1
|
Sakamaki K, Sakamoto N, Tsujimura Y, Iwasaki T, Kawamura T, Nakabayashi J, D'Souza RS, Jannat A, Takeshima KI, Takeda H, Koyamada K, Yokota H. Caspase-mediated cleavage of a scaffold protein, MPRIP, yields a truncated form that is involved in repetitive bleb formation. FEBS J 2025; 292:2287-2305. [PMID: 40344468 DOI: 10.1111/febs.17422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 09/24/2024] [Accepted: 01/20/2025] [Indexed: 05/11/2025]
Abstract
Membrane blebbing is a hallmark of apoptotic cell death. However, the molecular mechanism that regulates this event has not been fully elucidated. To understand this underlying mechanism, we developed visualization systems suitable for spatiotemporal analysis. By monitoring the plasma membrane labeled with a fluorescent protein and reconstructing the image data as three-dimensional (3D) volumes based on the rendering technique, we observed that dying cells exhibit cycles of bleb formation at the same region of the cell surface. In addition, a Förster Resonance Energy Transfer (FRET)-based biosensor incorporating a regulatory myosin light chain (RMLC) displayed phosphorylation at the base of the retracting bleb, and dephosphorylation before re-expansion, implying the involvement of not only a kinase but also a phosphatase in the regulation of RMLC. To extend these observations, we focused on a scaffold protein, myosin phosphatase Rho interacting protein (MPRIP), which interacts with RhoA and myosin phosphatase targeting subunit 1 (MYPT1), involved in activation of Rho-associated coiled-coil kinase-I (ROCK-I) or protein phosphatase 1 (PP1), respectively. We found that MPRIP is cleaved both in dying cells and in an in vitro cleavage assay in a caspase-dependent manner. A cleaved C-terminal peptide fragment maintains the interaction with MYPT1. Cytological analysis showed that this fragment forms a complex with MYPT1 and myosin after translocating to the cytoplasm. These results suggest that this complex formation promotes the dephosphorylation of RMLC. Collectively, our study indicates that repetitive bleb formation, which is unique to apoptosis, is regulated by both phosphorylation and dephosphorylation of RMLC through MPRIP in a coordinated manner.
Collapse
Affiliation(s)
- Kazuhiro Sakamaki
- Department of Animal Development and Physiology, Graduate School of Biostudies, Kyoto University, Japan
| | - Naohisa Sakamoto
- Center for Promotion of Excellence in High Education, Kyoto University, Japan
| | - Yuki Tsujimura
- Image Processing Research Team, Center for Advanced Photonics, Riken, Wako, Japan
| | | | - Takuma Kawamura
- Department of Electronic Science and Engineering, Graduate School of Engineering, Kyoto University, Japan
| | - Jun Nakabayashi
- Liberal Arts and Sciences, Mathematics, Tokyo Medical and Dental University, Ichikawa, Japan
| | - Rhea S D'Souza
- Department of Animal Development and Physiology, Graduate School of Biostudies, Kyoto University, Japan
| | - Arooma Jannat
- Department of Animal Development and Physiology, Graduate School of Biostudies, Kyoto University, Japan
| | - Ken-Ichiro Takeshima
- Department of Animal Development and Physiology, Graduate School of Biostudies, Kyoto University, Japan
| | | | - Koji Koyamada
- Center for Promotion of Excellence in High Education, Kyoto University, Japan
| | - Hideo Yokota
- Image Processing Research Team, Center for Advanced Photonics, Riken, Wako, Japan
| |
Collapse
|
2
|
He H, Yin J, Li M, Dessai CVP, Yi M, Teng X, Zhang M, Li Y, Du Z, Xu B, Cheng JX. Mapping enzyme activity in living systems by real-time mid-infrared photothermal imaging of nitrile chameleons. Nat Methods 2024; 21:342-352. [PMID: 38191931 PMCID: PMC11165695 DOI: 10.1038/s41592-023-02137-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 11/17/2023] [Indexed: 01/10/2024]
Abstract
Simultaneous spatial mapping of the activity of multiple enzymes in a living system can elucidate their functions in health and disease. However, methods based on monitoring fluorescent substrates are limited. Here, we report the development of nitrile (C≡N)-tagged enzyme activity reporters, named nitrile chameleons, for the peak shift between substrate and product. To image these reporters in real time, we developed a laser-scanning mid-infrared photothermal imaging system capable of imaging the enzymatic substrates and products at a resolution of 300 nm. We show that when combined, these tools can map the activity distribution of different enzymes and measure their relative catalytic efficiency in living systems such as cancer cells, Caenorhabditis elegans, and brain tissues, and can be used to directly visualize caspase-phosphatase interactions during apoptosis. Our method is generally applicable to a broad category of enzymes and will enable new analyses of enzymes in their native context.
Collapse
Affiliation(s)
- Hongjian He
- Department of Electrical and Computer Engineering, Boston University, Boston, MA, USA
- Photonics Center, Boston University, Boston, MA, USA
| | - Jiaze Yin
- Department of Electrical and Computer Engineering, Boston University, Boston, MA, USA
- Photonics Center, Boston University, Boston, MA, USA
| | - Mingsheng Li
- Department of Electrical and Computer Engineering, Boston University, Boston, MA, USA
- Photonics Center, Boston University, Boston, MA, USA
| | - Chinmayee Vallabh Prabhu Dessai
- Photonics Center, Boston University, Boston, MA, USA
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Meihui Yi
- Department of Chemistry, Brandeis University, Waltham, MA, USA
| | - Xinyan Teng
- Photonics Center, Boston University, Boston, MA, USA
- Department of Chemistry, Boston University, Boston, MA, USA
| | - Meng Zhang
- Photonics Center, Boston University, Boston, MA, USA
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Yueming Li
- Photonics Center, Boston University, Boston, MA, USA
- Department of Mechanical Engineering, Boston University, Boston, MA, USA
| | - Zhiyi Du
- Photonics Center, Boston University, Boston, MA, USA
- Department of Chemistry, Boston University, Boston, MA, USA
| | - Bing Xu
- Department of Chemistry, Brandeis University, Waltham, MA, USA
| | - Ji-Xin Cheng
- Department of Electrical and Computer Engineering, Boston University, Boston, MA, USA.
- Photonics Center, Boston University, Boston, MA, USA.
- Department of Biomedical Engineering, Boston University, Boston, MA, USA.
- Department of Chemistry, Boston University, Boston, MA, USA.
| |
Collapse
|
3
|
Silva RCMC. Fas ligand intracellular signaling: does PSTPIP mediate T cell death? Apoptosis 2024; 29:1-2. [PMID: 37794219 DOI: 10.1007/s10495-023-01892-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/05/2023] [Indexed: 10/06/2023]
Abstract
Fas and Fas ligand (FasL)-induced cell death is critical for the appropriate regulation of immune responses, especially those mediated by T cells. In this letter, several studies are discussed that reinforce the importance of FasL intracellular signaling for CD4 + T cell death, which might involve PSTPIP phosphatase and/or MAPKs.
Collapse
Affiliation(s)
- Rafael Cardoso Maciel Costa Silva
- Laboratory of Immunoreceptors and signaling, Instituto de Biofísica Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
4
|
He H, Yin J, Li M, Teng X, Zhang M, Li Y, Du Z, Xu B, Cheng JX. Mapping Enzyme Activity in Living Systems by Real-Time Mid-Infrared Photothermal Imaging of Nitrile Chameleons. RESEARCH SQUARE 2023:rs.3.rs-2592139. [PMID: 36909612 PMCID: PMC10002843 DOI: 10.21203/rs.3.rs-2592139/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Abstract
Enzymes are vital components in a variety of physiological and biochemical processes. Participation of various enzyme species are required for many biological events and signaling networks. Thus, spatially mapping the activity of multiple enzymes in a living system is significant for elucidating enzymatic functions in health and connections to diseases. Here, we report the development of nitrile (C≡N)-tagged enzyme activity reporters, named nitrile chameleons for the shifted peak between substrate and product. By real-time mid-infrared photothermal imaging of the enzymatic substrates and products at 300 nm resolution, our approach can map the activity distribution of different enzymes and quantitate the relative catalytic efficiency in living cancer cells, C. elegans, and brain tissues. An important finding is the direct visualization of caspase-phosphatase cooperation during apoptosis. Our method is generally applicable to a broad category of enzymes and will advance the discovery of potential targets for diagnosis and drug development.
Collapse
Affiliation(s)
- Hongjian He
- Department of Electrical and Computer Engineering, Boston University, Boston, MA 02215, USA
- Photonics Center, Boston University, Boston, MA 02215, USA
| | - Jiaze Yin
- Department of Electrical and Computer Engineering, Boston University, Boston, MA 02215, USA
- Photonics Center, Boston University, Boston, MA 02215, USA
| | - Mingsheng Li
- Department of Electrical and Computer Engineering, Boston University, Boston, MA 02215, USA
- Photonics Center, Boston University, Boston, MA 02215, USA
| | - Xinyan Teng
- Photonics Center, Boston University, Boston, MA 02215, USA
- Department of Chemistry, Boston University, Boston, MA 02215, USA
| | - Meng Zhang
- Photonics Center, Boston University, Boston, MA 02215, USA
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Yueming Li
- Photonics Center, Boston University, Boston, MA 02215, USA
- Department of Mechanical Engineering, Boston University, Boston, MA 02215, USA
| | - Zhiyi Du
- Photonics Center, Boston University, Boston, MA 02215, USA
- Department of Chemistry, Boston University, Boston, MA 02215, USA
| | - Bing Xu
- Department of Chemistry, Brandeis University, Waltham, MA 02453, USA
| | - Ji-Xin Cheng
- Department of Electrical and Computer Engineering, Boston University, Boston, MA 02215, USA
- Photonics Center, Boston University, Boston, MA 02215, USA
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
- Department of Chemistry, Boston University, Boston, MA 02215, USA
| |
Collapse
|
5
|
The role and therapeutic implication of protein tyrosine phosphatases in Alzheimer's disease. Biomed Pharmacother 2022; 151:113188. [PMID: 35676788 DOI: 10.1016/j.biopha.2022.113188] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/16/2022] [Accepted: 05/22/2022] [Indexed: 11/24/2022] Open
Abstract
Protein tyrosine phosphatases (PTPs) are important regulator of neuronal signal transduction and a growing number of PTPs have been implicated in Alzheimer's disease (AD). In the brains of patients with AD, there are a variety of abnormally phosphorylated proteins, which are closely related to the abnormal expression and activity of PTPs. β-Amyloid plaques (Aβ) and hyperphosphorylated tau protein are two pathological hallmarks of AD, and their accumulation ultimately leads to neurodegeneration. Studies have shown that protein phosphorylation signaling pathways mediates intracellular accumulation of Aβ and tau during AD development and are involved in synaptic plasticity and other stress responses. Here, we summarized the roles of PTPs related to the pathogenesis of AD and analyzed their therapeutic potential in AD.
