1
|
Jia W, Wang G, Sun S, Chen X, Xiang S, Zhang B, Huang Z. PA2G4 in health and disease: An underestimated multifunctional regulator. J Adv Res 2025:S2090-1232(25)00074-8. [PMID: 39923993 DOI: 10.1016/j.jare.2025.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 12/23/2024] [Accepted: 02/04/2025] [Indexed: 02/11/2025] Open
Abstract
BACKGROUND Proliferation-associated protein 2G4 (PA2G4), also known as ErbB3-binding protein 1 (EBP1), is an evolutionarily conserved, ubiquitously expressed, multifunctional factor in health and disease. In recent decades, its role as a sophisticated regulator in a broad range of biological processes has drawn widespread attention from researchers. AIM OF REVIEW We introduce the molecular structure, functional modules, and post-translational modifications of PA2G4. We further elaborate on its role and function in immune microenvironment modulation, cell growth, neural homeostasis and embryonic development. In particular, we summarize its relevance to tumorigenesis and cancer progression and describe its molecular mechanisms in regulating the hallmarks of cancers. This review aims to provide a comprehensive blueprint of PA2G4 functions and to inspire further basic and translational studies. KEY SCIENTIFIC CONCEPTS OF REVIEW Owing to its versatile domains and motifs, PA2G4 regulates a variety of molecular processes, including transcription, translation, proteostasis and epigenetic modulation, suggesting its critical roles in maintaining homeostasis. There are two isoforms of the PA2G4 protein: PA2G4-p42 and PA2G4-p48. While both isoforms regulate cellular activities, they often exert distinct or even contradictory effects. Dysfunction and aberrant expression of PA2G4 isoforms lead to the occurrence and progression of various diseases, indicating their role as predictive markers or therapeutic targets.
Collapse
Affiliation(s)
- Wenlong Jia
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China; Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Gaocheng Wang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; The Second Clinical Department, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sheng Sun
- Department of Pharmacy, Taikang Tongji (Wuhan) Hospital, Wuhan, China
| | - Xiaoping Chen
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China; Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; The Second Clinical Department, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuai Xiang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China; Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Bixiang Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China; Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Organ Transplantation, Ministry of Education, Wuhan, China; Key Laboratory of Organ Transplantation, National Health Commission, Wuhan, China; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China.
| | - Zhao Huang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China; Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
2
|
Yang Y, Treger RS, Hernandez-Bird J, Lu P, Mao T, Iwasaki A. A B cell screen against endogenous retroviruses identifies glycan-reactive IgM that recognizes a broad array of enveloped viruses. Sci Immunol 2024; 9:eadd6608. [PMID: 39514636 PMCID: PMC11962862 DOI: 10.1126/sciimmunol.add6608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 10/11/2024] [Indexed: 11/16/2024]
Abstract
Endogenous retroviruses (ERVs), comprising a substantial portion of the vertebrate genome, are remnants of ancient genetic invaders. ERVs with near-intact coding potential reactivate in B cell-deficient mice. To study how B cells contribute to host anti-ERV immunity, we used an antigen-baiting strategy to enrich B cells reactive to ERV surface antigens. We identified ERV-reactive B-1 cells expressing germline-encoded natural IgM antibodies in naïve mice, the level of which further increases upon innate immune sensor stimulation. B cell receptor repertoire profiling of ERV-reactive B-1 cells revealed increased usage of the Igh VH gene that gives rise to glycan-specific antibodies targeting terminal N-acetylglucosamine moieties on ERV glycoproteins, which further engage the complement pathway to mediate anti-ERV responses. These same antibodies also recognize glycoproteins of other enveloped viruses but not self-proteins. These results reveal an innate antiviral mechanism of germline-encoded antibodies with broad reactivity to enveloped viruses, which constitutes a natural antibody repertoire capable of preventing the emergence of infectious ERVs.
Collapse
Affiliation(s)
- Yexin Yang
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Rebecca S. Treger
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Juan Hernandez-Bird
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Peiwen Lu
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Tianyang Mao
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Akiko Iwasaki
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| |
Collapse
|
3
|
Zeng X, Wang R, Tang S, Dong X, Liao L, Chen S, Kong J, Chen L, Li Y, Shao G, Zhang X, Wong YH, Xie Q. Exosomal circ_CCDC7/gga-miR-6568-3p/Pax7 axis accelerates the differentiation of chicken embryonic stem cells infected with subgroup J avian leukosis virus. Poult Sci 2024; 103:103898. [PMID: 38936216 PMCID: PMC11259737 DOI: 10.1016/j.psj.2024.103898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/20/2024] [Accepted: 05/20/2024] [Indexed: 06/29/2024] Open
Abstract
Exosome-mediated horizontal and vertical transmission of subgroup J avian leukosis virus (ALV-J) in poultry flocks can lead to growth inhibition and severe immunosuppression. However, there are few reports on the early infection of chicken embryonic stem cells (cESCs) with ALV-J. In this study, we confirmed that early infection with ALV-J can accelerate the differentiation of cESCs and promote the secretion of exosomes. To investigate the modulation strategy of ALV-J in cESCs, circRNA sequencing was performed for further analysis. A total of 305 differentially expressed circRNAs (DECs) were obtained, including 71 upregulated DECs. Circ-CCDC7 was found to be the most upregulated DEC and was assessed by qRT-PCR, with the result consistent with the result of circRNA-seq. Based on qRT-PCR, gga-miR-6568-3p was found to be the target of the top 3 DECs, including circ-CCDC7, and the stem cell marker gene Pax7 was identified as the target gene of gga-miR-6568-3p. This study demonstrated that exosomal circ-CCDC7/gga-miR-6568-3p/Pax7 accelerates the differentiation of cESCs after early infection with ALV-J.
Collapse
Affiliation(s)
- Xiaona Zeng
- State Key Laboratory of Swine and Poultry Breeding Industry & Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China; Henry Fok School of Biology and Agriculture, Shaoguan University, Shaoguan, 512005, China; Guangdong Provincial Key Lab of AgroAnimal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China; Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou, 510642, China
| | - Ruonan Wang
- State Key Laboratory of Swine and Poultry Breeding Industry & Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China; Guangdong Provincial Key Lab of AgroAnimal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China; Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou, 510642, China
| | - Shengqiu Tang
- Henry Fok School of Biology and Agriculture, Shaoguan University, Shaoguan, 512005, China
| | - Xiaoying Dong
- Henry Fok School of Biology and Agriculture, Shaoguan University, Shaoguan, 512005, China
| | - Liqin Liao
- State Key Laboratory of Swine and Poultry Breeding Industry & Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China; Guangdong Provincial Key Lab of AgroAnimal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China; Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou, 510642, China
| | - Sheng Chen
- State Key Laboratory of Swine and Poultry Breeding Industry & Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China; Guangdong Provincial Key Lab of AgroAnimal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China; Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou, 510642, China
| | - Jie Kong
- State Key Laboratory of Swine and Poultry Breeding Industry & Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China; Guangdong Provincial Key Lab of AgroAnimal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China; Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou, 510642, China
| | - Liyi Chen
- State Key Laboratory of Swine and Poultry Breeding Industry & Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China; Guangdong Provincial Key Lab of AgroAnimal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China; Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou, 510642, China
| | - Yajuan Li
- State Key Laboratory of Swine and Poultry Breeding Industry & Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China; Guangdong Provincial Key Lab of AgroAnimal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China; Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou, 510642, China
| | - Guanming Shao
- State Key Laboratory of Swine and Poultry Breeding Industry & Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China; Guangdong Provincial Key Lab of AgroAnimal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China; Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou, 510642, China
| | - Xinheng Zhang
- State Key Laboratory of Swine and Poultry Breeding Industry & Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China; Guangdong Provincial Key Lab of AgroAnimal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China; Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou, 510642, China
| | - Yung Hou Wong
- Division of Life Sciences and the Biotechnology Research Institute, Hong Kong University of Science and Technology, Hong Kong, China
| | - Qingmei Xie
- State Key Laboratory of Swine and Poultry Breeding Industry & Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China; Guangdong Provincial Key Lab of AgroAnimal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China; Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou, 510642, China.
| |
Collapse
|
4
|
Rauch E, Amendt T, Lopez Krol A, Lang FB, Linse V, Hohmann M, Keim AC, Kreutzer S, Kawengian K, Buchholz M, Duschner P, Grauer S, Schnierle B, Ruhl A, Burtscher I, Dehnert S, Kuria C, Kupke A, Paul S, Liehr T, Lechner M, Schnare M, Kaufmann A, Huber M, Winkler TH, Bauer S, Yu P. T-bet + B cells are activated by and control endogenous retroviruses through TLR-dependent mechanisms. Nat Commun 2024; 15:1229. [PMID: 38336876 PMCID: PMC10858178 DOI: 10.1038/s41467-024-45201-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 01/17/2024] [Indexed: 02/12/2024] Open
Abstract
Endogenous retroviruses (ERVs) are an integral part of the mammalian genome. The role of immune control of ERVs in general is poorly defined as is their function as anti-cancer immune targets or drivers of autoimmune disease. Here, we generate mouse-strains where Moloney-Murine Leukemia Virus tagged with GFP (ERV-GFP) infected the mouse germline. This enables us to analyze the role of genetic, epigenetic and cell intrinsic restriction factors in ERV activation and control. We identify an autoreactive B cell response against the neo-self/ERV antigen GFP as a key mechanism of ERV control. Hallmarks of this response are spontaneous ERV-GFP+ germinal center formation, elevated serum IFN-γ levels and a dependency on Age-associated B cells (ABCs) a subclass of T-bet+ memory B cells. Impairment of IgM B cell receptor-signal in nucleic-acid sensing TLR-deficient mice contributes to defective ERV control. Although ERVs are a part of the genome they break immune tolerance, induce immune surveillance against ERV-derived self-antigens and shape the host immune response.
Collapse
Affiliation(s)
- Eileen Rauch
- Institute of Immunology, Philipps-Universität Marburg, 35043, Marburg, Germany
- CSL Behring Innovation GmbH, Emil-von-Behring-Str. 76, 35041, Marburg, Germany
| | - Timm Amendt
- Institute of Immunology, Philipps-Universität Marburg, 35043, Marburg, Germany
- The Francis Crick Institute, NW1 1AT, London, UK
| | | | - Fabian B Lang
- Institute of Immunology, Philipps-Universität Marburg, 35043, Marburg, Germany
| | - Vincent Linse
- Institute of Immunology, Philipps-Universität Marburg, 35043, Marburg, Germany
| | - Michelle Hohmann
- Institute of Immunology, Philipps-Universität Marburg, 35043, Marburg, Germany
- Apollo Ventures Holding GmbH, 20457, Hamburg, Germany
| | - Ann-Christin Keim
- Institute of Immunology, Philipps-Universität Marburg, 35043, Marburg, Germany
| | - Susanne Kreutzer
- Max-Planck-Institute for Heart and Lung Research, 61231, Bad Nauheim, Germany
| | - Kevin Kawengian
- Institute of Immunology, Philipps-Universität Marburg, 35043, Marburg, Germany
| | - Malte Buchholz
- Department of Gastroenterology, Endocrinology and Metabolism, and Core Facility Small Animal Multispectral and Ultrasound Imaging, Philipps-Universität Marburg, 35043, Marburg, Germany
| | - Philipp Duschner
- Institute of Immunology, Philipps-Universität Marburg, 35043, Marburg, Germany
| | - Saskia Grauer
- Institute of Immunology, Philipps-Universität Marburg, 35043, Marburg, Germany
| | - Barbara Schnierle
- Department of Virology, Paul-Ehrlich-Institut, 63225, Langen, Germany
| | - Andreas Ruhl
- Institute of Immunology, Philipps-Universität Marburg, 35043, Marburg, Germany
- Department of Infection Biology, University Hospital Erlangen, 91054, Erlangen, Germany
| | - Ingo Burtscher
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, 85764, Neuherberg, Germany
| | - Sonja Dehnert
- Institute of Immunology, Philipps-Universität Marburg, 35043, Marburg, Germany
| | - Chege Kuria
- Nikolaus-Fiebiger Center for Molecular Medicine, Friedrich-Alexander Universität Erlangen-Nürnberg, 91054, Erlangen, Germany
| | - Alexandra Kupke
- Institute of Virology, Philipps-Universität Marburg, 35043, Marburg, Germany
| | - Stephanie Paul
- Institute of Immunology, Philipps-Universität Marburg, 35043, Marburg, Germany
| | - Thomas Liehr
- Jena University Hospital, Friedrich Schiller University, Institute of Human Genetics, 07747, Jena, Germany
| | - Marcus Lechner
- Center for Synthetic Microbiology, Philipps-Universität Marburg, 35043, Marburg, Germany
| | - Markus Schnare
- Institute of Immunology, Philipps-Universität Marburg, 35043, Marburg, Germany
| | - Andreas Kaufmann
- Institute of Immunology, Philipps-Universität Marburg, 35043, Marburg, Germany
| | - Magdalena Huber
- Institute of Sytems Immunology, Center for Tumor and Immunobiology, Philipps-Universität Marburg, 35043, Marburg, Germany
| | - Thomas H Winkler
- Nikolaus-Fiebiger Center for Molecular Medicine, Friedrich-Alexander Universität Erlangen-Nürnberg, 91054, Erlangen, Germany
| | - Stefan Bauer
- Institute of Immunology, Philipps-Universität Marburg, 35043, Marburg, Germany
| | - Philipp Yu
- Institute of Immunology, Philipps-Universität Marburg, 35043, Marburg, Germany.
