1
|
Amelio D, Garofalo F. Morpho-functional changes of lungfish Protopterus dolloi skin in the shift from freshwater to aestivating conditions. Comp Biochem Physiol B Biochem Mol Biol 2023; 266:110846. [PMID: 36894022 DOI: 10.1016/j.cbpb.2023.110846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 02/24/2023] [Accepted: 03/03/2023] [Indexed: 03/09/2023]
Abstract
African dipnoi (Protopterus sp.) are obligate air-breathing fish that, during dry season, may experience a period of dormancy named aestivation. Aestivation is characterized by complete reliance on pulmonary breathing, general decrease of metabolism and down-regulation of respiratory and cardiovascular functions. To date, little is known about morpho-functional rearrangements induced by aestivation in the skin of African lungfishes. Our study aims to identify, in the skin of P. dolloi, structural modifications and stress-induced molecules in response to short-term (6 days) and long-term (40 days) aestivation. Light microscopy showed that short-term aestivation induces major reorganization, with narrowing of epidermal layers and decrease of mucous cells; prolonged aestivation is characterized by regenerative processes and re-thickening of epidermal layers. Immunofluorescence reveals that aestivation correlates with an increased oxidative stress and changes of Heat Shock Proteins expression, suggesting a protective role for these chaperons. Our findings revealed that lungfish skin undergoes remarkable morphological and biochemical readjustments in response to stressful conditions associated with aestivation.
Collapse
Affiliation(s)
- Daniela Amelio
- Department of Biology, Ecology and Earth Science, University of Calabria, 87036 Arcavacata di Rende, CS, Italy.
| | - Filippo Garofalo
- Department of Biology, Ecology and Earth Science, University of Calabria, 87036 Arcavacata di Rende, CS, Italy.
| |
Collapse
|
2
|
O’Connor C, Varshosaz P, Moise AR. Mechanisms of Feedback Regulation of Vitamin A Metabolism. Nutrients 2022; 14:1312. [PMID: 35334970 PMCID: PMC8950952 DOI: 10.3390/nu14061312] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/15/2022] [Accepted: 03/17/2022] [Indexed: 02/06/2023] Open
Abstract
Vitamin A is an essential nutrient required throughout life. Through its various metabolites, vitamin A sustains fetal development, immunity, vision, and the maintenance, regulation, and repair of adult tissues. Abnormal tissue levels of the vitamin A metabolite, retinoic acid, can result in detrimental effects which can include congenital defects, immune deficiencies, proliferative defects, and toxicity. For this reason, intricate feedback mechanisms have evolved to allow tissues to generate appropriate levels of active retinoid metabolites despite variations in the level and format, or in the absorption and conversion efficiency of dietary vitamin A precursors. Here, we review basic mechanisms that govern vitamin A signaling and metabolism, and we focus on retinoic acid-controlled feedback mechanisms that contribute to vitamin A homeostasis. Several approaches to investigate mechanistic details of the vitamin A homeostatic regulation using genomic, gene editing, and chromatin capture technologies are also discussed.
Collapse
Affiliation(s)
- Catherine O’Connor
- MD Program, Northern Ontario School of Medicine, 317-MSE Bldg., 935 Ramsey Lake Rd., Sudbury, ON P3E 2C6, Canada;
| | - Parisa Varshosaz
- Biology and Biomolecular Sciences Ph.D. Program, Northern Ontario School of Medicine, Laurentian University, Sudbury, ON P3E 2C6, Canada;
| | - Alexander R. Moise
- Medical Sciences Division, Northern Ontario School of Medicine, 317-MSE Bldg., 935 Ramsey Lake Rd., Sudbury, ON P3E 2C6, Canada
- Department of Chemistry and Biochemistry, Biology and Biomolecular Sciences Program, Laurentian University, Sudbury, ON P3E 2C6, Canada
| |
Collapse
|
3
|
Zhong G, Seaman CJ, Paragas EM, Xi H, Herpoldt KL, King NP, Jones JP, Isoherranen N. Aldehyde Oxidase Contributes to All- Trans-Retinoic Acid Biosynthesis in Human Liver. Drug Metab Dispos 2021; 49:202-211. [PMID: 33355213 PMCID: PMC7885020 DOI: 10.1124/dmd.120.000296] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 12/03/2020] [Indexed: 11/22/2022] Open
Abstract
All-trans-retinoic acid (atRA) is a critical endogenous signaling molecule. atRA is predominantly synthesized from retinaldehyde by aldehyde dehydrogenase 1A1 (ALDH1A1), but aldehyde oxidase (AOX) may also contribute to atRA biosynthesis. The goal of this study was to test the hypothesis that AOX contributes significantly to atRA formation in human liver. Human recombinant AOX formed atRA from retinaldehyde (Km ∼1.5 ± 0.4 µM; kcat ∼3.6 ± 2.0 minute-1). In human liver S9 fractions (HLS9), atRA formation was observed in the absence of NAD+, suggesting AOX contribution to atRA formation. In the presence of NAD+, Eadie-Hofstee plots of atRA formation in HLS9 indicated that two enzymes contributed to atRA formation. The two enzymes were identified as AOX and ALDH1A1 based on inhibition of atRA formation by AOX inhibitor hydralazine (20%-50% inhibition) and ALDH1A1 inhibitor WIN18,446 (50%-80%inhibition). The expression of AOX in HLS9 was 9.4-24 pmol mg-1 S9 protein, whereas ALDH1A1 expression was 156-285 pmol mg-1 S9 protein measured by liquid chromatography-tandem mass spectrometry (LC-MS/MS) quantification of signature peptides. The formation velocity of atRA in the presence of NAD+ correlated significantly with the expression of ALDH1A1 and AOX protein. Taken together, the data show that both AOX and ALDH1A1 contribute to atRA biosynthesis in the human liver, with ALDH1A1 being the high-affinity, low-capacity enzyme and AOX being the low-affinity, high-capacity enzyme. The results suggest that in the case of ALDH1A dysfunction or excess vitamin A, AOX may play an important role in regulating hepatic vitamin A homeostasis and that inhibition of AOX may alter atRA biosynthesis and signaling. SIGNIFICANCE STATEMENT: This study provides direct evidence to show that human AOX converts retinaldehyde to atRA and contributes to hepatic atRA biosynthesis. The finding that AOX may be responsible for 20%-50% of overall hepatic atRA formation suggests that alterations in AOX activity via drug-drug interactions, genetic polymorphisms, or disease states may impact hepatic atRA concentrations and signaling and alter vitamin A homeostasis.
Collapse
Affiliation(s)
- Guo Zhong
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington (G.Z., C.J.S., H.X., N.I.); Department of Chemistry, Washington State University, Pullman, Washington (E.M.P., J.P.J.); and Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, Washington (K.-L.H., N.P.K.)
| | - Chris J Seaman
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington (G.Z., C.J.S., H.X., N.I.); Department of Chemistry, Washington State University, Pullman, Washington (E.M.P., J.P.J.); and Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, Washington (K.-L.H., N.P.K.)
| | - Erickson M Paragas
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington (G.Z., C.J.S., H.X., N.I.); Department of Chemistry, Washington State University, Pullman, Washington (E.M.P., J.P.J.); and Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, Washington (K.-L.H., N.P.K.)
| | - Huaqing Xi
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington (G.Z., C.J.S., H.X., N.I.); Department of Chemistry, Washington State University, Pullman, Washington (E.M.P., J.P.J.); and Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, Washington (K.-L.H., N.P.K.)
| | - Karla-Luise Herpoldt
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington (G.Z., C.J.S., H.X., N.I.); Department of Chemistry, Washington State University, Pullman, Washington (E.M.P., J.P.J.); and Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, Washington (K.-L.H., N.P.K.)
| | - Neil P King
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington (G.Z., C.J.S., H.X., N.I.); Department of Chemistry, Washington State University, Pullman, Washington (E.M.P., J.P.J.); and Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, Washington (K.-L.H., N.P.K.)
| | - Jeffrey P Jones
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington (G.Z., C.J.S., H.X., N.I.); Department of Chemistry, Washington State University, Pullman, Washington (E.M.P., J.P.J.); and Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, Washington (K.-L.H., N.P.K.)
| | - Nina Isoherranen
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington (G.Z., C.J.S., H.X., N.I.); Department of Chemistry, Washington State University, Pullman, Washington (E.M.P., J.P.J.); and Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, Washington (K.-L.H., N.P.K.)
| |
Collapse
|
4
|
Paragas EM, Choughule K, Jones JP, Barr JT. Enzyme Kinetics, Pharmacokinetics, and Inhibition of Aldehyde Oxidase. Methods Mol Biol 2021; 2342:257-284. [PMID: 34272698 DOI: 10.1007/978-1-0716-1554-6_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Aldehyde oxidase (AO) has emerged as an important drug metabolizing enzyme over the last decade. Several compounds have failed in the clinic because the clearance or toxicity was underestimated by preclinical species. Human AO is much more active than rodent AO, and dogs do not have functional AO. Metabolic products from AO-catalyzed oxidation are generally nonreactive and often they have much lower solubility. AO metabolism is not limited to oxidation as AO can also catalyze reduction of oxygen and nitrite. Reduction of oxygen leads to the reactive oxygen species (ROS) superoxide radical anion and hydrogen peroxide. Reduction of nitrite leads to the formation of nitric oxide with potential pharmacological implications. AO is also reported to catalyze the reductive metabolism of nitro-compounds, N-oxides, sulfoxides, isoxazoles, isothiazoles, nitrite, and hydroxamic acids. These reductive transformations may cause toxicity due to the formation of reactive metabolites. Moreover, the inhibition kinetics are complex, and multiple probe substrates should be used when assessing the potential for DDIs. Finally, AO appears to be amenable to computational predictions of both regioselectivity and rates of reaction, which holds promise for virtual screening.
Collapse
Affiliation(s)
- Erickson M Paragas
- Department of Pharmaceutical Sciences, Temple University School of Pharmacy, Philadelphia, PA, USA
| | - Kanika Choughule
- Pharmacokinetics, Pharmacodynamics and Drug Metabolism, Merck, Boston, MA, USA
| | - Jeffrey P Jones
- Department of Chemistry, Washington State University, Pullman, WA, USA
| | - John T Barr
- Pharmacokinetics, Pharmacodynamics and Drug Metabolism, Merck, South San Francisco, CA, USA.
| |
Collapse
|
5
|
Zhang Y, Yang Y, Shen G, Mao X, Jiao M, Lin Y. Identification and Characterization of Aldehyde Oxidase 5 in the Pheromone Gland of the Silkworm (Lepidoptera: Bombycidae). JOURNAL OF INSECT SCIENCE (ONLINE) 2020; 20:6029056. [PMID: 33295983 PMCID: PMC7724976 DOI: 10.1093/jisesa/ieaa132] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Indexed: 06/12/2023]
Abstract
Aldehyde oxidases (AOXs) are a subfamily of cytosolic molybdo-flavoenzymes that play critical roles in the detoxification and degradation of chemicals. Active AOXs, such as AOX1 and AOX2, have been identified and functionally analyzed in insect antennae but are rarely reported in other tissues. This is the first study to isolate and characterize the cDNA that encodes aldehyde oxidase 5 (BmAOX5) in the pheromone gland (PG) of the silkworm, Bombyx mori. The size of BmAOX5 cDNA is 3,741 nucleotides and includes an open reading frame, which encodes a protein of 1,246 amino acid residues. The theoretical molecular weight and isoelectric point of BmAOX5 are approximately 138 kDa and 5.58, respectively. BmAOX5 shares a similar primary structure with BmAOX1 and BmAOX2, containing two [2Fe-2S] redox centers, a FAD-binding domain, and a molybdenum cofactor (MoCo)-binding domain. RT-PCR revealed BmAOX5 to be particularly highly expressed in the PG (including ovipositor) of the female silkworm moth, and the expression was further confirmed by in situ hybridization, AOX activity staining, and anti-BmAOX5 western blotting. Further, BmAOX5 was shown to metabolize aromatic aldehydes, such as benzaldehyde, salicylaldehyde, and vanillic aldehyde, and fatty aldehydes, such as heptaldehyde and propionaldehyde. The maximum reaction rate (Vmax) of benzaldehyde as substrate was 21 mU and Km was 1.745 mmol/liter. These results suggested that BmAOX5 in the PG could metabolize aldehydes in the cytoplasm for detoxification or participate in the degradation of aldehyde pheromone substances and odorant compounds to identify mating partners and locate suitable spawning sites.
