1
|
Patiño-Medina JA, Vargas-Tejeda D, Reyes-Mares NY, Alejandre-Castañeda V, Torres-Cortes CJ, Pérez-Arques C, Ruiz-Herrera LF, Ramírez-Emiliano J, Vellanki S, Valle-Maldonado MI, Castro-Cerritos KV, Ramirez-Diaz MI, Lee SC, Garre V, Meza-Carmen V. Heterotrimeric G-gamma 1 (Gpg1) participates with G-beta 1 (Gpb1) in the induction of hyphal growth and virulence via the PKA pathway in Mucor lusitanicus. Fungal Genet Biol 2025; 178:103974. [PMID: 40049442 DOI: 10.1016/j.fgb.2025.103974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 02/24/2025] [Accepted: 02/26/2025] [Indexed: 03/14/2025]
Abstract
Previous work from our lab indicates that the heterotrimeric Gβ subunit 1 (Gpb1) enhances hyphal development and virulence in Mucor lusitanicus. In this study, three Gγ- and two additional Gβ-encoding genes were deleted to identify which ones might have a similar role as Gpb1. Deletion of gpg1 reduces hyphal growth, virulence, cyclic adenosine monophosphate (cAMP) levels, and protein kinase A (PKA) activity, similar to gpb1 deletion, suggesting that gpg1 participates in the same regulatory pathway as gpb1. The defects observed in Δgpg1 or Δgpb1 were suppressed by overexpression of the gene pkaR1 encoding the regulatory subunit 1 of PKA, indicating that this pathway is controlled by Gpg1 and Gpb1. Moreover, Δgpg1 and Δgpb1 show a downregulation of the transcription factors tec1 and tec2. Furthermore, tec-overexpression in Δgpg1, Δgpb1, and ΔpkaR1 restores the wild-type phenotype, indicating that both Tec are under control by the Gpb1, Gpg1, and PKA pathway. Moreover, the Δgpb1/Δgbg1(+)(-) exhibits lower aerobic germination, hyphal growth and downregulates NAD+-glutamate dehydrogenases (gdh2a/b), whereas virulence is similar to that of the wild-type (WT) strain. These alterations in Δgpb1/Δgbg1(+)(-) were reversed by the presence of glutamate during growth, suggesting that NAD+-Gdh2 could be under control of these subunits. Compared to the WT and Δgpb1/Δgbg1(+)(-) strains under aerobic growth, single deletion strains showed lower rhizoferrin levels, respiration and reactive oxygen species levels. Our results suggest that Gpg1 interacts with Gpb1 to positively control the hyphal development and virulence by repressing the PKA pathway, thereby regulating the mitochondrial oxidative metabolism in M. lusitanicus.
Collapse
Affiliation(s)
- J Alberto Patiño-Medina
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, 58038 Morelia, Michoacán, Mexico
| | - David Vargas-Tejeda
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, 58038 Morelia, Michoacán, Mexico
| | - Nancy Y Reyes-Mares
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, 58038 Morelia, Michoacán, Mexico
| | - Viridiana Alejandre-Castañeda
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, 58038 Morelia, Michoacán, Mexico
| | - Cesar J Torres-Cortes
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, 58038 Morelia, Michoacán, Mexico
| | - Carlos Pérez-Arques
- Departamento de Genética y Microbiología, Facultad de Biología. Universidad de Murcia, 30100 Murcia, Spain
| | - Leon F Ruiz-Herrera
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, 58038 Morelia, Michoacán, Mexico
| | - Joel Ramírez-Emiliano
- Departamento de Ciencias Médicas, Universidad de Guanajuato, 37320 León, Guanajuato, Mexico
| | - Sandeep Vellanki
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, 03756 Hanover, NH, USA
| | - Marco I Valle-Maldonado
- Laboratorio Estatal de Salud Pública del Estado de Michoacán, 58279 Morelia, Michoacán, Mexico
| | | | - Martha I Ramirez-Diaz
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, 58038 Morelia, Michoacán, Mexico
| | - Soo Chan Lee
- South Texas Center for Emerging Infectious Diseases (STCEID), Department of Biology, The University of Texas at San Antonio, 78249 San Antonio, TX, USA
| | - Victoriano Garre
- Departamento de Genética y Microbiología, Facultad de Biología. Universidad de Murcia, 30100 Murcia, Spain
| | - Víctor Meza-Carmen
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, 58038 Morelia, Michoacán, Mexico.
| |
Collapse
|
2
|
Mahendrawada L, Warfield L, Donczew R, Hahn S. Low overlap of transcription factor DNA binding and regulatory targets. Nature 2025:10.1038/s41586-025-08916-0. [PMID: 40240607 DOI: 10.1038/s41586-025-08916-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 03/19/2025] [Indexed: 04/18/2025]
Abstract
DNA sequence-specific transcription factors (TFs) modulate transcription and chromatin architecture, acting from regulatory sites in enhancers and promoters of eukaryotic genes1,2. How multiple TFs cooperate to regulate individual genes is still unclear. In yeast, most TFs are thought to regulate transcription via binding to upstream activating sequences, which are situated within a few hundred base pairs upstream of the regulated gene3. Although this model has been validated for individual TFs and specific genes, it has not been tested in a systematic way. Here we integrated information on the binding and expression targets for the near-complete set of yeast TFs and show that, contrary to expectations, there are few TFs with dedicated activator or repressor roles, and that most TFs have a dual function. Although nearly all protein-coding genes are regulated by one or more TFs, our analysis revealed limited overlap between TF binding and gene regulation. Rapid depletion of many TFs also revealed many regulatory targets that were distant from detectable TF binding sites, suggesting unexpected regulatory mechanisms. Our study provides a comprehensive survey of TF functions and offers insights into interactions between the set of TFs expressed in a single cell type and how they contribute to the complex programme of gene regulation.
Collapse
Affiliation(s)
| | | | - Rafal Donczew
- Fred Hutchinson Cancer Center, Seattle, WA, USA
- Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Steven Hahn
- Fred Hutchinson Cancer Center, Seattle, WA, USA.
| |
Collapse
|
3
|
Mo X, Yu X, Cui H, Xiong K, Yang S, Su C, Lu Y. In vivo RNA sequencing reveals a crucial role of Fus3-Kss1 MAPK pathway in Candida glabrata pathogenicity. mSphere 2024; 9:e0071524. [PMID: 39475321 PMCID: PMC11580445 DOI: 10.1128/msphere.00715-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 10/14/2024] [Indexed: 11/22/2024] Open
Abstract
Candida glabrata is an important and increasingly common pathogen of humans, particularly in immunocompromised hosts. Despite this, little is known about how this fungus causes disease. Here, we applied RNA sequencing and an in vivo invasive infection model to identify the attributes that allow this organism to infect hosts. Fungal transcriptomes show a dramatic increase in the expression of Fus3 and Kss1, two mitogen-activated protein kinases (MAPKs), during invasive infection. We further demonstrate that they are both highly induced under a combination of serum and high CO2 conditions. Deletion of both FUS3 and KSS1, but neither gene alone, results in a reduced fungal burden in organs, as well as in the gastrointestinal tract in the DSS (Dextran Sulfate Sodium)-induced colitis model. Similarly, the defect in persistence in macrophages and attenuated adhesion to epithelial cells are observed when FUS3 and KSS1 are both disrupted. The fus3 kss1 double mutant also displays defects in the induction of virulence attributes such as genes required for iron acquisition and adhesion and in the anti-fungal drug tolerance. The putative downstream transcription factors Ste12 (1), Ste12 (2), Tec1, and Tec2 are found to be involved in the regulation of these virulence attributes. Collectively, our study indicates that an evolutionary conserved MAPK pathway, which regulates mating and filamentous growth in Saccharomyces cerevisiae, is critical for C. glabrata pathogenicity. IMPORTANCE The MAPK signaling pathway, mediated by closely related kinases Fus3 and Kss1, is crucial for controlling mating and filamentous growth in Saccharomyces cerevisiae, but this pathway does not significantly impact hyphal development and pathogenicity in Candida albicans, a commensal-pathogenic fungus of humans. Furthermore, deletion of Cpk1, the ortholog of Fus3 in pathogenic fungus Cryptococcus neoformans, has no effect on virulence. Here, we demonstrate that the MAPK pathway is crucial for the pathogenicity of Candida glabrata, a fungus that causes approximately one-third of cases of hematogenously disseminated candidiasis in the United States. This pathway regulates multiple virulence attributes including the induction of iron acquisition genes and adhesins, as well as persistence in macrophages and organs. Our work provides insights into C. glabrata pathogenesis and highlights an example in which regulatory rewiring of a conserved pathway confers a virulent phenotype in a pathogen.
Collapse
Affiliation(s)
- Xinreng Mo
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Xiangtai Yu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Hao Cui
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Kang Xiong
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Shan Yang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Chang Su
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yang Lu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
4
|
Vandermeulen MD, Lorenz MC, Cullen PJ. Conserved signaling modules regulate filamentous growth in fungi: a model for eukaryotic cell differentiation. Genetics 2024; 228:iyae122. [PMID: 39239926 PMCID: PMC11457945 DOI: 10.1093/genetics/iyae122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 07/20/2024] [Indexed: 09/07/2024] Open
Abstract
Eukaryotic organisms are composed of different cell types with defined shapes and functions. Specific cell types are produced by the process of cell differentiation, which is regulated by signal transduction pathways. Signaling pathways regulate cell differentiation by sensing cues and controlling the expression of target genes whose products generate cell types with specific attributes. In studying how cells differentiate, fungi have proved valuable models because of their ease of genetic manipulation and striking cell morphologies. Many fungal species undergo filamentous growth-a specialized growth pattern where cells produce elongated tube-like projections. Filamentous growth promotes expansion into new environments, including invasion into plant and animal hosts by fungal pathogens. The same signaling pathways that regulate filamentous growth in fungi also control cell differentiation throughout eukaryotes and include highly conserved mitogen-activated protein kinase (MAPK) pathways, which is the focus of this review. In many fungal species, mucin-type sensors regulate MAPK pathways to control filamentous growth in response to diverse stimuli. Once activated, MAPK pathways reorganize cell polarity, induce changes in cell adhesion, and promote the secretion of degradative enzymes that mediate access to new environments. However, MAPK pathway regulation is complicated because related pathways can share components with each other yet induce unique responses (i.e. signal specificity). In addition, MAPK pathways function in highly integrated networks with other regulatory pathways (i.e. signal integration). Here, we discuss signal specificity and integration in several yeast models (mainly Saccharomyces cerevisiae and Candida albicans) by focusing on the filamentation MAPK pathway. Because of the strong evolutionary ties between species, a deeper understanding of the regulation of filamentous growth in established models and increasingly diverse fungal species can reveal fundamentally new mechanisms underlying eukaryotic cell differentiation.
Collapse
Affiliation(s)
| | - Michael C Lorenz
- Department of Microbiology and Molecular Genetics, University of Texas McGovern Medical School, Houston, TX 77030, USA
| | - Paul J Cullen
- Department of Biological Sciences, University at Buffalo, Buffalo, NY 14260-1300, USA
| |
Collapse
|
5
|
Rij M, Kayacan Y, Bernardi B, Wendland J. Re-routing MAP kinase signaling for penetration peg formation in predator yeasts. PLoS Pathog 2024; 20:e1012503. [PMID: 39213444 PMCID: PMC11392346 DOI: 10.1371/journal.ppat.1012503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 09/12/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024] Open
Abstract
Saccharomycopsis yeasts are natural organic sulfur auxotrophs due to lack of genes required for the uptake and assimilation of sulfate/sulfite. Starvation for methionine induces a shift to a predatory, mycoparasitic life strategy that is unique amongst ascomycetous yeasts. Similar to fungal plant pathogens that separated from Saccharomycopsis more than 400 million years ago, a specialized infection structure called penetration peg is used for prey cell invasion. Penetration pegs are highly enriched with chitin. Here we demonstrate that an ancient and conserved MAP kinase signaling pathway regulates penetration peg formation and successful predation in the predator yeast S. schoenii. Deletion of the MAP kinase gene SsKIL1, a homolog of the Saccharomyces cerevisiae ScKSS1/ScFUS3 and the rice blast Magnaporthe oryzae MoPMK1 genes, as well as deletion of the transcription factor SsSTE12 generate non-pathogenic mutants that fail to form penetration pegs. Comparative global transcriptome analyses using RNAseq indicate loss of the SsKil1-SsSte12-dependent predation response in the mutant strains, while a methionine starvation response is still executed. Within the promoter sequences of genes upregulated during predation we identified a cis-regulatory element similar to the ScSte12 pheromone response element. Our results indicate that, re-routing MAP-kinase signaling by re-wiring Ste12 transcriptional control towards predation specific genes contributed to the parallel evolution of this predacious behaviour in predator yeasts. Consequently, we found that SsSTE12 is dispensable for mating.
Collapse
Affiliation(s)
- Mareike Rij
- Department of Microbiology and Biochemistry, Hochschule Geisenheim University, Geisenheim, Germany
| | - Yeseren Kayacan
- Research Group of Microbiology (MICR)-Functional Yeast Genomics, Vrije Universiteit Brussel, Brussels, Belgium
| | - Beatrice Bernardi
- Department of Microbiology and Biochemistry, Hochschule Geisenheim University, Geisenheim, Germany
- Research Group of Microbiology (MICR)-Functional Yeast Genomics, Vrije Universiteit Brussel, Brussels, Belgium
| | - Jürgen Wendland
- Department of Microbiology and Biochemistry, Hochschule Geisenheim University, Geisenheim, Germany
- Research Group of Microbiology (MICR)-Functional Yeast Genomics, Vrije Universiteit Brussel, Brussels, Belgium
- Geisenheim Yeast Breeding Center, Hochschule Geisenheim University, Geisenheim, Germany
| |
Collapse
|
6
|
Schalamun M, Hinterdobler W, Schinnerl J, Brecker L, Schmoll M. The transcription factor STE12 influences growth on several carbon sources and production of dehydroacetic acid (DHAA) in Trichoderma reesei. Sci Rep 2024; 14:9625. [PMID: 38671155 PMCID: PMC11053031 DOI: 10.1038/s41598-024-59511-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
The filamentous ascomycete Trichoderma reesei, known for its prolific cellulolytic enzyme production, recently also gained attention for its secondary metabolite synthesis. Both processes are intricately influenced by environmental factors like carbon source availability and light exposure. Here, we explore the role of the transcription factor STE12 in regulating metabolic pathways in T. reesei in terms of gene regulation, carbon source utilization and biosynthesis of secondary metabolites. We show that STE12 is involved in regulating cellulase gene expression and growth on carbon sources associated with iron homeostasis. STE12 impacts gene regulation in a light dependent manner on cellulose with modulation of several CAZyme encoding genes as well as genes involved in secondary metabolism. STE12 selectively influences the biosynthesis of the sorbicillinoid trichodimerol, while not affecting the biosynthesis of bisorbibutenolide, which was recently shown to be regulated by the MAPkinase pathway upstream of STE12 in the signaling cascade. We further report on the biosynthesis of dehydroacetic acid (DHAA) in T. reesei, a compound known for its antimicrobial properties, which is subject to regulation by STE12. We conclude, that STE12 exerts functions beyond development and hence contributes to balance the energy distribution between substrate consumption, reproduction and defense.
