1
|
Qiu M, Zhang X, Liao L, Zhang N, Liu M. Regulatory Role of Nfix Gene in Sheep Skeletal Muscle Cell Development and Its Interaction Mechanism with MSTN. Int J Mol Sci 2024; 25:11988. [PMID: 39596059 PMCID: PMC11593348 DOI: 10.3390/ijms252211988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 11/05/2024] [Accepted: 11/07/2024] [Indexed: 11/28/2024] Open
Abstract
Skeletal muscle development is crucial for livestock production, and understanding the molecular mechanisms involved is essential for enhancing muscle growth in sheep. This study aimed to investigate the role of Nfix, a member of the nuclear factor I (NFI) family, in regulating muscle development in sheep, filling a significant gap in the current understanding of Nfix deficiency and its impact on skeletal muscle growth, as no similar studies have been reported in this species. Bioinformatic analysis, including temporal analysis of transcriptome data, identified Nfix as a potential target gene for muscle growth regulation. The effects of Nfix overexpression and knockout on the proliferation and differentiation of sheep skeletal muscle cells were investigated. Changes in the expression of associated marker genes were assessed to explore the regulatory link between Nfix and the myostatin (MSTN) gene. Additionally, target miRNAs for Nfix and MSTN were predicted using online databases such as miRWalk, resulting in the construction of an Nfix-miRNA-MSTN interactive regulatory network. The findings revealed that Nfix promotes the proliferation and differentiation of sheep skeletal muscle cells, with further analysis indicating that Nfix may regulate muscle cell development by modulating MSTN expression. This study provides preliminary insights into the function of Nfix in sheep skeletal muscle development and its regulatory interactions, addressing a critical knowledge gap regarding Nfix deficiency and its implications for muscle growth. These findings contribute to a better understanding of muscle biology in sheep and provide a theoretical foundation for future research into the regulatory mechanisms governing muscle development.
Collapse
Affiliation(s)
- Meiyu Qiu
- Institute of Biotechnology, Xinjiang Academy of Animal Science, Xinjiang Key Laboratory of Animal Biotechnology, Urumqi 830026, China
| | - Xuemei Zhang
- Institute of Biotechnology, Xinjiang Academy of Animal Science, Xinjiang Key Laboratory of Animal Biotechnology, Urumqi 830026, China
| | - Li Liao
- Institute of Biotechnology, Xinjiang Academy of Animal Science, Xinjiang Key Laboratory of Animal Biotechnology, Urumqi 830026, China
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China
| | - Ning Zhang
- Institute of Biotechnology, Xinjiang Academy of Animal Science, Xinjiang Key Laboratory of Animal Biotechnology, Urumqi 830026, China
| | - Mingjun Liu
- Institute of Biotechnology, Xinjiang Academy of Animal Science, Xinjiang Key Laboratory of Animal Biotechnology, Urumqi 830026, China
| |
Collapse
|
2
|
Lu F, Zhang S, Dong S, Wang M, Pang K, Zhao Y, Huang J, Kang J, Liu N, Zhang X, Zhao D, Lu F, Zhang W. Exogenous hydrogen sulfide enhances myogenic differentiation of C2C12 myoblasts under high palmitate stress. Heliyon 2024; 10:e38661. [PMID: 39416846 PMCID: PMC11481675 DOI: 10.1016/j.heliyon.2024.e38661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/03/2024] [Accepted: 09/26/2024] [Indexed: 10/19/2024] Open
Abstract
Skeletal muscle atrophy was one of main complications of type 2 diabetes mellitus. Hydrogen sulfide (H2S) is involved in various physiological functions, such as anti-hypertension and anti-oxidant. Skeletal muscle atrophy caused by type 2 diabetes could lead to the regeneration of muscle fibers. Wnt signaling pathway plays a crucial important role in this process. H2S maybe regulate the Wnt signaling pathway to alleviate skeletal muscle atrophy, however, this role has not been clarified. The aim of this study is to investigate the potential regulatory role of H2S in the Wnt signaling pathway. C2C12 myoblasts treated with 500 μmol palmitate as an in vitro model. Western blot was used to detect the levels of CSE, PKM1, β-catenin, MuRF1, MYOG, MYF6 and MYOD1. In addition, MuRF1 was mutated at Cys44 and MuRF1 S-sulfhydration was detected by biotin switch assay. The interaction between PKM1 and MuRF1 was assessed via Co-immunoprecipitation. Differentiation of C2C12 myoblasts was evaluated using LAMININ staining. These data showed the levels of CSE, β-catenin, PKM1, MYOG, MYF6 and MYOD1 were decreased in pal group, compared with control and pal + NaHS groups. MuRF1 Cys44 mutants increased the protein levels of β-catenin, MYOG, MYF6 and MYOD1 in pal group. Our results suggest that H2S regulates the S-sulfhydration levels of MuRF1 at Cys44, influencing the ubiquitination levels of PKM1 and ultimately promoting myoblast differentiation.
Collapse
Affiliation(s)
- Fangping Lu
- Department of Pathophysiology, Harbin Medical University, Harbin, China
- Department of Pathophysiology, Mudanjiang Medical University, Mudanjiang, China
| | - Shiwu Zhang
- Department of Pathophysiology, Harbin Medical University, Harbin, China
| | - Shiyun Dong
- Department of Pathophysiology, Harbin Medical University, Harbin, China
| | - Mengyi Wang
- Department of Pathophysiology, Harbin Medical University, Harbin, China
| | - Kemiao Pang
- Department of Pathophysiology, Harbin Medical University, Harbin, China
| | - Yajun Zhao
- Department of Pathophysiology, Harbin Medical University, Harbin, China
| | - Jiayi Huang
- Department of Pathophysiology, Harbin Medical University, Harbin, China
| | - Jiaxin Kang
- Department of Pathophysiology, Harbin Medical University, Harbin, China
| | - Ning Liu
- Department of Pathophysiology, Harbin Medical University, Harbin, China
| | - Xueya Zhang
- Department of Pathophysiology, Harbin Medical University, Harbin, China
| | - Dechao Zhao
- Department of Cardiology, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Fanghao Lu
- Department of Pathophysiology, Harbin Medical University, Harbin, China
| | - Weihua Zhang
- Department of Pathophysiology, Harbin Medical University, Harbin, China
| |
Collapse
|
3
|
Gumede DB, Abrahamse H, Houreld NN. Targeting Wnt/β-catenin signaling and its interplay with TGF-β and Notch signaling pathways for the treatment of chronic wounds. Cell Commun Signal 2024; 22:244. [PMID: 38671406 PMCID: PMC11046856 DOI: 10.1186/s12964-024-01623-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 04/20/2024] [Indexed: 04/28/2024] Open
Abstract
Wound healing is a tightly regulated process that ensures tissue repair and normal function following injury. It is modulated by activation of pathways such as the transforming growth factor-beta (TGF-β), Notch, and Wnt/β-catenin signaling pathways. Dysregulation of this process causes poor wound healing, which leads to tissue fibrosis and ulcerative wounds. The Wnt/β-catenin pathway is involved in all phases of wound healing, primarily in the proliferative phase for formation of granulation tissue. This review focuses on the role of the Wnt/β-catenin signaling pathway in wound healing, and its transcriptional regulation of target genes. The crosstalk between Wnt/β-catenin, Notch, and the TGF-β signaling pathways, as well as the deregulation of Wnt/β-catenin signaling in chronic wounds are also considered, with a special focus on diabetic ulcers. Lastly, we discuss current and prospective therapies for chronic wounds, with a primary focus on strategies that target the Wnt/β-catenin signaling pathway such as photobiomodulation for healing diabetic ulcers.
Collapse
Affiliation(s)
- Dimakatso B Gumede
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein, 2028, South Africa
| | - Heidi Abrahamse
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein, 2028, South Africa
| | - Nicolette N Houreld
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein, 2028, South Africa.
| |
Collapse
|
4
|
Han JH, Jang SW, Kim YR, Jang H, Shim KS, Choi HW. The fibronectin concentration that optimally maintains porcine satellite cells. Anim Biosci 2023; 36:1889-1897. [PMID: 37592381 PMCID: PMC10623030 DOI: 10.5713/ab.23.0108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/31/2023] [Accepted: 06/26/2023] [Indexed: 08/19/2023] Open
Abstract
OBJECTIVE 'Cultured meat' has been suggested as means of solving the problems associated with overpopulation and gas emissions. Satellite cells are a major component in the production of cultured meat; however, these cells cannot be maintained in vitro over long periods. Fibronectin is a glycoprotein that affects biological processes such as cell adhesion, differentiation, and migration. Unfortunately, the characteristics of porcine satellite cells grown in a long-term culture when exposed to fibronectin-coated dishes are unknown. The objective of this study was to investigate the appropriate concentration of fibronectin coated dishes for proliferation and maintenance of porcine satellite cells at long-term culture. METHODS In this study, we isolated the satellite cells and fibroblast cells with pre-plating method. We next analyzed the cell doubling time, cell cycle, and rate of expressed paired box 7 (Pax7) and myogenic differentiation 1 (MyoD1) in porcine satellite cells cultured with 20 μg/mL of fibronectin-, gelatin-, and non-coated dishes at early and late passage. We then analyzed the proliferation of porcine satellite cells with various concentrations of mixed gelatin/fibronectin. We next determined the optimal concentration of fibronectin that would encourage proliferation and maintenance of porcine satellite cells in a long-term culture. RESULTS Doubling time was lowest when 20 μg/mL of fibronectin was used (as tested during an early and late passage). Levels of expressed Pax7 and MyoD1, assessed using immunocytochemistry, were highest in cells grown using fibronectin-coated dishes. The proliferation of gelatin/fibronectin mixed coatings had no significant effect on porcine satellite cells. The concentration of 5 μg/mL fibronectin coated dishes showed the lowest doubling time and maintained expression of Pax7. CONCLUSION Fibronectin with 5μg/mL effectively maintains porcine satellite cells, a discovery that will be of interest to those developing the next generation of artificial meats.
Collapse
Affiliation(s)
- Jae Ho Han
- Department of Agricultural Convergence Technology, Jeonbuk National University, Jeonju 54896,
Korea
| | - Si Won Jang
- Department of Agricultural Convergence Technology, Jeonbuk National University, Jeonju 54896,
Korea
| | - Ye Rim Kim
- Department of Animal Science, Jeonbuk National University, Jeonju 54896,
Korea
| | - Hoon Jang
- Department of Life Science, Jeonbuk National University, Jeonju 54896,
Korea
| | - Kwan Seob Shim
- Department of Agricultural Convergence Technology, Jeonbuk National University, Jeonju 54896,
Korea
- Department of Animal Biotechnology, Jeonbuk National University, Jeonju 54896,
Korea
| | - Hyun Woo Choi
- Department of Agricultural Convergence Technology, Jeonbuk National University, Jeonju 54896,
Korea
- Department of Animal Science, Jeonbuk National University, Jeonju 54896,
Korea
| |
Collapse
|
5
|
Manfreda L, Rampazzo E, Persano L. Wnt Signaling in Brain Tumors: A Challenging Therapeutic Target. BIOLOGY 2023; 12:biology12050729. [PMID: 37237541 DOI: 10.3390/biology12050729] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/12/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023]
Abstract
The involvement of Wnt signaling in normal tissue homeostasis and disease has been widely demonstrated over the last 20 years. In particular, dysregulation of Wnt pathway components has been suggested as a relevant hallmark of several neoplastic malignancies, playing a role in cancer onset, progression, and response to treatments. In this review, we summarize the current knowledge on the instructions provided by Wnt signaling during organogenesis and, particularly, brain development. Moreover, we recapitulate the most relevant mechanisms through which aberrant Wnt pathway activation may impact on brain tumorigenesis and brain tumor aggressiveness, with a particular focus on the mutual interdependency existing between Wnt signaling components and the brain tumor microenvironment. Finally, the latest anti-cancer therapeutic approaches employing the specific targeting of Wnt signaling are extensively reviewed and discussed. In conclusion, here we provide evidence that Wnt signaling, due to its pleiotropic involvement in several brain tumor features, may represent a relevant target in this context, although additional efforts will be needed to: (i) demonstrate the real clinical impact of Wnt inhibition in these tumors; (ii) overcome some still unsolved concerns about the potential systemic effects of such approaches; (iii) achieve efficient brain penetration.
Collapse
Affiliation(s)
- Lorenzo Manfreda
- Department of Women and Children's Health, University of Padova, Via Giustininani, 3, 35128 Padova, Italy
- Pediatric Research Institute, Corso Stati Uniti, 4, 35127 Padova, Italy
| | - Elena Rampazzo
- Department of Women and Children's Health, University of Padova, Via Giustininani, 3, 35128 Padova, Italy
- Pediatric Research Institute, Corso Stati Uniti, 4, 35127 Padova, Italy
| | - Luca Persano
- Department of Women and Children's Health, University of Padova, Via Giustininani, 3, 35128 Padova, Italy
- Pediatric Research Institute, Corso Stati Uniti, 4, 35127 Padova, Italy
| |
Collapse
|
6
|
Bomkamp C, Musgrove L, Marques DMC, Fernando GF, Ferreira FC, Specht EA. Differentiation and Maturation of Muscle and Fat Cells in Cultivated Seafood: Lessons from Developmental Biology. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2023; 25:1-29. [PMID: 36374393 PMCID: PMC9931865 DOI: 10.1007/s10126-022-10174-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
Cultivated meat, also known as cultured or cell-based meat, is meat produced directly from cultured animal cells rather than from a whole animal. Cultivated meat and seafood have been proposed as a means of mitigating the substantial harms associated with current production methods, including damage to the environment, antibiotic resistance, food security challenges, poor animal welfare, and-in the case of seafood-overfishing and ecological damage associated with fishing and aquaculture. Because biomedical tissue engineering research, from which cultivated meat draws a great deal of inspiration, has thus far been conducted almost exclusively in mammals, cultivated seafood suffers from a lack of established protocols for producing complex tissues in vitro. At the same time, fish such as the zebrafish Danio rerio have been widely used as model organisms in developmental biology. Therefore, many of the mechanisms and signaling pathways involved in the formation of muscle, fat, and other relevant tissue are relatively well understood for this species. The same processes are understood to a lesser degree in aquatic invertebrates. This review discusses the differentiation and maturation of meat-relevant cell types in aquatic species and makes recommendations for future research aimed at recapitulating these processes to produce cultivated fish and shellfish.