Collapse
Affiliation(s)
- Yandi Zhang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Biological Science Research Center, Southwest University, Chongqing, China
| | - Yu Yang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Biological Science Research Center, Southwest University, Chongqing, China
| | - Guanwang Shen
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Biological Science Research Center, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Sericulture Science, Chongqing, China
- Chongqing Engineering and Technology Research Center for Novel Silk Materials, Chongqing, China
| | - Xueqin Mao
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Biological Science Research Center, Southwest University, Chongqing, China
| | - Mengyao Jiao
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Biological Science Research Center, Southwest University, Chongqing, China
| | - Ying Lin
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Biological Science Research Center, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Sericulture Science, Chongqing, China
- Chongqing Engineering and Technology Research Center for Novel Silk Materials, Chongqing, China
| |
Collapse
|
6
|
Cronin CN, Liu J, Grable N, Strelevitz TJ, Obach RS, Carlo A. Production of active recombinant human aldehyde oxidase (AOX) in the baculovirus expression vector system (BEVS) and deployment in a pre-clinical fraction-of-control AOX compound exposure assay. Protein Expr Purif 2020; 177:105749. [PMID: 32911062 DOI: 10.1016/j.pep.2020.105749] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/01/2020] [Accepted: 09/02/2020] [Indexed: 12/26/2022]
Abstract
Human aldehyde oxidase (AOX) has emerged as a key enzyme activity for consideration in modern drug discovery. The enzyme catalyzes the oxidation of a wide variety of compounds, most notably azaheterocyclics that often form the building blocks of small molecule therapeutics. Failure to consider and assess AOX drug exposure early in the drug development cycle can have catastrophic consequences for novel compounds entering the clinic. AOX is a complex molybdopterin-containing iron-sulfur flavoprotein comprised of two identical 150 kDa subunits that has proven difficult to produce in recombinant form, and a commercial source of the purified human enzyme is currently unavailable. Thus, the potential exposure of novel drug development candidates to human AOX metabolism is usually assessed by using extracts of pooled human liver cytosol as a source of the enzyme. This can complicate the assignment of AOX-specific compound exposure due to its low activity and the presence of contaminating enzymes that may have overlapping substrate specificities. Herein is described a two-step process for the isolation of recombinant human AOX dimers to near homogeneity following production in the baculovirus expression vector system (BEVS). The deployment of this BEVS-produced recombinant human AOX as a substitute for human liver extracts in a fraction-of-control AOX compound-exposure screening assay is described. The ability to generate this key enzyme activity readily in a purified recombinant form provides for a more accurate and convenient approach to the assessment of new compound exposure to bona fide AOX drug metabolism.
Collapse
Affiliation(s)
- Ciarán N Cronin
- Structural Biology and Protein Sciences, Pfizer Global Research and Development, La Jolla, CA, USA.
| | - JianHua Liu
- Hit Discovery and Optimization Group, Pfizer Global Research and Development, Groton, CT, USA
| | - Nicole Grable
- Structural Biology and Protein Sciences, Pfizer Global Research and Development, La Jolla, CA, USA
| | - Timothy J Strelevitz
- Pharmacokinetics, Dynamics and Metabolism, Pfizer Global Research and Development, Groton, CT, USA
| | - R Scott Obach
- Pharmacokinetics, Dynamics and Metabolism, Pfizer Global Research and Development, Groton, CT, USA
| | - Anthony Carlo
- Hit Discovery and Optimization Group, Pfizer Global Research and Development, Groton, CT, USA
| |
Collapse
|
7
|
Terao M, Garattini E, Romão MJ, Leimkühler S. Evolution, expression, and substrate specificities of aldehyde oxidase enzymes in eukaryotes. J Biol Chem 2020; 295:5377-5389. [PMID: 32144208 PMCID: PMC7170512 DOI: 10.1074/jbc.rev119.007741] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Aldehyde oxidases (AOXs) are a small group of enzymes belonging to the larger family of molybdo-flavoenzymes, along with the well-characterized xanthine oxidoreductase. The two major types of reactions that are catalyzed by AOXs are the hydroxylation of heterocycles and the oxidation of aldehydes to their corresponding carboxylic acids. Different animal species have different complements of AOX genes. The two extremes are represented in humans and rodents; whereas the human genome contains a single active gene (AOX1), those of rodents, such as mice, are endowed with four genes (Aox1-4), clustering on the same chromosome, each encoding a functionally distinct AOX enzyme. It still remains enigmatic why some species have numerous AOX enzymes, whereas others harbor only one functional enzyme. At present, little is known about the physiological relevance of AOX enzymes in humans and their additional forms in other mammals. These enzymes are expressed in the liver and play an important role in the metabolisms of drugs and other xenobiotics. In this review, we discuss the expression, tissue-specific roles, and substrate specificities of the different mammalian AOX enzymes and highlight insights into their physiological roles.
Collapse
Affiliation(s)
- Mineko Terao
- Laboratory of Molecular Biology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, via La Masa 19, 20156 Milano, Italy
| | - Enrico Garattini
- Laboratory of Molecular Biology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, via La Masa 19, 20156 Milano, Italy
| | - Maria João Romão
- UCIBIO-Applied Biomolecular Sciences Unit, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Silke Leimkühler
- Department of Molecular Enzymology, Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany.
| |
Collapse
|
8
|
Manevski N, King L, Pitt WR, Lecomte F, Toselli F. Metabolism by Aldehyde Oxidase: Drug Design and Complementary Approaches to Challenges in Drug Discovery. J Med Chem 2019; 62:10955-10994. [PMID: 31385704 DOI: 10.1021/acs.jmedchem.9b00875] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Aldehyde oxidase (AO) catalyzes oxidations of azaheterocycles and aldehydes, amide hydrolysis, and diverse reductions. AO substrates are rare among marketed drugs, and many candidates failed due to poor pharmacokinetics, interspecies differences, and adverse effects. As most issues arise from complex and poorly understood AO biology, an effective solution is to stop or decrease AO metabolism. This perspective focuses on rational drug design approaches to modulate AO-mediated metabolism in drug discovery. AO biological aspects are also covered, as they are complementary to chemical design and important when selecting the experimental system for risk assessment. The authors' recommendation is an early consideration of AO-mediated metabolism supported by computational and in vitro experimental methods but not an automatic avoidance of AO structural flags, many of which are versatile and valuable building blocks. Preferably, consideration of AO-mediated metabolism should be part of the multiparametric drug optimization process, with the goal to improve overall drug-like properties.
Collapse
Affiliation(s)
- Nenad Manevski
- UCB Celltech , 208 Bath Road , Slough SL13WE , United Kingdom
| | - Lloyd King
- UCB Celltech , 208 Bath Road , Slough SL13WE , United Kingdom
| | - William R Pitt
- UCB Celltech , 208 Bath Road , Slough SL13WE , United Kingdom
| | - Fabien Lecomte
- UCB Celltech , 208 Bath Road , Slough SL13WE , United Kingdom
| | - Francesca Toselli
- UCB BioPharma , Chemin du Foriest 1 , 1420 Braine-l'Alleud , Belgium
| |
Collapse
|
9
|
Inhibition of vertebrate aldehyde oxidase as a therapeutic treatment for cancer, obesity, aging and amyotrophic lateral sclerosis. Eur J Med Chem 2019; 187:111948. [PMID: 31877540 DOI: 10.1016/j.ejmech.2019.111948] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 12/02/2019] [Accepted: 12/02/2019] [Indexed: 10/25/2022]
Abstract
The aldehyde oxidases (AOXs) are a small sub-family of cytosolic molybdo-flavoenzymes, which are structurally conserved proteins and broadly distributed from plants to animals. AOXs play multiple roles in both physiological and pathological processes and AOX inhibition is of increasing significance in the development of novel drugs and therapeutic strategies. This review provides an overview of the evolution and the action mechanism of AOX and the role of each domain. The review provides an update of the polymorphisms in the human AOX. This review also summarises the physiology of AOX in different organs and its role in drug metabolism. The inhibition of AOX is a promising therapeutic treatment for cancer, obesity, aging and amyotrophic lateral sclerosis.
Collapse
|
10
|
Isoherranen N, Zhong G. Biochemical and physiological importance of the CYP26 retinoic acid hydroxylases. Pharmacol Ther 2019; 204:107400. [PMID: 31419517 PMCID: PMC6881548 DOI: 10.1016/j.pharmthera.2019.107400] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 08/06/2019] [Indexed: 12/19/2022]
Abstract
The Cytochrome P450 (CYP) family 26 enzymes contribute to retinoic acid (RA) metabolism and homeostasis in humans, mammals and other chordates. The three CYP26 family enzymes, CYP26A1, CYP26B1 and CYP26C1 have all been shown to metabolize all-trans-retinoic acid (atRA) it's 9-cisRA and 13-cisRA isomers and primary metabolites 4-OH-RA and 4-oxo-RA with high efficiency. While no crystal structures of CYP26 enzymes are available, the binding of various ligands has been extensively explored via homology modeling. All three CYP26 enzymes are inducible by treatment with atRA in various prenatal and postnatal tissues and cell types. However, current literature shows that in addition to regulation by atRA, CYP26 enzyme expression is also regulated by other endogenous processes and inflammatory cytokines. In humans and in animal models the expression patterns of CYP26 enzymes have been shown to be tissue and cell type specific, and the expression of the CYP26 enzymes is believed to regulate the formation of critical atRA concentration gradients in various tissue types. Yet, very little data exists on direct disease associations of altered CYP26 expression or activity. Nevertheless, data is emerging describing a variety of human genetic variations in the CYP26 enzymes that are associated with different pathologies. Interestingly, some of these genetic variants result in increased activity of the CYP26 enzymes potentially leading to complex gene-environment interactions due to variability in dietary intake of retinoids. This review highlights the current knowledge of structure-function of CYP26 enzymes and focuses on their role in human retinoid metabolism in different tissues.
Collapse
Affiliation(s)
- Nina Isoherranen
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, WA, USA.
| | - Guo Zhong
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, WA, USA
| |
Collapse
|
11
|
Chen S, Austin-Muttitt K, Zhang LH, Mullins JGL, Lau AJ. In Vitro and In Silico Analyses of the Inhibition of Human Aldehyde Oxidase by Bazedoxifene, Lasofoxifene, and Structural Analogues. J Pharmacol Exp Ther 2019; 371:75-86. [PMID: 31289113 DOI: 10.1124/jpet.119.259267] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 07/05/2019] [Indexed: 03/08/2025] Open
Abstract
Tamoxifen, raloxifene, and nafoxidine are selective estrogen receptor modulators (SERMs) reported to inhibit the catalytic activity of human aldehyde oxidase 1 (AOX1). How these drugs interact with AOX1 and whether other SERMs inhibit this drug-metabolizing enzyme are not known. Therefore, a detailed in vitro and in silico study involving parent drugs and their analogs was conducted to investigate the effect of specific SERMs, particularly acolbifene, bazedoxifene, and lasofoxifene on AOX1 catalytic activity, as assessed by carbazeran 4-oxidation, an AOX1-selective catalytic marker. The rank order in the potency (based on IC50 values) of AOX1 inhibition by SERMs was raloxifene > bazedoxifene ∼ lasofoxifene > tamoxifen > acolbifene. Inhibition of liver cytosolic AOX1 by bazedoxifene, lasofoxifene, and tamoxifen was competitive, whereas that by raloxifene was noncompetitive. Loss of 1-azepanylethyl group increased the inhibitory potency of bazedoxifene, whereas the N-oxide group decreased it. The 7-hydroxy group and the substituted pyrrolidine ring attached to the tetrahydronaphthalene structure contributed to AOX1 inhibition by lasofoxifene. These results are supported by molecular-docking simulations in terms of predicted binding modes, encompassing binding orientation and efficiency, and analysis of key interactions, particularly hydrogen bonds. The extent of AOX1 inhibition by bazedoxifene was increased by estrone sulfate and estrone. In summary, SERMs differentially inhibited human AOX1 catalytic activity. Structural features of bazedoxifene and lasofoxifene contributed to AOX1 inhibition, whereas those of acolbifene rendered it considerably less susceptible to AOX1 inhibition. Overall, our novel biochemical findings and molecular-docking analyses provide new insights into the interaction between SERMs and AOX1. SIGNIFICANCE STATEMENT: Aldehyde oxidase (AOX1) is a molybdo-flavoprotein and has emerged as a drug-metabolizing enzyme of potential therapeutic importance because drugs have been identified as AOX1 substrates. Selective estrogen receptor modulators (SERM), which are drugs used to treat and prevent various conditions, differentially inhibit AOX1 catalytic activity. Structural features of bazedoxifene and lasofoxifene contribute to AOX1 inhibition, whereas those of acolbifene render it considerably less susceptible to AOX1 inhibition. Our novel biochemical findings, together with molecular- docking analyses, provide new insights into the differential inhibitory effect of SERMs on the catalytic activity of human AOX1, how SERMs bind to AOX1, and increase our understanding of the AOX1 pharmacophore in the inhibition of AOX1 by drugs and other chemicals.
