1
|
Nomura W, Inoue Y. Activation of the cell wall integrity pathway negatively regulates TORC2-Ypk1/2 signaling through blocking eisosome disassembly in Saccharomyces cerevisiae. Commun Biol 2024; 7:722. [PMID: 38862688 PMCID: PMC11166964 DOI: 10.1038/s42003-024-06411-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 06/03/2024] [Indexed: 06/13/2024] Open
Abstract
The target of rapamycin complex 2 (TORC2) signaling is associated with plasma membrane (PM) integrity. In Saccharomyces cerevisiae, TORC2-Ypk1/2 signaling controls sphingolipid biosynthesis, and Ypk1/2 phosphorylation by TORC2 under PM stress conditions is increased in a Slm1/2-dependent manner, under which Slm1 is known to be released from an eisosome, a furrow-like invagination PM structure. However, it remains unsolved how the activation machinery of TORC2-Ypk1/2 signaling is regulated. Here we show that edelfosine, a synthetic lysophospholipid analog, inhibits the activation of TORC2-Ypk1/2 signaling, and the cell wall integrity (CWI) pathway is involved in this inhibitory effect. The activation of CWI pathway blocked the eisosome disassembly promoted by PM stress and the release of Slm1 from eisosomes. Constitutive activation of TORC2-Ypk1/2 signaling exhibited increased sensitivity to cell wall stress. We propose that the CWI pathway negatively regulates the TORC2-Ypk1/2 signaling, which is involved in the regulatory mechanism to ensure the proper stress response to cell wall damage.
Collapse
Affiliation(s)
- Wataru Nomura
- Laboratory of Molecular Microbiology, Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Uji, Kyoto, 611-0011, Japan.
- Research Unit for Physiological Chemistry, the Center for the Promotion of Interdisciplinary Education and Research, Kyoto University, Kyoto, 606-8501, Japan.
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Shinshu University, Nagano, 399-4598, Japan.
| | - Yoshiharu Inoue
- Laboratory of Molecular Microbiology, Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Uji, Kyoto, 611-0011, Japan.
| |
Collapse
|
2
|
Chawla S, Ahmadpour D, Schneider KL, Kumar N, Fischbach A, Molin M, Nystrom T. Calcineurin stimulation by Cnb1p overproduction mitigates protein aggregation and α-synuclein toxicity in a yeast model of synucleinopathy. Cell Commun Signal 2023; 21:220. [PMID: 37620860 PMCID: PMC10464345 DOI: 10.1186/s12964-023-01242-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 07/22/2023] [Indexed: 08/26/2023] Open
Abstract
The calcium-responsive phosphatase, calcineurin, senses changes in Ca2+ concentrations in a calmodulin-dependent manner. Here we report that under non-stress conditions, inactivation of calcineurin signaling or deleting the calcineurin-dependent transcription factor CRZ1 triggered the formation of chaperone Hsp100p (Hsp104p)-associated protein aggregates in Saccharomyces cerevisiae. Furthermore, calcineurin inactivation aggravated α-Synuclein-related cytotoxicity. Conversely, elevated production of the calcineurin activator, Cnb1p, suppressed protein aggregation and cytotoxicity associated with the familial Parkinson's disease-related mutant α-Synuclein A53T in a partly CRZ1-dependent manner. Activation of calcineurin boosted normal localization of both wild type and mutant α-synuclein to the plasma membrane, an intervention previously shown to mitigate α-synuclein toxicity in Parkinson's disease models. The findings demonstrate that calcineurin signaling, and Ca2+ influx to the vacuole, limit protein quality control in non-stressed cells and may have implications for elucidating to which extent aberrant calcineurin signaling contributes to the progression of Parkinson's disease(s) and other synucleinopathies. Video Abstract.
Collapse
Affiliation(s)
- Srishti Chawla
- Institute for Biomedicine, Sahlgrenska Academy, Centre for Ageing and Health - AgeCap, University of Gothenburg, Gothenburg, 405 30, Sweden.
- Department of Life Sciences, Chalmers University of Technology, Gothenburg, Sweden.
| | - Doryaneh Ahmadpour
- Center for Bionics and Pain Research, Sahlgrenska University Hospital, Mölndal, 431 30, Sweden
| | - Kara L Schneider
- Institute for Biomedicine, Sahlgrenska Academy, Centre for Ageing and Health - AgeCap, University of Gothenburg, Gothenburg, 405 30, Sweden
| | - Navinder Kumar
- Institute for Biomedicine, Sahlgrenska Academy, Centre for Ageing and Health - AgeCap, University of Gothenburg, Gothenburg, 405 30, Sweden
| | - Arthur Fischbach
- Max Planck Institute for Biology of Ageing, Cologne, 50931, Germany
| | - Mikael Molin
- Department of Life Sciences, Chalmers University of Technology, Gothenburg, Sweden
| | - Thomas Nystrom
- Institute for Biomedicine, Sahlgrenska Academy, Centre for Ageing and Health - AgeCap, University of Gothenburg, Gothenburg, 405 30, Sweden.
| |
Collapse
|
3
|
Pallares RM, An DD, Hebert S, Loguinov A, Proctor M, Villalobos JA, Bjornstad KA, Rosen CJ, Vulpe C, Abergel RJ. Screening the complex biological behavior of late lanthanides through genome-wide interactions. Metallomics 2023; 15:mfad039. [PMID: 37336558 DOI: 10.1093/mtomcs/mfad039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 05/26/2023] [Indexed: 06/21/2023]
Abstract
Despite their similar physicochemical properties, recent studies have demonstrated that lanthanides can display different biological behaviors. Hence, the lanthanide series can be divided into three parts, namely early, mid, and late lanthanides, based on their interactions with biological systems. In particular, the late lanthanides demonstrate distinct, but poorly understood biological activity. In the current study, we employed genome-wide functional screening to help understand biological effects of exposure to Yb(III) and Lu(III), which were selected as representatives of the late lanthanides. As a model organism, we used Saccharomyces cerevisiae, since it shares many biological functions with humans. Analysis of the functional screening results indicated toxicity of late lanthanides is consistent with disruption of vesicle-mediated transport, and further supported a role for calcium transport processes and mitophagy in mitigating toxicity. Unexpectedly, our analysis suggested that late lanthanides target proteins with SH3 domains, which may underlie the observed toxicity. This study provides fundamental insights into the unique biological chemistry of late lanthanides, which may help devise new avenues toward the development of decorporation strategies and bio-inspired separation processes.
Collapse
Affiliation(s)
- Roger M Pallares
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Institute for Experimental Molecular Imaging (ExMI), RWTH Aachen University Hospital, Forckenbeckstr. 55, Aachen 52074, Germany
| | - Dahlia D An
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Solene Hebert
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Alex Loguinov
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Michael Proctor
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Jonathan A Villalobos
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Kathleen A Bjornstad
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Chris J Rosen
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Christopher Vulpe
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Rebecca J Abergel
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Department of Nuclear Engineering, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
4
|
Thorner J. TOR complex 2 is a master regulator of plasma membrane homeostasis. Biochem J 2022; 479:1917-1940. [PMID: 36149412 PMCID: PMC9555796 DOI: 10.1042/bcj20220388] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/30/2022] [Accepted: 09/01/2022] [Indexed: 11/17/2022]
Abstract
As first demonstrated in budding yeast (Saccharomyces cerevisiae), all eukaryotic cells contain two, distinct multi-component protein kinase complexes that each harbor the TOR (Target Of Rapamycin) polypeptide as the catalytic subunit. These ensembles, dubbed TORC1 and TORC2, function as universal, centrally important sensors, integrators, and controllers of eukaryotic cell growth and homeostasis. TORC1, activated on the cytosolic surface of the lysosome (or, in yeast, on the cytosolic surface of the vacuole), has emerged as a primary nutrient sensor that promotes cellular biosynthesis and suppresses autophagy. TORC2, located primarily at the plasma membrane, plays a major role in maintaining the proper levels and bilayer distribution of all plasma membrane components (sphingolipids, glycerophospholipids, sterols, and integral membrane proteins). This article surveys what we have learned about signaling via the TORC2 complex, largely through studies conducted in S. cerevisiae. In this yeast, conditions that challenge plasma membrane integrity can, depending on the nature of the stress, stimulate or inhibit TORC2, resulting in, respectively, up-regulation or down-regulation of the phosphorylation and thus the activity of its essential downstream effector the AGC family protein kinase Ypk1. Through the ensuing effect on the efficiency with which Ypk1 phosphorylates multiple substrates that control diverse processes, membrane homeostasis is maintained. Thus, the major focus here is on TORC2, Ypk1, and the multifarious targets of Ypk1 and how the functions of these substrates are regulated by their Ypk1-mediated phosphorylation, with emphasis on recent advances in our understanding of these processes.
Collapse
Affiliation(s)
- Jeremy Thorner
- Division of Biochemistry, Biophysics and Structural Biology, Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720-3202, U.S.A
| |
Collapse
|
5
|
Identification of Genes Promoting Growth of Ustilago maydis on Biomolecules Released from Cells Killed by Oxidation. J Fungi (Basel) 2022; 8:jof8090957. [PMID: 36135682 PMCID: PMC9503528 DOI: 10.3390/jof8090957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/07/2022] [Accepted: 09/07/2022] [Indexed: 11/16/2022] Open
Abstract
Much headway has been made in understanding the numerous strategies that enable microorganisms to counteract various types of environmental stress, but little is known about how microbial populations recover after a massive death caused by exposure to extreme conditions. Using the yeast-like fungus Ustilago maydis as a model, our recent post-stress regrowth under starvation (RUS) studies have demonstrated that this organism reconstitutes devastated populations with remarkable efficiency. Subsequently, we have identified four RUS-gene products. Two of these, Did4 and Tbp1, play parallel roles in protecting the genome. To identify additional molecular components, we took a molecular-genetic and a transcriptomic approach. By employing a simple and novel screening method, we identified five RUS-deficient mutants (snf8, slm1, vrg4, snf5, hsf1), three of which (snf8, slm1, and hsf1) displayed sensitivity to different genotoxic agents, indicating that the corresponding gene products have roles in genome protection. The global transcriptomic changes of cells grown in supernatants derived from peroxide-treated cell suspensions revealed sets of uniquely expressed genes. Importantly, among the genes induced by the substrates was Chk1, which encodes a protein kinase required for checkpoint-mediated cell cycle arrest in response to DNA damage. Mutants of U. maydis deleted of Chk1 are severely incapacitated in RUS.