Collapse
|
6
|
Udayantha HMV, Samaraweera AV, Nadarajapillai K, Sandamalika WMG, Lim C, Yang H, Lee S, Lee J. Molecular characterization and immune regulatory, antioxidant, and antiapoptotic activities of thioredoxin domain-containing protein 17 (TXNDC17) in yellowtail clownfish (Amphiprion clarkii). FISH & SHELLFISH IMMUNOLOGY 2021; 115:75-85. [PMID: 34091036 DOI: 10.1016/j.fsi.2021.05.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 04/27/2021] [Accepted: 05/26/2021] [Indexed: 06/12/2023]
Abstract
Thioredoxin domain-containing protein 17 (TXNDC17) is an important, highly conserved oxidoreductase protein, ubiquitously expressed in all living organisms. It is a small (~14 kDa) protein mostly co-expressed with thioredoxin 1 (TRx1). In the present study, we obtained the TXNDC17 gene sequence from a previously constructed yellowtail clownfish (Amphiprion clarkii) (AcTXNDC17) database and studied its phylogeny as well as the protein's molecular characteristics, antioxidant, and antiapoptotic effects. The full length of the AcTXNDC17 cDNA sequence was 862 bp with a 372 bp region encoding a 123 amino acid (aa) protein. The predicted molecular mass and isoelectric point of AcTXNDC17 were 14.2 kDa and 5.75, respectively. AcTXNDC17 contained a TRX-related protein 14 domain and a highly conserved N-terminal Cys43-Pro44-Asp45-Cys46 motif. qPCR analysis revealed that AcTXNDC17 transcripts were ubiquitously and differently expressed in all the examined tissues. AcTXNDC17 expression in the spleen tissue was significantly upregulated in a time-dependent manner upon stimulation with lipopolysaccharide (LPS), polyinosinic-polycytidylic (poly I:C), and Vibrio harveyi. Besides, LPS-induced intrinsic apoptotic pathway (TNF-α, caspase-8, Bid, cytochrome C, caspase-9, and caspase-3) gene expression was significantly lower in AcTXNDC17-overexpressing RAW264.7 cells, as were NF-κB activation and nitric oxide (NO) production. Furthermore, the viability of H2O2-stimulated macrophages was significantly improved under AcTXNDC17 overexpression. Collectively, our findings indicate that AcTXNDC17 is involved in the innate immune response of the yellowtail clownfish.
Collapse
Affiliation(s)
- H M V Udayantha
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, South Korea
| | - Anushka Vidurangi Samaraweera
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, South Korea
| | - Kishanthini Nadarajapillai
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, South Korea
| | - W M Gayashani Sandamalika
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, South Korea
| | - Chaehyeon Lim
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, South Korea
| | - Hyerim Yang
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, South Korea
| | - Sukkyoung Lee
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, South Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province, 63333, South Korea
| | - Jehee Lee
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, South Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province, 63333, South Korea.
| |
Collapse
|
7
|
PSTPIP2 inhibits cisplatin-induced acute kidney injury by suppressing apoptosis of renal tubular epithelial cells. Cell Death Dis 2020; 11:1057. [PMID: 33311489 PMCID: PMC7733598 DOI: 10.1038/s41419-020-03267-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/18/2020] [Accepted: 11/20/2020] [Indexed: 12/13/2022]
Abstract
Cisplatin (CP) is an effective chemotherapeutic agent widely used in the treatment of various solid tumours. However, CP nephrotoxicity is an important limitation for CP use; currently, there is no method to ameliorate cisplatin-induced acute kidney injury (AKI). Recently, we identified a specific role of proline-serine-threonine phosphatase-interacting protein 2 (PSTPIP2) in cisplatin-induced AKI. PSTPIP2 was reported to play an important role in a variety of diseases. However, the functions of PSTPIP2 in experimental models of cisplatin-induced AKI have not been extensively studied. The present study demonstrated that cisplatin downregulated the expression of PSTPIP2 in the kidney tissue. Administration of AAV-PSTPIP2 or epithelial cell-specific overexpression of PSTPIP2 reduced cisplatin-induced kidney dysfunction and inhibited apoptosis of renal tubular epithelial cells. Small interfering RNA-based knockdown of PSTPIP2 expression abolished PSTPIP2 regulation of epithelial cell apoptosis in vitro. Histone acetylation may impact gene expression at the epigenetic level, and histone deacetylase (HDAC) inhibitors were reported to prevent cisplatin-induced nephrotoxicity. The UCSC database was used to predict that acetylation of histone H3 at lysine 27 (H3K27ac) induces binding to the PSTPIP2 promoter, and this prediction was validated by a ChIP assay. Interestingly, an HDAC-specific inhibitor (TSA) was sufficient to potently upregulate PSTPIP2 in epithelial cells. Histone acetylation-mediated silencing of PSTPIP2 may contribute to cisplatin nephrotoxicity. PSTPIP2 may serve as a potential therapeutic target in the prevention of cisplatin nephrotoxicity.
Collapse
|
8
|
Bich Ngoc TT, Hoai Nga NT, My Trinh NT, Thuoc TL, Phuong Thao DT. Elephantopus mollis Kunth extracts induce antiproliferation and apoptosis in human lung cancer and myeloid leukemia cells. JOURNAL OF ETHNOPHARMACOLOGY 2020; 263:113222. [PMID: 32763415 DOI: 10.1016/j.jep.2020.113222] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 07/01/2020] [Accepted: 07/25/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Elephantopus mollis Kunth (EM), which belongs to Asteraceae family, has been used as a folk medicine with diverse therapeutic properties. Previous studies reported that crude extracts of this plant could inhibit several cancer cell lines, including breast carcinoma MCF-7, liver carcinoma HepG2, colorectal carcinoma DLD-1, lung carcinoma NCI-H23, etc. AIM: In this study, the anticancer activity and associated molecular mechanism of EM which is distributed in Vietnam were investigated. MATERIALS AND METHODS The cytotoxicity of various EM extracts was evaluated on different cell lines by MTT assay. In addition, the effects of EM extracts on cell growth, cell morphology, nuclear morphology, caspase-3 activation, and mRNA expression levels of apoptosis-related genes were also examined. RESULTS Our results demonstrated that ethyl acetate extract (EM-EA) caused proliferative inhibition and apoptotic induction towards A549 lung cancer cells (IC50 = 18.66 μg/ml, SI = 5.8) and HL60 leukemia cells (IC50 = 7.45 μg/ml, SI = 14.5) while petroleum ether extract (EM-PE) showed high toxicity to HL60 cell line (IC50 = 11.14 μg/ml, SI = 6.7). Notably, Raji lymphoma cells were also affected by these extracts (IC50 < 20 μg/ml, SI > 4), which has not been reported yet. Furthermore, mechanisms of EM extracts were elucidated. The significant downregulation of PCNA mRNA level induced by EM-EA/PE extracts contributed to the cell-growth restraint. EM-EA extract might activate apoptosis in A549 cells through both extrinsic and intrinsic signaling pathways by causing a 1.55-fold increase in BID, 3.65-fold increase in BAK and 3.11-fold decrease in BCL-2 expression level. Meanwhile, with EM-EA-extract treatment, HL60 cells might encounter P53-dependent apoptotic deaths. CONCLUSIONS The combination of antiproliferation and apoptosis activation contributed to the high efficacy of EM extracts. These findings not only proved the anticancer potential of EM but also provided further insights into the mechanisms of EM extracts.
Collapse
Affiliation(s)
- Truong Thi Bich Ngoc
- Department of Molecular and Environmental Biotechnology, Faculty of Biology and Biotechnology, University of Science, 227 Nguyen Van Cu, Ho Chi Minh City, 700000, Viet Nam; Laboratory of Molecular Biotechnology, VNU-HCM, University of Science, 227 Nguyen Van Cu, Ho Chi Minh City, 700000, Viet Nam; Vietnam National University, Ho Chi Minh City, Viet Nam
| | - Nguyen Thi Hoai Nga
- Department of Molecular and Environmental Biotechnology, Faculty of Biology and Biotechnology, University of Science, 227 Nguyen Van Cu, Ho Chi Minh City, 700000, Viet Nam; Laboratory of Molecular Biotechnology, VNU-HCM, University of Science, 227 Nguyen Van Cu, Ho Chi Minh City, 700000, Viet Nam; Laboratory of Cancer Research, VNU-HCM, University of Science, 227 Nguyen Van Cu, Ho Chi Minh City, 700000, Viet Nam
| | - Nguyen Thi My Trinh
- Department of Molecular and Environmental Biotechnology, Faculty of Biology and Biotechnology, University of Science, 227 Nguyen Van Cu, Ho Chi Minh City, 700000, Viet Nam; Laboratory of Molecular Biotechnology, VNU-HCM, University of Science, 227 Nguyen Van Cu, Ho Chi Minh City, 700000, Viet Nam
| | - Tran Linh Thuoc
- Department of Molecular and Environmental Biotechnology, Faculty of Biology and Biotechnology, University of Science, 227 Nguyen Van Cu, Ho Chi Minh City, 700000, Viet Nam; Laboratory of Molecular Biotechnology, VNU-HCM, University of Science, 227 Nguyen Van Cu, Ho Chi Minh City, 700000, Viet Nam; Vietnam National University, Ho Chi Minh City, Viet Nam
| | - Dang Thi Phuong Thao
- Department of Molecular and Environmental Biotechnology, Faculty of Biology and Biotechnology, University of Science, 227 Nguyen Van Cu, Ho Chi Minh City, 700000, Viet Nam; Laboratory of Molecular Biotechnology, VNU-HCM, University of Science, 227 Nguyen Van Cu, Ho Chi Minh City, 700000, Viet Nam; Laboratory of Cancer Research, VNU-HCM, University of Science, 227 Nguyen Van Cu, Ho Chi Minh City, 700000, Viet Nam; Vietnam National University, Ho Chi Minh City, Viet Nam.
| |
Collapse
|
9
|
Yang CF, Chen YY, Singh JP, Hsu SF, Liu YW, Yang CY, Chang CW, Chen SN, Shih RH, Hsu STD, Jou YS, Cheng CF, Meng TC. Targeting protein tyrosine phosphatase PTP-PEST (PTPN12) for therapeutic intervention in acute myocardial infarction. Cardiovasc Res 2019. [DOI: 10.1093/cvr/cvz165] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
Abstract
Abstract
Aims
The myocardial ischaemia/reperfusion (I/R) injury is almost inevitable since reperfusion is the only established treatment for acute myocardial infarction (AMI). To date there is no effective strategy available for reducing the I/R injury. Our aim was to elucidate the mechanisms underlying myocardial I/R injury and to develop a new strategy for attenuating the damage it causes.
