1
|
Wu L, He J, Shen N, Chen S. Molecular and cellular mechanisms underlying peripheral nerve injury-induced cellular ecological shifts: Implications for neuroregeneration. IBRO Neurosci Rep 2025; 18:120-129. [PMID: 39877591 PMCID: PMC11773043 DOI: 10.1016/j.ibneur.2024.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 12/27/2024] [Indexed: 01/31/2025] Open
Abstract
The peripheral nervous system is a complex ecological network, and its injury triggers a series of fine-grained intercellular regulations that play a crucial role in the repair process. The peripheral nervous system is a sophisticated ecological network, and its injury initiates a cascade of intricate intercellular regulatory processes that are instrumental in the repair process. Despite the advent of sophisticated microsurgical techniques, the repair of peripheral nerve injuries frequently proves inadequate, resulting in adverse effects on patients' quality of life. Accordingly, the continued pursuit of more efficacious treatments is of paramount importance. In this paper, a review of the relevant literature from recent years was conducted to identify the key cell types involved after peripheral nerve injury. These included Schwann cells, macrophages, neutrophils, endothelial cells, and fibroblasts. The review was conducted in depth. This paper analyses the phenotypic changes of these cells after injury, the relevant factors affecting these changes, and how they coordinate with neurons and other cell types. In addition, it explores the potential mechanisms that mediate the behaviour of these cells. Understanding the interactions between these cells and their mutual regulation with neurons is of great significance for the discovery of new neuroregenerative treatments and the identification of potential therapeutic targets.
Collapse
Affiliation(s)
- Limao Wu
- School of Clinical Medicine, Hebei University of Engineering, No.81 Congtai Road, Congtai District, Handan City, Hebei Province 056004, China
| | - Jinglan He
- Affiliated Hospital of Hebei University of Engineering, No. 80, Jianshe Street, Fuxing District, Handan City, Hebei Province 056003, China
| | - Na Shen
- Department of Science and Education, Affiliated Hospital of Hebei University of Engineering, No.81 Congtai Road, Congtai District, Handan City, Hebei Province 056004, China
| | - Song Chen
- Orthopaedic Center, Affiliated Hospital of Hebei University of Engineering, No.81 Congtai Road, Congtai District, Handan City, Hebei Province 56004, China
| |
Collapse
|
2
|
Wang P, Zhang X, Yao M, Li J, Wei X, Qiu Z, Chen L, Zhang L. Targeting high mobility group protein B2 exerts antiproliferative effects in hypoxic pulmonary hypertension by modulating miR-21. Toxicol Appl Pharmacol 2025; 497:117265. [PMID: 39952300 DOI: 10.1016/j.taap.2025.117265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 02/08/2025] [Accepted: 02/10/2025] [Indexed: 02/17/2025]
Abstract
OBJECTIVE Pulmonary hypertension (PH) is characterized by excessive vascular cell proliferation, leading to vascular remodeling. In this study, we aimed to investigate the molecular mechanisms underlying the regulation of vascular cell proliferation in the context of HMGB2 and its potential involvement in the pathogenesis of PH. METHODS Animals and pulmonary vascular smooth muscle cells (PASMCs) were exposed to hypoxia. Pathological changes in pulmonary vessels were detected by HE and Masson staining. The effect of HMGB2 on cell proliferation was detected by siRNA transfections and recombinant protein treatment. miR-21 inhibitor and mimics were applied, and TPM1 expression was detected. HMGB2-/- mice were applied to observe the possible preventive effect of HMGB2 in PH development. RESULTS HMGB2 expression was increased in hypoxic rats and PASMCs. Silencing ZDHHC5 reduced HMGB2 expression and cell proliferation. Cell proliferation was inhibited by knocking down HMGB2 and promoted by its over-expression. Hypoxia-induced miR-21 upregulation and TPM1 downregulation were mediated by HMGB2. 8-Br-cGMP suppressed HMGB2-induced PASMC proliferation and increased SOX2 expression by activating the cGMP/PKG signaling pathway. HMGB2-/- attenuated pulmonary vascular remodeling and fibrosis in hypoxia induced PH mice. CONCLUSIONS HMGB2 promotes PASMC proliferation through the cGMP/PKG-SOX2-miR-21-TPM1 pathway, which provides a new theoretical basis and possible targets for the pathogenesis and clinical prevention of PH.
Collapse
MESH Headings
- Animals
- MicroRNAs/metabolism
- MicroRNAs/genetics
- Hypertension, Pulmonary/metabolism
- Hypertension, Pulmonary/pathology
- Hypertension, Pulmonary/genetics
- Cell Proliferation/drug effects
- Cell Proliferation/physiology
- Male
- HMGB2 Protein/genetics
- HMGB2 Protein/metabolism
- Hypoxia/metabolism
- Hypoxia/complications
- Mice
- Rats
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Rats, Sprague-Dawley
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Vascular Remodeling
- Mice, Inbred C57BL
- Mice, Knockout
- Tropomyosin/metabolism
- Tropomyosin/genetics
- Cells, Cultured
- Pulmonary Artery/metabolism
- Pulmonary Artery/pathology
- Signal Transduction
Collapse
Affiliation(s)
- Pan Wang
- The Key Laboratory of Fujian Province Universities on Ion Channel and Signal Transduction in Cardiovascular Diseases, Department of Physiology and pathophysiology, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China; Department of Cardiovascular Surgery, Fujian Medical University Union Hospital, China; Key Laboratory of Cardio-Thoracic Surgery, Fujian Medical University, Fujian Province University, Fuzhou, China; Department of Clinical Laboratory, Xi'an Fifth Hospital, Xi'an, China
| | - Xu Zhang
- The Key Laboratory of Fujian Province Universities on Ion Channel and Signal Transduction in Cardiovascular Diseases, Department of Physiology and pathophysiology, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China; Department of Cardiovascular Surgery, Fujian Medical University Union Hospital, China; Key Laboratory of Cardio-Thoracic Surgery, Fujian Medical University, Fujian Province University, Fuzhou, China
| | - Mengge Yao
- The Key Laboratory of Fujian Province Universities on Ion Channel and Signal Transduction in Cardiovascular Diseases, Department of Physiology and pathophysiology, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China; Department of Cardiovascular Surgery, Fujian Medical University Union Hospital, China; Key Laboratory of Cardio-Thoracic Surgery, Fujian Medical University, Fujian Province University, Fuzhou, China
| | - Jiakang Li
- The Key Laboratory of Fujian Province Universities on Ion Channel and Signal Transduction in Cardiovascular Diseases, Department of Physiology and pathophysiology, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China; Department of Cardiovascular Surgery, Fujian Medical University Union Hospital, China; Key Laboratory of Cardio-Thoracic Surgery, Fujian Medical University, Fujian Province University, Fuzhou, China
| | - Xiaozhen Wei
- The Key Laboratory of Fujian Province Universities on Ion Channel and Signal Transduction in Cardiovascular Diseases, Department of Physiology and pathophysiology, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China; Department of Cardiovascular Surgery, Fujian Medical University Union Hospital, China; Key Laboratory of Cardio-Thoracic Surgery, Fujian Medical University, Fujian Province University, Fuzhou, China
| | - Zhihuang Qiu
- Department of Cardiovascular Surgery, Fujian Medical University Union Hospital, China; Key Laboratory of Cardio-Thoracic Surgery, Fujian Medical University, Fujian Province University, Fuzhou, China
| | - Liangwan Chen
- Department of Cardiovascular Surgery, Fujian Medical University Union Hospital, China; Key Laboratory of Cardio-Thoracic Surgery, Fujian Medical University, Fujian Province University, Fuzhou, China.
| | - Li Zhang
- The Key Laboratory of Fujian Province Universities on Ion Channel and Signal Transduction in Cardiovascular Diseases, Department of Physiology and pathophysiology, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China; Department of Cardiovascular Surgery, Fujian Medical University Union Hospital, China; Key Laboratory of Cardio-Thoracic Surgery, Fujian Medical University, Fujian Province University, Fuzhou, China.
| |
Collapse
|
3
|
Kumari S, Gupta S, Sukhija R, Gurjar S, Dubey SK, Taliyan R. Neuroprotective potential of Epigenetic modulators, its regulation and therapeutic approaches for the management of Parkinson's disease. Eur J Pharmacol 2024; 985:177123. [PMID: 39536854 DOI: 10.1016/j.ejphar.2024.177123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/19/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024]
Abstract
The progressive degeneration of dopaminergic neurons in the substantia nigra region of the brain leads to a deficiency of dopamine and, ultimately, the onset of Parkinson's disease (PD). Since there is currently no cure for PD, patients all around the world are dealing with symptomatic management. PD progression is influenced by multiple elements, such as environmental, biological, chemical, genetic, and epigenetic factors. Epigenetics is gaining increased attention due to its role in controlling the expression of genes that contribute to PD. Recent advancements in our understanding of the brain network and its related conditions have shown that alterations in gene expression may occur independently of genetic abnormalities. Therefore, a thorough investigation has been carried out to explore the significance of epigenetics in all degenerative disorders. Epigenetic modifications are essential for regulating cellular homeostasis. Therefore, a deeper understanding of these modifications might provide valuable insights into many diseases and potentially serve as targets for therapeutic interventions. This review article focuses on diverse epigenetic alterations linked to the progression of PD. These abnormalities are supported by numerous research on the control of gene expression and encompass all the epigenetic processes. The beginning of PD is intricately associated with aberrant DNA methylation mechanisms. DNA methyltransferases are the enzymes that create and preserve various DNA methylation patterns. Integrating epigenetic data with existing clinical methods for diagnosing PD may aid in discovering potential curative medicines and novel drug development approaches. This article solely addresses the importance of epigenetic modulators in PD, primarily the mechanisms of DNMTs, their roles in the development of PD, and their therapeutic approaches; it bypasses other PD therapies.