Collapse
Affiliation(s)
- Claire Bomkamp
- Department of Science & Technology, The Good Food Institute, Washington, DC USA
| | - Lisa Musgrove
- University of the Sunshine Coast, Sippy Downs, Queensland Australia
| | - Diana M. C. Marques
- Department of Bioengineering and Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Gonçalo F. Fernando
- Department of Science & Technology, The Good Food Institute, Washington, DC USA
| | - Frederico C. Ferreira
- Department of Bioengineering and Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Elizabeth A. Specht
- Department of Science & Technology, The Good Food Institute, Washington, DC USA
| |
Collapse
|
7
|
Park J, Choi H, Shim K. Inhibition of GSK3β Promotes Proliferation and Suppresses Apoptosis of Porcine Muscle Satellite Cells. Animals (Basel) 2022; 12:ani12233328. [PMID: 36496849 PMCID: PMC9738253 DOI: 10.3390/ani12233328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/17/2022] [Accepted: 11/23/2022] [Indexed: 12/03/2022] Open
Abstract
As the global population increases, interest in cultured meat (a new research field) is gradually increasing. The main raw material for the production of cultured meat is muscle stem cells called satellite cells isolated from livestock. However, how to mass proliferate and maintain satellite cells in vitro without genetic manipulation remains unclear. In the present study, we isolated and purified porcine muscle satellite cells (PMSCs) from the femur of a 1-day-old piglet and cultured PMSCs by treating them with an inhibitor (XAV939, Tankyrase (TNKS) inhibitor) or an activator (CHIR99021, glycogen synthase kinase 3 beta (GSK3β) inhibitor) of Wnt signaling. The CHIR group treated with 3 μM CHIR99021 showed a significantly increased proliferation rate of PMSCs compared to the SC group (control), whereas the XAV group treated with 1 μM XAV939 showed a significantly decreased proliferation rate of PMSCs. CHIR99021 also inhibited the differentiation of PMSCs by reducing the expression of MyoD while maintaining the expression of Pax7 and suppressed apoptosis by regulating the expression of apoptosis-related proteins and genes. RNA sequencing was performed to obtain gene expression profiles following inhibition or activation of the Wnt signaling pathway and various signaling mechanisms related to the maintenance of satellite cells were identified. Our results suggest that inhibition of GSK3β could dramatically improve the maintenance and mass proliferation ability of PMSCs in vitro by regulating the expression of myogenic markers and the cell cycle.
Collapse
Affiliation(s)
- Jinryong Park
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
- 3D Tissue Culture Research Center, Konkuk University, Seoul 05029, Republic of Korea
| | - Hyunwoo Choi
- Department of Animal Science, Jeonbuk National University, Jeonju 54896, Republic of Korea
- Department of Agricultural Convergence Technology, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Kwanseob Shim
- Department of Agricultural Convergence Technology, Jeonbuk National University, Jeonju 54896, Republic of Korea
- Department of Animal Biotechnology, Jeonbuk National University, Jeonju 54896, Republic of Korea
- Correspondence: ; Tel.: +82-063-270-2609
| |
Collapse
|
8
|
Optineurin promotes myogenesis during muscle regeneration in mice by autophagic degradation of GSK3β. PLoS Biol 2022; 20:e3001619. [PMID: 35476671 DOI: 10.1371/journal.pbio.3001619] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 05/09/2022] [Accepted: 04/04/2022] [Indexed: 01/18/2023] Open
Abstract
Skeletal muscle regeneration is essential for maintaining muscle function in injury and muscular disease. Myogenesis plays key roles in forming new myofibers during the process. Here, through bioinformatic screen for the potential regulators of myogenesis from 5 independent microarray datasets, we identify an overlapping differentially expressed gene (DEG) optineurin (OPTN). Optn knockdown (KD) delays muscle regeneration in mice and impairs C2C12 myoblast differentiation without affecting their proliferation. Conversely, Optn overexpression (OE) promotes myoblast differentiation. Mechanistically, OPTN increases nuclear levels of β-catenin and enhances the T-cell factor/lymphoid enhancer factor (TCF/LEF) transcription activity, suggesting activation of Wnt signaling pathway. The activation is accompanied by decreased protein levels of glycogen synthase kinase 3β (GSK3β), a negative regulator of the pathway. We further show that OPTN physically interacts with and targets GSK3β for autophagic degradation. Pharmacological inhibition of GSK3β rescues the impaired myogenesis induced by Optn KD during muscle regeneration and myoblast differentiation, corroborating that GSK3β is the downstream effector of OPTN-mediated myogenesis. Together, our study delineates the novel role of OPTN as a potential regulator of myogenesis and may open innovative therapeutic perspectives for muscle regeneration.
Collapse
|
9
|
Abstract
The Wnt pathway is central to a host of developmental and disease-related processes. The remarkable conservation of this intercellular signaling cascade throughout metazoan lineages indicates that it coevolved with multicellularity to regulate the generation and spatial arrangement of distinct cell types. By regulating cell fate specification, mitotic activity, and cell polarity, Wnt signaling orchestrates development and tissue homeostasis, and its dysregulation is implicated in developmental defects, cancer, and degenerative disorders. We review advances in our understanding of this key pathway, from Wnt protein production and secretion to relay of the signal in the cytoplasm of the receiving cell. We discuss the evolutionary history of this pathway as well as endogenous and synthetic modulators of its activity. Finally, we highlight remaining gaps in our knowledge of Wnt signal transduction and avenues for future research. Expected final online publication date for the Annual Review of Biochemistry, Volume 91 is June 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Ellen Youngsoo Rim
- Howard Hughes Medical Institute, Department of Developmental Biology, and Institute for Stem Cell Biology and Regenerative Medicine, School of Medicine, Stanford University, Stanford, California, USA;
| | - Hans Clevers
- Hubrecht Institute and Oncode Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), Utrecht, The Netherlands
| | - Roel Nusse
- Howard Hughes Medical Institute, Department of Developmental Biology, and Institute for Stem Cell Biology and Regenerative Medicine, School of Medicine, Stanford University, Stanford, California, USA;
| |
Collapse
|
10
|
Giralt I, Gallo-Oller G, Navarro N, Zarzosa P, Pons G, Magdaleno A, Segura MF, Sábado C, Hladun R, Arango D, Sánchez de Toledo J, Moreno L, Gallego S, Roma J. Dickkopf-1 Inhibition Reactivates Wnt/β-Catenin Signaling in Rhabdomyosarcoma, Induces Myogenic Markers In Vitro and Impairs Tumor Cell Survival In Vivo. Int J Mol Sci 2021; 22:12921. [PMID: 34884726 PMCID: PMC8657544 DOI: 10.3390/ijms222312921] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/24/2021] [Accepted: 11/26/2021] [Indexed: 12/18/2022] Open
Abstract
The Wnt/β-catenin signaling pathway plays a pivotal role during embryogenesis and its deregulation is a key mechanism in the origin and progression of several tumors. Wnt antagonists have been described as key modulators of Wnt/β-catenin signaling in cancer, with Dickkopf-1 (DKK-1) being the most studied member of the DKK family. Although the therapeutic potential of DKK-1 inhibition has been evaluated in several diseases and malignancies, little is known in pediatric tumors. Only a few works have studied the genetic inhibition and function of DKK-1 in rhabdomyosarcoma. Here, for the first time, we report the analysis of the therapeutic potential of DKK-1 pharmaceutical inhibition in rhabdomyosarcoma, the most common soft tissue sarcoma in children. We performed DKK-1 inhibition via shRNA technology and via the chemical inhibitor WAY-2626211. Its inhibition led to β-catenin activation and the modulation of focal adhesion kinase (FAK), with positive effects on in vitro expression of myogenic markers and a reduction in proliferation and invasion. In addition, WAY-262611 was able to impair survival of tumor cells in vivo. Therefore, DKK-1 could constitute a molecular target, which could lead to novel therapeutic strategies in RMS, especially in those patients with high DKK-1 expression.
Collapse
Affiliation(s)
- Irina Giralt
- Laboratory of Translational Research in Child and Adolescent Cancer, Vall d’Hebron Research Institute, Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (I.G.); (G.G.-O.); (N.N.); (P.Z.); (G.P.); (A.M.); (M.F.S.); (J.S.d.T.); (L.M.)
| | - Gabriel Gallo-Oller
- Laboratory of Translational Research in Child and Adolescent Cancer, Vall d’Hebron Research Institute, Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (I.G.); (G.G.-O.); (N.N.); (P.Z.); (G.P.); (A.M.); (M.F.S.); (J.S.d.T.); (L.M.)
| | - Natalia Navarro
- Laboratory of Translational Research in Child and Adolescent Cancer, Vall d’Hebron Research Institute, Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (I.G.); (G.G.-O.); (N.N.); (P.Z.); (G.P.); (A.M.); (M.F.S.); (J.S.d.T.); (L.M.)
| | - Patricia Zarzosa
- Laboratory of Translational Research in Child and Adolescent Cancer, Vall d’Hebron Research Institute, Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (I.G.); (G.G.-O.); (N.N.); (P.Z.); (G.P.); (A.M.); (M.F.S.); (J.S.d.T.); (L.M.)
| | - Guillem Pons
- Laboratory of Translational Research in Child and Adolescent Cancer, Vall d’Hebron Research Institute, Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (I.G.); (G.G.-O.); (N.N.); (P.Z.); (G.P.); (A.M.); (M.F.S.); (J.S.d.T.); (L.M.)
| | - Ainara Magdaleno
- Laboratory of Translational Research in Child and Adolescent Cancer, Vall d’Hebron Research Institute, Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (I.G.); (G.G.-O.); (N.N.); (P.Z.); (G.P.); (A.M.); (M.F.S.); (J.S.d.T.); (L.M.)
| | - Miguel F. Segura
- Laboratory of Translational Research in Child and Adolescent Cancer, Vall d’Hebron Research Institute, Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (I.G.); (G.G.-O.); (N.N.); (P.Z.); (G.P.); (A.M.); (M.F.S.); (J.S.d.T.); (L.M.)
| | - Constantino Sábado
- Pediatric Oncology and Hematology Department, Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (C.S.); (R.H.)
| | - Raquel Hladun
- Pediatric Oncology and Hematology Department, Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (C.S.); (R.H.)
| | - Diego Arango
- Group of Molecular Oncology, IRB Lleida, 25198 Lleida, Spain;
| | - José Sánchez de Toledo
- Laboratory of Translational Research in Child and Adolescent Cancer, Vall d’Hebron Research Institute, Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (I.G.); (G.G.-O.); (N.N.); (P.Z.); (G.P.); (A.M.); (M.F.S.); (J.S.d.T.); (L.M.)
| | - Lucas Moreno
- Laboratory of Translational Research in Child and Adolescent Cancer, Vall d’Hebron Research Institute, Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (I.G.); (G.G.-O.); (N.N.); (P.Z.); (G.P.); (A.M.); (M.F.S.); (J.S.d.T.); (L.M.)
- Pediatric Oncology and Hematology Department, Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (C.S.); (R.H.)
| | - Soledad Gallego
- Laboratory of Translational Research in Child and Adolescent Cancer, Vall d’Hebron Research Institute, Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (I.G.); (G.G.-O.); (N.N.); (P.Z.); (G.P.); (A.M.); (M.F.S.); (J.S.d.T.); (L.M.)
- Pediatric Oncology and Hematology Department, Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (C.S.); (R.H.)
| | - Josep Roma
- Laboratory of Translational Research in Child and Adolescent Cancer, Vall d’Hebron Research Institute, Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (I.G.); (G.G.-O.); (N.N.); (P.Z.); (G.P.); (A.M.); (M.F.S.); (J.S.d.T.); (L.M.)
| |
Collapse
|
11
|
Abou Azar F, Lim GE. Metabolic Contributions of Wnt Signaling: More Than Controlling Flight. Front Cell Dev Biol 2021; 9:709823. [PMID: 34568323 PMCID: PMC8458764 DOI: 10.3389/fcell.2021.709823] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 08/16/2021] [Indexed: 12/12/2022] Open
Abstract
The canonical Wnt signaling pathway is ubiquitous throughout the body and influences a diverse array of physiological processes. Following the initial discovery of the Wnt signaling pathway during wing development in Drosophila melanogaster, it is now widely appreciated that active Wnt signaling in mammals is necessary for the development and growth of various tissues involved in whole-body metabolism, such as brain, liver, pancreas, muscle, and adipose. Moreover, elegant gain- and loss-of-function studies have dissected the tissue-specific roles of various downstream effector molecules in the regulation of energy homeostasis. This review attempts to highlight and summarize the contributions of the Wnt signaling pathway and its downstream effectors on whole-body metabolism and their influence on the development of metabolic diseases, such as diabetes and obesity. A better understanding of the Wnt signaling pathway in these tissues may aid in guiding the development of future therapeutics to treat metabolic diseases.