Methods and results
Using a mouse model established by ligation of left anterior descending artery, we found an increase in activity of protein tyrosine phosphatases (PTPs) in myocardium during I/R. Treating the I/R-mice with a pan-PTP inhibitor phenyl vinyl sulfone attenuated I/R damage, suggesting PTP activation to be harmful in I/R. Through analysing RNAseq data, we showed PTPs being abundantly expressed in mouse myocardium. By exposing primary cardiomyocytes ablated with specific endogenous PTPs by RNAi to hypoxia/reoxygenation (H/R), we found a role that PTP-PEST (PTPN12) plays to promote cell death under H/R stress. Auranofin, a drug being used in clinical practice for treating rheumatoid arthritis, may target PTP-PEST thus suppressing its activity. We elucidated the molecular basis for Auranofin-induced inactivation of PTP-PEST by structural studies, and then examined its effect on myocardial I/R injury. In the mice receiving Auranofin before reperfusion, myocardial PTP activity was suppressed, leading to restored phosphorylation of PTP-PEST substrates, including ErbB-2 that maintains the survival signalling of the heart. In line with the inhibition of PTP-PEST activity, the Auranofin-treated I/R-mice had smaller infarct size and better cardiac function.
Conclusions
PTP-PEST contributes to part of the damages resulting from myocardial I/R. The drug Auranofin, potentially acting through the PTP-PEST-ErbB-2 signalling axis, reduces myocardial I/R injury. Based on this finding, Auranofin could be used in the development of new treatments that manage I/R injury in patients with AMI.
Collapse
Affiliation(s)
- Chiu-Fen Yang
- Department of Cardiology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, 707 Chung-Yang Road Sec. 3, Hualien 970, Taiwan
- Doctoral Degree Program in Translational Medicine, Tzu Chi University and Academia Sinica
- Institute of Biological Chemistry, Academia Sinica, 128 Academia Road Sec. 2, Nankang, Taipei 115, Taiwan
| | - Yi-Yun Chen
- Institute of Biological Chemistry, Academia Sinica, 128 Academia Road Sec. 2, Nankang, Taipei 115, Taiwan
| | - Jai Prakash Singh
- Institute of Biological Chemistry, Academia Sinica, 128 Academia Road Sec. 2, Nankang, Taipei 115, Taiwan
- Chemical Biology and Molecular Biophysics, Taiwan International Graduate program, Academia Sinica, 128 Academia Road Sec. 2, Nankang, Taipei 115, Taiwan
- Institute of Chemistry, National Tsing-Hua University, 101 Kuang-Fu Road Sec. 2, Hsinchu 300, Taiwan
| | - Shu-Fang Hsu
- Institute of Biological Chemistry, Academia Sinica, 128 Academia Road Sec. 2, Nankang, Taipei 115, Taiwan
| | - Yu-Wen Liu
- Institute of Biological Chemistry, Academia Sinica, 128 Academia Road Sec. 2, Nankang, Taipei 115, Taiwan
| | - Chun-Yi Yang
- Institute of Biological Chemistry, Academia Sinica, 128 Academia Road Sec. 2, Nankang, Taipei 115, Taiwan
- Institute of Biochemical Sciences, National Taiwan University, 1 Roosevelt Road Sec. 4, Taipei 106, Taiwan
| | - Chia-Wei Chang
- Institute of Biological Chemistry, Academia Sinica, 128 Academia Road Sec. 2, Nankang, Taipei 115, Taiwan
| | - Szu-Ni Chen
- Institute of Biological Chemistry, Academia Sinica, 128 Academia Road Sec. 2, Nankang, Taipei 115, Taiwan
| | - Rou-Ho Shih
- Institute of Biomedical Sciences, Academia Sinica, 128 Academia Road Sec. 2, Nankang, Taipei 115, Taiwan
| | - Shang-Te Danny Hsu
- Institute of Biological Chemistry, Academia Sinica, 128 Academia Road Sec. 2, Nankang, Taipei 115, Taiwan
- Chemical Biology and Molecular Biophysics, Taiwan International Graduate program, Academia Sinica, 128 Academia Road Sec. 2, Nankang, Taipei 115, Taiwan
- Institute of Biochemical Sciences, National Taiwan University, 1 Roosevelt Road Sec. 4, Taipei 106, Taiwan
| | - Yuh-Shan Jou
- Institute of Biomedical Sciences, Academia Sinica, 128 Academia Road Sec. 2, Nankang, Taipei 115, Taiwan
| | - Ching-Feng Cheng
- Doctoral Degree Program in Translational Medicine, Tzu Chi University and Academia Sinica
- Institute of Biomedical Sciences, Academia Sinica, 128 Academia Road Sec. 2, Nankang, Taipei 115, Taiwan
- Department of Pediatrics, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, 289 Jianguo Road, Xindian Dist., New Taipei City 231, Taiwan
| | - Tzu-Ching Meng
- Institute of Biological Chemistry, Academia Sinica, 128 Academia Road Sec. 2, Nankang, Taipei 115, Taiwan
- Chemical Biology and Molecular Biophysics, Taiwan International Graduate program, Academia Sinica, 128 Academia Road Sec. 2, Nankang, Taipei 115, Taiwan
- Institute of Biochemical Sciences, National Taiwan University, 1 Roosevelt Road Sec. 4, Taipei 106, Taiwan
| |
Collapse
|
10
|
Lee C, Rhee I. Important roles of protein tyrosine phosphatase PTPN12 in tumor progression. Pharmacol Res 2019; 144:73-78. [DOI: 10.1016/j.phrs.2019.04.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 03/26/2019] [Accepted: 04/04/2019] [Indexed: 12/27/2022]
|
11
|
Zheng A, Zhang L, Song X, Wang Y, Wei M, Jin F. Clinical implications of a novel prognostic factor AIFM3 in breast cancer patients. BMC Cancer 2019; 19:451. [PMID: 31088422 PMCID: PMC6518782 DOI: 10.1186/s12885-019-5659-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 04/30/2019] [Indexed: 12/21/2022] Open
Abstract
Background In a time of increasing concerns over personalized and precision treatment in breast cancer (BC), filtering prognostic factors attracts more attention. Apoptosis-Inducing Factor Mitochondrion-associated 3 (AIFM3) is widely expressed in various tissues and aberrantly expressed in several cancers. However, clinical implication of AIFM3 has not been reported in BC. The aim of the study is to investigate the crystal structure, clinical and prognostic implications of AIFM3 in BC. Methods AIFM3 expression in 151 BC samples were assessed by immunohistochemistry (IHC). The Cancer Genome Atlas (TCGA) and Kaplan-Meier survival analysis were used to demonstrate expression and survival of AIFM3 signature. Gene Set Enrichment Analysis (GSEA) was performed to investigate the mechanisms related to AIFM3 expression in BC. Results AIFM3 was significantly more expressed in breast cancer tissues than in normal tissues. AIFM3 expression had a significant association with tumor size, lymph node metastasis, TNM stage and molecular typing. Higher AIFM3 expression was related to a shorter overall survival (OS) and disease-free survival (DFS). Lymph node metastasis and TNM stage were independent factors of AIFM3 expression. The study presented the crystal structure of AIFM3 successfully and predicted several binding sites when AIFM3 bonded to PTPN12 by Molecular Operating Environment software (MOE). Conclusions AIFM3 might be a potential biomarker for predicting prognosis in BC, adding to growing evidence that AIFM3 might interact with PTPN12. Electronic supplementary material The online version of this article (10.1186/s12885-019-5659-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ang Zheng
- Department of Breast Surgery, the First Affiliated Hospital of China Medical University, 110001, No.155 Nanjing Road, Heping Districrt, Shenyang, Liaoning Province, People's Republic of China
| | - Lin Zhang
- Department of Surgery, Huamei Hospital, University of Chinese Academy of Sciences (Ningbo No.2 Hospital), 315000, No.41 Xibei Road, Haishu District, NingBo, Zhejiang Province, People's Republic of China
| | - Xinyue Song
- Department of Pharmacology, School of Pharmacy, China Medical University, 110122, No.77 Puhe Road, Shenbei New District, Shenyang, Liaoning Province, People's Republic of China.,Liaoning Key Laboratory of molecular targeted anti-tumor drug development and evaluation, China Medical University, No.77 Puhe Road, Shenbei New District, Shenyang, 110122, Liaoning Province, People's Republic of China
| | - Yuying Wang
- Department of Breast Surgery, the First Affiliated Hospital of China Medical University, 110001, No.155 Nanjing Road, Heping Districrt, Shenyang, Liaoning Province, People's Republic of China.,Department of Breast Surgery, Liaoning Cancer Hospital and Institute, Cancer Hospital of China Medical University, 110042, No.44 Xiaoheyan Road, Dadong District, Shenyang, Liaoning Province, People's Republic of China
| | - Minjie Wei
- Department of Pharmacology, School of Pharmacy, China Medical University, 110122, No.77 Puhe Road, Shenbei New District, Shenyang, Liaoning Province, People's Republic of China.,Liaoning Key Laboratory of molecular targeted anti-tumor drug development and evaluation, China Medical University, No.77 Puhe Road, Shenbei New District, Shenyang, 110122, Liaoning Province, People's Republic of China
| | - Feng Jin
- Department of Breast Surgery, the First Affiliated Hospital of China Medical University, 110001, No.155 Nanjing Road, Heping Districrt, Shenyang, Liaoning Province, People's Republic of China.
| |
Collapse
|
12
|
Measuring GPCR-Induced Activation of Protein Tyrosine Phosphatases (PTP) Using In-Gel and Colorimetric PTP Assays. Methods Mol Biol 2019; 1947:241-256. [PMID: 30969420 DOI: 10.1007/978-1-4939-9121-1_13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Given the increasing amount of data showing the importance of protein tyrosine phosphatases (PTPs) in G protein-coupled receptor (GPCR) signaling pathways, the modulation of this enzyme family by that type of receptor can become an important experimental question. Here, we describe two different methods, an in-gel and a colorimetric PTP assay, to evaluate the modulation of PTP activity after stimulation with GPCR agonists.