Collapse
Affiliation(s)
- Shobha Kumari
- Neuropsychopharmacology Division, Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Pilani Campus, 333031, Rajasthan, India.
| | - Sakshi Gupta
- Neuropsychopharmacology Division, Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Pilani Campus, 333031, Rajasthan, India.
| | - Rajesh Sukhija
- Neuropsychopharmacology Division, Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Pilani Campus, 333031, Rajasthan, India.
| | - Shaifali Gurjar
- Neuropsychopharmacology Division, Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Pilani Campus, 333031, Rajasthan, India.
| | | | - Rajeev Taliyan
- Neuropsychopharmacology Division, Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Pilani Campus, 333031, Rajasthan, India.
| |
Collapse
|
4
|
Salzer J, Feltri ML, Jacob C. Schwann Cell Development and Myelination. Cold Spring Harb Perspect Biol 2024; 16:a041360. [PMID: 38503507 PMCID: PMC11368196 DOI: 10.1101/cshperspect.a041360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Glial cells in the peripheral nervous system (PNS), which arise from the neural crest, include axon-associated Schwann cells (SCs) in nerves, synapse-associated SCs at the neuromuscular junction, enteric glia, perikaryon-associated satellite cells in ganglia, and boundary cap cells at the border between the central nervous system (CNS) and the PNS. Here, we focus on axon-associated SCs. These SCs progress through a series of formative stages, which culminate in the generation of myelinating SCs that wrap large-caliber axons and of nonmyelinating (Remak) SCs that enclose multiple, small-caliber axons. In this work, we describe SC development, extrinsic signals from the axon and extracellular matrix (ECM) and the intracellular signaling pathways they activate that regulate SC development, and the morphogenesis and organization of myelinating SCs and the myelin sheath. We review the impact of SCs on the biology and integrity of axons and their emerging role in regulating peripheral nerve architecture. Finally, we explain how transcription and epigenetic factors control and fine-tune SC development and myelination.
Collapse
Affiliation(s)
- James Salzer
- Neuroscience Institute, New York University Grossman School of Medicine, New York, New York 10016, USA
| | - M Laura Feltri
- Institute for Myelin and Glia Exploration, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, New York 14203, USA
- IRCCS Neurological Institute Carlo Besta, Milano 20133, Italy
- Department of Biotechnology and Translational Sciences, Universita' Degli Studi di Milano, Milano 20133, Italy
| | - Claire Jacob
- Faculty of Biology, Institute of Developmental Biology and Neurobiology, Johannes Gutenberg University Mainz, Mainz 55128, Germany
| |
Collapse
|
5
|
Tseropoulos G, Mehrotra P, Podder AK, Wilson E, Zhang Y, Wang J, Koontz A, Gao NP, Gunawan R, Liu S, Feltri LM, Bronner ME, Andreadis ST. Immobilized NRG1 Accelerates Neural Crest like Cell Differentiation Toward Functional Schwann Cells Through Sustained Erk1/2 Activation and YAP/TAZ Nuclear Translocation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402607. [PMID: 38952126 PMCID: PMC11633358 DOI: 10.1002/advs.202402607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Indexed: 07/03/2024]
Abstract
Neural Crest cells (NC) are a multipotent cell population that give rise to a multitude of cell types including Schwann cells (SC) in the peripheral nervous system (PNS). Immature SC interact with neuronal axons via the neuregulin 1 (NRG1) ligand present on the neuronal surface and ultimately form the myelin sheath. Multiple attempts to derive functional SC from pluripotent stem cells have met challenges with respect to expression of mature markers and axonal sorting. Here, they hypothesized that sustained signaling from immobilized NRG1 (iNRG1) might enhance the differentiation of NC derived from glabrous neonatal epidermis towards a SC phenotype. Using this strategy, NC derived SC expressed mature markers to similar levels as compared to explanted rat sciatic SC. Signaling studies revealed that sustained NRG1 signaling led to yes-associated protein 1 (YAP) activation and nuclear translocation. Furthermore, NC derived SC on iNRG1 exhibited mature SC function as they aligned with rat dorsal root ganglia (DRG) neurons in an in vitro coculture model; and most notably, aligned on neuronal axons upon implantation in a chick embryo model in vivo. Taken together their work demonstrated the importance of signaling dynamics in SC differentiation, aiming towards development of drug testing platforms for de-myelinating disorders.
Collapse
Affiliation(s)
- Georgios Tseropoulos
- Department of Chemical and Biological EngineeringUniversity at BuffaloBuffaloNY14260USA
| | - Pihu Mehrotra
- Department of Chemical and Biological EngineeringUniversity at BuffaloBuffaloNY14260USA
| | - Ashis Kumer Podder
- Department of Chemical and Biological EngineeringUniversity at BuffaloBuffaloNY14260USA
- Department of PharmacyBrac UniversityDhaka1212Bangladesh
| | - Emma Wilson
- Hunter James Kelly Research InstituteJacobs School of Medicine and Biomedical Sciences StateUniversity of New York at BuffaloBuffaloNY14203USA
- Department of BiochemistryJacobs School of Medicine and Biomedical SciencesState University of New York at BuffaloBuffaloNY14203USA
| | - Yali Zhang
- Department of Biostatistics and BioinformaticsRoswell Park Comprehensive Cancer CenterBuffaloNY14203USA
| | - Jianmin Wang
- Department of Biostatistics and BioinformaticsRoswell Park Comprehensive Cancer CenterBuffaloNY14203USA
| | - Alison Koontz
- Division of Biology and Biological EngineeringCalifornia Institute of TechnologyPasadenaCA91126USA
| | - Nan Papili Gao
- Department of Chemical and Biological EngineeringUniversity at BuffaloBuffaloNY14260USA
| | - Rudiyanto Gunawan
- Department of Chemical and Biological EngineeringUniversity at BuffaloBuffaloNY14260USA
- Center for CellGene and Tissue Engineering (CGTE)University at BuffaloBuffaloNY14260USA
| | - Song Liu
- Department of Biostatistics and BioinformaticsRoswell Park Comprehensive Cancer CenterBuffaloNY14203USA
| | - Laura M. Feltri
- Hunter James Kelly Research InstituteJacobs School of Medicine and Biomedical Sciences StateUniversity of New York at BuffaloBuffaloNY14203USA
- Department of BiochemistryJacobs School of Medicine and Biomedical SciencesState University of New York at BuffaloBuffaloNY14203USA
- Department of NeurologyJacobs School of Medicine and Biomedical SciencesState University of New York at BuffaloBuffaloNY14203USA
| | - Marianne E. Bronner
- Division of Biology and Biological EngineeringCalifornia Institute of TechnologyPasadenaCA91126USA
| | - Stelios T. Andreadis
- Department of Chemical and Biological EngineeringUniversity at BuffaloBuffaloNY14260USA
- Center for CellGene and Tissue Engineering (CGTE)University at BuffaloBuffaloNY14260USA
- Department of Biomedical EngineeringUniversity at BuffaloBuffaloNY14260USA
- Center of Excellence in Bioinformatics and Life SciencesBuffaloNY14203USA
| |
Collapse
|
6
|
Zhang X, Zhang W, Sun H, Wang H. The effects of exosomes originating from different cell sources on the differentiation of bone marrow mesenchymal stem cells into schwann cells. J Nanobiotechnology 2024; 22:220. [PMID: 38698449 PMCID: PMC11067703 DOI: 10.1186/s12951-024-02450-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 04/01/2024] [Indexed: 05/05/2024] Open
Abstract
BACKGROUND Bone marrow mesenchymal stem cells (BMSCs) can differentiate into Schwann cells (SCs) during peripheral nerve injury; in our previous research, we showed that SC-derived exosomes (SC-exos) played a direct induction role while fibroblast-derived exosomes (Fb-exos) had no obvious induction role. The induction role of neural stem cell (NSC)-derived exosomes (NSC-exos) has also been widely confirmed. However, no studies have compared the induction effects of these three types of cells at the same time. Therefore, by investigating the effect of these three cell-derived exosomes upon the induction of BMSCs to differentiate into SCs, this study explored the role of different exosomes in promoting the differentiation of stem cells into SCs cells, and conducted a comparison between the two groups by RNA sequencing to further narrow the range of target genes and related gene pathways in order to study their related mechanisms. MATERIALS AND METHODS We extracted exosomes from SCs, fibroblasts (Fb) and neural stem cells (NSC) and then investigated the ability of these exosomes to induce differentiation into BMSCs under different culture conditions. The expression levels of key proteins and gene markers were detected in induced cells by fluorescence immunoassays, western blotting and polymerase chain reaction (PCR); then, we statistically compared the relative induction effects under different conditions. Finally, we analyzed the three types of exosomes by RNA-seq to predict target genes and related gene pathways. RESULTS BMSCs were cultured by three media: conventional (no induction), pre-induction or pre-induction + original induction medium (ODM) with exosomes of the same cell origin under different culture conditions. When adding the three different types of exosomes separately, the overall induction of BMSCs to differentiate into SCs was significantly increased (P < 0.05). The induction ability was ranked as follows: pre-induction + ODM + exosome group > pre-induction + exosome group > non-induction + exosome group. Using exosomes from different cell sources under the same culture conditions, we observed the following trends under the three culture conditions: RSC96-exos group ≥ NSC-exos group > Fb-exos group. The overall ability to induce BMSCs into SCs was significantly greater in the RSC96-exos group and the NSC-exos group. Although there was no significant difference in induction efficiency when comparing these two groups, the overall induction ability of the RSC96-exos group was slightly higher than that of the NSC-exos group. By combining the differentiation induction results with the RNA-seq data, the three types of exosomes were divided into three comparative groups: RSC vs. NSC, RSC vs. Fb and NSC vs. Fb. We identified 203 differentially expressed mRNA target genes in these three groups. Two differentially expressed genes were upregulated simultaneously, namely riboflavin kinase (RFK, ENSRNOG00000022273) and ribosomal RNA processing 36 (Rrp36, ENSRNOG00000017836). We did not identify any co-upregulated target genes for the miRNAs, but did identify one target gene of the lncRNAs, namely ENSRNOG00000065005. Analysis identified 90 GO terms related to nerves and axons in the mRNAs; in addition, KEGG enrichment and GASA analysis identified 13 common differential expression pathways in the three groups. CONCLUSIONS Our analysis found that pre-induction + ODM + RSC96/NSC-exos culture conditions were most conducive with regards to induction and differentiation. RSC96-exos and NSC-exos exhibited significantly greater differentiation efficiency of BMSCs into SCs. Although there was no statistical difference, the data indicated a trend for RSC96-exos to be advantageous We identified 203 differentially expressed mRNAs between the three groups and two differentially expressed target mRNAs were upregulated, namely riboflavin kinase (RFK, ENSRNOG00000022273) and ribosomal RNA processing 36 (Rrp36, ENSRNOG00000017836). 90 GO terms were related to nerves and axons. Finally, we identified 13 common differentially expressed pathways across our three types of exosomes. It is hoped that the efficiency of BMSCs induction differentiation into SCs can be improved, bringing hope to patients and more options for clinical treatment.