Collapse
Affiliation(s)
- Frederic Abou Azar
- Department of Medicine, Université de Montréal, Montreal, QC, Canada.,Cardiometabolic Axis, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, Canada
| | - Gareth E Lim
- Department of Medicine, Université de Montréal, Montreal, QC, Canada.,Cardiometabolic Axis, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, Canada
| |
Collapse
|
12
|
Söderholm S, Cantù C. The WNT/β‐catenin dependent transcription: A tissue‐specific business. WIREs Mech Dis 2020; 13:e1511. [PMID: 33085215 PMCID: PMC9285942 DOI: 10.1002/wsbm.1511] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/24/2020] [Accepted: 09/25/2020] [Indexed: 12/11/2022]
Abstract
β‐catenin‐mediated Wnt signaling is an ancient cell‐communication pathway in which β‐catenin drives the expression of certain genes as a consequence of the trigger given by extracellular WNT molecules. The events occurring from signal to transcription are evolutionarily conserved, and their final output orchestrates countless processes during embryonic development and tissue homeostasis. Importantly, a dysfunctional Wnt/β‐catenin pathway causes developmental malformations, and its aberrant activation is the root of several types of cancer. A rich literature describes the multitude of nuclear players that cooperate with β‐catenin to generate a transcriptional program. However, a unified theory of how β‐catenin drives target gene expression is still missing. We will discuss two types of β‐catenin interactors: transcription factors that allow β‐catenin to localize at target regions on the DNA, and transcriptional co‐factors that ultimately activate gene expression. In contrast to the presumed universality of β‐catenin's action, the ensemble of available evidence suggests a view in which β‐catenin drives a complex system of responses in different cells and tissues. A malleable armamentarium of players might interact with β‐catenin in order to activate the right “canonical” targets in each tissue, developmental stage, or disease context. Discovering the mechanism by which each tissue‐specific β‐catenin response is executed will be crucial to comprehend how a seemingly universal pathway fosters a wide spectrum of processes during development and homeostasis. Perhaps more importantly, this could ultimately inform us about which are the tumor‐specific components that need to be targeted to dampen the activity of oncogenic β‐catenin. This article is categorized under:Cancer > Molecular and Cellular Physiology Cancer > Genetics/Genomics/Epigenetics Cancer > Stem Cells and Development
Collapse
Affiliation(s)
- Simon Söderholm
- Wallenberg Centre for Molecular Medicine Linköping University Linköping Sweden
- Department of Biomedical and Clinical Sciences, Division of Molecular Medicine and Virology, Faculty of Health Science Linköping University Linköping Sweden
| | - Claudio Cantù
- Wallenberg Centre for Molecular Medicine Linköping University Linköping Sweden
- Department of Biomedical and Clinical Sciences, Division of Molecular Medicine and Virology, Faculty of Health Science Linköping University Linköping Sweden
| |
Collapse
|
13
|
Trentesaux C, Striedinger K, Pomerantz JH, Klein OD. From gut to glutes: The critical role of niche signals in the maintenance and renewal of adult stem cells. Curr Opin Cell Biol 2020; 63:88-101. [PMID: 32036295 PMCID: PMC7247951 DOI: 10.1016/j.ceb.2020.01.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 12/17/2019] [Accepted: 01/07/2020] [Indexed: 02/07/2023]
Abstract
Stem cell behavior is tightly regulated by spatiotemporal signaling from the niche, which is a four-dimensional microenvironment that can instruct stem cells to remain quiescent, self-renew, proliferate, or differentiate. In this review, we discuss recent advances in understanding the signaling cues provided by the stem cell niche in two contrasting adult tissues, the rapidly cycling intestinal epithelium and the slowly renewing skeletal muscle. Drawing comparisons between these two systems, we discuss the effects of niche-derived growth factors and signaling molecules, metabolic cues, the extracellular matrix and biomechanical cues, and immune signals on stem cells. We also discuss the influence of the niche in defining stem cell identity and function in both normal and pathophysiologic states.
Collapse
Affiliation(s)
- Coralie Trentesaux
- Program in Craniofacial Biology and Department of Orofacial Sciences, University of California, San Francisco, CA, USA
| | - Katharine Striedinger
- Program in Craniofacial Biology and Department of Orofacial Sciences, University of California, San Francisco, CA, USA
| | - Jason H Pomerantz
- Program in Craniofacial Biology and Department of Orofacial Sciences, University of California, San Francisco, CA, USA; Division of Plastic and Reconstructive Surgery, Department of Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Ophir D Klein
- Program in Craniofacial Biology and Department of Orofacial Sciences, University of California, San Francisco, CA, USA; Department of Pediatrics and Institute for Human Genetics, University of California, San Francisco, CA, USA.
| |
Collapse
|
14
|
Welc SS, Wehling-Henricks M, Kuro-o M, Thomas KA, Tidball JG. Modulation of Klotho expression in injured muscle perturbs Wnt signalling and influences the rate of muscle growth. Exp Physiol 2020; 105:132-147. [PMID: 31724771 PMCID: PMC6938556 DOI: 10.1113/ep088142] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
NEW FINDINGS What is the central question of this study? Does modulating the expression of Klotho affect myogenesis following acute injury of healthy, non-senescent muscle? What is the main finding and its importance? Klotho can accelerate muscle growth following acute injury of healthy, adult mice, which supports the possibility that increased delivery of Klotho could have therapeutic value for improving repair of damaged muscle. ABSTRACT Skeletal muscle injuries activate a complex programme of myogenesis that can restore normal muscle structure. We tested whether modulating the expression of klotho influenced the response of mouse muscles to acute injury. Our findings show that klotho expression in muscle declines at 3 days post-injury. That reduction in klotho expression coincided with elevated expression of targets of Wnt signalling (Ccnd1; Myc) and increased MyoD+ muscle cell numbers, reflecting the onset of myogenic cell differentiation. klotho expression subsequently increased at 7 days post-injury with elevated expression occurring primarily in inflammatory lesions, which was accompanied by reduced expression of Wnt target genes (Ccnd1: 91%; Myc: 96%). Introduction of a klotho transgene maintained high levels of klotho expression over the course of muscle repair and attenuated the increases in Ccnd1 and Myc expression that occurred at 3 days post-injury. Correspondingly, transgene expression reduced Wnt signalling in Pax7+ cells, reflected by reductions in Pax7+ cells expressing active β-catenin, and reduced the numbers of MyoD+ cells at 3 days post-injury. At 21 days post-injury, muscles in klotho transgenic mice showed increased Pax7+ and decreased myogenin+ cell densities and large increases in myofibre size. Likewise, treating myogenic cells in vitro with Klotho reduced Myod expression but did not affect Pax7 expression. Muscle inflammation was only slightly modulated by increased klotho expression, initially reducing the expression of M2-biased macrophage markers Cd163 and Cd206 at 3 days post-injury and later increasing the expression of pan-macrophage marker F480 and Cd68 at 21 days post-injury. Collectively, our study shows that Klotho modulates myogenesis and that increased expression accelerates muscle growth after injury.
Collapse
Affiliation(s)
- Steven S. Welc
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA
- Indiana University School of Medicine, 635 Barnhill Drive, MS-332, Indianapolis, IN 46202
| | | | - Makoto Kuro-o
- Division of Anti-Aging Medicine, Center for Molecular Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498, Japan
| | - Kyle A. Thomas
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA
| | - James G. Tidball
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA
- Molecular, Cellular & Integrative Physiology Program, University of California, Los Angeles, CA
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, University of California, Los Angeles, CA
| |
Collapse
|
15
|
Sah JP, Hao NTT, Han X, Tran TTT, McCarthy S, Oh Y, Yoon JK. Ectonucleotide pyrophosphatase 2 (ENPP2) plays a crucial role in myogenic differentiation through the regulation by WNT/β-Catenin signaling. Int J Biochem Cell Biol 2019; 118:105661. [PMID: 31805399 DOI: 10.1016/j.biocel.2019.105661] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 11/28/2019] [Accepted: 11/30/2019] [Indexed: 12/23/2022]
Abstract
Ectonucleotide pyrophosphate phosphodiesterase type II (ENPP2), also known as Autotaxin (ATX), is an enzyme present in blood circulation that converts lysophosphatidyl choline (LPC) to lysophosphatidic acid (LPA). While LPA has been demonstrated to play diverse roles in skeletal myogenesis, mainly through in vitro studies, the role of ENPP2 in skeletal myogenesis has not been determined. We previously found that Enpp2 is induced by a positive WNT/β-Catenin signaling regulator, R-spondin2 (RSPO2), in C2C12 myoblast cells. As RSPO2 promotes myogenic differentiation via the WNT/β-Catenin signaling pathway, we hypothesized that ENPP2 may act as a key mediator for the crosstalk between WNT and LPA signaling during myogenic differentiation. Herein, we found that ENPP2 function is essential for myogenic differentiation in C2C12 cells. Pharmacological ENPP2 inhibitors or RNAi-mediated Enpp2 gene knockdown severely impaired the myogenic differentiation, including the cell fusion process, whereas administration of the recombinant ENPP2 protein enhanced myogenic differentiation. Consistent with the in vitro results, mice lacking the Enpp2 gene showed a disrupted muscle regeneration after acute muscle injury. The size of newly regenerated myofibers in Enpp2 mutant muscle was significantly reduced compared with wild-type regenerated muscle. Modified expression patterns of myogenic markers in Enpp2 mutant muscle further emphasized the impaired muscle regeneration process. Finally, we convincingly demonstrate that the Enpp2 gene is a direct transcriptional target for WNT/β-Catenin signaling. Functional TCF/LEF1 binding sites within the upstream region of Enpp2 gene were identified by chromatin immunoprecipitation using anti-β-Catenin antibodies and reporter assay. Our study reveals that ENPP2 is regulated by WNT/β-Catenin signaling and plays a key positive role in myogenic differentiation.
Collapse
Affiliation(s)
- Jay Prakash Sah
- Soonchunhyang Institute of Medi-Bio Science, Soonchunhyang University, 25 Bongjeong-ro, Dongnam-gu, Cheonan-si, 31151, South Korea; Department of Integrated Biomedical Science, Soonchunhyang University, 25 Bongjeong-ro, Dongnam-gu, Cheonan-si, 31151, South Korea
| | - Nguyen Thi Thu Hao
- Soonchunhyang Institute of Medi-Bio Science, Soonchunhyang University, 25 Bongjeong-ro, Dongnam-gu, Cheonan-si, 31151, South Korea; Department of Integrated Biomedical Science, Soonchunhyang University, 25 Bongjeong-ro, Dongnam-gu, Cheonan-si, 31151, South Korea
| | - Xianghua Han
- Center for Molecular Medicine, Maine Medical Center Research Institute, 81 Research Drive, Scarborough, ME, 04074, USA
| | - Trinh Thi Tuyet Tran
- Soonchunhyang Institute of Medi-Bio Science, Soonchunhyang University, 25 Bongjeong-ro, Dongnam-gu, Cheonan-si, 31151, South Korea; Department of Integrated Biomedical Science, Soonchunhyang University, 25 Bongjeong-ro, Dongnam-gu, Cheonan-si, 31151, South Korea
| | - Sarah McCarthy
- Center for Molecular Medicine, Maine Medical Center Research Institute, 81 Research Drive, Scarborough, ME, 04074, USA
| | - Younjeong Oh
- Soonchunhyang Institute of Medi-Bio Science, Soonchunhyang University, 25 Bongjeong-ro, Dongnam-gu, Cheonan-si, 31151, South Korea
| | - Jeong Kyo Yoon
- Soonchunhyang Institute of Medi-Bio Science, Soonchunhyang University, 25 Bongjeong-ro, Dongnam-gu, Cheonan-si, 31151, South Korea; Department of Integrated Biomedical Science, Soonchunhyang University, 25 Bongjeong-ro, Dongnam-gu, Cheonan-si, 31151, South Korea.
| |
Collapse
|
16
|
Feng X, Wang Z, Wang F, Lu T, Xu J, Ma X, Li J, He L, Zhang W, Li S, Yang W, Zhang S, Ge G, Zhao Y, Hu P, Zhang L. Dual function of VGLL4 in muscle regeneration. EMBO J 2019; 38:e101051. [PMID: 31328806 DOI: 10.15252/embj.2018101051] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 06/17/2019] [Accepted: 06/28/2019] [Indexed: 01/07/2023] Open
Abstract
VGLL4 has previously been identified as a negative regulator of YAP. Here we show that VGLL4 regulates muscle regeneration in both YAP-dependent and YAP-independent manners at different stages. Knockout of VGLL4 in mice leads to smaller myofiber size and defective muscle contraction force. Furthermore, our studies reveal that knockout of VGLL4 results in increased muscle satellite cells proliferation and impaired myoblast differentiation, which ultimately leads to delayed muscle regeneration. Mechanistically, the results show that VGLL4 works as a conventional repressor of YAP at the proliferation stage of muscle regeneration. At the differentiation stage, VGLL4 acts as a co-activator of TEAD4 to promote MyoG transactivation and facilitate the initiation of differentiation in a YAP-independent manner. Moreover, VGLL4 stabilizes the protein-protein interactions between MyoD and TEAD4 to achieve efficient MyoG transactivation. Our findings define the dual roles of VGLL4 in regulating muscle regeneration at different stages and may open novel therapeutic perspectives for muscle regeneration.