| |
Collapse
|
5
|
Dhanjal DS, Singh R, Sharma V, Nepovimova E, Adam V, Kuca K, Chopra C. Advances in Genetic Reprogramming: Prospects from Developmental Biology to Regenerative Medicine. Curr Med Chem 2024; 31:1646-1690. [PMID: 37138422 DOI: 10.2174/0929867330666230503144619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 03/13/2023] [Accepted: 03/16/2023] [Indexed: 05/05/2023]
Abstract
The foundations of cell reprogramming were laid by Yamanaka and co-workers, who showed that somatic cells can be reprogrammed into pluripotent cells (induced pluripotency). Since this discovery, the field of regenerative medicine has seen advancements. For example, because they can differentiate into multiple cell types, pluripotent stem cells are considered vital components in regenerative medicine aimed at the functional restoration of damaged tissue. Despite years of research, both replacement and restoration of failed organs/ tissues have remained elusive scientific feats. However, with the inception of cell engineering and nuclear reprogramming, useful solutions have been identified to counter the need for compatible and sustainable organs. By combining the science underlying genetic engineering and nuclear reprogramming with regenerative medicine, scientists have engineered cells to make gene and stem cell therapies applicable and effective. These approaches have enabled the targeting of various pathways to reprogramme cells, i.e., make them behave in beneficial ways in a patient-specific manner. Technological advancements have clearly supported the concept and realization of regenerative medicine. Genetic engineering is used for tissue engineering and nuclear reprogramming and has led to advances in regenerative medicine. Targeted therapies and replacement of traumatized , damaged, or aged organs can be realized through genetic engineering. Furthermore, the success of these therapies has been validated through thousands of clinical trials. Scientists are currently evaluating induced tissue-specific stem cells (iTSCs), which may lead to tumour-free applications of pluripotency induction. In this review, we present state-of-the-art genetic engineering that has been used in regenerative medicine. We also focus on ways that genetic engineering and nuclear reprogramming have transformed regenerative medicine and have become unique therapeutic niches.
Collapse
Affiliation(s)
- Daljeet Singh Dhanjal
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| | - Reena Singh
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| | - Varun Sharma
- Head of Bioinformatic Division, NMC Genetics India Pvt. Ltd., Gurugram, India
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, 50003, Czech Republic
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, Brno, CZ 613 00, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, Brno, CZ-612 00, Czech Republic
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, 50003, Czech Republic
- Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove, 50005, Czech Republic
| | - Chirag Chopra
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| |
Collapse
|
6
|
Balmas E, Sozza F, Bottini S, Ratto ML, Savorè G, Becca S, Snijders KE, Bertero A. Manipulating and studying gene function in human pluripotent stem cell models. FEBS Lett 2023; 597:2250-2287. [PMID: 37519013 DOI: 10.1002/1873-3468.14709] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 08/01/2023]
Abstract
Human pluripotent stem cells (hPSCs) are uniquely suited to study human development and disease and promise to revolutionize regenerative medicine. These applications rely on robust methods to manipulate gene function in hPSC models. This comprehensive review aims to both empower scientists approaching the field and update experienced stem cell biologists. We begin by highlighting challenges with manipulating gene expression in hPSCs and their differentiated derivatives, and relevant solutions (transfection, transduction, transposition, and genomic safe harbor editing). We then outline how to perform robust constitutive or inducible loss-, gain-, and change-of-function experiments in hPSCs models, both using historical methods (RNA interference, transgenesis, and homologous recombination) and modern programmable nucleases (particularly CRISPR/Cas9 and its derivatives, i.e., CRISPR interference, activation, base editing, and prime editing). We further describe extension of these approaches for arrayed or pooled functional studies, including emerging single-cell genomic methods, and the related design and analytical bioinformatic tools. Finally, we suggest some directions for future advancements in all of these areas. Mastering the combination of these transformative technologies will empower unprecedented advances in human biology and medicine.
Collapse
Affiliation(s)
- Elisa Balmas
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarone", University of Turin, Torino, Italy
| | - Federica Sozza
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarone", University of Turin, Torino, Italy
| | - Sveva Bottini
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarone", University of Turin, Torino, Italy
| | - Maria Luisa Ratto
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarone", University of Turin, Torino, Italy
| | - Giulia Savorè
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarone", University of Turin, Torino, Italy
| | - Silvia Becca
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarone", University of Turin, Torino, Italy
| | - Kirsten Esmee Snijders
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarone", University of Turin, Torino, Italy
| | - Alessandro Bertero
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarone", University of Turin, Torino, Italy
| |
Collapse
|
7
|
Zhang J, Hou W, Zhao Q, Xiao S, Linghu H, Zhang L, Du J, Cui H, Yang X, Ling S, Su J, Kong Q. Deep annotation of long noncoding RNAs by assembling RNA-seq and small RNA-seq data. J Biol Chem 2023; 299:105130. [PMID: 37543366 PMCID: PMC10498003 DOI: 10.1016/j.jbc.2023.105130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 07/20/2023] [Accepted: 07/31/2023] [Indexed: 08/07/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) are increasingly being recognized as modulators in various biological processes. However, due to their low expression, their systematic characterization is difficult to determine. Here, we performed transcript annotation by a newly developed computational pipeline, termed RNA-seq and small RNA-seq combined strategy (RSCS), in a wide variety of cellular contexts. Thousands of high-confidence potential novel transcripts were identified by the RSCS, and the reliability of the transcriptome was verified by analysis of transcript structure, base composition, and sequence complexity. Evidenced by the length comparison, the frequency of the core promoter and the polyadenylation signal motifs, and the locations of transcription start and end sites, the transcripts appear to be full length. Furthermore, taking advantage of our strategy, we identified a large number of endogenous retrovirus-associated lncRNAs, and a novel endogenous retrovirus-lncRNA that was functionally involved in control of Yap1 expression and essential for early embryogenesis was identified. In summary, the RSCS can generate a more complete and precise transcriptome, and our findings greatly expanded the transcriptome annotation for the mammalian community.
Collapse
Affiliation(s)
- Jiaming Zhang
- Oujiang Laboratory, Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Weibo Hou
- Oujiang Laboratory, Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Qi Zhao
- Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Songling Xiao
- Oujiang Laboratory, Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Hongye Linghu
- Oujiang Laboratory, Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Lixin Zhang
- Oujiang Laboratory, Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Jiawei Du
- Oujiang Laboratory, Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Hongdi Cui
- Oujiang Laboratory, Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Xu Yang
- Oujiang Laboratory, Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Shukuan Ling
- Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Wenzhou Medical University, Wenzhou, Zhejiang Province, China.
| | - Jianzhong Su
- Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Wenzhou Medical University, Wenzhou, Zhejiang Province, China.
| | - Qingran Kong
- Oujiang Laboratory, Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang Province, China.
| |
Collapse
|
8
|
Li L, Li P, Chen J, Li L, Shen Y, Zhu Y, Liu J, Lv L, Mao S, Chen F, Hu G, Yuan K. Rif1 interacts with non-canonical polycomb repressive complex PRC1.6 to regulate mouse embryonic stem cells fate potential. CELL REGENERATION 2022; 11:25. [PMID: 35915272 PMCID: PMC9343540 DOI: 10.1186/s13619-022-00124-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 07/05/2022] [Indexed: 11/10/2022]
Abstract
Mouse embryonic stem cells (mESCs) cycle in and out of a transient 2-cell (2C)-like totipotent state, driven by a complex genetic circuit involves both the coding and repetitive sections of the genome. While a vast array of regulators, including the multi-functional protein Rif1, has been reported to influence the switch of fate potential, how they act in concert to achieve this cellular plasticity remains elusive. Here, by modularizing the known totipotency regulatory factors, we identify an unprecedented functional connection between Rif1 and the non-canonical polycomb repressive complex PRC1.6. Downregulation of the expression of either Rif1 or PRC1.6 subunits imposes similar impacts on the transcriptome of mESCs. The LacO-LacI induced ectopic colocalization assay detects a specific interaction between Rif1 and Pcgf6, bolstering the intactness of the PRC1.6 complex. Chromatin immunoprecipitation followed by sequencing (ChIP-seq) analysis further reveals that Rif1 is required for the accurate targeting of Pcgf6 to a group of genomic loci encompassing many genes involved in the regulation of the 2C-like state. Depletion of Rif1 or Pcgf6 not only activates 2C genes such as Zscan4 and Zfp352, but also derepresses a group of the endogenous retroviral element MERVL, a key marker for totipotency. Collectively, our findings discover that Rif1 can serve as a novel auxiliary component in the PRC1.6 complex to restrain the genetic circuit underlying totipotent fate potential, shedding new mechanistic insights into its function in regulating the cellular plasticity of embryonic stem cells.
Collapse
|
9
|
Global network mapping research landscape and trends of the endogenous retroviruses: a look through bibliometric analysis. RENDICONTI LINCEI. SCIENZE FISICHE E NATURALI 2022; 33:663-672. [PMID: 35967085 PMCID: PMC9360708 DOI: 10.1007/s12210-022-01088-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 07/19/2022] [Indexed: 01/03/2023]
Abstract
Endogenous retrovirus (ERV) research amalgamates host-retroviral coevolutionary, phylogenomic, infection, immunity, and cellular studies in various hosts ranging from fish to humans. Henceforth, a bibliometric analysis of these publications may aid in the identification of trends in ERV research. It was the foremost bibliographic study, with the key aim to conduct the bibliometric network analysis (e.g. co-authorship, co-occurrence, citation, bibliographic coupling, and co-citation analysis) to find the most prolific authors, organizations, and countries in ERV research, based on the mapping of bibliographic data. Second, the mapping based on text data comprised to chalk out the research trend over the time. The global literature about endogenous retroviruses published between 1985 and Sep 2021 was searched in the Web of Science (Core Collection) database using the “ENDOGENOUS RETROVIRUS” keyword. The bibliometric analysis of this dataset was carried out using VOSviewer version 1.6.17. According to findings, English was the de facto language of these publications, and 2157 were original articles. Among 2939 published documents, “endogenous retrovirus” was the most frequent keyword. Moreover, it revealed the United States as a core contributor to studies on the ERV. The Journal of Virology published a substantial amount of manuscripts in ERV. Robert Koch Institute and Harvard University were leading organizations for research in this field. The application of ERV research from China could be the research hotspot to follow in the coming years. Current bibliometric analysis provides a comprehensive picture of ERV research progress and has highlighted the contribution of different stakeholders.
Collapse
|
10
|
Yedavalli VRK, Patil A, Parrish J, Kozak CA. A novel class III endogenous retrovirus with a class I envelope gene in African frogs with an intact genome and developmentally regulated transcripts in Xenopus tropicalis. Retrovirology 2021; 18:20. [PMID: 34261506 PMCID: PMC8278194 DOI: 10.1186/s12977-021-00564-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 06/29/2021] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Retroviruses exist as exogenous infectious agents and as endogenous retroviruses (ERVs) integrated into host chromosomes. Such endogenous retroviruses (ERVs) are grouped into three classes roughly corresponding to the seven genera of infectious retroviruses: class I (gamma-, epsilonretroviruses), class II (alpha-, beta-, delta-, lentiretroviruses) and class III (spumaretroviruses). Some ERVs have counterparts among the known infectious retroviruses, while others represent paleovirological relics of extinct or undiscovered retroviruses. RESULTS Here we identify an intact ERV in the Anuran amphibian, Xenopus tropicalis. XtERV-S has open reading frames (ORFs) for gag, pol (polymerase) and env (envelope) genes, with a small additional ORF in pol and a serine tRNA primer binding site. It has unusual features and domain relationships to known retroviruses. Analyses based on phylogeny and functional motifs establish that XtERV-S gag and pol genes are related to the ancient env-less class III ERV-L family but the surface subunit of env is unrelated to known retroviruses while its transmembrane subunit is class I-like. LTR constructs show transcriptional activity, and XtERV-S transcripts are detected in embryos after the maternal to zygotic mid-blastula transition and before the late tailbud stage. Tagged Gag protein shows typical subcellular localization. The presence of ORFs in all three protein-coding regions along with identical 5' and 3' LTRs (long terminal repeats) indicate this is a very recent germline acquisition. There are older, full-length, nonorthologous, defective copies in Xenopus laevis and the distantly related African bullfrog, Pyxicephalus adspersus. Additional older, internally deleted copies in X. tropicalis carry a 300 bp LTR substitution. CONCLUSIONS XtERV-S represents a genera-spanning member of the largely env-less class III ERV that has ancient and modern copies in Anurans. This provirus has an env ORF with a surface subunit unrelated to known retroviruses and a transmembrane subunit related to class I gammaretroviruses in sequence and organization, and is expressed in early embryogenesis. Additional XtERV-S-related but defective copies are present in X. tropicalis and other African frog taxa. XtERV-S is an unusual class III ERV variant, and it may represent an important transitional retroviral form that has been spreading in African frogs for tens of millions of years.