Collapse
Affiliation(s)
- Miriam Schalamun
- AIT Austrian Institute of Technology GmbH, Center for Health and Bioresources, Konrad Lorenz Strasse 24, 3430, Tulln, Austria
| | - Wolfgang Hinterdobler
- AIT Austrian Institute of Technology GmbH, Center for Health and Bioresources, Konrad Lorenz Strasse 24, 3430, Tulln, Austria
- MyPilz GmbH, Wienerbergstrasse 55/13-15, 1120, Vienna, Austria
| | - Johann Schinnerl
- Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, 1030, Vienna, Austria
| | - Lothar Brecker
- Department of Organic Chemistry, University of Vienna, Währinger Strasse 38, 1090, Vienna, Austria
| | - Monika Schmoll
- AIT Austrian Institute of Technology GmbH, Center for Health and Bioresources, Konrad Lorenz Strasse 24, 3430, Tulln, Austria.
- Division of Terrestrial Ecosystem Research, Department of Microbiology and Ecosystem Science, University of Vienna, Djerassiplatz 1, 1030, Vienna, Austria.
| |
Collapse
|
7
|
Kan Y, He Z, Keyhani NO, Li N, Huang S, Zhao X, Liu P, Zeng F, Li M, Luo Z, Zhang Y. A network of transcription factors in complex with a regulating cell cycle cyclin orchestrates fungal oxidative stress responses. BMC Biol 2024; 22:81. [PMID: 38609978 PMCID: PMC11015564 DOI: 10.1186/s12915-024-01884-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 04/05/2024] [Indexed: 04/14/2024] Open
Abstract
BACKGROUND Response to oxidative stress is universal in almost all organisms and the mitochondrial membrane protein, BbOhmm, negatively affects oxidative stress responses and virulence in the insect fungal pathogen, Beauveria bassiana. Nothing further, however, is known concerning how BbOhmm and this phenomenon is regulated. RESULTS Three oxidative stress response regulating Zn2Cys6 transcription factors (BbOsrR1, 2, and 3) were identified and verified via chromatin immunoprecipitation (ChIP)-qPCR analysis as binding to the BbOhmm promoter region, with BbOsrR2 showing the strongest binding. Targeted gene knockout of BbOsrR1 or BbOsrR3 led to decreased BbOhmm expression and consequently increased tolerances to free radical generating compounds (H2O2 and menadione), whereas the ΔBbOsrR2 strain showed increased BbOhmm expression with concomitant decreased tolerances to these compounds. RNA and ChIP sequencing analysis revealed that BbOsrR1 directly regulated a wide range of antioxidation and transcription-associated genes, negatively affecting the expression of the BbClp1 cyclin and BbOsrR2. BbClp1 was shown to localize to the cell nucleus and negatively mediate oxidative stress responses. BbOsrR2 and BbOsrR3 were shown to feed into the Fus3-MAPK pathway in addition to regulating antioxidation and detoxification genes. Binding motifs for the three transcription factors were found to partially overlap in the promoter region of BbOhmm and other target genes. Whereas BbOsrR1 appeared to function independently, co-immunoprecipitation revealed complex formation between BbClp1, BbOsrR2, and BbOsrR3, with BbClp1 partially regulating BbOsrR2 phosphorylation. CONCLUSIONS These findings reveal a regulatory network mediated by BbOsrR1 and the formation of a BbClp1-BbOsrR2-BbOsrR3 complex that orchestrates fungal oxidative stress responses.
Collapse
Affiliation(s)
- Yanze Kan
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Plant Protection, Southwest University, Chongqing, 400715, People's Republic of China
- Key Laboratory of Entomology and Pest Control Engineering, Beibei Culture Collection of Chongqing Agricultural Microbiology, Chongqing, 400715, People's Republic of China
| | - Zhangjiang He
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Plant Protection, Southwest University, Chongqing, 400715, People's Republic of China
- Key Laboratory of Entomology and Pest Control Engineering, Beibei Culture Collection of Chongqing Agricultural Microbiology, Chongqing, 400715, People's Republic of China
- Biochemical Engineering Center of Guizhou Province, Guizhou University, Guiyang, 50025, People's Republic of China
| | - Nemat O Keyhani
- Department of Biological Sciences, University of Illinois, Chicago, IL, 60607, USA
| | - Ning Li
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Plant Protection, Southwest University, Chongqing, 400715, People's Republic of China
- Key Laboratory of Entomology and Pest Control Engineering, Beibei Culture Collection of Chongqing Agricultural Microbiology, Chongqing, 400715, People's Republic of China
| | - Shuaishuai Huang
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Plant Protection, Southwest University, Chongqing, 400715, People's Republic of China
- Key Laboratory of Entomology and Pest Control Engineering, Beibei Culture Collection of Chongqing Agricultural Microbiology, Chongqing, 400715, People's Republic of China
| | - Xin Zhao
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Plant Protection, Southwest University, Chongqing, 400715, People's Republic of China
- Key Laboratory of Entomology and Pest Control Engineering, Beibei Culture Collection of Chongqing Agricultural Microbiology, Chongqing, 400715, People's Republic of China
| | - Pengfei Liu
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Plant Protection, Southwest University, Chongqing, 400715, People's Republic of China
- Key Laboratory of Entomology and Pest Control Engineering, Beibei Culture Collection of Chongqing Agricultural Microbiology, Chongqing, 400715, People's Republic of China
| | - Fanqin Zeng
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Plant Protection, Southwest University, Chongqing, 400715, People's Republic of China
- Key Laboratory of Entomology and Pest Control Engineering, Beibei Culture Collection of Chongqing Agricultural Microbiology, Chongqing, 400715, People's Republic of China
| | - Min Li
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Plant Protection, Southwest University, Chongqing, 400715, People's Republic of China
- Key Laboratory of Entomology and Pest Control Engineering, Beibei Culture Collection of Chongqing Agricultural Microbiology, Chongqing, 400715, People's Republic of China
| | - Zhibing Luo
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Plant Protection, Southwest University, Chongqing, 400715, People's Republic of China
- Key Laboratory of Entomology and Pest Control Engineering, Beibei Culture Collection of Chongqing Agricultural Microbiology, Chongqing, 400715, People's Republic of China
| | - Yongjun Zhang
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Plant Protection, Southwest University, Chongqing, 400715, People's Republic of China.
- Key Laboratory of Entomology and Pest Control Engineering, Beibei Culture Collection of Chongqing Agricultural Microbiology, Chongqing, 400715, People's Republic of China.
| |
Collapse
|
8
|
Duan Y, Chen X, Wang T, Li M. The serine/threonine protein kinase MpSTE1 directly governs hyphal branching in Monascus spp. Appl Microbiol Biotechnol 2024; 108:255. [PMID: 38446219 PMCID: PMC10917826 DOI: 10.1007/s00253-024-13093-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/19/2024] [Accepted: 02/28/2024] [Indexed: 03/07/2024]
Abstract
Monascus spp. are commercially important fungi due to their ability to produce beneficial secondary metabolites such as the cholesterol-lowering agent lovastatin and natural food colorants azaphilone pigments. Although hyphal branching intensively influenced the production of these secondary metabolites, the pivotal regulators of hyphal development in Monascus spp. remain unclear. To identify these important regulators, we developed an artificial intelligence (AI)-assisted image analysis tool for quantification of hyphae-branching and constructed a random T-DNA insertion library. High-throughput screening revealed that a STE kinase, MpSTE1, was considered as a key regulator of hyphal branching based on the hyphal phenotype. To further validate the role of MpSTE1, we generated an mpSTE1 gene knockout mutant, a complemented mutant, and an overexpression mutant (OE::mpSTE1). Microscopic observations revealed that overexpression of mpSTE1 led to a 63% increase in branch number while deletion of mpSTE1 reduced the hyphal branching by 68% compared to the wild-type strain. In flask cultures, the strain OE::mpSTE1 showed accelerated growth and glucose consumption. More importantly, the strain OE::mpSTE1 produced 9.2 mg/L lovastatin and 17.0 mg/L azaphilone pigments, respectively, 47.0% and 30.1% higher than those of the wild-type strain. Phosphoproteomic analysis revealed that MpSTE1 directly phosphorylated 7 downstream signal proteins involved in cell division, cytoskeletal organization, and signal transduction. To our best knowledge, MpSTE1 is reported as the first characterized regulator for tightly regulating the hyphal branching in Monascus spp. These findings significantly expanded current understanding of the signaling pathway governing the hyphal branching and development in Monascus spp. Furthermore, MpSTE1 and its analogs were demonstrated as promising targets for improving production of valuable secondary metabolites. KEY POINTS: • MpSTE1 is the first characterized regulator for tightly regulating hyphal branching • Overexpression of mpSTE1 significantly improves secondary metabolite production • A high-throughput image analysis tool was developed for counting hyphal branching.
Collapse
Affiliation(s)
- Yali Duan
- Key Laboratory of Environment Correlative Dietology, College of Food Science and Technology, Hubei International Scientific and Technological Cooperation Base of Traditional Fermented FoodsHuazhong Agricultural UniversityHubei Province, Wuhan, 430070, China
- College of Food Science and Technology, Huazhong Agricultural University, Hubei Province, Wuhan, 430070, China
| | - Xizhu Chen
- Key Laboratory of Environment Correlative Dietology, College of Food Science and Technology, Hubei International Scientific and Technological Cooperation Base of Traditional Fermented FoodsHuazhong Agricultural UniversityHubei Province, Wuhan, 430070, China
- College of Food Science and Technology, Huazhong Agricultural University, Hubei Province, Wuhan, 430070, China
| | - Tingya Wang
- Key Laboratory of Environment Correlative Dietology, College of Food Science and Technology, Hubei International Scientific and Technological Cooperation Base of Traditional Fermented FoodsHuazhong Agricultural UniversityHubei Province, Wuhan, 430070, China
- College of Food Science and Technology, Huazhong Agricultural University, Hubei Province, Wuhan, 430070, China
| | - Mu Li
- Key Laboratory of Environment Correlative Dietology, College of Food Science and Technology, Hubei International Scientific and Technological Cooperation Base of Traditional Fermented FoodsHuazhong Agricultural UniversityHubei Province, Wuhan, 430070, China.
- College of Food Science and Technology, Huazhong Agricultural University, Hubei Province, Wuhan, 430070, China.
| |
Collapse
|
9
|
Essadik I, Boucher C, Bobée C, Cabet É, Gautier V, Lalucque H, Silar P, Chapeland-Leclerc F, Ruprich-Robert G. Mutations in Podospora anserina MCM1 and VelC Trigger Spontaneous Development of Barren Fruiting Bodies. J Fungi (Basel) 2024; 10:79. [PMID: 38276025 PMCID: PMC10819945 DOI: 10.3390/jof10010079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/12/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024] Open
Abstract
The ascomycete Podospora anserina is a heterothallic filamentous fungus found mainly on herbivore dung. It is commonly used in laboratories as a model system, and its complete life cycle lasting eight days is well mastered in vitro. The main objective of our team is to understand better the global process of fruiting body development, named perithecia, induced normally in this species by fertilization. Three allelic mutants, named pfd3, pfd9, and pfd23 (for "promoting fruiting body development") obtained by UV mutagenesis, were selected in view of their abilities to promote barren perithecium development without fertilization. By complete genome sequencing of pfd3 and pfd9, and mutant complementation, we identified point mutations in the mcm1 gene as responsible for spontaneous perithecium development. MCM1 proteins are MADS box transcription factors that control diverse developmental processes in plants, metazoans, and fungi. We also identified using the same methods a mutation in the VelC gene as responsible for spontaneous perithecium development in the vacua mutant. The VelC protein belongs to the velvet family of regulators involved in the control of development and secondary metabolite production. A key role of MCM1 and VelC in coordinating the development of P. anserina perithecia with gamete formation and fertilization is highlighted.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Philippe Silar
- Université Paris Cité, CNRS, UMR 8236—LIED, F-75013 Paris, France (C.B.); (É.C.); (V.G.); (H.L.); (F.C.-L.)
| | | | | |
Collapse
|
10
|
Yu L, Yang Y, Qiu X, Xiong D, Tian C. The mitogen-activated protein kinase module CcSte11-CcSte7-CcPmk1 regulates pathogenicity via the transcription factor CcSte12 in Cytospora chrysosperma. STRESS BIOLOGY 2024; 4:4. [PMID: 38225467 PMCID: PMC10789715 DOI: 10.1007/s44154-023-00142-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 11/28/2023] [Indexed: 01/17/2024]
Abstract
The pathogen Cytospora chrysosperma is the causal agent of poplar canker disease and causes considerable economic losses in China. Mitogen-activated protein kinase (MAPK) cascades play a crucial role in mediating cellular responses and Pmk1-MAPKs are indispensable for pathogenic related processes in plant pathogenic fungi. In previous studies, we demonstrated that the CcPmk1 acts as a core regulator of fungal pathogenicity by modulating a small number of master downstream targets, such as CcSte12. In this study, we identified and characterized two upstream components of CcPmk1: MAPKKK CcSte11 and MAPKK CcSte7. Deletion of CcSte11 and CcSte7, resulted in slowed growth, loss of sporulation and virulence, similar to the defects observed in the CcPmk1 deletion mutant. In addition, CcSte11, CcSte7 and CcPmk1 interact with each other, and the upstream adaptor protein CcSte50 interact with CcSte11 and CcSte7. Moreover, we explored the global regulation network of CcSte12 by transcriptional analysis between CcSte12 deletion mutants and wild-type during the simulated infection process. Two hydrolase activity GO terms (GO:0004553 and GO:0016798) and starch and sucrose metabolism (mgr00500) KEGG pathway were significantly enriched in the down-regulated genes of CcSte12 deletion mutants. In addition, a subset of glycosyl hydrolase genes and putative effector genes were significantly down-regulated in the CcSte12 deletion mutant, which might be important for fungal pathogenicity. Especially, CcSte12 bound to the CcSp84 promoter region containing the TGAAACA motif. Moreover, comparison of CcSte12-regulated genes with CcPmk1-regulated genes revealed 116 overlapping regulated genes in both CcSte12 and CcPmk1, including some virulence-associated genes. Taken together, the protein complexes CcSte11-CcSte7-CcPmk1 receive signals transmitted by upstream CcSte50 and transmit signals to downstream CcSte12, which regulates hydrolase, effectors and other genes to promote virulence. Overall, these results indicate that the CcPmk1-MAPK signaling pathway of C. chrysosperma plays a key role in the pathogenicity.
