscle development, regeneration, tissue mass homeostatic balance, and metabolism. In addition, we will present current evidence that links the dysregulation of these GTPases with diseases caused by skeletal muscle dysfunction. Overall, this information underscores the critical role of a number of members of the Rho GTPase subfamily in muscle development and the overall metabolic balance of mammalian species.
Collapse
Affiliation(s)
- Sonia Rodríguez-Fdez
- Molecular Mechanisms of Cancer Program, Centro de Investigación del Cáncer, CSIC-University of Salamanca, 37007 Salamanca, Spain;
- Instituto de Biología Molecular y Celular del Cáncer, CSIC-University of Salamanca, 37007 Salamanca, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), CSIC-University of Salamanca, 37007 Salamanca, Spain
- Wellcome-MRC Institute of Metabolic Science and MRC Metabolic Diseases Unit, University of Cambridge, Cambridge CB2 0QQ, UK
- Correspondence: or
| | - Xosé R. Bustelo
- Molecular Mechanisms of Cancer Program, Centro de Investigación del Cáncer, CSIC-University of Salamanca, 37007 Salamanca, Spain;
- Instituto de Biología Molecular y Celular del Cáncer, CSIC-University of Salamanca, 37007 Salamanca, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), CSIC-University of Salamanca, 37007 Salamanca, Spain
| |
Collapse
|
6
|
Rodríguez-Fdez S, Lorenzo-Martín LF, Fabbiano S, Menacho-Márquez M, Sauzeau V, Dosil M, Bustelo XR. New Functions of Vav Family Proteins in Cardiovascular Biology, Skeletal Muscle, and the Nervous System. BIOLOGY 2021; 10:biology10090857. [PMID: 34571735 PMCID: PMC8472352 DOI: 10.3390/biology10090857] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/27/2021] [Accepted: 08/29/2021] [Indexed: 11/16/2022]
Abstract
Simple Summary In this review, we provide information on the role of Vav proteins, a group of signaling molecules that act as both Rho GTPase activators and adaptor molecules, in the cardiovascular system, skeletal muscle, and the nervous system. We also describe how these functions impact in other physiological and pathological processes such as sympathoregulation, blood pressure regulation, systemic metabolism, and metabolic syndrome. Abstract Vav proteins act as tyrosine phosphorylation-regulated guanosine nucleotide exchange factors for Rho GTPases and as molecular scaffolds. In mammals, this family of signaling proteins is composed of three members (Vav1, Vav2, Vav3) that work downstream of protein tyrosine kinases in a wide variety of cellular processes. Recent work with genetically modified mouse models has revealed that these proteins play key signaling roles in vascular smooth and skeletal muscle cells, specific neuronal subtypes, and glia cells. These functions, in turn, ensure the proper regulation of blood pressure levels, skeletal muscle mass, axonal wiring, and fiber myelination events as well as systemic metabolic balance. The study of these mice has also led to the discovery of new physiological interconnection among tissues that contribute to the ontogeny and progression of different pathologies such as, for example, hypertension, cardiovascular disease, and metabolic syndrome. Here, we provide an integrated view of all these new Vav family-dependent signaling and physiological functions.
Collapse
Affiliation(s)
- Sonia Rodríguez-Fdez
- Molecular Mechanisms of Cancer Program, Centro de Investigación del Cáncer, CSIC-University of Salamanca, 37007 Salamanca, Spain; (S.R.-F.); (L.F.L.-M.); (S.F.); (M.M.-M.); (V.S.); (M.D.)
- Instituto de Biología Molecular y Celular del Cáncer, CSIC-University of Salamanca, 37007 Salamanca, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), CSIC-University of Salamanca, 37007 Salamanca, Spain
| | - L. Francisco Lorenzo-Martín
- Molecular Mechanisms of Cancer Program, Centro de Investigación del Cáncer, CSIC-University of Salamanca, 37007 Salamanca, Spain; (S.R.-F.); (L.F.L.-M.); (S.F.); (M.M.-M.); (V.S.); (M.D.)
- Instituto de Biología Molecular y Celular del Cáncer, CSIC-University of Salamanca, 37007 Salamanca, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), CSIC-University of Salamanca, 37007 Salamanca, Spain
| | - Salvatore Fabbiano
- Molecular Mechanisms of Cancer Program, Centro de Investigación del Cáncer, CSIC-University of Salamanca, 37007 Salamanca, Spain; (S.R.-F.); (L.F.L.-M.); (S.F.); (M.M.-M.); (V.S.); (M.D.)
- Instituto de Biología Molecular y Celular del Cáncer, CSIC-University of Salamanca, 37007 Salamanca, Spain
| | - Mauricio Menacho-Márquez
- Molecular Mechanisms of Cancer Program, Centro de Investigación del Cáncer, CSIC-University of Salamanca, 37007 Salamanca, Spain; (S.R.-F.); (L.F.L.-M.); (S.F.); (M.M.-M.); (V.S.); (M.D.)
- Instituto de Inmunología Clínica y Experimental, CONICET, Rosario 3100, Argentina
| | - Vincent Sauzeau
- Molecular Mechanisms of Cancer Program, Centro de Investigación del Cáncer, CSIC-University of Salamanca, 37007 Salamanca, Spain; (S.R.-F.); (L.F.L.-M.); (S.F.); (M.M.-M.); (V.S.); (M.D.)
- Institut du Thorax, UMR1087 CNRS 6291, INSERM, Université de Nantes, 44096 Nantes, France
| | - Mercedes Dosil
- Molecular Mechanisms of Cancer Program, Centro de Investigación del Cáncer, CSIC-University of Salamanca, 37007 Salamanca, Spain; (S.R.-F.); (L.F.L.-M.); (S.F.); (M.M.-M.); (V.S.); (M.D.)
- Instituto de Biología Molecular y Celular del Cáncer, CSIC-University of Salamanca, 37007 Salamanca, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), CSIC-University of Salamanca, 37007 Salamanca, Spain
| | - Xosé R. Bustelo
- Molecular Mechanisms of Cancer Program, Centro de Investigación del Cáncer, CSIC-University of Salamanca, 37007 Salamanca, Spain; (S.R.-F.); (L.F.L.-M.); (S.F.); (M.M.-M.); (V.S.); (M.D.)
- Instituto de Biología Molecular y Celular del Cáncer, CSIC-University of Salamanca, 37007 Salamanca, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), CSIC-University of Salamanca, 37007 Salamanca, Spain
- Correspondence: ; Tel.: +34-663-194-634
| |
Collapse
|
7
|
Repositioning metformin and propranolol for colorectal and triple negative breast cancers treatment. Sci Rep 2021; 11:8091. [PMID: 33854147 PMCID: PMC8047046 DOI: 10.1038/s41598-021-87525-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 03/22/2021] [Indexed: 12/27/2022] Open
Abstract
Drug repositioning refers to new uses for existing drugs outside the scope of the original medical indications. This approach fastens the process of drug development allowing finding effective drugs with reduced side effects and lower costs. Colorectal cancer (CRC) is often diagnosed at advanced stages, when the probability of chemotherapy resistance is higher. Triple negative breast cancer (TNBC) is the most aggressive type of breast cancer, highly metastatic and difficult to treat. For both tumor types, available treatments are generally associated to severe side effects. In our work, we explored the effect of combining metformin and propranolol, two repositioned drugs, in both tumor types. We demonstrate that treatment affects viability, epithelial-mesenchymal transition and migratory potential of CRC cells as we described before for TNBC. We show that combined treatment affects different steps leading to metastasis in TNBC. Moreover, combined treatment is also effective preventing the development of 5-FU resistant CRC. Our data suggest that combination of metformin and propranolol could be useful as a putative adjuvant treatment for both TNBC and CRC and an alternative for chemo-resistant CRC, providing a low-cost alternative therapy without associated toxicity.