Collapse
Affiliation(s)
- Venkat R K Yedavalli
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, MD, 20892, USA
| | - Akash Patil
- Department of Biomedical Engineering, John Hopkins University, Baltimore, MD, 21205, USA
| | - Janay Parrish
- Internal Medicine, Northwell Health, Lenox Hill Hospital, New York, NY, 10075, USA
| | - Christine A Kozak
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, MD, 20892, USA.
| |
Collapse
|
11
|
Tokuyama M, Gunn BM, Venkataraman A, Kong Y, Kang I, Rakib T, Townsend MJ, Costenbader KH, Alter G, Iwasaki A. Antibodies against human endogenous retrovirus K102 envelope activate neutrophils in systemic lupus erythematosus. J Exp Med 2021; 218:212176. [PMID: 34019642 PMCID: PMC8144942 DOI: 10.1084/jem.20191766] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 03/08/2021] [Accepted: 04/23/2021] [Indexed: 01/03/2023] Open
Abstract
Neutrophil activation and the formation of neutrophil extracellular traps (NETs) are hallmarks of innate immune activation in systemic lupus erythematosus (SLE). Here we report that the expression of an endogenous retrovirus (ERV) locus ERV-K102, encoding an envelope protein, was significantly elevated in SLE patient blood and correlated with autoantibody levels and higher interferon status. Induction of ERV-K102 in SLE negatively correlated with the expression of epigenetic silencing factors. Anti-ERV-K102 IgG levels in SLE plasma correlated with higher interferon stimulated gene expression, and further promoted enhanced neutrophil phagocytosis of ERV-K102 envelope protein through immune complex formation. Finally, phagocytosis of ERV-K102 immune complexes resulted in the formation of NETs consisting of DNA, neutrophil elastase, and citrullinated histone H3. Together, we identified an immunostimulatory ERV-K envelope protein that in an immune complex with SLE IgG is capable of activating neutrophils.
Collapse
Affiliation(s)
- Maria Tokuyama
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT
| | - Bronwyn M Gunn
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, MA
| | - Arvind Venkataraman
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT
| | - Yong Kong
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT
| | - Insoo Kang
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT
| | - Tasfia Rakib
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT
| | | | | | - Galit Alter
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, MA
| | - Akiko Iwasaki
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT.,Howard Hughes Medical Institute, Chevy Chase, MD
| |
Collapse
|
12
|
Pérez-Palacios R, Climent M, Santiago-Arcos J, Macías-Redondo S, Klar M, Muniesa P, Schoorlemmer J. YY2 in Mouse Preimplantation Embryos and in Embryonic Stem Cells. Cells 2021; 10:cells10051123. [PMID: 34066930 PMCID: PMC8148602 DOI: 10.3390/cells10051123] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/22/2021] [Accepted: 04/29/2021] [Indexed: 12/15/2022] Open
Abstract
Yin Yang 2 encodes a mammalian-specific transcription factor (YY2) that shares high homology in the zinc finger region with both YY1 and REX1/ZFP42, encoded by the Yin Yang 1 and Reduced Expression Protein 1/Zinc Finger Protein 42 gene, respectively. In contrast to the well-established roles of the latter two in gene regulation, X chromosome inactivation and binding to specific transposable elements (TEs), much less is known about YY2, and its presence during mouse preimplantation development has not been described. As it has been reported that mouse embryonic stem cells (mESC) cannot be propagated in the absence of Yy2, the mechanistic understanding of how Yy2 contributes to mESC maintenance remains only very partially characterized. We describe Yy2 expression studies using RT-PCR and staining with a high-affinity polyclonal serum in mouse embryos and mESC. Although YY2 is expressed during preimplantation development, its presence appears dispensable for developmental progress in vitro until formation of the blastocyst. Attenuation of Yy2 levels failed to alter either Zscan4 levels in two-cell embryos or IAP and MERVL levels at later preimplantation stages. In contrast to previous claims that constitutively expressed shRNA against Yy2 in mESC prohibited the propagation of mESC in culture, we obtained colonies generated from mESC with attenuated Yy2 levels. Concomitant with a decreased number of undifferentiated colonies, Yy2-depleted mESC expressed higher levels of Zscan4 but no differences in the expression of TEs or other pluripotency markers including Sox2, Oct4, Nanog and Esrrb were observed. These results confirm the contribution of Yy2 to the maintenance of mouse embryonic stem cells and show the preimplantation expression of YY2. These functions are discussed in relation to mammalian-specific functions of YY1 and REX1.
Collapse
Affiliation(s)
- Raquel Pérez-Palacios
- Regenerative Medicine Program, Instituto Aragonés de Ciencias de la Salud, CIBA, Avenida San Juan Bosco 13, 50009 Zaragoza, Spain; (R.P.-P.); (S.M.-R.)
- Departamento de Anatomía, Embriología y Genética Animal, Facultad de Veterinaria, Universidad de Zaragoza, C/Miguel Servet 177, 50013 Zaragoza, Spain; (M.C.); (J.S.-A.); (P.M.)
| | - María Climent
- Departamento de Anatomía, Embriología y Genética Animal, Facultad de Veterinaria, Universidad de Zaragoza, C/Miguel Servet 177, 50013 Zaragoza, Spain; (M.C.); (J.S.-A.); (P.M.)
- Placental Pathophysiology and Fetal Programming Group, Fundación IISA, Avenida San Juan Bosco 13, 50009 Zaragoza, Spain
| | - Javier Santiago-Arcos
- Departamento de Anatomía, Embriología y Genética Animal, Facultad de Veterinaria, Universidad de Zaragoza, C/Miguel Servet 177, 50013 Zaragoza, Spain; (M.C.); (J.S.-A.); (P.M.)
| | - Sofía Macías-Redondo
- Regenerative Medicine Program, Instituto Aragonés de Ciencias de la Salud, CIBA, Avenida San Juan Bosco 13, 50009 Zaragoza, Spain; (R.P.-P.); (S.M.-R.)
| | - Martin Klar
- Department of Neonatology, Charité—Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany;
| | - Pedro Muniesa
- Departamento de Anatomía, Embriología y Genética Animal, Facultad de Veterinaria, Universidad de Zaragoza, C/Miguel Servet 177, 50013 Zaragoza, Spain; (M.C.); (J.S.-A.); (P.M.)
- Placental Pathophysiology and Fetal Programming Group, Fundación IISA, Avenida San Juan Bosco 13, 50009 Zaragoza, Spain
| | - Jon Schoorlemmer
- Regenerative Medicine Program, Instituto Aragonés de Ciencias de la Salud, CIBA, Avenida San Juan Bosco 13, 50009 Zaragoza, Spain; (R.P.-P.); (S.M.-R.)
- Placental Pathophysiology and Fetal Programming Group, Fundación IISA, Avenida San Juan Bosco 13, 50009 Zaragoza, Spain
- Fundación “Agencia Aragonesa para la Investigación y el Desarrollo” (ARAID), 50018 Zaragoza, Spain
- Correspondence: ; Tel.: +34-976-715-412 or +34-672-022-215
| |
Collapse
|
13
|
Golkaram M, Salmans ML, Kaplan S, Vijayaraghavan R, Martins M, Khan N, Garbutt C, Wise A, Yao J, Casimiro S, Abreu C, Macedo D, Costa AL, Alvim C, Mansinho A, Filipe P, Marques da Costa P, Fernandes A, Borralho P, Ferreira C, Aldeia F, Malaquias J, Godsey J, So A, Pawlowski T, Costa L, Zhang S, Liu L. HERVs establish a distinct molecular subtype in stage II/III colorectal cancer with poor outcome. NPJ Genom Med 2021; 6:13. [PMID: 33589643 PMCID: PMC7884730 DOI: 10.1038/s41525-021-00177-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 01/12/2021] [Indexed: 12/22/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most lethal malignancies. The extreme heterogeneity in survival rate is driving the need for new prognostic biomarkers. Human endogenous retroviruses (hERVs) have been suggested to influence tumor progression, oncogenesis and elicit an immune response. We examined multiple next-generation sequencing (NGS)-derived biomarkers in 114 CRC patients with paired whole-exome and whole-transcriptome sequencing (WES and WTS, respectively). First, we demonstrate that the median expression of hERVs can serve as a potential biomarker for prognosis, relapse, and resistance to chemotherapy in stage II and III CRC. We show that hERV expression and CD8+ tumor-infiltrating T-lymphocytes (TILs) synergistically stratify overall and relapse-free survival (OS and RFS): the median OS of the CD8-/hERV+ subgroup was 29.8 months compared with 37.5 months for other subgroups (HR = 4.4, log-rank P < 0.001). Combing NGS-based biomarkers (hERV/CD8 status) with clinicopathological factors provided a better prediction of patient survival compared to clinicopathological factors alone. Moreover, we explored the association between genomic and transcriptomic features of tumors with high hERV expression and establish this subtype as distinct from previously described consensus molecular subtypes of CRC. Overall, our results underscore a previously unknown role for hERVs in leading to a more aggressive subtype of CRC.
Collapse
Affiliation(s)
| | | | | | | | - Marta Martins
- Instituto de Medicina Molecular - João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | | | | | | | | | - Sandra Casimiro
- Instituto de Medicina Molecular - João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Catarina Abreu
- Centro Hospitalar Universitário Lisboa Norte, Hospital de Santa Maria, Lisbon, Portugal
| | - Daniela Macedo
- Centro Hospitalar Universitário Lisboa Norte, Hospital de Santa Maria, Lisbon, Portugal
| | - Ana Lúcia Costa
- Centro Hospitalar Universitário Lisboa Norte, Hospital de Santa Maria, Lisbon, Portugal
| | - Cecília Alvim
- Centro Hospitalar Universitário Lisboa Norte, Hospital de Santa Maria, Lisbon, Portugal
| | - André Mansinho
- Instituto de Medicina Molecular - João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal.,Centro Hospitalar Universitário Lisboa Norte, Hospital de Santa Maria, Lisbon, Portugal
| | - Pedro Filipe
- Centro Hospitalar Universitário Lisboa Norte, Hospital de Santa Maria, Lisbon, Portugal
| | - Pedro Marques da Costa
- Centro Hospitalar Universitário Lisboa Norte, Hospital de Santa Maria, Lisbon, Portugal.,Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Afonso Fernandes
- Instituto de Medicina Molecular - João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Paula Borralho
- Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Cristina Ferreira
- Centro Hospitalar Universitário Lisboa Norte, Hospital de Santa Maria, Lisbon, Portugal
| | - Fernando Aldeia
- Centro Hospitalar Universitário Lisboa Norte, Hospital de Santa Maria, Lisbon, Portugal
| | - João Malaquias
- Centro Hospitalar Universitário Lisboa Norte, Hospital de Santa Maria, Lisbon, Portugal
| | | | - Alex So
- Illumina Inc., San Diego, CA, USA
| | | | - Luis Costa
- Instituto de Medicina Molecular - João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal. .,Centro Hospitalar Universitário Lisboa Norte, Hospital de Santa Maria, Lisbon, Portugal.
| | | | - Li Liu
- Illumina Inc., San Diego, CA, USA.
| |
Collapse
|
14
|
Krüger L, Nowak-Imialek M, Kristiansen Y, Herrmann D, Petersen B, Denner J. Unexpected low expression of porcine endogenous retroviruses (PERVs) in porcine expanded potential stem cells (EPSCs). Virus Res 2021; 294:198295. [PMID: 33422555 DOI: 10.1016/j.virusres.2021.198295] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/29/2020] [Accepted: 01/03/2021] [Indexed: 10/22/2022]
Abstract
Expanded potential stem cells (EPSCs) have been recently derived from porcine preimplantation embryos (Gao et al., 2019). These cells were shown to express key pluripotency genes, to be genetically stable and differentiate to derivatives of the three germ layers and additionally to trophoblast. Their molecular features and expanded potency to contribute to all embryonic and extra-embryonic cell lineages are generally not seen in the embryo-derived or induced pluripotent stem cells (iPSCs). Therefore porcine EPSCs represent a unique state of cellular potency. In the past it had been shown that human and murine embryonic stem cells (ESCs) show an increased expression of murine and human endogenous retroviruses, respectively, and retroviral expression patterns were used as markers of ESC pluripotency. An increased expression of porcine endogenous retroviruses (PERVs) was also detected in porcine iPSCs. Here we investigated 24 passages of five different clones of porcine EPSCs derived from German landrace pigs and show that they harbour PERV-A, PERV-B and PERV-C, but their expression was very low and did not change during cultivation. No recombinant PERV-A/Cs were found in these cells. The low expression despite the presence of spliced mRNA, and negative infection assay and electron microscopy results indicate that no PERV particles were released. Therefore, the absence of PERV expression seems to be a unique feature of porcine EPSCs. Most importantly, the copy number of PERV proviruses was much lower in EPSCs than in young and older pigs (29.1 copies compared with 35.8), indicating an increase in copy number during life time.
