1
|
Wang Y, Kroll TG, Hao L, Wen Z. Orphan nuclear receptor NR2E3 is a new molecular vulnerability in solid tumors by activating p53. Cell Death Dis 2025; 16:15. [PMID: 39809731 PMCID: PMC11733144 DOI: 10.1038/s41419-025-07337-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 11/29/2024] [Accepted: 01/07/2025] [Indexed: 01/16/2025]
Abstract
The orphan nuclear receptor NR2E3 has emerged as a potential tumor suppressor, yet its precise mechanisms in tumorigenesis require further investigation. Here, we demonstrate that the full-length protein isoform of NR2E3 instead of its short isoform activates wild-type p53 and is capable of rescuing certain p53 mutations in various cancer cell lines. Importantly, we observe a higher frequency of NR2E3 mutations in three solid tumors compared to the reference population, highlighting its potential significance in tumorigenesis. Specifically, we identify a cancer-associated NR2E3R97H mutation, which not only fails to activate p53 but also impedes NR2E3WT-mediated p53 acetylation. Moreover, we show that the small-molecule agonist of NR2E3, 11a, penetrates tumor mass of uterine cancer patients and increases p53 activation. Additionally, both NR2E3 and 11a exhibit similar multifaceted anti-cancer properties, underscoring NR2E3 as a novel molecular vulnerability in cancer cells. We further explore drug repurposing screens of FDA-approved anti-cancer drugs to develop NR2E3-targeted combinatorial treatments, such as the 11a-Romidepsin combination in HeLa cells. The underlying molecular mechanisms of these drug synergies include the activation of p53 pathway and inhibition of oncogenic pathway like MYC. Overall, our findings suggest that NR2E3 holds promise as a therapeutic target for cancer treatment, offering new avenues for effective anti-cancer strategies.
Collapse
Affiliation(s)
- Yidan Wang
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI, USA
| | - Todd G Kroll
- Department of Pathology, Marshfield Medical Center, Marshfield Clinic Health System, Marshfield, WI, USA
- Department of Pathology and Laboratory Medicine, Endeavor Northshore Health System, Evanston, IL, USA
| | - Linhui Hao
- Institute of Molecular Virology, University of Wisconsin-Madison, Madison, WI, USA
| | - Zhi Wen
- Center for Precision Medicine Research, Marshfield Clinic Research Institute, Marshfield Clinic Health System, Marshfield, WI, USA.
| |
Collapse
|
2
|
Xie S, Hu Y, Jin J, Fu L, Zhang C, Yang Q, Niu Y, Sheng Z. Regulation of the stem‑like properties of estrogen receptor‑positive breast cancer cells through NR2E3/NR2C2 signaling. Exp Ther Med 2023; 26:474. [PMID: 37664670 PMCID: PMC10469576 DOI: 10.3892/etm.2023.12173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 07/31/2023] [Indexed: 09/05/2023] Open
Abstract
Cancer stem cells (CSCs) are major drivers of metastasis, drug resistance and recurrence in numerous cancers. However, critical factors that can modulate CSC stemness have not been clearly identified. Nuclear receptor subfamily 2 group E member 3 (nr2e3) expression has been previously reported to be positively associated with drug sensitivity and favorable clinical outcomes in patients with estrogen receptor (ER)+ breast cancer. This suggests that nr2e3 expression may be inversely associated with CSC stemness in this type of tumor cells. The present study aimed to investigate the regulatory roles of NR2E3 in the stem-like properties of ER+ breast cancer cells and to identify the underlying mechanisms. Bioinformatics analysis was performed using the data derived from the Cancer Genome Atlas database. Nr2e3-specific shRNA and nuclear receptor subfamily 2 group C member 2 (nr2c2) overexpressed plasmids were constructed to silence and enhance the expression of nr2e3 and nr2c2, respectively. Transwell and wound healing experiments were conducted to evaluate the migration and invasion ability of MCF7 cells, while colony formation tests were used to evaluate the clonality. Flow cytometry was used to detect the percentage of CD44+CD24-/low cells. Reverse transcription-quantitative PCR and western blotting were performed to detect expression at the mRNA and protein levels. The results showed that compared with normal breast tissues and MCF10A cells, the expression of nr2e3 was increased in ER+ breast tumor tissues and cell lines. Nr2e3 silencing promoted the migration, invasion and colony-forming ability of the ER+ MCF7 cells. It also increased the expression of epithelial-mesenchymal transition markers and stem cell-related transcription factors, in addition to the percentage of CD44+CD24-/low cells. The expression of nr2e3 and nr2c2 was found to be positively correlated. Nr2e3 knockdown decreased the mRNA and protein expression levels of nr2c2, whereas nr2c2 overexpression reversed the elevated CD44+CD24-/low cell ratio and the increased migratory activity caused by nr2e3 silencing. The results of the present study suggest that NR2E3 may serve an important role in modulating the stem-like properties of ER+ breast cancer cells, where NR2E3/NR2C2 signaling may be a therapeutic target in ER+ breast cancer.