Collapse
|
8
|
Vav2 catalysis-dependent pathways contribute to skeletal muscle growth and metabolic homeostasis. Nat Commun 2020; 11:5808. [PMID: 33199701 PMCID: PMC7669868 DOI: 10.1038/s41467-020-19489-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 10/16/2020] [Indexed: 12/17/2022] Open
Abstract
Skeletal muscle promotes metabolic balance by regulating glucose uptake and the stimulation of multiple interorgan crosstalk. We show here that the catalytic activity of Vav2, a Rho GTPase activator, modulates the signaling output of the IGF1- and insulin-stimulated phosphatidylinositol 3-kinase pathway in that tissue. Consistent with this, mice bearing a Vav2 protein with decreased catalytic activity exhibit reduced muscle mass, lack of proper insulin responsiveness and, at much later times, a metabolic syndrome-like condition. Conversely, mice expressing a catalytically hyperactive Vav2 develop muscle hypertrophy and increased insulin responsiveness. Of note, while hypoactive Vav2 predisposes to, hyperactive Vav2 protects against high fat diet-induced metabolic imbalance. These data unveil a regulatory layer affecting the signaling output of insulin family factors in muscle. Skeletal muscle plays a key role in regulating systemic glucose and metabolic homeostasis. Here, the authors show that the catalytic activity of Vav2, an activator of Rho GTPases, modulates those processes by favoring the responsiveness of this tissue to insulin and related factors.
Collapse
|
9
|
Chen B, Hou A, Zhao L, Liu Y, Shi X, Du B, Yu Y, Zhao P, Gao Y. Next Generation Sequencing Identify Rare Copy Number Variants in Non-syndromic Patent Ductus Arteriosus. Front Genet 2020; 11:600787. [PMID: 33281884 PMCID: PMC7689032 DOI: 10.3389/fgene.2020.600787] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 10/26/2020] [Indexed: 01/05/2023] Open
Abstract
Patent ductus arteriosus (PDA) is a common congenital cardiovascular malformation with both inherited and acquired causes. Several genes have been reported to be related to PDA, but the molecular pathogenesis is still unclear. Here, we screened a population matched cohort of 39 patients with PDA and 100 healthy children using whole exome sequencing (WES). And identified 10 copy number variants (CNVs) and 20 candidate genes using Gene ontology (GO) functional enrichment analysis. In gene network analysis, we screened 7 pathogenic CNVs of 10 candidate genes (MAP3K1, MYC, VAV2, WDR5, RXRA, APLNR, TJP1, ERCC2, FOSB, CHRNA4). Further analysis of transcriptome array showed that 7 candidate genes (MAP3K1, MYC, VAV2, APLNR, TJP1, FOSB, CHRNA4) were indeed significantly expressed in human embryonic heart. Moreover, CHRNA4 was observed the most important genes. Our data provided rare CNVs as potential genetic cause of PDA in humans and also advance understanding of the genetic components of PDA.
Collapse
Affiliation(s)
- Bo Chen
- Department of Pediatric Cardiology, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Aiping Hou
- Department of Pediatric, Shidong Hospital, Shanghai, China
| | - Lin Zhao
- Department of Pediatric, Shidong Hospital, Shanghai, China
| | - Ying Liu
- Department of Pediatric, Shidong Hospital, Shanghai, China
| | - Xin Shi
- Department of Pediatric Cardiology, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Bowen Du
- Department of Pediatric Cardiology, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yu Yu
- Department of Pediatric Cardiology, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Pengjun Zhao
- Department of Pediatric Cardiology, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ying Gao
- Department of Pediatric, Shidong Hospital, Shanghai, China
| |
Collapse
|
10
|
Lorenzo-Martín LF, Fernández-Parejo N, Menacho-Márquez M, Rodríguez-Fdez S, Robles-Valero J, Zumalave S, Fabbiano S, Pascual G, García-Pedrero JM, Abad A, García-Macías MC, González N, Lorenzano-Menna P, Pavón MA, González-Sarmiento R, Segrelles C, Paramio JM, Tubío JMC, Rodrigo JP, Benitah SA, Cuadrado M, Bustelo XR. VAV2 signaling promotes regenerative proliferation in both cutaneous and head and neck squamous cell carcinoma. Nat Commun 2020; 11:4788. [PMID: 32963234 PMCID: PMC7508832 DOI: 10.1038/s41467-020-18524-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 08/27/2020] [Indexed: 12/30/2022] Open
Abstract
Regenerative proliferation capacity and poor differentiation are histological features usually linked to poor prognosis in head and neck squamous cell carcinoma (hnSCC). However, the pathways that regulate them remain ill-characterized. Here, we show that those traits can be triggered by the RHO GTPase activator VAV2 in keratinocytes present in the skin and oral mucosa. VAV2 is also required to maintain those traits in hnSCC patient-derived cells. This function, which is both catalysis- and RHO GTPase-dependent, is mediated by c-Myc- and YAP/TAZ-dependent transcriptomal programs associated with regenerative proliferation and cell undifferentiation, respectively. High levels of VAV2 transcripts and VAV2-regulated gene signatures are both associated with poor hnSCC patient prognosis. These results unveil a druggable pathway linked to the malignancy of specific SCC subtypes. The Rho signalling pathway is frequently activated in squamous carcinomas. Here, the authors find that the Rho GEF VAV2 is over expressed in both cutaneous and head and neck squamous cell carcinomas and that at the molecular level VAV2 promotes a pro-tumorigenic stem cell-like signalling programme.