Collapse
Affiliation(s)
- Lu Yu
- State Key Laboratory of Efficient Production of Forest Resources, Beijing, China
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing, 100083, China
| | - Yuchen Yang
- State Key Laboratory of Efficient Production of Forest Resources, Beijing, China
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing, 100083, China
| | - Xiaolin Qiu
- State Key Laboratory of Efficient Production of Forest Resources, Beijing, China
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing, 100083, China
| | - Dianguang Xiong
- State Key Laboratory of Efficient Production of Forest Resources, Beijing, China.
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing, 100083, China.
| | - Chengming Tian
- State Key Laboratory of Efficient Production of Forest Resources, Beijing, China.
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
11
|
Alejandre-Castañeda V, Patiño-Medina JA, Valle-Maldonado MI, García A, Ortiz-Alvarado R, Ruíz-Herrera LF, Castro-Cerritos KV, Ramírez-Emiliano J, Ramírez-Díaz MI, Garre V, Lee SC, Meza-Carmen V. Transcription Factors Tec1 and Tec2 Play Key Roles in the Hyphal Growth and Virulence of Mucor lusitanicus Through Increased Mitochondrial Oxidative Metabolism. J Microbiol 2023; 61:1043-1062. [PMID: 38114662 DOI: 10.1007/s12275-023-00096-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 11/01/2023] [Accepted: 11/15/2023] [Indexed: 12/21/2023]
Abstract
Mucormycosis is a lethal and difficult-to-treat fungal infection caused by fungi of the order Mucorales. Mucor lusitanicus, a member of Mucorales, is commonly used as a model to understand disease pathogenesis. However, transcriptional control of hyphal growth and virulence in Mucorales is poorly understood. This study aimed to investigate the role of Tec proteins, which belong to the TEA/ATTS transcription factor family, in the hyphal development and virulence of M. lusitanicus. Unlike in the genome of Ascomycetes and Basidiomycetes, which have a single Tec homologue, in the genome of Mucorales, two Tec homologues, Tec1 and Tec2, were found, except in that of Phycomyces blakesleeanus, with only one Tec homologue. tec1 and tec2 overexpression in M. lusitanicus increased mycelial growth, mitochondrial content and activity, expression of the rhizoferrin synthetase-encoding gene rfs, and virulence in nematodes and wax moth larvae but decreased cAMP levels and protein kinase A (PKA) activity. Furthermore, tec1- and tec2-overexpressing strains required adequate mitochondrial metabolism to promote the virulent phenotype. The heterotrimeric G beta subunit 1-encoding gene deletant strain (Δgpb1) increased cAMP-PKA activity, downregulation of both tec genes, decreased both virulence and hyphal development, but tec1 and tec2 overexpression restored these defects. Overexpression of allele-mutated variants of Tec1(S332A) and Tec2(S168A) in the putative phosphorylation sites for PKA increased both virulence and hyphal growth of Δgpb1. These findings suggest that Tec homologues promote mycelial development and virulence by enhancing mitochondrial metabolism and rhizoferrin accumulation, providing new information for the rational control of the virulent phenotype of M. lusitanicus.
Collapse
Affiliation(s)
- Viridiana Alejandre-Castañeda
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, 58030, Morelia, Mexico
| | - J Alberto Patiño-Medina
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, 58030, Morelia, Mexico
| | | | - Alexis García
- Department of Molecular Microbiology and Immunology, South Texas Center for Emerging Infectious Diseases (STCEID), The University of Texas at San Antonio, San Antonio, 78249, USA
| | - Rafael Ortiz-Alvarado
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, 58030, Morelia, Mexico
| | - León F Ruíz-Herrera
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, 58030, Morelia, Mexico
| | | | | | - Martha I Ramírez-Díaz
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, 58030, Morelia, Mexico
| | - Victoriano Garre
- Departamento de Genética y Microbiología, Facultad de Biología, Universidad de Murcia, 30100, Murcia, Spain
| | - Soo Chan Lee
- Department of Molecular Microbiology and Immunology, South Texas Center for Emerging Infectious Diseases (STCEID), The University of Texas at San Antonio, San Antonio, 78249, USA
| | - Víctor Meza-Carmen
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, 58030, Morelia, Mexico.
| |
Collapse
|
12
|
Vandermeulen MD, Cullen PJ. Ecological inducers of the yeast filamentous growth pathway reveal environment-dependent roles for pathway components. mSphere 2023; 8:e0028423. [PMID: 37732804 PMCID: PMC10597418 DOI: 10.1128/msphere.00284-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 07/31/2023] [Indexed: 09/22/2023] Open
Abstract
Signaling modules, such as mitogen-activated protein kinase (MAPK) pathways, are evolutionarily conserved drivers of cell differentiation and stress responses. In many fungal species including pathogens, MAPK pathways control filamentous growth, where cells differentiate into an elongated cell type. The convenient model budding yeast Saccharomyces cerevisiae undergoes filamentous growth by the filamentous growth (fMAPK) pathway; however, the inducers of the pathway remain unclear, perhaps because pathway activity has been mainly studied in laboratory conditions. To address this knowledge gap, an ecological framework was used, which uncovered new fMAPK pathway inducers, including pectin, a material found in plants, and the metabolic byproduct ethanol. We also show that induction by a known inducer of the pathway, the non-preferred carbon source galactose, required galactose metabolism and induced the pathway differently than glucose limitation or other non-preferred carbon sources. By exploring fMAPK pathway function in fruit, we found that induction of the pathway led to visible digestion of fruit rind through a known target, PGU1, which encodes a pectolytic enzyme. Combinations of inducers (galactose and ethanol) stimulated the pathway to near-maximal levels, which showed dispensability of several fMAPK pathway components (e.g., mucin sensor, p21-activated kinase), but not others (e.g., adaptor, MAPKKK) and required the Ras2-protein kinase A pathway. This included a difference between the transcription factor binding partners for the pathway, as Tec1p, but not Ste12p, was partly dispensable for fMAPK pathway activity. Thus, by exploring ecologically relevant stimuli, new modes of MAPK pathway signaling were uncovered, perhaps revealing how a pathway can respond differently to specific environments. IMPORTANCE Filamentous growth is a cell differentiation response and important aspect of fungal biology. In plant and animal fungal pathogens, filamentous growth contributes to virulence. One signaling pathway that regulates filamentous growth is an evolutionarily conserved MAPK pathway. The yeast Saccharomyces cerevisiae is a convenient model to study MAPK-dependent regulation of filamentous growth, although the inducers of the pathway are not clear. Here, we exposed yeast cells to ecologically relevant compounds (e.g., plant compounds), which identified new inducers of the MAPK pathway. In combination, the inducers activated the pathway to near-maximal levels but did not cause detrimental phenotypes associated with previously identified hyperactive alleles. This context allowed us to identify conditional bypass for multiple pathway components. Thus, near-maximal induction of a MAPK pathway by ecologically relevant inducers provides a powerful tool to assess cellular signaling during a fungal differentiation response.
Collapse
Affiliation(s)
| | - Paul J. Cullen
- Department of Biological Sciences, University at Buffalo, Buffalo, New York, USA
| |
Collapse
|
13
|
Zhao X, Jiang Y, Wang H, Lu Z, Huang S, Luo Z, Zhang L, Lv T, Tang X, Zhang Y. Fus3/Kss1-MAP kinase and Ste12-like control distinct biocontrol-traits besides regulation of insect cuticle penetration via phosphorylation cascade in a filamentous fungal pathogen. PEST MANAGEMENT SCIENCE 2023; 79:2611-2624. [PMID: 36890107 DOI: 10.1002/ps.7446] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/22/2022] [Accepted: 03/08/2023] [Indexed: 06/02/2023]
Abstract
BACKGROUND Homolog of the yeast Fus3/Kss1 mitogen-activated protein kinase (MAPK) pathway and its target transcription factor, Ste12-like, are involved in penetration of host cuticle/pathogenicity in many ascomycete pathogens. However, details of their interaction during fungal infection, as well as their controlled other virulence-associated traits, are unclear. RESULTS Ste12-like (BbSte12) and Fus3/Kss1 MAPK homolog (Bbmpk1) interacted in nucleus, and phosphorylation of BbSte12 by Bbmpk1 was essential for penetration of insect cuticle in an insect fungal pathogen, Beauveria bassiana. However, some distinct biocontrol-traits were found to be mediated by Ste12 and Bbmpk1. In contrast to ΔBbmpk1 colony that grew more rapid than wild-type strain, inactivation of BbSte12 resulted in the opposite phenotype, which was consistent with their different proliferation rates in insect hemocoel after direct injection of conidia bypass the cuticle. Reduced conidial yield with decreased hydrophobicity was examined in both mutants, however they displayed distinct conidiogenesis, accompanying with differently altered cell cycle, distinct hyphal branching and septum formation. Moreover, ΔBbmpk1 showed increased tolerance to oxidative agent, whereas the opposite phenotype was seen for ΔBbSte12 strain. RNA sequencing analysis revealed that Bbmpk1 controlled 356 genes depending on BbSte12 during cuticle penetration, but 1077 and 584 genes were independently controlled by Bbmpk1 and BbSte12. CONCLUSION BbSte12 and Bbmpk1 separately participate in additional pathways for control of conidiation, growth and hyphal differentiation, as well as oxidative stress response besides regulating cuticle penetration via phosphorylation cascade. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xin Zhao
- Academy of Agricultural Sciences, Biotechnology Research Center, Southwest University, Chongqing, P. R. China
| | - Yahui Jiang
- Academy of Agricultural Sciences, Biotechnology Research Center, Southwest University, Chongqing, P. R. China
| | - Huifang Wang
- Academy of Agricultural Sciences, Biotechnology Research Center, Southwest University, Chongqing, P. R. China
| | - Zhuoyue Lu
- Academy of Agricultural Sciences, Biotechnology Research Center, Southwest University, Chongqing, P. R. China
| | - Shuaishuai Huang
- Academy of Agricultural Sciences, Biotechnology Research Center, Southwest University, Chongqing, P. R. China
| | - Zhibing Luo
- Academy of Agricultural Sciences, Biotechnology Research Center, Southwest University, Chongqing, P. R. China
| | - Liuyi Zhang
- Academy of Agricultural Sciences, Biotechnology Research Center, Southwest University, Chongqing, P. R. China
| | - Ting Lv
- Academy of Agricultural Sciences, Biotechnology Research Center, Southwest University, Chongqing, P. R. China
| | - Xiaohan Tang
- Academy of Agricultural Sciences, Biotechnology Research Center, Southwest University, Chongqing, P. R. China
| | - Yongjun Zhang
- Academy of Agricultural Sciences, Biotechnology Research Center, Southwest University, Chongqing, P. R. China
| |
Collapse
|
14
|
Shafique S, Attia U, Shafique S, Tabassum B, Akhtar N, Naeem A, Abbas Q. Management of mung bean leaf spot disease caused by Phoma herbarum through Penicillium janczewskii metabolites mediated by MAPK signaling cascade. Sci Rep 2023; 13:3606. [PMID: 36869200 PMCID: PMC9984459 DOI: 10.1038/s41598-023-30709-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 02/28/2023] [Indexed: 03/05/2023] Open
Abstract
Vigna radiata L., an imperative legume crop of Pakistan, faces hordes of damage due to fungi; infecting host tissues by the appressorium. The use of natural compounds is an innovative concern to manage mung-bean fungal diseases. The bioactive secondary metabolites of Penicillium species are well documented for their strong fungi-static ability against many pathogens. Presently, one-month-old aqueous culture filtrates of Penicillium janczewskii, P. digitatum, P. verrucosum, P. crustosum, and P. oxalicum were evaluated to check the antagonistic effect of different dilutions (0, 10, 20, … and 60%). There was a significant reduction of around 7-38%, 46-57%, 46-58%, 27-68%, and 21-51% in Phoma herbarum dry biomass production due to P. janczewskii, P. digitatum, P. verrucosum, P. crustosum, and P. oxalicum, respectively. Inhibition constants determined by a regression equation demonstrated the most significant inhibition by P. janczewskii. Finally, using real-time reverse transcription PCR (qPCR) the effect of P. Janczewskii metabolites was determined on the transcript level of StSTE12 gene involved in the development and penetration of appressorium. The expression pattern of the StSTE12 gene was determined by percent Knockdown (%KD) expression that was found to be decreased i.e. 51.47, 43.22, 40.67, 38.01, 35.97, and 33.41% for P. herbarum with an increase in metabolites concentrations viz., 10, 20, 30, 40, 50 and 60% metabolites, respectively. In silico studies were conducted to analyze the role of Ste12 a transcriptional factor in the MAPK signaling pathway. The present study concludes a strong fungicidal potential of Penicillium species against P. herbarum. Further studies to isolate the effective fungicidal constituents of Penicillium species through GCMS analysis and determination of their role in signaling pathways are requisite.