Collapse
Affiliation(s)
- Xue Feng
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Zuoyun Wang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Fei Wang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Tiantian Lu
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Jinjin Xu
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Xueyan Ma
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Jinhui Li
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Lingli He
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Wenxiang Zhang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Sheng Li
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Wenjun Yang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Shu Zhang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Gaoxiang Ge
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Yun Zhao
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Ping Hu
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - Lei Zhang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| |
Collapse
|
17
|
Liu D, Li S, Cui Y, Tong H, Li S, Yan Y. Podocan affects C2C12 myogenic differentiation by enhancing Wnt/β-catenin signaling. J Cell Physiol 2019; 234:11130-11139. [PMID: 30652305 DOI: 10.1002/jcp.27763] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Accepted: 10/29/2018] [Indexed: 12/20/2022]
Abstract
Podocan, a small leucine-rich repeat protein, is a negative regulator of cell proliferation. In this study, we demonstrated that podocan is involved in the differentiation of C2C12 murine myoblasts. Podocan expression increased with the progression of C2C12 differentiation. As expect, siRNA-mediated podocan knockdown inhibited C2C12 differentiation, as indicated by inhibition of MYOG, MYH2, and desmin expression, as well as reductions in the differentiation and fusion indices. Overexpression of podocan using dCas9 technology promoted C2C12 cell differentiation. In addition, supplementation of culture medium with podocan influenced C2C12 differentiation. Podocan knockdown reduced Wnt/β-catenin signaling, characterized by a reduction in the nuclear translocation of β-catenin, whereas podocan overexpression had the opposite effect. Furthermore, treatment with XAV939, an inhibitor of Wnt/β-catenin, reduced the podocan-mediated promotion of C2C12 differentiation. Induction of muscle injury in mice by bupivacaine administration suggested that podocan may play a role in muscle regeneration. In summary, our results suggest that podocan is required for normal C2C12 differentiation and that its role in myogenesis is mediated by the Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Dan Liu
- The Laboratory of Cell and Development, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Shuang Li
- The Laboratory of Cell and Development, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Yafeng Cui
- The Laboratory of Cell and Development, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Huili Tong
- The Laboratory of Cell and Development, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Shufeng Li
- The Laboratory of Cell and Development, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Yunqin Yan
- The Laboratory of Cell and Development, Northeast Agricultural University, Harbin, Heilongjiang, China
| |
Collapse
|
18
|
Saleh A, Subramaniam G, Raychaudhuri S, Dhawan J. Cytoplasmic sequestration of the RhoA effector mDiaphanous1 by Prohibitin2 promotes muscle differentiation. Sci Rep 2019; 9:8302. [PMID: 31165762 PMCID: PMC6549159 DOI: 10.1038/s41598-019-44749-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 01/23/2019] [Indexed: 02/06/2023] Open
Abstract
Muscle differentiation is controlled by adhesion and growth factor-dependent signalling through common effectors that regulate muscle-specific transcriptional programs. Here we report that mDiaphanous1, an effector of adhesion-dependent RhoA-signalling, negatively regulates myogenesis at the level of Myogenin expression. In myotubes, over-expression of mDia1ΔN3, a RhoA-independent mutant, suppresses Myogenin promoter activity and expression. We investigated mDia1-interacting proteins that may counteract mDia1 to permit Myogenin expression and timely differentiation. Using yeast two-hybrid and mass-spectrometric analysis, we report that mDia1 has a stage-specific interactome, including Prohibitin2, MyoD, Akt2, and β-Catenin, along with a number of proteosomal and mitochondrial components. Of these interacting partners, Prohibitin2 colocalises with mDia1 in cytoplasmic punctae in myotubes. We mapped the interacting domains of mDia1 and Phb2, and used interacting (mDia1ΔN3/Phb2 FL or mDia1ΔN3/Phb2-Carboxy) and non-interacting pairs (mDia1H + P/Phb2 FL or mDia1ΔN3/Phb2-Amino) to dissect the functional consequences of this partnership on Myogenin promoter activity. Co-expression of full-length as well as mDia1-interacting domains of Prohibitin2 reverse the anti-myogenic effects of mDia1ΔN3, while non-interacting regions do not. Our results suggest that Prohibitin2 sequesters mDia1, dampens its anti-myogenic activity and fine-tunes RhoA-mDia1 signalling to promote differentiation. Overall, we report that mDia1 is multi-functional signalling effector whose anti-myogenic activity is modulated by a differentiation-dependent interactome. The data have been deposited to the ProteomeXchange with identifier PXD012257.
Collapse
Affiliation(s)
- Amena Saleh
- Institute for Stem Cell Science & Regenerative Medicine, Bangalore, Karnataka, 560065, India
- Council of Scientific & Industrial Research -Centre for Cellular & Molecular Biology, Hyderabad, Telangana, 500007, India
- Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Gunasekaran Subramaniam
- Council of Scientific & Industrial Research -Centre for Cellular & Molecular Biology, Hyderabad, Telangana, 500007, India
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT, UK
| | - Swasti Raychaudhuri
- Council of Scientific & Industrial Research -Centre for Cellular & Molecular Biology, Hyderabad, Telangana, 500007, India
| | - Jyotsna Dhawan
- Institute for Stem Cell Science & Regenerative Medicine, Bangalore, Karnataka, 560065, India.
- Council of Scientific & Industrial Research -Centre for Cellular & Molecular Biology, Hyderabad, Telangana, 500007, India.
| |
Collapse
|
19
|
Smad7:β-catenin complex regulates myogenic gene transcription. Cell Death Dis 2019; 10:387. [PMID: 31097718 PMCID: PMC6522533 DOI: 10.1038/s41419-019-1615-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 03/30/2019] [Accepted: 04/23/2019] [Indexed: 12/17/2022]
Abstract
Recent reports indicate that Smad7 promotes skeletal muscle differentiation and growth. We previously documented a non-canonical role of nuclear Smad7 during myogenesis, independent of its role in TGF-β signaling. Here further characterization of the myogenic function of Smad7 revealed β-catenin as a Smad7 interacting protein. Biochemical analysis identified a Smad7 interaction domain (SID) between aa575 and aa683 of β-catenin. Reporter gene analysis and chromatin immunoprecipitation demonstrated that Smad7 and β-catenin are cooperatively recruited to the extensively characterized ckm promoter proximal region to facilitate its muscle restricted transcriptional activation in myogenic cells. Depletion of endogenous Smad7 and β-catenin in muscle cells reduced ckm promoter activity indicating their role during myogenesis. Deletion of the β-catenin SID substantially reduced the effect of Smad7 on the ckm promoter and exogenous expression of SID abolished β-catenin function, indicating that SID functions as a trans dominant-negative regulator of β-catenin activity. β-catenin interaction with the Mediator kinase complex through its Med12 subunit led us to identify MED13 as an additional Smad7-binding partner. Collectively, these studies document a novel function of a Smad7-MED12/13-β-catenin complex at the ckm locus, indicating a key role of this complex in the program of myogenic gene expression underlying skeletal muscle development and regeneration.
Collapse
|
20
|
Cui S, Li L, Yu RT, Downes M, Evans RM, Hulin JA, Makarenkova HP, Meech R. β-Catenin is essential for differentiation of primary myoblasts via cooperation with MyoD and α-catenin. Development 2019; 146:dev.167080. [PMID: 30683662 DOI: 10.1242/dev.167080] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 01/16/2019] [Indexed: 12/12/2022]
Abstract
Canonical Wnts promote myoblast differentiation; however, the role of β-catenin in adult myogenesis has been contentious, and its mechanism(s) unclear. Using CRISPR-generated β-catenin-null primary adult mouse myoblasts, we found that β-catenin was essential for morphological differentiation and timely deployment of the myogenic gene program. Alignment, elongation and fusion were grossly impaired in null cells, and myogenic gene expression was not coordinated with cytoskeletal and membrane remodeling events. Rescue studies and genome-wide analyses extended previous findings that a β-catenin-TCF/LEF interaction is not required for differentiation, and that β-catenin enhances MyoD binding to myogenic loci. We mapped cellular pathways controlled by β-catenin and defined novel targets in myoblasts, including the fusogenic genes myomaker and myomixer. We also showed that interaction of β-catenin with α-catenin was important for efficient differentiation. Overall the study suggests dual roles for β-catenin: a TCF/LEF-independent nuclear function that coordinates an extensive network of myogenic genes in cooperation with MyoD; and an α-catenin-dependent membrane function that helps control cell-cell interactions. β-Catenin-TCF/LEF complexes may function primarily in feedback regulation to control levels of β-catenin and thus prevent precocious/excessive myoblast fusion.
Collapse
Affiliation(s)
- Shuang Cui
- Department of Clinical Pharmacology, Flinders University, Bedford Park, SA 5042, Australia.,Department of Physiology, Shandong University School of Medicine, Jinan, Shandong 250012, China
| | - Liang Li
- Department of Biochemistry, Flinders University, Bedford Park, SA 5042 and Department of Biochemistry, University of Adelaide, North Tce, Adelaide, SA 5005, Australia
| | - Ruth T Yu
- Gene Expression Laboratory, Salk Institute, La Jolla, CA 92037, USA
| | - Michael Downes
- Gene Expression Laboratory, Salk Institute, La Jolla, CA 92037, USA
| | - Ronald M Evans
- Gene Expression Laboratory, Salk Institute, La Jolla, CA 92037, USA.,Howard Hughes Medical Institute, Salk Institute, La Jolla, CA 92037, USA
| | - Julie-Ann Hulin
- Department of Clinical Pharmacology, Flinders University, Bedford Park, SA 5042, Australia
| | - Helen P Makarenkova
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Robyn Meech
- Department of Clinical Pharmacology, Flinders University, Bedford Park, SA 5042, Australia
| |
Collapse
|
21
|
Doumpas N, Lampart F, Robinson MD, Lentini A, Nestor CE, Cantù C, Basler K. TCF/LEF dependent and independent transcriptional regulation of Wnt/β-catenin target genes. EMBO J 2019; 38:embj.201798873. [PMID: 30425074 PMCID: PMC6331726 DOI: 10.15252/embj.201798873] [Citation(s) in RCA: 129] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 09/19/2018] [Accepted: 09/28/2018] [Indexed: 01/20/2023] Open
Abstract
During canonical Wnt signalling, the activity of nuclear β-catenin is largely mediated by the TCF/LEF family of transcription factors. To challenge this view, we used the CRISPR/Cas9 genome editing approach to generate HEK 293T cell clones lacking all four TCF/LEF genes. By performing unbiased whole transcriptome sequencing analysis, we found that a subset of β-catenin transcriptional targets did not require TCF/LEF factors for their regulation. Consistent with this finding, we observed in a genome-wide analysis that β-catenin occupied specific genomic regions in the absence of TCF/LEF Finally, we revealed the existence of a transcriptional activity of β-catenin that specifically appears when TCF/LEF factors are absent, and refer to this as β-catenin-GHOST response. Collectively, this study uncovers a previously neglected modus operandi of β-catenin that bypasses the TCF/LEF transcription factors.
Collapse
Affiliation(s)
- Nikolaos Doumpas
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Franziska Lampart
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Mark D Robinson
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
- SIB Swiss Institute of Bioinformatics, University of Zurich, Zurich, Switzerland
| | - Antonio Lentini
- SIB Swiss Institute of Bioinformatics, University of Zurich, Zurich, Switzerland
| | - Colm E Nestor
- Department of Clinical and Experimental Medicine (IKE), Faculty of Health Sciences, Linköping University, Linköping, Sweden
| | - Claudio Cantù
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
- Department of Clinical and Experimental Medicine (IKE), Faculty of Health Sciences, Linköping University, Linköping, Sweden
- Wallenberg Centre for Molecular Medicine (WCMM), Linköping University, Linköping, Sweden
| | - Konrad Basler
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| |
Collapse
|
22
|
Knight C, James S, Kuntin D, Fox J, Newling K, Hollings S, Pennock R, Genever P. Epidermal growth factor can signal via β-catenin to control proliferation of mesenchymal stem cells independently of canonical Wnt signalling. Cell Signal 2018; 53:256-268. [PMID: 30287279 PMCID: PMC6293317 DOI: 10.1016/j.cellsig.2018.09.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 09/26/2018] [Accepted: 09/28/2018] [Indexed: 12/27/2022]
Abstract
Bone marrow mesenchymal stem/stromal cells (MSCs) maintain bone homeostasis and repair through the ability to expand in response to mitotic stimuli and differentiate into skeletal lineages. Signalling mechanisms that enable precise control of MSC function remain unclear. Here we report that by initially examining differences in signalling pathway expression profiles of individual MSC clones, we identified a previously unrecognised signalling mechanism regulated by epidermal growth factor (EGF) in primary human MSCs. We demonstrate that EGF is able to activate β-catenin, a key component of the canonical Wnt signalling pathway. EGF is able to induce nuclear translocation of β-catenin in human MSCs but does not drive expression of Wnt target genes or T cell factor (TCF) activity in MSC reporter cell lines. Using an efficient Design of Experiments (DoE) statistical analysis, with different combinations and concentrations of EGF and Wnt ligands, we were able to confirm that EGF does not influence the Wnt/β-catenin pathway in MSCs. We show that the effects of EGF on MSCs are temporally regulated to initiate early “classical” EGF signalling mechanisms (e.g via mitogen activated protein kinase) with delayed activation of β-catenin. By RNA-sequencing, we identified gene sets that were exclusively regulated by the EGF/β-catenin pathway, which were distinct from classical EGF-regulated genes. However, subsets of classical EGF gene targets were significantly influenced by EGF/β-catenin activation. These signalling pathways cooperate to enable EGF-mediated proliferation of MSCs by alleviating the suppression of cell cycle pathways induced by classical EGF signalling. Epidermal growth factor (EGF) controls mesenchymal stem cell (MSC) proliferation. EGF signals through β-catenin in MSCs but not in related fibroblastic cells. Classical EGF and EGF/β-catenin cooperatively regulate distinct gene sets in MSCs. EGF/β-catenin enables MSC proliferation by alleviating cell cycle suppression.