Collapse
Affiliation(s)
- L Francisco Lorenzo-Martín
- Centro de Investigación del Cáncer, CSIC-University of Salamanca, 37007, Salamanca, Spain.,Instituto de Biología Molecular y Celular del Cáncer, CSIC-University of Salamanca, 37007, Salamanca, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), CSIC-University of Salamanca, 37007, Salamanca, Spain
| | - Natalia Fernández-Parejo
- Centro de Investigación del Cáncer, CSIC-University of Salamanca, 37007, Salamanca, Spain.,Instituto de Biología Molecular y Celular del Cáncer, CSIC-University of Salamanca, 37007, Salamanca, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), CSIC-University of Salamanca, 37007, Salamanca, Spain
| | - Mauricio Menacho-Márquez
- Centro de Investigación del Cáncer, CSIC-University of Salamanca, 37007, Salamanca, Spain.,Instituto de Biología Molecular y Celular del Cáncer, CSIC-University of Salamanca, 37007, Salamanca, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), CSIC-University of Salamanca, 37007, Salamanca, Spain.,Instituto de Inmunología Clínica y Experimental de Rosario (IDICER, CONICET-UNR). Facultad de Ciencias Médicas Universidad Nacional de Rosario (M.M.-M.) and CellPress editorial office (S.F.), S2000LRJ, Rosario, Argentina
| | - Sonia Rodríguez-Fdez
- Centro de Investigación del Cáncer, CSIC-University of Salamanca, 37007, Salamanca, Spain.,Instituto de Biología Molecular y Celular del Cáncer, CSIC-University of Salamanca, 37007, Salamanca, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), CSIC-University of Salamanca, 37007, Salamanca, Spain
| | - Javier Robles-Valero
- Centro de Investigación del Cáncer, CSIC-University of Salamanca, 37007, Salamanca, Spain.,Instituto de Biología Molecular y Celular del Cáncer, CSIC-University of Salamanca, 37007, Salamanca, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), CSIC-University of Salamanca, 37007, Salamanca, Spain
| | - Sonia Zumalave
- Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), University of Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Salvatore Fabbiano
- Centro de Investigación del Cáncer, CSIC-University of Salamanca, 37007, Salamanca, Spain.,Instituto de Biología Molecular y Celular del Cáncer, CSIC-University of Salamanca, 37007, Salamanca, Spain.,Instituto de Inmunología Clínica y Experimental de Rosario (IDICER, CONICET-UNR). Facultad de Ciencias Médicas Universidad Nacional de Rosario (M.M.-M.) and CellPress editorial office (S.F.), S2000LRJ, Rosario, Argentina
| | - Gloria Pascual
- Institute for Research in Biomedicine, 33011, Barcelona, Spain.,The Barcelona Institute of Science and Technology, Barcelona, 33011, Spain
| | - Juana M García-Pedrero
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), CSIC-University of Salamanca, 37007, Salamanca, Spain.,Hospital Universitario Central de Asturias, Oviedo University, 33011, Oviedo, Spain
| | - Antonio Abad
- Centro de Investigación del Cáncer, CSIC-University of Salamanca, 37007, Salamanca, Spain.,Instituto de Biología Molecular y Celular del Cáncer, CSIC-University of Salamanca, 37007, Salamanca, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), CSIC-University of Salamanca, 37007, Salamanca, Spain
| | - María C García-Macías
- Centro de Investigación del Cáncer, CSIC-University of Salamanca, 37007, Salamanca, Spain.,Instituto de Biología Molecular y Celular del Cáncer, CSIC-University of Salamanca, 37007, Salamanca, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), CSIC-University of Salamanca, 37007, Salamanca, Spain
| | - Nazareno González
- Centro de Investigación del Cáncer, CSIC-University of Salamanca, 37007, Salamanca, Spain.,Instituto de Biología Molecular y Celular del Cáncer, CSIC-University of Salamanca, 37007, Salamanca, Spain
| | - Pablo Lorenzano-Menna
- Laboratory of Molecular Oncology and National University of Quilmes, Buenos Aires, B1876BXD, Argentina.,National Council of Scientific and Technical Research (CONICET), National University of Quilmes, Buenos Aires, B1876BXD, Argentina
| | - Miguel A Pavón
- Institut Català d'Oncologia, 08908, L'Hospitalet de Llobregat, Spain.,Centro Biomédica de Investigación en Red de Enfermedades Respiratorias (CIBERESP), 08908, L'Hospitalet de Llobregat, Spain
| | - Rogelio González-Sarmiento
- Centro de Investigación del Cáncer, CSIC-University of Salamanca, 37007, Salamanca, Spain.,Instituto de Biología Molecular y Celular del Cáncer, CSIC-University of Salamanca, 37007, Salamanca, Spain.,Instituto de Investigación Biomédica de Salamanca, 37007, Salamanca, Spain
| | - Carmen Segrelles
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), CSIC-University of Salamanca, 37007, Salamanca, Spain.,Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas, 28040, Madrid, Spain
| | - Jesús M Paramio
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), CSIC-University of Salamanca, 37007, Salamanca, Spain.,Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas, 28040, Madrid, Spain
| | - José M C Tubío
- Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), University of Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Juan P Rodrigo
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), CSIC-University of Salamanca, 37007, Salamanca, Spain.,Hospital Universitario Central de Asturias, Oviedo University, 33011, Oviedo, Spain
| | - Salvador A Benitah
- Institute for Research in Biomedicine, 33011, Barcelona, Spain.,The Barcelona Institute of Science and Technology, Barcelona, 33011, Spain.,Catalan Institution for Research and Advanced Studies (ICREA), 33011, Barcelona, Spain
| | - Myriam Cuadrado
- Centro de Investigación del Cáncer, CSIC-University of Salamanca, 37007, Salamanca, Spain.,Instituto de Biología Molecular y Celular del Cáncer, CSIC-University of Salamanca, 37007, Salamanca, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), CSIC-University of Salamanca, 37007, Salamanca, Spain
| | - Xosé R Bustelo
- Centro de Investigación del Cáncer, CSIC-University of Salamanca, 37007, Salamanca, Spain. .,Instituto de Biología Molecular y Celular del Cáncer, CSIC-University of Salamanca, 37007, Salamanca, Spain. .,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), CSIC-University of Salamanca, 37007, Salamanca, Spain.
| |
Collapse
|
11
|
Lorenzo-Martín LF, Menacho-Márquez M, Bustelo XR. Drug Vulnerabilities and Disease Prognosis Linked to the Stem Cell-Like Gene Expression Program Triggered by the RHO GTPase Activator VAV2 in Hyperplastic Keratinocytes and Head and Neck Cancer. Cancers (Basel) 2020; 12:cancers12092498. [PMID: 32899210 PMCID: PMC7563609 DOI: 10.3390/cancers12092498] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/28/2020] [Accepted: 08/31/2020] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Head and neck squamous cell carcinoma are epithelial tumors with a very poor prognosis. They are also in high need of new targeted and immune-based therapeutics to limit tumor recurrence and improve long-term survival. The poor prognosis of patients with head and neck tumors is usually associated with histological features associated with poor differentiation and high proliferative activity found in their tumor biopsies. Therefore, it is of paramount importance to identify vulnerabilities associated with such pathobiological programs. In this work, the authors utilize a stem cell-like program linked to the deregulated activity of VAV2, a protein frequently overexpressed in this type of tumors, to identify new therapeutic targets that can discriminate tumors from healthy cells. The authors also show that this gene expression program can be used to stratify patients according to long-term prognosis. Abstract We have recently shown that VAV2, a guanosine nucleotide exchange factor that catalyzes the stimulation step of RHO GTPases, is involved in a stem cell-like (SCL) regenerative proliferation program that is important for the development and subsequent maintenance of the tumorigenesis of both cutaneous (cSCC) and head and neck squamous cell carcinomas (hnSCC). In line with this, we have observed that the levels of the VAV2 mRNA and VAV2-regulated gene signatures are associated with poor prognosis in the case of human papillomavirus-negative hnSCC patients. These results suggest that the SCL program elicited by VAV2 in those cells can harbor therapeutically actionable downstream targets. We have addressed this issue using a combination of both in silico and wet-lab approaches. Here, we show that the VAV2-regulated SCL program does harbor a number of cell cycle- and signaling-related kinases that are essential for the viability of undifferentiated keratinocytes and hnSCC patient-derived cells endowed with high levels of VAV2 activity. Our results also show that the VAV2-regulated SCL gene signature is associated with poor hnSCC patient prognosis. Collectively, these data underscore the critical role of this VAV2-regulated SCL program for the viability of both preneoplastic and fully transformed keratinocytes.