Collapse
Affiliation(s)
- Shiyan Chen
- Department of Pharmacy, Faculty of Science (S.C., A.J.L.), and Department of Pharmacology, Yong Loo Lin School of Medicine (A.J.L.), National University of Singapore, Singapore; Institute of Life Science, Swansea University Medical School, Swansea, United Kingdom (K.A.-M., J.G.L.M.); and NanoBioTec, Whippany, New Jersey (L.H.Z.)
| | - Karl Austin-Muttitt
- Department of Pharmacy, Faculty of Science (S.C., A.J.L.), and Department of Pharmacology, Yong Loo Lin School of Medicine (A.J.L.), National University of Singapore, Singapore; Institute of Life Science, Swansea University Medical School, Swansea, United Kingdom (K.A.-M., J.G.L.M.); and NanoBioTec, Whippany, New Jersey (L.H.Z.)
| | - Linghua Harris Zhang
- Department of Pharmacy, Faculty of Science (S.C., A.J.L.), and Department of Pharmacology, Yong Loo Lin School of Medicine (A.J.L.), National University of Singapore, Singapore; Institute of Life Science, Swansea University Medical School, Swansea, United Kingdom (K.A.-M., J.G.L.M.); and NanoBioTec, Whippany, New Jersey (L.H.Z.)
| | - Jonathan G L Mullins
- Department of Pharmacy, Faculty of Science (S.C., A.J.L.), and Department of Pharmacology, Yong Loo Lin School of Medicine (A.J.L.), National University of Singapore, Singapore; Institute of Life Science, Swansea University Medical School, Swansea, United Kingdom (K.A.-M., J.G.L.M.); and NanoBioTec, Whippany, New Jersey (L.H.Z.)
| | - Aik Jiang Lau
- Department of Pharmacy, Faculty of Science (S.C., A.J.L.), and Department of Pharmacology, Yong Loo Lin School of Medicine (A.J.L.), National University of Singapore, Singapore; Institute of Life Science, Swansea University Medical School, Swansea, United Kingdom (K.A.-M., J.G.L.M.); and NanoBioTec, Whippany, New Jersey (L.H.Z.)
| |
Collapse
|
12
|
Cheshmazar N, Dastmalchi S, Terao M, Garattini E, Hamzeh-Mivehroud M. Aldehyde oxidase at the crossroad of metabolism and preclinical screening. Drug Metab Rev 2019; 51:428-452. [DOI: 10.1080/03602532.2019.1667379] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Narges Cheshmazar
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Medicinal Chemistry, School of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Siavoush Dastmalchi
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Medicinal Chemistry, School of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mineko Terao
- Laboratory of Molecular Biology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - Enrico Garattini
- Laboratory of Molecular Biology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - Maryam Hamzeh-Mivehroud
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Medicinal Chemistry, School of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
13
|
Dalvie D, Di L. Aldehyde oxidase and its role as a drug metabolizing enzyme. Pharmacol Ther 2019; 201:137-180. [PMID: 31128989 DOI: 10.1016/j.pharmthera.2019.05.011] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 03/27/2019] [Indexed: 11/29/2022]
Abstract
Aldehyde oxidase (AO) is a cytosolic enzyme that belongs to the family of structurally related molybdoflavoproteins like xanthine oxidase (XO). The enzyme is characterized by broad substrate specificity and marked species differences. It catalyzes the oxidation of aromatic and aliphatic aldehydes and various heteroaromatic rings as well as reduction of several functional groups. The references to AO and its role in metabolism date back to the 1950s, but the importance of this enzyme in the metabolism of drugs has emerged in the past fifteen years. Several reviews on the role of AO in drug metabolism have been published in the past decade indicative of the growing interest in the enzyme and its influence in drug metabolism. Here, we present a comprehensive monograph of AO as a drug metabolizing enzyme with emphasis on marketed drugs as well as other xenobiotics, as substrates and inhibitors. Although the number of drugs that are primarily metabolized by AO are few, the impact of AO on drug development has been extensive. We also discuss the effect of AO on the systemic exposure and clearance these clinical candidates. The review provides a comprehensive analysis of drug discovery compounds involving AO with the focus on developmental candidates that were reported in the past five years with regards to pharmacokinetics and toxicity. While there is only one known report of AO-mediated clinically relevant drug-drug interaction (DDI), a detailed description of inhibitors and inducers of AO known to date has been presented here and the potential risks associated with DDI. The increasing recognition of the importance of AO has led to significant progress in predicting the site of AO-mediated metabolism using computational methods. Additionally, marked species difference in expression of AO makes it is difficult to predict human clearance with high confidence. The progress made towards developing in vivo, in vitro and in silico approaches for predicting AO metabolism and estimating human clearance of compounds that are metabolized by AO have also been discussed.
Collapse
Affiliation(s)
- Deepak Dalvie
- Drug Metabolism and Pharmacokinetics, Celgene Corporation, 10300, Campus Point Drive, San Diego, CA 92121, USA.
| | - Li Di
- Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research and Development, Groton, CT 06340, UK
| |
Collapse
|
14
|
Affiliation(s)
- Christine Beedham
- Honorary Senior Lecturer, Faculty of Life Sciences, School of Pharmacy and Medical Sciences, University of Bradford, Bradford, UK
| |
Collapse
|
15
|
Yanagisawa N, Ueshiba H, Abe Y, Kato H, Higuchi T, Yagi J. Outer Membrane Protein of Gut Commensal Microorganism Induces Autoantibody Production and Extra-Intestinal Gland Inflammation in Mice. Int J Mol Sci 2018; 19:ijms19103241. [PMID: 30347705 PMCID: PMC6214128 DOI: 10.3390/ijms19103241] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 09/25/2018] [Accepted: 10/15/2018] [Indexed: 02/08/2023] Open
Abstract
Gut commensal microorganisms have been linked with chronic inflammation at the extra-intestinal niche of the body. The object of the study was to investigate on the chronic effects of a gut commensal Escherichia coli on extra-intestinal glands. The presence of autoimmune response was diagnosed by autoantibody levels and histological methods. Repeated injection of E. coli induced mononuclear cell inflammation in the Harderian and submandibular salivary glands of female C57BL/6 mice. Inflammation was reproduced by adoptive transfer of splenocytes to immune-deficient Rag2 knockout mice and CD4+ T cells to mature T cell-deficient TCRβ-TCRδ knockout mice. MALDI TOF mass spectrometry of the protein to which sera of E. coli-treated mice reacted was determined as the outer membrane protein A (OmpA) of E. coli. Multiple genera of the Enterobacteriaceae possessed OmpA with high amino-acid sequence similarities. Repeated injection of recombinant OmpA reproduced mononuclear cell inflammation of the Harderian and salivary glands in mice and elevation of autoantibodies against Sjögren’s-syndrome-related antigens SSA/Ro and SSB/La. The results indicated the possibility of chronic stimuli from commensal bacteria-originated components as a pathogenic factor to elicit extra-intestinal autoimmunity.
Collapse
Affiliation(s)
- Naoko Yanagisawa
- Microbiology and Immunology, Tokyo Women's Medical University, Tokyo 162-8666, Japan.
| | - Hidehiro Ueshiba
- Microbiology and Immunology, Tokyo Women's Medical University, Tokyo 162-8666, Japan.
| | - Yoshihiro Abe
- Microbiology and Immunology, Tokyo Women's Medical University, Tokyo 162-8666, Japan.
| | - Hidehito Kato
- Microbiology and Immunology, Tokyo Women's Medical University, Tokyo 162-8666, Japan.
| | - Tomoaki Higuchi
- Microbiology and Immunology, Tokyo Women's Medical University, Tokyo 162-8666, Japan.
| | - Junji Yagi
- Microbiology and Immunology, Tokyo Women's Medical University, Tokyo 162-8666, Japan.
| |
Collapse
|
16
|
Mota C, Coelho C, Leimkühler S, Garattini E, Terao M, Santos-Silva T, Romão MJ. Critical overview on the structure and metabolism of human aldehyde oxidase and its role in pharmacokinetics. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2018.04.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
17
|
Direct comparison of the four aldehyde oxidase enzymes present in mouse gives insight into their substrate specificities. PLoS One 2018; 13:e0191819. [PMID: 29370288 PMCID: PMC5784979 DOI: 10.1371/journal.pone.0191819] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 01/11/2018] [Indexed: 12/13/2022] Open
Abstract
Mammalian aldehyde oxidases (AOXs) are molybdo-flavoenzymes which are present in many tissues in various mammalian species, including humans and rodents. Different species contain a different number of AOX isoforms. In particular, the reasons why mammals other than humans express a multiplicity of tissue-specific AOX enzymes is unknown. In mouse, the isoforms mAOX1, mAOX3, mAOX4 and mAOX2 are present. We previously established a codon-optimized heterologous expression systems for the mAOX1-4 isoforms in Escherichia coli that gives yield to sufficient amounts of active protein for kinetic characterizations and sets the basis in this study for site-directed mutagenesis and structure-function studies. A direct and simultaneous comparison of the enzymatic properties and characteristics of the four enzymes on a larger number of substrates has never been performed. Here, thirty different structurally related aromatic, aliphatic and N-heterocyclic compounds were used as substrates, and the kinetic parameters of all four mAOX enzymes were directly compared. The results show that especially mAOX4 displays a higher substrate selectivity, while no major differences between mAOX1, mAOX2 and mAOX3 were identified. Generally, mAOX1 was the enzyme with the highest catalytic turnover for most substrates. To understand the factors that contribute to the substrate specificity of mAOX4, site-directed mutagenesis was applied to substitute amino acids in the substrate-binding funnel by the ones present in mAOX1, mAOX3, and mAOX2. An increase in activity was obtained by the amino acid exchange M1088V in the active site identified to be specific for mAOX4, to the amino acid identified in mAOX3.
Collapse
|
18
|
Kücükgöze G, Terao M, Garattini E, Leimkühler S. Direct Comparison of the Enzymatic Characteristics and Superoxide Production of the Four Aldehyde Oxidase Enzymes Present in Mouse. Drug Metab Dispos 2017; 45:947-955. [PMID: 28526768 DOI: 10.1124/dmd.117.075937] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 05/15/2017] [Indexed: 02/13/2025] Open
Abstract
Aldehyde oxidases (AOXs) are molybdoflavoenzymes with an important role in the metabolism and detoxification of heterocyclic compounds and aliphatic as well as aromatic aldehydes. The enzymes use oxygen as the terminal electron acceptor and produce reduced oxygen species during turnover. Four different enzymes, mAOX1, mAOX3, mAOX4, and mAOX2, which are the products of distinct genes, are present in the mouse. A direct and simultaneous comparison of the enzymatic properties and characteristics of the four enzymes has never been performed. In this report, the four catalytically active mAOX enzymes were purified after heterologous expression in Escherichia coli The kinetic parameters of the four mouse AOX enzymes were determined and compared with the use of six predicted substrates of physiologic and toxicological interest, i.e., retinaldehyde, N1-methylnicotinamide, pyridoxal, vanillin, 4-(dimethylamino)cinnamaldehyde (p-DMAC), and salicylaldehyde. While retinaldehyde, vanillin, p-DMAC, and salycilaldehyde are efficient substrates for the four mouse AOX enzymes, N1-methylnicotinamide is not a substrate of mAOX1 or mAOX4, and pyridoxal is not metabolized by any of the purified enzymes. Overall, mAOX1, mAOX2, mAOX3, and mAOX4 are characterized by significantly different KM and kcat values for the active substrates. The four mouse AOXs are also characterized by quantitative differences in their ability to produce superoxide radicals. With respect to this last point, mAOX2 is the enzyme generating the largest rate of superoxide radicals of around 40% in relation to moles of substrate converted, and mAOX1, the homolog to the human enzyme, produces a rate of approximately 30% of superoxide radicals with the same substrate.