Collapse
Affiliation(s)
- Luise Krüger
- Robert Koch Institute, Nordufer 20, 13353, Berlin, Germany
| | - Monika Nowak-Imialek
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institute (FLI), Mariensee, 31535, Neustadt, Germany; Klinik und Poliklinik Innere Medizin I, Klinikum rechts der Isar - Technical University of Munich, Munich, Germany
| | | | - Doris Herrmann
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institute (FLI), Mariensee, 31535, Neustadt, Germany
| | - Björn Petersen
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institute (FLI), Mariensee, 31535, Neustadt, Germany
| | - Joachim Denner
- Robert Koch Fellow, Robert Koch Institute, Nordufer 20, 13353, Berlin, Germany; Institute of Virology, Free University Berlin, Robert von Ostertag-Straße 7-13, 14163, Berlin, Germany.
| |
Collapse
|
15
|
Posttranscriptional regulation of human endogenous retroviruses by RNA-binding motif protein 4, RBM4. Proc Natl Acad Sci U S A 2020; 117:26520-26530. [PMID: 33020268 DOI: 10.1073/pnas.2005237117] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The human genome encodes for over 1,500 RNA-binding proteins (RBPs), which coordinate regulatory events on RNA transcripts. Most studies of RBPs have concentrated on their action on host protein-encoding mRNAs, which constitute a minority of the transcriptome. A widely neglected subset of our transcriptome derives from integrated retroviral elements, termed endogenous retroviruses (ERVs), that comprise ∼8% of the human genome. Some ERVs have been shown to be transcribed under physiological and pathological conditions, suggesting that sophisticated regulatory mechanisms to coordinate and prevent their ectopic expression exist. However, it is unknown how broadly RBPs and ERV transcripts directly interact to provide a posttranscriptional layer of regulation. Here, we implemented a computational pipeline to determine the correlation of expression between individual RBPs and ERVs from single-cell or bulk RNA-sequencing data. One of our top candidates for an RBP negatively regulating ERV expression was RNA-binding motif protein 4 (RBM4). We used photoactivatable ribonucleoside-enhanced cross-linking and immunoprecipitation to demonstrate that RBM4 indeed bound ERV transcripts at CGG consensus elements. Loss of RBM4 resulted in an elevated transcript level of bound ERVs of the HERV-K and -H families, as well as increased expression of HERV-K envelope protein. We pinpointed RBM4 regulation of HERV-K to a CGG-containing element that is conserved in the LTRs of HERV-K-10, -K-11, and -K-20, and validated the functionality of this site using reporter assays. In summary, we systematically identified RBPs that may regulate ERV function and demonstrate a role for RBM4 in controlling ERV expression.
Collapse
|
16
|
Genome-wide CRISPR knockout screen identifies ZNF304 as a silencer of HIV transcription that promotes viral latency. PLoS Pathog 2020; 16:e1008834. [PMID: 32956422 PMCID: PMC7529202 DOI: 10.1371/journal.ppat.1008834] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 10/01/2020] [Accepted: 07/22/2020] [Indexed: 12/17/2022] Open
Abstract
Despite the widespread use of anti-retroviral therapy, human immunodeficiency virus (HIV) still persists in an infected cell reservoir that harbors transcriptionally silent yet replication-competent proviruses. While significant progress has been made in understanding how the HIV reservoir is established, transcription repression mechanisms that are enforced on the integrated viral promoter have not been fully revealed. In this study, we performed a whole-genome CRISPR knockout screen in HIV infected T cells to identify host genes that potentially promote HIV latency. Of several top candidates, the KRAB-containing zinc finger protein, ZNF304, was identified as the top hit. ZNF304 silences HIV gene transcription through associating with TRIM28 and recruiting to the viral promoter heterochromatin-inducing methyltransferases, including the polycomb repression complex (PRC) and SETB1. Depletion of ZNF304 expression reduced levels of H3K9me3, H3K27me3 and H2AK119ub repressive histone marks on the HIV promoter as well as SETB1 and TRIM28, ultimately enhancing HIV gene transcription. Significantly, ZNF304 also promoted HIV latency, as its depletion delayed the entry of HIV infected cells into latency. In primary CD4+ cells, ectopic expression of ZNF304 silenced viral transcription. We conclude that by associating with TRIM28 and recruiting host transcriptional repressive complexes, SETB1 and PRC, to the HIV promoter, ZNF304 silences HIV gene transcription and promotes viral latency. Antiretroviral therapy has significantly decreased the morbidity and mortality associated with HIV infection. However, a complete cure remains out of reach, as HIV persists in a cell reservoir that is highly stable in the face of therapy. While developing novel therapeutic strategies to eliminate the reservoir is a well-recognized goal, knowledge of the molecular events that establish HIV latency is still not complete. To obtain insights into the silencing mechanisms of HIV gene transcription and the establishment of viral latency, a genome-wide CRISPR screen was employed to identify host factors that control viral latency. We identified zinc-finger protein 304 (ZNF304) and showed that through association with TRIM28, it recruits the histone methyltransferases SETB1 and PRC to deposit repressive marks on chromatin of the HIV promoter, thereby facilitating the silencing of viral gene transcription. Moreover, we found that depletion of ZNF304 expression activated HIV gene expression, while ZNF304 overexpression repressed viral gene transcription both in a T cell line and in primary CD4+ cells. Finally, our study showed that ZNF304 is also involved in modulating HIV latency, as its depletion delayed entry of the virus into a latency state. Our results offer an additional mechanistic explanation for how host histone repression complexes are tethered to the HIV promoter to promote chromatin compaction, thereby defining a potentially new target for perturbing the establishment of the viral reservoir.
Collapse
|
17
|
Geis FK, Goff SP. Silencing and Transcriptional Regulation of Endogenous Retroviruses: An Overview. Viruses 2020; 12:v12080884. [PMID: 32823517 PMCID: PMC7472088 DOI: 10.3390/v12080884] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/03/2020] [Accepted: 08/11/2020] [Indexed: 12/16/2022] Open
Abstract
Almost half of the human genome is made up of transposable elements (TEs), and about 8% consists of endogenous retroviruses (ERVs). ERVs are remnants of ancient exogenous retrovirus infections of the germ line. Most TEs are inactive and not detrimental to the host. They are tightly regulated to ensure genomic stability of the host and avoid deregulation of nearby gene loci. Histone-based posttranslational modifications such as H3K9 trimethylation are one of the main silencing mechanisms. Trim28 is one of the identified master regulators of silencing, which recruits most prominently the H3K9 methyltransferase Setdb1, among other factors. Sumoylation and ATP-dependent chromatin remodeling factors seem to contribute to proper localization of Trim28 to ERV sequences and promote Trim28 interaction with Setdb1. Additionally, DNA methylation as well as RNA-mediated targeting of TEs such as piRNA-based silencing play important roles in ERV regulation. Despite the involvement of ERV overexpression in several cancer types, autoimmune diseases, and viral pathologies, ERVs are now also appreciated for their potential positive role in evolution. ERVs can provide new regulatory gene elements or novel binding sites for transcription factors, and ERV gene products can even be repurposed for the benefit of the host.
Collapse
Affiliation(s)
- Franziska K. Geis
- Department of Biochemistry and Molecular Biophysics, Columbia University Medical Center, New York, NY 10032, USA;
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY 10032, USA
- Howard Hughes Medical Institute, Columbia University Medical Center, New York, NY 10032, USA
| | - Stephen P. Goff
- Department of Biochemistry and Molecular Biophysics, Columbia University Medical Center, New York, NY 10032, USA;
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY 10032, USA
- Howard Hughes Medical Institute, Columbia University Medical Center, New York, NY 10032, USA
- Correspondence: ; Tel.: +1-212-305-3794
| |
Collapse
|
18
|
Liu CH, Grandi N, Palanivelu L, Tramontano E, Lin LT. Contribution of Human Retroviruses to Disease Development-A Focus on the HIV- and HERV-Cancer Relationships and Treatment Strategies. Viruses 2020; 12:E852. [PMID: 32759845 PMCID: PMC7472297 DOI: 10.3390/v12080852] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/28/2020] [Accepted: 07/31/2020] [Indexed: 02/06/2023] Open
Abstract
Animal retroviruses are known for their transforming potential, and this is also true for the ones hosted by humans, which have gathered expanding attention as one of the potent causative agents in various disease, including specific cancer types. For instance, Human T Lymphotropic virus (HTLV) is a well-studied class of oncoviruses causing T cell leukemia, while human immunodeficiency virus (HIV) leads to acquired immunodeficiency syndrome (AIDS), which is linked to a series of defining cancers including Kaposi sarcoma, certain types of non-Hodgkin lymphoma, and cervical cancer. Of note, in addition to these "modern" exogenous retroviruses, our genome harbors a staggering number of human endogenous retroviruses (HERVs). HERVs are the genetic remnants of ancient retroviral germline infection of human ancestors and are typically silenced in normal tissues due to inactivating mutations and sequence loss. While some HERV elements have been appropriated and contribute to human physiological functions, others can be reactivated through epigenetic dysregulations to express retroviral elements and promote carcinogenesis. Conversely, HERV replication intermediates or protein products can also serve as intrinsic pathogen-associated molecular patterns that cause the immune system to interpret it as an exogenous infection, thereby stimulating immune responses against tumors. As such, HERVs have also been targeted as a potential internal strategy to sensitize tumor cells for promising immunotherapies. In this review, we discuss the dynamic role of human retroviruses in cancer development, focusing on HIV and HERVs contribution. We also describe potential treatment strategies, including immunotherapeutic targeting of HERVs, inhibiting DNA methylation to expose HERV signatures, and the use of antiretroviral drugs against HIV and HERVs, which can be employed as prospective anti-cancer modalities.
Collapse
Affiliation(s)
- Ching-Hsuan Liu
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan;
- Department of Microbiology & Immunology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Nicole Grandi
- Department of Life and Environmental Sciences, University of Cagliari, Monserrato, 09042 Cagliari, Italy; (N.G.); (E.T.)
| | - Lalitha Palanivelu
- International Master Program in Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan;
| | - Enzo Tramontano
- Department of Life and Environmental Sciences, University of Cagliari, Monserrato, 09042 Cagliari, Italy; (N.G.); (E.T.)
| | - Liang-Tzung Lin
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan;
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| |
Collapse
|
19
|
Abstract
Retroviruses infect a broad range of vertebrate hosts that includes amphibians, reptiles, fish, birds and mammals. In addition, a typical vertebrate genome contains thousands of loci composed of ancient retroviral sequences known as endogenous retroviruses (ERVs). ERVs are molecular remnants of ancient retroviruses and proof that the ongoing relationship between retroviruses and their vertebrate hosts began hundreds of millions of years ago. The long-term impact of retroviruses on vertebrate evolution is twofold: first, as with other viruses, retroviruses act as agents of selection, driving the evolution of host genes that block viral infection or that mitigate pathogenesis, and second, through the phenomenon of endogenization, retroviruses contribute an abundance of genetic novelty to host genomes, including unique protein-coding genes and cis-acting regulatory elements. This Review describes ERV origins, their diversity and their relationships to retroviruses and discusses the potential for ERVs to reveal virus-host interactions on evolutionary timescales. It also describes some of the many examples of cellular functions, including protein-coding genes and regulatory elements, that have evolved from ERVs.