Collapse
Affiliation(s)
- Luis Francisco Lorenzo-Martín
- Centro de Investigación del Cáncer, CSIC-University of Salamanca, 37007 Salamanca, Spain;
- Instituto de Biología Molecular y Celular del Cáncer, CSIC-University of Salamanca, 37007 Salamanca, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), CSIC-University of Salamanca, 37007 Salamanca, Spain
- Correspondence: (L.F.L.-M.); (X.R.B.)
| | - Mauricio Menacho-Márquez
- Centro de Investigación del Cáncer, CSIC-University of Salamanca, 37007 Salamanca, Spain;
- Instituto de Biología Molecular y Celular del Cáncer, CSIC-University of Salamanca, 37007 Salamanca, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), CSIC-University of Salamanca, 37007 Salamanca, Spain
| | - Xosé R. Bustelo
- Centro de Investigación del Cáncer, CSIC-University of Salamanca, 37007 Salamanca, Spain;
- Instituto de Biología Molecular y Celular del Cáncer, CSIC-University of Salamanca, 37007 Salamanca, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), CSIC-University of Salamanca, 37007 Salamanca, Spain
- Correspondence: (L.F.L.-M.); (X.R.B.)
| |
Collapse
|
12
|
Vav2 pharmaco-mimetic mice reveal the therapeutic value and caveats of the catalytic inactivation of a Rho exchange factor. Oncogene 2020; 39:5098-5111. [PMID: 32528129 PMCID: PMC7610363 DOI: 10.1038/s41388-020-1353-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 05/29/2020] [Accepted: 06/03/2020] [Indexed: 11/20/2022]
Abstract
The current paradigm holds that the inhibition of Rho guanosine nucleotide exchange factors (GEFs), the enzymes that stimulate Rho GTPases, can be a valuable therapeutic strategy to treat Rho-dependent tumors. However, formal validation of this idea using in vivo models is still missing. In this context, it is worth remembering that many Rho GEFs can mediate both catalysis-dependent and independent responses, thus raising the possibility that the inhibition of their catalytic activities might not be sufficient per se to block tumorigenic processes. On the other hand, the inhibition of these enzymes can trigger collateral side effects that could preclude the practical implementation of anti-GEF therapies. To address those issues, we have generated mouse models to mimic the effect of the systemic application of an inhibitor for the catalytic activity of the Rho GEF Vav2 at the organismal level. Our results indicate that lowering the catalytic activity of Vav2 below specific thresholds is sufficient to block skin tumor initiation, promotion, and progression. They also reveal that the negative side effects typically induced by the loss of Vav2 can be bypassed depending on the overall level of Vav2 inhibition achieved in vivo. These data underscore the pros and cons of anti-Rho GEF therapies for cancer treatment. They also support the idea that Vav2 could represent a viable drug target.
Collapse
|
13
|
Ngai D, Lino M, Rothenberg KE, Simmons CA, Fernandez-Gonzalez R, Bendeck MP. DDR1 (Discoidin Domain Receptor-1)-RhoA (Ras Homolog Family Member A) Axis Senses Matrix Stiffness to Promote Vascular Calcification. Arterioscler Thromb Vasc Biol 2020; 40:1763-1776. [PMID: 32493168 PMCID: PMC7310304 DOI: 10.1161/atvbaha.120.314697] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Supplemental Digital Content is available in the text. Objective: Vascular calcification is a pathology characterized by arterial mineralization, which is a common late-term complication of atherosclerosis that independently increases the risk of adverse cardiovascular events by fourfold. A major source of calcifying cells is transdifferentiating vascular smooth muscle cells (VSMCs). Previous studies showed that deletion of the collagen-binding receptor, DDR1 (discoidin domain receptor-1), attenuated VSMC calcification. Increased matrix stiffness drives osteogenesis, and DDR1 has been implicated in stiffness sensing in other cell types; however, the role of DDR1 as a mechanosensor in VSMCs has not been investigated. Here, we test the hypothesis that DDR1 senses increased matrix stiffness and promotes VSMC transdifferentiation and calcification. Approach and Results: Primary VSMCs isolated from Ddr1+/+ (wild-type) and Ddr1−/− (knockout) mice were studied on collagen-I–coated silicon substrates of varying stiffness, culturing in normal or calcifying medium. DDR1 expression and phosphorylation increased with increasing stiffness, as did in vitro calcification, nuclear localization of Runx2 (Runt-related transcription factor 2), and expression of other osteochondrocytic markers. By contrast, DDR1 deficient VSMCs were not responsive to stiffness and did not undergo transdifferentiation. DDR1 regulated stress fiber formation and RhoA (ras homolog family member A) activation through the RhoGEF (rho guanine nucleotide exchange factor), Vav2. Inhibition of actomyosin contractility reduced Runx2 activation and attenuated in vitro calcification in wild-type VSMCs. Finally, a novel positive feedforward loop was uncovered between DDR1 and actomyosin contractility, important in regulating DDR1 expression, clustering, and activation. Conclusions: This study provides mechanistic insights into DDR1 mechanosignaling and shows that DDR1 activity and actomyosin contractility are interdependent in mediating stiffness-dependent increases in VSMC calcification.
Collapse
Affiliation(s)
- David Ngai
- From the Department of Laboratory Medicine and Pathobiology (D.N., M.L., M.P.B.), University of Toronto, Canada.,Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research (D.N. M.L., K.E.R., C.A.S., R.F.-G., M.P.B.), University of Toronto, Canada
| | - Marsel Lino
- From the Department of Laboratory Medicine and Pathobiology (D.N., M.L., M.P.B.), University of Toronto, Canada.,Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research (D.N. M.L., K.E.R., C.A.S., R.F.-G., M.P.B.), University of Toronto, Canada
| | - Katheryn E Rothenberg
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research (D.N. M.L., K.E.R., C.A.S., R.F.-G., M.P.B.), University of Toronto, Canada.,Institute of Biomaterials and Biomedical Engineering (K.E.R., C.A.S., R.F.-G.), University of Toronto, Canada
| | - Craig A Simmons
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research (D.N. M.L., K.E.R., C.A.S., R.F.-G., M.P.B.), University of Toronto, Canada.,Institute of Biomaterials and Biomedical Engineering (K.E.R., C.A.S., R.F.-G.), University of Toronto, Canada.,Department of Mechanical and Industrial Engineering (C.A.S.), University of Toronto, Canada
| | - Rodrigo Fernandez-Gonzalez
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research (D.N. M.L., K.E.R., C.A.S., R.F.-G., M.P.B.), University of Toronto, Canada.,Institute of Biomaterials and Biomedical Engineering (K.E.R., C.A.S., R.F.-G.), University of Toronto, Canada.,Department of Cell and Systems Biology (R.F.-G.), University of Toronto, Canada
| | - Michelle P Bendeck
- From the Department of Laboratory Medicine and Pathobiology (D.N., M.L., M.P.B.), University of Toronto, Canada.,Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research (D.N. M.L., K.E.R., C.A.S., R.F.-G., M.P.B.), University of Toronto, Canada
| |
Collapse
|
14
|
Shi X, Huang T, Wang J, Liang Y, Gu C, Xu Y, Sun J, Lu Y, Sun K, Chen S, Yu Y. Next-generation sequencing identifies novel genes with rare variants in total anomalous pulmonary venous connection. EBioMedicine 2018; 38:217-227. [PMID: 30448225 PMCID: PMC6306349 DOI: 10.1016/j.ebiom.2018.11.008] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 10/22/2018] [Accepted: 11/03/2018] [Indexed: 12/30/2022] Open
Abstract
Background Total anomalous pulmonary venous connection (TAPVC) is recognized as a rare congenital heart defect (CHD). With a high mortality rate of approximately 80%, the survival rate and outcomes of TAPVC patients are not satisfactory. However, the genetic aetiology and mechanism of TAPVC remain elusive. This study aimed to investigate the underlying genomic risks of TAPVC through next-generation sequencing (NGS). Methods Rare variants were identified through whole exome sequencing (WES) of 78 sporadic TAPVC cases and 100 healthy controls using Fisher's exact test and gene-based burden test. We then detected candidate gene expression patterns in cells, pulmonary vein tissues, and embryos. Finally, we validated these genes using target sequencing (TS) in another 100 TAPVC cases. Findings We identified 42 rare variants of 7 genes (CLTCL1, CST3, GXYLT1, HMGA2, SNAI1, VAV2, ZDHHC8) in TAPVC cases compared with controls. These genes were highly expressed in human umbilical vein endothelial cells (HUVECs), mouse pulmonary veins and human embryonic hearts. mRNA levels of these genes in human pulmonary vein samples were significantly different between cases and controls. Through network analysis and expression patterns in zebrafish embryos, we revealed that SNAI1, HMGA2 and VAV2 are the most important genes for TAPVC. Interpretation Our study identifies novel candidate genes potentially related to TAPVC and elucidates the possible molecular pathogenesis of this rare congenital birth defect. Furthermore, SNAI1, HMGA2 and VAV2 are novel TAPVC candidate genes that have not been reported previously in either humans or animals. Fund National Natural Science Foundation of China.