Collapse
Affiliation(s)
- Gökhan Kücükgöze
- Institut für Biochemie and Biologie, Universität Potsdam, Potsdam, Germany (G.K., S.L.); Laboratory of Molecular Biology, Department of Biochemistry and Molecular Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri, Milano, Italy (M.T., E.G.)
| | - Mineko Terao
- Institut für Biochemie and Biologie, Universität Potsdam, Potsdam, Germany (G.K., S.L.); Laboratory of Molecular Biology, Department of Biochemistry and Molecular Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri, Milano, Italy (M.T., E.G.)
| | - Enrico Garattini
- Institut für Biochemie and Biologie, Universität Potsdam, Potsdam, Germany (G.K., S.L.); Laboratory of Molecular Biology, Department of Biochemistry and Molecular Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri, Milano, Italy (M.T., E.G.)
| | - Silke Leimkühler
- Institut für Biochemie and Biologie, Universität Potsdam, Potsdam, Germany (G.K., S.L.); Laboratory of Molecular Biology, Department of Biochemistry and Molecular Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri, Milano, Italy (M.T., E.G.)
| |
Collapse
|
19
|
Romão MJ, Coelho C, Santos-Silva T, Foti A, Terao M, Garattini E, Leimkühler S. Structural basis for the role of mammalian aldehyde oxidases in the metabolism of drugs and xenobiotics. Curr Opin Chem Biol 2017; 37:39-47. [DOI: 10.1016/j.cbpa.2017.01.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 01/05/2017] [Accepted: 01/06/2017] [Indexed: 10/20/2022]
|
20
|
Terao M, Barzago MM, Kurosaki M, Fratelli M, Bolis M, Borsotti A, Bigini P, Micotti E, Carli M, Invernizzi RW, Bagnati R, Passoni A, Pastorelli R, Brunelli L, Toschi I, Cesari V, Sanoh S, Garattini E. Mouse aldehyde-oxidase-4 controls diurnal rhythms, fat deposition and locomotor activity. Sci Rep 2016; 6:30343. [PMID: 27456060 PMCID: PMC4960552 DOI: 10.1038/srep30343] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 06/30/2016] [Indexed: 02/03/2023] Open
Abstract
Aldehyde-oxidase-4 (AOX4) is one of the mouse aldehyde oxidase isoenzymes and its physiological function is unknown. The major source of AOX4 is the Harderian-gland, where the enzyme is characterized by daily rhythmic fluctuations. Deletion of the Aox4 gene causes perturbations in the expression of the circadian-rhythms gene pathway, as indicated by transcriptomic analysis. AOX4 inactivation alters the diurnal oscillations in the expression of master clock-genes. Similar effects are observed in other organs devoid of AOX4, such as white adipose tissue, liver and hypothalamus indicating a systemic action. While perturbations of clock-genes is sex-independent in the Harderian-gland and hypothalamus, sex influences this trait in liver and white-adipose-tissue which are characterized by the presence of AOX isoforms other than AOX4. In knock-out animals, perturbations in clock-gene expression are accompanied by reduced locomotor activity, resistance to diet induced obesity and to hepatic steatosis. All these effects are observed in female and male animals. Resistance to obesity is due to diminished fat accumulation resulting from increased energy dissipation, as white-adipocytes undergo trans-differentiation towards brown-adipocytes. Metabolomics and enzymatic data indicate that 5-hydroxyindolacetic acid and tryptophan are novel endogenous AOX4 substrates, potentially involved in AOX4 systemic actions.
Collapse
Affiliation(s)
- Mineko Terao
- Laboratory of Molecular Biology, Department of Molecular Biochemistry and Pharmacology, IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri", via La Masa 19, 20156, Milano, Italy
| | - Maria Monica Barzago
- Laboratory of Molecular Biology, Department of Molecular Biochemistry and Pharmacology, IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri", via La Masa 19, 20156, Milano, Italy
| | - Mami Kurosaki
- Laboratory of Molecular Biology, Department of Molecular Biochemistry and Pharmacology, IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri", via La Masa 19, 20156, Milano, Italy
| | - Maddalena Fratelli
- Laboratory of Molecular Biology, Department of Molecular Biochemistry and Pharmacology, IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri", via La Masa 19, 20156, Milano, Italy
| | - Marco Bolis
- Laboratory of Molecular Biology, Department of Molecular Biochemistry and Pharmacology, IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri", via La Masa 19, 20156, Milano, Italy
| | - Andrea Borsotti
- Laboratory of Molecular Biology, Department of Molecular Biochemistry and Pharmacology, IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri", via La Masa 19, 20156, Milano, Italy
| | - Paolo Bigini
- Laboratory of Biochemistry and Protein Chemistry, Department of Molecular Biochemistry and Pharmacology, IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri", via La Masa 19, 20156, Milano, Italy
| | - Edoardo Micotti
- Laboratory of Neurodegenerative diseases, Department of Neuroscience, IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri", via La Masa 19, 20156, Milano, Italy
| | - Mirjana Carli
- Laboratory of Neurochemistry and Behaviour, Department of Neuroscience, IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri", via La Masa 19, 20156, Milano, Italy
| | - Roberto William Invernizzi
- Laboratory of Neurochemistry and Behaviour, Department of Neuroscience, IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri", via La Masa 19, 20156, Milano, Italy
| | - Renzo Bagnati
- Analytical Instrumentation Unit, Department of Environmental Health Sciences, IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri", via La Masa 19, 20156, Milano, Italy
| | - Alice Passoni
- Analytical Instrumentation Unit, Department of Environmental Health Sciences, IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri", via La Masa 19, 20156, Milano, Italy
| | - Roberta Pastorelli
- Laboratory of Mass Spectrometry, Department of Environmental Health Sciences; IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri", via La Masa 19, 20156, Milano, Italy
| | - Laura Brunelli
- Laboratory of Mass Spectrometry, Department of Environmental Health Sciences; IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri", via La Masa 19, 20156, Milano, Italy
| | - Ivan Toschi
- Department of Agricultural and Environmental Sciences; Università degli Studi di Milano, via Celoria 2, 20133 Milano, Italy
| | - Valentina Cesari
- Department of Agricultural and Environmental Sciences; Università degli Studi di Milano, via Celoria 2, 20133 Milano, Italy
| | - Seigo Sanoh
- Graduate School of Biochemical and Health Sciences, Hiroshima University, Hiroshima Japan
| | - Enrico Garattini
- Laboratory of Molecular Biology, Department of Molecular Biochemistry and Pharmacology, IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri", via La Masa 19, 20156, Milano, Italy
| |
Collapse
|
21
|
Structure and function of mammalian aldehyde oxidases. Arch Toxicol 2016; 90:753-80. [DOI: 10.1007/s00204-016-1683-1] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 02/16/2016] [Indexed: 12/12/2022]
|
22
|
Vanden Berghe T, Hulpiau P, Martens L, Vandenbroucke RE, Van Wonterghem E, Perry SW, Bruggeman I, Divert T, Choi SM, Vuylsteke M, Shestopalov VI, Libert C, Vandenabeele P. Passenger Mutations Confound Interpretation of All Genetically Modified Congenic Mice. Immunity 2015; 43:200-9. [PMID: 26163370 DOI: 10.1016/j.immuni.2015.06.011] [Citation(s) in RCA: 134] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 04/09/2015] [Accepted: 06/11/2015] [Indexed: 12/13/2022]
Abstract
Targeted mutagenesis in mice is a powerful tool for functional analysis of genes. However, genetic variation between embryonic stem cells (ESCs) used for targeting (previously almost exclusively 129-derived) and recipient strains (often C57BL/6J) typically results in congenic mice in which the targeted gene is flanked by ESC-derived passenger DNA potentially containing mutations. Comparative genomic analysis of 129 and C57BL/6J mouse strains revealed indels and single nucleotide polymorphisms resulting in alternative or aberrant amino acid sequences in 1,084 genes in the 129-strain genome. Annotating these passenger mutations to the reported genetically modified congenic mice that were generated using 129-strain ESCs revealed that nearly all these mice possess multiple passenger mutations potentially influencing the phenotypic outcome. We illustrated this phenotypic interference of 129-derived passenger mutations with several case studies and developed a Me-PaMuFind-It web tool to estimate the number and possible effect of passenger mutations in transgenic mice of interest.
Collapse
Affiliation(s)
- Tom Vanden Berghe
- Inflammation Research Center, VIB, 9000 Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, 9000 Ghent, Belgium.
| | - Paco Hulpiau
- Inflammation Research Center, VIB, 9000 Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, 9000 Ghent, Belgium
| | - Liesbet Martens
- Inflammation Research Center, VIB, 9000 Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, 9000 Ghent, Belgium
| | - Roosmarijn E Vandenbroucke
- Inflammation Research Center, VIB, 9000 Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, 9000 Ghent, Belgium
| | - Elien Van Wonterghem
- Inflammation Research Center, VIB, 9000 Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, 9000 Ghent, Belgium
| | - Seth W Perry
- Department of Biomedical Engineering, University of Rochester, Rochester NY 14627, USA
| | - Inge Bruggeman
- Inflammation Research Center, VIB, 9000 Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, 9000 Ghent, Belgium
| | - Tatyana Divert
- Inflammation Research Center, VIB, 9000 Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, 9000 Ghent, Belgium
| | - Sze Men Choi
- Inflammation Research Center, VIB, 9000 Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, 9000 Ghent, Belgium
| | | | - Valery I Shestopalov
- Department of Ophthalmology, Bascom Palmer Eye Institute, Miami, FL 33136, USA; Department of Cell Biology and Anatomy, University of Miami School of Medicine, Miami, FL 33136, USA; Department of Cell Biology and Anatomy, Vavilov Institute for General Genetics, Moscow 119333, Russia
| | - Claude Libert
- Inflammation Research Center, VIB, 9000 Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, 9000 Ghent, Belgium
| | - Peter Vandenabeele
- Inflammation Research Center, VIB, 9000 Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, 9000 Ghent, Belgium; Methusalem Program, Ghent University, 9000 Ghent.
| |
Collapse
|
23
|
Arnold SLM, Kent T, Hogarth CA, Griswold MD, Amory JK, Isoherranen N. Pharmacological inhibition of ALDH1A in mice decreases all-trans retinoic acid concentrations in a tissue specific manner. Biochem Pharmacol 2015; 95:177-92. [PMID: 25764981 PMCID: PMC4420653 DOI: 10.1016/j.bcp.2015.03.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2015] [Accepted: 03/03/2015] [Indexed: 12/27/2022]
Abstract
all-trans retinoic acid (atRA), the active metabolite of vitamin A, is an essential signaling molecule. Specifically the concentrations of atRA are spatiotemporally controlled in target tissues such as the liver and the testes. While the enzymes of the aldehyde dehydrogenase 1A family (ALDH1A) are believed to control the synthesis of atRA, a direct relationship between altered ALDH1A activity and tissue atRA concentrations has never been shown. To test whether inhibition of ALDH1A enzymes decreases atRA concentrations in a tissue specific manner, the potent ALDH1A inhibitor WIN 18,446 was used to inhibit ALDH1A activity in mice. The ALDH1A expression, atRA formation kinetics, ALDH1A inhibition by WIN 18,446 and WIN 18,446 disposition were used to predict the time course and extent of inhibition of atRA formation in the testis and liver. The effect of WIN 18,446 on atRA concentrations in testis, liver and serum were measured following single and multiple doses of WIN 18,446. ALDH1A1 and ALDH1A2 were responsible for the majority of atRA formation in the testis while ALDH1A1 and aldehyde oxidase contributed to atRA formation in the liver. Due to the different complement of enzymes contributing to atRA formation in different tissues and different inhibition of ALDH1A1 and ALDH1A2 by WIN 18,446, WIN 18,446 caused only a 50% decrease in liver atRA but testicular atRA decreased over 90%. Serum atRA concentrations were also reduced. These data demonstrate that inhibition of ALDH1A enzymes will decrease atRA concentrations in a tissue specific manner and selective ALDH1A inhibition could be used to alter atRA concentrations in select target tissues.