Collapse
|
13
|
Chen S, Fang Y, Xu S, Reis C, Zhang J. Mammalian Sterile20-like Kinases: Signalings and Roles in Central Nervous System. Aging Dis 2018; 9:537-552. [PMID: 29896440 PMCID: PMC5988607 DOI: 10.14336/ad.2017.0702] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 07/02/2017] [Indexed: 12/25/2022] Open
Abstract
Mammalian Sterile20-like (MST) kinases are located upstream in the mitogen-activated protein kinase pathway, and play an important role in cell proliferation, differentiation, renewal, polarization and migration. Generally, five MST kinases exist in mammalian signal transduction pathways, including MST1, MST2, MST3, MST4 and YSK1. The central nervous system (CNS) is a sophisticated entity that takes charge of information reception, integration and response. Recently, accumulating evidence proposes that MST kinases are critical in the development of disease in different systems involving the CNS. In this review, we summarized the signal transduction pathways and interacting proteins of MST kinases. The potential biological function of each MST kinase and the commonly reported MST-related diseases in the neural system are also reviewed. Further investigation of MST kinases and their interaction with CNS diseases would provide the medical community with new therapeutic targets for human diseases.
Collapse
Affiliation(s)
- Sheng Chen
- 1Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yuanjian Fang
- 1Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Shenbin Xu
- 1Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Cesar Reis
- 2Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, California, USA.,3Brain Research Institute, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jianmin Zhang
- 1Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.,4Collaborative Innovation Center for Brain Science, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
14
|
Xu B, Park D, Ohtake Y, Li H, Hayat U, Liu J, Selzer ME, Longo FM, Li S. Role of CSPG receptor LAR phosphatase in restricting axon regeneration after CNS injury. Neurobiol Dis 2015; 73:36-48. [PMID: 25220840 PMCID: PMC4427014 DOI: 10.1016/j.nbd.2014.08.030] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Revised: 08/05/2014] [Accepted: 08/29/2014] [Indexed: 12/11/2022] Open
Abstract
Extracellular matrix molecule chondroitin sulfate proteoglycans (CSPGs) are highly upregulated in scar tissues and form a potent chemical barrier for CNS axon regeneration. Recent studies support that the receptor protein tyrosine phosphatase σ (PTPσ) and its subfamily member leukocyte common antigen related phosphatase (LAR) act as transmembrane receptors to mediate CSPG inhibition. PTPσ deficiency increased regrowth of ascending axons into scar tissues and descending corticospinal tract (CST) axons into the caudal spinal cord after spinal cord injury (SCI). Pharmacological LAR inhibition enhanced serotonergic axon growth in SCI mice. However, transgenic LAR deletion on axon growth in vivo and the role of LAR in regulating regrowth of other fiber tracts have not been studied. Here, we studied the role of LAR in restricting regrowth of injured descending CNS axons in deficient mice. LAR deletion increased regrowth of serotonergic axons into scar tissues and caudal spinal cord after dorsal over-hemitransection. LAR deletion also stimulated regrowth of CST fibers into the caudal spinal cord. LAR protein was upregulated days to weeks after injury and co-localized to serotonergic and CST axons. Moreover, LAR deletion improved functional recovery by increasing BMS locomotor scores and stride length and reducing grid walk errors. This is the first transgenic study that demonstrates the crucial role of LAR in restricting regrowth of injured CNS axons.
Collapse
Affiliation(s)
- Bin Xu
- Department of Neurosurgery, Affiliated Shanxi Dayi Hospital, Shanxi Academy of Medical Sciences, China; Shriners Hospitals Pediatric Research Center, Temple University School of Medicine, Philadelphia, PA 19140, USA; Department of Anatomy and Cell Biology, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Dongsun Park
- Shriners Hospitals Pediatric Research Center, Temple University School of Medicine, Philadelphia, PA 19140, USA; Department of Anatomy and Cell Biology, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Yosuke Ohtake
- Shriners Hospitals Pediatric Research Center, Temple University School of Medicine, Philadelphia, PA 19140, USA; Department of Anatomy and Cell Biology, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Hui Li
- Shriners Hospitals Pediatric Research Center, Temple University School of Medicine, Philadelphia, PA 19140, USA; Department of Anatomy and Cell Biology, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Umar Hayat
- Shriners Hospitals Pediatric Research Center, Temple University School of Medicine, Philadelphia, PA 19140, USA; Department of Anatomy and Cell Biology, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Junjun Liu
- Shriners Hospitals Pediatric Research Center, Temple University School of Medicine, Philadelphia, PA 19140, USA; Department of Anatomy and Cell Biology, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Michael E Selzer
- Shriners Hospitals Pediatric Research Center, Temple University School of Medicine, Philadelphia, PA 19140, USA; Department of Neurology, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Frank M Longo
- Department of Neurology and Neurological Science, Stanford University, Stanford, CA 94305, USA
| | - Shuxin Li
- Shriners Hospitals Pediatric Research Center, Temple University School of Medicine, Philadelphia, PA 19140, USA; Department of Anatomy and Cell Biology, Temple University School of Medicine, Philadelphia, PA 19140, USA.
| |
Collapse
|
15
|
Effects of protein tyrosine phosphatase-PEST are reversed by Akt in T cells. Cell Signal 2014; 26:2721-9. [PMID: 25152368 DOI: 10.1016/j.cellsig.2014.08.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 08/17/2014] [Indexed: 11/21/2022]
Abstract
T cell activation is regulated by a balance between phosphorylation and dephosphorylation that is under the control of kinases and phosphatases. Here, we examined the role of a non-receptor-type protein tyrosine phosphatase, PTP-PEST, using retrovirus-mediated gene transduction into murine T cells. Based on observations of vector markers (GFP or Thy1.1), exogenous PTP-PEST-positive CD4(+) T cells appeared within 2 days after gene transduction; the percentage of PTP-PEST-positive cells tended to decrease during a resting period in the presence of IL-2 over the next 2 days. These vector markers also showed much lower expression intensities, compared with control cells, suggesting a correlation between the percent reduction and the low marker expression intensity. A catalytically inactive PTP-PEST mutant also showed the same tendency, and stepwise deletion mutants gradually lost their ability to induce the above phenomenon. On the other hand, these PTP-PEST-transduced cells did not have an apoptotic phenotype. No difference in the total cell numbers was found in the wells of a culture plate containing VEC- and PTP-PEST-transduced T cells. Moreover, serine/threonine kinase Akt, but not the anti-apoptotic molecules Bcl-2 and Bcl-XL, reversed the phenotype induced by PTP-PEST. We discuss the novel mechanism by which Akt interferes with PTP-PEST.
Collapse
|
16
|
Zhang G, Hu J, Li S, Huang L, Selzer ME. Selective expression of CSPG receptors PTPσ and LAR in poorly regenerating reticulospinal neurons of lamprey. J Comp Neurol 2014; 522:2209-29. [DOI: 10.1002/cne.23529] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2013] [Revised: 12/16/2013] [Accepted: 12/17/2013] [Indexed: 12/26/2022]
Affiliation(s)
- Guixin Zhang
- Center for Neural Repair and Rehabilitation; Shriners Hospitals Pediatric Research Center; Philadelphia Pennsylvania 19140
| | - Jianli Hu
- Center for Neural Repair and Rehabilitation; Shriners Hospitals Pediatric Research Center; Philadelphia Pennsylvania 19140
| | - Shuxin Li
- Center for Neural Repair and Rehabilitation; Shriners Hospitals Pediatric Research Center; Philadelphia Pennsylvania 19140
| | - Lisa Huang
- Center for Neural Repair and Rehabilitation; Shriners Hospitals Pediatric Research Center; Philadelphia Pennsylvania 19140
| | - Michael E. Selzer
- Center for Neural Repair and Rehabilitation; Shriners Hospitals Pediatric Research Center; Philadelphia Pennsylvania 19140
- Department of Neurology; Temple University School of Medicine; 3500 North Broad Street Philadelphia Pennsylvania 19140
| |
Collapse
|
17
|
SUN PINGHUI, YE LIN, MASON MALCOLMD, JIANG WENG. Receptor-like protein tyrosine phosphatase κ negatively regulates the apoptosis of prostate cancer cells via the JNK pathway. Int J Oncol 2013; 43:1560-8. [DOI: 10.3892/ijo.2013.2082] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Accepted: 06/25/2013] [Indexed: 11/06/2022] Open
|
18
|
Ayoub E, Hall A, Scott AM, Chagnon MJ, Miquel G, Hallé M, Noda M, Bikfalvi A, Tremblay ML. Regulation of the Src kinase-associated phosphoprotein 55 homologue by the protein tyrosine phosphatase PTP-PEST in the control of cell motility. J Biol Chem 2013; 288:25739-25748. [PMID: 23897807 DOI: 10.1074/jbc.m113.501007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
PTP-PEST is a cytosolic ubiquitous protein tyrosine phosphatase (PTP) that contains, in addition to its catalytic domain, several protein-protein interaction domains that allow it to interface with several signaling pathways. Among others, PTP-PEST is a key regulator of cellular motility and cytoskeleton dynamics. The complexity of the PTP-PEST interactome underscores the necessity to identify its interacting partners and physiological substrates in order to further understand its role in focal adhesion complex turnover and actin organization. Using a modified yeast substrate trapping two-hybrid system, we identified a cytosolic adaptor protein named Src kinase-associated phosphoprotein 55 homologue (SKAP-Hom) as a novel substrate of PTP-PEST. To confirm PTP-PEST interaction with SKAP-Hom, in vitro pull down assays were performed demonstrating that the PTP catalytic domain and Proline-rich 1 (P1) domain are respectively binding to the SKAP-Hom Y260 and Y297 residues and its SH3 domain. Subsequently, we generated and rescued SKAP-Hom-deficient mouse embryonic fibroblasts (MEFs) with WT SKAP-Hom, SKAP-Hom tyrosine mutants (Y260F, Y260F/Y297F), or SKAP-Hom SH3 domain mutant (W335K). Given the role of PTP-PEST, wound-healing and trans-well migration assays were performed using the generated lines. Indeed, SKAP-Hom-deficient MEFs showed a defect in migration compared with WT-rescued MEFs. Interestingly, the SH3 domain mutant-rescued MEFs showed an enhanced cell migration corresponding potentially with higher tyrosine phosphorylation levels of SKAP-Hom. These findings suggest a novel role of SKAP-Hom and its phosphorylation in the regulation of cellular motility. Moreover, these results open new avenues by which PTP-PEST regulates cellular migration, a hallmark of metastasis.