Collapse
|
20
|
Giovinazzo A, Balestrieri E, Petrone V, Argaw-Denboba A, Cipriani C, Miele MT, Grelli S, Sinibaldi-Vallebona P, Matteucci C. The Concomitant Expression of Human Endogenous Retroviruses and Embryonic Genes in Cancer Cells under Microenvironmental Changes is a Potential Target for Antiretroviral Drugs. CANCER MICROENVIRONMENT : OFFICIAL JOURNAL OF THE INTERNATIONAL CANCER MICROENVIRONMENT SOCIETY 2019; 12:105-118. [PMID: 31691184 PMCID: PMC6937370 DOI: 10.1007/s12307-019-00231-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 08/20/2019] [Indexed: 01/26/2023]
Abstract
In our genomes there are thousands of copies of human endogenous retroviruses (HERVs) originated from the integration of exogenous retroviruses that infected germ line cells millions of years ago, and currently an altered expression of this elements has been associated to the onset, progression and acquisition of aggressiveness features of many cancers. The transcriptional reactivation of HERVs is mainly an effect of their responsiveness to some factors in cell microenvironment, such as nutrients, hormones and cytokines. We have already demonstrated that, under pressure of microenvironmental changes, HERV-K (HML-2) activation is required to maintain human melanoma cell plasticity and CD133+ cancer stem cells survival. In the present study, the transcriptional activity of HERV-K (HML-2), HERV-H, CD133 and the embryonic transcription factors OCT4, NANOG and SOX2 was evaluated during the in vitro treatment with antiretroviral drugs in cells from melanoma, liver and lung cancers exposed to microenvironmental changes. The exposure to stem cell medium induced a phenotype switching with the generation of sphere-like aggregates, characterized by the concomitant increase of HERV-K (HML-2) and HERV-H, CD133 and embryonic genes transcriptional activity. Although with heterogenic response among the different cell lines, the in vitro treatment with antiretroviral drugs affected HERVs transcriptional activity in parallel with the reduction of CD133 and embryonic genes expression, clonogenic activity and cell growth, accompanied by the induction of apoptosis. The responsiveness to antiretroviral drugs treatment of cancer cells with stemness features and expressing HERVs suggests the use of these drugs as innovative approach to treat aggressive tumours in combination with chemotherapeutic/radiotherapy regimens.
Collapse
Affiliation(s)
- Alessandro Giovinazzo
- Department of Experimental Medicine, "Tor Vergata" University of Rome, Via Montpellier, 1, 00133, Rome, Italy
| | - Emanuela Balestrieri
- Department of Experimental Medicine, "Tor Vergata" University of Rome, Via Montpellier, 1, 00133, Rome, Italy
| | - Vita Petrone
- Department of Experimental Medicine, "Tor Vergata" University of Rome, Via Montpellier, 1, 00133, Rome, Italy
| | - Ayele Argaw-Denboba
- European Molecular Biology Laboratory (EMBL), Adriano Buzzati-Traverso Campus, Monterotondo, Rome, Italy
| | - Chiara Cipriani
- Department of Experimental Medicine, "Tor Vergata" University of Rome, Via Montpellier, 1, 00133, Rome, Italy
- Department of Urology, San Carlo di Nancy Hospital - GVM Care and Research, Rome, Italy
| | - Martino Tony Miele
- Department of Experimental Medicine, "Tor Vergata" University of Rome, Via Montpellier, 1, 00133, Rome, Italy
| | - Sandro Grelli
- Department of Experimental Medicine, "Tor Vergata" University of Rome, Via Montpellier, 1, 00133, Rome, Italy
| | - Paola Sinibaldi-Vallebona
- Department of Experimental Medicine, "Tor Vergata" University of Rome, Via Montpellier, 1, 00133, Rome, Italy
- National Research Council, Institute of Translational Pharmacology, Rome, Italy
| | - Claudia Matteucci
- Department of Experimental Medicine, "Tor Vergata" University of Rome, Via Montpellier, 1, 00133, Rome, Italy.
| |
Collapse
|
21
|
Bui PL, Nishimura K, Seminario Mondejar G, Kumar A, Aizawa S, Murano K, Nagata K, Hayashi Y, Fukuda A, Onuma Y, Ito Y, Nakanishi M, Hisatake K. Template Activating Factor-I α Regulates Retroviral Silencing during Reprogramming. Cell Rep 2019; 29:1909-1922.e5. [DOI: 10.1016/j.celrep.2019.10.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 08/02/2019] [Accepted: 10/01/2019] [Indexed: 02/07/2023] Open
|
22
|
Yilmaz V, Strati K. Regulating cellular plasticity to persist: a way for tumor viruses to triumph. Curr Opin Virol 2019; 39:1-7. [PMID: 31302443 DOI: 10.1016/j.coviro.2019.06.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 06/12/2019] [Accepted: 06/13/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Vural Yilmaz
- University of Cyprus, Department of Biological Sciences, 1 University Avenue, 2109, Nicosia, Cyprus
| | - Katerina Strati
- University of Cyprus, Department of Biological Sciences, 1 University Avenue, 2109, Nicosia, Cyprus.
| |
Collapse
|
23
|
SMARCAD1 ATPase activity is required to silence endogenous retroviruses in embryonic stem cells. Nat Commun 2019; 10:1335. [PMID: 30902974 PMCID: PMC6430823 DOI: 10.1038/s41467-019-09078-0] [Citation(s) in RCA: 279] [Impact Index Per Article: 46.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 02/19/2019] [Indexed: 12/14/2022] Open
Abstract
Endogenous retroviruses (ERVs) can confer benefits to their host but present a threat to genome integrity if not regulated correctly. Here we identify the SWI/SNF-like remodeler SMARCAD1 as a key factor in the control of ERVs in embryonic stem cells. SMARCAD1 is enriched at ERV subfamilies class I and II, particularly at active intracisternal A-type particles (IAPs), where it preserves repressive histone methylation marks. Depletion of SMARCAD1 results in de-repression of IAPs and adjacent genes. Recruitment of SMARCAD1 to ERVs is dependent on KAP1, a central component of the silencing machinery. SMARCAD1 and KAP1 occupancy at ERVs is co-dependent and requires the ATPase function of SMARCAD1. Our findings uncover a role for the enzymatic activity of SMARCAD1 in cooperating with KAP1 to silence ERVs. This reveals ATP-dependent chromatin remodeling as an integral step in retrotransposon regulation in stem cells and advances our understanding of the mechanisms driving heterochromatin establishment. Tight regulation of retrotransposons such as endogenous retroviruses (ERVs) is essential for genome and transcriptome integrity. Here, the authors show that the ATPase function of the chromatin remodeler SMARCAD1 facilitates the binding of KAP1 to ERVs and is required for their repression in embryonic stem cells.
Collapse
|
24
|
Apobec3A maintains HIV-1 latency through recruitment of epigenetic silencing machinery to the long terminal repeat. Proc Natl Acad Sci U S A 2019; 116:2282-2289. [PMID: 30670656 DOI: 10.1073/pnas.1819386116] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
HIV-1 integrates into the genome of target cells and establishes latency indefinitely. Understanding the molecular mechanism of HIV-1 latency maintenance is needed for therapeutic strategies to combat existing infection. In this study, we found an unexpected role for Apobec3A (apolipoprotein B MRNA editing enzyme catalytic subunit 3A, abbreviated "A3A") in maintaining the latency state within HIV-1-infected cells. Overexpression of A3A in latently infected cell lines led to lower reactivation, while knockdown or knockout of A3A led to increased spontaneous and inducible HIV-1 reactivation. A3A maintains HIV-1 latency by associating with proviral DNA at the 5' long terminal repeat region, recruiting KAP1 and HP1, and imposing repressive histone marks. We show that knockdown of A3A in latently infected human primary CD4 T cells enhanced HIV-1 reactivation. Collectively, we provide evidence and a mechanism by which A3A reinforces HIV-1 latency in infected CD4 T cells.
Collapse
|
25
|
Transposable elements are regulated by context-specific patterns of chromatin marks in mouse embryonic stem cells. Nat Commun 2019; 10:34. [PMID: 30604769 PMCID: PMC6318327 DOI: 10.1038/s41467-018-08006-y] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 12/11/2018] [Indexed: 01/18/2023] Open
Abstract
The majority of mammalian genomes are devoted to transposable elements (TEs). Whilst TEs are increasingly recognized for their important biological functions, they are a potential danger to genomic stability and are carefully regulated by the epigenetic system. However, the full complexity of this regulatory system is not understood. Here, using mouse embryonic stem cells, we show that TEs are suppressed by heterochromatic marks like H3K9me3, and are also labelled by all major types of chromatin modification in complex patterns, including bivalent activatory and repressive marks. We identified 29 epigenetic modifiers that significantly deregulated at least one type of TE. The loss of Setdb1, Ncor2, Rnf2, Kat5, Prmt5, Uhrf1, and Rrp8 caused widespread changes in TE expression and chromatin accessibility. These effects were context-specific, with different chromatin modifiers regulating the expression and chromatin accessibility of specific subsets of TEs. Our work reveals the complex patterns of epigenetic regulation of TEs. Transposable elements (TEs) fulfill essential but poorly understood roles in genome organization and gene expression control. Here the authors show that the regulation of TEs occurs through overlapping epigenetic mechanisms that control the expression and chromatin signatures at TEs.
Collapse
|
26
|
Schlesinger S, Meshorer E. Open Chromatin, Epigenetic Plasticity, and Nuclear Organization in Pluripotency. Dev Cell 2019; 48:135-150. [DOI: 10.1016/j.devcel.2019.01.003] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 10/30/2018] [Accepted: 12/31/2018] [Indexed: 12/27/2022]
|
27
|
Intracellular RNA Sensing in Mammalian Cells: Role in Stress Response and Cancer Therapies. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2019; 344:31-89. [DOI: 10.1016/bs.ircmb.2018.08.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
28
|
Abstract
Arc, a master regulator of synaptic plasticity, contains sequence elements that are evolutionarily related to retrotransposon Gag genes. Two related papers in this issue of Cell show that Arc retains retroviral-like capsid-forming ability and can transmit mRNA between cells in the nervous system, a process that may be important for synaptic function.
Collapse
Affiliation(s)
- Nicholas F Parrish
- Section of Surgical Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Keizo Tomonaga
- Department of Virus Research, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan; Department of Mammalian Regulatory Network, Graduate School of Biostudies, Kyoto University, Kyoto, Japan.
| |
Collapse
|
29
|
Abstract
Endogenous retrovirus (ERV) sequences make up a large fraction of our genome, yet little is understood about their function and biological relevance. Deep-sequencing data contain valuable information on a genome-wide scale. Yet, due to their highly repetitive nature, analysis of ERVs has been computationally challenging. We describe a bioinformatics tool called ERVmap to analyze transcription of unique sets of human ERVs in a range of cell types in health and disease settings. Our open-source code and accompanied web tool should facilitate researchers in all fields to study the expression patterns of ERVs in sequencing data and should lead to significant advancement in understanding the biological relevance of ERVs in health and disease. Endogenous retroviruses (ERVs) are integrated retroviral elements that make up 8% of the human genome. However, the impact of ERVs on human health and disease is not well understood. While select ERVs have been implicated in diseases, including autoimmune disease and cancer, the lack of tools to analyze genome-wide, locus-specific expression of proviral autonomous ERVs has hampered the progress in the field. Here we describe a method called ERVmap, consisting of an annotated database of 3,220 human proviral ERVs and a pipeline that allows for locus-specific genome-wide identification of proviral ERVs that are transcribed based on RNA-sequencing data, and provide examples of the utility of this tool. Using ERVmap, we revealed cell-type–specific ERV expression patterns in commonly used cell lines as well as in primary cells. We identified 124 unique ERV loci that are significantly elevated in the peripheral blood mononuclear cells of patients with systemic lupus erythematosus that represent an IFN-independent signature. Finally, we identified additional tumor-associated ERVs that correlate with cytolytic activity represented by granzyme and perforin expression in breast cancer tissue samples. The open-source code of ERVmap and the accompanied web tool are made publicly available to quantify proviral ERVs in RNA-sequencing data with ease. Use of ERVmap across a range of diseases and experimental conditions has the potential to uncover novel disease-associated antigens and effectors involved in human health that is currently missed by focusing on protein-coding sequences.