Collapse
Affiliation(s)
- Shanglun Xie
- School of Life Sciences, Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical College, Bengbu, Anhui 233030, P.R. China
| | - Yaru Hu
- Department of Ophthalmology, Fuyang People's Hospital, Fuyang, Anhui 236000, P.R. China
| | - Jiacheng Jin
- School of Life Sciences, Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical College, Bengbu, Anhui 233030, P.R. China
| | - Lingzhi Fu
- Department of Ophthalmology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233099, P.R. China
| | - Cong Zhang
- School of Life Sciences, Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical College, Bengbu, Anhui 233030, P.R. China
| | - Qing Yang
- Department of Ophthalmology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233099, P.R. China
| | - Yaxin Niu
- Department of Ophthalmology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233099, P.R. China
| | - Zhiyong Sheng
- School of Life Sciences, Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical College, Bengbu, Anhui 233030, P.R. China
| |
Collapse
|
3
|
Khanal T, Leung YK, Jiang W, Timchenko N, Ho SM, Kim K. NR2E3 is a key component in p53 activation by regulating a long noncoding RNA DINO in acute liver injuries. FASEB J 2019; 33:8335-8348. [PMID: 30991008 DOI: 10.1096/fj.201801881rr] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Damage-induced long noncoding RNA (DINO) is a long noncoding RNA that directly interacts with p53 and thereby enhances p53 stability and activity in response to various cellular stresses. Here, we demonstrate that nuclear receptor subfamily 2 group E member 3 (NR2E3) plays a crucial role in maintaining active DINO epigenetic status for its proper induction and subsequent p53 activation. In acetaminophen (APAP)- or carbon tetrachloride-induced acute liver injuries, NR2E3 knockout (KO) mice exhibited far more severe liver injuries due to impaired DINO induction and p53 activation. Mechanistically, NR2E3 loss both in vivo and in vitro induced epigenetic DINO repression accompanied by reduced DINO chromatin accessibility. Furthermore, compared with the efficient reversal by a typical antidote N-acetylcysteine (NAC) treatment of APAP-induced liver injury in wild-type mice, the liver injury of NR2E3 KO mice was not effectively reversed, indicating that an intact NR2E3-DINO-p53-signaling axis is essential for NAC-mediated recovery against APAP-induced hepatotoxicity. These findings establish that NR2E3 is a critical component in p53 activation and a novel susceptibility factor to drug- or toxicant-induced acute liver injuries.-Khanal, T., Leung, Y.-K., Jiang, W., Timchenko, N., Ho, S.-M., Kim, K. NR2E3 is a key component in p53 activation by regulating a long noncoding RNA DINO in acute liver injuries.