Collapse
Affiliation(s)
- Samuel L M Arnold
- Department of Pharmaceutics, University of Washington, Seattle, WA 98195, USA
| | - Travis Kent
- School of Molecular Biosciences and The Center for Reproductive Biology, Washington State University, Pullman, WA 99164, USA
| | - Cathryn A Hogarth
- School of Molecular Biosciences and The Center for Reproductive Biology, Washington State University, Pullman, WA 99164, USA
| | - Michael D Griswold
- School of Molecular Biosciences and The Center for Reproductive Biology, Washington State University, Pullman, WA 99164, USA
| | - John K Amory
- Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Nina Isoherranen
- Department of Pharmaceutics, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
24
|
Role of Retinoic Acid-Metabolizing Cytochrome P450s, CYP26, in Inflammation and Cancer. ADVANCES IN PHARMACOLOGY 2015; 74:373-412. [PMID: 26233912 DOI: 10.1016/bs.apha.2015.04.006] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Vitamin A (retinol) and its active metabolite, all-trans-retinoic acid (atRA), play critical roles in regulating the differentiation, growth, and migration of immune cells. Similarly, as critical signaling molecules in the regulation of the cell cycle, retinoids are important in cancers. Concentrations of atRA are tightly regulated in tissues, predominantly by the availability of retinol, synthesis of atRA by ALDH1A enzymes and metabolism and clearance of atRA by CYP26 enzymes. The ALDH1A and CYP26 enzymes are expressed in several cell types in the immune system and in cancer cells. In the immune system, the ALDH1A and CYP26 enzymes appear to modulate RA concentrations. Consequently, alterations in the activity of ALDH1A and CYP26 enzymes are expected to change disease outcomes in inflammation. There is increasing evidence from various disease models of intestinal and skin inflammation that treatment with atRA has a positive effect on disease markers. However, whether aberrant atRA concentrations or atRA synthesis and metabolism play a role in inflammatory disease development and progression is not well understood. In cancers, especially in acute promyelocytic leukemia and neuroblastoma, increasing intracellular concentrations of atRA appears to provide clinical benefit. Inhibition of the CYP26 enzymes to increase atRA concentrations and combat therapy resistance has been pursued as a drug target in these cancers. This chapter covers the current knowledge of how atRA and retinol regulate the immune system and inflammation, how retinol and atRA metabolism is altered in inflammation and cancer, and what roles atRA-metabolizing enzymes have in immune responses and cancers.
Collapse
|
25
|
Sanoh S, Tayama Y, Sugihara K, Kitamura S, Ohta S. Significance of aldehyde oxidase during drug development: Effects on drug metabolism, pharmacokinetics, toxicity, and efficacy. Drug Metab Pharmacokinet 2015; 30:52-63. [DOI: 10.1016/j.dmpk.2014.10.009] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Revised: 10/03/2014] [Accepted: 10/03/2014] [Indexed: 12/28/2022]
|
26
|
Manevski N, Balavenkatraman KK, Bertschi B, Swart P, Walles M, Camenisch G, Schiller H, Kretz O, Ling B, Wettstein R, Schaefer DJ, Pognan F, Wolf A, Litherland K. Aldehyde oxidase activity in fresh human skin. Drug Metab Dispos 2014; 42:2049-57. [PMID: 25249692 DOI: 10.1124/dmd.114.060368] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025] Open
Abstract
Human aldehyde oxidase (AO) is a molybdoflavoenzyme that commonly oxidizes azaheterocycles in therapeutic drugs. Although high metabolic clearance by AO resulted in several drug failures, existing in vitro-in vivo correlations are often poor and the extrahepatic role of AO practically unknown. This study investigated enzymatic activity of AO in fresh human skin, the largest organ of the body, frequently exposed to therapeutic drugs and xenobiotics. Fresh, full-thickness human skin was obtained from 13 individual donors and assayed with two specific AO substrates: carbazeran and zoniporide. Human skin explants from all donors metabolized carbazeran to 4-hydroxycarbazeran and zoniporide to 2-oxo-zoniporide. Average rates of carbazeran and zoniporide hydroxylations were 1.301 and 0.164 pmol⋅mg skin(-1)⋅h(-1), resulting in 13 and 2% substrate turnover, respectively, after 24 hours of incubation with 10 μM substrate. Hydroxylation activities for the two substrates were significantly correlated (r(2) = 0.769), with interindividual variability ranging from 3-fold (zoniporide) to 6-fold (carbazeran). Inclusion of hydralazine, an irreversible inhibitor of AO, resulted in concentration-dependent decrease of hydroxylation activities, exceeding 90% inhibition of carbazeran 4-hydroxylation at 100 μM inhibitor. Reaction rates were linear up to 4 hours and well described by Michaelis-Menten enzyme kinetics. Comparison of carbazeran and zoniporide hydroxylation with rates of triclosan glucuronidation and sulfation and p-toluidine N-acetylation showed that cutaneous AO activity is comparable to tested phase II metabolic reactions, indicating a significant role of AO in cutaneous drug metabolism. To our best knowledge, this is the first report of AO enzymatic activity in human skin.
Collapse
Affiliation(s)
- Nenad Manevski
- Drug Metabolism and Pharmacokinetics (N.M., P.S., M.W., G.C., H.S., O.K., K.L.) and Pre-clinical Safety (K.K.B., B.B., F.P., A.W.), Novartis Institutes for BioMedical Research, Novartis Pharma, Basel, Switzerland; and Department of Plastic, Reconstructive, Aesthetic and Hand Surgery, University Hospital Basel, Basel, Switzerland (B.L., R.W., D.J.S.)
| | - Kamal Kumar Balavenkatraman
- Drug Metabolism and Pharmacokinetics (N.M., P.S., M.W., G.C., H.S., O.K., K.L.) and Pre-clinical Safety (K.K.B., B.B., F.P., A.W.), Novartis Institutes for BioMedical Research, Novartis Pharma, Basel, Switzerland; and Department of Plastic, Reconstructive, Aesthetic and Hand Surgery, University Hospital Basel, Basel, Switzerland (B.L., R.W., D.J.S.)
| | - Barbara Bertschi
- Drug Metabolism and Pharmacokinetics (N.M., P.S., M.W., G.C., H.S., O.K., K.L.) and Pre-clinical Safety (K.K.B., B.B., F.P., A.W.), Novartis Institutes for BioMedical Research, Novartis Pharma, Basel, Switzerland; and Department of Plastic, Reconstructive, Aesthetic and Hand Surgery, University Hospital Basel, Basel, Switzerland (B.L., R.W., D.J.S.)
| | - Piet Swart
- Drug Metabolism and Pharmacokinetics (N.M., P.S., M.W., G.C., H.S., O.K., K.L.) and Pre-clinical Safety (K.K.B., B.B., F.P., A.W.), Novartis Institutes for BioMedical Research, Novartis Pharma, Basel, Switzerland; and Department of Plastic, Reconstructive, Aesthetic and Hand Surgery, University Hospital Basel, Basel, Switzerland (B.L., R.W., D.J.S.)
| | - Markus Walles
- Drug Metabolism and Pharmacokinetics (N.M., P.S., M.W., G.C., H.S., O.K., K.L.) and Pre-clinical Safety (K.K.B., B.B., F.P., A.W.), Novartis Institutes for BioMedical Research, Novartis Pharma, Basel, Switzerland; and Department of Plastic, Reconstructive, Aesthetic and Hand Surgery, University Hospital Basel, Basel, Switzerland (B.L., R.W., D.J.S.)
| | - Gian Camenisch
- Drug Metabolism and Pharmacokinetics (N.M., P.S., M.W., G.C., H.S., O.K., K.L.) and Pre-clinical Safety (K.K.B., B.B., F.P., A.W.), Novartis Institutes for BioMedical Research, Novartis Pharma, Basel, Switzerland; and Department of Plastic, Reconstructive, Aesthetic and Hand Surgery, University Hospital Basel, Basel, Switzerland (B.L., R.W., D.J.S.)
| | - Hilmar Schiller
- Drug Metabolism and Pharmacokinetics (N.M., P.S., M.W., G.C., H.S., O.K., K.L.) and Pre-clinical Safety (K.K.B., B.B., F.P., A.W.), Novartis Institutes for BioMedical Research, Novartis Pharma, Basel, Switzerland; and Department of Plastic, Reconstructive, Aesthetic and Hand Surgery, University Hospital Basel, Basel, Switzerland (B.L., R.W., D.J.S.)
| | - Olivier Kretz
- Drug Metabolism and Pharmacokinetics (N.M., P.S., M.W., G.C., H.S., O.K., K.L.) and Pre-clinical Safety (K.K.B., B.B., F.P., A.W.), Novartis Institutes for BioMedical Research, Novartis Pharma, Basel, Switzerland; and Department of Plastic, Reconstructive, Aesthetic and Hand Surgery, University Hospital Basel, Basel, Switzerland (B.L., R.W., D.J.S.)
| | - Barbara Ling
- Drug Metabolism and Pharmacokinetics (N.M., P.S., M.W., G.C., H.S., O.K., K.L.) and Pre-clinical Safety (K.K.B., B.B., F.P., A.W.), Novartis Institutes for BioMedical Research, Novartis Pharma, Basel, Switzerland; and Department of Plastic, Reconstructive, Aesthetic and Hand Surgery, University Hospital Basel, Basel, Switzerland (B.L., R.W., D.J.S.)
| | - Reto Wettstein
- Drug Metabolism and Pharmacokinetics (N.M., P.S., M.W., G.C., H.S., O.K., K.L.) and Pre-clinical Safety (K.K.B., B.B., F.P., A.W.), Novartis Institutes for BioMedical Research, Novartis Pharma, Basel, Switzerland; and Department of Plastic, Reconstructive, Aesthetic and Hand Surgery, University Hospital Basel, Basel, Switzerland (B.L., R.W., D.J.S.)
| | - Dirk J Schaefer
- Drug Metabolism and Pharmacokinetics (N.M., P.S., M.W., G.C., H.S., O.K., K.L.) and Pre-clinical Safety (K.K.B., B.B., F.P., A.W.), Novartis Institutes for BioMedical Research, Novartis Pharma, Basel, Switzerland; and Department of Plastic, Reconstructive, Aesthetic and Hand Surgery, University Hospital Basel, Basel, Switzerland (B.L., R.W., D.J.S.)
| | - Francois Pognan
- Drug Metabolism and Pharmacokinetics (N.M., P.S., M.W., G.C., H.S., O.K., K.L.) and Pre-clinical Safety (K.K.B., B.B., F.P., A.W.), Novartis Institutes for BioMedical Research, Novartis Pharma, Basel, Switzerland; and Department of Plastic, Reconstructive, Aesthetic and Hand Surgery, University Hospital Basel, Basel, Switzerland (B.L., R.W., D.J.S.)
| | - Armin Wolf
- Drug Metabolism and Pharmacokinetics (N.M., P.S., M.W., G.C., H.S., O.K., K.L.) and Pre-clinical Safety (K.K.B., B.B., F.P., A.W.), Novartis Institutes for BioMedical Research, Novartis Pharma, Basel, Switzerland; and Department of Plastic, Reconstructive, Aesthetic and Hand Surgery, University Hospital Basel, Basel, Switzerland (B.L., R.W., D.J.S.)
| | - Karine Litherland
- Drug Metabolism and Pharmacokinetics (N.M., P.S., M.W., G.C., H.S., O.K., K.L.) and Pre-clinical Safety (K.K.B., B.B., F.P., A.W.), Novartis Institutes for BioMedical Research, Novartis Pharma, Basel, Switzerland; and Department of Plastic, Reconstructive, Aesthetic and Hand Surgery, University Hospital Basel, Basel, Switzerland (B.L., R.W., D.J.S.)