Collapse
Affiliation(s)
- Xianxiang Zhang
- Department of Otolaryngology and Head and Neck Surgery, Beijing Luhe Hospital, Capital Medical University, Beijing, 101101, China
| | - Weiwei Zhang
- Department of Otolaryngology and Head and Neck Surgery, Beijing Luhe Hospital, Capital Medical University, Beijing, 101101, China
| | - Hao Sun
- Department of Otolaryngology and Head and Neck Surgery, Beijing Luhe Hospital, Capital Medical University, Beijing, 101101, China
| | - Hui Wang
- Department of Otolaryngology and Head and Neck Surgery, Beijing Luhe Hospital, Capital Medical University, Beijing, 101101, China.
| |
Collapse
|
7
|
Ao Q, Wen LL, Yu TH, Ma YZ, Mao XY, Ao TR, Javed R, Ten H, Matsuno A. Sequential expression of miR-221-3p and miR-338-3p in Schwann cells as a therapeutic strategy to promote nerve regeneration and functional recovery. Neural Regen Res 2023; 18:671-682. [DOI: 10.4103/1673-5374.350214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
8
|
Sohn EJ, Nam YK. The Transcription Factor TFCP2L1 is Associated with Myelination via miR708-5p Regulation in the Peripheral Nerve System. Neurochem Res 2021; 47:434-445. [PMID: 34581937 DOI: 10.1007/s11064-021-03457-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 08/25/2021] [Accepted: 09/22/2021] [Indexed: 11/25/2022]
Abstract
MicroRNAs (miRNAs) have been implicated in nerve injury and demyelination; however, their functions in peripheral nerves remain unclear. To determine the potential functions of miRNAs, an miRNA array was carried out. Here, miRNA array analysis of neuregulin-treated Schwann cells revealed 18 upregulated (> 2-fold) and 13 downregulated (> 2-fold) miRNAs. After sciatic nerve injury, miR708-5p was highly expressed in neuregulin-treated Schwann cells, whereas it was downregulated during postnatal development. A predicted functional interaction was found between miR708-5p and transcription factor CP2-like protein 1 (TFCP2L1) using a bioinformatics tool. This finding suggested that miR708-5p may regulate TFCP2L1. During sciatic nerve development, TFCP2L1 was upregulated on postnatal days 1 and 4, while it was downregulated after nerve axotomy and crush injury. Notably, TFCP2L1 was upregulated in cAMP-treated Schwann cells. We also found that activity of the myelin protein zero promoter was downregulated in TFCP2L1 siRNA-treated Schwann cells, whereas it was upregulated in TFCP2L1-overexpressing cells. Immunofluorescence analysis showed that TFCP2L1 was localized in Schwann cells. In addition, miR708-5p overexpression promoted migration of Schwann cells, while miR-708-5p inhibitor inhibited migration. miR708-5p inhibitor also blocked the migration of TFCP2L1 siRNA-treated Schwann cells. These findings indicate the functions of miR708-5p in TFCP2L1 regulation in the peripheral nervous system occur via regulation of Schwann cell migration.
Collapse
Affiliation(s)
- Eun Jung Sohn
- Department of Convergence Medical Sciences, School of Medicine, Pusan National University, Pusan National University, Yangsan, South Korea.
| | - Yun Kyung Nam
- Department of Molecular Neuroscience, College of Medicine, Dong-A University, Busan, South Korea
| |
Collapse
|
9
|
PITX1 inhibits the growth and proliferation of melanoma cells through regulation of SOX family genes. Sci Rep 2021; 11:18405. [PMID: 34526609 PMCID: PMC8443576 DOI: 10.1038/s41598-021-97791-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 08/30/2021] [Indexed: 01/04/2023] Open
Abstract
Melanoma is one of the most aggressive types of cancer wherein resistance to treatment prevails. Therefore, it is important to discover novel molecular targets of melanoma progression as potential treatments. Here we show that paired-like homeodomain transcription factor 1 (PITX1) plays a crucial role in the inhibition of melanoma progression through regulation of SRY-box transcription factors (SOX) gene family mRNA transcription. Overexpression of PITX1 in melanoma cell lines resulted in a reduction in cell proliferation and an increase in apoptosis. Additionally, analysis of protein levels revealed an antagonistic cross-regulation between SOX9 and SOX10. Interestingly, PITX1 binds to the SOX9 promoter region as a positive regulatory transcription factor; PITX1 mRNA expression levels were positively correlated with SOX9 expression, and negatively correlated with SOX10 expression in melanoma tissues. Furthermore, transcription of the long noncoding RNA (lncRNA), survival-associated mitochondrial melanoma-specific oncogenic noncoding RNA (SAMMSON), was decreased in PITX1-overexpressing cells. Taken together, the findings in this study indicate that PITX1 may act as a negative regulatory factor in the development and progression of melanoma via direct targeting of the SOX signaling.
Collapse
|
10
|
Stavrou M, Sargiannidou I, Georgiou E, Kagiava A, Kleopa KA. Emerging Therapies for Charcot-Marie-Tooth Inherited Neuropathies. Int J Mol Sci 2021; 22:6048. [PMID: 34205075 PMCID: PMC8199910 DOI: 10.3390/ijms22116048] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/29/2021] [Accepted: 05/31/2021] [Indexed: 12/12/2022] Open
Abstract
Inherited neuropathies known as Charcot-Marie-Tooth (CMT) disease are genetically heterogeneous disorders affecting the peripheral nerves, causing significant and slowly progressive disability over the lifespan. The discovery of their diverse molecular genetic mechanisms over the past three decades has provided the basis for developing a wide range of therapeutics, leading to an exciting era of finding treatments for this, until now, incurable group of diseases. Many treatment approaches, including gene silencing and gene replacement therapies, as well as small molecule treatments are currently in preclinical testing while several have also reached clinical trial stage. Some of the treatment approaches are disease-specific targeted to the unique disease mechanism of each CMT form, while other therapeutics target common pathways shared by several or all CMT types. As promising treatments reach the stage of clinical translation, optimal outcome measures, novel biomarkers and appropriate trial designs are crucial in order to facilitate successful testing and validation of novel treatments for CMT patients.
Collapse
Affiliation(s)
- Marina Stavrou
- Neuroscience Department, The Cyprus Institute of Neurology and Genetics, Cyprus School of Molecular Medicine, Nicosia 2371, Cyprus; (M.S.); (I.S.); (E.G.); (A.K.)
| | - Irene Sargiannidou
- Neuroscience Department, The Cyprus Institute of Neurology and Genetics, Cyprus School of Molecular Medicine, Nicosia 2371, Cyprus; (M.S.); (I.S.); (E.G.); (A.K.)
| | - Elena Georgiou
- Neuroscience Department, The Cyprus Institute of Neurology and Genetics, Cyprus School of Molecular Medicine, Nicosia 2371, Cyprus; (M.S.); (I.S.); (E.G.); (A.K.)
| | - Alexia Kagiava
- Neuroscience Department, The Cyprus Institute of Neurology and Genetics, Cyprus School of Molecular Medicine, Nicosia 2371, Cyprus; (M.S.); (I.S.); (E.G.); (A.K.)
| | - Kleopas A. Kleopa
- Neuroscience Department, The Cyprus Institute of Neurology and Genetics, Cyprus School of Molecular Medicine, Nicosia 2371, Cyprus; (M.S.); (I.S.); (E.G.); (A.K.)