Collapse
|
30
|
Weiss RA. Infection hazards of xenotransplantation: Retrospect and prospect. Xenotransplantation 2018; 25:e12401. [PMID: 29756309 DOI: 10.1111/xen.12401] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 03/29/2018] [Indexed: 02/06/2023]
Affiliation(s)
- Robin A Weiss
- Division of Infection & Immunity, University College London, London, UK
| |
Collapse
|
31
|
Eckersley-Maslin MA, Alda-Catalinas C, Reik W. Dynamics of the epigenetic landscape during the maternal-to-zygotic transition. Nat Rev Mol Cell Biol 2018; 19:436-450. [DOI: 10.1038/s41580-018-0008-z] [Citation(s) in RCA: 198] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
32
|
Ward MC, Zhao S, Luo K, Pavlovic BJ, Karimi MM, Stephens M, Gilad Y. Silencing of transposable elements may not be a major driver of regulatory evolution in primate iPSCs. eLife 2018; 7:33084. [PMID: 29648536 PMCID: PMC5943035 DOI: 10.7554/elife.33084] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Accepted: 04/11/2018] [Indexed: 12/16/2022] Open
Abstract
Transposable elements (TEs) comprise almost half of primate genomes and their aberrant regulation can result in deleterious effects. In pluripotent stem cells, rapidly evolving KRAB-ZNF genes target TEs for silencing by H3K9me3. To investigate the evolution of TE silencing, we performed H3K9me3 ChIP-seq experiments in induced pluripotent stem cells from 10 human and 7 chimpanzee individuals. We identified four million orthologous TEs and found the SVA and ERV families to be marked most frequently by H3K9me3. We found little evidence of inter-species differences in TE silencing, with as many as 82% of putatively silenced TEs marked at similar levels in humans and chimpanzees. TEs that are preferentially silenced in one species are a similar age to those silenced in both species and are not more likely to be associated with expression divergence of nearby orthologous genes. Our data suggest limited species-specificity of TE silencing across 6 million years of primate evolution.
Collapse
Affiliation(s)
- Michelle C Ward
- Department of Human Genetics, University of Chicago, Chicago, United States.,Department of Medicine, University of Chicago, Chicago, United States
| | - Siming Zhao
- Department of Human Genetics, University of Chicago, Chicago, United States
| | - Kaixuan Luo
- Department of Human Genetics, University of Chicago, Chicago, United States
| | - Bryan J Pavlovic
- Department of Human Genetics, University of Chicago, Chicago, United States
| | - Mohammad M Karimi
- MRC London Institute of Medical Sciences, Imperial College, London, United Kingdom
| | - Matthew Stephens
- Department of Human Genetics, University of Chicago, Chicago, United States.,Department of Statistics, University of Chicago, Chicago, United States
| | - Yoav Gilad
- Department of Human Genetics, University of Chicago, Chicago, United States.,Department of Medicine, University of Chicago, Chicago, United States
| |
Collapse
|
33
|
Li H, Li L, Liu LR, Omange RW, Toledo N, Kashem MA, Hai Y, Liang B, Plummer FA, Luo M. Hypothetical endogenous SIV-like antigens in Mauritian cynomolgus macaques. Bioinformation 2018; 14:48-52. [PMID: 29618899 PMCID: PMC5879946 DOI: 10.6026/97320630014048] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 01/02/2018] [Accepted: 01/03/2018] [Indexed: 01/24/2023] Open
Abstract
Simian immunodeficiency virus (SIV) infection of Mauritian cynomolgus macaques (MCMs) is an increasingly important nonhuman primate model for HIV vaccine research. We previously reported that in MCMs anti-SIV antibodies can be naturally developed without exogenous infection or vaccination, and that a vaccine targeting SIV protease cleavage sites (PCS) can cross-induce antibodies to non-PCS SIV antigens. We speculate that this is potentially caused by the existence of endogenous SIV-like antigens. External stimuli (such as environmental factors and vaccination) may induce expression of endogenous SIV-like antigens to elicit these antibodies. Database and mass spectrometry analyses were conducted to search for such antigens. We identified endogenous SIV-like DNA sequences in cynomolgus macaque genome and non-PCS peptide homologous to SIV Env protein in PBMCs of a PCS-vaccinated monkey. Our preliminary insights suggest that endogenous SIV-like antigens may be one of the possible reasons for the natural and cross-inducible SIV antibodies in MCMs.
Collapse
Affiliation(s)
- Hongzhao Li
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Lin Li
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3E 3L5, Canada
| | - Lewis R Liu
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Robert W Omange
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Nikki Toledo
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Mohammad Abul Kashem
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Yan Hai
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Binhua Liang
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3E 3L5, Canada
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, MB R3E 3N4, Canada
| | - Francis A Plummer
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3E 3L5, Canada
| | - Ma Luo
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3E 3L5, Canada
| |
Collapse
|
34
|
Guallar D, Bi X, Pardavila JA, Huang X, Saenz C, Shi X, Zhou H, Faiola F, Ding J, Haruehanroengra P, Yang F, Li D, Sanchez-Priego C, Saunders A, Pan F, Valdes VJ, Kelley K, Blanco MG, Chen L, Wang H, Sheng J, Xu M, Fidalgo M, Shen X, Wang J. RNA-dependent chromatin targeting of TET2 for endogenous retrovirus control in pluripotent stem cells. Nat Genet 2018; 50:443-451. [PMID: 29483655 PMCID: PMC5862756 DOI: 10.1038/s41588-018-0060-9] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 01/16/2018] [Indexed: 12/13/2022]
Abstract
Ten-eleven translocation (TET) proteins play key roles in the regulation of DNA-methylation status by oxidizing 5-methylcytosine (5mC) to generate 5-hydroxymethylcytosine (5hmC), which can both serve as a stable epigenetic mark and participate in active demethylation. Unlike the other members of the TET family, TET2 does not contain a DNA-binding domain, and it remains unclear how it is recruited to chromatin. Here we show that TET2 is recruited by the RNA-binding protein Paraspeckle component 1 (PSPC1) through transcriptionally active loci, including endogenous retroviruses (ERVs) whose long terminal repeats (LTRs) have been co-opted by mammalian genomes as stage- and tissue-specific transcriptional regulatory modules. We found that PSPC1 and TET2 contribute to ERVL and ERVL-associated gene regulation by both transcriptional repression via histone deacetylases and post-transcriptional destabilization of RNAs through 5hmC modification. Our findings provide evidence for a functional role of transcriptionally active ERVs as specific docking sites for RNA epigenetic modulation and gene regulation.
Collapse
Affiliation(s)
- Diana Guallar
- The Black Family Stem Cell Institute and Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,CiMUS, Universidade de Santiago de Compostela-Health Research Institute (IDIS), Santiago de Compostela, Coruña, Spain
| | - Xianju Bi
- Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Jose Angel Pardavila
- CiMUS, Universidade de Santiago de Compostela-Health Research Institute (IDIS), Santiago de Compostela, Coruña, Spain
| | - Xin Huang
- The Black Family Stem Cell Institute and Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Carmen Saenz
- The Black Family Stem Cell Institute and Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Xianle Shi
- The Black Family Stem Cell Institute and Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, Tianjin, China
| | - Hongwei Zhou
- The Black Family Stem Cell Institute and Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Francesco Faiola
- The Black Family Stem Cell Institute and Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Junjun Ding
- The Black Family Stem Cell Institute and Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Phensinee Haruehanroengra
- Department of Chemistry and The RNA Institute, University at Albany, State University of New York, Albany, NY, USA
| | - Fan Yang
- The Black Family Stem Cell Institute and Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Animal Biotechnology, College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| | - Dan Li
- The Black Family Stem Cell Institute and Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Carlos Sanchez-Priego
- The Black Family Stem Cell Institute and Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Arven Saunders
- The Black Family Stem Cell Institute and Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Feng Pan
- Sylvester Comprehensive Cancer Center, Department of Biochemistry and Molecular Biology, University of Miami, Miami, FL, USA
| | - Victor Julian Valdes
- Department of Cell Biology and Development, Instituto de Fisiologia Celular, UNAM, Mexico City, Mexico
| | - Kevin Kelley
- The Black Family Stem Cell Institute and Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Miguel G Blanco
- CiMUS, Universidade de Santiago de Compostela-Health Research Institute (IDIS), Santiago de Compostela, Coruña, Spain
| | - Lingyi Chen
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, Tianjin, China
| | - Huayan Wang
- Department of Animal Biotechnology, College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| | - Jia Sheng
- Department of Chemistry and The RNA Institute, University at Albany, State University of New York, Albany, NY, USA
| | - Mingjiang Xu
- Sylvester Comprehensive Cancer Center, Department of Biochemistry and Molecular Biology, University of Miami, Miami, FL, USA
| | - Miguel Fidalgo
- CiMUS, Universidade de Santiago de Compostela-Health Research Institute (IDIS), Santiago de Compostela, Coruña, Spain
| | - Xiaohua Shen
- Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Jianlong Wang
- The Black Family Stem Cell Institute and Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA. .,The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
35
|
Somanath P, Bush KM, Knoepfler PS. ERBB3-Binding Protein 1 (EBP1) Is a Novel Developmental Pluripotency-Associated-4 (DPPA4) Cofactor in Human Pluripotent Cells. Stem Cells 2018; 36:671-682. [PMID: 29327467 DOI: 10.1002/stem.2776] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 12/04/2017] [Accepted: 12/09/2017] [Indexed: 12/31/2022]
Abstract
Developmental Pluripotency-Associated-4 (DPPA4) is one of the few core pluripotency genes lacking clearly defined molecular and cellular functions. Here, we used a proteomics screening approach of human embryonic stem cell (hESC) nuclear extract to determine DPPA4 molecular functions through identification of novel cofactors. Unexpectedly, the signaling molecule ERBB3-binding protein 1 (EBP1) was the strongest candidate binding partner for DPPA4 in hESC. EBP1 is a growth factor signaling mediator present in two isoforms, p48 and p42. The two isoforms generally have opposing functions, however their roles in pluripotent cells have not been established. We found that DPPA4 preferentially binds p48 in pluripotent and NTERA-2 cells, but this interaction is largely absent in non-pluripotent cells and is reduced with differentiation. The DPPA4-EBP1 interaction is mediated at least in part in DPPA4 by the highly conserved SAF-A/B, Acinus and PIAS (SAP) domain. Functionally, we found that DPPA4 transcriptional repressive function in reporter assays is significantly increased by specific p48 knockdown, an effect that was abolished with an interaction-deficient DPPA4 ΔSAP mutant. Thus, DPPA4 and EBP1 may cooperate in transcriptional functions through their physical association in a pluripotent cell specific context. Our study identifies EBP1 as a novel pluripotency cofactor and provides insight into potential mechanisms used by DPPA4 in regulating pluripotency through its association with EBP1. Stem Cells 2018;36:671-682.
Collapse
Affiliation(s)
- Priyanka Somanath
- Department of Cell Biology and Human Anatomy, University of California, Davis, Davis, California, USA.,Institute of Pediatric Regenerative Medicine, Shriners Hospital for Children Northern California, Sacramento, California, USA
| | - Kelly M Bush
- Department of Cell Biology and Human Anatomy, University of California, Davis, Davis, California, USA.,Institute of Pediatric Regenerative Medicine, Shriners Hospital for Children Northern California, Sacramento, California, USA
| | - Paul S Knoepfler
- Department of Cell Biology and Human Anatomy, University of California, Davis, Davis, California, USA.,Institute of Pediatric Regenerative Medicine, Shriners Hospital for Children Northern California, Sacramento, California, USA
| |
Collapse
|
36
|
Wu R, Hu X, Wang J. Concise Review: Optimized Strategies for Stem Cell-Based Therapy in Myocardial Repair: Clinical Translatability and Potential Limitation. Stem Cells 2018; 36:482-500. [PMID: 29330880 DOI: 10.1002/stem.2778] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 12/28/2017] [Accepted: 12/31/2017] [Indexed: 12/15/2022]
Abstract
Ischemic heart diseases (IHDs) remain major public health problems with high rates of morbidity and mortality worldwide. Despite significant advances, current therapeutic approaches are unable to rescue the extensive and irreversible loss of cardiomyocytes caused by severe ischemia. Over the past 16 years, stem cell-based therapy has been recognized as an innovative strategy for cardiac repair/regeneration and functional recovery after IHDs. Although substantial preclinical animal studies using a variety of stem/progenitor cells have shown promising results, there is a tremendous degree of skepticism in the clinical community as many stem cell trials do not confer any beneficial effects. How to accelerate stem cell-based therapy toward successful clinical application attracts considerate attention. However, many important issues need to be fully addressed. In this Review, we have described and compared the effects of different types of stem cells with their dose, delivery routes, and timing that have been routinely tested in recent preclinical and clinical findings. We have also discussed the potential mechanisms of action of stem cells, and explored the role and underlying regulatory components of stem cell-derived secretomes/exosomes in myocardial repair. Furthermore, we have critically reviewed the different strategies for optimizing both donor stem cells and the target cardiac microenvironments to enhance the engraftment and efficacy of stem cells, highlighting their clinical translatability and potential limitation. Stem Cells 2018;36:482-500.