Collapse
|
6
|
Zahumenský J, Mota Fernandes C, Veselá P, Del Poeta M, Konopka JB, Malínský J. Microdomain Protein Nce102 Is a Local Sensor of Plasma Membrane Sphingolipid Balance. Microbiol Spectr 2022; 10:e0196122. [PMID: 35758748 PMCID: PMC9431316 DOI: 10.1128/spectrum.01961-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 06/06/2022] [Indexed: 01/17/2023] Open
Abstract
Sphingolipids are essential building blocks of eukaryotic membranes and important signaling molecules that are regulated tightly in response to environmental and physiological inputs. While their biosynthetic pathway has been well-described, the mechanisms that facilitate the perception of sphingolipid levels at the plasma membrane remain to be uncovered. In Saccharomyces cerevisiae, the Nce102 protein has been proposed to function as a sphingolipid sensor as it changes its plasma membrane distribution in response to sphingolipid biosynthesis inhibition. We show that Nce102 redistributes specifically in regions of increased sphingolipid demand, e.g., membranes of nascent buds. Furthermore, we report that the production of Nce102 increases following sphingolipid biosynthesis inhibition and that Nce102 is internalized when excess sphingolipid precursors are supplied. This finding suggests that the total amount of Nce102 in the plasma membrane is a measure of the current need for sphingolipids, whereas its local distribution marks sites of high sphingolipid demand. The physiological role of Nce102 in the regulation of sphingolipid synthesis is demonstrated by mass spectrometry analysis showing reduced levels of hydroxylated complex sphingolipids in response to heat stress in the nce102Δ deletion mutant. We also demonstrate that Nce102 behaves analogously in the widespread human fungal pathogen Candida albicans, suggesting a conserved principle of local sphingolipid control across species. IMPORTANCE Microorganisms are challenged constantly by their rapidly changing environment. To survive, they have developed diverse mechanisms to quickly perceive stressful situations and adapt to them appropriately. The primary site of both stress sensing and adaptation is the plasma membrane. We identified the yeast protein Nce102 as a marker of local sphingolipid levels and fluidity in the plasma membrane. Nce102 is an important structural and functional component of the membrane compartment Can1 (MCC), a plasma membrane microdomain stabilized by a large cytosolic hemitubular protein scaffold, the eisosome. The MCC/eisosomes are widely conserved among fungi and unicellular algae. To determine if Nce102 carries out similar functions in other organisms, we analyzed the human fungal pathogen Candida albicans and found that Nce102 responds to sphingolipid levels also in this organism, which has potential applications for the development of novel therapeutic approaches. The presented study represents a valuable model for how organisms regulate plasma membrane sphingolipids.
Collapse
Affiliation(s)
- Jakub Zahumenský
- Department of Functional Organization of Biomembranes, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Caroline Mota Fernandes
- Department of Microbiology and Immunology, School of Medicine, Stony Brook University, Stony Brook, New York, USA
| | - Petra Veselá
- Department of Functional Organization of Biomembranes, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Maurizio Del Poeta
- Department of Microbiology and Immunology, School of Medicine, Stony Brook University, Stony Brook, New York, USA
- Division of Infectious Diseases, School of Medicine, Stony Brook University, Stony Brook, New York, USA
- Veterans Administration Medical Center, Northport, New York, USA
| | - James B. Konopka
- Department of Microbiology and Immunology, School of Medicine, Stony Brook University, Stony Brook, New York, USA
| | - Jan Malínský
- Department of Functional Organization of Biomembranes, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| |
Collapse
|
7
|
Moharir A, Gay L, Markus B. Mitochondrial energy metabolism regulates the nutrient import activity and endocytosis of APC transporters. FEBS Lett 2022; 596:1111-1123. [PMID: 35156710 PMCID: PMC9117475 DOI: 10.1002/1873-3468.14314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 01/30/2022] [Accepted: 02/01/2022] [Indexed: 11/11/2022]
Abstract
Nutrient import by APC-type transporters is predicted to have a high energy demand because it depends on the plasma membrane proton gradient established by the ATP-driven proton pump Pma1. We show that Pma1 is indeed a major energy consumer and its activity is tightly linked to the cellular ATP levels. The low Pma1 activity caused by acute loss of respiration resulted in a dramatic drop in cytoplasmic pH, which triggered the downregulation of the major proton importers, the APC transporters. This regulatory system is likely the reason for the observed rapid endocytosis of APC transporters during many environmental stresses. Furthermore, we show the importance of respiration in providing ATP to maintain a strong proton gradient for efficient nutrient uptake.
Collapse
Affiliation(s)
- Akshay Moharir
- Henry Eyring Center for Cell and Genome Science, University of Utah, 1390 President Circle, Salt Lake City, UT, 84112, USA
| | - Lincoln Gay
- Henry Eyring Center for Cell and Genome Science, University of Utah, 1390 President Circle, Salt Lake City, UT, 84112, USA
| | - Babst Markus
- Henry Eyring Center for Cell and Genome Science, University of Utah, 1390 President Circle, Salt Lake City, UT, 84112, USA
| |
Collapse
|
8
|
Pallares RM, An DD, Hébert S, Faulkner D, Loguinov A, Proctor M, Villalobos JA, Bjornstad KA, Rosen CJ, Vulpe C, Abergel RJ. Delineating toxicity mechanisms associated with MRI contrast enhancement through a multidimensional toxicogenomic profiling of gadolinium. Mol Omics 2022; 18:237-248. [PMID: 35040455 DOI: 10.1039/d1mo00267h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Gadolinium is a metal used in contrast agents for magnetic resonance imaging. Although gadolinium is widely used in clinical settings, many concerns regarding its toxicity and bioaccumulation after gadolinium-based contrast agent administration have been raised and published over the last decade. To date, most toxicological studies have focused on identifying acute effects following gadolinium exposure, rather than investigating associated toxicity mechanisms. In this study, we employ functional toxicogenomics to assess mechanistic interactions of gadolinium with Saccharomyces cerevisiae. Furthermore, we determine which mechanisms are conserved in humans, and their implications for diseases related to the use of gadolinium-based contrast agents in medicine. A homozygous deletion pool of 4291 strains were screened to identify biological functions and pathways disturbed by the metal. Gene ontology and pathway enrichment analyses showed endocytosis and vesicle-mediated transport as the main yeast response to gadolinium, while certain metabolic processes, such as glycosylation, were the primary disrupted functions after the metal treatments. Cluster and protein-protein interaction network analyses identified proteins mediating vesicle-mediated transport through the Golgi apparatus and the vacuole, and vesicle cargo exocytosis as key components to reduce the metal toxicity. Moreover, the metal seemed to induce cytotoxicity by disrupting the function of enzymes (e.g. transferases and proteases) and chaperones involved in metabolic processes. Several of the genes and proteins associated with gadolinium toxicity are conserved in humans, suggesting that they may participate in pathologies linked to gadolinium-based contrast agent exposures. We thereby discuss the potential role of these conserved genes and gene products in gadolinium-induced nephrogenic systemic fibrosis, and propose potential prophylactic strategies to prevent its adverse health effects.
Collapse
Affiliation(s)
- Roger M Pallares
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
| | - Dahlia D An
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
| | - Solène Hébert
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
| | - David Faulkner
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
| | - Alex Loguinov
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32611, USA
| | - Michael Proctor
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32611, USA
| | - Jonathan A Villalobos
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
| | - Kathleen A Bjornstad
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
| | - Chris J Rosen
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
| | - Christopher Vulpe
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32611, USA
| | - Rebecca J Abergel
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA. .,Department of Nuclear Engineering, University of California, Berkeley, CA, 94720, USA
| |
Collapse
|
9
|
Cells under pressure: how yeast cells respond to mechanical forces. Trends Microbiol 2022; 30:495-510. [PMID: 35000797 DOI: 10.1016/j.tim.2021.11.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 10/31/2021] [Accepted: 11/08/2021] [Indexed: 11/23/2022]
Abstract
In their natural habitats, unicellular fungal microbes are exposed to a myriad of mechanical cues such as shear forces from fluid flow, osmotic changes, and contact forces arising from microbial expansion in confined niches. While the rigidity of the cell wall is critical to withstand such external forces and balance high internal turgor pressure, it poses mechanical challenges during physiological processes such as cell growth, division, and mating that require cell wall remodeling. Thus, even organisms as simple as yeast have evolved complex signaling networks to sense and respond to intrinsic and extrinsic mechanical forces. In this review, we summarize the type and origin of mechanical forces experienced by unicellular yeast and discuss how these forces reorganize cell polarity and how pathogenic fungi exploit polarized assemblies to track weak spots in host tissues for successful penetration. We then describe mechanisms of force-sensing by conserved sets of mechanosensors. Finally, we elaborate downstream mechanotransduction mechanisms that orchestrate appropriate cellular responses, leading to improved mechanical fitness.
Collapse
|
10
|
Robinson BP, Hawbaker S, Chiang A, Jordahl EM, Anaokar S, Nikiforov A, Bowman RW, Ziegler P, McAtee CK, Patton-Vogt J, O’Donnell AF. Alpha-arrestins Aly1/Art6 and Aly2/Art3 regulate trafficking of the glycerophosphoinositol transporter Git1 and impact phospholipid homeostasis. Biol Cell 2022; 114:3-31. [PMID: 34562280 PMCID: PMC11583686 DOI: 10.1111/boc.202100007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 06/23/2021] [Accepted: 07/15/2021] [Indexed: 12/20/2022]
Abstract
BACKGROUND INFORMATION Phosphatidylinositol (PI) is an essential phospholipid, critical to membrane bilayers. The complete deacylation of PI by B-type phospholipases produces intracellular and extracellular glycerophosphoinositol (GPI). Extracellular GPI is transported into the cell via Git1, a member of the Major Facilitator Superfamily of transporters at the yeast plasma membrane. Internalized GPI is degraded to produce inositol, phosphate and glycerol, thereby contributing to these pools. GIT1 gene expression is controlled by nutrient balance, with phosphate or inositol starvation increasing GIT1 expression to stimulate GPI uptake. However, less is known about control of Git1 protein levels or localization. RESULTS We find that the α-arrestins, an important class of protein trafficking adaptor, regulate Git1 localization and this is dependent upon their interaction with the ubiquitin ligase Rsp5. Specifically, α-arrestin Aly2 stimulates Git1 trafficking to the vacuole under basal conditions, but in response to GPI-treatment, either Aly1 or Aly2 promote Git1 vacuole trafficking. Cell surface retention of Git1, as occurs in aly1∆ aly2∆ cells, is linked to impaired growth in the presence of exogenous GPI and results in increased uptake of radiolabeled GPI, suggesting that accumulation of GPI somehow causes cellular toxicity. Regulation of α-arrestin Aly1 by the protein phosphatase calcineurin improves steady-state and substrate-induced trafficking of Git1, however, calcineurin plays a larger role in Git1 trafficking beyond regulation of α-arrestins. Interestingly, loss of Aly1 and Aly2 increased phosphatidylinositol-3-phosphate on the limiting membrane of the vacuole, and this was further exacerbated by GPI addition, suggesting that the effect is partially linked to Git1. Loss of Aly1 and Aly2 leads to increased incorporation of inositol label from [3 H]-inositol-labelled GPI into PI, confirming that internalized GPI influences PI balance and indicating a role for the a-arrestins in this regulation. CONCLUSIONS The α-arrestins Aly1 and Aly2 are novel regulators of Git1 trafficking with previously unanticipated roles in controlling phospholipid distribution and balance. SIGNIFICANCE To our knowledge, this is the first example of α-arrestin regulation of phosphatidyliniositol-3-phosphate levels. In future studies it will be exciting to determine if other α-arrestins similarly alter PI and PIPs to change the cellular landscape.
Collapse
Affiliation(s)
| | - Sarah Hawbaker
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Annette Chiang
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Eric M. Jordahl
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Sanket Anaokar
- Department of Biological Sciences, Duquesne University, Pittsburgh, PA, USA
| | - Alexiy Nikiforov
- Department of Biological Sciences, Duquesne University, Pittsburgh, PA, USA
| | - Ray W. Bowman
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Biological Sciences, Duquesne University, Pittsburgh, PA, USA
| | - Philip Ziegler
- Department of Biological Sciences, Duquesne University, Pittsburgh, PA, USA
| | - Ceara K. McAtee
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jana Patton-Vogt
- Department of Biological Sciences, Duquesne University, Pittsburgh, PA, USA
| | - Allyson F. O’Donnell
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Biological Sciences, Duquesne University, Pittsburgh, PA, USA
| |
Collapse
|
11
|
Structural Insights into Protein Regulation by Phosphorylation and Substrate Recognition of Protein Kinases/Phosphatases. Life (Basel) 2021; 11:life11090957. [PMID: 34575106 PMCID: PMC8467178 DOI: 10.3390/life11090957] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 09/05/2021] [Accepted: 09/10/2021] [Indexed: 12/30/2022] Open
Abstract
Protein phosphorylation is one of the most widely observed and important post-translational modification (PTM) processes. Protein phosphorylation is regulated by protein kinases, each of which covalently attaches a phosphate group to an amino acid side chain on a serine (Ser), threonine (Thr), or tyrosine (Tyr) residue of a protein, and by protein phosphatases, each of which, conversely, removes a phosphate group from a phosphoprotein. These reversible enzyme activities provide a regulatory mechanism by activating or deactivating many diverse functions of proteins in various cellular processes. In this review, their structures and substrate recognition are described and summarized, focusing on Ser/Thr protein kinases and protein Ser/Thr phosphatases, and the regulation of protein structures by phosphorylation. The studies reviewed here and the resulting information could contribute to further structural, biochemical, and combined studies on the mechanisms of protein phosphorylation and to drug discovery approaches targeting protein kinases or protein phosphatases.