- Center for Neuromuscular Diseases, The Cyprus Institute of Neurology and Genetics, Cyprus School of Molecular Medicine, Nicosia 2371, Cyprus
| |
Collapse
|
11
|
Epigenetic Modulation in Parkinson's Disease and Potential Treatment Therapies. Neurochem Res 2021; 46:1618-1626. [PMID: 33900517 DOI: 10.1007/s11064-021-03334-w] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 04/17/2021] [Accepted: 04/20/2021] [Indexed: 12/11/2022]
Abstract
In the recent past, huge emphasis has been given to the epigenetic alterations of the genes responsible for the cause of neurological disorders. Earlier, the scientists believed somatic changes and modifications in the genetic makeup of DNA to be the main cause of the neurodegenerative diseases. With the increase in understanding of the neural network and associated diseases, it was observed that alterations in the gene expression were not always originated by the change in the genetic sequence. For this reason, extensive research has been conducted to understand the role of epigenetics in the pathophysiology of several neurological disorders including Alzheimer's disease, Parkinson's disease and, Huntington's disease. In a healthy person, the epigenetic modifications play a crucial role in maintaining the homeostasis of a cell by either up-regulating or down-regulating the genes. Therefore, improved understanding of these modifications may provide better insight about the diseases and may serve as potential therapeutic targets for their treatment. The present review describes various epigenetic modifications involved in the pathology of Parkinson's Disease (PD) backed by multiple researches carried out to study the gene expression regulation related to the epigenetic alterations. Additionally, we will briefly go through the current scenario about the various treatment therapies including small molecules and multiple phytochemicals potent enough to reverse these alterations and the future directions for a better management of PD.
Collapse
|
12
|
Stevanovic M, Drakulic D, Lazic A, Ninkovic DS, Schwirtlich M, Mojsin M. SOX Transcription Factors as Important Regulators of Neuronal and Glial Differentiation During Nervous System Development and Adult Neurogenesis. Front Mol Neurosci 2021; 14:654031. [PMID: 33867936 PMCID: PMC8044450 DOI: 10.3389/fnmol.2021.654031] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 03/11/2021] [Indexed: 12/11/2022] Open
Abstract
The SOX proteins belong to the superfamily of transcription factors (TFs) that display properties of both classical TFs and architectural components of chromatin. Since the cloning of the Sox/SOX genes, remarkable progress has been made in illuminating their roles as key players in the regulation of multiple developmental and physiological processes. SOX TFs govern diverse cellular processes during development, such as maintaining the pluripotency of stem cells, cell proliferation, cell fate decisions/germ layer formation as well as terminal cell differentiation into tissues and organs. However, their roles are not limited to development since SOX proteins influence survival, regeneration, cell death and control homeostasis in adult tissues. This review summarized current knowledge of the roles of SOX proteins in control of central nervous system development. Some SOX TFs suspend neural progenitors in proliferative, stem-like state and prevent their differentiation. SOX proteins function as pioneer factors that occupy silenced target genes and keep them in a poised state for activation at subsequent stages of differentiation. At appropriate stage of development, SOX members that maintain stemness are down-regulated in cells that are competent to differentiate, while other SOX members take over their functions and govern the process of differentiation. Distinct SOX members determine down-stream processes of neuronal and glial differentiation. Thus, sequentially acting SOX TFs orchestrate neural lineage development defining neuronal and glial phenotypes. In line with their crucial roles in the nervous system development, deregulation of specific SOX proteins activities is associated with neurodevelopmental disorders (NDDs). The overview of the current knowledge about the link between SOX gene variants and NDDs is presented. We outline the roles of SOX TFs in adult neurogenesis and brain homeostasis and discuss whether impaired adult neurogenesis, detected in neurodegenerative diseases, could be associated with deregulation of SOX proteins activities. We present the current data regarding the interaction between SOX proteins and signaling pathways and microRNAs that play roles in nervous system development. Finally, future research directions that will improve the knowledge about distinct and various roles of SOX TFs in health and diseases are presented and discussed.
Collapse
Affiliation(s)
- Milena Stevanovic
- Laboratory for Human Molecular Genetics, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia.,Faculty of Biology, University of Belgrade, Belgrade, Serbia.,Serbian Academy of Sciences and Arts, Belgrade, Serbia
| | - Danijela Drakulic
- Laboratory for Human Molecular Genetics, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Andrijana Lazic
- Laboratory for Human Molecular Genetics, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Danijela Stanisavljevic Ninkovic
- Laboratory for Human Molecular Genetics, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Marija Schwirtlich
- Laboratory for Human Molecular Genetics, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Marija Mojsin
- Laboratory for Human Molecular Genetics, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
13
|
Yuan X, Wei Y, Ao T, Gong K, Sun Q, Zheng Z, Hagiwara H, Ao Q. Effects of microRNA-338 Transfection into Sciatic Nerve on Rats with Experimental Autoimmune Neuritis. J Mol Neurosci 2020; 71:713-723. [PMID: 32915416 DOI: 10.1007/s12031-020-01689-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 08/17/2020] [Indexed: 11/29/2022]
Abstract
Nerve demyelination or axonal lesions are characteristic of experimental autoimmune neuritis (EAN). Previous studies have demonstrated that microRNA-338 can regulate the differentiation and maturation of oligodendrocytes and Schwann cells and promote injured peripheral nerves in rats. In this study, we used microRNA-338 coded lentivirus vector (miR-338-LV) in a Lewis rat EAN model, in with the conjunction P0 peptide 180-199 which was injected into the footpads of animals to induce immunization. The clinical scores of miR-338-LV and intravenous immunoglobulin (IVIg) (positive drug) groups were significantly superior to those of untreated group at disease peak and disease plateau (p < 0.05). The nerve conduction velocity and the compound nerve action potential amplitude of miR-338-LV and IVIg groups increased significantly compared to those of the untreated group at disease peak (p < 0.01). At disease peak, myelin swelling, cavity formation, and lamellae separation showed improvement in miR-338-LV and IVIg groups compared to untreated group. S100 and NF200 expression in miR-338-LV and IVIg groups increased compared to that in untreated group. Iba1 and S100 co-expression in Schwann cells in miR-338-LV and IVIg groups decreased compared to that in untreated group, which was indicative of the reduced conversion of Schwann cells into inflammatory cells. Overall, miR-338-LV in sciatic nerves might improve neuromuscular function in EAN by inhibiting the conversion of Schwann cells into inflammatory cells.
Collapse
Affiliation(s)
- Xiaojing Yuan
- Department of Rehabilitation, Taian City Central Hospital, Taian, 271000, Shandong, China
| | - Yujun Wei
- College of life science, Tsinghua University, Beijing, 100084, China
| | - Tianrang Ao
- College of life science, Tsinghua University, Beijing, 100084, China
| | - Kai Gong
- College of life science, Tsinghua University, Beijing, 100084, China
| | - Qiangsan Sun
- Department of Rehabilitation, The Second Hospital, Jinan, 250033, Shandong, China
| | - Zuncheng Zheng
- Department of Rehabilitation, Taian City Central Hospital, Taian, 271000, Shandong, China.
| | - Haruo Hagiwara
- Department of Anatomy and Cell Biology, Teikyo University School of Medicine, Tokyo, Japan
| | - Qiang Ao
- Institute of Regulatory Science for Medical Device, Sichuan University, Chengdu, China. .,National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China.
| |
Collapse
|
14
|
Hisanaga SI, Wei R, Huo A, Tomomura M. LMTK1, a Novel Modulator of Endosomal Trafficking in Neurons. Front Mol Neurosci 2020; 13:112. [PMID: 32714146 PMCID: PMC7344150 DOI: 10.3389/fnmol.2020.00112] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 06/02/2020] [Indexed: 12/16/2022] Open
Abstract
Neurons extend long processes known as axons and dendrites, through which they communicate with each other. The neuronal circuits formed by the axons and dendrites are the structural basis of higher brain functions. The formation and maintenance of these processes are essential for physiological brain activities. Membrane components, both lipids, and proteins, that are required for process formation are supplied by vesicle transport. Intracellular membrane trafficking is regulated by a family of Rab small GTPases. A group of Rabs regulating endosomal trafficking has been studied mainly in nonpolarized culture cell lines, and little is known about their regulation in polarized neurons with long processes. As shown in our recent study, lemur tail (former tyrosine) kinase 1 (LMTK1), an as yet uncharacterized Ser/Thr kinase associated with Rab11-positive recycling endosomes, modulates the formation of axons, dendrites, and spines in cultured primary neurons. LMTK1 knockdown or knockout (KO) or the expression of a kinase-negative mutant stimulates the transport of endosomal vesicles in neurons, leading to the overgrowth of axons, dendrites, and spines. More recently, we found that LMTK1 regulates TBC1D9B Rab11 GAP and proposed the Cdk5/p35-LMTK1-TBC1D9B-Rab11 pathway as a signaling cascade that regulates endosomal trafficking. Here, we summarize the biochemical, cell biological, and physiological properties of LMTK1.