Collapse
Affiliation(s)
- Rongrong Wu
- Department of Cardiology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, People's Republic of China.,Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, People's Republic of China
| | - Xinyang Hu
- Department of Cardiology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, People's Republic of China.,Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, People's Republic of China
| | - Jian'an Wang
- Department of Cardiology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, People's Republic of China.,Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, People's Republic of China
| |
Collapse
|
37
|
Li P, Wang L, Bennett BD, Wang J, Li J, Qin Y, Takaku M, Wade PA, Wong J, Hu G. Rif1 promotes a repressive chromatin state to safeguard against endogenous retrovirus activation. Nucleic Acids Res 2018; 45:12723-12738. [PMID: 29040764 PMCID: PMC5727408 DOI: 10.1093/nar/gkx884] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Accepted: 10/05/2017] [Indexed: 12/29/2022] Open
Abstract
Transposable elements, including endogenous retroviruses (ERVs), constitute a large fraction of the mammalian genome. They are transcriptionally silenced during early development to protect genome integrity and aberrant transcription. However, the mechanisms that control their repression are not fully understood. To systematically study ERV repression, we carried out an RNAi screen in mouse embryonic stem cells (ESCs) and identified a list of novel regulators. Among them, Rif1 displays the strongest effect. Rif1 depletion by RNAi or gene deletion led to increased transcription and increased chromatin accessibility at ERV regions and their neighboring genes. This transcriptional de-repression becomes more severe when DNA methylation is lost. On the mechanistic level, Rif1 directly occupies ERVs and is required for repressive histone mark H3K9me3 and H3K27me3 assembly and DNA methylation. It interacts with histone methyltransferases and facilitates their recruitment to ERV regions. Importantly, Rif1 represses ERVs in human ESCs as well, and the evolutionally-conserved HEAT-like domain is essential for its function. Finally, Rif1 acts as a barrier during somatic cell reprogramming, and its depletion significantly enhances reprogramming efficiency. Together, our study uncovered many previously uncharacterized repressors of ERVs, and defined an essential role of Rif1 in the epigenetic defense against ERV activation.
Collapse
Affiliation(s)
- Pishun Li
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, RTP, NC 27709, USA
| | - Li Wang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Brian D. Bennett
- Integrative Bioinformatics Support Group, National Institute of Environmental Health Sciences, RTP, NC 27709, USA
| | - Jiajia Wang
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, RTP, NC 27709, USA
| | - Jialun Li
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Yufeng Qin
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, RTP, NC 27709, USA
| | - Motoki Takaku
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, RTP, NC 27709, USA
| | - Paul A. Wade
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, RTP, NC 27709, USA
| | - Jiemin Wong
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Guang Hu
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, RTP, NC 27709, USA
- To whom correspondence should be addressed. Tel: +1 919 541 4755; Fax: +1 919 541 0146;
| |
Collapse
|
38
|
Veazey RS, Lackner AA. Nonhuman Primate Models and Understanding the Pathogenesis of HIV Infection and AIDS. ILAR J 2017; 58:160-171. [PMID: 29228218 PMCID: PMC5886333 DOI: 10.1093/ilar/ilx032] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 11/01/2017] [Accepted: 11/04/2017] [Indexed: 12/16/2022] Open
Abstract
Research using nonhuman primates (NHPs) as models for human immunodeficiency virus (HIV) infection and acquired immunodeficiency syndrome (AIDS) has resulted in tremendous achievements not only in the prevention and treatment of HIV, but also in biomedical research more broadly. Once considered a death sentence, HIV infection is now fairly well controlled with combination antiretroviral treatments, almost all of which were first tested for efficacy and safety in nonhuman primates or other laboratory animals. Research in NHP has led to "dogma changing" discoveries in immunology, infectious disease, and even our own genetics. We now know that many of our genes are retroviral remnants, or developed in response to archaic HIV-like retroviral infections. Early studies involving blood from HIV patients and in experiments in cultured tissues contributed to confusion regarding the cause of AIDS and impeded progress in the development of effective interventions. Research on the many retroviruses of different NHP species have broadened our understanding of human immunology and perhaps even our origins and evolution as a species. In combination with recent advances in molecular biology and computational analytics, research in NHPs has unique potential for discoveries that will directly lead to new cures for old human and animal diseases, including HIV/AIDS.
Collapse
Affiliation(s)
- Ronald S Veazey
- Ronald S. Veazey, DVM, PhD, is chair of the Division of Comparative Pathology at the Tulane National Primate Research Center and professor in the Department of Pathology and Laboratory Medicine at the Tulane University School of Medicine. Dr. Andrew Lackner, DVM, PhD is director of the Tulane National Primate Research Center and professor of the Department of Microbiology and Pathology and Laboratory Medicine at the Tulane University School of Medicine
| | - Andrew A Lackner
- Ronald S. Veazey, DVM, PhD, is chair of the Division of Comparative Pathology at the Tulane National Primate Research Center and professor in the Department of Pathology and Laboratory Medicine at the Tulane University School of Medicine. Dr. Andrew Lackner, DVM, PhD is director of the Tulane National Primate Research Center and professor of the Department of Microbiology and Pathology and Laboratory Medicine at the Tulane University School of Medicine
| |
Collapse
|
39
|
MERVL/Zscan4 Network Activation Results in Transient Genome-wide DNA Demethylation of mESCs. Cell Rep 2017; 17:179-192. [PMID: 27681430 PMCID: PMC5055476 DOI: 10.1016/j.celrep.2016.08.087] [Citation(s) in RCA: 159] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 07/19/2016] [Accepted: 08/25/2016] [Indexed: 12/30/2022] Open
Abstract
Mouse embryonic stem cells are dynamic and heterogeneous. For example, rare cells cycle through a state characterized by decondensed chromatin and expression of transcripts, including the Zscan4 cluster and MERVL endogenous retrovirus, which are usually restricted to preimplantation embryos. Here, we further characterize the dynamics and consequences of this transient cell state. Single-cell transcriptomics identified the earliest upregulated transcripts as cells enter the MERVL/Zscan4 state. The MERVL/Zscan4 transcriptional network was also upregulated during induced pluripotent stem cell reprogramming. Genome-wide DNA methylation and chromatin analyses revealed global DNA hypomethylation accompanying increased chromatin accessibility. This transient DNA demethylation was driven by a loss of DNA methyltransferase proteins in the cells and occurred genome-wide. While methylation levels were restored once cells exit this state, genomic imprints remained hypomethylated, demonstrating a potential global and enduring influence of endogenous retroviral activation on the epigenome. Single-cell transcriptomics reveals dynamics of MERVL/Zscan4 network activation MERVL-LTR transcriptional network is expressed in iPSC reprogramming events Translation block depletes Dnmt proteins, inducing transient global demethylation Passage through the MERVL/Zscan4 state may cause irreversible imprint erasure
Collapse
|
40
|
Grasis JA. The Intra-Dependence of Viruses and the Holobiont. Front Immunol 2017; 8:1501. [PMID: 29170664 PMCID: PMC5684104 DOI: 10.3389/fimmu.2017.01501] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Accepted: 10/24/2017] [Indexed: 12/30/2022] Open
Abstract
Animals live in symbiosis with the microorganisms surrounding them. This symbiosis is necessary for animal health, as a symbiotic breakdown can lead to a disease state. The functional symbiosis between the host, and associated prokaryotes, eukaryotes, and viruses in the context of an environment is the holobiont. Deciphering these holobiont associations has proven to be both difficult and controversial. In particular, holobiont association with viruses has been of debate even though these interactions have been occurring since cellular life began. The controversy stems from the idea that all viruses are parasitic, yet their associations can also be beneficial. To determine viral involvement within the holobiont, it is necessary to identify and elucidate the function of viral populations in symbiosis with the host. Viral metagenome analyses identify the communities of eukaryotic and prokaryotic viruses that functionally associate within a holobiont. Similarly, analyses of the host in response to viral presence determine how these interactions are maintained. Combined analyses reveal how viruses interact within the holobiont and how viral symbiotic cooperation occurs. To understand how the holobiont serves as a functional unit, one must consider viruses as an integral part of disease, development, and evolution.
Collapse
Affiliation(s)
- Juris A Grasis
- Department of Biology, San Diego State University, San Diego, CA, United States.,School of Natural Sciences, University of California at Merced, Merced, CA, United States
| |
Collapse
|
41
|
Li H, Nykoluk M, Li L, Liu LR, Omange RW, Soule G, Schroeder LT, Toledo N, Kashem MA, Correia-Pinto JF, Liang B, Schultz-Darken N, Alonso MJ, Whitney JB, Plummer FA, Luo M. Natural and cross-inducible anti-SIV antibodies in Mauritian cynomolgus macaques. PLoS One 2017; 12:e0186079. [PMID: 28982126 PMCID: PMC5628977 DOI: 10.1371/journal.pone.0186079] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 09/25/2017] [Indexed: 01/16/2023] Open
Abstract
Cynomolgus macaques are an increasingly important nonhuman primate model for HIV vaccine research. SIV-free animals without pre-existing anti-SIV immune responses are generally needed to evaluate the effect of vaccine-induced immune responses against the vaccine epitopes. Here, in order to select such animals for vaccine studies, we screened 108 naïve female Mauritian cynomolgus macaques for natural (baseline) antibodies to SIV antigens using a Bio-Plex multiplex system. The antigens included twelve 20mer peptides overlapping the twelve SIV protease cleavage sites (-10/+10), respectively (PCS peptides), and three non-PCS Gag or Env peptides. Natural antibodies to SIV antigens were detected in subsets of monkeys. The antibody reactivity to SIV was further confirmed by Western blot using purified recombinant SIV Gag and Env proteins. As expected, the immunization of monkeys with PCS antigens elicited anti-PCS antibodies. However, unexpectedly, antibodies to non-PCS peptides were also induced, as shown by both Bio-Plex and Western blot analyses, while the non-PCS peptides do not share sequence homology with PCS peptides. The presence of natural and vaccine cross-inducible SIV antibodies in Mauritian cynomolgus macaques should be considered in animal selection, experimental design and result interpretation, for their best use in HIV vaccine research.
Collapse
Affiliation(s)
- Hongzhao Li
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Mikaela Nykoluk
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Lin Li
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Lewis R. Liu
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Robert W. Omange
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Geoff Soule
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Lukas T. Schroeder
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Nikki Toledo
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Mohammad Abul Kashem
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Jorge F. Correia-Pinto
- CIMUS Research Institute, University of Santiago de Compostela, Santiago de Compostela, La Coruña, Spain
| | - Binhua Liang
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Nancy Schultz-Darken
- Wisconsin National Primate Research Center, Madison, Wisconsin, United States of America
| | - Maria J. Alonso
- CIMUS Research Institute, University of Santiago de Compostela, Santiago de Compostela, La Coruña, Spain
| | - James B. Whitney
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, United States of America
| | - Francis A. Plummer
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Manitoba, Canada
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Ma Luo
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Manitoba, Canada
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
- * E-mail: ,
| |
Collapse
|
42
|
Kohlscheen S, Bonig H, Modlich U. Promises and Challenges in Hematopoietic Stem Cell Gene Therapy. Hum Gene Ther 2017; 28:782-799. [DOI: 10.1089/hum.2017.141] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Affiliation(s)
- Saskia Kohlscheen
- Research Group for Gene Modification in Stem Cells, Center for Cell and Gene Therapy Frankfurt, Paul-Ehrlich-Institute, Langen, Germany
| | - Halvard Bonig
- Institute for Transfusion Medicine and Immunohematology, Goethe University, Frankfurt, Germany
- German Red Cross Blood Service Baden-Württemberg-Hessen, Institute Frankfurt, Germany
- Department of Medicine/Division of Hematology, University of Washington, Seattle, Washington
| | - Ute Modlich
- Research Group for Gene Modification in Stem Cells, Center for Cell and Gene Therapy Frankfurt, Paul-Ehrlich-Institute, Langen, Germany
| |
Collapse
|
43
|
Abstract
Integration is a key feature of the retroviral life cycle. This process involves packaging of the viral genome into chromatin, which is often assumed to occur as a post-integration step. In this issue of Cell Host & Microbe, Wang and colleagues (Wang et al., 2016) show that chromatinization occurs before integration, raising new questions about the role of histones in retroviral integration and transcription.