Collapse
|
12
|
Athanasopoulos A, André B, Sophianopoulou V, Gournas C. Fungal plasma membrane domains. FEMS Microbiol Rev 2020; 43:642-673. [PMID: 31504467 DOI: 10.1093/femsre/fuz022] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 08/25/2019] [Indexed: 12/11/2022] Open
Abstract
The plasma membrane (PM) performs a plethora of physiological processes, the coordination of which requires spatial and temporal organization into specialized domains of different sizes, stability, protein/lipid composition and overall architecture. Compartmentalization of the PM has been particularly well studied in the yeast Saccharomyces cerevisiae, where five non-overlapping domains have been described: The Membrane Compartments containing the arginine permease Can1 (MCC), the H+-ATPase Pma1 (MCP), the TORC2 kinase (MCT), the sterol transporters Ltc3/4 (MCL), and the cell wall stress mechanosensor Wsc1 (MCW). Additional cortical foci at the fungal PM are the sites where clathrin-dependent endocytosis occurs, the sites where the external pH sensing complex PAL/Rim localizes, and sterol-rich domains found in apically grown regions of fungal membranes. In this review, we summarize knowledge from several fungal species regarding the organization of the lateral PM segregation. We discuss the mechanisms of formation of these domains, and the mechanisms of partitioning of proteins there. Finally, we discuss the physiological roles of the best-known membrane compartments, including the regulation of membrane and cell wall homeostasis, apical growth of fungal cells and the newly emerging role of MCCs as starvation-protective membrane domains.
Collapse
Affiliation(s)
- Alexandros Athanasopoulos
- Microbial Molecular Genetics Laboratory, Institute of Biosciences and Applications, National Centre for Scientific Research 'Demokritos,' Patr. Grigoriou E & 27 Neapoleos St. 15341, Agia Paraskevi, Greece
| | - Bruno André
- Molecular Physiology of the Cell laboratory, Université Libre de Bruxelles (ULB), Institut de Biologie et de Médecine Moléculaires, rue des Pr Jeener et Brachet 12, 6041, Gosselies, Belgium
| | - Vicky Sophianopoulou
- Microbial Molecular Genetics Laboratory, Institute of Biosciences and Applications, National Centre for Scientific Research 'Demokritos,' Patr. Grigoriou E & 27 Neapoleos St. 15341, Agia Paraskevi, Greece
| | - Christos Gournas
- Microbial Molecular Genetics Laboratory, Institute of Biosciences and Applications, National Centre for Scientific Research 'Demokritos,' Patr. Grigoriou E & 27 Neapoleos St. 15341, Agia Paraskevi, Greece
| |
Collapse
|
13
|
Riggi M, Kusmider B, Loewith R. The flipside of the TOR coin - TORC2 and plasma membrane homeostasis at a glance. J Cell Sci 2020; 133:133/9/jcs242040. [PMID: 32393676 DOI: 10.1242/jcs.242040] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Target of rapamycin (TOR) is a serine/threonine protein kinase conserved in most eukaryote organisms. TOR assembles into two multiprotein complexes (TORC1 and TORC2), which function as regulators of cellular growth and homeostasis by serving as direct transducers of extracellular biotic and abiotic signals, and, through their participation in intrinsic feedback loops, respectively. TORC1, the better-studied complex, is mainly involved in cell volume homeostasis through regulating accumulation of proteins and other macromolecules, while the functions of the lesser-studied TORC2 are only now starting to emerge. In this Cell Science at a Glance article and accompanying poster, we aim to highlight recent advances in our understanding of TORC2 signalling, particularly those derived from studies in yeast wherein TORC2 has emerged as a major regulator of cell surface homeostasis.
Collapse
Affiliation(s)
- Margot Riggi
- Swiss National Centre for Competence in Research Program Chemical Biology, Geneva, Switzerland.,Department of Biochemistry, University of Geneva, Geneva, Switzerland.,Department of Molecular Biology, University of Geneva, Geneva, Switzerland
| | - Beata Kusmider
- Swiss National Centre for Competence in Research Program Chemical Biology, Geneva, Switzerland.,Department of Molecular Biology, University of Geneva, Geneva, Switzerland
| | - Robbie Loewith
- Swiss National Centre for Competence in Research Program Chemical Biology, Geneva, Switzerland .,Department of Molecular Biology, University of Geneva, Geneva, Switzerland
| |
Collapse
|
14
|
Babst M. Regulation of nutrient transporters by metabolic and environmental stresses. Curr Opin Cell Biol 2020; 65:35-41. [PMID: 32200208 DOI: 10.1016/j.ceb.2020.02.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 02/15/2020] [Indexed: 12/17/2022]
Abstract
The yeast plasma membrane is a selective barrier between an erratic environment and the cell's metabolism. Nutrient transporters are the gatekeepers that control the import of molecules feeding into the metabolic pathways. Nutrient import adjusts rapidly to changes in metabolism and the environment, which is accomplished by regulating the surface expression of transporters. Recent studies indicate that the lipid environment in which transporters function regulates ubiquitination efficiency and endocytosis of these proteins. Changes in the lipid environment are caused by lateral movements of the transporters between different membrane domains and by the influence of the extracellular environment on the fluidity of the plasma membrane.
Collapse
Affiliation(s)
- Markus Babst
- Henry Eyring Center for Cell and Genome Science, University of Utah, Salt Lake City, UT 84112, USA.
| |
Collapse
|
15
|
Appadurai D, Gay L, Moharir A, Lang MJ, Duncan MC, Schmidt O, Teis D, Vu TN, Silva M, Jorgensen EM, Babst M. Plasma membrane tension regulates eisosome structure and function. Mol Biol Cell 2019; 31:287-303. [PMID: 31851579 PMCID: PMC7183764 DOI: 10.1091/mbc.e19-04-0218] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Eisosomes are membrane furrows at the cell surface of yeast that have been shown to function in two seemingly distinct pathways, membrane stress response and regulation of nutrient transporters. We found that many stress conditions affect both of these pathways by changing plasma membrane tension and thus the morphology and composition of eisosomes. For example, alkaline stress causes swelling of the cell and an endocytic response, which together increase membrane tension, thereby flattening the eisosomes. The flattened eisosomes affect membrane stress pathways and release nutrient transporters, which aids in their down-regulation. In contrast, glucose starvation or hyperosmotic shock causes cell shrinking, which results in membrane slack and the deepening of eisosomes. Deepened eisosomes are able to trap nutrient transporters and protect them from rapid endocytosis. Therefore, eisosomes seem to coordinate the regulation of both membrane tension and nutrient transporter stability.
Collapse
Affiliation(s)
- Daniel Appadurai
- Henry Eyring Center for Cell and Genome Science, University of Utah, Salt Lake City, UT 84112
| | - Lincoln Gay
- Henry Eyring Center for Cell and Genome Science, University of Utah, Salt Lake City, UT 84112
| | - Akshay Moharir
- Henry Eyring Center for Cell and Genome Science, University of Utah, Salt Lake City, UT 84112
| | - Michael J Lang
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109
| | - Mara C Duncan
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109
| | - Oliver Schmidt
- Division of Cell Biology, Medical University of Innsbruck, Innsbruck 6020, Austria
| | - David Teis
- Division of Cell Biology, Medical University of Innsbruck, Innsbruck 6020, Austria
| | - Thien N Vu
- School of Biological Sciences, Howard Hughes Medical Institute, University of Utah, Salt Lake City, UT 84112
| | - Malan Silva
- School of Biological Sciences, Howard Hughes Medical Institute, University of Utah, Salt Lake City, UT 84112
| | - Erik M Jorgensen
- School of Biological Sciences, Howard Hughes Medical Institute, University of Utah, Salt Lake City, UT 84112
| | - Markus Babst
- Henry Eyring Center for Cell and Genome Science, University of Utah, Salt Lake City, UT 84112
| |
Collapse
|
16
|
Dominant mutants of the calcineurin catalytic subunit (CNA-1) showed developmental defects, increased sensitivity to stress conditions, and CNA-1 interacts with CaM and CRZ-1 in Neurospora crassa. Arch Microbiol 2019; 202:921-934. [DOI: 10.1007/s00203-019-01768-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 10/12/2019] [Accepted: 10/31/2019] [Indexed: 12/20/2022]
|
17
|
Babst M. Eisosomes at the intersection of TORC1 and TORC2 regulation. Traffic 2019; 20:543-551. [PMID: 31038844 DOI: 10.1111/tra.12651] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 04/24/2019] [Accepted: 04/26/2019] [Indexed: 12/14/2022]
Abstract
Eisosomes are furrows in the yeast plasma membrane that form a membrane domain with distinct lipid and protein composition. Recent studies highlighted the importance of this domain for the regulation of proton-nutrient symporters. The amino acids and other nutrients, which these transporters deliver to the cytoplasm not only feed into metabolic pathways but also activate the metabolic regulator TORC1. Eisosomes have also been shown to harbor the membrane stress sensors Slm1 and Slm2. Membrane tension caused by hypoosmotic shock results in the redistribution of Slm1/2 from eisosomes to TORC2 which in turn regulates lipid synthesis. Therefore, eisosomes function upstream of both TORC1 and TORC2 regulation.
Collapse
Affiliation(s)
- Markus Babst
- Henry Eyring Center for Cell and Genome Science, University of Utah, Salt Lake City, Utah
| |
Collapse
|
18
|
Ariño J, Velázquez D, Casamayor A. Ser/Thr protein phosphatases in fungi: structure, regulation and function. MICROBIAL CELL (GRAZ, AUSTRIA) 2019; 6:217-256. [PMID: 31114794 PMCID: PMC6506691 DOI: 10.15698/mic2019.05.677] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 03/19/2019] [Accepted: 03/21/2019] [Indexed: 12/12/2022]
Abstract
Reversible phospho-dephosphorylation of proteins is a major mechanism for the control of cellular functions. By large, Ser and Thr are the most frequently residues phosphorylated in eukar-yotes. Removal of phosphate from these amino acids is catalyzed by a large family of well-conserved enzymes, collectively called Ser/Thr protein phosphatases. The activity of these enzymes has an enormous impact on cellular functioning. In this work we pre-sent the members of this family in S. cerevisiae and other fungal species, and review the most recent findings concerning their regu-lation and the roles they play in the most diverse aspects of cell biology.