| |
Collapse
|
27
|
Pan KL, Huang WJ, Hsu MH, Lee HL, Liu HJ, Cheng CW, Tsai MH, Shen MY, Lin P. Identification of trans,trans-2,4-decadienal metabolites in mouse and human cells using liquid chromatography-mass spectrometry. Chem Res Toxicol 2014; 27:1707-19. [PMID: 25244621 DOI: 10.1021/tx500199b] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
trans,trans-2,4-Decadienal (tt-DDE), a lipid peroxidation product of linolieic acid, is the most abundant aldehyde identified in cooking oil fumes and is readily detectable in food products as well as in restaurant emissions. Previously, we have reported the toxicological effects of tt-DDE in vitro and in vivo. However, the metabolic pathways of tt-DDE in vivo remain unclear. In our present study, we combined liquid chromatography-mass spectrometry with triple quadrupole and time-of-flight to identify tt-DDE metabolites in the urine of mice orally administered tt-DDE. We identified two tt-DDE metabolites, 2,4-decadienoic acid and cysteine-conjugated 2,4-decadien-1-ol, in the urine of mice gavaged with tt-DDE and in human hepatoma cell cultures. The structure of 2,4-decadienoic acid was confirmed upon comparison of its tandem mass spectrometry (MS/MS) spectrum and retention time with those of synthetic standards. The moieties of cysteine and alcohol on cysteine-conjugated 2,4-decadien-1-ol were validated by treating cell cultures with stable-isotope-labeled cysteine and 4-methylpyrazole, an alcohol dehydrogenase inhibitor. The MS/MS spectra of a cysteine standard and ionized cysteine detached from cysteine-conjugated 2,4-decadien-1-ol were identical. Two metabolic pathways for the biotransformation of tt-DDE in vivo are proposed: (i) the oxidation of tt-DDE to the corresponding carboxylic acid, 2,4-decadienoic acid, in liver cells and (ii) glutathione (GHS) conjugation, GSH breakdown, and aldehyde reduction, which generate cysteine-conjugated 2,4-decadien-1-ol in both liver and lung cells. In conclusion, this platform can be used to identify tt-DDE metabolites, and cysteine-conjugated 2,4-decadien-1-ol can serve as a biomarker for assessing exposure to tt-DDE.
Collapse
Affiliation(s)
- Kao-Lu Pan
- National Environmental Health Research Center, National Health Research Institutes , Zhunan 35053, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
Molybdenum is an essential trace element and crucial for the survival of animals. Four mammalian Mo-dependent enzymes are known, all of them harboring a pterin-based molybdenum cofactor (Moco) in their active site. In these enzymes, molybdenum catalyzes oxygen transfer reactions from or to substrates using water as oxygen donor or acceptor. Molybdenum shuttles between two oxidation states, Mo(IV) and Mo(VI). Following substrate reduction or oxidation, electrons are subsequently shuttled by either inter- or intra-molecular electron transfer chains involving prosthetic groups such as heme or iron-sulfur clusters. In all organisms studied so far, Moco is synthesized by a highly conserved multi-step biosynthetic pathway. A deficiency in the biosynthesis of Moco results in a pleitropic loss of all four human Mo-enzyme activities and in most cases in early childhood death. In this review we first introduce general aspects of molybdenum biochemistry before we focus on the functions and deficiencies of two Mo-enzymes, xanthine dehydrogenase and sulfite oxidase, caused either by deficiency of the apo-protein or a pleiotropic loss of Moco due to a genetic defect in its biosynthesis. The underlying molecular basis of Moco deficiency, possible treatment options and links to other diseases, such as neuropsychiatric disorders, will be discussed.
Collapse
Affiliation(s)
- Guenter Schwarz
- Institute of Biochemistry, Department of Chemistry, Center for Molecular Medicine, University of Cologne, Zülpicher Strasse 47, D-50674, Köln, Germany,
| | | |
Collapse
|
29
|
Affiliation(s)
- Russ Hille
- Department of Biochemistry, University of California, Riverside, Riverside, California 92521, United States
| | - James Hall
- Department of Biochemistry, University of California, Riverside, Riverside, California 92521, United States
| | - Partha Basu
- Department of Chemistry and Biochemistry, Duquesne University, Pittsburgh, Pennsylvania 15282, United States
| |
Collapse
|
30
|
Identification and characterization of sebaceous gland atrophy-sparing DGAT1 inhibitors. PLoS One 2014; 9:e88908. [PMID: 24558447 PMCID: PMC3928314 DOI: 10.1371/journal.pone.0088908] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Accepted: 01/13/2014] [Indexed: 12/16/2022] Open
Abstract
Inhibition of Diacylglycerol O-acyltransferase 1 (DGAT1) has been a mechanism of interest for metabolic disorders. DGAT1 inhibition has been shown to be a key regulator in an array of metabolic pathways; however, based on the DGAT1 KO mouse phenotype the anticipation is that pharmacological inhibition of DGAT1 could potentially lead to skin related adverse effects. One of the aims in developing small molecule DGAT1 inhibitors that target key metabolic tissues is to avoid activity on skin-localized DGAT1 enzyme. In this report we describe a modeling-based approach to identify molecules with physical properties leading to differential exposure distribution. In addition, we demonstrate histological and RNA based biomarker approaches that can detect sebaceous gland atrophy pre-clinically that could be used as potential biomarkers in a clinical setting.
Collapse
|
31
|
Weidert ER, Schoenborn SO, Cantu-Medellin N, Choughule KV, Jones JP, Kelley EE. Inhibition of xanthine oxidase by the aldehyde oxidase inhibitor raloxifene: implications for identifying molybdopterin nitrite reductases. Nitric Oxide 2014; 37:41-5. [PMID: 24406683 DOI: 10.1016/j.niox.2013.12.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 12/18/2013] [Accepted: 12/27/2013] [Indexed: 01/10/2023]
Abstract
Sources of nitric oxide alternative to nitric oxide synthases are gaining significant traction as crucial mediators of vessel function under hypoxic inflammatory conditions. For example, capacity to catalyze the one electron reduction of nitrite (NO2-) to ·NO has been reported for hemoglobin, myoglobin and molybdopterin-containing enzymes including xanthine oxidoreductase (XOR) and aldehyde oxidase (AO). For XOR and AO, use of selective inhibition strategies is therefore crucial when attempting to assign relative contributions to nitrite-mediated ·NO formation in cells and tissue. To this end, XOR inhibition has been accomplished with application of classic pyrazolopyrimidine-based inhibitors allo/oxypurinol or the newly FDA-approved XOR-specific inhibitor, Uloric® (febuxostat). Likewise, raloxifene, an estrogen receptor antagonist, has been identified as a potent (Ki=1.0 nM) inhibitor of AO. Herein, we characterize the inhibition kinetics of raloxifene for XOR and describe the resultant effects on inhibiting XO-catalyzed ·NO formation. Exposure of purified XO to raloxifene (PBS, pH 7.4) resulted in a dose-dependent (12.5-100 μM) inhibition of xanthine oxidation to uric acid. Dixon plot analysis revealed a competitive inhibition process with a Ki=13 μM. This inhibitory process was more effective under acidic pH; similar to values encountered under hypoxic/inflammatory conditions. In addition, raloxifene also inhibited anoxic XO-catalyzed reduction of NO2- to NO (EC50=64 μM). In contrast to having no effect on XO-catalyzed uric acid production, the AO inhibitor menadione demonstrated potent inhibition of XO-catalyzed NO2- reduction (EC50=60 nM); somewhat similar to the XO-specific inhibitor, febuxostat (EC50=4 nM). Importantly, febuxostat was found to be a very poor inhibitor of human AO (EC50=613 μM) suggesting its usefulness for validating XO-dependent contributions to NO2- reduction in biological systems. Combined, these data indicate care should be taken when choosing inhibition strategies as well as inhibitor concentrations when assigning relative NO2- reductase activity of AO and XOR.
Collapse
Affiliation(s)
- E R Weidert
- University of Pittsburgh School of Medicine, Department of Anesthesiology, United States
| | - S O Schoenborn
- University of Pittsburgh School of Medicine, Department of Anesthesiology, United States
| | - N Cantu-Medellin
- University of Pittsburgh School of Medicine, Department of Anesthesiology, United States; University of Pittsburgh School of Medicine, Vascular Medicine Institute, United States
| | - K V Choughule
- Washington State University, Department of Chemistry, United States
| | - J P Jones
- Washington State University, Department of Chemistry, United States
| | - E E Kelley
- University of Pittsburgh School of Medicine, Department of Anesthesiology, United States; University of Pittsburgh School of Medicine, Vascular Medicine Institute, United States.
| |
Collapse
|
32
|
Barr JT, Choughule K, Jones JP. Enzyme kinetics, inhibition, and regioselectivity of aldehyde oxidase. Methods Mol Biol 2014; 1113:167-186. [PMID: 24523113 DOI: 10.1007/978-1-62703-758-7_9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The aldehyde oxidase (AO) enzyme family plays an increasing role in drug development. However, a number of compounds that are AO substrates have failed in the clinic because the clearance or toxicity is underestimated by preclinical species. Human AO is much more active than rodent AO, and dogs do not have functional AO. While AOs normally make non-reactive metabolites such as lactams, the metabolic products often have much lower solubility that can lead to renal failure. While an endogenous substrate for the oxidation reaction is not known, electron acceptors for the reductive part of the reaction include oxygen and nitrites. Reduction of oxygen leads to the reactive oxygen species (ROS) superoxide radical anion, and hydrogen peroxide. Reduction of nitrite leads to the formation of nitric oxide with potential pharmacological implications. To date, no clinically important drug-drug interactions (DDIs) have been observed for AOs. However, the inhibition kinetics are complex, and multiple probe substrates should be used when assessing the potential for DDIs. Finally, AO appears to be amenable to computational predictions of both regioselectivity and rates of reaction, which holds promise for virtual screening.
Collapse
Affiliation(s)
- John T Barr
- Department of Chemistry, Washington State University, Pullman, WA, USA
| | | | | |
Collapse
|
33
|
Mahro M, Brás NF, Cerqueira NMFSA, Teutloff C, Coelho C, Romão MJ, Leimkühler S. Identification of crucial amino acids in mouse aldehyde oxidase 3 that determine substrate specificity. PLoS One 2013; 8:e82285. [PMID: 24358164 PMCID: PMC3864932 DOI: 10.1371/journal.pone.0082285] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Accepted: 11/01/2013] [Indexed: 01/23/2023] Open
Abstract
In order to elucidate factors that determine substrate specificity and activity of mammalian molybdo-flavoproteins we performed site directed mutagenesis of mouse aldehyde oxidase 3 (mAOX3). The sequence alignment of different aldehyde oxidase (AOX) isoforms identified variations in the active site of mAOX3 in comparison to other AOX proteins and xanthine oxidoreductases (XOR). Based on the structural alignment of mAOX3 and bovine XOR, differences in amino acid residues involved in substrate binding in XORs in comparison to AOXs were identified. We exchanged several residues in the active site to the ones found in other AOX homologues in mouse or to residues present in bovine XOR in order to examine their influence on substrate selectivity and catalytic activity. Additionally we analyzed the influence of the [2Fe-2S] domains of mAOX3 on its kinetic properties and cofactor saturation. We applied UV-VIS and EPR monitored redox-titrations to determine the redox potentials of wild type mAOX3 and mAOX3 variants containing the iron-sulfur centers of mAOX1. In addition, a combination of molecular docking and molecular dynamic simulations (MD) was used to investigate factors that modulate the substrate specificity and activity of wild type and AOX variants. The successful conversion of an AOX enzyme to an XOR enzyme was achieved exchanging eight residues in the active site of mAOX3. It was observed that the absence of the K889H exchange substantially decreased the activity of the enzyme towards all substrates analyzed, revealing that this residue has an important role in catalysis.