Collapse
Affiliation(s)
- Shazia Shafique
- Department of Plant Pathology, Faculty of Agricultural Sciences, University of the Punjab, Lahore, 54590, Pakistan
| | - Ume Attia
- Department of Plant Pathology, Faculty of Agricultural Sciences, University of the Punjab, Lahore, 54590, Pakistan
| | - Sobiya Shafique
- Department of Plant Pathology, Faculty of Agricultural Sciences, University of the Punjab, Lahore, 54590, Pakistan.
| | - Bushra Tabassum
- School of Biological Sciences, Faculty of Life Sciences, University of the Punjab, Lahore, 54590, Pakistan
| | | | - Ayman Naeem
- School of Biological Sciences, Faculty of Life Sciences, University of the Punjab, Lahore, 54590, Pakistan
| | - Qamar Abbas
- School of Biological Sciences, Faculty of Life Sciences, University of the Punjab, Lahore, 54590, Pakistan
| |
Collapse
|
15
|
Sharmeen N, Law C, Wu C. Polarization and cell-fate decision facilitated by the adaptor Ste50p in Saccharomyces cerevisiae. PLoS One 2022; 17:e0278614. [PMID: 36538537 PMCID: PMC9767377 DOI: 10.1371/journal.pone.0278614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 11/18/2022] [Indexed: 12/24/2022] Open
Abstract
In response to pheromone, many proteins localize on the plasma membrane of yeast cell to reform it into a polarized shmoo structure. The adaptor protein Ste50p, known as a pheromone signal enhancer critical for shmoo polarization, has never been explored systematically for its localization and function in the polarization process. Time-lapse single-cell imaging and quantitation shown here characterizes Ste50p involvement in the establishment of cell polarity. We found that Ste50p patches on the cell cortex mark the point of shmoo initiation, these patches could move, and remain associated with the growing shmoo tip in a pheromone concentration time-dependent manner until shmoo maturation. A Ste50p mutant impaired in patch localization suffers a delay in polarization. By quantitative analysis we show that polarization correlates with the rising levels of Ste50p, enabling rapid cell responses to pheromone that correspond to a critical level of Ste50p at the initial G1 phase. We exploited the quantitative differences in the pattern of Ste50p expression to correlate with the cell-cell phenotypic heterogeneity, showing Ste50p involvement in the cellular differentiation choice. Taken together, these findings present Ste50p to be part of the early shmoo development phase, suggesting that Ste50p may be involved with the polarisome in the initiation of polarization, and plays a role in regulating the polarized growth of shmoo during pheromone response.
Collapse
Affiliation(s)
- Nusrat Sharmeen
- Division of Experimental Medicine, Department of Medicine, McGill University, Montreal, Quebec, Canada
- * E-mail:
| | - Chris Law
- Centre for Microscopy and Cellular Imaging, Department of Biology, Concordia University, Montreal, Quebec, Canada
| | - Cunle Wu
- Division of Experimental Medicine, Department of Medicine, McGill University, Montreal, Quebec, Canada
- Human Health Therapeutics Research Centre, National Research Council Canada, Montreal, Quebec, Canada
| |
Collapse
|
16
|
Chen SA, Lin HC, Schroeder FC, Hsueh YP. Prey sensing and response in a nematode-trapping fungus is governed by the MAPK pheromone response pathway. Genetics 2021; 217:5995318. [PMID: 33724405 DOI: 10.1093/genetics/iyaa008] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 11/02/2020] [Indexed: 12/19/2022] Open
Abstract
Detection of surrounding organisms in the environment plays a major role in the evolution of interspecies interactions, such as predator-prey relationships. Nematode-trapping fungi (NTF) are predators that develop specialized trap structures to capture, kill, and consume nematodes when food sources are limited. Despite the identification of various factors that induce trap morphogenesis, the mechanisms underlying the differentiation process have remained largely unclear. Here, we demonstrate that the highly conserved pheromone-response MAPK pathway is essential for sensing ascarosides, a conserved molecular signature of nemaotdes, and is required for the predatory lifestyle switch in the NTF Arthrobotrys oligospora. Gene deletion of STE7 (MAPKK) and FUS3 (MAPK) abolished nematode-induced trap morphogenesis and conidiation and impaired the growth of hyphae. The conserved transcription factor Ste12 acting downstream of the pheromone-response pathway also plays a vital role in the predation of A. oligospora. Transcriptional profiling of a ste12 mutant identified a small subset of genes with diverse functions that are Ste12 dependent and could trigger trap differentiation. Our work has revealed that A. oligospora perceives and interprets the ascarosides produced by nematodes via the conserved pheromone signaling pathway in fungi, providing molecular insights into the mechanisms of communication between a fungal predator and its nematode prey.
Collapse
Affiliation(s)
- Sheng-An Chen
- Institute of Molecular Biology, Academia Sinica, Nangang, Taipei 11529, Taiwan
| | - Hung-Che Lin
- Institute of Molecular Biology, Academia Sinica, Nangang, Taipei 11529, Taiwan
| | - Frank C Schroeder
- Boyce Thompson Institute, Cornell University, Ithaca, NY 14853, USA.,Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Yen-Ping Hsueh
- Institute of Molecular Biology, Academia Sinica, Nangang, Taipei 11529, Taiwan
| |
Collapse
|
17
|
Cairns TC, Zheng X, Zheng P, Sun J, Meyer V. Turning Inside Out: Filamentous Fungal Secretion and Its Applications in Biotechnology, Agriculture, and the Clinic. J Fungi (Basel) 2021; 7:535. [PMID: 34356914 PMCID: PMC8307877 DOI: 10.3390/jof7070535] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/14/2021] [Accepted: 06/25/2021] [Indexed: 12/15/2022] Open
Abstract
Filamentous fungi are found in virtually every marine and terrestrial habitat. Vital to this success is their ability to secrete a diverse range of molecules, including hydrolytic enzymes, organic acids, and small molecular weight natural products. Industrial biotechnologists have successfully harnessed and re-engineered the secretory capacity of dozens of filamentous fungal species to make a diverse portfolio of useful molecules. The study of fungal secretion outside fermenters, e.g., during host infection or in mixed microbial communities, has also led to the development of novel and emerging technological breakthroughs, ranging from ultra-sensitive biosensors of fungal disease to the efficient bioremediation of polluted environments. In this review, we consider filamentous fungal secretion across multiple disciplinary boundaries (e.g., white, green, and red biotechnology) and product classes (protein, organic acid, and secondary metabolite). We summarize the mechanistic understanding for how various molecules are secreted and present numerous applications for extracellular products. Additionally, we discuss how the control of secretory pathways and the polar growth of filamentous hyphae can be utilized in diverse settings, including industrial biotechnology, agriculture, and the clinic.
Collapse
Affiliation(s)
- Timothy C. Cairns
- Chair of Applied and Molecular Microbiology, Institute of Biotechnology, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Xiaomei Zheng
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; (X.Z.); (P.Z.); (J.S.)
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Ping Zheng
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; (X.Z.); (P.Z.); (J.S.)
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Jibin Sun
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; (X.Z.); (P.Z.); (J.S.)
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Vera Meyer
- Chair of Applied and Molecular Microbiology, Institute of Biotechnology, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
| |
Collapse
|
18
|
Vandermeulen MD, Cullen PJ. New Aspects of Invasive Growth Regulation Identified by Functional Profiling of MAPK Pathway Targets in Saccharomyces cerevisiae. Genetics 2020; 216:95-116. [PMID: 32665277 PMCID: PMC7463291 DOI: 10.1534/genetics.120.303369] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 07/07/2020] [Indexed: 12/21/2022] Open
Abstract
MAPK pathways are drivers of morphogenesis and stress responses in eukaryotes. A major function of MAPK pathways is the transcriptional induction of target genes, which produce proteins that collectively generate a cellular response. One approach to comprehensively understand how MAPK pathways regulate cellular responses is to characterize the individual functions of their transcriptional targets. Here, by examining uncharacterized targets of the MAPK pathway that positively regulates filamentous growth in Saccharomyces cerevisiae (fMAPK pathway), we identified a new role for the pathway in negatively regulating invasive growth. Specifically, four targets were identified that had an inhibitory role in invasive growth: RPI1, RGD2, TIP1, and NFG1/YLR042cNFG1 was a highly induced unknown open reading frame that negatively regulated the filamentous growth MAPK pathway. We also identified SFG1, which encodes a transcription factor, as a target of the fMAPK pathway. Sfg1p promoted cell adhesion independently from the fMAPK pathway target and major cell adhesion flocculin Flo11p, by repressing genes encoding presumptive cell-wall-degrading enzymes. Sfg1p also contributed to FLO11 expression. Sfg1p and Flo11p regulated different aspects of cell adhesion, and their roles varied based on the environment. Sfg1p also induced an elongated cell morphology, presumably through a cell-cycle delay. Thus, the fMAPK pathway coordinates positive and negative regulatory proteins to fine-tune filamentous growth resulting in a nuanced response. Functional analysis of other pathways' targets may lead to a more comprehensive understanding of how signaling cascades generate biological responses.
Collapse
Affiliation(s)
| | - Paul J Cullen
- Department of Biological Sciences, University at Buffalo, New York 14260-1300
| |
Collapse
|
19
|
Zhang Y, Hu Y, Cao Q, Yin Y, Xia W, Cui H, Yu X, Ye Z. Functional Properties of the MAP Kinase UeKpp2 in Ustilago esculenta. Front Microbiol 2020; 11:1053. [PMID: 32582058 PMCID: PMC7295950 DOI: 10.3389/fmicb.2020.01053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 04/28/2020] [Indexed: 11/13/2022] Open
Abstract
Ustilago esculenta undergoes an endophytic life cycle in Zizania latifolia. It induces the stem of its host to swell, forming the edible galls called jiaobai in China, which are the second most commonly cultivated aquatic vegetable in China. Z. latifolia raised for jiaobai can only reproduce asexually because the U. esculenta infection completely inhibits flowering. The infection and proliferation in the host plants during the formation of edible gall differ from those of conventional pathogens. Previous studies have shown a close relationship between mitogen-activated protein kinase (MAPK) and fungal pathogenesis. In this study, we explored the functional properties of the MAPK UeKpp2. Cross-species complementation assays were carried out, which indicated a functional complementation between the UeKpp2 of U. esculenta and the Kpp2 of Ustilago maydis. Next, UeKpp2 mutants of the UeT14 and the UeT55 sporidia background were generated; these showed an aberrant morphology of budding cells, and attenuated mating and filamentous growth in vitro, in the context of normal pathogenicity. Interestingly, we identified another protein kinase, UeUkc1, which acted downstream of UeKpp2 and may participate in the regulation of cell shape. We also found a defect of filamentous growth in UeKpp2 mutants that was not related to a defect of the induction of mating-type genes but was directly related to a defect in UeRbf1 induction. Overall, our results indicate an important role for UeKpp2 in U. esculenta that is slightly different from those reported for other smut fungi.
Collapse
Affiliation(s)
- Yafen Zhang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Yingli Hu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Qianchao Cao
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Yumei Yin
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Wenqiang Xia
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Haifeng Cui
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Xiaoping Yu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Zihong Ye
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, China
| |
Collapse
|
20
|
Yang TH. Transcription factor regulatory modules provide the molecular mechanisms for functional redundancy observed among transcription factors in yeast. BMC Bioinformatics 2019; 20:630. [PMID: 31881824 PMCID: PMC6933673 DOI: 10.1186/s12859-019-3212-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Current technologies for understanding the transcriptional reprogramming in cells include the transcription factor (TF) chromatin immunoprecipitation (ChIP) experiments and the TF knockout experiments. The ChIP experiments show the binding targets of TFs against which the antibody directs while the knockout techniques find the regulatory gene targets of the knocked-out TFs. However, it was shown that these two complementary results contain few common targets. Researchers have used the concept of TF functional redundancy to explain the low overlap between these two techniques. But the detailed molecular mechanisms behind TF functional redundancy remain unknown. Without knowing the possible molecular mechanisms, it is hard for biologists to fully unravel the cause of TF functional redundancy. RESULTS To mine out the molecular mechanisms, a novel algorithm to extract TF regulatory modules that help explain the observed TF functional redundancy effect was devised and proposed in this research. The method first searched for candidate TF sets from the TF binding data. Then based on these candidate sets the method utilized the modified Steiner Tree construction algorithm to construct the possible TF regulatory modules from protein-protein interaction data and finally filtered out the noise-induced results by using confidence tests. The mined-out regulatory modules were shown to correlate to the concept of functional redundancy and provided testable hypotheses of the molecular mechanisms behind functional redundancy. And the biological significance of the mined-out results was demonstrated in three different biological aspects: ontology enrichment, protein interaction prevalence and expression coherence. About 23.5% of the mined-out TF regulatory modules were literature-verified. Finally, the biological applicability of the proposed method was shown in one detailed example of a verified TF regulatory module for pheromone response and filamentous growth in yeast. CONCLUSION In this research, a novel method that mined out the potential TF regulatory modules which elucidate the functional redundancy observed among TFs is proposed. The extracted TF regulatory modules not only correlate the molecular mechanisms to the observed functional redundancy among TFs, but also show biological significance in inferring TF functional binding target genes. The results provide testable hypotheses for biologists to further design subsequent research and experiments.