Collapse
Affiliation(s)
- Xin Shi
- Department of Pediatric Cardiovascular, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China
| | - Tao Huang
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jing Wang
- Department of Pediatric Cardiovascular, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China
| | - Yulai Liang
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Chang Gu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tong Ji University School of Medicine, Shanghai 200433, China
| | - Yuejuan Xu
- Department of Pediatric Cardiovascular, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China
| | - Jing Sun
- Department of Pediatric Cardiovascular, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China
| | - Yanan Lu
- Department of Pediatric Cardiovascular, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China
| | - Kun Sun
- Department of Pediatric Cardiovascular, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China.
| | - Sun Chen
- Department of Pediatric Cardiovascular, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China.
| | - Yu Yu
- Department of Pediatric Cardiovascular, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China.
| |
Collapse
|
15
|
Rico M, Baglioni M, Bondarenko M, Laluce NC, Rozados V, André N, Carré M, Scharovsky OG, Menacho Márquez M. Metformin and propranolol combination prevents cancer progression and metastasis in different breast cancer models. Oncotarget 2018; 8:2874-2889. [PMID: 27926515 PMCID: PMC5356849 DOI: 10.18632/oncotarget.13760] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 11/22/2016] [Indexed: 01/01/2023] Open
Abstract
Discovery of new drugs for cancer treatment is an expensive and time-consuming process and the percentage of drugs reaching the clinic remains quite low. Drug repositioning refers to the identification and development of new uses for existing drugs and represents an alternative drug development strategy. In this work, we evaluated the antitumor effect of metronomic treatment with a combination of two repositioned drugs, metformin and propranolol, in triple negative breast cancer models. By in vitro studies with five different breast cancer derived cells, we observed that combined treatment decreased proliferation (P < 0.001), mitochondrial activity (P < 0.001), migration (P < 0.001) and invasion (P < 0.001). In vivo studies in immunocompetent mice confirmed the potential of this combination in reducing tumor growth (P < 0.001) and preventing metastasis (P < 0.05). Taken together our results suggest that metformin plus propranolol combined treatment might be beneficial for triple negative breast cancer control, with no symptoms of toxicity.
Collapse
Affiliation(s)
- María Rico
- Instituto de Genética Experimental, Facultad de Ciencias Médicas, Universidad Nacional de Rosario, Rosario, Argentina.,El Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina
| | - María Baglioni
- Instituto de Genética Experimental, Facultad de Ciencias Médicas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Maryna Bondarenko
- Aix-Marseille Université, Inserm UMR_S 911, Centre de Recherche en Oncologie biologique et Oncopharmacologie, Faculté de Pharmacie, Marseille, France
| | - Nahuel Cesatti Laluce
- Instituto de Genética Experimental, Facultad de Ciencias Médicas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Viviana Rozados
- Instituto de Genética Experimental, Facultad de Ciencias Médicas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Nicolas André
- Aix-Marseille Université, Inserm UMR_S 911, Centre de Recherche en Oncologie biologique et Oncopharmacologie, Faculté de Pharmacie, Marseille, France.,Service d'Hématologie and Oncologie Pédiatrique, AP-HM, Marseille, France.,Metronomics Global Health Initiative, Marseille, France
| | - Manon Carré
- Aix-Marseille Université, Inserm UMR_S 911, Centre de Recherche en Oncologie biologique et Oncopharmacologie, Faculté de Pharmacie, Marseille, France
| | - O Graciela Scharovsky
- Instituto de Genética Experimental, Facultad de Ciencias Médicas, Universidad Nacional de Rosario, Rosario, Argentina.,El Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina.,Metronomics Global Health Initiative, Marseille, France
| | - Mauricio Menacho Márquez
- Instituto de Genética Experimental, Facultad de Ciencias Médicas, Universidad Nacional de Rosario, Rosario, Argentina.,El Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina
| |
Collapse
|
16
|
Karoor V, Fini MA, Loomis Z, Sullivan T, Hersh LB, Gerasimovskaya E, Irwin D, Dempsey EC. Sustained Activation of Rho GTPases Promotes a Synthetic Pulmonary Artery Smooth Muscle Cell Phenotype in Neprilysin Null Mice. Arterioscler Thromb Vasc Biol 2018; 38:154-163. [PMID: 29191928 PMCID: PMC5746466 DOI: 10.1161/atvbaha.117.310207] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 11/15/2017] [Indexed: 01/16/2023]
Abstract
OBJECTIVE Pulmonary artery smooth muscle cells (PASMCs) from neprilysin (NEP) null mice exhibit a synthetic phenotype and increased activation of Rho GTPases compared with their wild-type counterparts. Although Rho GTPases are known to promote a contractile SMC phenotype, we hypothesize that their sustained activity decreases SM-protein expression in these cells. APPROACH AND RESULTS PASMCs isolated from wild-type and NEP-/- mice were used to assess levels of SM-proteins (SM-actin, SM-myosin, SM22, and calponin) by Western blotting, and were lower in NEP-/- PASMCs compared with wild-type. Rac and Rho (ras homology family member) levels and activity were higher in NEP-/- PASMCs, and ShRNA to Rac and Rho restored SM-protein, and attenuated the enhanced migration and proliferation of NEP-/- PASMCs. SM-gene repressors, p-Elk-1, and Klf4 (Kruppel lung factor 4), were higher in NEP-/- PASMCs and decreased by shRNA to Rac and Rho. Costimulation of wild-type PASMCs with PDGF (platelet-derived growth factor) and the NEP substrate, ET-1 (endothelin-1), increased Rac and Rho activity, and decreased SM-protein levels mimicking the NEP knock-out phenotype. Activation of Rac and Rho and downstream effectors was observed in lung tissue from NEP-/- mice and humans with chronic obstructive pulmonary disease. CONCLUSIONS Sustained Rho activation in NEP-/- PASMCs is associated with a decrease in SM-protein levels and increased migration and proliferation. Inactivation of RhoGDI (Rho guanine dissociation inhibitor) and RhoGAP (Rho GTPase activating protein) by phosphorylation may contribute to prolonged activation of Rho in NEP-/- PASMCs. Rho GTPases may thus have a role in integration of signals between vasopeptides and growth factor receptors and could influence pathways that suppress SM-proteins to promote a synthetic phenotype.