Collapse
Affiliation(s)
- Shin-Ichi Hisanaga
- Department of Biological Sciences, Tokyo Metropolitan University, Minami-Osawa Campus, Hachioji, Japan
| | - Ran Wei
- Department of Biological Sciences, Tokyo Metropolitan University, Minami-Osawa Campus, Hachioji, Japan
| | - Anni Huo
- Department of Biological Sciences, Tokyo Metropolitan University, Minami-Osawa Campus, Hachioji, Japan
| | - Mineko Tomomura
- Department of Oral Health Sciences, Meikai University School of Health Sciences, Urayasu, Japan
| |
Collapse
|
15
|
Aprato J, Sock E, Weider M, Elsesser O, Fröb F, Wegner M. Myrf guides target gene selection of transcription factor Sox10 during oligodendroglial development. Nucleic Acids Res 2020; 48:1254-1270. [PMID: 31828317 PMCID: PMC7026603 DOI: 10.1093/nar/gkz1158] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 11/25/2019] [Accepted: 11/28/2019] [Indexed: 12/13/2022] Open
Abstract
Oligodendrocytes generate myelin in the vertebrate central nervous system and thus ensure rapid propagation of neuronal activity. Their development is controlled by a network of transcription factors that function as determinants of cell identity or as temporally restricted stage-specific regulators. The continuously expressed Sox10 and Myrf, a factor induced during late development, are particularly important for terminal differentiation. How these factors function together mechanistically and influence each other, is not well understood. Here we show that Myrf not only cooperates with Sox10 during the induction of genes required for differentiation and myelin formation. Myrf also inhibits the activity of Sox10 on genes that are essential during earlier phases of oligodendroglial development. By characterization of the exact DNA-binding requirements of Myrf, we furthermore show that cooperative activation is a consequence of joint binding of Sox10 and Myrf to the same regulatory regions. In contrast, inhibition of Sox10-dependent gene activation occurs on genes that lack Myrf binding sites and likely involves physical interaction between Myrf and Sox10 followed by sequestration. These two opposite activities allow Myrf to redirect Sox10 from genes that it activates in oligodendrocyte precursor cells to genes that need to be induced during terminal differentiation.
Collapse
Affiliation(s)
- Jessica Aprato
- Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Elisabeth Sock
- Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Matthias Weider
- Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Olga Elsesser
- Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Franziska Fröb
- Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Michael Wegner
- Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- To whom correspondence should be addressed. Tel: +49 9131 85 24620;
| |
Collapse
|
16
|
Wang H, Davison M, Wang K, Xia T, Kramer M, Call K, Luo J, Wu X, Zuccarino R, Bacon C, Bai Y, Moran JJ, Gutmann L, Feely SME, Grider T, Rossor AM, Reilly MM, Svaren J, Shy ME. Transmembrane protease serine 5: a novel Schwann cell plasma marker for CMT1A. Ann Clin Transl Neurol 2020; 7:69-82. [PMID: 31833243 PMCID: PMC6952315 DOI: 10.1002/acn3.50965] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 11/13/2019] [Indexed: 12/27/2022] Open
Abstract
OBJECTIVE Development of biomarkers for Charcot-Marie-Tooth (CMT) disease is critical for implementing effective clinical trials. The most common form of CMT, type 1A, is caused by a genomic duplication surrounding the PMP22 gene. A recent report (Neurology 2018;90:e518-3524) showed elevation of neurofilament light (NfL) in plasma of CMT1A disease patients, which correlated with disease severity. However, no plasma/serum biomarker has been identified that is specific to Schwann cells, the most directly affected cells in CMT1A. METHODS We used the Olink immuno PCR platform to profile CMT1A patient (n = 47, 2 cohorts) and normal control plasma (n = 41, two cohorts) on five different Olink panels to screen 398 unique proteins. RESULTS The TMPRSS5 protein (Transmembrane protease serine 5) was elevated 2.07-fold (P = <0.0001) in two independent cohorts of CMT1A samples relative to controls. TMPRSS5 is most highly expressed in Schwann cells of peripheral nerve. Consistent with early myelination deficits in CMT1A, TMPRSS5 was not significantly correlated with disease score (CMTES-R, CMTNS-R), nerve conduction velocities (Ulnar CMAP, Ulnar MNCV), or with age. TMPRSS5 was not significantly elevated in smaller sample sets from patients with CMT2A, CMT2E, CMT1B, or CMT1X. The Olink immuno PCR assays confirmed elevated levels of NfL (average 1.58-fold, P < 0.0001), which correlated with CMT1A patient disease score. INTERPRETATION These data identify the first Schwann cell-specific protein that is elevated in plasma of CMT1A patients, and may provide a disease marker and a potentially treatment-responsive biomarker with good disease specificity for clinical trials.
Collapse
Affiliation(s)
- Hongge Wang
- Translational SciencesSanofi ResearchSanofiFraminghamMassachusetts
| | - Matthew Davison
- Translational SciencesSanofi ResearchSanofiFraminghamMassachusetts
| | - Kathryn Wang
- Translational SciencesSanofi ResearchSanofiFraminghamMassachusetts
| | - Tai‐He Xia
- Translational SciencesSanofi ResearchSanofiFraminghamMassachusetts
| | - Martin Kramer
- Translational SciencesSanofi ResearchSanofiFraminghamMassachusetts
| | - Katherine Call
- Translational SciencesSanofi ResearchSanofiFraminghamMassachusetts
| | - Jun Luo
- Research StatisticsSanofi ResearchSanofiFraminghamMassachusetts
| | - Xingyao Wu
- Department of NeurologyCarver College of MedicineUniversity of IowaIowa CityIowa
| | - Riccardo Zuccarino
- Department of NeurologyCarver College of MedicineUniversity of IowaIowa CityIowa
| | - Chelsea Bacon
- Department of NeurologyCarver College of MedicineUniversity of IowaIowa CityIowa
| | - Yunhong Bai
- Department of NeurologyCarver College of MedicineUniversity of IowaIowa CityIowa
| | - John J. Moran
- Waisman Center and Department of Comparative BiosciencesUniversity of WisconsinMadisonWisconsin
| | - Laurie Gutmann
- Department of NeurologyCarver College of MedicineUniversity of IowaIowa CityIowa
| | - Shawna M. E. Feely
- Department of NeurologyCarver College of MedicineUniversity of IowaIowa CityIowa
| | - Tiffany Grider
- Department of NeurologyCarver College of MedicineUniversity of IowaIowa CityIowa
| | - Alexander M. Rossor
- National Hospital for Neurology and NeurosurgeryUniversity College LondonLondonUnited Kingdom
| | - Mary M. Reilly
- National Hospital for Neurology and NeurosurgeryUniversity College LondonLondonUnited Kingdom
| | - John Svaren
- Waisman Center and Department of Comparative BiosciencesUniversity of WisconsinMadisonWisconsin
| | - Michael E. Shy
- Department of NeurologyCarver College of MedicineUniversity of IowaIowa CityIowa
| |
Collapse
|
17
|
Silva VM, Gomes JA, Tenório LPG, de Omena Neta GC, da Costa Paixão K, Duarte AKF, da Silva GCB, Ferreira RJS, Koike BDV, de Sales Marques C, da Silva Miguel RD, de Queiroz AC, Pereira LX, de Carvalho Fraga CA. Schwann cell reprogramming and lung cancer progression: a meta-analysis of transcriptome data. Oncotarget 2019; 10:7288-7307. [PMID: 31921388 PMCID: PMC6944448 DOI: 10.18632/oncotarget.27204] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 07/29/2019] [Indexed: 11/25/2022] Open
Abstract
Schwann cells were identified in the tumor surrounding area prior to initiate the invasion process underlying connective tissue. These cells promote cancer invasion through direct contact, while paracrine signaling and matrix remodeling are not sufficient to proceed. Considering the intertwined structure of signaling, regulatory, and metabolic processes within a cell, we employed a genome-scale biomolecular network. Accordingly, a meta-analysis of Schwann cells associated transcriptomic datasets was performed, and the core information on differentially expressed genes (DEGs) was obtained by statistical analyses. Gene set over-representation analyses was performed on core DEGs to identify significantly functional and pathway enrichment analysis between Schwann cells and, lung adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC). DEGs were further integrated with genome-scale human biomolecular networks. miRNAs were proposed by the reconstruction of a transcriptional and post-transcriptional regulatory network. Moreover, microarray-based transcriptome profiling was performed, and the prognostic power of selected dedifferentiated Schwann cell biomolecules was predicted. We observed that pathways associated with Schwann cells dedifferentiation was overexpressed in lung cancer samples. However, genes associated with Schwann cells migration inhibition system were downregulated. Besides, miRNA targeting those pathways were also deregulated. In this study, we report valuable data for further experimental and clinical analysis, because the proposed biomolecules have significant potential as systems biomarkers for screening or for therapeutic purposes in perineural invasion of lung cancer.