Collapse
Affiliation(s)
- Tzu-Hsien Yang
- Department of Information Management, National University of Kaohsiung, 700, Kaohsiung University Rd, Kaohsiung, 81148, Taiwan.
| |
Collapse
|
21
|
Zhao X, Yang X, Lu Z, Wang H, He Z, Zhou G, Luo Z, Zhang Y. MADS-box transcription factor Mcm1 controls cell cycle, fungal development, cell integrity and virulence in the filamentous insect pathogenic fungus Beauveria bassiana. Environ Microbiol 2019; 21:3392-3416. [PMID: 30972885 DOI: 10.1111/1462-2920.14629] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 04/09/2019] [Indexed: 12/15/2022]
Abstract
MADS-box transcription factor Mcm1 plays crucial roles in regulating mating processes and pathogenesis in some fungi. However, its roles are varied in fungal species, and its function remains unclear in entomopathogenic fungi. Here, Mcm1 orthologue, Bbmcm1, was characterized in a filamentous entomopathogenic fungus, Beauveria bassiana. Disruption of Bbmcm1 resulted in a distinct reduction in growth with abnormal conidiogenesis, and a significant decrease in conidial viability with abnormal germination. ΔBbmcm1 displayed impaired cell integrity, with distorted cell wall structure and altered cell wall component. Abnormal cell cycle was detected in ΔBbmcm1 with longer G2 /M phase but shorter G1 /G0 and S phases in unicellular blastospores, and sparser septa in multicellular hyphae, which might be responsible for defects in development and differentiation due to the regulation of cell cycle-involved genes, as well as the corresponding cellular events-associated genes. Dramatically decreased virulence was examined in ΔBbmcm1, with impaired ability to escape haemocyte encapsulation, which was consistent with markedly reduced cuticle-degrading enzyme production by repressing their coding genes, and downregulated fungal effector protein-coding genes, suggesting a novel role of Mcm1 in interaction with host insect. These data indicate that Mcm1 is a crucial regulator of development, cell integrity, cell cycle and virulence in insect fungal pathogens.
Collapse
Affiliation(s)
- Xin Zhao
- Biotechnology Research Center, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, People's Republic of China
| | - Xingju Yang
- Biotechnology Research Center, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, People's Republic of China
| | - Zhuoyue Lu
- Biotechnology Research Center, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, People's Republic of China
| | - Huifang Wang
- Biotechnology Research Center, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, People's Republic of China
| | - Zhangjiang He
- Biotechnology Research Center, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, People's Republic of China
| | - Guangyan Zhou
- Biotechnology Research Center, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, People's Republic of China
| | - Zhibing Luo
- Biotechnology Research Center, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, People's Republic of China
| | - Yongjun Zhang
- Biotechnology Research Center, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, People's Republic of China
| |
Collapse
|
22
|
Filamentation Regulatory Pathways Control Adhesion-Dependent Surface Responses in Yeast. Genetics 2019; 212:667-690. [PMID: 31053593 DOI: 10.1534/genetics.119.302004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 04/18/2019] [Indexed: 01/07/2023] Open
Abstract
Signaling pathways can regulate biological responses by the transcriptional regulation of target genes. In yeast, multiple signaling pathways control filamentous growth, a morphogenetic response that occurs in many species including fungal pathogens. Here, we examine the role of signaling pathways that control filamentous growth in regulating adhesion-dependent surface responses, including mat formation and colony patterning. Expression profiling and mutant phenotype analysis showed that the major pathways that regulate filamentous growth [filamentous growth MAPK (fMAPK), RAS, retrograde (RTG), RIM101, RPD3, ELP, SNF1, and PHO85] also regulated mat formation and colony patterning. The chromatin remodeling complex, SAGA, also regulated these responses. We also show that the RAS and RTG pathways coregulated a common set of target genes, and that SAGA regulated target genes known to be controlled by the fMAPK, RAS, and RTG pathways. Analysis of surface growth-specific targets identified genes that respond to low oxygen, high temperature, and desiccation stresses. We also explore the question of why cells make adhesive contacts in colonies. Cell adhesion contacts mediated by the coregulated target and adhesion molecule, Flo11p, deterred entry into colonies by macroscopic predators and impacted colony temperature regulation. The identification of new regulators (e.g., SAGA), and targets of surface growth in yeast may provide insights into fungal pathogenesis in settings where surface growth and adhesion contributes to virulence.
Collapse
|
23
|
Xu T, Li J, Yu B, Liu L, Zhang X, Liu J, Pan H, Zhang Y. Transcription Factor SsSte12 Was Involved in Mycelium Growth and Development in Sclerotinia sclerotiorum. Front Microbiol 2018; 9:2476. [PMID: 30386319 PMCID: PMC6200020 DOI: 10.3389/fmicb.2018.02476] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 09/28/2018] [Indexed: 01/08/2023] Open
Abstract
Sclerotinia sclerotiorum is a challenging agricultural pathogen for management, causing large global economic losses annually. The sclerotia and infection cushions are critical for its long-term survival and successful penetration on a wide spectrum of hosts. The mitogen-activated protein kinase (MAPK) cascades serve as central signaling complexes that are involved in various aspects of sclerotia development and infection. In this study, the putative downstream transcription factor of MAPK pathway, SsSte12, was analyzed in S. sclerotiorum. Silencing SsSte12 in S. sclerotiorum resulted in phenotypes of delayed vegetative growth, reduced size of sclerotia, and fewer appressoria formation. Consequently, the SsSte12 RNAi mutants showed attenuated pathogenicity on the host plants due to the defect compound appressorium. Yeast two-hybrid (Y2H) and bimolecular fluorescence complementation assays demonstrated that the SsSte12 interacts with SsMcm1. However, the SsMcm1 expression is independent of the regulation of SsSte12 as revealed by qRT-PCR analysis in SsSte12 RNAi mutants. Together with high accumulation of SsSte12 transcripts in the early development of S. sclerotiorum, our results demonstrated that SsSte12 function was essential in the vegetative mycelial growth, sclerotia development, appressoria formation and penetration-dependent pathogenicity. Moreover, the SsSte12-SsMcm1 interaction might play a critical role in the regulation of the genes encoding these traits in S. sclerotiorum.
Collapse
Affiliation(s)
- Tingtao Xu
- College of Plant Sciences, Jilin University, Changchun, China
| | - Jingtao Li
- College of Plant Sciences, Jilin University, Changchun, China
- College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Baodong Yu
- Department of Emergency of Xinmin, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Ling Liu
- College of Plant Sciences, Jilin University, Changchun, China
| | - Xianghui Zhang
- College of Plant Sciences, Jilin University, Changchun, China
| | - Jinliang Liu
- College of Plant Sciences, Jilin University, Changchun, China
| | - Hongyu Pan
- College of Plant Sciences, Jilin University, Changchun, China
| | - Yanhua Zhang
- College of Plant Sciences, Jilin University, Changchun, China
| |
Collapse
|
24
|
Preferences in a trait decision determined by transcription factor variants. Proc Natl Acad Sci U S A 2018; 115:E7997-E8006. [PMID: 30068600 DOI: 10.1073/pnas.1805882115] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Few mechanisms are known that explain how transcription factors can adjust phenotypic outputs to accommodate differing environments. In Saccharomyces cerevisiae, the decision to mate or invade relies on environmental cues that converge on a shared transcription factor, Ste12. Specificity toward invasion occurs via Ste12 binding cooperatively with the cofactor Tec1. Here, we determine the range of phenotypic outputs (mating vs. invasion) of thousands of DNA-binding domain variants in Ste12 to understand how preference for invasion may arise. We find that single amino acid changes in the DNA-binding domain can shift the preference of yeast toward either mating or invasion. These mutations define two distinct regions of this domain, suggesting alternative modes of DNA binding for each trait. We characterize the DNA-binding specificity of wild-type Ste12 to identify a strong preference for spacing and orientation of both homodimeric and heterodimeric sites. Ste12 mutants that promote hyperinvasion in a Tec1-independent manner fail to bind cooperative sites with Tec1 and bind to unusual dimeric Ste12 sites composed of one near-perfect and one highly degenerate site. We propose a model in which Ste12 alone may have evolved to activate invasion genes, which could explain how preference for invasion arose in the many fungal pathogens that lack Tec1.
Collapse
|
25
|
Aymoz D, Solé C, Pierre JJ, Schmitt M, de Nadal E, Posas F, Pelet S. Timing of gene expression in a cell-fate decision system. Mol Syst Biol 2018; 14:e8024. [PMID: 29695607 PMCID: PMC5916086 DOI: 10.15252/msb.20178024] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
During development, morphogens provide extracellular cues allowing cells to select a specific fate by inducing complex transcriptional programs. The mating pathway in budding yeast offers simplified settings to understand this process. Pheromone secreted by the mating partner triggers the activity of a MAPK pathway, which results in the expression of hundreds of genes. Using a dynamic expression reporter, we quantified the kinetics of gene expression in single cells upon exogenous pheromone stimulation and in the physiological context of mating. In both conditions, we observed striking differences in the timing of induction of mating‐responsive promoters. Biochemical analyses and generation of synthetic promoter variants demonstrated how the interplay between transcription factor binding and nucleosomes contributes to determine the kinetics of transcription in a simplified cell‐fate decision system.
Collapse
Affiliation(s)
- Delphine Aymoz
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Carme Solé
- Cell Signaling Research Group, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain
| | - Jean-Jerrold Pierre
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Marta Schmitt
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Eulàlia de Nadal
- Cell Signaling Research Group, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain
| | - Francesc Posas
- Cell Signaling Research Group, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain
| | - Serge Pelet
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
26
|
Zhu X, Liu W, Chu X, Sun Q, Tan C, Yang Q, Jiao M, Guo J, Kang Z. The transcription factor PstSTE12 is required for virulence of Puccinia striiformis f. sp. tritici. MOLECULAR PLANT PATHOLOGY 2018; 19:961-974. [PMID: 28710879 PMCID: PMC6638054 DOI: 10.1111/mpp.12582] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 07/11/2017] [Accepted: 07/11/2017] [Indexed: 05/21/2023]
Abstract
Puccinia striiformis f. sp. tritici (Pst) is an obligate biotrophic fungus that causes extensive damage in wheat. The pathogen is now known to be a heteroecious fungus with an intricate life cycle containing sexual and asexual stages. Orthologues of the STE12 transcription factor that regulate mating and filamentation in Saccharomyces cerevisiae, as well as virulence in other fungi, have been extensively described. Because reliable transformation and gene disruption methods are lacking for Pst, knowledge about the function of its STE12 orthologue is limited. In this study, we identified a putative orthologue of STE12 from Pst in haustoria-enriched transcripts and designated it as PstSTE12. The gene encodes a protein of 879 amino acids containing three helices in the homeodomain, conserved phenylalanine and tryptophan sites, and two C2 /H2 -Zn2+ finger domains. Real-time reverse transcription-polymerase chain reaction (RT-PCR) analyses revealed that the expression of PstSTE12 was highly induced during the early infection stages and peaked during haustorium formation and the pycniospore stage in the aecial host barberry. Subcellular localization assays indicated that PstSTE12 is localized in the nucleus and functions as a transcriptional activator. Yeast one-hybrid assays revealed that PstSTE12 exhibits transcriptional activity, and that its C-terminus is necessary for the activation of transcription. PstSTE12 complemented the mating defect in an α ste12 mutant of S. cerevisiae. In addition, it partially complemented the defects of the Magnaporthe oryzae mst12 mutant in plant infection. Knocking down PstSTE12 via host-induced gene silencing (HIGS) mediated by Barley stripe mosaic virus (BSMV) resulted in a substantial reduction in the growth and spread of hyphae in Pst and weakened the virulence of Pst on wheat. Our results suggest that PstSTE12 probably acts at an intersection participating in the invasion and mating processes of Pst, and provide new insights into the comprehension of the variation of virulence in cereal rust fungi.
Collapse
Affiliation(s)
- Xiaoguo Zhu
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of Plant Protection, Northwest A&F UniversityYanglingShaanxi 712100China
| | - Wei Liu
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of Plant Protection, Northwest A&F UniversityYanglingShaanxi 712100China
| | - Xiuling Chu
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of Plant Protection, Northwest A&F UniversityYanglingShaanxi 712100China
| | - Qixiong Sun
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of Plant Protection, Northwest A&F UniversityYanglingShaanxi 712100China
| | - Chenglong Tan
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of Plant Protection, Northwest A&F UniversityYanglingShaanxi 712100China
| | - Qian Yang
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of Plant Protection, Northwest A&F UniversityYanglingShaanxi 712100China
| | - Min Jiao
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of Plant Protection, Northwest A&F UniversityYanglingShaanxi 712100China
| | - Jun Guo
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of Plant Protection, Northwest A&F UniversityYanglingShaanxi 712100China
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of Plant Protection, Northwest A&F UniversityYanglingShaanxi 712100China
| |
Collapse
|
27
|
Winters MJ, Pryciak PM. Analysis of the thresholds for transcriptional activation by the yeast MAP kinases Fus3 and Kss1. Mol Biol Cell 2018; 29:669-682. [PMID: 29321252 PMCID: PMC6004581 DOI: 10.1091/mbc.e17-10-0578] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 12/19/2017] [Accepted: 01/03/2018] [Indexed: 12/31/2022] Open
Abstract
Signaling in the pheromone response pathway of budding yeast activates two distinct MAP kinases (MAPKs), Fus3 and Kss1. Either MAPK alone can mediate pheromone-induced transcription, but it has been unclear to what degree each one contributes to transcriptional output in wild-type cells. Here, we report that transcription reflects the ratio of active to inactive MAPK, and not simply the level of active MAPK. For Kss1 the majority of MAPK molecules must be converted to the active form, whereas for Fus3 only a small minority must be activated. These different activation thresholds reflect two opposing effects of each MAPK, in which the inactive forms inhibit transcription, whereas the active forms promote transcription. Moreover, negative feedback from Fus3 limits activation of Kss1 so that it does not meet its required threshold in wild-type cells but does so only when hyperactivated in cells lacking Fus3. The results suggest that the normal transcriptional response involves asymmetric contributions from the two MAPKs, in which pheromone signaling reduces the negative effect of Kss1 while increasing the positive effect of Fus3. These findings reveal new functional distinctions between these MAPKs, and help illuminate how inhibitory functions shape positive pathway outputs in both pheromone and filamentation pathways.