Collapse
Affiliation(s)
- Tilak Khanal
- Department of Environmental Health, College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| | - Yuet-Kin Leung
- Department of Environmental Health, College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| | - Wang Jiang
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| | - Nicolai Timchenko
- Division of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Shuk-Mei Ho
- Department of Environmental Health, College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| | - Kyounghyun Kim
- Department of Environmental Health, College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| |
Collapse
|
4
|
Smith EA, Kumar B, Komurov K, Smith SM, Brown NV, Zhao S, Kumar P, Teknos TN, Wells SI. DEK associates with tumor stage and outcome in HPV16 positive oropharyngeal squamous cell carcinoma. Oncotarget 2017; 8:23414-23426. [PMID: 28423581 PMCID: PMC5410314 DOI: 10.18632/oncotarget.15582] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 02/12/2017] [Indexed: 01/25/2023] Open
Abstract
Oropharyngeal squamous cell carcinomas (OPSCC) are common, have poor outcomes, and comprise two biologically and clinically distinct diseases. While OPSCC that arise from human papillomavirus infections (HPV+) have better overall survival than their HPV- counterparts, the incidence of HPV+ OPSCC is increasing dramatically, affecting younger individuals which are often left with life-long co-morbidities from aggressive treatment. To identify patients which do poorly versus those who might benefit from milder regimens, risk-stratifying biomarkers are now needed within this population. One potential marker is the DEK oncoprotein, whose transcriptional upregulation in most malignancies is associated with chemotherapy resistance, advanced tumor stage, and worse outcomes. Herein, a retrospective case study was performed on DEK protein expression in therapy-naïve surgical resections from 194 OPSCC patients. We found that DEK was associated with advanced tumor stage, increased hazard of death, and interleukin IL6 expression in HPV16+ disease. Surprisingly, DEK levels in HPV16- OPSCC were not associated with advanced tumor stage or increased hazard of death. Overall, these findings mark HPV16- OPSCC as an exceptional malignancy were DEK expression does not correlate with outcome, and support the potential prognostic utility of DEK to identify aggressive HPV16+ disease.
Collapse
Affiliation(s)
- Eric A. Smith
- Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Bhavna Kumar
- Department of Otolaryngology–Head and Neck Surgery, The Ohio State University, Columbus, OH, 43210, USA
- The Ohio State University, Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Kakajan Komurov
- Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Stephen M. Smith
- Department of Pathology, The Ohio State University, Columbus, OH, 43210, USA
| | - Nicole V. Brown
- Center for Biostatistics, The Ohio State University, Columbus, OH, 43210, USA
| | - Songzhu Zhao
- Center for Biostatistics, The Ohio State University, Columbus, OH, 43210, USA
| | - Pawan Kumar
- Department of Otolaryngology–Head and Neck Surgery, The Ohio State University, Columbus, OH, 43210, USA
- The Ohio State University, Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Theodoros N. Teknos
- Department of Otolaryngology–Head and Neck Surgery, The Ohio State University, Columbus, OH, 43210, USA
- The Ohio State University, Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Susanne I. Wells
- Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| |
Collapse
|
5
|
Khanal T, Kim D, Johnson A, Choubey D, Kim K. Deregulation of NR2E3, an orphan nuclear receptor, by benzo(a)pyrene-induced oxidative stress is associated with histone modification status change of the estrogen receptor gene promoter. Toxicol Lett 2015; 237:228-36. [PMID: 26149760 DOI: 10.1016/j.toxlet.2015.06.1708] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 06/05/2015] [Accepted: 06/22/2015] [Indexed: 10/23/2022]
Abstract
We previously reported that NR2E3, an orphan nuclear receptor, plays an important role in maintaining the basal expression of estrogen receptor α (ER) and that the NR2E3 level is highly correlated with the relapse-free survival of breast cancer patients. Here, we investigated the role of NR2E3 in benzo(a)pyrene (BaP)-mediated cell injury. BaP treatment reduced NR2E3 homo-dimer formation and expression and subsequently decreased ER expression. The chromatin immunoprecipitation assay results showed that the treatment of MCF-7 breast cancer cells and the mouse liver with BaP released NR2E3 from the ER promoter to transform the transcriptionally active histone modification status into a repressive state. NR2E3 depletion in MCF-7 cells also induced a similar inactive epigenetic status in the ER promoter region, indicating that NR2E3 is an essential epigenetic player that maintains basal ER expression. Interestingly, these negative effects of BaP on the expression levels of NR2E3 and ER were rescued by antioxidant treatment. Collectively, our study provides novel evidence to show that BaP-induced oxidative stress decreases ER expression, in part by regulating NR2E3 function, which modulates the epigenetic status of the ER promoter. NR2E3 is likely an essential epigenetic player that maintains basal ER expression to protect cells from BaP-induced oxidative injury.