Collapse
Affiliation(s)
| | - Jessica Alves Gomes
- Department of Medicine, Federal University of Alagoas, Campus Arapiraca, Brazil
| | | | | | | | | | | | | | - Bruna Del Vechio Koike
- Department of Medicine, Federal University of the São Francisco Valley, Petrolina, Brazil
| | | | | | | | | | | |
Collapse
|
18
|
Carvalho CR, Oliveira JM, Reis RL. Modern Trends for Peripheral Nerve Repair and Regeneration: Beyond the Hollow Nerve Guidance Conduit. Front Bioeng Biotechnol 2019; 7:337. [PMID: 31824934 PMCID: PMC6882937 DOI: 10.3389/fbioe.2019.00337] [Citation(s) in RCA: 180] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 10/30/2019] [Indexed: 12/13/2022] Open
Abstract
Peripheral nerve repair and regeneration remains among the greatest challenges in tissue engineering and regenerative medicine. Even though peripheral nerve injuries (PNIs) are capable of some degree of regeneration, frail recovery is seen even when the best microsurgical technique is applied. PNIs are known to be very incapacitating for the patient, due to the deprivation of motor and sensory abilities. Since there is no optimal solution for tackling this problem up to this day, the evolution in the field is constant, with innovative designs of advanced nerve guidance conduits (NGCs) being reported every day. As a basic concept, a NGC should act as a physical barrier from the external environment, concomitantly acting as physical guidance for the regenerative axons across the gap lesion. NGCs should also be able to retain the naturally released nerve growth factors secreted by the damaged nerve stumps, as well as reducing the invasion of scar tissue-forming fibroblasts to the injury site. Based on the neurobiological knowledge related to the events that succeed after a nerve injury, neuronal subsistence is subjected to the existence of an ideal environment of growth factors, hormones, cytokines, and extracellular matrix (ECM) factors. Therefore, it is known that multifunctional NGCs fabricated through combinatorial approaches are needed to improve the functional and clinical outcomes after PNIs. The present work overviews the current reports dealing with the several features that can be used to improve peripheral nerve regeneration (PNR), ranging from the simple use of hollow NGCs to tissue engineered intraluminal fillers, or to even more advanced strategies, comprising the molecular and gene therapies as well as cell-based therapies.
Collapse
Affiliation(s)
- Cristiana R. Carvalho
- 3B's Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Guimarães, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
- The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Avepark, Guimarães, Portugal
| | - Joaquim M. Oliveira
- 3B's Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Guimarães, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
- The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Avepark, Guimarães, Portugal
| | - Rui L. Reis
- 3B's Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Guimarães, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
- The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Avepark, Guimarães, Portugal
| |
Collapse
|
19
|
Pantera H, Shy ME, Svaren J. Regulating PMP22 expression as a dosage sensitive neuropathy gene. Brain Res 2019; 1726:146491. [PMID: 31586623 DOI: 10.1016/j.brainres.2019.146491] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 09/30/2019] [Accepted: 10/01/2019] [Indexed: 12/21/2022]
Abstract
Structural variation in the human genome has emerged as a major cause of disease as genomic data have accumulated. One of the most common structural variants associated with human disease causes the heritable neuropathy known as Charcot-Marie-Tooth (CMT) disease type 1A. This 1.4 Mb duplication causes nearly half of the CMT cases that are genetically diagnosed. The PMP22 gene is highly induced in Schwann cells during development, although its precise role in myelin formation and homeostasis is still under active investigation. The PMP22 gene can be considered as a nucleoprotein complex with enzymatic activity to produce the PMP22 transcript, and the complex is allosterically regulated by transcription factors that respond to intracellular signals and epigenomic modifications. The control of PMP22 transcript levels has been one of the major therapeutic targets of therapy development, and this review summarizes those approaches as well as efforts to characterize the regulation of the PMP22 gene.
Collapse
Affiliation(s)
- Harrison Pantera
- Molecular and Cellular Pharmacology Training Program, University of Wisconsin, Madison, WI, USA
| | - Michael E Shy
- Department of Neurology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - John Svaren
- Waisman Center and Department of Comparative Biosciences, University of Wisconsin, Madison, WI, USA.
| |
Collapse
|
20
|
Rabie M, Yanay N, Fellig Y, Konikov-Rozenman J, Nevo Y. Improvement of motor conduction velocity in hereditary neuropathy of LAMA2-CMD dy 2J/dy 2J mouse model by glatiramer acetate. Clin Neurophysiol 2019; 130:1988-1994. [PMID: 31476705 DOI: 10.1016/j.clinph.2019.07.029] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 06/19/2019] [Accepted: 07/20/2019] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Glatiramer acetate (GA), an agent modulating the immune system, has been shown to cause significantly improved mobility and hind limb muscle strength in the dy2J/dy2J mouse model for LAMA2-congenital muscular dystrophy (LAMA2-CMD). In view of these findings and the prominent peripheral nervous system involvement in this laminin-α2 disorder we evaluated GA's effect on dy2J/dy2J motor nerve conduction electrophysiologically. METHODS Left sciatic-tibial motor nerve conduction studies were performed on wild type (WT) mice (n = 10), control dy2J/dy2J mice (n = 11), and GA treated dy2J/dy2J mice (n = 10) at 18 weeks of age. RESULTS Control dy2J/dy2J mice average velocities (34.49 ± 2.15 m/s) were significantly slower than WT (62.57 ± 2.23 m/s; p < 0.0005), confirming the clinical observation of hindlimb paresis in dy2J/dy2J mice attributed to peripheral neuropathy. GA treated dy2J/dy2J mice showed significantly improved average sciatic-tibial motor nerve conduction velocity versus control dy2J/dy2J (50.35 ± 2.9 m/s; p < 0.0005). CONCLUSION In this study we show for the first time improvement in motor nerve conduction velocity of LAMA2-CMD dy2J/dy2J mouse model's hereditary peripheral neuropathy following GA treatment. SIGNIFICANCE This study suggests a possible therapeutic effect of glatiramer acetate on hereditary peripheral neuropathy in this laminin-α2 disorder.
Collapse
Affiliation(s)
- Malcolm Rabie
- Institute of Neurology, Schneider Children's Medical Center of Israel, Tel-Aviv University, 14 Kaplan Street, Petach Tikva 49202, Israel; Pediatric Neuromuscular Laboratory, Felsenstein Medical Research Center, Tel-Aviv University, 14 Kaplan Street, Petach Tikva 49202, Israel
| | - Nurit Yanay
- Pediatric Neuromuscular Laboratory, Felsenstein Medical Research Center, Tel-Aviv University, 14 Kaplan Street, Petach Tikva 49202, Israel
| | - Yakov Fellig
- Department of Pathology, Hadassah-Hebrew-University-Medical-Center, Kiryat Hadassah P.O.B. 12000, Jerusalem 91120, Israel
| | - Jenya Konikov-Rozenman
- Pediatric Neuromuscular Laboratory, Felsenstein Medical Research Center, Tel-Aviv University, 14 Kaplan Street, Petach Tikva 49202, Israel
| | - Yoram Nevo
- Institute of Neurology, Schneider Children's Medical Center of Israel, Tel-Aviv University, 14 Kaplan Street, Petach Tikva 49202, Israel; Pediatric Neuromuscular Laboratory, Felsenstein Medical Research Center, Tel-Aviv University, 14 Kaplan Street, Petach Tikva 49202, Israel.
| |
Collapse
|
21
|
Sock E, Wegner M. Transcriptional control of myelination and remyelination. Glia 2019; 67:2153-2165. [PMID: 31038810 DOI: 10.1002/glia.23636] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 04/01/2019] [Accepted: 04/11/2019] [Indexed: 12/11/2022]
Abstract
Myelination is an evolutionary recent differentiation program that has been independently acquired in vertebrates by Schwann cells in the peripheral nervous system and oligodendrocytes in the central nervous system. Therefore, it is not surprising that regulating transcription factors differ substantially between both cell types. However, overall principles are similar as transcriptional control in Schwann cells and oligodendrocytes combines lineage determining and stage-specific factors in complex regulatory networks. Myelination does not only occur during development, but also as remyelination in the adult. In line with the different conditions during developmental myelination and remyelination and the distinctive properties of Schwann cells and oligodendrocytes, transcriptional regulation of remyelination exhibits unique features and differs between the two cell types. This review gives an overview of the current state in the field.
Collapse
Affiliation(s)
- Elisabeth Sock
- Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Michael Wegner
- Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
22
|
Lee JS, Kwak G, Kim HJ, Park HT, Choi BO, Hong YB. miR-381 Attenuates Peripheral Neuropathic Phenotype Caused by Overexpression of PMP22. Exp Neurobiol 2019; 28:279-288. [PMID: 31138995 PMCID: PMC6526106 DOI: 10.5607/en.2019.28.2.279] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 04/05/2019] [Accepted: 04/11/2019] [Indexed: 12/21/2022] Open
Abstract
Charcot-Marie Tooth disease type 1A (CMT1A), the major type of CMT, is caused by duplication of peripheral myelin protein 22 (PMP22) gene whose overexpression causes structural and functional abnormalities in myelination. We investigated whether miRNA-mediated regulation of PMP22 expression could reduce the expression level of PMP22, thereby alleviating the demyelinating neuropathic phenotype of CMT1A. We found that several miRNAs were down-regulated in C22 mouse, a CMT1A mouse model. Among them, miR-381 could target 3′ untranslated region (3′UTR) of PMP22 in vitro based on Western botting and quantitative Real Time-PCR (qRT-PCR) results. In vivo efficacy of miR-381 was assessed by administration of LV-miR-381, an miR-381 expressing lentiviral vector, into the sciatic nerve of C22 mice by a single injection at postnatal day 6 (p6). Administration of LV-miR-381 reduced expression level of PMP22 along with elevated level of miR-381 in the sciatic nerve. Rotarod performance analysis revealed that locomotor coordination of LV-miR-381 administered C22 mice was significantly enhanced from 8 weeks post administration. Electrophysiologically, increased motor nerve conduction velocity was observed in treated mice. Histologically, toluidine blue staining and electron microscopy revealed that structural abnormalities of myelination were improved in sciatic nerves of LV-miR-381 treated mice. Therefore, delivery of miR-381 ameliorated the phenotype of peripheral neuropathy in CMT1A mouse model by down-regulating PMP22 expression. These data suggest that miRNA can be used as a potent therapeutic strategy to control diseases with copy number variations such as CMT1A.