Collapse
Affiliation(s)
- Joaquín Ariño
- Departament de Bioquímica i Biologia Molecular and Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain
| | - Diego Velázquez
- Departament de Bioquímica i Biologia Molecular and Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain
| | - Antonio Casamayor
- Departament de Bioquímica i Biologia Molecular and Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain
| |
Collapse
|
19
|
Wawrzycka D, Sadlak J, Maciaszczyk-Dziubinska E, Wysocki R. Rsp5-dependent endocytosis and degradation of the arsenite transporter Acr3 requires its N-terminal acidic tail as an endocytic sorting signal and arrestin-related ubiquitin-ligase adaptors. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1861:916-925. [PMID: 30776335 DOI: 10.1016/j.bbamem.2019.02.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 02/06/2019] [Accepted: 02/11/2019] [Indexed: 01/15/2023]
Abstract
The yeast plasma membrane transporter Acr3 mediates efflux of toxic arsenite and antimonite. Here, we investigated the mechanisms of Acr3 turnover. We found that after arrival and residence at the plasma membrane, Acr3 is subjected to internalization followed by proteolysis in the vacuole. Endocytic degradation of Acr3 is promoted by the ubiquitin ligase Rsp5 and requires polyubiquitination of Acr3 at multiple lysine residues via lysine 63-linked ubiquitin chains. The turnover of Acr3 also depends on two arrestin-related proteins, Art3/Aly2 and Art4/Rod1, that enable recruitment of Rsp5 to its targets. Finally, we found that a short acidic patch located in the N-terminal tail of Acr3 is needed for its ubiquitination and internalization. We propose that this motif serves as an endocytic signal that facilitates binding of the arrestin-Rsp5 complexes to the Acr3 cargo.
Collapse
Affiliation(s)
- Donata Wawrzycka
- Institute of Experimental Biology, University of Wroclaw, 50-328 Wroclaw, Poland
| | - Joanna Sadlak
- Institute of Experimental Biology, University of Wroclaw, 50-328 Wroclaw, Poland
| | | | - Robert Wysocki
- Institute of Experimental Biology, University of Wroclaw, 50-328 Wroclaw, Poland.
| |
Collapse
|
20
|
Leskoske KL, Roelants FM, Emmerstorfer-Augustin A, Augustin CM, Si EP, Hill JM, Thorner J. Phosphorylation by the stress-activated MAPK Slt2 down-regulates the yeast TOR complex 2. Genes Dev 2018; 32:1576-1590. [PMID: 30478248 PMCID: PMC6295167 DOI: 10.1101/gad.318709.118] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 10/10/2018] [Indexed: 12/13/2022]
Abstract
Here, Leskoske et al. studied how TORC2 activity is modulated in response to changes in the status of the cell envelope. They demonstrate that TORC2 subunit Avo2 is a direct target of Slt2, the MAPK of the cell wall integrity pathway, and their findings provide new insights into TORC2 function and regulation. Saccharomyces cerevisiae target of rapamycin (TOR) complex 2 (TORC2) is an essential regulator of plasma membrane lipid and protein homeostasis. How TORC2 activity is modulated in response to changes in the status of the cell envelope is unclear. Here we document that TORC2 subunit Avo2 is a direct target of Slt2, the mitogen-activated protein kinase (MAPK) of the cell wall integrity pathway. Activation of Slt2 by overexpression of a constitutively active allele of an upstream Slt2 activator (Pkc1) or by auxin-induced degradation of a negative Slt2 regulator (Sln1) caused hyperphosphorylation of Avo2 at its MAPK phosphoacceptor sites in a Slt2-dependent manner and diminished TORC2-mediated phosphorylation of its major downstream effector, protein kinase Ypk1. Deletion of Avo2 or expression of a phosphomimetic Avo2 allele rendered cells sensitive to two stresses (myriocin treatment and elevated exogenous acetic acid) that the cell requires Ypk1 activation by TORC2 to survive. Thus, Avo2 is necessary for optimal TORC2 activity, and Slt2-mediated phosphorylation of Avo2 down-regulates TORC2 signaling. Compared with wild-type Avo2, phosphomimetic Avo2 shows significant displacement from the plasma membrane, suggesting that Slt2 inhibits TORC2 by promoting Avo2 dissociation. Our findings are the first demonstration that TORC2 function is regulated by MAPK-mediated phosphorylation.
Collapse
Affiliation(s)
- Kristin L Leskoske
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, California 94720, USA
| | - Françoise M Roelants
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, California 94720, USA
| | - Anita Emmerstorfer-Augustin
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, California 94720, USA
| | - Christoph M Augustin
- Department of Mechanical Engineering, University of California at Berkeley, Berkeley, California 94720, USA
| | - Edward P Si
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, California 94720, USA
| | - Jennifer M Hill
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, California 94720, USA
| | - Jeremy Thorner
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, California 94720, USA
| |
Collapse
|
21
|
Finicle BT, Ramirez MU, Liu G, Selwan EM, McCracken AN, Yu J, Joo Y, Nguyen J, Ou K, Roy SG, Mendoza VD, Corrales DV, Edinger AL. Sphingolipids inhibit endosomal recycling of nutrient transporters by inactivating ARF6. J Cell Sci 2018; 131:jcs.213314. [PMID: 29848659 DOI: 10.1242/jcs.213314] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 05/21/2018] [Indexed: 12/15/2022] Open
Abstract
Endogenous sphingolipids (ceramide) and related synthetic molecules (FTY720, SH-BC-893) reduce nutrient access by decreasing cell surface expression of a subset of nutrient transporter proteins. Here, we report that these sphingolipids disrupt endocytic recycling by inactivating the small GTPase ARF6. Consistent with reported roles for ARF6 in maintaining the tubular recycling endosome, MICAL-L1-positive tubules were lost from sphingolipid-treated cells. We propose that ARF6 inactivation may occur downstream of PP2A activation since: (1) sphingolipids that fail to activate PP2A did not reduce ARF6-GTP levels; (2) a structurally unrelated PP2A activator disrupted tubular recycling endosome morphology and transporter localization; and (3) overexpression of a phosphomimetic mutant of the ARF6 GEF GRP1 prevented nutrient transporter loss. ARF6 inhibition alone was not toxic; however, the ARF6 inhibitors SecinH3 and NAV2729 dramatically enhanced the killing of cancer cells by SH-BC-893 without increasing toxicity to peripheral blood mononuclear cells, suggesting that ARF6 inactivation contributes to the anti-neoplastic actions of sphingolipids. Taken together, these studies provide mechanistic insight into how ceramide and sphingolipid-like molecules limit nutrient access and suppress tumor cell growth and survival.
Collapse
Affiliation(s)
- Brendan T Finicle
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, CA 92697, USA
| | - Manuel U Ramirez
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, CA 92697, USA
| | - Gang Liu
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, CA 92697, USA
| | - Elizabeth M Selwan
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, CA 92697, USA
| | - Alison N McCracken
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, CA 92697, USA
| | - Jingwen Yu
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, CA 92697, USA
| | - Yoosun Joo
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, CA 92697, USA
| | - Jannett Nguyen
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, CA 92697, USA
| | - Kevin Ou
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, CA 92697, USA
| | - Saurabh Ghosh Roy
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, CA 92697, USA
| | - Victor D Mendoza
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, CA 92697, USA
| | - Dania Virginia Corrales
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, CA 92697, USA
| | - Aimee L Edinger
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, CA 92697, USA
| |
Collapse
|
22
|
Juvvadi PR, Moseley MA, Hughes CJ, Soderblom EJ, Lennon S, Perkins SR, Thompson JW, Geromanos SJ, Wildgoose J, Richardson K, Langridge JI, Vissers JPC, Steinbach WJ. Scanning Quadrupole Data-Independent Acquisition, Part B: Application to the Analysis of the Calcineurin-Interacting Proteins during Treatment of Aspergillus fumigatus with Azole and Echinocandin Antifungal Drugs. J Proteome Res 2017; 17:780-793. [PMID: 29251506 DOI: 10.1021/acs.jproteome.7b00499] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Calcineurin is a critical cell-signaling protein that orchestrates growth, stress response, virulence, and antifungal drug resistance in several fungal pathogens. Blocking calcineurin signaling increases the efficacy of several currently available antifungals and suppresses drug resistance. We demonstrate the application of a novel scanning quadrupole DIA method for the analysis of changes in the proteins coimmunoprecipitated with calcineurin during therapeutic antifungal drug treatments of the deadly human fungal pathogen Aspergillus fumigatus. Our experimental design afforded an assessment of the precision of the method as demonstrated by peptide- and protein-centric analysis from eight replicates of the study pool QC samples. Two distinct classes of clinically relevant antifungal drugs that are guideline recommended for the treatment of invasive "aspergillosis" caused by Aspergillus fumigatus, the azoles (voriconazole) and the echinocandins (caspofungin and micafungin), which specifically target the fungal plasma membrane and the fungal cell wall, respectively, were chosen to distinguish variations occurring in the proteins coimmunoprecipitated with calcineurin. Novel potential interactors were identified in response to the different drug treatments that are indicative of the possible role for calcineurin in regulating these effectors. Notably, treatment with voriconazole showed increased immunoprecipitation of key proteins involved in membrane ergosterol biosynthesis with calcineurin. In contrast, echinocandin (caspofungin or micafungin) treatments caused increased immunoprecipitation of proteins involved in cell-wall biosynthesis and septation. Furthermore, abundant coimmunoprecipitation of ribosomal proteins with calcineurin occurred exclusively in echinocandins treatment, indicating reprogramming of cellular growth mechanisms during different antifungal drug treatments. While variations in the observed calcineurin immunoprecipitated proteins may also be due to changes in their expression levels under different drug treatments, this study suggests an important role for calcineurin-dependent cellular mechanisms in response to antifungal treatment of A. fumigatus that warrants future studies.
Collapse
Affiliation(s)
- Praveen R Juvvadi
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Duke University Medical Center , Durham, North Carolina 27710, United States
| | - M Arthur Moseley
- Proteomics and Metabolomics Shared Resource Center for Genomic and Computational Biology, Duke University Medical Center , Durham, North Carolina 27710, United States
| | | | - Erik J Soderblom
- Proteomics and Metabolomics Shared Resource Center for Genomic and Computational Biology, Duke University Medical Center , Durham, North Carolina 27710, United States
| | - Sarah Lennon
- Waters Corporation , Wilmslow SK9 4AX, United Kingdom
| | - Simon R Perkins
- Institute of Integrative Biology, University of Liverpool , Liverpool L69 3BX, United Kingdom
| | - J Will Thompson
- Proteomics and Metabolomics Shared Resource Center for Genomic and Computational Biology, Duke University Medical Center , Durham, North Carolina 27710, United States
| | | | | | | | | | | | - William J Steinbach
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Duke University Medical Center , Durham, North Carolina 27710, United States.,Department of Molecular Genetics and Microbiology, Duke University Medical Center , Durham, North Carolina 27710, United States
| |
Collapse
|
23
|
Protein kinase C and calcineurin cooperatively mediate cell survival under compressive mechanical stress. Proc Natl Acad Sci U S A 2017; 114:13471-13476. [PMID: 29196524 DOI: 10.1073/pnas.1709079114] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Cells experience compressive stress while growing in limited space or migrating through narrow constrictions. To survive such stress, cells reprogram their intracellular organization to acquire appropriate mechanical properties. However, the mechanosensors and downstream signaling networks mediating these changes remain largely unknown. Here, we have established a microfluidic platform to specifically trigger compressive stress, and to quantitatively monitor single-cell responses of budding yeast in situ. We found that yeast senses compressive stress via the cell surface protein Mid2 and the calcium channel proteins Mid1 and Cch1, which then activate the Pkc1/Mpk1 MAP kinase pathway and calcium signaling, respectively. Genetic analysis revealed that these pathways work in parallel to mediate cell survival. Mid2 contains a short intracellular tail and a serine-threonine-rich extracellular domain with spring-like properties, and both domains are required for mechanosignaling. Mid2-dependent spatial activation of the Pkc1/Mpk1 pathway depolarizes the actin cytoskeleton in budding or shmooing cells, thereby antagonizing polarized growth to protect cells under compressive stress conditions. Together, these results identify a conserved signaling network responding to compressive mechanical stress, which, in higher eukaryotes, may ensure cell survival in confined environments.