Collapse
Affiliation(s)
- Tilak Khanal
- Department of Environmental Health, University of Cincinnati, College of Medicine, 160 Panzeca way, Cincinnati, OH 45267, USA
| | - Dasom Kim
- Department of Environmental Health, University of Cincinnati, College of Medicine, 160 Panzeca way, Cincinnati, OH 45267, USA
| | - Abby Johnson
- Department of Environmental Health, University of Cincinnati, College of Medicine, 160 Panzeca way, Cincinnati, OH 45267, USA
| | - Divaker Choubey
- Department of Environmental Health, University of Cincinnati, College of Medicine, 160 Panzeca way, Cincinnati, OH 45267, USA
| | - Kyounghyun Kim
- Department of Environmental Health, University of Cincinnati, College of Medicine, 160 Panzeca way, Cincinnati, OH 45267, USA.
| |
Collapse
|
6
|
Zhang J, Shen L, Sun LQ. The regulation of radiosensitivity by p53 and its acetylation. Cancer Lett 2015; 363:108-18. [DOI: 10.1016/j.canlet.2015.04.015] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 04/15/2015] [Accepted: 04/15/2015] [Indexed: 12/26/2022]
|
7
|
ArhGAP30 promotes p53 acetylation and function in colorectal cancer. Nat Commun 2014; 5:4735. [PMID: 25156493 DOI: 10.1038/ncomms5735] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Accepted: 07/17/2014] [Indexed: 12/16/2022] Open
Abstract
Covalent modification adding acetyl groups to the C terminus of the p53 protein has been suggested to be required for its functional activation as a tumour suppressor. However, it remains largely unknown how p53 acetylation is deregulated in colorectal cancer (CRC), which is the third most commonly diagnosed cancer worldwide. Here we show that ArhGAP30, a Rho GTPase-activating protein, is a pivotal regulator for p53 acetylation and functional activation in CRC. ArhGAP30 binds to p53 C-terminal domain and P300, facilitating P300-mediated acetylation of p53 at lysine 382. ArhGAP30 expression is required for p53 activation upon DNA damage stress, and the level of ArhGAP30 correlates with p53 acetylation and functional activation in CRC tissues. Moreover, low level of ArhGAP30 expression associates with poor survival of CRC patients. In summary, ArhGAP30 is required for p53 acetylation and functional activation in CRC, and the expression of ArhGAP30 is a potential prognostic marker for CRC.
Collapse
|
8
|
Safe S, Jin UH, Hedrick E, Reeder A, Lee SO. Minireview: role of orphan nuclear receptors in cancer and potential as drug targets. Mol Endocrinol 2014; 28:157-172. [PMID: 24295738 PMCID: PMC3896638 DOI: 10.1210/me.2013-1291] [Citation(s) in RCA: 115] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Accepted: 11/21/2013] [Indexed: 01/03/2023] Open
Abstract
The nuclear orphan receptors for which endogenous ligands have not been identified include nuclear receptor (NR)0B1 (adrenal hypoplasia congenita critical region on chromosome X gene), NR0B2 (small heterodimer partner), NR1D1/2 (Rev-Erbα/β), NR2C1 (testicular receptor 2), NR2C2 (testicular receptor 4), NR2E1 (tailless), NR2E3 (photoreceptor-specific NR [PNR]), NR2F1 chicken ovalbumin upstream promoter transcription factor 1 (COUP-TFI), NR2F2 (COUP-TFII), NR2F6 (v-erbA-related protein), NR4A1 (Nur77), NR4A2 (Nurr1), NR4A3 (Nor1), and NR6A1 (GCNF). These receptors play essential roles in development, cellular homeostasis, and disease including cancer where over- or underexpression of some receptors has prognostic significance for patient survival. Results of receptor knockdown or overexpression in vivo and in cancer cell lines demonstrate that orphan receptors exhibit tumor-specific pro-oncogenic or tumor suppressor-like activity. For example, COUP-TFII expression is both a positive (ovarian) and negative (prostate and breast) prognostic factor for cancer patients; in contrast, the prognostic activity of adrenal hypoplasia congenita critical region on chromosome X gene for the same tumors is the inverse of COUP-TFII. Functional studies show that Nur77 is tumor suppressor like in acute leukemia, whereas silencing Nur77 in pancreatic, colon, lung, lymphoma, melanoma, cervical, ovarian, gastric, and some breast cancer cell lines induces one or more of several responses including growth inhibition and decreased survival, migration, and invasion. Although endogenous ligands for the orphan receptors have not been identified, there is increasing evidence that different structural classes of compounds activate, inactivate, and directly bind several orphan receptors. Thus, the screening and development of selective orphan receptor modulators will have important clinical applications as novel mechanism-based agents for treating cancer patients overexpressing one or more orphan receptors and also for combined drug therapies.