Collapse
Affiliation(s)
- Martin Mahro
- Department of Molecular Enzymology, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Natércia F. Brás
- REQUIMTE, Departamento de Quimica, Faculdade de Ciencias, Universidade do Porto, Porto, Portugal
| | | | - Christian Teutloff
- Institute for Experimentalphysics, Free University of Berlin, Berlin, Germany
| | - Catarina Coelho
- REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | - Maria João Romão
- REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | - Silke Leimkühler
- Department of Molecular Enzymology, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| |
Collapse
|
34
|
Kurosaki M, Bolis M, Fratelli M, Barzago MM, Pattini L, Perretta G, Terao M, Garattini E. Structure and evolution of vertebrate aldehyde oxidases: from gene duplication to gene suppression. Cell Mol Life Sci 2013; 70:1807-30. [PMID: 23263164 PMCID: PMC11113236 DOI: 10.1007/s00018-012-1229-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2012] [Revised: 11/29/2012] [Accepted: 12/03/2012] [Indexed: 12/20/2022]
Abstract
Aldehyde oxidases (AOXs) and xanthine dehydrogenases (XDHs) belong to the family of molybdo-flavoenzymes. Although AOXs are not identifiable in fungi, these enzymes are represented in certain protists and the majority of plants and vertebrates. The physiological functions and substrates of AOXs are unknown. Nevertheless, AOXs are major drug metabolizing enzymes, oxidizing a wide range of aromatic aldehydes and heterocyclic compounds of medical/toxicological importance. Using genome sequencing data, we predict the structures of AOX genes and pseudogenes, reconstructing their evolution. Fishes are the most primitive organisms with an AOX gene (AOXα), originating from the duplication of an ancestral XDH. Further evolution of fishes resulted in the duplication of AOXα into AOXβ and successive pseudogenization of AOXα. AOXβ is maintained in amphibians and it is the likely precursors of reptilian, avian, and mammalian AOX1. Amphibian AOXγ is a duplication of AOXβ and the likely ancestor of reptilian and avian AOX2, which, in turn, gave rise to mammalian AOX3L1. Subsequent gene duplications generated the two mammalian genes, AOX3 and AOX4. The evolution of mammalian AOX genes is dominated by pseudogenization and deletion events. Our analysis is relevant from a structural point of view, as it provides information on the residues characterizing the three domains of each mammalian AOX isoenzyme. We cloned the cDNAs encoding the AOX proteins of guinea pig and cynomolgus monkeys, two unique species as to the evolution of this enzyme family. We identify chimeric RNAs from the human AOX3 and AOX3L1 pseudogenes with potential to encode a novel microRNA.
Collapse
Affiliation(s)
- Mami Kurosaki
- Laboratory of Molecular Biology, Istituto di Ricerche Farmacologiche “Mario Negri”, via La Masa 19, 20156 Milan, Italy
| | - Marco Bolis
- Laboratory of Molecular Biology, Istituto di Ricerche Farmacologiche “Mario Negri”, via La Masa 19, 20156 Milan, Italy
| | - Maddalena Fratelli
- Laboratory of Molecular Biology, Istituto di Ricerche Farmacologiche “Mario Negri”, via La Masa 19, 20156 Milan, Italy
| | - Maria Monica Barzago
- Laboratory of Molecular Biology, Istituto di Ricerche Farmacologiche “Mario Negri”, via La Masa 19, 20156 Milan, Italy
| | - Linda Pattini
- Department of Bioengineering, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan, Italy
| | - Gemma Perretta
- Istututo di Biologia Cellulare e Neurobiologia, Consiglio Nazionale delle Ricerche, via Anguillarese 301, 00123 Rome, Italy
| | - Mineko Terao
- Laboratory of Molecular Biology, Istituto di Ricerche Farmacologiche “Mario Negri”, via La Masa 19, 20156 Milan, Italy
| | - Enrico Garattini
- Laboratory of Molecular Biology, Istituto di Ricerche Farmacologiche “Mario Negri”, via La Masa 19, 20156 Milan, Italy
| |
Collapse
|
35
|
Garattini E, Terao M. Aldehyde oxidase and its importance in novel drug discovery: present and future challenges. Expert Opin Drug Discov 2013; 8:641-54. [DOI: 10.1517/17460441.2013.788497] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
36
|
Coelho C, Mahro M, Trincão J, Carvalho ATP, Ramos MJ, Terao M, Garattini E, Leimkühler S, Romão MJ. The first mammalian aldehyde oxidase crystal structure: insights into substrate specificity. J Biol Chem 2012; 287:40690-702. [PMID: 23019336 DOI: 10.1074/jbc.m112.390419] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Aldehyde oxidases have pharmacological relevance, and AOX3 is the major drug-metabolizing enzyme in rodents. RESULTS The crystal structure of mouse AOX3 with kinetics and molecular docking studies provides insights into its enzymatic characteristics. CONCLUSION Differences in substrate and inhibitor specificities can be rationalized by comparing the AOX3 and xanthine oxidase structures. SIGNIFICANCE The first aldehyde oxidase structure represents a major advance for drug design and mechanistic studies. Aldehyde oxidases (AOXs) are homodimeric proteins belonging to the xanthine oxidase family of molybdenum-containing enzymes. Each 150-kDa monomer contains a FAD redox cofactor, two spectroscopically distinct [2Fe-2S] clusters, and a molybdenum cofactor located within the protein active site. AOXs are characterized by broad range substrate specificity, oxidizing different aldehydes and aromatic N-heterocycles. Despite increasing recognition of its role in the metabolism of drugs and xenobiotics, the physiological function of the protein is still largely unknown. We have crystallized and solved the crystal structure of mouse liver aldehyde oxidase 3 to 2.9 Å. This is the first mammalian AOX whose structure has been solved. The structure provides important insights into the protein active center and further evidence on the catalytic differences characterizing AOX and xanthine oxidoreductase. The mouse liver aldehyde oxidase 3 three-dimensional structure combined with kinetic, mutagenesis data, molecular docking, and molecular dynamics studies make a decisive contribution to understand the molecular basis of its rather broad substrate specificity.
Collapse
Affiliation(s)
- Catarina Coelho
- Requimte, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Hartmann T, Terao M, Garattini E, Teutloff C, Alfaro JF, Jones JP, Leimkühler S. The impact of single nucleotide polymorphisms on human aldehyde oxidase. Drug Metab Dispos 2012. [PMID: 22279051 PMCID: PMC4738704 DOI: 10.1124/dmd.111.043828+10.1124/dmd.112.043828err] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Aldehyde oxidase (AO) is a complex molybdo-flavoprotein that belongs to the xanthine oxidase family. AO is active as a homodimer, and each 150-kDa monomer binds two distinct [2Fe2S] clusters, FAD, and the molybdenum cofactor. AO has an important role in the metabolism of drugs based on its broad substrate specificity oxidizing aromatic aza-heterocycles, for example, N(1)-methylnicotinamide and N-methylphthalazinium, or aldehydes, such as benzaldehyde, retinal, and vanillin. Sequencing the 35 coding exons of the human AOX1 gene in a sample of 180 Italian individuals led to the identification of relatively frequent, synonymous, missense and nonsense single-nucleotide polymorphisms (SNPs). Human aldehyde oxidase (hAOX1) was purified after heterologous expression in Escherichia coli. The recombinant protein was obtained with a purity of 95% and a yield of 50 μg/l E. coli culture. Site-directed mutagenesis of the hAOX1 cDNA allowed the purification of protein variants bearing the amino acid changes R802C, R921H, N1135S, and H1297R, which correspond to some of the identified SNPs. The hAOX1 variants were purified and compared with the wild-type protein relative to activity, oligomerization state, and metal content. Our data show that the mutation of each amino acid residue has a variable impact on the ability of hAOX1 to metabolize selected substrates. Thus, the human population is characterized by the presence of functionally inactive hAOX1 allelic variants as well as variants encoding enzymes with different catalytic activities. Our results indicate that the presence of these allelic variants should be considered for the design of future drugs.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Silke Leimkühler
- Address correspondence to: Dr. Silke Leimkü hler, Department of Molecular Enzymology, Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Strasse 24-25, 14476 Potsdam, Germany. E-mail:
| |
Collapse
|
38
|
Hartmann T, Terao M, Garattini E, Teutloff C, Alfaro JF, Jones JP, Leimkühler S. The impact of single nucleotide polymorphisms on human aldehyde oxidase. Drug Metab Dispos 2012; 40:856-64. [PMID: 22279051 PMCID: PMC4738704 DOI: 10.1124/dmd.111.043828] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Accepted: 01/25/2012] [Indexed: 01/08/2023] Open
Abstract
Aldehyde oxidase (AO) is a complex molybdo-flavoprotein that belongs to the xanthine oxidase family. AO is active as a homodimer, and each 150-kDa monomer binds two distinct [2Fe2S] clusters, FAD, and the molybdenum cofactor. AO has an important role in the metabolism of drugs based on its broad substrate specificity oxidizing aromatic aza-heterocycles, for example, N(1)-methylnicotinamide and N-methylphthalazinium, or aldehydes, such as benzaldehyde, retinal, and vanillin. Sequencing the 35 coding exons of the human AOX1 gene in a sample of 180 Italian individuals led to the identification of relatively frequent, synonymous, missense and nonsense single-nucleotide polymorphisms (SNPs). Human aldehyde oxidase (hAOX1) was purified after heterologous expression in Escherichia coli. The recombinant protein was obtained with a purity of 95% and a yield of 50 μg/l E. coli culture. Site-directed mutagenesis of the hAOX1 cDNA allowed the purification of protein variants bearing the amino acid changes R802C, R921H, N1135S, and H1297R, which correspond to some of the identified SNPs. The hAOX1 variants were purified and compared with the wild-type protein relative to activity, oligomerization state, and metal content. Our data show that the mutation of each amino acid residue has a variable impact on the ability of hAOX1 to metabolize selected substrates. Thus, the human population is characterized by the presence of functionally inactive hAOX1 allelic variants as well as variants encoding enzymes with different catalytic activities. Our results indicate that the presence of these allelic variants should be considered for the design of future drugs.
Collapse
Affiliation(s)
- Tobias Hartmann
- Department of Molecular Enzymology, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany (T.H., S.L.); Laboratory of Molecular Biology, Department of Biochemistry and Molecular Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri, Milano, Italy (M.T., E.G.); Institute for Experimental Physics, Free University of Berlin, Berlin, Germany (C.T.); and Department of Chemistry, Washington State University, Pullman, Washington (J.F.A., J.P.J.)
| | - Mineko Terao
- Department of Molecular Enzymology, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany (T.H., S.L.); Laboratory of Molecular Biology, Department of Biochemistry and Molecular Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri, Milano, Italy (M.T., E.G.); Institute for Experimental Physics, Free University of Berlin, Berlin, Germany (C.T.); and Department of Chemistry, Washington State University, Pullman, Washington (J.F.A., J.P.J.)
| | - Enrico Garattini
- Department of Molecular Enzymology, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany (T.H., S.L.); Laboratory of Molecular Biology, Department of Biochemistry and Molecular Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri, Milano, Italy (M.T., E.G.); Institute for Experimental Physics, Free University of Berlin, Berlin, Germany (C.T.); and Department of Chemistry, Washington State University, Pullman, Washington (J.F.A., J.P.J.)
| | - Christian Teutloff
- Department of Molecular Enzymology, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany (T.H., S.L.); Laboratory of Molecular Biology, Department of Biochemistry and Molecular Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri, Milano, Italy (M.T., E.G.); Institute for Experimental Physics, Free University of Berlin, Berlin, Germany (C.T.); and Department of Chemistry, Washington State University, Pullman, Washington (J.F.A., J.P.J.)
| | - Joshua F. Alfaro
- Department of Molecular Enzymology, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany (T.H., S.L.); Laboratory of Molecular Biology, Department of Biochemistry and Molecular Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri, Milano, Italy (M.T., E.G.); Institute for Experimental Physics, Free University of Berlin, Berlin, Germany (C.T.); and Department of Chemistry, Washington State University, Pullman, Washington (J.F.A., J.P.J.)
| | - Jeffrey P. Jones
- Department of Molecular Enzymology, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany (T.H., S.L.); Laboratory of Molecular Biology, Department of Biochemistry and Molecular Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri, Milano, Italy (M.T., E.G.); Institute for Experimental Physics, Free University of Berlin, Berlin, Germany (C.T.); and Department of Chemistry, Washington State University, Pullman, Washington (J.F.A., J.P.J.)