Collapse
|
24
|
The TORC2-Dependent Signaling Network in the Yeast Saccharomyces cerevisiae. Biomolecules 2017; 7:biom7030066. [PMID: 28872598 PMCID: PMC5618247 DOI: 10.3390/biom7030066] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 08/25/2017] [Accepted: 08/28/2017] [Indexed: 12/21/2022] Open
Abstract
To grow, eukaryotic cells must expand by inserting glycerolipids, sphingolipids, sterols, and proteins into their plasma membrane, and maintain the proper levels and bilayer distribution. A fungal cell must coordinate growth with enlargement of its cell wall. In Saccharomyces cerevisiae, a plasma membrane-localized protein kinase complex, Target of Rapamicin (TOR) complex-2 (TORC2) (mammalian ortholog is mTORC2), serves as a sensor and master regulator of these plasma membrane- and cell wall-associated events by directly phosphorylating and thereby stimulating the activity of two types of effector protein kinases: Ypk1 (mammalian ortholog is SGK1), along with a paralog (Ypk2); and, Pkc1 (mammalian ortholog is PKN2/PRK2). Ypk1 is a central regulator of pathways and processes required for plasma membrane lipid and protein homeostasis, and requires phosphorylation on its T-loop by eisosome-associated protein kinase Pkh1 (mammalian ortholog is PDK1) and a paralog (Pkh2). For cell survival under various stresses, Ypk1 function requires TORC2-mediated phosphorylation at multiple sites near its C terminus. Pkc1 controls diverse processes, especially cell wall synthesis and integrity. Pkc1 is also regulated by Pkh1- and TORC2-dependent phosphorylation, but, in addition, by interaction with Rho1-GTP and lipids phosphatidylserine (PtdSer) and diacylglycerol (DAG). We also describe here what is currently known about the downstream substrates modulated by Ypk1-mediated and Pkc1-mediated phosphorylation.
Collapse
|
25
|
TOR Complex 2-Regulated Protein Kinase Fpk1 Stimulates Endocytosis via Inhibition of Ark1/Prk1-Related Protein Kinase Akl1 in Saccharomyces cerevisiae. Mol Cell Biol 2017; 37:MCB.00627-16. [PMID: 28069741 PMCID: PMC5359421 DOI: 10.1128/mcb.00627-16] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 01/03/2017] [Indexed: 12/23/2022] Open
Abstract
Depending on the stress, plasma membrane alterations activate or inhibit yeast target of rapamycin (TOR) complex 2, which, in turn, upregulates or downregulates the activity of its essential downstream effector, protein kinase Ypk1. Through phosphorylation of multiple substrates, Ypk1 controls many processes that restore homeostasis. One such substrate is protein kinase Fpk1, which is negatively regulated by Ypk1. Fpk1 phosphorylates and stimulates flippases that translocate aminoglycerophospholipids from the outer to the inner leaflet of the plasma membrane. Fpk1 has additional roles, but other substrates were uncharacterized. We show that Fpk1 phosphorylates and inhibits protein kinase Akl1, related to protein kinases Ark1 and Prk1, which modulate the dynamics of actin patch-mediated endocytosis. Akl1 has two Fpk1 phosphorylation sites (Ark1 and Prk1 have none) and is hypophosphorylated when Fpk1 is absent. Conversely, under conditions that inactivate TORC2-Ypk1 signaling, which alleviates Fpk1 inhibition, Akl1 is hyperphosphorylated. Monitoring phosphorylation of known Akl1 substrates (Sla1 and Ent2) confirmed that Akl1 is hyperactive when not phosphorylated by Fpk1. Fpk1-mediated negative regulation of Akl1 enhances endocytosis, because an Akl1 mutant immune to Fpk1 phosphorylation causes faster dissociation of Sla1 from actin patches, confers elevated resistance to doxorubicin (a toxic compound whose entry requires endocytosis), and impedes Lucifer yellow uptake (a marker of fluid phase endocytosis). Thus, TORC2-Ypk1, by regulating Fpk1-mediated phosphorylation of Akl1, adjusts the rate of endocytosis.
Collapse
|
26
|
Teixeira V, Costa V. Unraveling the role of the Target of Rapamycin signaling in sphingolipid metabolism. Prog Lipid Res 2015; 61:109-33. [PMID: 26703187 DOI: 10.1016/j.plipres.2015.11.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 11/04/2015] [Accepted: 11/09/2015] [Indexed: 02/06/2023]
Abstract
Sphingolipids are important bioactive molecules that regulate basic aspects of cellular metabolism and physiology, including cell growth, adhesion, migration, senescence, apoptosis, endocytosis, and autophagy in yeast and higher eukaryotes. Since they have the ability to modulate the activation of several proteins and signaling pathways, variations in the relative levels of different sphingolipid species result in important changes in overall cellular functions and fate. Sphingolipid metabolism and their route of synthesis are highly conserved from yeast to mammalian cells. Studies using the budding yeast Saccharomyces cerevisiae have served in many ways to foster our understanding of sphingolipid dynamics and their role in the regulation of cellular processes. In the past decade, studies in S. cerevisiae have unraveled a functional association between the Target of Rapamycin (TOR) pathway and sphingolipids, showing that both TOR Complex 1 (TORC1) and TOR Complex 2 (TORC2) branches control temporal and spatial aspects of sphingolipid metabolism in response to physiological and environmental cues. In this review, we report recent findings in this emerging and exciting link between the TOR pathway and sphingolipids and implications in human health and disease.
Collapse
Affiliation(s)
- Vitor Teixeira
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; IBMC, Instituto de Biologia Molecular e Celular, Porto, Portugal; ICBAS, Instituto de Ciências Biomédicas Abel Salazar, Departamento de Biologia Molecular, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Vítor Costa
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; IBMC, Instituto de Biologia Molecular e Celular, Porto, Portugal; ICBAS, Instituto de Ciências Biomédicas Abel Salazar, Departamento de Biologia Molecular, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| |
Collapse
|
27
|
Davey NE, Cyert MS, Moses AM. Short linear motifs - ex nihilo evolution of protein regulation. Cell Commun Signal 2015; 13:43. [PMID: 26589632 PMCID: PMC4654906 DOI: 10.1186/s12964-015-0120-z] [Citation(s) in RCA: 162] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2015] [Accepted: 11/13/2015] [Indexed: 12/12/2022] Open
Abstract
Short sequence motifs are ubiquitous across the three major types of biomolecules: hundreds of classes and thousands of instances of DNA regulatory elements, RNA motifs and protein short linear motifs (SLiMs) have been characterised. The increase in complexity of transcriptional, post-transcriptional and post-translational regulation in higher Eukaryotes has coincided with a significant expansion of motif use. But how did the eukaryotic cell acquire such a vast repertoire of motifs? In this review, we curate the available literature on protein motif evolution and discuss the evidence that suggests SLiMs can be acquired by mutations, insertions and deletions in disordered regions. We propose a mechanism of ex nihilo SLiM evolution – the evolution of a novel SLiM from “nothing” – adding a functional module to a previously non-functional region of protein sequence. In our model, hundreds of motif-binding domains in higher eukaryotic proteins connect simple motif specificities with useful functions to create a large functional motif space. Accessible peptides that match the specificity of these motif-binding domains are continuously created and destroyed by mutations in rapidly evolving disordered regions, creating a dynamic supply of new interactions that may have advantageous phenotypic novelty. This provides a reservoir of diversity to modify existing interaction networks. Evolutionary pressures will act on these motifs to retain beneficial instances. However, most will be lost on an evolutionary timescale as negative selection and genetic drift act on deleterious and neutral motifs respectively. In light of the parallels between the presented model and the evolution of motifs in the regulatory segments of genes and (pre-)mRNAs, we suggest our understanding of regulatory networks would benefit from the creation of a shared model describing the evolution of transcriptional, post-transcriptional and post-translational regulation.
Collapse
Affiliation(s)
- Norman E Davey
- Conway Institute of Biomolecular and Biomedical Sciences, University College Dublin, Dublin 4, Ireland.
| | - Martha S Cyert
- Department of Biology, Stanford University, Stanford, CA, 94305, USA.
| | - Alan M Moses
- Department of Cell & Systems Biology, University of Toronto, Toronto, Canada. .,Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, Canada.
| |
Collapse
|
28
|
Arsenault HE, Roy J, Mapa CE, Cyert MS, Benanti JA. Hcm1 integrates signals from Cdk1 and calcineurin to control cell proliferation. Mol Biol Cell 2015; 26:3570-7. [PMID: 26269584 PMCID: PMC4603928 DOI: 10.1091/mbc.e15-07-0469] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 08/06/2015] [Indexed: 11/23/2022] Open
Abstract
The transcription factor Hcm1 is a key regulator of chromosome segregation and genome stability. The phosphatase calcineurin directly inactivates Hcm1 in response to environmental stress, which inhibits proliferation. Hcm1 functions as a rheostat, whose phosphorylation state affects the rate of proliferation. Cyclin-dependent kinase (Cdk1) orchestrates progression through the cell cycle by coordinating the activities of cell-cycle regulators. Although phosphatases that oppose Cdk1 are likely to be necessary to establish dynamic phosphorylation, specific phosphatases that target most Cdk1 substrates have not been identified. In budding yeast, the transcription factor Hcm1 activates expression of genes that regulate chromosome segregation and is critical for maintaining genome stability. Previously we found that Hcm1 activity and degradation are stimulated by Cdk1 phosphorylation of distinct clusters of sites. Here we show that, upon exposure to environmental stress, the phosphatase calcineurin inhibits Hcm1 by specifically removing activating phosphorylations and that this regulation is important for cells to delay proliferation when they encounter stress. Our work identifies a mechanism by which proliferative signals from Cdk1 are removed in response to stress and suggests that Hcm1 functions as a rheostat that integrates stimulatory and inhibitory signals to control cell proliferation.
Collapse
Affiliation(s)
- Heather E Arsenault
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01520
| | - Jagoree Roy
- Department of Biology, Stanford University, Stanford, CA 94305
| | - Claudine E Mapa
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01520
| | - Martha S Cyert
- Department of Biology, Stanford University, Stanford, CA 94305
| | - Jennifer A Benanti
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01520
| |
Collapse
|
29
|
Guiney EL, Goldman AR, Elias JE, Cyert MS. Calcineurin regulates the yeast synaptojanin Inp53/Sjl3 during membrane stress. Mol Biol Cell 2015; 26:769-85. [PMID: 25518934 PMCID: PMC4325846 DOI: 10.1091/mbc.e14-05-1019] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 12/04/2014] [Accepted: 12/11/2014] [Indexed: 11/12/2022] Open
Abstract
During hyperosmotic shock, Saccharomyces cerevisiae adjusts to physiological challenges, including large plasma membrane invaginations generated by rapid cell shrinkage. Calcineurin, the Ca(2+)/calmodulin-dependent phosphatase, is normally cytosolic but concentrates in puncta and at sites of polarized growth during intense osmotic stress; inhibition of calcineurin-activated gene expression suggests that restricting its access to substrates tunes calcineurin signaling specificity. Hyperosmotic shock promotes calcineurin binding to and dephosphorylation of the PI(4,5)P2 phosphatase synaptojanin/Inp53/Sjl3 and causes dramatic calcineurin-dependent reorganization of PI(4,5)P2-enriched membrane domains. Inp53 normally promotes sorting at the trans-Golgi network but localizes to cortical actin patches in osmotically stressed cells. By activating Inp53, calcineurin repolarizes the actin cytoskeleton and maintains normal plasma membrane morphology in synaptojanin-limited cells. In response to hyperosmotic shock and calcineurin-dependent regulation, Inp53 shifts from associating predominantly with clathrin to interacting with endocytic proteins Sla1, Bzz1, and Bsp1, suggesting that Inp53 mediates stress-specific endocytic events. This response has physiological and molecular similarities to calcineurin-regulated activity-dependent bulk endocytosis in neurons, which retrieves a bolus of plasma membrane deposited by synaptic vesicle fusion. We propose that activation of Ca(2+)/calcineurin and PI(4,5)P2 signaling to regulate endocytosis is a fundamental and conserved response to excess membrane in eukaryotic cells.