Collapse
Affiliation(s)
- Emily Ayoub
- From the Goodman Cancer Research Centre and Department of Biochemistry, McGill University, Montreal, Quebec H3A 1A3, Canada
| | - Anita Hall
- From the Goodman Cancer Research Centre and Department of Biochemistry, McGill University, Montreal, Quebec H3A 1A3, Canada
| | - Adam M Scott
- From the Goodman Cancer Research Centre and Department of Biochemistry, McGill University, Montreal, Quebec H3A 1A3, Canada
| | - Mélanie J Chagnon
- From the Goodman Cancer Research Centre and Department of Biochemistry, McGill University, Montreal, Quebec H3A 1A3, Canada
| | - Géraldine Miquel
- INSERM U1029 and; Université Bordeaux, Avenue des Facultés, 33 405 Talence, France
| | - Maxime Hallé
- From the Goodman Cancer Research Centre and Department of Biochemistry, McGill University, Montreal, Quebec H3A 1A3, Canada
| | - Masaharu Noda
- the Division of Molecular Neurobiology, National Institute for Basic Biology, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan, and
| | - Andreas Bikfalvi
- INSERM U1029 and; Université Bordeaux, Avenue des Facultés, 33 405 Talence, France
| | - Michel L Tremblay
- From the Goodman Cancer Research Centre and Department of Biochemistry, McGill University, Montreal, Quebec H3A 1A3, Canada,.
| |
Collapse
|
19
|
Abstract
Aspirin is widely used in the treatment of a number of clinical conditions. Although aspirin is being thought to be a relatively "safe" medicine, it also has some side effects, particularly the risk of bleeding which may be severe and lead to death. The mechanisms, however, are not totally understood. It has been reported recently that aspirin induces apoptosis in many cell types. Thus, the aim of the current study is to explore whether aspirin induces platelet apoptosis. The data show that mitochondrial transmembrane potential (ΔΨm) depolarizations and phosphatidylserine (PS) exposures were dose-dependently induced by aspirin in platelets. To further confirm that aspirin incurs platelet apoptosis, caspase-3 activity was measured in platelets, and the result indicated that aspirin induced caspase-3 activation. Furthermore, the mean volume of platelets incubated with aspirin was obviously reduced. Caspase inhibitor z-VAD-fmk inhibited aspirin induced apoptotic platelet shrinkage and ΔΨm depolarization, but had no effect on PS exposure. In addition, platelets incubated with cyclooxygenase inhibitor indomethacin did not incur ΔΨm depolarazation and PS exposure. Taken together, the data indicate that aspirin induces platelet apoptosis via caspase-3 activation.
Collapse
Affiliation(s)
- Lili Zhao
- School of Biological Science and Medical Engineering, Beijing University of Aeronautics and Astronautics , Beijing , China
| | | | | | | | | | | |
Collapse
|
20
|
Zheng Y, Lu Z. Regulation of tumor cell migration by protein tyrosine phosphatase (PTP)-proline-, glutamate-, serine-,and threonine-rich sequence (PEST). CHINESE JOURNAL OF CANCER 2012; 32:75-83. [PMID: 23237212 PMCID: PMC3845610 DOI: 10.5732/cjc.012.10084] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Protein tyrosine phosphatase (PTP)-proline-, glutamate-, serine-, and threonine-rich sequence (PEST) is ubiquitously expressed and is a critical regulator of cell adhesion and migration. PTP-PEST activity can be regulated transcriptionally via gene deletion or mutation in several types of human cancers or via post-translational modifications, including phosphorylation, oxidation, and caspase-dependent cleavage. PTP-PEST interacts with and dephosphorylates cytoskeletal and focal adhesion-associated proteins. Dephosphorylation of PTP-PEST substrates regulates their enzymatic activities and/or their interaction with other proteins and plays an essential role in the tumor cell migration process.
Collapse
Affiliation(s)
- Yanhua Zheng
- Brain Tumor Center and Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | |
Collapse
|
21
|
Morales LD, Pena K, Kim DJ, Lieman JH. SHP-2 and PTP-pest induction during Rb-E2F associated apoptosis. Cell Mol Biol Lett 2012; 17:422-32. [PMID: 22644489 PMCID: PMC6275625 DOI: 10.2478/s11658-012-0020-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Accepted: 05/22/2012] [Indexed: 12/28/2022] Open
Abstract
Apoptosis is intimately connected to cell cycle regulation via the Retinoblastoma (Rb)-E2F pathway and thereby serves an essential role in tumor suppression by eliminating aberrant hyperproliferative cells. Upon loss of Rb activity, an apoptotic response can be elicited through both p53-dependent and p53-independent mechanisms. While much of this apoptotic response has been attributed to the p19ARF/p53 pathway, increasing evidence has supported the role of protein tyrosine phosphatases (PTPs) in contributing to the initiation of the Rb-E2F-associated apoptotic response. One protein tyrosine phosphatase, PTP-1B, which is induced by the Rb-E2F pathway, has been shown to contribute to a p53-independent apoptotic pathway by inactivating focal adhesion kinase. This report identifies two additional PTPs, SHP-2 and PTP-PEST, that are also directly activated by the Rb-E2F pathway and which can contribute to signal transduction during p53-independent apoptosis.
Collapse
Affiliation(s)
- Liza D. Morales
- Department of Biology, The University of Texas-Pan American, Edinburg, TX USA
- Edinburg Regional Academic Health Center, Medical Research Division, University of Texas Health Science Center at San Antonio, Edinburg, TX USA
| | - Karina Pena
- Department of Biology, The University of Texas-Pan American, Edinburg, TX USA
| | - Dae Joon Kim
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, Edinburg, TX USA
- Edinburg Regional Academic Health Center, Medical Research Division, University of Texas Health Science Center at San Antonio, Edinburg, TX USA
| | - Jonathan H. Lieman
- Department of Biology, The University of Texas-Pan American, Edinburg, TX USA
| |
Collapse
|
22
|
Labbé DP, Hardy S, Tremblay ML. Protein tyrosine phosphatases in cancer: friends and foes! PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2012; 106:253-306. [PMID: 22340721 DOI: 10.1016/b978-0-12-396456-4.00009-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Tyrosine phosphorylation of proteins serves as an exquisite switch in controlling several key oncogenic signaling pathways involved in cell proliferation, apoptosis, migration, and invasion. Since protein tyrosine phosphatases (PTPs) counteract protein kinases by removing phosphate moieties on target proteins, one may intuitively think that PTPs would act as tumor suppressors. Indeed, one of the most described PTPs, namely, the phosphatase and tensin homolog (PTEN), is a tumor suppressor. However, a growing body of evidence suggests that PTPs can also function as potent oncoproteins. In this chapter, we provide a broad historical overview of the PTPs, their mechanism of action, and posttranslational modifications. Then, we focus on the dual properties of classical PTPs (receptor and nonreceptor) and dual-specificity phosphatases in cancer and summarize the current knowledge of the signaling pathways regulated by key PTPs in human cancer. In conclusion, we present our perspective on the potential of these PTPs to serve as therapeutic targets in cancer.
Collapse
Affiliation(s)
- David P Labbé
- Goodman Cancer Research Centre, McGill University, Montréal, Québec, Canada
| | | | | |
Collapse
|
23
|
Cejudo-Marín R, Tárrega C, Nunes-Xavier CE, Pulido R. Caspase-3 Cleavage of DUSP6/MKP3 at the Interdomain Region Generates Active MKP3 Fragments That Regulate ERK1/2 Subcellular Localization and Function. J Mol Biol 2012; 420:128-38. [DOI: 10.1016/j.jmb.2012.04.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Revised: 04/01/2012] [Accepted: 04/04/2012] [Indexed: 12/17/2022]
|
24
|
Gerrits L, Venselaar H, Wieringa B, Wansink DG, Hendriks WJAJ. Phosphorylation target site specificity for AGC kinases DMPK E and Lats2. J Cell Biochem 2012; 113:2126-35. [PMID: 22492269 DOI: 10.1002/jcb.24086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Serine/threonine kinases of the AGC group are important regulators of cell growth and motility. To examine the candidate substrate profile for two members of this group, DMPK E and Lats2, we performed in vitro kinase assays on peptide arrays. Substrate peptides for both kinases exhibited a predominance of basic residues surrounding the phosphorylation target site. 3D homology modeling of the kinase domains of DMPK E and Lats2 indicated that presence of two negative pockets in the peptide binding groove provides an explanation for the substrate preference. These findings will aid future research toward signaling functions of Lats2 and DMPK E within cells.
Collapse
Affiliation(s)
- Lieke Gerrits
- Department of Cell Biology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
| | | | | | | | | |
Collapse
|
25
|
Takeda K, Naguro I, Nishitoh H, Matsuzawa A, Ichijo H. Apoptosis signaling kinases: from stress response to health outcomes. Antioxid Redox Signal 2011; 15:719-61. [PMID: 20969480 DOI: 10.1089/ars.2010.3392] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Apoptosis is a highly regulated process essential for the development and homeostasis of multicellular organisms. Whereas caspases, a large family of intracellular cysteine proteases, play central roles in the execution of apoptosis, other proapoptotic and antiapoptotic regulators such as the members of the Bcl-2 family are also critically involved in the regulation of apoptosis. A large body of evidence has revealed that a number of protein kinases are among such regulators and regulate cellular sensitivity to various proapoptotic signals at multiple steps in apoptosis. However, recent progress in the analysis of these apoptosis signaling kinases demonstrates that they generally act as crucial regulators of diverse cellular responses to a wide variety of stressors, beyond their roles in apoptosis regulation. In this review, we have cataloged apoptosis signaling kinases involved in cellular stress responses on the basis of their ability to induce apoptosis and discuss their roles in stress responses with particular emphasis on health outcomes upon their dysregulation.