Collapse
Affiliation(s)
- Charlotte Knight
- Department of Biology, University of York, York YO10 5DD, United Kingdom
| | - Sally James
- Department of Biology, University of York, York YO10 5DD, United Kingdom
| | - David Kuntin
- Department of Biology, University of York, York YO10 5DD, United Kingdom
| | - James Fox
- Department of Biology, University of York, York YO10 5DD, United Kingdom
| | - Katherine Newling
- Department of Biology, University of York, York YO10 5DD, United Kingdom
| | - Sam Hollings
- Department of Biology, University of York, York YO10 5DD, United Kingdom
| | - Rebecca Pennock
- Department of Biology, University of York, York YO10 5DD, United Kingdom
| | - Paul Genever
- Department of Biology, University of York, York YO10 5DD, United Kingdom.
| |
Collapse
|
23
|
Ferrari L, Bragato C, Brioschi L, Spreafico M, Esposito S, Pezzotta A, Pizzetti F, Moreno‐Fortuny A, Bellipanni G, Giordano A, Riva P, Frabetti F, Viani P, Cossu G, Mora M, Marozzi A, Pistocchi A. HDAC8 regulates canonical Wnt pathway to promote differentiation in skeletal muscles. J Cell Physiol 2018; 234:6067-6076. [DOI: 10.1002/jcp.27341] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 08/10/2018] [Indexed: 12/12/2022]
Affiliation(s)
- Luca Ferrari
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale Università degli Studi di Milano Milano Italy
| | - Cinzia Bragato
- Neuromuscular Diseases and Neuroimmunology Unit, Fondazione IRCCS Istituto Neurologico C. Besta Milano Italy
- PhD Program in Neuroscience, University of Milano‐Bicocca Milano Italy
| | - Loredana Brioschi
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale Università degli Studi di Milano Milano Italy
| | - Marco Spreafico
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale Università degli Studi di Milano Milano Italy
| | - Simona Esposito
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale Università degli Studi di Milano Milano Italy
| | - Alex Pezzotta
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale Università degli Studi di Milano Milano Italy
| | - Fabrizio Pizzetti
- Department of Experimental, Diagnostic and Specialty Medicine University of Bologna Bologna Italy
| | - Artal Moreno‐Fortuny
- Division of Cell Matrix Biology and Regenerative Medicine Faculty of Biology, Medicine and Health, University of Manchester Manchester UK
- Developmental Genetics, Department of Biomedicine University of Basel Basel Switzerland
| | - Gianfranco Bellipanni
- Sbarro Institute for Cancer Research and Molecular Medicine, Department of Biology, Center for Biotechnology, College of Science and Technology, Temple University Philadelphia
| | - Antonio Giordano
- Sbarro Institute for Cancer Research and Molecular Medicine, Department of Biology, Center for Biotechnology, College of Science and Technology, Temple University Philadelphia
- Department of Medicine Surgery & Neuroscience, University of Siena Siena Italy
| | - Paola Riva
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale Università degli Studi di Milano Milano Italy
| | - Flavia Frabetti
- Department of Experimental, Diagnostic and Specialty Medicine University of Bologna Bologna Italy
| | - Paola Viani
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale Università degli Studi di Milano Milano Italy
| | - Giulio Cossu
- Division of Cell Matrix Biology and Regenerative Medicine Faculty of Biology, Medicine and Health, University of Manchester Manchester UK
| | - Marina Mora
- Neuromuscular Diseases and Neuroimmunology Unit, Fondazione IRCCS Istituto Neurologico C. Besta Milano Italy
| | - Anna Marozzi
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale Università degli Studi di Milano Milano Italy
| | - Anna Pistocchi
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale Università degli Studi di Milano Milano Italy
| |
Collapse
|
24
|
A new approach of gene co-expression network inference reveals significant biological processes involved in porcine muscle development in late gestation. Sci Rep 2018; 8:10150. [PMID: 29977047 PMCID: PMC6033925 DOI: 10.1038/s41598-018-28173-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Accepted: 06/14/2018] [Indexed: 12/28/2022] Open
Abstract
The integration of genetic information in the cellular and nuclear environments is crucial for deciphering the way in which the genome functions under different physiological conditions. Experimental techniques of 3D nuclear mapping, a high-flow approach such as transcriptomic data analyses, and statistical methods for the development of co-expressed gene networks, can be combined to develop an integrated approach for depicting the regulation of gene expression. Our work focused more specifically on the mechanisms involved in the transcriptional regulation of genes expressed in muscle during late foetal development in pig. The data generated by a transcriptomic analysis carried out on muscle of foetuses from two extreme genetic lines for birth mortality are used to construct networks of differentially expressed and co-regulated genes. We developed an innovative co-expression networking approach coupling, by means of an iterative process, a new statistical method for graph inference with data of gene spatial co-localization (3D DNA FISH) to construct a robust network grouping co-expressed genes. This enabled us to highlight relevant biological processes related to foetal muscle maturity and to discover unexpected gene associations between IGF2, MYH3 and DLK1/MEG3 in the nuclear space, genes that are up-regulated at this stage of muscle development.
Collapse
|
25
|
Girardi F, Le Grand F. Wnt Signaling in Skeletal Muscle Development and Regeneration. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2018; 153:157-179. [DOI: 10.1016/bs.pmbts.2017.11.026] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
26
|
Agley CC, Lewis FC, Jaka O, Lazarus NR, Velloso C, Francis-West P, Ellison-Hughes GM, Harridge SDR. Active GSK3β and an intact β-catenin TCF complex are essential for the differentiation of human myogenic progenitor cells. Sci Rep 2017; 7:13189. [PMID: 29030569 PMCID: PMC5640663 DOI: 10.1038/s41598-017-10731-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 08/14/2017] [Indexed: 01/14/2023] Open
Abstract
Wnt-β-catenin signalling is essential for skeletal muscle myogenesis during development, but its role in adult human skeletal muscle remains unknown. Here we have used human primary CD56Pos satellite cell-derived myogenic progenitors obtained from healthy individuals to study the role of Wnt-β-catenin signalling in myogenic differentiation. We show that dephosphorylated β-catenin (active-β-catenin), the central effector of the canonical Wnt cascade, is strongly upregulated at the onset of differentiation and undergoes nuclear translocation as differentiation progresses. To establish the role of Wnt signalling in regulating the differentiation process we manipulated key nodes of this pathway through a series of β-catenin gain-of-function (GSK3 inhibition and β-catenin overexpression) or loss-of-function experiments (dominant negative TCF4). Our data showed that manipulation of these critical pathway components led to varying degrees of disruption to the normal differentiation phenotype indicating the importance of Wnt signalling in regulating this process. We reveal an independent necessity for active-β-catenin in the fusion and differentiation of human myogenic progenitors and that dominant negative inhibition of TCF4 prevents differentiation completely. Together these data add new mechanistic insights into both Wnt signalling and adult human myogenic progenitor differentiation.
Collapse
Affiliation(s)
- C C Agley
- Centre of Human and Aerospace Physiological Sciences, King's College London, London, UK. .,Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK.
| | - F C Lewis
- Centre of Human and Aerospace Physiological Sciences, King's College London, London, UK.,Stem Cell Institute, King's College London, London, UK
| | - O Jaka
- Centre of Human and Aerospace Physiological Sciences, King's College London, London, UK
| | - N R Lazarus
- Centre of Human and Aerospace Physiological Sciences, King's College London, London, UK
| | - C Velloso
- Centre of Human and Aerospace Physiological Sciences, King's College London, London, UK
| | - P Francis-West
- Department of Craniofacial development and stem cell biology, King's College London, London, UK
| | - G M Ellison-Hughes
- Centre of Human and Aerospace Physiological Sciences, King's College London, London, UK.,Stem Cell Institute, King's College London, London, UK
| | - S D R Harridge
- Centre of Human and Aerospace Physiological Sciences, King's College London, London, UK.,Stem Cell Institute, King's College London, London, UK
| |
Collapse
|
27
|
Yun SI, Kim KK. Ubiquitin-specific protease 4 (USP4) suppresses myoblast differentiation by down regulating MyoD activity in a catalytic-independent manner. Cell Signal 2017; 35:48-60. [PMID: 28336234 DOI: 10.1016/j.cellsig.2017.03.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 02/28/2017] [Accepted: 03/19/2017] [Indexed: 11/27/2022]
Abstract
For myotube formation, proliferation and differentiation of myoblasts must be tightly regulated by various myogenic regulatory factors (MRFs) such as MyoD, myogenic factor 5 (Myf5), myogenin, and muscle-specific regulatory factor 4 (MRF4). However, it is not clear how the expression or activity of these MRFs is controlled during myogenesis. In this study, we identified ubiquitin-specific protease 4 (USP4), one of deubiquitinating enzymes, as a suppressor of MRFs by demonstrating that a knockdown of USP4 enhances myogenesis by controlling MyoD and the level of myogenesis marker proteins in C2C12 cells. However, it was revealed that the effect of USP4 on myogenesis is independent of its deubiquitinase activity because the catalytic-site mutant has the same inhibitory effects as the wild-type USP4 on myogenesis. We observed that the activity and protein levels of both HDAC1 and HDAC4 are decreased when myoblast differentiation is promoted by the USP4 knockdown. We also found that the role of USP4 in muscle differentiation is correlated with two major signaling pathways in myogenesis, AKT and the p38 mitogen-activated protein kinase pathways. According to these results, we propose that USP4 is a key player in myogenic differentiation; it controls myogenic regulatory factors in a catalytic-independent manner.
Collapse
Affiliation(s)
- Sun-Il Yun
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon 16419, Republic of Korea
| | - Kyeong Kyu Kim
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon 16419, Republic of Korea.
| |
Collapse
|
28
|
Luo H, Zhou Y, Hu X, Peng X, Wei H, Peng J, Jiang S. Activation of PPARγ2 by PPARγ1 through a functional PPRE in transdifferentiation of myoblasts to adipocytes induced by EPA. Cell Cycle 2016; 14:1830-41. [PMID: 25892270 DOI: 10.1080/15384101.2015.1033594] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
PPARγ and Wnt signaling are central positive and negative regulators of adipogenesis, respectively. Here we identified that, eicosapentaenoic acid (EPA) could effectively induce the transdifferentiation of myoblasts into adipocytes through modulation of both PPARγ expression and Wnt signaling. During the early stage of transdifferentiation, EPA activates PPARδ and PPARγ1, which in turn targets β-catenin to degradation and down-regulates Wnt/β-catenin signaling, such that the myogenic fate of myoblasts could be switched to adipogenesis. In addition, EPA up-regulates the expression of PPARγ1 by activating RXRα, then PPARγ1 binds to the functional peroxisome proliferator responsive element (PPRE) in the promoter of adipocyte-specific PPARγ2 to continuously activate the expression of PPARγ2 throughout the transdifferentiation process. Our data indicated that EPA acts as a dual-function stimulator of adipogenesis that both inhibits Wnt signaling and induces PPARγ2 expression to facilitate the transdifferentiation program, and the transcriptional activation of PPARγ2 by PPARγ1 is not only the key factor for the transdifferentiation of myoblasts to adipocytes, but also the crucial evidence for successful transdifferentiation. The present findings provided insight for the first time as to how EPA induces the transdifferentiation of myoblasts to adipocytes, but also provide new clues for strategies to prevent and treat some metabolic diseases.
Collapse
Key Words
- BSA, bovine serum albumin
- C/EBP, CCAAT/enhancer-binding protein
- DHA, docosahexaenoic acid
- DMEM, Dulbecco's modified Eagle's medium
- EPA, eicosapentaenoic acid
- IMF, intramuscular fat
- PPAR, peroxisome proliferator-activated receptor
- PPARγ1
- PPARγ2
- PPARδ
- PPRE, peroxisome proliferator responsive element
- PUFA, polyunsaturated fatty acids
- RXR, retinoid X receptor.
- Wnt/β-catenin signaling
- eicosapentaenoic acid
- transdifferentiation
Collapse
Affiliation(s)
- Hefeng Luo
- a Department of Animal Nutrition and Feed Science; College of Animal Science and Technology; Huazhong Agricultural University ; Wuhan , China
| | | | | | | | | | | | | |
Collapse
|
29
|
Sasi Kumar K, Ramadhas A, Nayak S, Kaniyappan S, Dayma K, Radha V. C3G (RapGEF1), a regulator of actin dynamics promotes survival and myogenic differentiation of mouse mesenchymal cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:2629-39. [DOI: 10.1016/j.bbamcr.2015.06.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 06/17/2015] [Accepted: 06/27/2015] [Indexed: 12/11/2022]
|
30
|
BAMBI Promotes C2C12 Myogenic Differentiation by Enhancing Wnt/β-Catenin Signaling. Int J Mol Sci 2015; 16:17734-45. [PMID: 26247931 PMCID: PMC4581218 DOI: 10.3390/ijms160817734] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 07/07/2015] [Accepted: 07/30/2015] [Indexed: 12/03/2022] Open
Abstract
Bone morphogenic protein and activin membrane-bound inhibitor (BAMBI) is regarded as an essential regulator of cell proliferation and differentiation that represses transforming growth factor-β and enhances Wnt/β-catenin signaling in various cell types. However, its role in skeletal muscle remains largely unknown. In the current study, we found that the expression level of BAMBI peaked in the early differentiation phase of the C2C12 rodent myoblast cell line. Knockdown of BAMBI via siRNA inhibited C2C12 differentiation, indicated by repressed MyoD, MyoG, and MyHC expression as well as reductions in the differentiation and fusion indices. BAMBI knockdown reduced the activity of Wnt/β-catenin signaling, as characterized by the decreased nuclear translocation of β-catenin and the lowered transcription of Axin2, which is a well-documented target gene of the Wnt/β-catenin signaling pathway. Furthermore, treatment with LiCl, an activator of Wnt/β-catenin signaling, rescued the reduction in C2C12 differentiation caused by BAMBI siRNA. Taken together, our data suggest that BAMBI is required for normal C2C12 differentiation, and that its role in myogenesis is mediated by the Wnt/β-catenin pathway.
Collapse
|
31
|
Jung ES, Sim YJ, Jeong HS, Kim SJ, Yun YJ, Song JH, Jeon SH, Choe C, Park KT, Kim CH, Kim KS. Jmjd2C increases MyoD transcriptional activity through inhibiting G9a-dependent MyoD degradation. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2015; 1849:1081-94. [PMID: 26149774 DOI: 10.1016/j.bbagrm.2015.07.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 06/17/2015] [Accepted: 07/02/2015] [Indexed: 01/05/2023]
Abstract
Skeletal muscle cell differentiation requires a family of proteins called myogenic regulatory factors (MRFs) to which MyoD belongs. The activity of MyoD is under epigenetic regulation, however, the molecular mechanism by which histone KMTs and KDMs regulate MyoD transcriptional activity through methylation remains to be determined. Here we provide evidence for a unique regulatory mechanism of MyoD transcriptional activity through demethylation by Jmjd2C demethylase whose level increases during muscle differentiation. G9a decreases MyoD stability via methylation-dependent MyoD ubiquitination. Jmjd2C directly associates with MyoD in vitro and in vivo to demethylate and stabilize MyoD. The hypo-methylated MyoD due to Jmjd2C is significantly more stable than hyper-methylated MyoD by G9a. Cul4/Ddb1/Dcaf1 pathway is essential for the G9a-mediated MyoD degradation in myoblasts. By the stabilization of MyoD, Jmjd2C increases myogenic conversion of mouse embryonic fibroblasts and MyoD transcriptional activity with erasing repressive H3K9me3 level at the promoter of MyoD target genes. Collectively, Jmjd2C increases MyoD transcriptional activity to facilitate skeletal muscle differentiation by increasing MyoD stability through inhibiting G9a-dependent MyoD degradation.