Collapse
Affiliation(s)
- Evan L Guiney
- Department of Biology, Stanford University, Stanford, CA 94305
| | - Aaron R Goldman
- Department of Biology, Stanford University, Stanford, CA 94305
| | - Joshua E Elias
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305
| | - Martha S Cyert
- Department of Biology, Stanford University, Stanford, CA 94305
| |
Collapse
|
30
|
Specific α-arrestins negatively regulate Saccharomyces cerevisiae pheromone response by down-modulating the G-protein-coupled receptor Ste2. Mol Cell Biol 2014; 34:2660-81. [PMID: 24820415 DOI: 10.1128/mcb.00230-14] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
G-protein-coupled receptors (GPCRs) are integral membrane proteins that initiate responses to extracellular stimuli by mediating ligand-dependent activation of cognate heterotrimeric G proteins. In yeast, occupancy of GPCR Ste2 by peptide pheromone α-factor initiates signaling by releasing a stimulatory Gβγ complex (Ste4-Ste18) from its inhibitory Gα subunit (Gpa1). Prolonged pathway stimulation is detrimental, and feedback mechanisms have evolved that act at the receptor level to limit the duration of signaling and stimulate recovery from pheromone-induced G1 arrest, including upregulation of the expression of an α-factor-degrading protease (Bar1), a regulator of G-protein signaling protein (Sst2) that stimulates Gpa1-GTP hydrolysis, and Gpa1 itself. Ste2 is also downregulated by endocytosis, both constitutive and ligand induced. Ste2 internalization requires its phosphorylation and subsequent ubiquitinylation by membrane-localized protein kinases (Yck1 and Yck2) and a ubiquitin ligase (Rsp5). Here, we demonstrate that three different members of the α-arrestin family (Ldb19/Art1, Rod1/Art4, and Rog3/Art7) contribute to Ste2 desensitization and internalization, and they do so by discrete mechanisms. We provide genetic and biochemical evidence that Ldb19 and Rod1 recruit Rsp5 to Ste2 via PPXY motifs in their C-terminal regions; in contrast, the arrestin fold domain at the N terminus of Rog3 is sufficient to promote adaptation. Finally, we show that Rod1 function requires calcineurin-dependent dephosphorylation.
Collapse
|
31
|
Muir A, Ramachandran S, Roelants FM, Timmons G, Thorner J. TORC2-dependent protein kinase Ypk1 phosphorylates ceramide synthase to stimulate synthesis of complex sphingolipids. eLife 2014; 3. [PMID: 25279700 PMCID: PMC4217029 DOI: 10.7554/elife.03779] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Accepted: 10/02/2014] [Indexed: 12/14/2022] Open
Abstract
Plasma membrane lipid composition must be maintained during growth and under environmental insult. In yeast, signaling mediated by TOR Complex 2 (TORC2)-dependent protein kinase Ypk1 controls lipid abundance and distribution in response to membrane stress. Ypk1, among other actions, alleviates negative regulation of L-serine:palmitoyl-CoA acyltransferase, upregulating production of long-chain base precursors to sphingolipids. To explore other roles for TORC2-Ypk1 signaling in membrane homeostasis, we devised a three-tiered genome-wide screen to identify additional Ypk1 substrates, which pinpointed both catalytic subunits of the ceramide synthase complex. Ypk1-dependent phosphorylation of both proteins increased upon either sphingolipid depletion or heat shock and was important for cell survival. Sphingolipidomics, other biochemical measurements and genetic analysis demonstrated that these modifications of ceramide synthase increased its specific activity and stimulated channeling of long-chain base precursors into sphingolipid end-products. Control at this branch point also prevents accumulation of intermediates that could compromise cell growth by stimulating autophagy. DOI:http://dx.doi.org/10.7554/eLife.03779.001 Cells are enclosed by a plasma membrane that separates and protects each cell from its environment. These membranes are made of a variety of proteins and fatty molecules called lipids, which are carefully organized throughout the membrane. When cells experience stresses such as heat or excessive pressure, the plasma membrane changes to help protect the cell. In particular, more of a group of lipids called sphingolipids are incorporated into the membrane under stress conditions. In yeast cells, a protein called Ypk1 plays an important role in protecting the cell from stress. Ypk1 controls the activity of a number of proteins that are responsible for balancing the amounts of different types of lipids in cell membranes. The combined action of these Ypk1-dependent proteins leads to the remodelling of the cell membrane to protect against stress. While several proteins that work with Ypk1 are known, some of the changes that serve to protect the plasma membrane cannot be explained by the action of these proteins alone. To provide a more comprehensive picture of how Ypk1 helps cells to respond to changes in the environment, Muir et al. developed a new approach that combines biochemical, genetic and bioinformatics techniques to survey the yeast genome for proteins that could be Ypk1 targets. Muir et al. first produced a list of potential candidate proteins by searching for proteins with features similar to known Ypk1 targets, and then considered those that are known to be involved in processes that also involve Ypk1. To filter the potential targets further, Muir et al. performed experiments in yeast cells to see which proteins prevented normal cell growth if they were over-produced. Further experiments investigating which of these proteins interact with Ypk1 when purified identified 12 new proteins that are most likely targets of the Ypk1 protein. Two of these newly identified Ypk1 target proteins form part of an enzyme complex called ceramide synthase, which produces a family of waxy lipid molecules from which more complex sphingolipids are built. Muir et al. discovered that during stress, Ypk1 enhances the activity of the ceramide synthase enzyme, which increases lipid production and the amount of sphingolipid deposited in the cell membrane. If this process is interrupted at any stage, cells struggle to survive under stress conditions. The other candidate proteins identified by Muir et al. remain to be validated and characterized as Ypk1 targets. Nevertheless, the techniques used have conclusively identified some new Ypk1 targets and could also be applied to similar searches for proteins targeted in other biological processes. DOI:http://dx.doi.org/10.7554/eLife.03779.002
Collapse
Affiliation(s)
- Alexander Muir
- Division of Biochemistry, Biophysics and Structural Biology, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Subramaniam Ramachandran
- Division of Biochemistry, Biophysics and Structural Biology, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Françoise M Roelants
- Division of Biochemistry, Biophysics and Structural Biology, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Garrett Timmons
- Department of Chemistry, University of California, Berkeley, Berkeley, United States
| | - Jeremy Thorner
- Division of Biochemistry, Biophysics and Structural Biology, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| |
Collapse
|
32
|
Engelberg D, Perlman R, Levitzki A. Transmembrane signaling in Saccharomyces cerevisiae as a model for signaling in metazoans: state of the art after 25 years. Cell Signal 2014; 26:2865-78. [PMID: 25218923 DOI: 10.1016/j.cellsig.2014.09.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 09/02/2014] [Indexed: 02/07/2023]
Abstract
In the very first article that appeared in Cellular Signalling, published in its inaugural issue in October 1989, we reviewed signal transduction pathways in Saccharomyces cerevisiae. Although this yeast was already a powerful model organism for the study of cellular processes, it was not yet a valuable instrument for the investigation of signaling cascades. In 1989, therefore, we discussed only two pathways, the Ras/cAMP and the mating (Fus3) signaling cascades. The pivotal findings concerning those pathways undoubtedly contributed to the realization that yeast is a relevant model for understanding signal transduction in higher eukaryotes. Consequently, the last 25 years have witnessed the discovery of many signal transduction pathways in S. cerevisiae, including the high osmotic glycerol (Hog1), Stl2/Mpk1 and Smk1 mitogen-activated protein (MAP) kinase pathways, the TOR, AMPK/Snf1, SPS, PLC1 and Pkr/Gcn2 cascades, and systems that sense and respond to various types of stress. For many cascades, orthologous pathways were identified in mammals following their discovery in yeast. Here we review advances in the understanding of signaling in S. cerevisiae over the last 25 years. When all pathways are analyzed together, some prominent themes emerge. First, wiring of signaling cascades may not be identical in all S. cerevisiae strains, but is probably specific to each genetic background. This situation complicates attempts to decipher and generalize these webs of reactions. Secondly, the Ras/cAMP and the TOR cascades are pivotal pathways that affect all processes of the life of the yeast cell, whereas the yeast MAP kinase pathways are not essential. Yeast cells deficient in all MAP kinases proliferate normally. Another theme is the existence of central molecular hubs, either as single proteins (e.g., Msn2/4, Flo11) or as multisubunit complexes (e.g., TORC1/2), which are controlled by numerous pathways and in turn determine the fate of the cell. It is also apparent that lipid signaling is less developed in yeast than in higher eukaryotes. Finally, feedback regulatory mechanisms seem to be at least as important and powerful as the pathways themselves. In the final chapter of this essay we dare to imagine the essence of our next review on signaling in yeast, to be published on the 50th anniversary of Cellular Signalling in 2039.
Collapse
Affiliation(s)
- David Engelberg
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel; CREATE-NUS-HUJ, Cellular & Molecular Mechanisms of Inflammation Programme, National University of Singapore, 1 CREATE Way, Innovation Wing, #03-09, Singapore 138602, Singapore.
| | - Riki Perlman
- Hematology Division, Hadassah Hebrew University Medical Center, POB 12000, 91120 Jerusalem, Israel
| | - Alexander Levitzki
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel
| |
Collapse
|
33
|
Insight into Tor2, a budding yeast microdomain protein. Eur J Cell Biol 2014; 93:87-97. [DOI: 10.1016/j.ejcb.2014.01.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 01/03/2014] [Accepted: 01/06/2014] [Indexed: 11/20/2022] Open
|
34
|
Hwang J, Pallas DC. STRIPAK complexes: structure, biological function, and involvement in human diseases. Int J Biochem Cell Biol 2014; 47:118-48. [PMID: 24333164 PMCID: PMC3927685 DOI: 10.1016/j.biocel.2013.11.021] [Citation(s) in RCA: 185] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2013] [Revised: 11/18/2013] [Accepted: 11/28/2013] [Indexed: 12/31/2022]
Abstract
The mammalian striatin family consists of three proteins, striatin, S/G2 nuclear autoantigen, and zinedin. Striatin family members have no intrinsic catalytic activity, but rather function as scaffolding proteins. Remarkably, they organize multiple diverse, large signaling complexes that participate in a variety of cellular processes. Moreover, they appear to be regulatory/targeting subunits for the major eukaryotic serine/threonine protein phosphatase 2A. In addition, striatin family members associate with germinal center kinase III kinases as well as other novel components, earning these assemblies the name striatin-interacting phosphatase and kinase (STRIPAK) complexes. Recently, there has been a great increase in functional and mechanistic studies aimed at identifying and understanding the roles of STRIPAK and STRIPAK-like complexes in cellular processes of multiple organisms. These studies have identified novel STRIPAK and STRIPAK-like complexes and have explored their roles in specific signaling pathways. Together, the results of these studies have sparked increased interest in striatin family complexes because they have revealed roles in signaling, cell cycle control, apoptosis, vesicular trafficking, Golgi assembly, cell polarity, cell migration, neural and vascular development, and cardiac function. Moreover, STRIPAK complexes have been connected to clinical conditions, including cardiac disease, diabetes, autism, and cerebral cavernous malformation. In this review, we discuss the expression, localization, and protein domain structure of striatin family members. Then we consider the diverse complexes these proteins and their homologs form in various organisms, emphasizing what is known regarding function and regulation. Finally, we explore possible roles of striatin family complexes in disease, especially cerebral cavernous malformation.