Collapse
Affiliation(s)
- Kohsuke Takeda
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, Strategic Approach to Drug Discovery and Development in Pharmaceutical Sciences, Global Center of Excellence Program and Core Research for Evolutional Science and Technology, Japan Science and Technology Corporation, The University of Tokyo, Tokyo, Japan.
| | | | | | | | | |
Collapse
|
26
|
Sastry SK, Elferink LA. Checks and balances: interplay of RTKs and PTPs in cancer progression. Biochem Pharmacol 2011; 82:435-40. [PMID: 21704606 DOI: 10.1016/j.bcp.2011.06.016] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Revised: 06/08/2011] [Accepted: 06/10/2011] [Indexed: 02/08/2023]
Abstract
In recent years, targeted therapies for receptor tyrosine kinases (RTKs) have shown initial promise in the clinical setting for the treatment of several tumors driven by these oncogenic signaling pathways. Unfortunately, clinical relapse due to acquired resistance to these molecular therapeutics is common. An improved understanding of how tumors bypass the inhibitory effects of RTK-targeted therapies has revealed a rich myriad of possible mechanisms for acquired resistance. Protein tyrosine phosphatases (PTPs) can function as oncogenes or tumor suppressors to either enhance or suppress RTK signaling. Recent studies suggest that the loss or gain of function of PTP's can significantly impinge on RTK signaling during tumor progression. Here we review the interplay between RTKs and PTPs as an emerging mechanism for acquired resistance to RTK-targeted therapies, that may aid in the design of improved therapies to prevent and overcome resistance in treatments for cancer patients.
Collapse
Affiliation(s)
- Sarita K Sastry
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA.
| | | |
Collapse
|
27
|
Fox JL, Ismail F, Azad A, Ternette N, Leverrier S, Edelmann MJ, Kessler BM, Leigh IM, Jackson S, Storey A. Tyrosine dephosphorylation is required for Bak activation in apoptosis. EMBO J 2010; 29:3853-68. [PMID: 20959805 PMCID: PMC2989102 DOI: 10.1038/emboj.2010.244] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2010] [Accepted: 09/08/2010] [Indexed: 12/22/2022] Open
Abstract
Activation of the cell-death mediator Bak commits a cell to mitochondrial apoptosis. The initial steps that govern Bak activation are poorly understood. To further clarify these pivotal events, we have investigated whether post-translational modifications of Bak impinge on its activation potential. In this study, we report that on apoptotic stimulation Bak undergoes dephosphorylation at tyrosine residue 108 (Y108), a critical event that is necessary but not sufficient for Bak activation, but is required both for early exposure of the occluded N-terminal domain and multimerisation. RNA interference (RNAi) screening identified non-receptor tyrosine phosphatases (PTPNs) required for Bak dephosphorylation and apoptotic induction through chemotherapeutic agents. Specifically, modulation of PTPN5 protein expression by siRNA and overexpression directly affected both Bak-Y108 phosphorylation and the initiation of Bak activation. We further show that MEK/ERK signalling directly affects Bak phosphorylation through inhibition of PTPN5 to promote cell survival. We propose a model of Bak activation in which the regulation of Bak dephosphorylation constitutes the initial step in the activation process, which reveals a previously unsuspected mechanism controlling the initiation of mitochondrial apoptosis.
Collapse
Affiliation(s)
- Joanna L Fox
- Department of Molecular Oncology, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | | | - Abul Azad
- Department of Molecular Oncology, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Nicola Ternette
- Henry Wellcome Building for Molecular Physiology, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | | | - Mariola J Edelmann
- Henry Wellcome Building for Molecular Physiology, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Benedikt M Kessler
- Henry Wellcome Building for Molecular Physiology, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Irene M Leigh
- College of Medicine Dentistry and Nursing, University of Dundee, Dundee, UK
| | - Sarah Jackson
- Department of Molecular Oncology, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Alan Storey
- Department of Molecular Oncology, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| |
Collapse
|
28
|
Smith EJ, Allantaz F, Bennett L, Zhang D, Gao X, Wood G, Kastner DL, Punaro M, Aksentijevich I, Pascual V, Wise CA. Clinical, Molecular, and Genetic Characteristics of PAPA Syndrome: A Review. Curr Genomics 2010; 11:519-27. [PMID: 21532836 PMCID: PMC3048314 DOI: 10.2174/138920210793175921] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2010] [Revised: 08/18/2010] [Accepted: 09/01/2010] [Indexed: 12/16/2022] Open
Abstract
PAPA syndrome (Pyogenic Arthritis, Pyoderma gangrenosum, and Acne) is an autosomal dominant, hereditary auto-inflammatory disease arising from mutations in the PSTPIP1/CD2BP1 gene on chromosome 15q. These mutations produce a hyper-phosphorylated PSTPIP1 protein and alter its participation in activation of the "inflammasome" involved in interleukin-1 (IL-1β) production. Overproduction of IL-1β is a clear molecular feature of PAPA syndrome. Ongoing research is implicating other biochemical pathways that may be relevant to the distinct pyogenic inflammation of the skin and joints characteristic of this disease. This review summarizes the recent and rapidly accumulating knowledge on these molecular aspects of PAPA syndrome and related disorders.
Collapse
Affiliation(s)
- Elisabeth J Smith
- Sarah M. and Charles E. Seay Center for Musculoskeletal Research, Scottish Rite Hospital for Children, Dallas, Texas 75219
- Garvan Institute of Medical Research, Sydney, NSW 2027, Australia
| | | | - Lynda Bennett
- Baylor Institute for Immunology Research, Dallas, Texas 75204
| | - Dongping Zhang
- Sarah M. and Charles E. Seay Center for Musculoskeletal Research, Scottish Rite Hospital for Children, Dallas, Texas 75219
| | - Xiaochong Gao
- Sarah M. and Charles E. Seay Center for Musculoskeletal Research, Scottish Rite Hospital for Children, Dallas, Texas 75219
| | - Geryl Wood
- Laboratory of Clinical Investigation, National Institute of Arthritis and Musculoskeletal and Skin Diseases, Bethesda, Maryland 20892, USA
| | - Daniel L Kastner
- Laboratory of Clinical Investigation, National Institute of Arthritis and Musculoskeletal and Skin Diseases, Bethesda, Maryland 20892, USA
| | - Marilynn Punaro
- Sarah M. and Charles E. Seay Center for Musculoskeletal Research, Scottish Rite Hospital for Children, Dallas, Texas 75219
| | - Ivona Aksentijevich
- Laboratory of Clinical Investigation, National Institute of Arthritis and Musculoskeletal and Skin Diseases, Bethesda, Maryland 20892, USA
| | | | - Carol A Wise
- Sarah M. and Charles E. Seay Center for Musculoskeletal Research, Scottish Rite Hospital for Children, Dallas, Texas 75219
| |
Collapse
|
29
|
Arimura Y, Yagi J. Comprehensive expression profiles of genes for protein tyrosine phosphatases in immune cells. Sci Signal 2010; 3:rs1. [PMID: 20807954 DOI: 10.1126/scisignal.2000966] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The phosphorylation and dephosphorylation of signaling molecules play a crucial role in various cellular processes, including immune responses. To date, the global expression profile of protein tyrosine phosphatases (PTPs) in various immune cells has not been described. With the RefDIC (Reference Genomics Database of Immune Cells) database compiled by RIKEN (Rikagaku Kenkyusho), we examined the expression patterns of PTP-encoding genes in mice and identified between 57 and 64 PTP-encoding genes (depending on cutoff values) that were commonly expressed in immune cells. Cells of different lineages contained additional, unique PTP-encoding genes, which resulted in a total of 58 to 76 genes. Compared with cells from nonimmune tissues, immune cells exhibited enhanced expression of the genes encoding 8 PTP-encoding genes, including Ptprc, Ptpn6, and Ptpn22, but had barely detectable expression of 11 PTP-encoding genes, including Ptprd and Tns1. Each immune cell lineage had between 2 and 18 PTP-encoding genes expressed at relatively high or low extents relative to the average expression among immune cells; for example, Ptprj in B cells, Dusp3 in macrophages, Ptpro in dendritic cells, and Ptprg in mast cells. These PTPs potentially play important roles in each cell lineage, and our analysis provides insight for future functional studies.
Collapse
Affiliation(s)
- Yutaka Arimura
- Microbiology and Immunology, Tokyo Women's Medical University School of Medicine, 8-1 Kawada, Shinjuku, Tokyo 162-8666, Japan.
| | | |
Collapse
|
30
|
Mitra A, Radha V. F-actin-binding domain of c-Abl regulates localized phosphorylation of C3G: role of C3G in c-Abl-mediated cell death. Oncogene 2010; 29:4528-42. [PMID: 20581864 DOI: 10.1038/onc.2010.113] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The c-Abl tyrosine kinase maintains cellular homeostasis through its ability to regulate apoptosis and actin dynamics. In vivo, c-Abl activity is stringently regulated and mechanisms involved are not fully understood. Here, we identified the Rap1 guanine nucleotide exchange factor, C3G (RapGEF1), as a substrate and an effector of c-Abl-mediated functions. Ectopic expression of c-Abl in mammalian cell lines, known to induce apoptosis, resulted in phosphorylation of endogenous C3G on Y504 coincident with cell detachment and chromatin condensation. Phosphorylation of C3G coincided with restricted c-Abl activation in regions rich in actin, and was dependent on cellular F-actin dynamics. Unlike C3G or c-Abl, p-C3G was resistant to detergent extraction, suggesting its enhanced affinity for the cytoskeleton. Localized C3G phosphorylation and coincidence with cells undergoing cell death was dependent on F-actin-binding domain (FABD) of c-Abl. Activation of endogenous c-Abl by oxidative stress was associated with phosphorylation of cellular C3G on Y504. Inhibition of C3G expression and function using RNAi or dominant-negative approaches inhibited c-Abl-mediated cell death. These findings identify C3G as a novel target of c-Abl and also show that FABD of c-Abl is essential for regulation of its restricted activation to induce apoptosis.