Collapse
Affiliation(s)
- Stephen Safe
- Department of Veterinary Physiology and Pharmacology (S.S., E.H., A.R.), Texas A&M University, College Station, Texas 77808; and Institute of Biosciences and Technology (S.S., U.-H.J., S.-O.L.), Texas A&M Health Science Center, Houston, Texas 77030
| | | | | | | | | |
Collapse
|
9
|
Abstract
The nuclear receptor superfamily includes many receptors, identified based on their similarity to steroid hormone receptors but without a known ligand. The study of how these receptors are diversely regulated to interact with genomic regions to control a plethora of biological processes has provided critical insight into development, physiology, and the molecular pathology of disease. Here we provide a compendium of these so-called orphan receptors and focus on what has been learned about their modes of action, physiological functions, and therapeutic promise.
Collapse
Affiliation(s)
- Shannon E Mullican
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, and The Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | |
Collapse
|
10
|
Systematic analyses of the cytotoxic effects of compound 11a, a putative synthetic agonist of photoreceptor-specific nuclear receptor (PNR), in cancer cell lines. PLoS One 2013; 8:e75198. [PMID: 24066170 PMCID: PMC3774666 DOI: 10.1371/journal.pone.0075198] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 08/11/2013] [Indexed: 12/19/2022] Open
Abstract
Photoreceptor cell-specific receptor (PNR/NR2E3) is an orphan nuclear receptor that plays a critical role in retinal development and photoreceptor maintenance. The disease-causing mutations in PNR have a pleiotropic effect resulting in varying retinal diseases. Recently, PNR has been implicated in control of cellular functions in cancer cells. PNR was reported to be a novel regulator of ERα expression in breast cancer cells, and high PNR expression correlates with favorable response to tamoxifen treatment. Moreover, PNR was shown to increase p53 stability in HeLa cells, implying that PNR may be a therapeutic target in this and other cancers that retain a wild type p53 gene. To facilitate further understanding of PNR functions in cancer, we characterized compound 11a, a synthetic, putative PNR agonist in several cell-based assays. Interestingly, we showed that 11a failed to activate PNR and its cytotoxicity was independent of PNR expression, excluding PNR as a mediator for 11a cytotoxicity. Systematic analyses of the cytotoxic effects of 11a in NCI-60 cell lines revealed a strong positive correlation of cytotoxicity with p53 status, i.e., p53 wild type cell lines were significantly more sensitive to 11a than p53 mutated or null cell lines. Furthermore, using HCT116 p53+/+ and p53-/- isogenic cell lines we revealed that the mechanism of 11a-induced cytotoxicity occurred through G1/S phase cell cycle arrest rather than apoptosis. In conclusion, we observed a correlation of 11a sensitivity with p53 status but not with PNR expression, suggesting that tumors expressing wild type p53 might be responsive to this compound.
Collapse
|
11
|
Tan MHE, Zhou XE, Soon FF, Li X, Li J, Yong EL, Melcher K, Xu HE. The crystal structure of the orphan nuclear receptor NR2E3/PNR ligand binding domain reveals a dimeric auto-repressed conformation. PLoS One 2013; 8:e74359. [PMID: 24069298 PMCID: PMC3771917 DOI: 10.1371/journal.pone.0074359] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Accepted: 07/31/2013] [Indexed: 01/20/2023] Open
Abstract
Photoreceptor-specific nuclear receptor (PNR, NR2E3) is a key transcriptional regulator of human photoreceptor differentiation and maintenance. Mutations in the NR2E3-encoding gene cause various retinal degenerations, including Enhanced S-cone syndrome, retinitis pigmentosa, and Goldman-Favre disease. Although physiological ligands have not been identified, it is believed that binding of small molecule agonists, receptor desumoylation, and receptor heterodimerization may switch NR2E3 from a transcriptional repressor to an activator. While these features make NR2E3 a potential therapeutic target for the treatment of retinal diseases, there has been a clear lack of structural information for the receptor. Here, we report the crystal structure of the apo NR2E3 ligand binding domain (LBD) at 2.8 Å resolution. Apo NR2E3 functions as transcriptional repressor in cells and the structure of its LBD is in a dimeric auto-repressed conformation. In this conformation, the putative ligand binding pocket is filled with bulky hydrophobic residues and the activation-function-2 (AF2) helix occupies the canonical cofactor binding site. Mutations designed to disrupt either the AF2/cofactor-binding site interface or the dimer interface compromised the transcriptional repressor activity of this receptor. Together, these results reveal several conserved structural features shared by related orphan nuclear receptors, suggest that most disease-causing mutations affect the receptor's structural integrity, and allowed us to model a putative active conformation that can accommodate small ligands in its pocket.