Collapse
Affiliation(s)
- Ji-Su Lee
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul 06351, Korea
| | - Geon Kwak
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul 06351, Korea
| | - Hye Jin Kim
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul 06351, Korea
| | - Hwan-Tae Park
- Department of Physiology, College of Medicine, Dong-A University, Busan 49201, Korea
| | - Byung-Ok Choi
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul 06351, Korea.,Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea
| | - Young Bin Hong
- Department of Biochemistry, College of Medicine, Dong-A University, Busan 49201, Korea
| |
Collapse
|
23
|
Cantone M, Küspert M, Reiprich S, Lai X, Eberhardt M, Göttle P, Beyer F, Azim K, Küry P, Wegner M, Vera J. A gene regulatory architecture that controls region-independent dynamics of oligodendrocyte differentiation. Glia 2019; 67:825-843. [PMID: 30730593 DOI: 10.1002/glia.23569] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 10/16/2018] [Accepted: 10/25/2018] [Indexed: 12/18/2022]
Abstract
Oligodendrocytes (OLs) facilitate information processing in the vertebrate central nervous system via axonal ensheathment. The structure and dynamics of the regulatory network that mediates oligodendrogenesis are poorly understood. We employed bioinformatics and meta-analysis of high-throughput datasets to reconstruct a regulatory network underpinning OL differentiation. From this network, we identified families of feedforward loops comprising the transcription factors (TFs) Olig2, Sox10, and Tcf7l2 and their targets. Among the targets, we found eight other TFs related to OL differentiation, suggesting a hierarchical architecture in which some TFs (Olig2, Sox10, and Tcf7l2) regulate via feedforward loops the expression of others (Sox2, Sox6, Sox11, Nkx2-2, Nkx6-2, Hes5, Myt1, and Myrf). Model simulations with a kinetic model reproduced the mechanisms of OL differentiation only when in the model, Sox10-mediated repression of Tcf7l2 by miR-338/miR-155 was introduced, a prediction confirmed in genetic functional experiments. Additional model simulations suggested that OLs from dorsal regions emerge through BMP/Sox9 signaling.
Collapse
Affiliation(s)
- Martina Cantone
- Laboratory of Systems Tumor Immunology, Hautklinik, Universitätsklinikum Erlangen and Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.,Faculty of Mechanical Engineering, Specialty Division for Systems Biotechnology, Technische Universität München, Munich, Germany
| | - Melanie Küspert
- Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
| | - Simone Reiprich
- Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
| | - Xin Lai
- Laboratory of Systems Tumor Immunology, Hautklinik, Universitätsklinikum Erlangen and Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Martin Eberhardt
- Laboratory of Systems Tumor Immunology, Hautklinik, Universitätsklinikum Erlangen and Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Peter Göttle
- Neuroregeneration, Department of Neurology, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - Felix Beyer
- Neuroregeneration, Department of Neurology, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - Kasum Azim
- Neuroregeneration, Department of Neurology, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - Patrick Küry
- Neuroregeneration, Department of Neurology, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - Michael Wegner
- Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
| | - Julio Vera
- Laboratory of Systems Tumor Immunology, Hautklinik, Universitätsklinikum Erlangen and Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
24
|
MicroRNAs 93-5p, 106b-5p, 17-5p, and 140-5p target the expression of early growth response protein 2 in Schwann cells. Neuroreport 2019; 30:241-246. [PMID: 30614908 DOI: 10.1097/wnr.0000000000001193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Early growth response protein 2 (EGR2) is an essential transcription factor for peripheral nerve myelination. Schwann cells (SCs), the peripheral myelin-forming glial cells, express high levels of EGR2 during postnatal myelination. In contrast, SCs exhibit low EGR2 expression during Wallerian degeneration after injury. In this study, we screened 10 potential microRNAs (miRNAs) (20a-5p, 137-5p, 140-5p, 148b-3p, 150-5p, 17-5p, 93-5p, 20b-5p, 106b-5p, and 152-3p) that potentially target EGR2 using miRNA algorithms and identified that miRNAs 106b-5p, 140-5p, 93-5p, and 17-5p target EGR2 in SCs. These miRNAs directly target EGR2 by binding to the 3'-untranslated region to suppress EGR2 mRNA levels. Additionally, the levels of miRNAs 93-5p, 106b-5p, 17-5p, and 140-5p were decreased in the sciatic nerves during postnatal development; however, these miRNAs were increased on day 1 after sciatic nerve injury. Taken together, these findings suggest that the expression of EGR2 during postnatal development and Wallerian degeneration could be regulated by the inverse expression of miRNAs 106b-5p, 140-5p, 93-5p, and 17-5p, which target EGR2.
Collapse
|
25
|
Qing L, Chen H, Tang J, Jia X. Exosomes and Their MicroRNA Cargo: New Players in Peripheral Nerve Regeneration. Neurorehabil Neural Repair 2018; 32:765-776. [PMID: 30223738 PMCID: PMC6146407 DOI: 10.1177/1545968318798955] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Peripheral nerve injury is a major clinical problem and often results in a poor functional recovery. Despite obvious clinical need, treatment strategies have been largely suboptimal. In the nervous system, exosomes, which are nanosized extracellular vesicles, play a critical role in mediating intercellular communication. More specifically, microRNA carried by exosomes are involved in various key processes such as nerve and vascular regeneration, and exosomes originating from Schwann cells, macrophages, and mesenchymal stem cells can promote peripheral nerve regeneration. In this review, the current knowledge of exosomes' and their miRNA cargo's role in peripheral nerve regeneration are summarized. The possible future roles of exosomes in therapy and the potential for microRNA-containing exosomes to treat peripheral nerve injuries are also discussed.
Collapse
Affiliation(s)
- Liming Qing
- Department of Hand & Microsurgery, Xiangya Hospital of
Central South University, Changsha, Hunan, 410008
- Department of Neurosurgery, University of Maryland School of
Medicine, Baltimore, MD 21201, USA
| | - Huanwen Chen
- Department of Neurosurgery, University of Maryland School of
Medicine, Baltimore, MD 21201, USA
| | - Juyu Tang
- Department of Hand & Microsurgery, Xiangya Hospital of
Central South University, Changsha, Hunan, 410008
| | - Xiaofeng Jia
- Department of Neurosurgery, University of Maryland School of
Medicine, Baltimore, MD 21201, USA
- Department of Orthopedics, University of Maryland School of
Medicine, Baltimore, MD 21201, USA
- Department of Anatomy and Neurobiology, University of Maryland
School of Medicine, Baltimore, MD 21201, USA
- Department of Biomedical Engineering, Johns Hopkins University
School of Medicine, Baltimore, MD 21205, USA
- Department of Anesthesiology and Critical Care Medicine, Johns
Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
26
|
Rizzolio S, Cagnoni G, Battistini C, Bonelli S, Isella C, Van Ginderachter JA, Bernards R, Di Nicolantonio F, Giordano S, Tamagnone L. Neuropilin-1 upregulation elicits adaptive resistance to oncogene-targeted therapies. J Clin Invest 2018; 128:3976-3990. [PMID: 29953416 DOI: 10.1172/jci99257] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 06/22/2018] [Indexed: 12/14/2022] Open
Abstract
Cancer cell dependence on activated oncogenes is therapeutically targeted, but acquired resistance is virtually unavoidable. Here we show that the treatment of addicted melanoma cells with BRAF inhibitors, and of breast cancer cells with HER2-targeted drugs, led to an adaptive rise in neuropilin-1 (NRP1) expression, which is crucial for the onset of acquired resistance to therapy. Moreover, NRP1 levels dictated the efficacy of MET oncogene inhibitors in addicted stomach and lung carcinoma cells. Mechanistically, NRP1 induced a JNK-dependent signaling cascade leading to the upregulation of alternative effector kinases EGFR or IGF1R, which in turn sustained cancer cell growth and mediated acquired resistance to BRAF, HER2, or MET inhibitors. Notably, the combination with NRP1-interfering molecules improved the efficacy of oncogene-targeted drugs and prevented or even reversed the onset of resistance in cancer cells and tumor models. Our study provides the rationale for targeting the NRP1-dependent upregulation of tyrosine kinases, which are responsible for loss of responsiveness to oncogene-targeted therapies.