Collapse
Affiliation(s)
- Eun-Shil Jung
- Department of Biomedical Science, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 133-791, Republic of Korea
| | - Ye-Ji Sim
- Department of Biomedical Science, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 133-791, Republic of Korea
| | - Hoe-Su Jeong
- Department of Biomedical Science, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 133-791, Republic of Korea
| | - Su-Jin Kim
- Department of Biomedical Science, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 133-791, Republic of Korea
| | - Ye-Jin Yun
- Department of Biomedical Science, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 133-791, Republic of Korea
| | - Joo-Hoon Song
- Bio Focus Co., Ltd., Gyeonggi-do 437-753, Republic of Korea
| | - Su-Hee Jeon
- Department of Biological & Environmental Science, Dongguk University, Seoul 100-175, Republic of Korea
| | - Chungyoul Choe
- Samsung Biomedical Research Institute, School of Medicine, Sungkyunkwan University, Seoul 135-710, Republic of Korea
| | - Kyung-Tae Park
- Center for Cancer Research, Department of Pathology and Laboratory Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Chang-Hoon Kim
- Department of Biomedical Science, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 133-791, Republic of Korea.
| | - Kye-Seong Kim
- Department of Biomedical Science, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 133-791, Republic of Korea.
| |
Collapse
|
32
|
Jones AE, Price FD, Le Grand F, Soleimani VD, Dick SA, Megeney LA, Rudnicki MA. Wnt/β-catenin controls follistatin signalling to regulate satellite cell myogenic potential. Skelet Muscle 2015; 5:14. [PMID: 25949788 PMCID: PMC4421991 DOI: 10.1186/s13395-015-0038-6] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 04/08/2015] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Adult skeletal muscle regeneration is a highly orchestrated process involving the activation and proliferation of satellite cells, an adult skeletal muscle stem cell. Activated satellite cells generate a transient amplifying progenitor pool of myoblasts that commit to differentiation and fuse into multinucleated myotubes. During regeneration, canonical Wnt signalling is activated and has been implicated in regulating myogenic lineage progression and terminal differentiation. METHODS Here, we have undertaken a gene expression analysis of committed satellite cell-derived myoblasts to examine their ability to respond to canonical Wnt/β-catenin signalling. RESULTS We found that activation of canonical Wnt signalling induces follistatin expression in myoblasts and promotes myoblast fusion in a follistatin-dependent manner. In growth conditions, canonical Wnt/β-catenin signalling prime myoblasts for myogenic differentiation by stimulating myogenin and follistatin expression. We further found that myogenin binds elements in the follistatin promoter and thus acts downstream of myogenin during differentiation. Finally, ectopic activation of canonical Wnt signalling in vivo promoted premature differentiation during muscle regeneration following acute injury. CONCLUSIONS Together, these data reveal a novel mechanism by which myogenin mediates the canonical Wnt/β-catenin-dependent activation of follistatin and induction of the myogenic differentiation process.
Collapse
Affiliation(s)
- Andrew E Jones
- Regenerative Medicine Program, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, ON K1H 8L6 Canada.,Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5 Canada
| | - Feodor D Price
- Regenerative Medicine Program, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, ON K1H 8L6 Canada.,Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5 Canada
| | - Fabien Le Grand
- Institut Cochin, Université Paris Descartes, CNRS (UMR 8104), 24 Rue du Fg St Jacques, Paris, France
| | - Vahab D Soleimani
- Regenerative Medicine Program, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, ON K1H 8L6 Canada
| | - Sarah A Dick
- Regenerative Medicine Program, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, ON K1H 8L6 Canada.,Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5 Canada
| | - Lynn A Megeney
- Regenerative Medicine Program, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, ON K1H 8L6 Canada.,Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5 Canada
| | - Michael A Rudnicki
- Regenerative Medicine Program, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, ON K1H 8L6 Canada.,Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5 Canada
| |
Collapse
|
33
|
Slimani L, Vazeille E, Deval C, Meunier B, Polge C, Dardevet D, Béchet D, Taillandier D, Micol D, Listrat A, Attaix D, Combaret L. The delayed recovery of the remobilized rat tibialis anterior muscle reflects a defect in proliferative and terminal differentiation that impairs early regenerative processes. J Cachexia Sarcopenia Muscle 2015; 6:73-83. [PMID: 26136414 PMCID: PMC4435099 DOI: 10.1002/jcsm.12011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 10/09/2014] [Accepted: 10/15/2014] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND The immobilization-induced tibialis anterior (TA) muscle atrophy worsens after cast removal and is associated with altered extracellular matrix (ECM) composition. The secreted protein acidic and rich in cysteine (Sparc) is an ECM component involved in Akt activation and in β-catenin stabilization, which controls protein turnover and induces muscle regulatory factors (MRFs), respectively. We hypothesized that ECM alterations may influence these intracellular signalling pathways controlling TA muscle mass. METHODS Six-month-old Wistar rats were subjected to hindlimb cast immobilization for 8 days (I8) or not (I0) and allowed to recover for 1 to 10 days (R1-10). RESULTS The TA atrophy during remobilization correlated with reduced fibre cross-sectional area and thickening of endomysium. mRNA levels for Sparc increased during remobilization until R10 and for integrin-α7 and -β1 at I8 and R1. Integrin-linked kinase protein levels increased during immobilization and remobilization until R10. This was inversely correlated with changes in Akt phosphorylation. β-Catenin protein levels increased in the remobilized TA at R1 and R10. mRNA levels of the proliferative MRFs (Myf5 and MyoD) increased at I8 and R1, respectively, without changes in Myf5 protein levels. In contrast, myogenin mRNA levels (a terminal differentiation MRF) decreased at R1, but only increased at R10 in remobilized muscles, as for protein levels. CONCLUSIONS Altogether, this suggests that the TA inefficiently attempted to preserve regeneration during immobilization by increasing transcription of proliferative MRFs, and that the TA could engage recovery during remobilization only when the terminal differentiation step of regeneration is enhanced.
Collapse
Affiliation(s)
- Lamia Slimani
- INRA, UMR 1019, UNH, CRNH, F-63000, Auvergne, Clermont-Ferrand, France.,Clermont Université, Université d'Auvergne, Unité de Nutrition Humaine, BP 10448, F-63000, Clermont-Ferrand, France
| | - Emilie Vazeille
- Centre Hospitalier Universitaire, 63000, Clermont-Ferrand, France
| | - Christiane Deval
- INRA, UMR 1019, UNH, CRNH, F-63000, Auvergne, Clermont-Ferrand, France.,Clermont Université, Université d'Auvergne, Unité de Nutrition Humaine, BP 10448, F-63000, Clermont-Ferrand, France
| | - Bruno Meunier
- INRA, UMR 1213 Herbivores, 63122, Saint Genès Champanelle, France
| | - Cécile Polge
- INRA, UMR 1019, UNH, CRNH, F-63000, Auvergne, Clermont-Ferrand, France.,Clermont Université, Université d'Auvergne, Unité de Nutrition Humaine, BP 10448, F-63000, Clermont-Ferrand, France
| | - Dominique Dardevet
- INRA, UMR 1019, UNH, CRNH, F-63000, Auvergne, Clermont-Ferrand, France.,Clermont Université, Université d'Auvergne, Unité de Nutrition Humaine, BP 10448, F-63000, Clermont-Ferrand, France
| | - Daniel Béchet
- INRA, UMR 1019, UNH, CRNH, F-63000, Auvergne, Clermont-Ferrand, France.,Clermont Université, Université d'Auvergne, Unité de Nutrition Humaine, BP 10448, F-63000, Clermont-Ferrand, France
| | - Daniel Taillandier
- INRA, UMR 1019, UNH, CRNH, F-63000, Auvergne, Clermont-Ferrand, France.,Clermont Université, Université d'Auvergne, Unité de Nutrition Humaine, BP 10448, F-63000, Clermont-Ferrand, France
| | - Didier Micol
- INRA, UMR 1213 Herbivores, 63122, Saint Genès Champanelle, France
| | - Anne Listrat
- INRA, UMR 1213 Herbivores, 63122, Saint Genès Champanelle, France
| | - Didier Attaix
- INRA, UMR 1019, UNH, CRNH, F-63000, Auvergne, Clermont-Ferrand, France.,Clermont Université, Université d'Auvergne, Unité de Nutrition Humaine, BP 10448, F-63000, Clermont-Ferrand, France
| | - Lydie Combaret
- INRA, UMR 1019, UNH, CRNH, F-63000, Auvergne, Clermont-Ferrand, France.,Clermont Université, Université d'Auvergne, Unité de Nutrition Humaine, BP 10448, F-63000, Clermont-Ferrand, France
| |
Collapse
|
34
|
Zhuang L, Hulin JA, Gromova A, Tran Nguyen TD, Yu RT, Liddle C, Downes M, Evans RM, Makarenkova HP, Meech R. Barx2 and Pax7 have antagonistic functions in regulation of wnt signaling and satellite cell differentiation. Stem Cells 2015; 32:1661-73. [PMID: 24753152 DOI: 10.1002/stem.1674] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2012] [Revised: 12/16/2013] [Accepted: 01/16/2012] [Indexed: 11/05/2022]
Abstract
The canonical Wnt signaling pathway is critical for myogenesis and can induce muscle progenitors to switch from proliferation to differentiation; how Wnt signals integrate with muscle-specific regulatory factors in this process is poorly understood. We previously demonstrated that the Barx2 homeobox protein promotes differentiation in cooperation with the muscle regulatory factor (MRF) MyoD. Pax7, another important muscle homeobox factor, represses differentiation. We now identify Barx2, MyoD, and Pax7 as novel components of the Wnt effector complex, providing a new molecular pathway for regulation of muscle progenitor differentiation. Canonical Wnt signaling induces Barx2 expression in muscle progenitors and perturbation of Barx2 leads to misregulation of Wnt target genes. Barx2 activates two endogenous Wnt target promoters as well as the Wnt reporter gene TOPflash, the latter synergistically with MyoD. Moreover, Barx2 interacts with the core Wnt effectors β-catenin and T cell-factor 4 (TCF4), is recruited to TCF/lymphoid enhancer factor sites, and promotes recruitment of β-catenin. In contrast, Pax7 represses the Wnt reporter gene and antagonizes the activating effect of Barx2. Pax7 also binds β-catenin suggesting that Barx2 and Pax7 may compete for interaction with the core Wnt effector complex. Overall, the data show for the first time that Barx2, Pax7, and MRFs can act as direct transcriptional effectors of Wnt signals in myoblasts and that Barx2 and Wnt signaling participate in a regulatory loop. We propose that antagonism between Barx2 and Pax7 in regulation of Wnt signaling may help mediate the switch from myoblast proliferation to differentiation.
Collapse
Affiliation(s)
- Lizhe Zhuang
- Department of Clinical Pharmacology, Flinders University, Bedford Park, Adelaide, South Australia, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Murphy MM, Keefe AC, Lawson JA, Flygare SD, Yandell M, Kardon G. Transiently active Wnt/β-catenin signaling is not required but must be silenced for stem cell function during muscle regeneration. Stem Cell Reports 2014; 3:475-88. [PMID: 25241745 PMCID: PMC4266007 DOI: 10.1016/j.stemcr.2014.06.019] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Revised: 06/27/2014] [Accepted: 06/30/2014] [Indexed: 12/22/2022] Open
Abstract
Adult muscle’s exceptional capacity for regeneration is mediated by muscle stem cells, termed satellite cells. As with many stem cells, Wnt/β-catenin signaling has been proposed to be critical in satellite cells during regeneration. Using new genetic reagents, we explicitly test in vivo whether Wnt/β-catenin signaling is necessary and sufficient within satellite cells and their derivatives for regeneration. We find that signaling is transiently active in transit-amplifying myoblasts, but is not required for regeneration or satellite cell self-renewal. Instead, downregulation of transiently activated β-catenin is important to limit the regenerative response, as continuous regeneration is deleterious. Wnt/β-catenin activation in adult satellite cells may simply be a vestige of their developmental lineage, in which β-catenin signaling is critical for fetal myogenesis. In the adult, surprisingly, we show that it is not activation but rather silencing of Wnt/β-catenin signaling that is important for muscle regeneration. Wnt/β-catenin signaling is transiently active in myoblasts during muscle regeneration β-catenin is not required in myogenic cells for muscle regeneration β-catenin signaling in myoblasts must be silenced to limit the regenerative response β-catenin requirement and sensitivity differs in fetal and adult muscle stem cells
Collapse
Affiliation(s)
- Malea M Murphy
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Alexandra C Keefe
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Jennifer A Lawson
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Steven D Flygare
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Mark Yandell
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Gabrielle Kardon
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA.
| |
Collapse
|
36
|
Wu YJ, Fang YH, Chi HC, Chang LC, Chung SY, Huang WC, Wang XW, Lee KW, Chen SL. Insulin and LiCl synergistically rescue myogenic differentiation of FoxO1 over-expressed myoblasts. PLoS One 2014; 9:e88450. [PMID: 24551104 PMCID: PMC3923792 DOI: 10.1371/journal.pone.0088450] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 01/07/2014] [Indexed: 12/02/2022] Open
Abstract
Most recent studies reported that FoxO1 transcription factor was a negative regulator of myogenesis under serum withdrawal condition, a situation not actually found in vivo. Therefore, the role of FoxO1 in myogenesis should be re-examined under more physiologically relevant conditions. Here we found that FoxO1 was preferentially localized to nucleus in proliferating (PMB) and confluent myoblasts (CMB) and its nuclear exclusion was a prerequisite for formation of multinucleated myotubes (MT). The nuclear shuttling of FoxO1 in PMB could be prevented by leptomycin B and we further found that cytoplasmic accumulation of FoxO1 in myotubes was caused by the blockade of its nuclear import. Although over-expression of wildtype FoxO1 in C2C12 myoblasts significantly blocked their myogenic differentiation under serum withdrawal condition, application of insulin and LiCl, an activator of Wnt signaling pathway, to these cells successfully rescued their myogenic differentiation and generated myotubes with larger diameters. Interestingly, insulin treatment significantly reduced FoxO1 level and also delayed nuclear re-accumulation of FoxO1 triggered by mitogen deprivation. We further found that FoxO1 directly repressed the promoter activity of myogenic genes and this repression can be relieved by insulin and LiCl treatment. These results suggest that FoxO1 inhibits myogenesis in serum withdrawal condition but turns into a hypertrophy potentiator when other myogenic signals, such as Wnt and insulin, are available.