| | - Silke Leimkühler
- Department of Molecular Enzymology, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany (T.H., S.L.); Laboratory of Molecular Biology, Department of Biochemistry and Molecular Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri, Milano, Italy (M.T., E.G.); Institute for Experimental Physics, Free University of Berlin, Berlin, Germany (C.T.); and Department of Chemistry, Washington State University, Pullman, Washington (J.F.A., J.P.J.)
| |
Collapse
|
39
|
Garattini E, Terao M. The role of aldehyde oxidase in drug metabolism. Expert Opin Drug Metab Toxicol 2012; 8:487-503. [DOI: 10.1517/17425255.2012.663352] [Citation(s) in RCA: 132] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
40
|
Hartmann T, Terao M, Garattini E, Teutloff C, Alfaro JF, Jones JP, Leimkühler S. The Impact of Single Nucleotide Polymorphisms on Human Aldehyde Oxidase. Drug Metab Dispos 2012. [DOI: 10.1124/dmd.111.043828 10.1124/dmd.112.043828err] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
41
|
Sanoh S, Nozaki K, Murai H, Terashita S, Teramura T, Ohta S. Prediction of human metabolism of FK3453 by aldehyde oxidase using chimeric mice transplanted with human or rat hepatocytes. Drug Metab Dispos 2012; 40:76-82. [PMID: 21984595 DOI: 10.1124/dmd.111.041954] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025] Open
Abstract
During drug development, it is important to predict the activities of multiple metabolic enzymes, not only cytochrome P450 (P450) but also non-P450 enzymes, such as conjugative enzymes and aldehyde oxidase (AO). In this study, we focused on prediction of AO-mediated human metabolism and pharmacokinetics (PK) of 6-(2-amino-4-phenylpyrimidine-5-yl)-2-isopropylpyridazin-3(2H)-one (FK3453) (Astellas Pharma Inc.), the development of which was suspended due to extremely low exposure in human, despite good oral bioavailability in rat and dog. We examined species difference in oxidative metabolism of the aminopyrimidine moiety of FK3453, catalyzed by AO, using human-chimeric mice with humanized liver (h-PXB mice) and rat-chimeric mice (r-PXB mice) transplanted with rat hepatocytes. AO activity of h-PXB mouse hepatocytes was higher than that of r-PXB mouse hepatocytes. Moreover, higher concentrations of human-specific AO-generated FK3453 metabolite A-M were detected in urine and feces after administration of FK3453 to h-PXB mice versus r-PXB mice. The total clearance of h-PXB mice was 2-fold higher than that of r-PXB mice. These results agreed reasonably well with the metabolism and PK profiles of FK3453 in human and rat. Our results indicated that h-PXB mice should be helpful for predicting the metabolic profile of drugs in humans, and the use of both h-PXB and r-PXB mice should be helpful for evaluation of species differences of AO metabolic activity.
Collapse
Affiliation(s)
- Seigo Sanoh
- Graduate School of Biomedical Sciences, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima 734-8553 Japan.
| | | | | | | | | | | |
Collapse
|
42
|
Llamas A, Tejada-Jiménez M, Fernández E, Galván A. Molybdenum metabolism in the alga Chlamydomonas stands at the crossroad of those in Arabidopsis and humans. Metallomics 2011; 3:578-90. [PMID: 21623427 DOI: 10.1039/c1mt00032b] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Molybdenum (Mo) is a very scarce element whose function is fundamental in living beings within the active site of Mo-oxidoreductases, playing key roles in the metabolism of N, S, purines, hormone biosynthesis, transformation of drugs and xenobiotics, etc. In eukaryotes, each step from Mo acquisition until its incorporation into a biologically active molybdenum cofactor (Moco) together with the assembly of this Moco in Mo-enzymes is almost understood. The deficiency in function of a particular molybdoenzyme can be critical for the survival of the organism dependent on the pathway involved. However, incapacity in forming a functional Moco has a pleiotropic effect in the different processes involving this cofactor. A detailed overview of Mo metabolism: (a) specific transporters for molybdate, (b) the universal biosynthesis pathway for Moco from GTP, (c) Moco-carrier and Moco-binding proteins for Moco transfer and (d) Mo-enzymes, is analyzed in light of recent findings and three systems are compared, the unicellular microalga Chlamydomonas, the plant Arabidopsis and humans.
Collapse
Affiliation(s)
- Angel Llamas
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias, Universidad de Córdoba, Campus de Rabanales, Edif. Severo Ochoa, 14071 Córdoba, Spain.
| | | | | | | |
Collapse
|
43
|
Abstract
Recent progress in our understanding of the structural and catalytic properties of molybdenum-containing enzymes in eukaryotes is reviewed, along with aspects of the biosynthesis of the cofactor and its insertion into apoprotein.
Collapse
Affiliation(s)
- Russ Hille
- Department of Biochemistry, University of California, Riverside, CA 92521
| | - Takeshi Nishino
- Department of Biochemistry and Molecular Biology, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, Japan and Department of Biochemistry, University of California, Riverside, CA 92521
| | - Florian Bittner
- Department of Plant Biology, Technical University of Braunschweig, 38023 Braunschweig, Germany
| |
Collapse
|
44
|
Garattini E, Terao M. Increasing recognition of the importance of aldehyde oxidase in drug development and discovery. Drug Metab Rev 2011; 43:374-86. [DOI: 10.3109/03602532.2011.560606] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
45
|
Terao M, Fratelli M, Kurosaki M, Zanetti A, Guarnaccia V, Paroni G, Tsykin A, Lupi M, Gianni M, Goodall GJ, Garattini E. Induction of miR-21 by retinoic acid in estrogen receptor-positive breast carcinoma cells: biological correlates and molecular targets. J Biol Chem 2010; 286:4027-42. [PMID: 21131358 DOI: 10.1074/jbc.m110.184994] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Retinoids are promising agents for the treatment/prevention of breast carcinoma. We examined the role of microRNAs in mediating the effects of all-trans-retinoic acid (ATRA), which suppresses the proliferation of estrogen receptor-positive (ERα(+)) breast carcinoma cells, such as MCF-7, but not estrogen receptor-negative cells, such as MDA-MB-231. We found that pro-oncogenic miR-21 is selectively induced by ATRA in ERα(+) cells. Induction of miR-21 counteracts the anti-proliferative action of ATRA but has the potentially beneficial effect of reducing cell motility. In ERα(+) cells, retinoid-dependent induction of miR-21 is due to increased transcription of the MIR21 gene via ligand-dependent activation of the nuclear retinoid receptor, RARα. RARα is part of the transcription complex present in the 5'-flanking region of the MIR21 gene. The receptor binds to two functional retinoic acid-responsive elements mapping upstream of the transcription initiation site. Silencing of miR-21 enhances ATRA-dependent growth inhibition and senescence while reverting suppression of cell motility afforded by the retinoid. Up-regulation of miR-21 results in retinoid-dependent inhibition of the established target, maspin. Knockdown and overexpression of maspin in MCF-7 cells indicates that the protein is involved in ATRA-induced growth inhibition and contributes to the ATRA-dependent anti-motility responses. Integration between whole genome analysis of genes differentially regulated by ATRA in MCF-7 and MDA-MB-231 cells, prediction of miR-21 regulated genes, and functional studies led to the identification of three novel direct miR-21 targets: the pro-inflammatory cytokine IL1B, the adhesion molecule ICAM-1 and PLAT, the tissue-type plasminogen activator. Evidence for ICAM-1 involvement in retinoid-dependent inhibition of MCF-7 cell motility is provided.
Collapse
Affiliation(s)
- Mineko Terao
- Laboratory of Molecular Biology, Istituto di Ricerche Farmacologiche Mario Negri, 20156 Milano, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Sheftel A, Stehling O, Lill R. Iron-sulfur proteins in health and disease. Trends Endocrinol Metab 2010; 21:302-14. [PMID: 20060739 DOI: 10.1016/j.tem.2009.12.006] [Citation(s) in RCA: 144] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2009] [Revised: 12/11/2009] [Accepted: 12/15/2009] [Indexed: 11/29/2022]
Abstract
Iron-sulfur (Fe/S) proteins are a class of ubiquitous components that assist in vital and diverse biochemical tasks in virtually every living cell. These tasks include respiration, iron homeostasis and gene expression. The past decade has led to the discovery of novel Fe/S proteins and insights into how their Fe/S cofactors are formed and incorporated into apoproteins. This review summarizes our current knowledge of mammalian Fe/S proteins, diseases related to deficiencies in these proteins and on disorders stemming from their defective biogenesis. Understanding both the physiological functions of Fe/S proteins and how Fe/S clusters are formed will undoubtedly enhance our ability to identify and treat known disorders of Fe/S cluster biogenesis and to recognize hitherto undescribed Fe/S cluster-related diseases.
Collapse
Affiliation(s)
- Alex Sheftel
- Institut für Zytobiologie, Philipps-Universität Marburg, Robert-Koch-Strasse 6, D-35033 Marburg, Germany
| | | | | |
Collapse
|
47
|
Abstract
Aldehyde oxidases (EC 1.2.3.1) are a small group of structurally conserved cytosolic proteins represented in both the animal and plant kingdoms. In vertebrates, aldehyde oxidases constitute the small sub-family of molybdo-flavoenzymes, along with the evolutionarily and structurally related protein, xanthine oxidoreductase. These enzymes require a molybdo-pterin cofactor (molybdenum cofactor, MoCo) and flavin adenine dinucleotide for their catalytic activity. Aldehyde oxidases have broad substrate specificity and catalyse the hydroxylation of N-heterocycles and the oxidation of aldehydes to the corresponding acid. In humans, a single aldehyde oxidase gene (AOX1) and two pseudogenes clustering on a short stretch of chromosome 2q are known. In other mammals, a variable number of structurally conserved aldehyde oxidase genes has been described. Four genes (Aox1, Aox3, Aox4 and Aox3l1), coding for an equivalent number of catalytically active enzymes, are present in the mouse and rat genomes. Although human AOX1 and its homologous proteins are best known as drug metabolising enzymes, the physiological substrate(s) and function(s) are as yet unknown. The present paper provides an update of the available information on the evolutionary history, tissue- and cell-specific distribution and function of mammalian aldehyde oxidases.
Collapse
Affiliation(s)
- Enrico Garattini
- Laboratory of Molecular Biology, Department of Biochemistry and Molecular Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri, via La Masa 19, 20156 Milano, Italy.
| | | | | |
Collapse
|
48
|
Alfaro JF, Joswig-Jones CA, Ouyang W, Nichols J, Crouch GJ, Jones JP. Purification and mechanism of human aldehyde oxidase expressed in Escherichia coli. Drug Metab Dispos 2009; 37:2393-8. [PMID: 19741035 PMCID: PMC2784701 DOI: 10.1124/dmd.109.029520] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2009] [Accepted: 09/02/2009] [Indexed: 12/16/2022] Open
Abstract
Human aldehyde oxidase 1 (AOX1) has been subcloned into a vector suitable for expression in Escherichia coli, and the protein has been expressed. The resulting protein is active, with sulfur being incorporated in the molybdopterin cofactor. Expression levels are modest, but 1 liter of cells supplies enough protein for both biochemical and kinetic characterization. Partial purification is achieved by nickel affinity chromatography through the addition of six histidines to the amino-terminal end of the protein. Kinetic analysis, including kinetic isotope effects and comparison with xanthine oxidase, reveal similar mechanisms, with some subtle differences. This expression system will allow for the interrogation of human aldehyde oxidase structure/function relationships by site-directed mutagenesis and provide protein for characterizing the role of AOX1 in drug metabolism.
Collapse
Affiliation(s)
- Joshua F. Alfaro
- Department of Chemistry, Washington State University, Pullman, Washington
| | | | - Wenyun Ouyang
- Department of Chemistry, Washington State University, Pullman, Washington
| | - Joseph Nichols
- Department of Chemistry, Washington State University, Pullman, Washington
| | - Gregory J. Crouch
- Department of Chemistry, Washington State University, Pullman, Washington
| | - Jeffrey P. Jones
- Department of Chemistry, Washington State University, Pullman, Washington
| |
Collapse
|