Collapse
Affiliation(s)
- Juyeon Hwang
- Department of Biochemistry and Winship Cancer Institute, and Biochemistry, Cell, Developmental Biology Graduate Program, Emory University School of Medicine, 1510 Clifton Road, Atlanta, GA 30322, USA.
| | - David C Pallas
- Department of Biochemistry and Winship Cancer Institute, and Biochemistry, Cell, Developmental Biology Graduate Program, Emory University School of Medicine, 1510 Clifton Road, Atlanta, GA 30322, USA.
| |
Collapse
|
35
|
Abstract
All living organisms require nutrient minerals for growth and have developed mechanisms to acquire, utilize, and store nutrient minerals effectively. In the aqueous cellular environment, these elements exist as charged ions that, together with protons and hydroxide ions, facilitate biochemical reactions and establish the electrochemical gradients across membranes that drive cellular processes such as transport and ATP synthesis. Metal ions serve as essential enzyme cofactors and perform both structural and signaling roles within cells. However, because these ions can also be toxic, cells have developed sophisticated homeostatic mechanisms to regulate their levels and avoid toxicity. Studies in Saccharomyces cerevisiae have characterized many of the gene products and processes responsible for acquiring, utilizing, storing, and regulating levels of these ions. Findings in this model organism have often allowed the corresponding machinery in humans to be identified and have provided insights into diseases that result from defects in ion homeostasis. This review summarizes our current understanding of how cation balance is achieved and modulated in baker's yeast. Control of intracellular pH is discussed, as well as uptake, storage, and efflux mechanisms for the alkali metal cations, Na(+) and K(+), the divalent cations, Ca(2+) and Mg(2+), and the trace metal ions, Fe(2+), Zn(2+), Cu(2+), and Mn(2+). Signal transduction pathways that are regulated by pH and Ca(2+) are reviewed, as well as the mechanisms that allow cells to maintain appropriate intracellular cation concentrations when challenged by extreme conditions, i.e., either limited availability or toxic levels in the environment.
Collapse
|
36
|
O'Donnell AF, Huang L, Thorner J, Cyert MS. A calcineurin-dependent switch controls the trafficking function of α-arrestin Aly1/Art6. J Biol Chem 2013; 288:24063-80. [PMID: 23824189 DOI: 10.1074/jbc.m113.478511] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Proper regulation of plasma membrane protein endocytosis by external stimuli is required for cell growth and survival. In yeast, excess levels of certain nutrients induce endocytosis of the cognate permeases to prevent toxic accumulation of metabolites. The α-arrestins, a family of trafficking adaptors, stimulate ubiquitin-dependent and clathrin-mediated endocytosis by interacting with both a client permease and the ubiquitin ligase Rsp5. However, the molecular mechanisms that control α-arrestin function are not well understood. Here, we show that α-arrestin Aly1/Art6 is a phosphoprotein that specifically interacts with and is dephosphorylated by the Ca(2+)- and calmodulin-dependent phosphoprotein phosphatase calcineurin/PP2B. Dephosphorylation of Aly1 by calcineurin at a subset of phospho-sites is required for Aly1-mediated trafficking of the aspartic acid and glutamic acid transporter Dip5 to the vacuole, but it does not alter Rsp5 binding, ubiquitinylation, or stability of Aly1. In addition, dephosphorylation of Aly1 by calcineurin does not regulate the ability of Aly1 to promote the intracellular sorting of the general amino acid permease Gap1. These results suggest that phosphorylation of Aly1 inhibits its vacuolar trafficking function and, conversely, that dephosphorylation of Aly1 by calcineurin serves as a regulatory switch to promote Aly1-mediated trafficking to the vacuole.
Collapse
Affiliation(s)
- Allyson F O'Donnell
- Department of Biology, Stanford University, Stanford, California 94305-5020, USA.
| | | | | | | |
Collapse
|
37
|
Guillas I, Vernay A, Vitagliano JJ, Arkowitz RA. Phosphatidylinositol 4,5-bisphosphate is required for invasive growth in Saccharomyces cerevisiae. J Cell Sci 2013; 126:3602-14. [PMID: 23781030 DOI: 10.1242/jcs.122606] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Phosphatidylinositol phosphates are important regulators of processes such as the cytoskeleton organization, membrane trafficking and gene transcription, which are all crucial for polarized cell growth. In particular, phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2] has essential roles in polarized growth as well as in cellular responses to stress. In the yeast Saccharomyces cerevisiae, the sole phosphatidylinositol-4-phosphate 5-kinase (PI4P5K) Mss4p is essential for generating plasma membrane PtdIns(4,5)P2. Here, we show that Mss4p is required for yeast invasive growth in low-nutrient conditions. We isolated specific mss4 mutants that were defective in cell elongation, induction of the Flo11p flocculin, adhesion and cell wall integrity. We show that mss4-f12 cells have reduced plasma membrane PtdIns(4,5)P2 levels as well as a defect in its polarized distribution, yet Mss4-f12p is catalytically active in vitro. In addition, the Mss4-f12 protein was defective in localizing to the plasma membrane. Furthermore, addition of cAMP, but not an activated MAPKKK allele, partially restored the invasive growth defect of mss4-f12 cells. Taken together, our results indicate that plasma membrane PtdIns(4,5)P2 is crucial for yeast invasive growth and suggest that this phospholipid functions upstream of the cAMP-dependent protein kinase A signaling pathway.
Collapse
Affiliation(s)
- Isabelle Guillas
- Université Nice - Sophia Antipolis, Institute of Biology Valrose, 06108 Nice Cedex 2, France
| | | | | | | |
Collapse
|
38
|
Gururaj C, Federman RS, Federman R, Chang A. Orm proteins integrate multiple signals to maintain sphingolipid homeostasis. J Biol Chem 2013; 288:20453-63. [PMID: 23737533 DOI: 10.1074/jbc.m113.472860] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Sphingolipids are structural components of membranes, and sphingolipid metabolites serve as signaling molecules. The first and rate-limiting step in sphingolipid synthesis is catalyzed by serine palmitoyltransferase (SPT). The recently discovered SPT-associated proteins, Orm1 and Orm2, are critical regulators of sphingolipids. Orm protein phosphorylation mediating feedback regulation of SPT activity occurs in response to multiple sphingolipid intermediates, including long chain base and complex sphingolipids. Both branches of the TOR signaling network, TORC1 and TORC2, participate in regulating sphingolipid synthesis via Orm phosphorylation in response to sphingolipid intermediates as well as nutritional conditions. Moreover, sphingolipid synthesis is regulated in response to endoplasmic reticulum (ER) stress by activation of a calcium- and calcineurin-dependent pathway via transcriptional induction of ORM2. Conversely, the calcium- and calcineurin-dependent pathway signals ER stress response upon lipid dysregulation in the absence of the Orm proteins to restore ER homeostasis.
Collapse
Affiliation(s)
- Charulatha Gururaj
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | | | | | |
Collapse
|
39
|
McCracken AN, Edinger AL. Nutrient transporters: the Achilles' heel of anabolism. Trends Endocrinol Metab 2013; 24:200-8. [PMID: 23402769 PMCID: PMC3617053 DOI: 10.1016/j.tem.2013.01.002] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Revised: 01/03/2013] [Accepted: 01/04/2013] [Indexed: 01/08/2023]
Abstract
Highly proliferative cells, including cancer cells, require a constant supply of molecular building blocks to support their growth. To acquire substrates such as glucose and amino acids from the extracellular space, dividing cells rely on transporter proteins in the plasma membrane. Numerous studies link transcriptional and post-translational control of nutrient transporter expression with proliferation, highlighting the importance of nutrient transporters in both physiologic and pathologic growth. Here we review recent work that spotlights the crucial role of nutrient transporters in cell growth and proliferation, discuss post-translational mechanisms for coordinating expression of different transporters, and consider the therapeutic potential of targeting these proteins in cancer and other diseases characterized by inappropriate cell division.
Collapse
Affiliation(s)
| | - Aimee L. Edinger
- Corresponding Author: Aimee L. Edinger 2128 Natural Sciences 1 University of California, Irvine Irvine, CA 92697-2300 Tel: 949-824-1921 FAX: 949-824-4709
| |
Collapse
|
40
|
Keener JM, Babst M. Quality control and substrate-dependent downregulation of the nutrient transporter Fur4. Traffic 2013; 14:412-27. [PMID: 23305501 DOI: 10.1111/tra.12039] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Revised: 01/05/2013] [Accepted: 01/16/2012] [Indexed: 02/02/2023]
Abstract
Upon exposure to stress conditions, unfolded cell-surface nutrient transporters are rapidly internalized and degraded via the multivesicular body (MVB) pathway. Similarly, high concentrations of nutrients result in the downregulation of the corresponding transporters. Our studies using the yeast transporter Fur4 revealed that substrate-induced downregulation and quality control utilize a common mechanism. This mechanism is based on a conformation-sensing domain, termed LID (loop interaction domain), that regulates site-specific ubiquitination (also known as degron). Conformational alterations in the transporter induced by unfolding or substrate binding are transmitted to the LID, rendering the degron accessible for ubiquitination by Rsp5. As a consequence, the transporter is rapidly degraded. We propose that the LID-degron system is a conserved, chaperone-independent mechanism responsible for conformation-induced downregulation of many cell-surface transporters under physiological and pathological conditions.
Collapse
Affiliation(s)
- Justin M Keener
- Department of Biology and Center for Cell and Genome Science, University of Utah, Salt Lake City, UT 84112-9202, USA
| | | |
Collapse
|
41
|
Borklu Yucel E, Ulgen KO. Assessment of crosstalks between the Snf1 kinase complex and sphingolipid metabolism in S. cerevisiae via systems biology approaches. MOLECULAR BIOSYSTEMS 2013; 9:2914-31. [DOI: 10.1039/c3mb70248k] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
42
|
Lester RL, Withers BR, Schultz MA, Dickson RC. Iron, glucose and intrinsic factors alter sphingolipid composition as yeast cells enter stationary phase. Biochim Biophys Acta Mol Cell Biol Lipids 2012; 1831:726-36. [PMID: 23286903 DOI: 10.1016/j.bbalip.2012.12.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Revised: 12/11/2012] [Accepted: 12/19/2012] [Indexed: 11/24/2022]
Abstract
Survival of Saccharomyces cerevisiae cells, like most microorganisms, requires switching from a rapidly dividing to a non-dividing or stationary state. To further understand how cells navigate this switch, we examined sphingolipids since they are key structural elements of membranes and also regulate signaling pathways vital for survival. During and after the switch to a non-dividing state there is a large increase in total free and sphingolipid-bound long chain-bases and an even larger increase in free and bound C20-long-chain bases, which are nearly undetectable in dividing cells. These changes are due to intrinsic factors including Orm1 and Orm2, ceramide synthase, Lcb4 kinase and the Tsc3 subunit of serine palmitoyltransferase as well as extrinsic factors including glucose and iron. Lowering the concentration of glucose, a form of calorie restriction, decreases the level of LCBs, which is consistent with the idea that reducing the level of some sphingolipids enhances lifespan. In contrast, iron deprivation increases LCB levels and decreases long term survival; however, these phenomena may not be related because iron deprivation disrupts many metabolic pathways. The correlation between increased LCBs and shorter lifespan is unsupported at this time. The physiological rise in LCBs that we observe may serve to modulate nutrient transporters and possibly other membrane phenomena that contribute to enhanced stress resistance and survival in stationary phase.