Collapse
Affiliation(s)
- Yi Ju Wu
- Department of Life Sciences, National Central University, Jhongli, Taiwan
| | - Yen Hsin Fang
- Department of Life Sciences, National Central University, Jhongli, Taiwan
| | - Hsiang Cheng Chi
- Department of Life Sciences, National Central University, Jhongli, Taiwan
| | - Li Chiung Chang
- Department of Life Sciences, National Central University, Jhongli, Taiwan
| | - Shih Ying Chung
- Department of Life Sciences, National Central University, Jhongli, Taiwan
| | - Wei Chieh Huang
- Department of Life Sciences, National Central University, Jhongli, Taiwan
| | - Xiao Wen Wang
- Department of Life Sciences, National Central University, Jhongli, Taiwan
| | - Kuan Wei Lee
- Department of Life Sciences, National Central University, Jhongli, Taiwan
| | - Shen Liang Chen
- Department of Life Sciences, National Central University, Jhongli, Taiwan
- * E-mail:
| |
Collapse
|
37
|
Shestopalov VI, Slepak VZ. Molecular pathways of pannexin1-mediated neurotoxicity. Front Physiol 2014; 5:23. [PMID: 24575045 PMCID: PMC3920106 DOI: 10.3389/fphys.2014.00023] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Accepted: 01/10/2014] [Indexed: 01/09/2023] Open
Abstract
Pannexin1 (Panx1) forms non-selective membrane channels, structurally similar to gap junction hemichannels, and are permeable to ions, nucleotides, and other small molecules below 900 Da. Panx1 activity has been implicated in paracrine signaling and inflammasome regulation. Recent studies in different animal models showed that overactivation of Panx1 correlates with a selective demise of several types of neurons, including retinal ganglion cells, brain pyramidal, and enteric neurons. The list of Panx1 activators includes extracellular ATP, glutamate, high K(+), Zn(2+), fibroblast growth factors (FGFs),pro-inflammatory cytokines, and elevation of intracellular Ca(2+). Most of these molecules are released following mechanical, ischemic, or inflammatory injury of the CNS, and rapidly activate the Panx1 channel. Prolonged opening of Panx1 channel induced by these "danger signals" triggers a cascade of neurotoxic events capable of killing cells. The most vulnerable cell type are neurons that express high levels of Panx1. Experimental evidence suggests that Panx1 channels mediate at least two distinct neurotoxic processes: increased permeability of the plasma membrane and activation of the inflammasome in neurons and glia. Importantly, both pharmacological and genetic inactivation of Panx1 suppresses both these processes, providing a marked protection in several disease and injury models. These findings indicate that external danger signals generated after diverse types of injuries converge to activate Panx1. In this review we discuss molecular mechanisms associated with Panx1 toxicity and the crosstalk between different pathways.
Collapse
Affiliation(s)
- Valery I Shestopalov
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine Miami, FL, USA ; Department of Cell Biology and Anatomy, University of Miami Miller School of Medicine Miami, FL, USA ; Vavilov Institute of General Genetics, Moscow, Russian Federation, University of Miami Miller School of Medicine Miami, FL, USA
| | - Vladlen Z Slepak
- Department of Molecular Pharmacology, University of Miami Miller School of Medicine Miami, FL, USA ; Neuroscience Program, University of Miami Miller School of Medicine Miami, FL, USA
| |
Collapse
|
38
|
Szarek M, Li R, Vikraman J, Southwell B, Hutson JM. Molecular signals governing cremaster muscle development: clues for cryptorchidism. J Pediatr Surg 2014; 49:312-6; discussion 316. [PMID: 24528975 DOI: 10.1016/j.jpedsurg.2013.11.049] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Accepted: 11/10/2013] [Indexed: 10/26/2022]
Abstract
BACKGROUND/AIM Cryptorchidism affects 2-4% of newborn boys. Testicular descent requires the gubernaculum to differentiate into cremaster muscle (CM) during androgen-mediated inguino-scrotal descent, but the cellular mechanisms regulating this remodeling remain elusive. β-Catenin, a marker of canonical Wnt signaling, promotes myogenic genes and cellular adhesion. We aimed to determine if androgen receptor (AR) blockade altered β-catenin and its downstream myogenic proteins within the CM. METHOD Gubernacula from male rats (n=12) and rats treated with anti-androgen, flutamide (n=12) at E19, D0, D2 were processed for immunohistochemistry. Antibodies against β-catenin, embryonic myosin, and myogenin were visualized by confocal microscopy. RESULTS At E19, β-catenin immuno-reactivity (IR) localized to the CM membrane. By D2, cytoplasmic β-catenin-IR was noted with overall β-catenin-IR decreasing. Myogenic proteins resided primarily in cells containing β-catenin on their plasma membrane. Embryonic myosin-IR was high at E19 and then decreased by D2, while myogenin-IR increased. AR blockade increased cytoplasmic β-catenin at D2 and reduced levels of both myogenic proteins. CONCLUSION Myogenic proteins are present in CM cells containing β-catenin. AR blockade did not alter cellular adhesion via β-catenin. In contrast, blocking AR prevented β-catenin entering the nucleus and impaired CM myogenesis. Mutations in this pathway may result in idiopathic cryptorchidism.
Collapse
Affiliation(s)
- Maciej Szarek
- Douglas Stephens Surgical Research Group, Murdoch Children's Research Institute, Melbourne, Australia; Department of Anatomy and Neuroscience, University of Melbourne, Australia
| | - Ruili Li
- Douglas Stephens Surgical Research Group, Murdoch Children's Research Institute, Melbourne, Australia
| | - Jaya Vikraman
- Douglas Stephens Surgical Research Group, Murdoch Children's Research Institute, Melbourne, Australia; Department of Paediatrics, University of Melbourne, Australia
| | - Bridget Southwell
- Douglas Stephens Surgical Research Group, Murdoch Children's Research Institute, Melbourne, Australia; Department of Paediatrics, University of Melbourne, Australia
| | - John M Hutson
- Douglas Stephens Surgical Research Group, Murdoch Children's Research Institute, Melbourne, Australia; Department of Anatomy and Neuroscience, University of Melbourne, Australia; Department of Paediatrics, University of Melbourne, Australia; Urology Department, Royal Children's Hospital, Melbourne, Australia.
| |
Collapse
|
39
|
Wong J, Mehta V, Voronova A, Coutu J, Ryan T, Shelton M, Skerjanc IS. β-catenin is essential for efficient in vitro premyogenic mesoderm formation but can be partially compensated by retinoic acid signalling. PLoS One 2013; 8:e57501. [PMID: 23460868 PMCID: PMC3583846 DOI: 10.1371/journal.pone.0057501] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Accepted: 01/24/2013] [Indexed: 12/14/2022] Open
Abstract
Previous studies have shown that P19 cells expressing a dominant negative β-catenin mutant (β-cat/EnR) cannot undergo myogenic differentiation in the presence or absence of muscle-inducing levels of retinoic acid (RA). While RA could upregulate premyogenic mesoderm expression, including Pax3/7 and Meox1, only Pax3/7 and Gli2 could be upregulated by RA in the presence of β-cat/EnR. However, the use of a dominant negative construct that cannot be compensated by other factors is limiting due to the possibility of negative chromatin remodelling overriding compensatory mechanisms. In this study, we set out to determine if β-catenin function is essential for myogenesis with and without RA, by creating P19 cells with reduced β-catenin transcriptional activity using an shRNA approach, termed P19[shβ-cat] cells. The loss of β-catenin resulted in a reduction of skeletal myogenesis in the absence of RA as early as premyogenic mesoderm, with the loss of Pax3/7, Eya2, Six1, Meox1, Gli2, Foxc1/2, and Sox7 transcript levels. Chromatin immunoprecipitation identified an association of β-catenin with the promoter region of the Sox7 gene. Differentiation of P19[shβ-cat] cells in the presence of RA resulted in the upregulation or lack of repression of all of the precursor genes, on day 5 and/or 9, with the exception of Foxc2. However, expression of Sox7, Gli2, the myogenic regulatory factors and terminal differentiation markers remained inhibited on day 9 and overall skeletal myogenesis was reduced. Thus, β-catenin is essential for in vitro formation of premyogenic mesoderm, leading to skeletal myogenesis. RA can at least partially compensate for the loss of β-catenin in the expression of many myogenic precursor genes, but not for myoblast gene expression or overall myogenesis.
Collapse
Affiliation(s)
- Jacob Wong
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Virja Mehta
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Anastassia Voronova
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Josée Coutu
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Tammy Ryan
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Michael Shelton
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Ilona S. Skerjanc
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
- * E-mail:
| |
Collapse
|
40
|
Abstract
Adult skeletal muscle in mammals is a stable tissue under normal circumstances but has remarkable ability to repair after injury. Skeletal muscle regeneration is a highly orchestrated process involving the activation of various cellular and molecular responses. As skeletal muscle stem cells, satellite cells play an indispensible role in this process. The self-renewing proliferation of satellite cells not only maintains the stem cell population but also provides numerous myogenic cells, which proliferate, differentiate, fuse, and lead to new myofiber formation and reconstitution of a functional contractile apparatus. The complex behavior of satellite cells during skeletal muscle regeneration is tightly regulated through the dynamic interplay between intrinsic factors within satellite cells and extrinsic factors constituting the muscle stem cell niche/microenvironment. For the last half century, the advance of molecular biology, cell biology, and genetics has greatly improved our understanding of skeletal muscle biology. Here, we review some recent advances, with focuses on functions of satellite cells and their niche during the process of skeletal muscle regeneration.
Collapse
Affiliation(s)
- Hang Yin
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | | | | |
Collapse
|
41
|
Voronova A, Coyne E, Al Madhoun A, Fair JV, Bosiljcic N, St-Louis C, Li G, Thurig S, Wallace VA, Wiper-Bergeron N, Skerjanc IS. Hedgehog signaling regulates MyoD expression and activity. J Biol Chem 2013; 288:4389-4404. [PMID: 23266826 PMCID: PMC3567689 DOI: 10.1074/jbc.m112.400184] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Revised: 12/12/2012] [Indexed: 11/06/2022] Open
Abstract
The inhibition of MyoD expression is important for obtaining muscle progenitors that can replenish the satellite cell niche during muscle repair. Progenitors could be derived from either embryonic stem cells or satellite cells. Hedgehog (Hh) signaling is important for MyoD expression during embryogenesis and adult muscle regeneration. To date, the mechanistic understanding of MyoD regulation by Hh signaling is unclear. Here, we demonstrate that the Hh effector, Gli2, regulates MyoD expression and associates with MyoD gene elements. Gain- and loss-of-function experiments in pluripotent P19 cells show that Gli2 activity is sufficient and required for efficient MyoD expression during skeletal myogenesis. Inhibition of Hh signaling reduces MyoD expression during satellite cell activation in vitro. In addition to regulating MyoD expression, Hh signaling regulates MyoD transcriptional activity, and MyoD activates Hh signaling in myogenic conversion assays. Finally, Gli2, MyoD, and MEF2C form a protein complex, which enhances MyoD activity on skeletal muscle-related promoters. We therefore link Hh signaling to the function and expression of MyoD protein during myogenesis in stem cells.
Collapse
Affiliation(s)
| | - Erin Coyne
- From the Department of Biochemistry, Microbiology, and Immunology and
| | - Ashraf Al Madhoun
- From the Department of Biochemistry, Microbiology, and Immunology and
- Pancreatic Islet Biology and Transplantation Unit, Dasman Diabetes Institute, Dasman 15462, Kuwait and
| | - Joel V. Fair
- From the Department of Biochemistry, Microbiology, and Immunology and
| | - Neven Bosiljcic
- From the Department of Biochemistry, Microbiology, and Immunology and
| | - Catherine St-Louis
- the Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa and
| | - Grace Li
- the Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa and
| | - Sherry Thurig
- From the Department of Biochemistry, Microbiology, and Immunology and
- Ottawa Hospital Research Institute, Ottawa K1H 8M5, Canada
| | - Valerie A. Wallace
- From the Department of Biochemistry, Microbiology, and Immunology and
- Ottawa Hospital Research Institute, Ottawa K1H 8M5, Canada
| | - Nadine Wiper-Bergeron
- the Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa and
| | - Ilona S. Skerjanc
- From the Department of Biochemistry, Microbiology, and Immunology and
| |
Collapse
|
42
|
Dubinska-Magiera M, Zaremba-Czogalla M, Rzepecki R. Muscle development, regeneration and laminopathies: how lamins or lamina-associated proteins can contribute to muscle development, regeneration and disease. Cell Mol Life Sci 2012; 70:2713-41. [PMID: 23138638 PMCID: PMC3708280 DOI: 10.1007/s00018-012-1190-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Revised: 09/28/2012] [Accepted: 10/03/2012] [Indexed: 12/22/2022]
Abstract
The aim of this review article is to evaluate the current knowledge on associations between muscle formation and regeneration and components of the nuclear lamina. Lamins and their partners have become particularly intriguing objects of scientific interest since it has been observed that mutations in genes coding for these proteins lead to a wide range of diseases called laminopathies. For over the last 10 years, various laboratories worldwide have tried to explain the pathogenesis of these rare disorders. Analyses of the distinct aspects of laminopathies resulted in formulation of different hypotheses regarding the mechanisms of the development of these diseases. In the light of recent discoveries, A-type lamins—the main building blocks of the nuclear lamina—together with other key elements, such as emerin, LAP2α and nesprins, seem to be of great importance in the modulation of various signaling pathways responsible for cellular differentiation and proliferation.