Collapse
Affiliation(s)
- A Mitra
- Centre for Cellular and Molecular Biology, Council of Scientific and Industrial Research (CSIR), Uppal Road, Hyderabad, India
| | | |
Collapse
|
31
|
Espejo R, Rengifo-Cam W, Schaller MD, Evers BM, Sastry SK. PTP-PEST controls motility, adherens junction assembly, and Rho GTPase activity in colon cancer cells. Am J Physiol Cell Physiol 2010; 299:C454-63. [PMID: 20519451 DOI: 10.1152/ajpcell.00148.2010] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
An important step in carcinoma progression is loss of cell-cell adhesion leading to increased invasion and metastasis. We show here that the protein tyrosine phosphatase, PTP-PEST, is a critical regulator of cell-cell junction integrity and epithelial cell motility. Using colon carcinoma cells, we show that the expression level of PTP-PEST regulates cell motility. Either transient small interfering RNA or stable short hairpin RNA knockdown of PTP-PEST enhances haptotactic and chemotactic migration of KM12C colon carcinoma cells. Furthermore, KM12C cells with stably knocked down PTP-PEST exhibit a mesenchymal-like phenotype with prominent membrane ruffles and lamellae. In contrast, ectopic expression of PTP-PEST in KM20 or DLD-1 cells, which lack detectable endogenous PTP-PEST expression, suppresses haptotactic migration. Importantly, we find that PTP-PEST localizes in adherens junctions. Concomitant with enhanced motility, stable knockdown of PTP-PEST causes a disruption of cell-cell junctions. These effects are due to a defect in junctional assembly and not to a loss of E-cadherin expression. Adherens junction assembly is impaired following calcium switch in KM12C cells with stably knocked down PTP-PEST and is accompanied by an increase in the activity of Rac1 and a suppression of RhoA activity in response to cadherin engagement. Taken together, these results suggest that PTP-PEST functions as a suppressor of epithelial cell motility by controlling Rho GTPase activity and the assembly of adherens junctions.
Collapse
Affiliation(s)
- Rosario Espejo
- Sealy Center for Cancer Cell Biology, University of Texas Medical Branch, Galveston, Texas 77555-1074, USA
| | | | | | | | | |
Collapse
|
32
|
Gomez MA, Contreras I, Hallé M, Tremblay ML, McMaster RW, Olivier M. Leishmania GP63 alters host signaling through cleavage-activated protein tyrosine phosphatases. Sci Signal 2009; 2:ra58. [PMID: 19797268 DOI: 10.1126/scisignal.2000213] [Citation(s) in RCA: 155] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
With more than 12 million people affected worldwide, 2 million new cases occurring per year, and the rapid emergence of drug resistance and treatment failure, leishmaniasis is an infectious disease for which research on drug and vaccine development, host-pathogen, and vector-parasite interactions are current international priorities. Upon Leishmania-macrophage interaction, activation of the protein tyrosine phosphatase (PTP) SHP-1 rapidly leads to the down-regulation of Janus kinase and mitogen-activated protein kinase signaling, resulting in the attenuation of host innate inflammatory responses and of various microbicidal macrophage functions. We report that, in addition to SHP-1, the PTPs PTP1B and TCPTP are activated and posttranslationally modified in infected macrophages, and we identify an essential role for PTP1B in the in vivo progression of Leishmania infection. The mechanism underlying PTP modulation involves the proteolytic activity of the Leishmania surface protease GP63. Access of GP63 to macrophage PTP1B, TCPTP, and SHP-1 is mediated in part by a lipid raft-dependent mechanism, resulting in PTP cleavage and stimulation of phosphatase activity. Collectively, our data present a mechanism of cleavage-dependent activation of macrophage PTPs by an obligate intracellular pathogen and show that internalization of GP63, a key Leishmania virulence factor, into host macrophages is a strategy the parasite uses to interact and survive within its host.
Collapse
Affiliation(s)
- Maria Adelaida Gomez
- Department of Experimental Medicine, McGill University, Montréal, Québec, Canada
| | | | | | | | | | | |
Collapse
|
33
|
Reinhard J, Horvat-Bröcker A, Illes S, Zaremba A, Knyazev P, Ullrich A, Faissner A. Protein tyrosine phosphatases expression during development of mouse superior colliculus. Exp Brain Res 2009; 199:279-97. [PMID: 19727691 PMCID: PMC2845883 DOI: 10.1007/s00221-009-1963-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2008] [Accepted: 07/22/2009] [Indexed: 01/17/2023]
Abstract
Protein tyrosine phosphatases (PTPs) are key regulators of different processes during development of the central nervous system. However, expression patterns and potential roles of PTPs in the developing superior colliculus remain poorly investigated. In this study, a degenerate primer-based reverse transcription-polymerase chain reaction (RT-PCR) approach was used to isolate seven different intracellular PTPs and nine different receptor-type PTPs (RPTPs) from embryonic E15 mouse superior colliculus. Subsequently, the expression patterns of 11 PTPs (TC-PTP, PTP1C, PTP1D, PTP-MEG2, PTP-PEST, RPTPJ, RPTPε, RPTPRR, RPTPσ, RPTPκ and RPTPγ) were further analyzed in detail in superior colliculus from embryonic E13 to postnatal P20 stages by quantitative real-time RT-PCR, Western blotting and immunohistochemistry. Each of the 11 PTPs exhibits distinct spatiotemporal regulation of mRNAs and proteins in the developing superior colliculus suggesting their versatile roles in genesis of neuronal and glial cells and retinocollicular topographic mapping. At E13, additional double-immunohistochemical analysis revealed the expression of PTPs in collicular nestin-positive neural progenitor cells and RC-2-immunoreactive radial glia cells, indicating the potential functional importance of PTPs in neurogenesis and gliogenesis.
Collapse
Affiliation(s)
- Jacqueline Reinhard
- Department of Cell Morphology and Molecular Neurobiology, Faculty of Biology, Ruhr-University Bochum, Universitaetsstr 150, 44780 Bochum, Germany
| | - Andrea Horvat-Bröcker
- Department of Cell Morphology and Molecular Neurobiology, Faculty of Biology, Ruhr-University Bochum, Universitaetsstr 150, 44780 Bochum, Germany
| | - Sebastian Illes
- Department of Cell Morphology and Molecular Neurobiology, Faculty of Biology, Ruhr-University Bochum, Universitaetsstr 150, 44780 Bochum, Germany
- Department of Neurology, Heinrich-Heine University, Moorenstr. 5, 40225 Düsseldorf, Germany
| | - Angelika Zaremba
- Department of Cell Morphology and Molecular Neurobiology, Faculty of Biology, Ruhr-University Bochum, Universitaetsstr 150, 44780 Bochum, Germany
- Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, Research Triangle Park, PO Box 12233, Durham, NC 27709 USA
| | - Piotr Knyazev
- Department of Molecular Biology, Max-Planck-Institute, Martinsried, Germany
| | - Axel Ullrich
- Department of Molecular Biology, Max-Planck-Institute, Martinsried, Germany
| | - Andreas Faissner
- Department of Cell Morphology and Molecular Neurobiology, Faculty of Biology, Ruhr-University Bochum, Universitaetsstr 150, 44780 Bochum, Germany
| |
Collapse
|
34
|
Veillette A, Rhee I, Souza CM, Davidson D. PEST family phosphatases in immunity, autoimmunity, and autoinflammatory disorders. Immunol Rev 2009; 228:312-24. [PMID: 19290936 DOI: 10.1111/j.1600-065x.2008.00747.x] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The proline-, glutamic acid-, serine- and threonine-rich (PEST) family of protein tyrosine phosphatases (PTPs) includes proline-enriched phosphatase (PEP)/lymphoid tyrosine phosphatase (LYP), PTP-PEST, and PTP-hematopoietic stem cell fraction (HSCF). PEP/LYP is a potent inhibitor of T-cell activation, principally by suppressing the activity of Src family protein tyrosine kinases (PTKs). This function seems to be dependent, at least in part, on the ability of PEP to bind C-terminal Src kinase (Csk), a PTK also involved in inactivating Src kinases. Interestingly, a polymorphism of LYP in humans (R620W) is a significant risk factor for autoimmune diseases including type 1 diabetes, rheumatoid arthritis, and lupus. The R620W mutation may be a 'gain-of-function' mutation. In non-hematopoietic cells, PTP-PEST is a critical regulator of adhesion and migration. This effect correlates with the aptitude of PTP-PEST to dephosphorylate cytoskeletal proteins such as Cas, focal adhesion associated-kinase (FAK), Pyk2, and PSTPIP. While not established, a similar function may also exist in immune cells. Additionally, overexpression studies provided an indication that PTP-PEST may be a negative regulator of lymphocyte activation. Interestingly, mutations in a PTP-PEST- and PTP-HSCF-interacting protein, PSTPIP1, were identified in humans with pyogenic sterile arthritis, pyoderma gangrenosum, and acne (PAPA) syndrome and familial recurrent arthritis, two autoinflammatory diseases. These mutations abrogate the ability of PSTPIP1 to bind PTP-PEST and PTP-HSCF, suggesting that these two PTPs may be negative regulators of inflammation.
Collapse
Affiliation(s)
- André Veillette
- Laboratory of Molecular Oncology, Clinical Research Institute of Montréal, Montréal, Québec, Canada.
| | | | | | | |
Collapse
|
35
|
Hallé M, Gomez MA, Stuible M, Shimizu H, McMaster WR, Olivier M, Tremblay ML. The Leishmania surface protease GP63 cleaves multiple intracellular proteins and actively participates in p38 mitogen-activated protein kinase inactivation. J Biol Chem 2008; 284:6893-908. [PMID: 19064994 DOI: 10.1074/jbc.m805861200] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The Leishmania parasite is a widespread disease threat in tropical areas, causing symptoms ranging from skin lesions to death. Leishmania parasites typically invade macrophages but are also capable of infecting fibroblasts, which may serve as a reservoir for recurrent infection. Invasion by intracellular pathogens often involves exploitation of the host cell cytoskeletal and signaling machinery. Here we have observed a dramatic rearrangement of the actin cytoskeleton and marked modifications in the profile of protein tyrosine phosphorylation in fibroblasts infected with Leishmania major. Correspondingly, exposure to L. major resulted in degradation of the phosphorylated adaptor protein p130Cas and the protein-tyrosine phosphatase-PEST. Cellular and in vitro assays using pharmacological protease inhibitors, recombinant enzyme, and genetically modified strains of L. major identified the parasite protease GP63 as the principal catalyst of proteolysis during infection. A number of additional signaling proteins were screened for degradation during L. major infection as follows: a small subset was cleaved, including cortactin, T-cell protein-tyrosine phosphatase, and caspase-3, but the majority remained unaffected. Protein degradation occurred in cells incubated with Leishmania extracts in the absence of intact parasites, suggesting a mechanism permitting transfer of functional GP63 into the intracellular space. Finally, we evaluated the impact of Leishmania on MAPK signaling; unlike p44/42 and JNK, p38 was inactivated upon infection in a GP63- and protein degradation-dependent manner, which likely involves cleavage of the upstream adaptor TAB1. Our results establish that GP63 plays a central role in a number of hostcell molecular events that likely contribute to the infectivity of Leishmania.