Collapse
Affiliation(s)
- Matthew J Winters
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605
| | - Peter M Pryciak
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605
| |
Collapse
|
28
|
Basso V, d'Enfert C, Znaidi S, Bachellier-Bassi S. From Genes to Networks: The Regulatory Circuitry Controlling Candida albicans Morphogenesis. Curr Top Microbiol Immunol 2018; 422:61-99. [PMID: 30368597 DOI: 10.1007/82_2018_144] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Candida albicans is a commensal yeast of most healthy individuals, but also one of the most prevalent human fungal pathogens. During adaptation to the mammalian host, C. albicans encounters different niches where it is exposed to several types of stress, including oxidative, nitrosative (e.g., immune system), osmotic (e.g., kidney and oral cavity) stresses and pH variation (e.g., gastrointestinal (GI) tract and vagina). C. albicans has developed the capacity to respond to the environmental changes by modifying its morphology, which comprises the yeast-to-hypha transition, white-opaque switching, and chlamydospore formation. The yeast-to-hypha transition has been very well characterized and was shown to be modulated by several external stimuli that mimic the host environment. For instance, temperature above 37 ℃, serum, alkaline pH, and CO2 concentration are all reported to enhance filamentation. The transition is characterized by the activation of an intricate regulatory network of signaling pathways, involving many transcription factors. The regulatory pathways that control either the stress response or morphogenesis are required for full virulence and promote survival of C. albicans in the host. Many of these transcriptional circuitries have been characterized, highlighting the complexity and the interconnections between the different pathways. Here, we present the major signaling pathways and the main transcription factors involved in the yeast-to-hypha transition. Furthermore, we describe the role of heat shock transcription factors in the morphogenetic transition, providing an edifying example of the complex cross talk between pathways involved in morphogenesis and stress response.
Collapse
Affiliation(s)
- Virginia Basso
- Unité Biologie et Pathogénicité Fongiques, Institut Pasteur, INRA, 25 Rue Du Docteur Roux, 75015, Paris, France.,Univ. Paris Diderot, Sorbonne Paris Cité, Cellule Pasteur, 25 Rue Du Docteur Roux, Paris, France.,Department of Pathology and Laboratory Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Christophe d'Enfert
- Unité Biologie et Pathogénicité Fongiques, Institut Pasteur, INRA, 25 Rue Du Docteur Roux, 75015, Paris, France
| | - Sadri Znaidi
- Unité Biologie et Pathogénicité Fongiques, Institut Pasteur, INRA, 25 Rue Du Docteur Roux, 75015, Paris, France. .,Institut Pasteur de Tunis, University of Tunis El Manar, Laboratoire de Microbiologie Moléculaire, Vaccinologie et Développement Biotechnologique, 13 Place Pasteur, 1002, Tunis-Belvédère, Tunisia.
| | - Sophie Bachellier-Bassi
- Unité Biologie et Pathogénicité Fongiques, Institut Pasteur, INRA, 25 Rue Du Docteur Roux, 75015, Paris, France.
| |
Collapse
|
29
|
Regan H, Scaduto CM, Hirakawa MP, Gunsalus K, Correia-Mesquita TO, Sun Y, Chen Y, Kumamoto CA, Bennett RJ, Whiteway M. Negative regulation of filamentous growth in Candida albicans by Dig1p. Mol Microbiol 2017; 105:810-824. [PMID: 28657681 PMCID: PMC5724037 DOI: 10.1111/mmi.13738] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/20/2017] [Indexed: 11/30/2022]
Abstract
Transcriptional regulation involves both positive and negative regulatory elements. The Dig1 negative regulators are part of a fungal-specific module that includes a transcription factor (a Ste12 family member) and a Dig1 family member. In Saccharomyces cerevisiae, the post-genome-duplication Dig1/Dig2 proteins regulate MAP kinase controlled signalling pathways involved in mating and filamentous growth. We have identified the single Dig1 orthologue in the fungal pathogen Candida albicans. Genetic studies and transcriptional profiling experiments show that this single protein is implicated in the regulation of MAP kinase-controlled processes involved in mating, filamentous growth and biofilm formation, and also influences cAMP-regulated processes. This suggests that the multiple cellular roles of the Dig1 protein are ancestral and predate the sub-functionalization apparent in S. cerevisiae after the genome duplication. Intriguingly, even though loss of Dig1 function in C. albicans enhances filamentous growth and biofilm formation, colonization of the murine gastrointestinal tract is reduced in the mutant. The complexity of the processes influenced by Dig1 in C. albicans, and the observation that Dig1 is one of the few regulatory proteins that were retained in the duplicated state after the whole genome duplication event in yeast, emphasizes the important role of these negative regulators in fungal transcriptional control.
Collapse
Affiliation(s)
- Hannah Regan
- Department of Biology, Concordia University, Montreal, Quebec,
Canada
- Department of Biology, McGill University, Montreal, Quebec,
Canada
| | - Christine M. Scaduto
- Department of Molecular Microbiology and Immunology, Brown
University, Providence, Rhode Island, USA
| | - Matthew P. Hirakawa
- Department of Molecular Microbiology and Immunology, Brown
University, Providence, Rhode Island, USA
| | - Kearney Gunsalus
- Department of Molecular Biology and Microbiology, Tufts University,
Boston, Massachusetts, USA
| | | | - Yuan Sun
- Department of Biology, Concordia University, Montreal, Quebec,
Canada
| | - Yaolin Chen
- Department of Biology, Concordia University, Montreal, Quebec,
Canada
| | - Carol A. Kumamoto
- Department of Molecular Biology and Microbiology, Tufts University,
Boston, Massachusetts, USA
| | - Richard J. Bennett
- Department of Molecular Microbiology and Immunology, Brown
University, Providence, Rhode Island, USA
| | - Malcolm Whiteway
- Department of Biology, Concordia University, Montreal, Quebec,
Canada
- Department of Biology, McGill University, Montreal, Quebec,
Canada
| |
Collapse
|
30
|
Abstract
This article provides an overview of sexual reproduction in the ascomycetes, a phylum of fungi that is named after the specialized sacs or "asci" that hold the sexual spores. They have therefore also been referred to as the Sac Fungi due to these characteristic structures that typically contain four to eight ascospores. Ascomycetes are morphologically diverse and include single-celled yeasts, filamentous fungi, and more complex cup fungi. The sexual cycles of many species, including those of the model yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe and the filamentous saprobes Neurospora crassa, Aspergillus nidulans, and Podospora anserina, have been examined in depth. In addition, sexual or parasexual cycles have been uncovered in important human pathogens such as Candida albicans and Aspergillus fumigatus, as well as in plant pathogens such as Fusarium graminearum and Cochliobolus heterostrophus. We summarize what is known about sexual fecundity in ascomycetes, examine how structural changes at the mating-type locus dictate sexual behavior, and discuss recent studies that reveal that pheromone signaling pathways can be repurposed to serve cellular roles unrelated to sex.
Collapse
|
31
|
Cromie GA, Tan Z, Hays M, Sirr A, Jeffery EW, Dudley AM. Transcriptional Profiling of Biofilm Regulators Identified by an Overexpression Screen in Saccharomyces cerevisiae. G3 (BETHESDA, MD.) 2017; 7:2845-2854. [PMID: 28673928 PMCID: PMC5555487 DOI: 10.1534/g3.117.042440] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 06/27/2017] [Indexed: 12/25/2022]
Abstract
Biofilm formation by microorganisms is a major cause of recurring infections and removal of biofilms has proven to be extremely difficult given their inherent drug resistance . Understanding the biological processes that underlie biofilm formation is thus extremely important and could lead to the development of more effective drug therapies, resulting in better infection outcomes. Using the yeast Saccharomyces cerevisiae as a biofilm model, overexpression screens identified DIG1, SFL1, HEK2, TOS8, SAN1, and ROF1/YHR177W as regulators of biofilm formation. Subsequent RNA-seq analysis of biofilm and nonbiofilm-forming strains revealed that all of the overexpression strains, other than DIG1 and TOS8, were adopting a single differential expression profile, although induced to varying degrees. TOS8 adopted a separate profile, while the expression profile of DIG1 reflected the common pattern seen in most of the strains, plus substantial DIG1-specific expression changes. We interpret the existence of the common transcriptional pattern seen across multiple, unrelated overexpression strains as reflecting a transcriptional state, that the yeast cell can access through regulatory signaling mechanisms, allowing an adaptive morphological change between biofilm-forming and nonbiofilm states.
Collapse
Affiliation(s)
- Gareth A Cromie
- Pacific Northwest Research Institute, Seattle, Washington 98122
| | - Zhihao Tan
- Pacific Northwest Research Institute, Seattle, Washington 98122
- Institute of Medical Biology, Agency for Science, Technology and Research, Singapore 138648
| | - Michelle Hays
- Molecular and Cellular Biology Program, University of Washington, Seattle, Washington 98195
| | - Amy Sirr
- Pacific Northwest Research Institute, Seattle, Washington 98122
| | - Eric W Jeffery
- Pacific Northwest Research Institute, Seattle, Washington 98122
| | - Aimée M Dudley
- Pacific Northwest Research Institute, Seattle, Washington 98122
- Molecular and Cellular Biology Program, University of Washington, Seattle, Washington 98195
| |
Collapse
|
32
|
Atay O, Skotheim JM. Spatial and temporal signal processing and decision making by MAPK pathways. J Cell Biol 2017; 216:317-330. [PMID: 28043970 PMCID: PMC5294789 DOI: 10.1083/jcb.201609124] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 11/25/2016] [Accepted: 12/12/2016] [Indexed: 01/14/2023] Open
Abstract
Mitogen-activated protein kinase (MAPK) pathways are conserved from yeast to man and regulate a variety of cellular processes, including proliferation and differentiation. Recent developments show how MAPK pathways perform exquisite spatial and temporal signal processing and underscores the importance of studying the dynamics of signaling pathways to understand their physiological response. The importance of dynamic mechanisms that process input signals into graded downstream responses has been demonstrated in the pheromone-induced and osmotic stress-induced MAPK pathways in yeast and in the mammalian extracellular signal-regulated kinase MAPK pathway. Particularly, recent studies in the yeast pheromone response have shown how positive feedback generates switches, negative feedback enables gradient detection, and coherent feedforward regulation underlies cellular memory. More generally, a new wave of quantitative single-cell studies has begun to elucidate how signaling dynamics determine cell physiology and represents a paradigm shift from descriptive to predictive biology.
Collapse
Affiliation(s)
- Oguzhan Atay
- Department of Biology, Stanford University, Stanford, CA 94305
| | - Jan M Skotheim
- Department of Biology, Stanford University, Stanford, CA 94305
| |
Collapse
|
33
|
Dissecting Gene Expression Changes Accompanying a Ploidy-Based Phenotypic Switch. G3-GENES GENOMES GENETICS 2017; 7:233-246. [PMID: 27836908 PMCID: PMC5217112 DOI: 10.1534/g3.116.036160] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Aneuploidy, a state in which the chromosome number deviates from a multiple of the haploid count, significantly impacts human health. The phenotypic consequences of aneuploidy are believed to arise from gene expression changes associated with the altered copy number of genes on the aneuploid chromosomes. To dissect the mechanisms underlying altered gene expression in aneuploids, we used RNA-seq to measure transcript abundance in colonies of the haploid Saccharomyces cerevisiae strain F45 and two aneuploid derivatives harboring disomies of chromosomes XV and XVI. F45 colonies display complex “fluffy” morphologies, while the disomic colonies are smooth, resembling laboratory strains. Our two disomes displayed similar transcriptional profiles, a phenomenon not driven by their shared smooth colony morphology nor simply by their karyotype. Surprisingly, the environmental stress response (ESR) was induced in F45, relative to the two disomes. We also identified genes whose expression reflected a nonlinear interaction between the copy number of a transcriptional regulatory gene on chromosome XVI, DIG1, and the copy number of other chromosome XVI genes. DIG1 and the remaining chromosome XVI genes also demonstrated distinct contributions to the effect of the chromosome XVI disome on ESR gene expression. Expression changes in aneuploids appear to reflect a mixture of effects shared between different aneuploidies and effects unique to perturbing the copy number of particular chromosomes, including nonlinear copy number interactions between genes. The balance between these two phenomena is likely to be genotype- and environment-specific.
Collapse
|
34
|
Yuan H, Zhang R, Shao B, Wang X, Ouyang Q, Hao N, Luo C. Protein expression patterns of the yeast mating response. Integr Biol (Camb) 2016; 8:712-9. [PMID: 27177258 DOI: 10.1039/c6ib00014b] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Microfluidics, in combination with time-lapse microscopy, is a transformative technology that significantly enhances our ability to monitor and probe biological processes in living cells. However, high-throughput microfluidic devices mostly require sophisticated preparatory and setup work and are thus hard to adopt by non-experts. In this work, we designed an easy-to-use microfluidic chip, which enables tracking of 48 GFP-tagged yeast strains, with each strain under two different stimulus conditions, in a single experiment. We used this technology to investigate the dynamic pattern of protein expression during the yeast mating differentiation response. High doses of pheromone induce cell cycle arrest and the shmoo morphology, whereas low doses of pheromone lead to elongation and chemotrophic growth. By systematically analyzing the protein dynamics of 156 pheromone-regulated genes, we identified groups of genes that are preferentially induced in response to low-dose pheromone (elongation during growth) or high-dose pheromone (shmoo formation and cell cycle arrest). The protein dynamics of these genes may provide insights into the mechanisms underlying the differentiation switch induced by different doses of pheromone.
Collapse
Affiliation(s)
- Haiyu Yuan
- The State Key Laboratory for Artificial Microstructures and Mesoscopic Physics, School of Physics, Peking University, China.
| | | | | | | | | | | | | |
Collapse
|
35
|
Kröber A, Etzrodt S, Bach M, Monod M, Kniemeyer O, Staib P, Brakhage AA. The transcriptional regulators SteA and StuA contribute to keratin degradation and sexual reproduction of the dermatophyte Arthroderma benhamiae. Curr Genet 2016; 63:103-116. [PMID: 27170358 DOI: 10.1007/s00294-016-0608-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 04/11/2016] [Accepted: 04/26/2016] [Indexed: 01/08/2023]
Abstract
Most superficial fungal infections are caused by dermatophytes, a specialized group of filamentous fungi which exclusively infect keratinized host structures such as hair, skin and nails. Since little is known about the molecular basis of pathogenicity and sexual reproduction in dermatophytes, here we functionally addressed two central transcriptional regulators, SteA and StuA. In the zoophilic species Arthroderma benhamiae a strategy for targeted genetic manipulation was recently established, and moreover, the species is teleomorphic and thus allows performing assays based on mating. By comparative genome analysis homologs of the developmental regulators SteA and StuA were identified in A. benhamiae. Knock-out mutants of the corresponding genes as well as complemented strains were generated and phenotypically characterized. In contrast to A. benhamiae wild type and complemented strains, both mutants failed to produce sexual reproductive structures in mating experiments. Analysis of growth on keratin substrates indicated that loss of steA resulted in the inability of ΔsteA mutants to produce hair perforation organs, but did not affect mycelia formation during growth on hair and nails. By contrast, ΔstuA mutants displayed a severe growth defect on these substrates, but were still able to produce hair perforations. Hence, formation of hair perforation organs and fungal growth on hair per se are differentially regulated processes. Our findings on the major role of SteA and StuA during sexual development and keratin degradation in A. benhamiae provide insights into their role in dermatophytes and further enhance our knowledge of basic biology and pathogenicity of these fungi.