Collapse
MESH Headings
- Actins/biosynthesis
- Animals
- Becaplermin/pharmacology
- Calcium-Binding Proteins/biosynthesis
- Cell Movement
- Cell Proliferation
- Cells, Cultured
- Endothelin-1/pharmacology
- Enzyme Activation
- Genotype
- Humans
- Kruppel-Like Factor 4
- Kruppel-Like Transcription Factors/genetics
- Kruppel-Like Transcription Factors/metabolism
- Mice, Inbred C57BL
- Mice, Knockout
- Microfilament Proteins/biosynthesis
- Muscle Proteins/biosynthesis
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/enzymology
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/enzymology
- Myocytes, Smooth Muscle/pathology
- Neprilysin/deficiency
- Neprilysin/genetics
- Phenotype
- Pulmonary Artery/drug effects
- Pulmonary Artery/enzymology
- Pulmonary Artery/pathology
- Pulmonary Disease, Chronic Obstructive/enzymology
- Pulmonary Disease, Chronic Obstructive/pathology
- Signal Transduction
- Smooth Muscle Myosins/biosynthesis
- ets-Domain Protein Elk-1/genetics
- ets-Domain Protein Elk-1/metabolism
- rho GTP-Binding Proteins/genetics
- rho GTP-Binding Proteins/metabolism
- Calponins
Collapse
Affiliation(s)
- Vijaya Karoor
- From the Cardiovascular Pulmonary Research Laboratory (V.K., M.A.F., Z.L., T.S., E.G., D.I., E.C.D.) and Division of Pulmonary Sciences and Critical Care Medicine (V.K., M.A.F., E.C.D.), University of Colorado Anschutz Medical Campus, Aurora; Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington (L.B.H.); and Pulmonary and Critical Care, Denver VA Medical Center, CO (E.C.D.).
| | - Mehdi A Fini
- From the Cardiovascular Pulmonary Research Laboratory (V.K., M.A.F., Z.L., T.S., E.G., D.I., E.C.D.) and Division of Pulmonary Sciences and Critical Care Medicine (V.K., M.A.F., E.C.D.), University of Colorado Anschutz Medical Campus, Aurora; Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington (L.B.H.); and Pulmonary and Critical Care, Denver VA Medical Center, CO (E.C.D.)
| | - Zoe Loomis
- From the Cardiovascular Pulmonary Research Laboratory (V.K., M.A.F., Z.L., T.S., E.G., D.I., E.C.D.) and Division of Pulmonary Sciences and Critical Care Medicine (V.K., M.A.F., E.C.D.), University of Colorado Anschutz Medical Campus, Aurora; Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington (L.B.H.); and Pulmonary and Critical Care, Denver VA Medical Center, CO (E.C.D.)
| | - Timothy Sullivan
- From the Cardiovascular Pulmonary Research Laboratory (V.K., M.A.F., Z.L., T.S., E.G., D.I., E.C.D.) and Division of Pulmonary Sciences and Critical Care Medicine (V.K., M.A.F., E.C.D.), University of Colorado Anschutz Medical Campus, Aurora; Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington (L.B.H.); and Pulmonary and Critical Care, Denver VA Medical Center, CO (E.C.D.)
| | - Louis B Hersh
- From the Cardiovascular Pulmonary Research Laboratory (V.K., M.A.F., Z.L., T.S., E.G., D.I., E.C.D.) and Division of Pulmonary Sciences and Critical Care Medicine (V.K., M.A.F., E.C.D.), University of Colorado Anschutz Medical Campus, Aurora; Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington (L.B.H.); and Pulmonary and Critical Care, Denver VA Medical Center, CO (E.C.D.)
| | - Evgenia Gerasimovskaya
- From the Cardiovascular Pulmonary Research Laboratory (V.K., M.A.F., Z.L., T.S., E.G., D.I., E.C.D.) and Division of Pulmonary Sciences and Critical Care Medicine (V.K., M.A.F., E.C.D.), University of Colorado Anschutz Medical Campus, Aurora; Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington (L.B.H.); and Pulmonary and Critical Care, Denver VA Medical Center, CO (E.C.D.)
| | - David Irwin
- From the Cardiovascular Pulmonary Research Laboratory (V.K., M.A.F., Z.L., T.S., E.G., D.I., E.C.D.) and Division of Pulmonary Sciences and Critical Care Medicine (V.K., M.A.F., E.C.D.), University of Colorado Anschutz Medical Campus, Aurora; Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington (L.B.H.); and Pulmonary and Critical Care, Denver VA Medical Center, CO (E.C.D.)
| | - Edward C Dempsey
- From the Cardiovascular Pulmonary Research Laboratory (V.K., M.A.F., Z.L., T.S., E.G., D.I., E.C.D.) and Division of Pulmonary Sciences and Critical Care Medicine (V.K., M.A.F., E.C.D.), University of Colorado Anschutz Medical Campus, Aurora; Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington (L.B.H.); and Pulmonary and Critical Care, Denver VA Medical Center, CO (E.C.D.)
| |
Collapse
|
17
|
André-Grégoire G, Dilasser F, Chesné J, Braza F, Magnan A, Loirand G, Sauzeau V. Targeting of Rac1 prevents bronchoconstriction and airway hyperresponsiveness. J Allergy Clin Immunol 2017; 142:824-833.e3. [PMID: 29155102 DOI: 10.1016/j.jaci.2017.09.049] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 09/08/2017] [Accepted: 09/19/2017] [Indexed: 10/18/2022]
Abstract
BACKGROUND The molecular mechanisms responsible for airway smooth muscle cells' (aSMCs) contraction and proliferation in airway hyperresponsiveness (AHR) associated with asthma are still largely unknown. The small GTPases of the Rho family (RhoA, Rac1, and Cdc42) play a central role in SMC functions including migration, proliferation, and contraction. OBJECTIVE The objective of this study was to identify the role of Rac1 in aSMC contraction and to investigate its involvement in AHR associated with allergic asthma. METHODS To define the role of Rac1 in aSMC, ex and in vitro analyses of bronchial reactivity were performed on bronchi from smooth muscle (SM)-specific Rac1 knockout mice and human individuals. In addition, this murine model was exposed to allergens (ovalbumin or house dust mite extract) to decipher in vivo the implication of Rac1 in AHR. RESULTS The specific SMC deletion or pharmacological inhibition of Rac1 in mice prevented the bronchoconstrictor response to methacholine. In human bronchi, a similar role of Rac1 was observed during bronchoconstriction. We further demonstrated that Rac1 activation is responsible for bronchoconstrictor-induced increase in intracellular Ca2+ concentration and contraction both in murine and in human bronchial aSMCs, through its association with phospholipase C β2 and the stimulation of inositol 1,4,5-trisphosphate production. In vivo, Rac1 deletion in SMCs or pharmacological Rac1 inhibition by nebulization of NSC23766 prevented AHR in murine models of allergic asthma. Moreover, nebulization of NSC23766 decreased eosinophil and neutrophil populations in bronchoalveolar lavages from mice with asthma. CONCLUSIONS Our data reveal an unexpected and essential role of Rac1 in the regulation of intracellular Ca2+ and contraction of aSMCs, and the development of AHR. Rac1 thus appears as an attractive therapeutic target in asthma, with a combined beneficial action on both bronchoconstriction and pulmonary inflammation.