Collapse
Affiliation(s)
- Robert L Lester
- Department of Molecular and Cellular Biochemistry and the Lucille Markey Cancer Center, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | | | | | | |
Collapse
|
43
|
Abstract
Eisosomes, large protein complexes that are predominantly composed of BAR-domain-containing proteins Pil1 and its homologs, are situated under the plasma membrane of ascomycetes. A successful targeting of Pil1 onto the future site of eisosome accompanies maturation of eisosome. During or after recruitment, Pil1 undergoes self-assembly into filaments that can serve as scaffolds to induce membrane furrows or invaginations. Although a consequence of the invagination is likely to redistribute particular proteins and lipids to a different location, the precise physiological role of membrane invagination and eisosome assembly awaits further investigation. The present review summarizes recent research findings within the field regarding the detailed structural and functional significance of Pil1 on eisosome organization.
Collapse
Affiliation(s)
- Murphy E R
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637, USA
| | | |
Collapse
|
44
|
Reciprocal phosphorylation of yeast glycerol-3-phosphate dehydrogenases in adaptation to distinct types of stress. Mol Cell Biol 2012; 32:4705-17. [PMID: 22988299 DOI: 10.1128/mcb.00897-12] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Eukaryotic cells have evolved mechanisms for ensuring growth and survival in the face of stress caused by a fluctuating environment. Saccharomyces cerevisiae has two homologous glycerol-3-phosphate dehydrogenases, Gpd1 and Gpd2, that are required to endure various stresses, including hyperosmotic shock and hypoxia. These enzymes are only partially redundant, and their unique functions were attributed previously to differential transcriptional regulation and localization. We find that Gpd1 and Gpd2 are negatively regulated through phosphorylation by distinct kinases under reciprocal conditions. Gpd2 is phosphorylated by the AMP-activated protein kinase Snf1 to curtail glycerol production when nutrients are limiting. Gpd1, in contrast, is a target of TORC2-dependent kinases Ypk1 and Ypk2. Inactivation of Ypk1 by hyperosmotic shock results in dephosphorylation and activation of Gpd1, accelerating recovery through increased glycerol production. Gpd1 dephosphorylation acts synergistically with its transcriptional upregulation, enabling long-term growth at high osmolarity. Phosphorylation of Gpd1 and Gpd2 by distinct kinases thereby enables rapid adaptation to specific stress conditions. Introduction of phosphorylation motifs targeted by distinct kinases provides a general mechanism for functional specialization of duplicated genes during evolution.
Collapse
|
45
|
Magnani Dinamarco T, Brown NA, Couto de Almeida RS, Alves de Castro P, Savoldi M, de Souza Goldman MH, Goldman GH. Aspergillus fumigatus calcineurin interacts with a nucleoside diphosphate kinase. Microbes Infect 2012; 14:922-9. [PMID: 22634424 DOI: 10.1016/j.micinf.2012.05.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Revised: 05/09/2012] [Accepted: 05/10/2012] [Indexed: 10/28/2022]
Abstract
The Ca(2+)-calcineurin pathway affects virulence and morphogenesis in filamentous fungi. Here, we identified 37 CalA-interacting proteins that interact with the catalytic subunit of calcineurin (CalA) in Aspergillus fumigatus, including the nucleoside diphosphate kinase (SwoH). The in vivo interaction between CalA and SwoH was validated by bimolecular fluorescence complementation. A. fumigatus swoH is an essential gene. Therefore, a temperature-sensitive conditional mutant strain with a point mutation in the active site, SwoH(V83F), was constructed, which demonstrated reduced growth and increased sensitivity to elevated temperatures. The SwoH(V83F) mutation did not cause a loss in virulence in the Galleria mellonella infection model. Taken together these results imply that CalA interacts with SwoH.
Collapse
Affiliation(s)
- Taísa Magnani Dinamarco
- Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | | | | | | | | | | | | |
Collapse
|
46
|
Plasma membrane stress induces relocalization of Slm proteins and activation of TORC2 to promote sphingolipid synthesis. Nat Cell Biol 2012; 14:542-7. [PMID: 22504275 DOI: 10.1038/ncb2480] [Citation(s) in RCA: 249] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2011] [Accepted: 03/12/2012] [Indexed: 12/21/2022]
Abstract
The plasma membrane delimits the cell, and its integrity is essential for cell survival. Lipids and proteins form domains of distinct composition within the plasma membrane. How changes in plasma membrane composition are perceived, and how the abundance of lipids in the plasma membrane is regulated to balance changing needs remains largely unknown. Here, we show that the Slm1/2 paralogues and the target of rapamycin kinase complex 2 (TORC2) play a central role in this regulation. Membrane stress, induced by either inhibition of sphingolipid metabolism or by mechanically stretching the plasma membrane, redistributes Slm proteins between distinct plasma membrane domains. This increases Slm protein association with and activation of TORC2, which is restricted to the domain known as the membrane compartment containing TORC2 (MCT; ref. ). As TORC2 regulates sphingolipid metabolism, our discoveries reveal a homeostasis mechanism in which TORC2 responds to plasma membrane stress to mediate compensatory changes in cellular lipid synthesis and hence modulates the composition of the plasma membrane. The components of this pathway and their involvement in signalling after membrane stretch are evolutionarily conserved.
Collapse
|
47
|
TORC2 signaling is antagonized by protein phosphatase 2A and the Far complex in Saccharomyces cerevisiae. Genetics 2012; 190:1325-39. [PMID: 22298706 DOI: 10.1534/genetics.111.138305] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The target of rapamycin (TOR) kinase, a central regulator of eukaryotic cell growth, exists in two essential, yet distinct, TOR kinase complexes in the budding yeast Saccharomyces cerevisiae: rapamycin-sensitive TORC1 and rapamycin-insensitive TORC2. Lst8, a component of both TOR complexes, is essential for cell viability. However, it is unclear whether the essential function of Lst8 is linked to TORC1, TORC2, or both. To that end, we carried out a genetic screen to isolate lst8 deletion suppressor mutants. Here we report that mutations in SAC7 and FAR11 suppress lethality of lst8Δ and TORC2-deficient (tor2-21) mutations but not TORC1 inactivation, suggesting that the essential function of Lst8 is linked only to TORC2. More importantly, characterization of lst8Δ bypass mutants reveals a role for protein phosphatase 2A (PP2A) in the regulation of TORC2 signaling. We show that Far11, a member of the Far3-7-8-9-10-11 complex involved in pheromone-induced cell cycle arrest, interacts with Tpd3 and Pph21, conserved components of PP2A, and deletions of components of the Far3-7-8-9-10-11 complex and PP2A rescue growth defects in lst8Δ and tor2-21 mutants. In addition, loss of the regulatory B' subunit of PP2A Rts1 or Far11 restores phosphorylation to the TORC2 substrate Slm1 in a tor2-21 mutant. Mammalian Far11 orthologs FAM40A/B exist in a complex with PP2A known as STRIPAK, suggesting a conserved functional association of PP2A and Far11. Antagonism of TORC2 signaling by PP2A-Far11 represents a novel regulatory mechanism for controlling spatial cell growth of yeast.
Collapse
|
48
|
Loewith R, Hall MN. Target of rapamycin (TOR) in nutrient signaling and growth control. Genetics 2011; 189:1177-201. [PMID: 22174183 PMCID: PMC3241408 DOI: 10.1534/genetics.111.133363] [Citation(s) in RCA: 661] [Impact Index Per Article: 47.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Accepted: 09/12/2011] [Indexed: 12/16/2022] Open
Abstract
TOR (Target Of Rapamycin) is a highly conserved protein kinase that is important in both fundamental and clinical biology. In fundamental biology, TOR is a nutrient-sensitive, central controller of cell growth and aging. In clinical biology, TOR is implicated in many diseases and is the target of the drug rapamycin used in three different therapeutic areas. The yeast Saccharomyces cerevisiae has played a prominent role in both the discovery of TOR and the elucidation of its function. Here we review the TOR signaling network in S. cerevisiae.
Collapse
Affiliation(s)
- Robbie Loewith
- Department of Molecular Biology and National Centers of Competence in Research and Frontiers in Genetics and Chemical Biology, University of Geneva, Geneva, CH-1211, Switzerland
| | | |
Collapse
|
49
|
Kozubowski L, Thompson JW, Cardenas ME, Moseley MA, Heitman J. Association of calcineurin with the COPI protein Sec28 and the COPII protein Sec13 revealed by quantitative proteomics. PLoS One 2011; 6:e25280. [PMID: 21984910 PMCID: PMC3184950 DOI: 10.1371/journal.pone.0025280] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Accepted: 08/30/2011] [Indexed: 11/29/2022] Open
Abstract
Calcineurin is a calcium-calmodulin-dependent serine/threonine specific protein phosphatase operating in key cellular processes governing responses to extracellular cues. Calcineurin is essential for growth at high temperature and virulence of the human fungal pathogen Cryptococcus neoformans but the underlying mechanism is unknown. We performed a mass spectrometry analysis to identify proteins that associate with the calcineurin A catalytic subunit (Cna1) in C. neoformans cells grown under non-stress and high temperature stress conditions. A novel prioritization strategy for mass spectrometry data from immunoprecipitation experiments identified putative substrates and proteins potentially operating with calcineurin in common pathways. Cna1 co-purified with proteins involved in membrane trafficking including the COPI component Sec28 and the COPII component Sec13. The association of Cna1 with Sec28 and Sec13 was confirmed by co-immunoprecipitation. Cna1 exhibited a dramatic change in subcellular localization during high temperature stress from diffuse cytoplasmic to ER-associated puncta and the mother-bud neck and co-localized with Sec28 and Sec13.
Collapse
Affiliation(s)
- Lukasz Kozubowski
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America.
| | | | | | | | | |
Collapse
|
50
|
Curcumin inhibits growth of Saccharomyces cerevisiae through iron chelation. EUKARYOTIC CELL 2011; 10:1574-81. [PMID: 21908599 DOI: 10.1128/ec.05163-11] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Curcumin, a polyphenol derived from turmeric, is an ancient therapeutic used in India for centuries to treat a wide array of ailments. Interest in curcumin has increased recently, with ongoing clinical trials exploring curcumin as an anticancer therapy and as a protectant against neurodegenerative diseases. In vitro, curcumin chelates metal ions. However, although diverse physiological effects have been documented for this compound, curcumin's mechanism of action on mammalian cells remains unclear. This study uses yeast as a model eukaryotic system to dissect the biological activity of curcumin. We found that yeast mutants lacking genes required for iron and copper homeostasis are hypersensitive to curcumin and that iron supplementation rescues this sensitivity. Curcumin penetrates yeast cells, concentrates in the endoplasmic reticulum (ER) membranes, and reduces the intracellular iron pool. Curcumin-treated, iron-starved cultures are enriched in unbudded cells, suggesting that the G(1) phase of the cell cycle is lengthened. A delay in cell cycle progression could, in part, explain the antitumorigenic properties associated with curcumin. We also demonstrate that curcumin causes a growth lag in cultured human cells that is remediated by the addition of exogenous iron. These findings suggest that curcumin-induced iron starvation is conserved from yeast to humans and underlies curcumin's medicinal properties.
Collapse
|