Collapse
Affiliation(s)
- Antje Kröber
- Junior Research Group Fundamental Molecular Biology of Pathogenic Fungi, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), Jena, Germany.,Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), Jena, Germany
| | - Sandra Etzrodt
- Junior Research Group Fundamental Molecular Biology of Pathogenic Fungi, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), Jena, Germany.,Study and Examination Office, Faculty of Biology and Pharmacy, Friedrich Schiller University, Jena, Germany
| | - Maria Bach
- Junior Research Group Fundamental Molecular Biology of Pathogenic Fungi, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), Jena, Germany.,Zentrum für Diagnostik GmbH am Klinikum Chemnitz, Chemnitz, Germany
| | - Michel Monod
- Department of Dermatology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Olaf Kniemeyer
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), Jena, Germany.,Department Microbiology and Molecular Biology, Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| | - Peter Staib
- Junior Research Group Fundamental Molecular Biology of Pathogenic Fungi, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), Jena, Germany. .,Department of Research and Development, Kneipp GmbH, Würzburg, Germany.
| | - Axel A Brakhage
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), Jena, Germany. .,Department Microbiology and Molecular Biology, Institute of Microbiology, Friedrich Schiller University, Jena, Germany.
| |
Collapse
|
36
|
Abstract
Genes are often combinatorially regulated by multiple transcription factors (TFs). Such combinatorial regulation plays an important role in development and facilitates the ability of cells to respond to different stresses. While a number of approaches have utilized sequence and ChIP-based datasets to study combinational regulation, these have often ignored the combinational logic and the dynamics associated with such regulation. Here we present cDREM, a new method for reconstructing dynamic models of combinatorial regulation. cDREM integrates time series gene expression data with (static) protein interaction data. The method is based on a hidden Markov model and utilizes the sparse group Lasso to identify small subsets of combinatorially active TFs, their time of activation, and the logical function they implement. We tested cDREM on yeast and human data sets. Using yeast we show that the predicted combinatorial sets agree with other high throughput genomic datasets and improve upon prior methods developed to infer combinatorial regulation. Applying cDREM to study human response to flu, we were able to identify several combinatorial TF sets, some of which were known to regulate immune response while others represent novel combinations of important TFs.
Collapse
Affiliation(s)
- Aaron Wise
- Lane Center for Computational Biology, Carnegie Mellon University , Pittsburgh, Pennsylvania
| | | |
Collapse
|
37
|
Petralia F, Wang P, Yang J, Tu Z. Integrative random forest for gene regulatory network inference. Bioinformatics 2015; 31:i197-205. [PMID: 26072483 PMCID: PMC4542785 DOI: 10.1093/bioinformatics/btv268] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Motivation: Gene regulatory network (GRN) inference based on genomic data is one of the most actively pursued computational biological problems. Because different types of biological data usually provide complementary information regarding the underlying GRN, a model that integrates big data of diverse types is expected to increase both the power and accuracy of GRN inference. Towards this goal, we propose a novel algorithm named iRafNet: integrative random forest for gene regulatory network inference. Results: iRafNet is a flexible, unified integrative framework that allows information from heterogeneous data, such as protein–protein interactions, transcription factor (TF)-DNA-binding, gene knock-down, to be jointly considered for GRN inference. Using test data from the DREAM4 and DREAM5 challenges, we demonstrate that iRafNet outperforms the original random forest based network inference algorithm (GENIE3), and is highly comparable to the community learning approach. We apply iRafNet to construct GRN in Saccharomyces cerevisiae and demonstrate that it improves the performance in predicting TF-target gene regulations and provides additional functional insights to the predicted gene regulations. Availability and implementation: The R code of iRafNet implementation and a tutorial are available at: http://research.mssm.edu/tulab/software/irafnet.html Contact:zhidong.tu@mssm.edu Supplementary information: Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Francesca Petralia
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Pei Wang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jialiang Yang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Zhidong Tu
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
38
|
Errede B, Vered L, Ford E, Pena MI, Elston TC. Pheromone-induced morphogenesis and gradient tracking are dependent on the MAPK Fus3 binding to Gα. Mol Biol Cell 2015; 26:3343-58. [PMID: 26179918 PMCID: PMC4569322 DOI: 10.1091/mbc.e15-03-0176] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 07/08/2015] [Indexed: 12/20/2022] Open
Abstract
Unique roles are found for the MAPK Fus3 during the mating response of yeast. In particular, the interaction of Fus3 with the G-protein α-subunit is required for morphogenesis and gradient tracking and suppresses cell-to-cell variability between mating and chemotropic fates in a population of pheromone-responding cells. Mitogen-activated protein kinase (MAPK) pathways control many cellular processes, including differentiation and proliferation. These pathways commonly activate MAPK isoforms that have redundant or overlapping function. However, recent studies have revealed circumstances in which MAPK isoforms have specialized, nonoverlapping roles in differentiation. The mechanisms that underlie this specialization are not well understood. To address this question, we sought to establish regulatory mechanisms that are unique to the MAPK Fus3 in pheromone-induced mating and chemotropic fate transitions of the budding yeast Saccharomyces cerevisiae. Our investigations reveal a previously unappreciated role for inactive Fus3 as a potent negative regulator of pheromone-induced chemotropism. We show that this inhibitory role is dependent on inactive Fus3 binding to the α-subunit of the heterotrimeric G-protein. Further analysis revealed that the binding of catalytically active Fus3 to the G-protein is required for gradient tracking and serves to suppress cell-to-cell variability between mating and chemotropic fates in a population of pheromone-responding cells.
Collapse
Affiliation(s)
- Beverly Errede
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599
| | - Lior Vered
- Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599
| | - Eintou Ford
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599
| | - Matthew I Pena
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599
| | - Timothy C Elston
- Department of Pharmacology, University of North Carolina, Chapel Hill, NC 27599
| |
Collapse
|
39
|
Fine-tuning of histone H3 Lys4 methylation during pseudohyphal differentiation by the CDK submodule of RNA polymerase II. Genetics 2014; 199:435-53. [PMID: 25467068 DOI: 10.1534/genetics.114.172841] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Transcriptional regulation is dependent upon the interactions between the RNA pol II holoenzyme complex and chromatin. RNA pol II is part of a highly conserved multiprotein complex that includes the core mediator and CDK8 subcomplex. In Saccharomyces cerevisiae, the CDK8 subcomplex, composed of Ssn2p, Ssn3p, Ssn8p, and Srb8p, is thought to play important roles in mediating transcriptional control of stress-responsive genes. Also central to transcriptional control are histone post-translational modifications. Lysine methylation, dynamically balanced by lysine methyltransferases and demethylases, has been intensively studied, uncovering significant functions in transcriptional control. A key question remains in understanding how these enzymes are targeted during stress response. To determine the relationship between lysine methylation, the CDK8 complex, and transcriptional control, we performed phenotype analyses of yeast lacking known lysine methyltransferases or demethylases in isolation or in tandem with SSN8 deletions. We show that the RNA pol II CDK8 submodule components SSN8/SSN3 and the histone demethylase JHD2 are required to inhibit pseudohyphal growth-a differentiation pathway induced during nutrient limitation-under rich conditions. Yeast lacking both SSN8 and JHD2 constitutively express FLO11, a major regulator of pseudohyphal growth. Interestingly, deleting known FLO11 activators including FLO8, MSS11, MFG1, TEC1, SNF1, KSS1, and GCN4 results in a range of phenotypic suppression. Using chromatin immunoprecipitation, we found that SSN8 inhibits H3 Lys4 trimethylation independently of JHD2 at the FLO11 locus, suggesting that H3 Lys4 hypermethylation is locking FLO11 into a transcriptionally active state. These studies implicate the CDK8 subcomplex in fine-tuning H3 Lys4 methylation levels during pseudohyphal differentiation.
Collapse
|
40
|
Navarro C, Lopez FJ, Cano C, Garcia-Alcalde F, Blanco A. CisMiner: genome-wide in-silico cis-regulatory module prediction by fuzzy itemset mining. PLoS One 2014; 9:e108065. [PMID: 25268582 PMCID: PMC4182448 DOI: 10.1371/journal.pone.0108065] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 08/25/2014] [Indexed: 01/18/2023] Open
Abstract
Eukaryotic gene control regions are known to be spread throughout non-coding DNA sequences which may appear distant from the gene promoter. Transcription factors are proteins that coordinately bind to these regions at transcription factor binding sites to regulate gene expression. Several tools allow to detect significant co-occurrences of closely located binding sites (cis-regulatory modules, CRMs). However, these tools present at least one of the following limitations: 1) scope limited to promoter or conserved regions of the genome; 2) do not allow to identify combinations involving more than two motifs; 3) require prior information about target motifs. In this work we present CisMiner, a novel methodology to detect putative CRMs by means of a fuzzy itemset mining approach able to operate at genome-wide scale. CisMiner allows to perform a blind search of CRMs without any prior information about target CRMs nor limitation in the number of motifs. CisMiner tackles the combinatorial complexity of genome-wide cis-regulatory module extraction using a natural representation of motif combinations as itemsets and applying the Top-Down Fuzzy Frequent- Pattern Tree algorithm to identify significant itemsets. Fuzzy technology allows CisMiner to better handle the imprecision and noise inherent to regulatory processes. Results obtained for a set of well-known binding sites in the S. cerevisiae genome show that our method yields highly reliable predictions. Furthermore, CisMiner was also applied to putative in-silico predicted transcription factor binding sites to identify significant combinations in S. cerevisiae and D. melanogaster, proving that our approach can be further applied genome-wide to more complex genomes. CisMiner is freely accesible at: http://genome2.ugr.es/cisminer. CisMiner can be queried for the results presented in this work and can also perform a customized cis-regulatory module prediction on a query set of transcription factor binding sites provided by the user.
Collapse
Affiliation(s)
- Carmen Navarro
- Department of Computer Science and AI, University of Granada, Granada, Spain
| | - Francisco J. Lopez
- Andalusian Human Genome Sequencing Centre (CASEGH), Medical Genome Project (MGP), Sevilla, Spain
| | - Carlos Cano
- Department of Computer Science and AI, University of Granada, Granada, Spain
| | | | - Armando Blanco
- Department of Computer Science and AI, University of Granada, Granada, Spain
| |
Collapse
|
41
|
Abstract
Cell differentiation requires different pathways to act in concert to produce a specialized cell type. The budding yeast Saccharomyces cerevisiae undergoes filamentous growth in response to nutrient limitation. Differentiation to the filamentous cell type requires multiple signaling pathways, including a mitogen-activated protein kinase (MAPK) pathway. To identify new regulators of the filamentous growth MAPK pathway, a genetic screen was performed with a collection of 4072 nonessential deletion mutants constructed in the filamentous (Σ1278b) strain background. The screen, in combination with directed gene-deletion analysis, uncovered 97 new regulators of the filamentous growth MAPK pathway comprising 40% of the major regulators of filamentous growth. Functional classification extended known connections to the pathway and identified new connections. One function for the extensive regulatory network was to adjust the activity of the filamentous growth MAPK pathway to the activity of other pathways that regulate the response. In support of this idea, an unregulated filamentous growth MAPK pathway led to an uncoordinated response. Many of the pathways that regulate filamentous growth also regulated each other's targets, which brings to light an integrated signaling network that regulates the differentiation response. The regulatory network characterized here provides a template for understanding MAPK-dependent differentiation that may extend to other systems, including fungal pathogens and metazoans.
Collapse
|
42
|
Wang P, Lü J, Yu X. Identification of important nodes in directed biological networks: a network motif approach. PLoS One 2014; 9:e106132. [PMID: 25170616 PMCID: PMC4149525 DOI: 10.1371/journal.pone.0106132] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 08/03/2014] [Indexed: 11/18/2022] Open
Abstract
Identification of important nodes in complex networks has attracted an increasing attention over the last decade. Various measures have been proposed to characterize the importance of nodes in complex networks, such as the degree, betweenness and PageRank. Different measures consider different aspects of complex networks. Although there are numerous results reported on undirected complex networks, few results have been reported on directed biological networks. Based on network motifs and principal component analysis (PCA), this paper aims at introducing a new measure to characterize node importance in directed biological networks. Investigations on five real-world biological networks indicate that the proposed method can robustly identify actually important nodes in different networks, such as finding command interneurons, global regulators and non-hub but evolutionary conserved actually important nodes in biological networks. Receiver Operating Characteristic (ROC) curves for the five networks indicate remarkable prediction accuracy of the proposed measure. The proposed index provides an alternative complex network metric. Potential implications of the related investigations include identifying network control and regulation targets, biological networks modeling and analysis, as well as networked medicine.