Collapse
Affiliation(s)
| | | | - Julie Chesné
- NSERM, CNRS, UNIV Nantes, l'institut du thorax, Nantes, France
| | - Faouzi Braza
- NSERM, CNRS, UNIV Nantes, l'institut du thorax, Nantes, France
| | - Antoine Magnan
- NSERM, CNRS, UNIV Nantes, l'institut du thorax, Nantes, France; CHU Nantes, Nantes, France
| | - Gervaise Loirand
- NSERM, CNRS, UNIV Nantes, l'institut du thorax, Nantes, France; CHU Nantes, Nantes, France
| | - Vincent Sauzeau
- NSERM, CNRS, UNIV Nantes, l'institut du thorax, Nantes, France; CHU Nantes, Nantes, France.
| |
Collapse
|
18
|
李 勇, 檀 碧. Vav基因家族的分子调控机制及其与消化系恶性肿瘤的关系. Shijie Huaren Xiaohua Zazhi 2017; 25:2102-2108. [DOI: 10.11569/wcjd.v25.i23.2102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Vav基因家族包括Vav1、Vav2、Vav3基因, 在生理及病理过程中都发挥着重要的调控作用. 近年来发现Vav基因家族成员与消化系恶性肿瘤有较为密切的关系, 已取得了一些研究成果. 但迄今为止有关Vav基因家族成员与消化系恶性肿瘤关系的研究还不全面, 且有一些结果不一致. 因此, 总结Vav基因家族成员的调控机制并分析其在消化系恶性肿瘤中发挥的作用有可能对阐明发病机制、提出新的治疗靶点有益. 故本文对Vav基因家族的分子功能、调控机制及在消化系恶性肿瘤中的作用进行了综述及总结, 并对该基因家族的潜在价值进行了预测.
Collapse
|
19
|
Singh NK, Janjanam J, Rao GN. p115 RhoGEF activates the Rac1 GTPase signaling cascade in MCP1 chemokine-induced vascular smooth muscle cell migration and proliferation. J Biol Chem 2017; 292:14080-14091. [PMID: 28655771 DOI: 10.1074/jbc.m117.777896] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 06/20/2017] [Indexed: 12/30/2022] Open
Abstract
Although the involvement of Rho proteins in the pathogenesis of vascular diseases is well studied, little is known about the role of their upstream regulators, the Rho guanine nucleotide exchange factors (RhoGEFs). Here, we sought to identify the RhoGEFs involved in monocyte chemotactic protein 1 (MCP1)-induced vascular wall remodeling. We found that, among the RhoGEFs tested, MCP1 induced tyrosine phosphorylation of p115 RhoGEF but not of PDZ RhoGEF or leukemia-associated RhoGEF in human aortic smooth muscle cells (HASMCs). Moreover, p115 RhoGEF inhibition suppressed MCP1-induced HASMC migration and proliferation. Consistent with these observations, balloon injury (BI) induced p115 RhoGEF tyrosine phosphorylation in rat common carotid arteries, and siRNA-mediated down-regulation of its levels substantially attenuated BI-induced smooth muscle cell migration and proliferation, resulting in reduced neointima formation. Furthermore, depletion of p115 RhoGEF levels also abrogated MCP1- or BI-induced Rac1-NFATc1-cyclin D1-CDK6-PKN1-CDK4-PAK1 signaling, which, as we reported previously, is involved in vascular wall remodeling. Our findings also show that protein kinase N1 (PKN1) downstream of Rac1-cyclin D1/CDK6 and upstream of CDK4-PAK1 in the p115 RhoGEF-Rac1-NFATc1-cyclin D1-CDK6-PKN1-CDK4-PAK1 signaling axis is involved in the modulation of vascular wall remodeling. Of note, we also observed that CCR2-Gi/o-Fyn signaling mediates MCP1-induced p115 RhoGEF and Rac1 GTPase activation. These findings suggest that p115 RhoGEF is critical for MCP1-induced HASMC migration and proliferation in vitro and for injury-induced neointima formation in vivo by modulating Rac1-NFATc1-cyclin D1-CDK6-PKN1-CDK4-PAK1 signaling.
Collapse
Affiliation(s)
- Nikhlesh K Singh
- From the Department of Physiology, University of Tennessee Health Science Center, Memphis, Tennessee 38163.
| | - Jagadeesh Janjanam
- From the Department of Physiology, University of Tennessee Health Science Center, Memphis, Tennessee 38163
| | - Gadiparthi N Rao
- From the Department of Physiology, University of Tennessee Health Science Center, Memphis, Tennessee 38163.
| |
Collapse
|
20
|
Porter LJ, Holt MR, Soong D, Shanahan CM, Warren DT. Prelamin A Accumulation Attenuates Rac1 Activity and Increases the Intrinsic Migrational Persistence of Aged Vascular Smooth Muscle Cells. Cells 2016; 5:E41. [PMID: 27854297 PMCID: PMC5187525 DOI: 10.3390/cells5040041] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 11/10/2016] [Accepted: 11/11/2016] [Indexed: 02/01/2023] Open
Abstract
Vascular smooth muscle cell (VSMC) motility is essential during both physiological and pathological vessel remodeling. Although ageing has emerged as a major risk factor in the development of cardiovascular disease, our understanding of the impact of ageing on VSMC motility remains limited. Prelamin A accumulation is known to drive VSMC ageing and we show that presenescent VSMCs, that have accumulated prelamin A, display increased focal adhesion dynamics, augmented migrational velocity/persistence and attenuated Rac1 activity. Importantly, prelamin A accumulation in proliferative VSMCs, induced by depletion of the prelamin A processing enzyme FACE1, recapitulated the focal adhesion, migrational persistence and Rac1 phenotypes observed in presenescent VSMCs. Moreover, lamin A/C-depleted VSMCs also display reduced Rac1 activity, suggesting that prelamin A influences Rac1 activity by interfering with lamin A/C function at the nuclear envelope. Taken together, these data demonstrate that lamin A/C maintains Rac1 activity in VSMCs and prelamin A disrupts lamin A/C function to reduce Rac1 activity and induce migrational persistence during VSMC ageing.
Collapse
Affiliation(s)
- Lauren J Porter
- British Heart Foundation Centre of Research Excellence, Cardiovascular Division, King's College London, London SE5 9NU, UK.
| | - Mark R Holt
- Randall Division of Cell and Molecular Biophysics, New Hunt's House, King's College London, London SE1 1UL, UK.
| | - Daniel Soong
- British Heart Foundation Centre of Research Excellence, Cardiovascular Division, King's College London, London SE5 9NU, UK.