Collapse
Affiliation(s)
- M. H. Eileen Tan
- Laboratory of Structural Sciences, Van Andel Research Institute, Grand Rapids, Michigan, United States of America
- Department of Obstetrics & Gynecology, National University Hospital, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - X. Edward Zhou
- Laboratory of Structural Sciences, Van Andel Research Institute, Grand Rapids, Michigan, United States of America
| | - Fen-Fen Soon
- Laboratory of Structural Sciences, Van Andel Research Institute, Grand Rapids, Michigan, United States of America
- Department of Obstetrics & Gynecology, National University Hospital, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Xiaodan Li
- Laboratory of Structural Sciences, Van Andel Research Institute, Grand Rapids, Michigan, United States of America
- Key Laboratory of Regenerative Biology, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Jun Li
- Department of Obstetrics & Gynecology, National University Hospital, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Eu-Leong Yong
- Department of Obstetrics & Gynecology, National University Hospital, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Karsten Melcher
- Laboratory of Structural Sciences, Van Andel Research Institute, Grand Rapids, Michigan, United States of America
| | - H. Eric Xu
- Laboratory of Structural Sciences, Van Andel Research Institute, Grand Rapids, Michigan, United States of America
- Van Andel Research Institute/Shanghai Institute of Materia Medica Center, Chinese Academy of Sciences-Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
12
|
Wu D, Ozaki T, Yoshihara Y, Kubo N, Nakagawara A. Runt-related transcription factor 1 (RUNX1) stimulates tumor suppressor p53 protein in response to DNA damage through complex formation and acetylation. J Biol Chem 2012; 288:1353-64. [PMID: 23148227 DOI: 10.1074/jbc.m112.402594] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Representative tumor suppressor p53 plays a critical role in the regulation of proper DNA damage response. In this study, we have found for the first time that Runt-related transcription factor 1 (RUNX1) contributes to p53-dependent DNA damage response. Upon adriamycin (ADR) exposure, p53 as well as RUNX1 were strongly induced in p53-proficient HCT116 and U2OS cells, which were closely associated with significant transactivation of p53 target genes, such as p21(WAF)(1), BAX, NOXA, and PUMA. RUNX1 was exclusively expressed in the cell nucleus and formed a complex with p53 in response to ADR. Chromatin immunoprecipitation assay demonstrated that p53 together with RUNX1 are efficiently recruited onto p53 target gene promoters following ADR exposure, indicating that RUNX1 is involved in p53-mediated transcriptional regulation. Indeed, forced expression of RUNX1 stimulated the transcriptional activity of p53 in response to ADR. Consistent with these observations, knockdown of RUNX1 attenuated ADR-mediated induction of p53 target genes and suppressed ADR-dependent apoptosis. Furthermore, RUNX1 was associated with p300 histone acetyltransferase, and ADR-dependent acetylation of p53 at Lys-373/382 was markedly inhibited in RUNX1 knockdown cells. In addition, knockdown of RUNX1 resulted in a significant decrease in the amount of p53-p300 complex following ADR exposure. Taken together, our present results strongly suggest that RUNX1 is required for the stimulation of p53 in response to DNA damage and also provide novel insight into understanding the molecular mechanisms behind p53-dependent DNA damage response.
Collapse
Affiliation(s)
- Dan Wu
- Laboratory of Innovative Cancer Therapeutics, Chiba Cancer Center Research Institute, 666-2 Nitona, Chiba 260-8717, Japan
| | | | | | | | | |
Collapse
|