Collapse
Affiliation(s)
- Pei Wang
- School of Mathematics and Information Sciences, Henan University, Kaifeng, China
- School of Electrical and Computer Engineering, RMIT University, Melbourne, Victoria, Australia
- * E-mail:
| | - Jinhu Lü
- Institute of Systems Science, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, China
| | - Xinghuo Yu
- School of Electrical and Computer Engineering, RMIT University, Melbourne, Victoria, Australia
| |
Collapse
|
43
|
The transcription factors Tec1 and Ste12 interact with coregulators Msa1 and Msa2 to activate adhesion and multicellular development. Mol Cell Biol 2014; 34:2283-93. [PMID: 24732795 DOI: 10.1128/mcb.01599-13] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
In Saccharomyces cerevisiae and related yeast species, the TEA transcription factor Tec1, together with a second transcription factor, Ste12, controls development, including cell adhesion and filament formation. Tec1-Ste12 complexes control target genes through Tec1 binding sites (TEA consensus sequences [TCSs]) that can be further combined with Ste12 binding sites (pheromone response elements [PREs]) for cooperative DNA binding. The activity of Tec1-Ste12 complexes is known to be under negative control of the Dig1 and Dig2 (Dig1/2) transcriptional corepressors that confer regulation by upstream signaling pathways. Here, we found that Tec1 and Ste12 can associate with the transcriptional coregulators Msa1 and Msa2 (Msa1/2), which were previously found to associate with the cell cycle transcription factor complexes SBF (Swi4/Swi6 cell cycle box binding factor) and MBF (Mbp1/Swi6 cell cycle box binding factor) to control G1-specific transcription. We further show that Tec1-Ste12-Msa1/2 complexes (i) do not contain Swi4 or Mbp1, (ii) assemble at single TCSs or combined TCS-PREs in vitro, and (iii) coregulate genes involved in adhesive and filamentous growth by direct promoter binding in vivo. Finally, we found that, in contrast to Dig proteins, Msa1/2 seem to act as coactivators that enhance the transcriptional activity of Tec1-Ste12. Taken together, our findings add an additional layer of complexity to our understanding of the control mechanisms exerted by the evolutionarily conserved TEA domain and Ste12-like transcription factors.
Collapse
|
44
|
Miguel-Rojas C, Hera C. Proteomic identification of potential target proteins regulated by the SCF(F) (bp1) -mediated proteolysis pathway in Fusarium oxysporum. MOLECULAR PLANT PATHOLOGY 2013; 14:934-945. [PMID: 23855991 PMCID: PMC6638928 DOI: 10.1111/mpp.12060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
F-box proteins function in the recruitment of proteins for SCF ubiquitination and proteasome degradation. Here, we studied the role of Fbp1, a nonessential F-box protein of the tomato pathogen Fusarium oxysporum f. sp. lycopersici. The Δfbp1 mutant showed a significant delay in the production of wilt symptoms on tomato plants and was impaired in invasive growth on cellophane membranes and on living plant tissue. To search for target proteins recruited by Fbp1, a combination of sodium dodecylsulphate-polyacrylamide gel electrophoresis (SDS-PAGE) and matrix-assisted laser desorption/ionization time-of-flight/time-of-flight (MALDI-TOF/TOF) was used to compare proteins in mycelia of the wild-type and Δfbp1 mutant. The proteomic approach identified 41 proteins differing significantly in abundance between the two strains, 17 of which were more abundant in the Δfbp1 mutant, suggesting a possible regulation by proteasome degradation. Interestingly, several of the identified proteins were related to vesicle trafficking. Microscopic analysis revealed an impairment of the Δfbp1 strain in directional growth and in the structure of the Spitzenkörper, suggesting a role of Fbp1 in hyphal orientation. Our results indicate that Fbp1 regulates protein turnover and pathogenicity in F. oxysporum.
Collapse
Affiliation(s)
- Cristina Miguel-Rojas
- Departamento de Genética, Facultad de Ciencias, Universidad de Córdoba, 14071, Córdoba, Spain; Campus de Excelencia Internacional Agroalimentario, ceiA3, 14071, Córdoba, Spain
| | | |
Collapse
|
45
|
Halary S, Daubois L, Terrat Y, Ellenberger S, Wöstemeyer J, Hijri M. Mating type gene homologues and putative sex pheromone-sensing pathway in arbuscular mycorrhizal fungi, a presumably asexual plant root symbiont. PLoS One 2013; 8:e80729. [PMID: 24260466 PMCID: PMC3834313 DOI: 10.1371/journal.pone.0080729] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 10/05/2013] [Indexed: 12/15/2022] Open
Abstract
The fungal kingdom displays a fascinating diversity of sex-determination systems. Recent advances in genomics provide insights into the molecular mechanisms of sex, mating type determination, and evolution of sexual reproduction in many fungal species in both ancient and modern phylogenetic lineages. All major fungal groups have evolved sexual differentiation and recombination pathways. However, sexuality is unknown in arbuscular mycorrhizal fungi (AMF) of the phylum Glomeromycota, an ecologically vital group of obligate plant root symbionts. AMF are commonly considered an ancient asexual lineage dating back to the Ordovician, approximately 460 M years ago. In this study, we used genomic and transcriptomic surveys of several AMF species to demonstrate the presence of conserved putative sex pheromone-sensing mitogen-activated protein (MAP) kinases, comparable to those described in Ascomycota and Basidiomycota. We also find genes for high mobility group (HMG) transcription factors, homologous to SexM and SexP genes in the Mucorales. The SexM genes show a remarkable sequence diversity among multiple copies in the genome, while only a single SexP sequence was detected in some isolates of Rhizophagus irregularis. In the Mucorales and Microsporidia, the sexM gene is flanked by genes for a triosephosphate transporter (TPT) and a RNA helicase, but we find no evidence for synteny in the vicinity of the Sex locus in AMF. Nonetheless, our results, together with previous observations on meiotic machinery, suggest that AMF could undergo a complete sexual reproduction cycle.
Collapse
Affiliation(s)
- Sébastien Halary
- Département de Sciences Biologiques, Institut de Recherche en Biologie Végétale (IRBV), Université de Montréal, Montréal, Québec, Canada
| | - Laurence Daubois
- Département de Sciences Biologiques, Institut de Recherche en Biologie Végétale (IRBV), Université de Montréal, Montréal, Québec, Canada
| | - Yves Terrat
- Département de Sciences Biologiques, Institut de Recherche en Biologie Végétale (IRBV), Université de Montréal, Montréal, Québec, Canada
| | - Sabrina Ellenberger
- Institute of General Microbiology and Microbe Genetics, Friedrich-Schiller-Universität Jena, Jena, Germany
| | - Johannes Wöstemeyer
- Institute of General Microbiology and Microbe Genetics, Friedrich-Schiller-Universität Jena, Jena, Germany
| | - Mohamed Hijri
- Département de Sciences Biologiques, Institut de Recherche en Biologie Végétale (IRBV), Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
46
|
Kahana-Edwin S, Stark M, Kassir Y. Multiple MAPK cascades regulate the transcription of IME1, the master transcriptional activator of meiosis in Saccharomyces cerevisiae. PLoS One 2013; 8:e78920. [PMID: 24236068 PMCID: PMC3827324 DOI: 10.1371/journal.pone.0078920] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 09/23/2013] [Indexed: 11/18/2022] Open
Abstract
The choice between alternative developmental pathways is primarily controlled at the level of transcription. Induction of meiosis in budding yeasts in response to nutrient levels provides a system to investigate the molecular basis of cellular decision-making. In Saccharomyces cerevisiae, entry into meiosis depends on multiple signals converging upon IME1, the master transcriptional activator of meiosis. Here we studied the regulation of the cis-acting regulatory element Upstream Activation Signal (UAS)ru, which resides within the IME1 promoter. Guided by our previous data acquired using a powerful high-throughput screening system, here we provide evidence that UASru is regulated by multiple stimuli that trigger distinct signal transduction pathways as follows: (i) The glucose signal inhibited UASru activity through the cyclic AMP (cAMP/protein kinase A (PKA) pathway, targeting the transcription factors (TFs), Com2 and Sko1; (ii) high osmolarity activated UASru through the Hog1/mitogen-activated protein kinase (MAPK) pathway and its corresponding TF Sko1; (iii) elevated temperature increased the activity of UASru through the cell wall integrity pathway and the TFs Swi4/Mpk1 and Swi4/Mlp1; (iv) the nitrogen source repressed UASru activity through Sum1; and (v) the absence of a nitrogen source was detected and transmitted to UASru by the Kss1 and Fus3 MAPK pathways through their respective downstream TFs, Ste12/Tec1 and Ste12/Ste12 as well as by their regulators Dig1/2. These signaling events were specific to UASru; they did not affect the mating and filamentation response elements that are regulated by MAPK pathways. The complex regulation of UASru through all the known vegetative MAPK pathways is unique to S. cerevisiae and is specific for IME1, likely because it is the master regulator of gametogenesis.
Collapse
Affiliation(s)
- Smadar Kahana-Edwin
- Department of Biology, Technion - Israel Institute of Technology, Haifa, Israel
| | - Michal Stark
- Department of Biology, Technion - Israel Institute of Technology, Haifa, Israel
| | - Yona Kassir
- Department of Biology, Technion - Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
47
|
Hurst JH, Dohlman HG. Dynamic ubiquitination of the mitogen-activated protein kinase kinase (MAPKK) Ste7 determines mitogen-activated protein kinase (MAPK) specificity. J Biol Chem 2013; 288:18660-71. [PMID: 23645675 DOI: 10.1074/jbc.m113.475707] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Ubiquitination is a post-translational modification that tags proteins for proteasomal degradation. In addition, there is a growing appreciation that ubiquitination can influence protein activity and localization. Ste7 is a prototype MAPKK in yeast that participates in both the pheromone signaling and nutrient deprivation/invasive growth pathways. We have shown previously that Ste7 is ubiquitinated upon pheromone stimulation. Here, we show that the Skp1/Cullin/F-box ubiquitin ligase SCF(Cdc4) and the ubiquitin protease Ubp3 regulate Ste7 ubiquitination and signal specificity. Using purified components, we demonstrate that SCF(Cdc4) ubiquitinates Ste7 directly. Using gene deletion mutants, we show that SCF(Cdc4) and Ubp3 have opposing effects on Ste7 ubiquitination. Although SCF(Cdc4) is necessary for proper activation of the pheromone MAPK Fus3, Ubp3 is needed to limit activation of the invasive growth MAPK Kss1. Finally, we show that Fus3 phosphorylates Ubp3 directly and that phosphorylation of Ubp3 is necessary to limit Kss1 activation. These results reveal a feedback loop wherein one MAPK limits the ubiquitination of an upstream MAPKK and thereby prevents spurious activation of a second competing MAPK.
Collapse
Affiliation(s)
- Jillian H Hurst
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina 27599-7260, USA
| | | |
Collapse
|
48
|
Pincus D, Ryan CJ, Smith RD, Brent R, Resnekov O. Assigning quantitative function to post-translational modifications reveals multiple sites of phosphorylation that tune yeast pheromone signaling output. PLoS One 2013; 8:e56544. [PMID: 23554854 PMCID: PMC3595240 DOI: 10.1371/journal.pone.0056544] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Accepted: 01/15/2013] [Indexed: 12/19/2022] Open
Abstract
Cell signaling systems transmit information by post-translationally modifying signaling proteins, often via phosphorylation. While thousands of sites of phosphorylation have been identified in proteomic studies, the vast majority of sites have no known function. Assigning functional roles to the catalog of uncharacterized phosphorylation sites is a key research challenge. Here we present a general approach to address this challenge and apply it to a prototypical signaling pathway, the pheromone response pathway in Saccharomyces cerevisiae. The pheromone pathway includes a mitogen activated protein kinase (MAPK) cascade activated by a G-protein coupled receptor (GPCR). We used published mass spectrometry-based proteomics data to identify putative sites of phosphorylation on pheromone pathway components, and we used evolutionary conservation to assign priority to a list of candidate MAPK regulatory sites. We made targeted alterations in those sites, and measured the effects of the mutations on pheromone pathway output in single cells. Our work identified six new sites that quantitatively tuned system output. We developed simple computational models to find system architectures that recapitulated the quantitative phenotypes of the mutants. Our results identify a number of putative phosphorylation events that contribute to adjust the input-output relationship of this model eukaryotic signaling system. We believe this combined approach constitutes a general means not only to reveal modification sites required to turn a pathway on and off, but also those required for more subtle quantitative effects that tune pathway output. Our results suggest that relatively small quantitative influences from individual phosphorylation events endow signaling systems with plasticity that evolution may exploit to quantitatively tailor signaling outcomes.
Collapse
Affiliation(s)
- David Pincus
- Molecular Sciences Institute, Berkeley, California, United States of America
| | - Christopher J. Ryan
- Molecular Sciences Institute, Berkeley, California, United States of America
| | - Richard D. Smith
- Pacific Northwest National Laboratory, Richland, Washington, United States of America
| | - Roger Brent
- Molecular Sciences Institute, Berkeley, California, United States of America
| | - Orna Resnekov
- Molecular Sciences Institute, Berkeley, California, United States of America
- * E-mail:
| |
Collapse
|
49
|
RNA preparation of Saccharomyces cerevisiae using the digestion method may give misleading results. Appl Biochem Biotechnol 2013; 169:1620-32. [PMID: 23325148 PMCID: PMC3593083 DOI: 10.1007/s12010-012-0051-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Accepted: 12/17/2012] [Indexed: 11/20/2022]
Abstract
Zymolyase (lyticase) is used for cell wall digestion in yeast experiments and is needed for incubation processes under moderate experimental conditions. This has been thought to cause unfavorable effects, and many researchers are aware that the enzyme method is unsuitable for RNA preparation following several reports of stress responses to the enzyme process. However, RNA preparation with enzyme digestion continues to be used. This may be because there have been insufficient data directly comparing RNA preparation conditions with previous studies. We investigated the influence of enzyme processes in RNA preparation using a DNA microarray, and compared superoxide dismutase (SOD) activities with a non-treated control and the results of previous research. Gene expressions were commonly changed by enzyme processes, and SOD activities increased only during short-term incubation. Meanwhile, both SOD gene expressions and SOD activity during RNA preparation indicated different results than gained under conditions of long-term incubation. These results suggest that zymolyase treatment surely influences gene expressions and enzyme activity, although the effect assumed by previous studies is not necessarily in agreement with that of RNA preparation.
Collapse
|
50
|
Ahnert SE. Power graph compression reveals dominant relationships in genetic transcription networks. MOLECULAR BIOSYSTEMS 2013; 9:2681-5. [DOI: 10.1039/c3mb70236g] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|