- MRC Centre for Reproductive Health, Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK.
| | - Catherine M Shanahan
- British Heart Foundation Centre of Research Excellence, Cardiovascular Division, King's College London, London SE5 9NU, UK.
| | - Derek T Warren
- British Heart Foundation Centre of Research Excellence, Cardiovascular Division, King's College London, London SE5 9NU, UK.
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK.
| |
Collapse
|
21
|
Cho CY, Lee KT, Chen WC, Wang CY, Chang YS, Huang HL, Hsu HP, Yen MC, Lai MZ, Lai MD. MST3 promotes proliferation and tumorigenicity through the VAV2/Rac1 signal axis in breast cancer. Oncotarget 2016; 7:14586-604. [PMID: 26910843 PMCID: PMC4924737 DOI: 10.18632/oncotarget.7542] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 01/02/2016] [Indexed: 12/15/2022] Open
Abstract
MST3 (mammalian STE20-like kinase 3) belongs to the Ste20 serine/threonine protein kinase family. The role of MST3 in tumor growth is less studied; therefore, we investigates the function of MST3 in breast cancer. Here, we demonstrate that MST3 is overexpressed in human breast tumors. Online Kaplan-Meier plotter analysis reveals that overexpression of MST3 predicts poor prognosis in breast cancer patients. Knockdown of MST3 with shRNA inhibits proliferation and anchorage-independent growth in vitro. Downregulation of MST3 in triple-negative MDA-MB-231 and MDA-MB-468 breast cancer cells decreases tumor formation in NOD/SCID mice. MST3 interacts with VAV2, but not VAV3, as demonstrated by co-immunoprecipitation and confocal microscopy. By domain mapping of MST3, we determine that the proline-rich region of MST3 (353KDIPKRP359) interacts with the SH3 domain of VAV2. Mutation of the two proline residues in this domain significantly attenuates the interaction between MST3 and VAV2. Overexpression of wild-type MST3 (WT-MST3), but not proline-rich-deleted MST3 (âP-MST3), enhances the proliferation rate and anchorage-independent growth of MDA-MB-468 cells. Overexpression of MST3 increases VAV2 phosphorylation and GTP-Rac1, whereas downregulation of MST3 or delivery of âP-MST3 results in a reduction of VAV2 and Rac1 activation. Knockdown of MST3 inhibits cyclin D1 protein expression. The Rac1 inhibitor EHop-016 attenuates cell proliferation induced by WT-MST3. Finally, Knockdown of MST3 or Rac1 inhibitor decreases cyclin D protein expression, which is important for tumor growth. These results indicate that MST3 interacts with VAV2 to activate Rac1 and promote the tumorigenicity of breast cancer.
Collapse
Affiliation(s)
- Chien-Yu Cho
- Department of Biochemistry and Molecular Biology, National Cheng Kung University, Tainan, Taiwan, ROC
- Institute of Basic Medical Sciences, National Cheng Kung University, Tainan, Taiwan, ROC
- Center for Infectious Diseases and Signaling Research, College of Medicine, National Cheng Kung University, Tainan, Taiwan, ROC
| | - Kuo-Ting Lee
- Department of Surgery, National Cheng Kung University, Tainan, Taiwan, ROC
| | - Wei-Ching Chen
- Department of Biochemistry and Molecular Biology, National Cheng Kung University, Tainan, Taiwan, ROC
- Institute of Basic Medical Sciences, National Cheng Kung University, Tainan, Taiwan, ROC
| | - Chih-Yang Wang
- Department of Biochemistry and Molecular Biology, National Cheng Kung University, Tainan, Taiwan, ROC
- Institute of Basic Medical Sciences, National Cheng Kung University, Tainan, Taiwan, ROC
| | - Yung-Sheng Chang
- Department of Biochemistry and Molecular Biology, National Cheng Kung University, Tainan, Taiwan, ROC
- Institute of Basic Medical Sciences, National Cheng Kung University, Tainan, Taiwan, ROC
| | - Hau-Lun Huang
- Department of Biochemistry and Molecular Biology, National Cheng Kung University, Tainan, Taiwan, ROC
- Institute of Basic Medical Sciences, National Cheng Kung University, Tainan, Taiwan, ROC
| | - Hui-Ping Hsu
- Department of Surgery, National Cheng Kung University, Tainan, Taiwan, ROC
| | - Meng-Chi Yen
- Department of Emergency Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan, ROC
| | - Ming-Zong Lai
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan, ROC
- Graduate Institute of Immunology, National Taiwan University, Taipei, Taiwan, ROC
| | - Ming-Derg Lai
- Department of Biochemistry and Molecular Biology, National Cheng Kung University, Tainan, Taiwan, ROC
- Institute of Basic Medical Sciences, National Cheng Kung University, Tainan, Taiwan, ROC
- Center for Infectious Diseases and Signaling Research, College of Medicine, National Cheng Kung University, Tainan, Taiwan, ROC
| |
Collapse
|
22
|
Abstract
The Vav family is a group of tyrosine phosphorylation-regulated signal transduction molecules hierarchically located downstream of protein tyrosine kinases. The main function of these proteins is to work as guanosine nucleotide exchange factors (GEFs) for members of the Rho GTPase family. In addition, they can exhibit a variety of catalysis-independent roles in specific signaling contexts. Vav proteins play essential signaling roles for both the development and/or effector functions of a large variety of cell lineages, including those belonging to the immune, nervous, and cardiovascular systems. They also contribute to pathological states such as cancer, immune-related dysfunctions, and atherosclerosis. Here, I will provide an integrated view about the evolution, regulation, and effector properties of these signaling molecules. In addition, I will discuss the pros and cons for their potential consideration as therapeutic targets.
Collapse
Key Words
- Ac, acidic
- Ahr, aryl hydrocarbon receptor
- CH, calponin homology
- CSH3, most C-terminal SH3 domain of Vav proteins
- DAG, diacylglycerol
- DH, Dbl-homology domain
- Dbl-homology
- GDP/GTP exchange factors
- GEF, guanosine nucleotide exchange factor
- HIV, human immunodeficiency virus
- IP3, inositoltriphosphate
- NFAT, nuclear factor of activated T-cells
- NSH3, most N-terminal SH3 domain of Vav proteins
- PH, plekstrin-homology domain
- PI3K, phosphatidylinositol-3 kinase
- PIP3, phosphatidylinositol (3,4,5)-triphosphate
- PKC, protein kinase C
- PKD, protein kinase D
- PLC-g, phospholipase C-g
- PRR, proline-rich region
- PTK, protein tyrosine kinase
- Phox, phagocyte oxidase
- Rho GTPases
- SH2, Src homology 2
- SH3, Src homology 3
- SNP, single nucleotide polymorphism
- TCR, T-cell receptor
- Vav
- ZF, zinc finger region
- cGMP, cyclic guanosine monophosphate
- cancer
- cardiovascular biology
- disease
- immunology
- nervous system
- signaling
- therapies
Collapse
Affiliation(s)
- Xosé R Bustelo
- a Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer ; Consejo Superior de Investigaciones Científicas (CSIC) and University of Salamanca ; Campus Unamuno; Salamanca , Spain
| |
Collapse
|