Collapse
Affiliation(s)
- Magda Dubinska-Magiera
- Department of Animal Developmental Biology, University of Wroclaw, 21 Sienkiewicza Street, 50-335, Wroclaw, Poland
| | | | | |
Collapse
|
43
|
M-cadherin-inhibited phosphorylation of ß-catenin augments differentiation of mouse myoblasts. Cell Tissue Res 2012; 351:183-200. [PMID: 23138569 DOI: 10.1007/s00441-012-1515-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2012] [Accepted: 10/05/2012] [Indexed: 10/27/2022]
Abstract
β-Catenin is essential for muscle development because it regulates both cadherin-mediated cell-cell adhesion and canonical Wingless and Int1 (Wnt) signaling. The phosphorylation of β-catenin by glycogen synthase kinase-3β (GSK-3β) at serine31/37/threonine41 regulates its stability and its role in canonical Wnt signaling. In this study, we have investigated whether the N-terminal phosphorylation of β-catenin is regulated by M-cadherin, and whether this regulation mediates the role of M-cadherin in myogenic differentiation. Our data show that the knockdown of M-cadherin expression by RNA interference (RNAi) in C2C12 myoblasts significantly increases the phosphorylation of β-catenin at Ser33/37/Thr41 and decreases the protein abundance of ser37/thr41-unphosphorylated active β-catenin. Furthermore, M-cadherin RNAi promotes TCF/LEF transcription activity but also blunts the initiation of the myogenic progress by Wnt pathway activator lithium chloride or Wnt-3a treatment. Knockdown of β-catenin expression by RNAi decreases myogenic induction in myoblasts. Forced expression of a phosphorylation-resistant β-catenin plasmid (S33Y-β-catenin) fails to enhance myogenic differentiation, but it partially rescues C2C12 cells from M-cadherin RNAi-induced apoptosis. These data show, for the first time, that M-cadherin-mediated signaling attenuates β-catenin phosphorylation at Ser31/37/Thr41 by GSK-3β, and that this regulation has a positive effect on myogenic differentiation induced by canonical Wnt signaling.
Collapse
|
44
|
Cadigan KM, Waterman ML. TCF/LEFs and Wnt signaling in the nucleus. Cold Spring Harb Perspect Biol 2012; 4:cshperspect.a007906. [PMID: 23024173 DOI: 10.1101/cshperspect.a007906] [Citation(s) in RCA: 556] [Impact Index Per Article: 42.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
T-cell factor/lymphoid enhancer factor (TCF/LEF) transcription factors are the major end point mediators of Wnt/Wingless signaling throughout metazoans. TCF/LEFs are multifunctional proteins that use their sequence-specific DNA-binding and context-dependent interactions to specify which genes will be regulated by Wnts. Much of the work to define their actions has focused on their ability to repress target gene expression when Wnt signals are absent and to recruit β-catenin to target genes for activation when Wnts are present. Recent advances have highlighted how these on/off actions are regulated by Wnt signals and stabilized β-catenin. In contrast to invertebrates, which typically contain one TCF/LEF protein that can both activate and repress Wnt targets, gene duplication and isoform complexity of the family in vertebrates have led to specialization, in which individual TCF/LEF isoforms have distinct activities.
Collapse
Affiliation(s)
- Ken M Cadigan
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, 48109-1048, USA
| | | |
Collapse
|
45
|
Liu J, Naeem E, Tian J, Lombardi V, Kwong K, Akbari O, Torday JS, Rehan VK. Sex-specific perinatal nicotine-induced asthma in rat offspring. Am J Respir Cell Mol Biol 2012; 48:53-62. [PMID: 23002101 DOI: 10.1165/rcmb.2011-0344oc] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Recently, we have suggested that down-regulation of homeostatic mesenchymal peroxisome proliferator-activated receptor γ signaling after in utero nicotine exposure might contribute to asthma. Here, we have exploited an in vivo rat model of asthma to determine if the effects of perinatal nicotine exposure on offspring pulmonary function and mesenchymal markers of airway contractility in both tracheal and lung parenchymal tissue are sex specific, and whether the protection afforded by the peroxisome proliferator-activated receptor γ agonist, rosiglitazone (RGZ), against the perinatal nicotine-induced effect on offspring lung is also sex specific. Pregnant rat dams received placebo, nicotine, or nicotine plus RGZ daily from Embryonic Day 6 until Postnatal Day 21, at which time lung resistance, compliance, tracheal contractility, and the expression of structural and functional mesenchymal markers of pulmonary contractility were determined. Compared with control animals, perinatal nicotine exposure caused a significant increase in airway resistance and a decrease in airway compliance after a methacholine challenge in both male and female offspring, with more pronounced changes in the males. In contrast to this, the effects of perinatal nicotine exposure on acetylcholine-induced tracheal constriction, along with the expression of its mesenchymal markers, were observed exclusively in the male offspring. Concomitant treatment with RGZ normalized the nicotine-induced alterations in pulmonary function in both sexes, as well as the male-specific effects on acetylcholine-induced tracheal constriction, along with the affected mesenchymal markers. These data suggest that perinatal nicotine exposure causes sex-specific perinatal cigarette smoke exposure-induced asthma, providing a powerful phenotypic model for unequivocally determining the underlying nature of the cell molecular mechanism for this disease.
Collapse
Affiliation(s)
- Jie Liu
- Department of Pediatrics, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA 90502-2006, USA
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Olguín HC, Pisconti A. Marking the tempo for myogenesis: Pax7 and the regulation of muscle stem cell fate decisions. J Cell Mol Med 2012; 16:1013-25. [PMID: 21615681 PMCID: PMC4365881 DOI: 10.1111/j.1582-4934.2011.01348.x] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Post-natal growth and regeneration of skeletal muscle is highly dependent on a population of resident myogenic precursors known as satellite cells. Transcription factors from the Pax gene family, Pax3 and Pax7, are critical for satellite cell biogenesis, survival and potentially self-renewal; however, the underlying molecular mechanisms remain unsolved. This is particularly true in the case of Pax7, which appears to regulate myogenesis at multiple levels. Accordingly, recent data have highlighted the importance of a functional relationship between Pax7 and the MyoD family of muscle regulatory transcription factors during normal muscle formation and disease. Here we will critically review key findings suggesting that Pax7 may play a dual role by promoting resident muscle progenitors to commit to the skeletal muscle lineage while preventing terminal differentiation, thus keeping muscle progenitors poised to differentiate upon environmental cues. In addition, potential regulatory mechanisms for the control of Pax7 activity will be proposed.
Collapse
Affiliation(s)
- Hugo C Olguín
- Departamento Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.
| | | |
Collapse
|
47
|
Yang KF, Shen XH, Cai W. Prenatal and early postnatal exposure to high-saturated-fat diet represses Wnt signaling and myogenic genes in offspring rats. Exp Biol Med (Maywood) 2012; 237:912-8. [PMID: 22875341 DOI: 10.1258/ebm.2012.011395] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The prenatal and early postnatal period is a key developmental window for nutrition status, and high-fat exposure in this period has been shown to be associated with type 2 diabetes, obesity and other features of metabolic disorders later in life. The present study was designed to investigate the underlying molecular mechanisms and role of relative genes involved in this process. We investigated the impact of prenatal and early postnatal exposure to a high-saturated-fat diet on the regulation of the Wnt signaling pathway and myogenic genes in skeletal muscle of rat offspring as well as the serum and muscle physiological outcomes. Timed-pregnant Sprague-Dawley rats were fed either a control (C, 16% kcal fat) or high-saturated-fat diet (HF, 45% kcal fat) throughout gestation and lactation. After weaning, female offspring were fed a control diet to generate two offspring groups: control diet-fed offspring of control diet-fed dams (C/C) and control diet-fed offspring of HF diet-fed dams (HF/C). The serum glucose of the HF/C offspring (5.58 ± 0.26 mmol/L) was significantly higher than that of C/C offspring (4.97 ± 0.28 mmol/L), and the Homeostasis Model Assessment-Insulin Resistance of HF/C offspring (2.00 ± 0.11) was also significantly higher when compared with C/C (1.84 ± 0.09). Furthermore, HF/C offspring presented excessive intramuscular fat accumulation (1.8-fold, P < 0.05) and decreased muscle glycogen (1.3-fold, P < 0.05), as well as impairment of muscle development at the age of 12 weeks. Meanwhile, we observed the repression of Wnt/β-catenin signaling and myogenic genes in HF/C offspring. The present study indicates that prenatal and early postnatal exposure to a high-saturated-fat diet suppresses the development of skeletal muscle and myogenic genes via Wnt/β-catenin signaling, and the inappropriate muscle development could potentially contribute to the predisposition of offspring to develop metabolic-syndrome-like phenotype in adulthood.
Collapse
Affiliation(s)
- Ke-Feng Yang
- Clinical Nutrition Center, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai
| | | | | |
Collapse
|
48
|
Wu H, Lu Y, Barik A, Joseph A, Taketo MM, Xiong WC, Mei L. β-Catenin gain of function in muscles impairs neuromuscular junction formation. Development 2012; 139:2392-404. [PMID: 22627288 DOI: 10.1242/dev.080705] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Neuromuscular junction (NMJ) formation requires proper interaction between motoneurons and muscle cells. β-Catenin is required in muscle cells for NMJ formation. To understand underlying mechanisms, we investigated the effect of β-catenin gain of function (GOF) on NMJ development. In HSA-β-cat(flox(ex3)/+) mice, which express stable β-catenin specifically in muscles, motor nerve terminals became extensively defasciculated and arborized. Ectopic muscles were observed in the diaphragm and were innervated by ectopic phrenic nerve branches. Moreover, extensive outgrowth and branching of spinal axons were evident in the GOF mice. These results indicate that increased β-catenin in muscles alters presynaptic differentiation. Postsynaptically, AChR clusters in HSA-β-cat(flox(ex3)/+) diaphragms were distributed in a wider region, suggesting that muscle β-catenin GOF disrupted the signal that restricts AChR clustering to the middle region of muscle fibers. Expression of stable β-catenin in motoneurons, however, had no effect on NMJ formation. These observations provide additional genetic evidence that pre- and postsynaptic development of the NMJ requires an intricate balance of β-catenin activity in muscles.
Collapse
Affiliation(s)
- Haitao Wu
- Institute of Molecular Medicine and Genetics, Georgia Health Sciences University, Augusta, Georgia 30912, USA
| | | | | | | | | | | | | |
Collapse
|
49
|
Archbold HC, Yang YX, Chen L, Cadigan KM. How do they do Wnt they do?: regulation of transcription by the Wnt/β-catenin pathway. Acta Physiol (Oxf) 2012; 204:74-109. [PMID: 21624092 DOI: 10.1111/j.1748-1716.2011.02293.x] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Wnt/β-catenin signalling is known to play many roles in metazoan development and tissue homeostasis. Misregulation of the pathway has also been linked to many human diseases. In this review, specific aspects of the pathway's involvement in these processes are discussed, with an emphasis on how Wnt/β-catenin signalling regulates gene expression in a cell and temporally specific manner. The T-cell factor (TCF) family of transcription factors, which mediate a large portion of Wnt/β-catenin signalling, will be discussed in detail. Invertebrates contain a single TCF gene that contains two DNA-binding domains, the high mobility group (HMG) domain and the C-clamp, which increases the specificity of DNA binding. In vertebrates, the situation is more complex, with four TCF genes producing many isoforms that contain the HMG domain, but only some of which possess a C-clamp. Vertebrate TCFs have been reported to act in concert with many other transcription factors, which may explain how they obtain sufficient specificity for specific DNA sequences, as well as how they achieve a wide diversity of transcriptional outputs in different cells.
Collapse
Affiliation(s)
- H C Archbold
- Program in Cell and Molecular Biology, University of Michigan, Ann Arbor, 48109-1048, USA
| | | | | | | |
Collapse
|
50
|
Yan B, Zhao LH, Guo JT, Zhao JL. miR-203b: a novel regulator of MyoD expression in tilapia skeletal muscle. J Exp Biol 2012; 216:447-51. [DOI: 10.1242/jeb.076315] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Summary
MyoD is one of the helix-loop-helix proteins regulating muscle-specific gene expression in tilapia. Tight regulation of MyoD protein level is necessary for the precise regulation of skeletal muscle development. MicroRNAs (miRNAs) are a class of regulatory RNAs that post-transcriptionally regulate gene expression. Increasing evidences have suggested that miRNAs play an important role in regulating skeletal muscle development. We reasoned that MyoD expression may be regulated by miRNAs. Bioinformatics prediction identify a putative miR-203b target site in the 3’-UTR of MyoD gene. Interestingly, miR-203b expression is negatively correlated is negatively correlated with MyoD expression. miR-203b suppression leads to a significant increase in MyoD expression, thereby activating MyoD downstream gene. 3’-UTR luciferase reporter assay further verifies the direct interaction between miR-203b and MyoD. Taken together, our studies reveal a novel molecular mechanism in which miRNA participates in transcriptional circuits that regulates gene expression in tilapia skeletal muscle.
Collapse
Affiliation(s)
- Biao Yan
- Shanghai Ocean University, China
| | | | | | | |
Collapse
|