Collapse
Affiliation(s)
- Ibraheem Ali
- The Gladstone Institutes, University of California, San Francisco, 1650 Owens Street, San Francisco, CA 94158, USA
| | - Ryan J Conrad
- The Gladstone Institutes, University of California, San Francisco, 1650 Owens Street, San Francisco, CA 94158, USA
| | - Melanie Ott
- The Gladstone Institutes, University of California, San Francisco, 1650 Owens Street, San Francisco, CA 94158, USA.
| |
Collapse
|
44
|
Silencing of Repetitive DNA Is Controlled by a Member of an Unusual Caenorhabditis elegans Gene Family. Genetics 2017; 207:529-545. [PMID: 28801529 DOI: 10.1534/genetics.117.300134] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 08/10/2017] [Indexed: 01/08/2023] Open
Abstract
Repetitive DNA sequences are subject to gene silencing in various animal species. Under specific circumstances repetitive DNA sequences can escape such silencing. For example, exogenously added, extrachromosomal DNA sequences that are stably inherited in multicopy repetitive arrays in the nematode Caenorhabditis elegans are frequently silenced in the germline, whereas such silencing often does not occur in the soma. This indicates that somatic cells might utilize factors that prevent repetitive DNA silencing. Indeed, such "antisilencing" factors have been revealed through genetic screens that identified mutant loci in which repetitive transgenic arrays are aberrantly silenced in the soma. We describe here a novel locus, pals-22 (for protein containing ALS2CR12 signature), required to prevent silencing of repetitive transgenes in neurons and other somatic tissue types. pals-22 deficiency also severely impacts animal vigor and confers phenotypes reminiscent of accelerated aging. We find that pals-22 is a member of a large family of divergent genes (39 members), defined by homology to the ALS2CR12 protein family. While gene family members are highly divergent, they show striking patterns of chromosomal clustering. The family expansion appears C. elegans-specific and has not occurred to the same extent in other nematode species for which genome sequences are available. The transgene-silencing phenotype observed upon loss of PALS-22 protein depends on the biogenesis of small RNAs. We speculate that the pals gene family may be part of a species-specific cellular defense mechanism.
Collapse
|
45
|
HEMO, an ancestral endogenous retroviral envelope protein shed in the blood of pregnant women and expressed in pluripotent stem cells and tumors. Proc Natl Acad Sci U S A 2017; 114:E6642-E6651. [PMID: 28739914 DOI: 10.1073/pnas.1702204114] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Capture of retroviral envelope genes is likely to have played a role in the emergence of placental mammals, with evidence for multiple, reiterated, and independent capture events occurring in mammals, and be responsible for the diversity of present day placental structures. Here, we uncover a full-length endogenous retrovirus envelope protein, dubbed HEMO [human endogenous MER34 (medium-reiteration-frequency-family-34) ORF], with unprecedented characteristics, because it is actively shed in the blood circulation in humans via specific cleavage of the precursor envelope protein upstream of the transmembrane domain. At variance with previously identified retroviral envelope genes, its encoding gene is found to be transcribed from a unique CpG-rich promoter not related to a retroviral LTR, with sites of expression including the placenta as well as other tissues and rather unexpectedly, stem cells as well as reprogrammed induced pluripotent stem cells (iPSCs), where the protein can also be detected. We provide evidence that the associated retroviral capture event most probably occurred >100 Mya before the split of Laurasiatheria and Euarchontoglires, with the identified retroviral envelope gene encoding a full-length protein in all simians under purifying selection and with similar shedding capacity. Finally, a comprehensive screen of the expression of the gene discloses high transcript levels in several tumor tissues, such as germ cell, breast, and ovarian tumors, with in the latter case, evidence for a histotype dependence and specific protein expression in clear-cell carcinoma. Altogether, the identified protein could constitute a "stemness marker" of the normal cell and a possible target for immunotherapeutic approaches in tumors.
Collapse
|
46
|
Shimada A, Okumura A, Yamasaki S, Iwata Y, Koizumi N, Nishihara M, Mishiba KI. A 64-bp sequence containing the GAAGA motif is essential for CaMV-35S promoter methylation in gentian. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2017. [PMID: 28624556 DOI: 10.1016/j.bbagrm.2017.06.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
This study investigated sequence specificity and perenniality of DNA methylation in the cauliflower mosaic virus (CaMV) 35S promoter of transgenic gentian (Gentiana triflora×G. scabra) plants. Unlike conventional transgene silencing models, 35S promoter hypermethylation in gentian is species-specific and occurs irrespective of the T-DNA copy number and genomic location. Modified 35S promoters were introduced into gentian, and single-copy transgenic lines were selected for methylation analysis. Modified 35S promoter lacking a core (-90) region [35S(Δcore)] in gentian conferred hypermethylation and high levels of de novo methylation of the CpHpH/CpCpG sites in the 35S enhancer regions (-298 to -241 and -148 to -85). Therefore, promoter transcription may not be an absolute requirement for the methylation machinery. In vitro, de novo methylation persisted for more than eight years. In another modified 35S promoter, two "GAAGA" motifs (-268 to -264 and -135 to -131) were replaced by "GTTCA" in the two highly de novo methylated regions. It did not support hypermethylation and showed transgene expression. A 64-bp fragment of the 35S enhancer region (-148 to -85) was introduced into gentian and the resultant transgenic lines analyzed. The 64-bp region exhibited hypermethylation at the CpG/CpWpG sites, but the CpHpH/CpCpG methylation frequency was lower than those of the unmodified 35S- and 35S(Δcore) promoters. Nevertheless, a distinct CpHpH/CpCpG methylation peak was found in the 64-bp region of all single-copy transgenic lines. These results suggest that the 64-bp region may contain an element required for 35S methylation but insufficient for high de novo methylation compared with those in the unmodified 35S and 35S(Δcore) promoters.
Collapse
Affiliation(s)
- Asahi Shimada
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen, Nakaku, Sakai, Osaka 599-8531, Japan
| | - Azusa Okumura
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen, Nakaku, Sakai, Osaka 599-8531, Japan
| | - Satoshi Yamasaki
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen, Nakaku, Sakai, Osaka 599-8531, Japan
| | - Yuji Iwata
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen, Nakaku, Sakai, Osaka 599-8531, Japan
| | - Nozomu Koizumi
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen, Nakaku, Sakai, Osaka 599-8531, Japan
| | - Masahiro Nishihara
- Iwate Biotechnology Research Center, 22-174-4 Narita, Kitami, Iwate 024-0003, Japan
| | - Kei-Ichiro Mishiba
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen, Nakaku, Sakai, Osaka 599-8531, Japan.
| |
Collapse
|
47
|
Meyer TJ, Rosenkrantz JL, Carbone L, Chavez SL. Endogenous Retroviruses: With Us and against Us. Front Chem 2017; 5:23. [PMID: 28439515 PMCID: PMC5384584 DOI: 10.3389/fchem.2017.00023] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 03/20/2017] [Indexed: 12/13/2022] Open
Abstract
Mammalian genomes are scattered with thousands of copies of endogenous retroviruses (ERVs), mobile genetic elements that are relics of ancient retroviral infections. After inserting copies into the germ line of a host, most ERVs accumulate mutations that prevent the normal assembly of infectious viral particles, becoming trapped in host genomes and unable to leave to infect other cells. While most copies of ERVs are inactive, some are transcribed and encode the proteins needed to generate new insertions at novel loci. In some cases, old copies are removed via recombination and other mechanisms. This creates a shifting landscape of ERV copies within host genomes. New insertions can disrupt normal expression of nearby genes via directly inserting into key regulatory elements or by containing regulatory motifs within their sequences. Further, the transcriptional silencing of ERVs via epigenetic modification may result in changes to the epigenetic regulation of adjacent genes. In these ways, ERVs can be potent sources of regulatory disruption as well as genetic innovation. Here, we provide a brief review of the association between ERVs and gene expression, especially as observed in pre-implantation development and placentation. Moreover, we will describe how disruption of the regulated mechanisms of ERVs may impact somatic tissues, mostly in the context of human disease, including cancer, neurodegenerative disorders, and schizophrenia. Lastly, we discuss the recent discovery that some ERVs may have been pressed into the service of their host genomes to aid in the innate immune response to exogenous viral infections.
Collapse
Affiliation(s)
- Thomas J Meyer
- Division of Bioinformatics and Computational Biology, Department of Medical Informatics and Clinical Epidemiology, Oregon Health & Science UniversityPortland, OR, USA
| | - Jimi L Rosenkrantz
- Department of Molecular and Medical Genetics, Oregon Health & Science UniversityPortland, OR, USA.,Division of Reproductive & Developmental Sciences, Oregon National Primate Research CenterPortland, OR, USA
| | - Lucia Carbone
- Division of Bioinformatics and Computational Biology, Department of Medical Informatics and Clinical Epidemiology, Oregon Health & Science UniversityPortland, OR, USA.,Department of Molecular and Medical Genetics, Oregon Health & Science UniversityPortland, OR, USA.,Department of Medicine, Knight Cardiovascular Institute, Oregon Health & Science UniversityPortland, OR, USA
| | - Shawn L Chavez
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research CenterPortland, OR, USA.,Departments of Obstetrics and Gynecology and Physiology and Pharmacology, Oregon Health & Science University School of MedicinePortland, OR, USA
| |
Collapse
|
48
|
Viral Vector-Based Innovative Approaches to Directly Abolishing Tumorigenic Pluripotent Stem Cells for Safer Regenerative Medicine. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2017; 5:51-58. [PMID: 28480304 PMCID: PMC5415317 DOI: 10.1016/j.omtm.2017.03.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Human pluripotent stem cells (hPSCs) are a promising source of regenerative material for clinical applications. However, hPSC transplant therapies pose the risk of teratoma formation and malignant transformation of undifferentiated remnants. These problems underscore the importance of developing technologies that completely prevent tumorigenesis to ensure safe clinical application. Research to date has contributed to establishing safe hPSC lines, improving the efficiency of differentiation induction, and indirectly ensuring the safety of products. Despite such efforts, guaranteeing the clinical safety of regenerative medicine products remains a key challenge. Given the intrinsic genome instability of hPSCs, selective growth advantage of cancer cells, and lessons learned through failures in previous attempts at hematopoietic stem cell gene therapy, conventional strategies are unlikely to completely overcome issues related to hPSC tumorigenesis. Researchers have recently embarked on studies aimed at locating and directly treating hPSC-derived tumorigenic cells. In particular, novel approaches to directly killing tumorigenic cells by transduction of suicide genes and oncolytic viruses are expected to improve the safety of hPSC-based therapy. This article discusses the current status and future perspectives of methods aimed at directly eradicating undifferentiated tumorigenic hPSCs, with a focus on viral vector transduction.
Collapse
|
49
|
Barriers to Infection of Human Cells by Feline Leukemia Virus: Insights into Resistance to Zoonosis. J Virol 2017; 91:JVI.02119-16. [PMID: 28031367 PMCID: PMC5309941 DOI: 10.1128/jvi.02119-16] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 12/20/2016] [Indexed: 12/16/2022] Open
Abstract
The human genome displays a rich fossil record of past gammaretrovirus infections, yet no current epidemic is evident, despite environmental exposure to viruses that infect human cells in vitro. Feline leukemia viruses (FeLVs) rank high on this list, but neither domestic nor workplace exposure has been associated with detectable serological responses. Nonspecific inactivation of gammaretroviruses by serum factors appears insufficient to explain these observations. To investigate further, we explored the susceptibilities of primary and established human cell lines to FeLV-B, the most likely zoonotic variant. Fully permissive infection was common in cancer-derived cell lines but was also a feature of nontransformed keratinocytes and lung fibroblasts. Cells of hematopoietic origin were generally less permissive and formed discrete groups on the basis of high or low intracellular protein expression and virion release. Potent repression was observed in primary human blood mononuclear cells and a subset of leukemia cell lines. However, the early steps of reverse transcription and integration appear to be unimpaired in nonpermissive cells. FeLV-B was subject to G→A hypermutation with a predominant APOBEC3G signature in partially permissive cells but was not mutated in permissive cells or in nonpermissive cells that block secondary viral spread. Distinct cellular barriers that protect primary human blood cells are likely to be important in protection against zoonotic infection with FeLV. IMPORTANCE Domestic exposure to gammaretroviruses such as feline leukemia viruses (FeLVs) occurs worldwide, but the basis of human resistance to infection remains incompletely understood. The potential threat is evident from the human genome sequence, which reveals many past epidemics of gammaretrovirus infection, and from recent cross-species jumps of gammaretroviruses from rodents to primates and marsupials. This study examined resistance to infection at the cellular level with the most prevalent human cell-tropic FeLV variant, FeLV-B. We found that blood cells are uniquely resistant to infection with FeLV-B due to the activity of cellular enzymes that mutate the viral genome. A second block, which appears to suppress viral gene expression after the viral genome has integrated into the host cell genome, was identified. Since cells derived from other normal human cell types are fully supportive of FeLV replication, innate resistance of blood cells could be critical in protecting against cross-species infection.
Collapse
|
50
|
Hasuwa H, Siomi H. Mobile elements control stem cell potency. Science 2017; 355:581-582. [PMID: 28183937 DOI: 10.1126/science.aam6589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Hidetoshi Hasuwa
- Department of Molecular Biology, Keio University School of Medicine, Tokyo 160-8582, Japan.
| | - Haruhiko Siomi
- Department of Molecular Biology, Keio University School of Medicine, Tokyo 160-8582, Japan
| |
Collapse
|