Collapse
Affiliation(s)
- Maxime Hallé
- Rosalind and Morris Goodman Cancer Centre, Department of Biochemistry, McGill University, Montréal, Québec H3A 1A3, Canada
| | | | | | | | | | | | | |
Collapse
|
36
|
Zhang XY, Chen VL, Rosen MS, Blair ER, Lone AM, Bishop AC. Allele-specific inhibition of divergent protein tyrosine phosphatases with a single small molecule. Bioorg Med Chem 2008; 16:8090-7. [PMID: 18678493 PMCID: PMC2561268 DOI: 10.1016/j.bmc.2008.07.053] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2008] [Revised: 07/18/2008] [Accepted: 07/19/2008] [Indexed: 02/06/2023]
Abstract
A central challenge of chemical biology is the development of small-molecule tools for controlling protein activity in a target-specific manner. Such tools are particularly useful if they can be systematically applied to the members of large protein families. Here we report that protein tyrosine phosphatases can be systematically 'sensitized' to target-specific inhibition by a cell-permeable small molecule, Fluorescein Arsenical Hairpin Binder (FlAsH), which does not inhibit any wild-type PTP investigated to date. We show that insertion of a FlAsH-binding peptide at a conserved position in the PTP catalytic-domain's WPD loop confers novel FlAsH sensitivity upon divergent PTPs. The position of the sensitizing insertion is readily identifiable from primary-sequence alignments, and we have generated FlAsH-sensitive mutants for seven different classical PTPs from six distinct subfamilies of receptor and non-receptor PTPs, including one phosphatase (PTP-PEST) whose three-dimensional catalytic-domain structure is not known. In all cases, FlAsH-mediated PTP inhibition was target specific and potent, with inhibition constants for the seven sensitized PTPs ranging from 17 to 370 nM. Our results suggest that a substantial fraction of the PTP superfamily will be likewise sensitizable to allele-specific inhibition; FlAsH-based PTP targeting thus potentially provides a rapid, general means for selectively targeting PTP activity in cell-culture- or model-organism-based signaling studies.
Collapse
Affiliation(s)
- Xin-Yu Zhang
- Amherst College, Department of Chemistry, Amherst, Massachusetts 01002
| | - Vincent L. Chen
- Amherst College, Department of Chemistry, Amherst, Massachusetts 01002
| | - Mari S. Rosen
- Amherst College, Department of Chemistry, Amherst, Massachusetts 01002
| | | | - Anna Mari Lone
- Amherst College, Department of Chemistry, Amherst, Massachusetts 01002
| | - Anthony C. Bishop
- Amherst College, Department of Chemistry, Amherst, Massachusetts 01002
| |
Collapse
|
37
|
Kirchberger S, Majdic O, Blüml S, Schrauf C, Leitner J, Gerner C, Paster W, Gundacker N, Sibilia M, Stöckl J. The cytoplasmic tail of CD45 is released from activated phagocytes and can act as an inhibitory messenger for T cells. Blood 2008; 112:1240-8. [PMID: 18511809 DOI: 10.1182/blood-2008-02-138131] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
CD45 is the prototypic transmembrane protein tyrosine phosphatase (PTP), which is expressed on all nucleated hematopoietic cells and plays a central role in the integration of environmental signals into immune cell responses. Here we report an alternative function for the intracellular domain of CD45. We dis-covered that CD45 is sequentially cleaved by serine/metalloproteinases and gamma-secretases during activation of human monocytes and granulocytes by fungal stimuli or phorbol 12-myristate 13-acetate but not by other microbial stimuli. Proteolytic processing of CD45 occurred upon activation of monocytes or granulocytes but not of T cells, B cells, or dendritic cells and resulted in a 95-kDa fragment of the cytoplasmic tail of CD45 (ct-CD45). ct-CD45 was released from monocytes and granulocytes upon activation-induced cell death. Binding studies with ct-CD45 revealed a counter-receptor on preactivated T cells. Moreover, T-cell proliferation induced by dendritic cells or CD3 antibodies was inhibited in the presence of ct-CD45. Taken together, the results of our study demonstrate that fragments of the intracellular domain of CD45 from human phagocytes can function as intercellular regulators of T-cell activation.
Collapse
|
38
|
Ling P, Lu TJ, Yuan CJ, Lai MD. Biosignaling of mammalian Ste20-related kinases. Cell Signal 2008; 20:1237-47. [DOI: 10.1016/j.cellsig.2007.12.019] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2007] [Accepted: 12/18/2007] [Indexed: 01/09/2023]
|
39
|
Suderman RJ, Pruijssers AJ, Strand MR. Protein tyrosine phosphatase-H2 from a polydnavirus induces apoptosis of insect cells. J Gen Virol 2008; 89:1411-1420. [PMID: 18474557 DOI: 10.1099/vir.0.2008/000307-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The family Polydnaviridae is a large group of immunosuppressive insect viruses that are symbiotically associated with parasitoid wasps. The polydnavirus Microplitis demolitor bracovirus (MdBV) causes several alterations that disable the cellular and humoral immune defences of host insects, including apoptosis of the primary phagocytic population of circulating immune cells (haemocytes), called granulocytes. Here, we show that MdBV infection causes granulocytes in the lepidopteran Spodoptera frugiperda to apoptose. An expression screen conducted in the S. frugiperda 21 cell line identified the MdBV gene ptp-H2 as an apoptosis inducer, as indicated by cell fragmentation, annexin V binding, mitochondrial membrane depolarization and caspase activation. PTP-H2 is a classical protein tyrosine phosphatase that has been shown previously to function as an inhibitor of phagocytosis. PTP-H2-mediated death of Sf-21 cells was blocked by the pan-caspase inhibitor benzyloxycarbonyl-Val-Ala-(O-methyl) Asp-fluoromethylketone (Z-VAD-FMK), but cells maintained in this inhibitor still exhibited a suppressed phagocytic response. Mutagenesis experiments indicated that the essential catalytic cysteine residue required for the phosphatase activity of PTP-H2 was required for apoptotic activity in Sf-21 cells. Loss of adhesion was insufficient to stimulate apoptosis of Sf-21 cells. PTP-H2 expression, however, did significantly reduce proliferation of Sf-21 cells, which could contribute to the apoptotic activity of this viral gene. Overall, our results indicate that specific genes expressed by MdBV induce apoptosis of certain insect cells and that this activity contributes to immunosuppression of hosts.
Collapse
Affiliation(s)
- Richard J Suderman
- Department of Entomology and Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA 30602, USA
| | - Andrea J Pruijssers
- Department of Entomology and Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA 30602, USA
| | - Michael R Strand
- Department of Entomology and Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
40
|
Arimura Y, Vang T, Tautz L, Williams S, Mustelin T. TCR-induced downregulation of protein tyrosine phosphatase PEST augments secondary T cell responses. Mol Immunol 2008; 45:3074-84. [PMID: 18457880 PMCID: PMC2685193 DOI: 10.1016/j.molimm.2008.03.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2007] [Revised: 03/10/2008] [Accepted: 03/11/2008] [Indexed: 11/19/2022]
Abstract
We report that the protein tyrosine phosphatase PTP-PEST is expressed in resting human and mouse CD4(+) and CD8(+) T cells, but not in Jurkat T leukemia cells, and that PTP-PEST protein, but not mRNA, was dramatically downregulated in CD4(+) and CD8(+) primary human T cells upon T cell activation. This was also true in mouse CD4(+) T cells, but less striking in mouse CD8(+) T cells. PTP-PEST reintroduced into Jurkat at levels similar to those in primary human T cells, was a potent inhibitor of TCR-induced transactivation of reporter genes driven by NFAT/AP-1 and NF-kappaB elements and by the entire IL-2 gene promoter. Introduction of PTP-PEST into previously activated primary human T cells also reduced subsequent IL-2 production by these cells in response to TCR and CD28 stimulation. The inhibitory effect of PTP-PEST was associated with dephosphorylation the Lck kinase at its activation loop site (Y394), reduced early TCR-induced tyrosine phosphorylation, reduced ZAP-70 phosphorylation and inhibition of MAP kinase activation. We propose that PTP-PEST tempers T cell activation by dephosphorylating TCR-proximal signaling molecules, such as Lck, and that down-regulation of PTP-PEST may be a reason for the increased response to TCR triggering of previously activated T cells.
Collapse
MESH Headings
- Animals
- CSK Tyrosine-Protein Kinase
- Down-Regulation
- Gene Expression Regulation, Enzymologic
- Humans
- Immunologic Memory
- Jurkat Cells
- Leukemia/enzymology
- Leukemia/pathology
- Lymphocyte Activation
- Lymphocyte Specific Protein Tyrosine Kinase p56(lck)/metabolism
- Membrane Microdomains/enzymology
- Mice
- Mice, Inbred C57BL
- Phosphorylation
- Phosphotyrosine/metabolism
- Protein Tyrosine Phosphatase, Non-Receptor Type 12/genetics
- Protein Tyrosine Phosphatase, Non-Receptor Type 12/metabolism
- Protein-Tyrosine Kinases/metabolism
- Proto-Oncogene Proteins/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/metabolism
- Signal Transduction
- T-Lymphocytes/enzymology
- T-Lymphocytes/immunology
- Transcriptional Activation
- src-Family Kinases
Collapse
Affiliation(s)
- Yutaka Arimura
- Infectious and Inflammatory Disease Center, Burnham Institute for Medical Research, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA.
| | | | | | | | | |
Collapse
|
41
|
Abstract
Protein-tyrosine phosphatases are tightly controlled by various mechanisms, ranging from differential expression in specific cell types to restricted subcellular localization, limited proteolysis, post-translational modifications affecting intrinsic catalytic activity, ligand binding and dimerization. Here, we review the regulatory mechanisms found to control the classical protein-tyrosine phosphatases.
Collapse
|