Collapse
Affiliation(s)
- Sabrina Rizzolio
- Candiolo Cancer Institute-FPO, IRCCS, Candiolo, Italy.,Oncology Department, University of Torino, Turin, Italy
| | - Gabriella Cagnoni
- Candiolo Cancer Institute-FPO, IRCCS, Candiolo, Italy.,Oncology Department, University of Torino, Turin, Italy
| | - Chiara Battistini
- Candiolo Cancer Institute-FPO, IRCCS, Candiolo, Italy.,Oncology Department, University of Torino, Turin, Italy
| | - Stefano Bonelli
- Myeloid Cell Immunology Lab, VIB Center for Inflammation Research, Brussels, Belgium.,Lab of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Claudio Isella
- Candiolo Cancer Institute-FPO, IRCCS, Candiolo, Italy.,Oncology Department, University of Torino, Turin, Italy
| | - Jo A Van Ginderachter
- Myeloid Cell Immunology Lab, VIB Center for Inflammation Research, Brussels, Belgium.,Lab of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - René Bernards
- Division of Molecular Carcinogenesis, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Federica Di Nicolantonio
- Candiolo Cancer Institute-FPO, IRCCS, Candiolo, Italy.,Oncology Department, University of Torino, Turin, Italy
| | - Silvia Giordano
- Candiolo Cancer Institute-FPO, IRCCS, Candiolo, Italy.,Oncology Department, University of Torino, Turin, Italy
| | - Luca Tamagnone
- Candiolo Cancer Institute-FPO, IRCCS, Candiolo, Italy.,Oncology Department, University of Torino, Turin, Italy
| |
Collapse
|
27
|
Faroni A, Melfi S, Castelnovo LF, Bonalume V, Colleoni D, Magni P, Araúzo-Bravo MJ, Reinbold R, Magnaghi V. GABA-B1 Receptor-Null Schwann Cells Exhibit Compromised In Vitro Myelination. Mol Neurobiol 2018; 56:1461-1474. [PMID: 29948947 DOI: 10.1007/s12035-018-1158-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 05/28/2018] [Indexed: 12/11/2022]
Abstract
GABA-B receptors are important for Schwann cell (SC) commitment to a non-myelinating phenotype during development. However, the P0-GABA-B1fl/fl conditional knockout mice, lacking the GABA-B1 receptor specifically in SCs, also presented axon modifications, suggesting SC non-autonomous effects through the neuronal compartment. In this in vitro study, we evaluated whether the specific deletion of the GABA-B1 receptor in SCs may induce autonomous or non-autonomous cross-changes in sensory dorsal root ganglia (DRG) neurons. To this end, we performed an in vitro biomolecular and transcriptomic analysis of SC and DRG neuron primary cultures from P0-GABA-B1fl/fl mice. We found that cells from conditional P0-GABA-B1fl/fl mice exhibited proliferative, migratory and myelinating alterations. Moreover, we found transcriptomic changes in novel molecules that are involved in peripheral neuron-SC interaction.
Collapse
Affiliation(s)
- Alessandro Faroni
- Blond McIndoe Laboratories, Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Simona Melfi
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via G. Balzaretti 9, 20133, Milan, Italy
| | - Luca Franco Castelnovo
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via G. Balzaretti 9, 20133, Milan, Italy
| | - Veronica Bonalume
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via G. Balzaretti 9, 20133, Milan, Italy
| | - Deborah Colleoni
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via G. Balzaretti 9, 20133, Milan, Italy
| | - Paolo Magni
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via G. Balzaretti 9, 20133, Milan, Italy
| | - Marcos J Araúzo-Bravo
- Computational Biology and Systems Biomedicine, Biodonostia Health Research Institute, San Sebastián, Spain.,Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Rolland Reinbold
- Institute of Biomedical Technologies, National Research Council, Milan, Italy
| | - Valerio Magnaghi
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via G. Balzaretti 9, 20133, Milan, Italy.
| |
Collapse
|
28
|
Weiner AMJ. MicroRNAs and the neural crest: From induction to differentiation. Mech Dev 2018; 154:98-106. [PMID: 29859253 DOI: 10.1016/j.mod.2018.05.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 05/18/2018] [Accepted: 05/28/2018] [Indexed: 01/06/2023]
Abstract
MicroRNAs are small noncoding RNAs that can control gene expression by base pairing to partially complementary mRNAs. Regulation by microRNAs plays essential roles in diverse biological processes such as neural crest formation during embryonic development. The neural crest is a multipotent cell population that develops from the dorsal neural fold of vertebrate embryos in order to migrate extensively and differentiate into a variety of tissues. Gene regulatory networks that coordinate neural crest cell specification and differentiation have been considerably studied so far. Although it is known that microRNAs play important roles in neural crest development, posttranscriptional regulation by microRNAs has not been deeply characterized yet. This review is focused on the microRNAs identified so far in order to regulate gene expression of neural crest cells during vertebrate development.
Collapse
Affiliation(s)
- Andrea M J Weiner
- Instituto de Biología Molecular y Celular de Rosario (IBR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), Ocampo y Esmeralda, S2000EZP Rosario, Argentina.
| |
Collapse
|
29
|
Sohn EJ, Park HT. MicroRNA Mediated Regulation of Schwann Cell Migration and Proliferation in Peripheral Nerve Injury. BIOMED RESEARCH INTERNATIONAL 2018; 2018:8198365. [PMID: 29854793 PMCID: PMC5952561 DOI: 10.1155/2018/8198365] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 03/26/2018] [Indexed: 11/17/2022]
Abstract
Schwann cells (SCs) contribute to nerve repair following injury; however, the underlying molecular mechanism is poorly understood. MicroRNAs (miRNAs), which are short noncoding RNAs, have been shown to play a role in neuronal disease. In this work, we show that miRNAs regulate the peripheral nerve system by modulating the migration and proliferation of SCs. Thus, miRNAs expressed in peripheral nerves may provide a potential therapeutic target for peripheral nerve injury or repair.
Collapse
Affiliation(s)
- Eun Jung Sohn
- Peripheral Neuropathy Research Center, Department of Physiology, College of Medicine, Dong-A University, Busan, Republic of Korea
| | - Hwan Tae Park
- Peripheral Neuropathy Research Center, Department of Physiology, College of Medicine, Dong-A University, Busan, Republic of Korea
| |
Collapse
|
30
|
Musumeci G, Leggio GM, Marzagalli R, Al-Badri G, Drago F, Castorina A. Identification of Dysregulated microRNA Networks in Schwann Cell-Like Cultures Exposed to Immune Challenge: Potential Crosstalk with the Protective VIP/PACAP Neuropeptide System. Int J Mol Sci 2018; 19:ijms19040981. [PMID: 29587404 PMCID: PMC5979605 DOI: 10.3390/ijms19040981] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 03/23/2018] [Accepted: 03/23/2018] [Indexed: 12/21/2022] Open
Abstract
Following peripheral nerve injury, dysregulations of certain non-coding microRNAs (miRNAs) occur in Schwann cells. Whether these alterations are the result of local inflammation and/or correlate with perturbations in the expression profile of the protective vasoactive intestinal peptide (VIP)/pituitary adenylate cyclase-activating polypeptide (PACAP) system is currently unknown. To address these issues, we aimed at profiling the expression of selected miRNAs in the rat RT4 Schwann cell line. Cells exposed to lipopolysaccharide (LPS), to mimic the local inflammatory milieu, were appraised by real-time qPCR, Western blot and ELISAs. We found that upon LPS treatment, levels of pro-inflammatory cytokines (IL-1β, -6, -18, -17A, MCP-1 and TNFα) increased in a time-dependent manner. Unexpectedly, the expression levels of VIP and PACAP were also increased. Conversely, levels of VPAC1 and VPAC2 receptors were reduced. Downregulated miRNAs included miR-181b, -145, -27a, -340 and -132 whereas upregulated ones were miR-21, -206, -146a, -34a, -155, -204 and -29a, respectively. Regression analyses revealed that a subset of the identified miRNAs inversely correlated with the expression of VPAC1 and VPAC2 receptors. In conclusion, these findings identified a novel subset of miRNAs that are dysregulated by immune challenge whose activities might elicit a regulatory function on the VIP/PACAP system.
Collapse
Affiliation(s)
- Giuseppe Musumeci
- Section of Human Anatomy and Histology, Department of Biomedical and Biotechnological Sciences, University of Catania, via S. Sofia, 87, 95123 Catania, Italy.
| | - Gian Marco Leggio
- Section of Pharmacology, Department of Biomedical and Biotechnological Sciences, "Torre Biologica", University of Catania, via S. Sofia, 97, 95123 Catania, Italy.
| | - Rubina Marzagalli
- Section of Human Anatomy and Histology, Department of Biomedical and Biotechnological Sciences, University of Catania, via S. Sofia, 87, 95123 Catania, Italy.
| | - Ghaith Al-Badri
- School of Life Sciences, Faculty of Science, University of Technology Sydney, P.O. Box 123, Broadway, Sydney NSW 2007, Australia.
| | - Filippo Drago
- Section of Pharmacology, Department of Biomedical and Biotechnological Sciences, "Torre Biologica", University of Catania, via S. Sofia, 97, 95123 Catania, Italy.
| | - Alessandro Castorina
- School of Life Sciences, Faculty of Science, University of Technology Sydney, P.O. Box 123, Broadway, Sydney NSW 2007, Australia.
- Discipline of Anatomy and Histology, School of Medical Sciences, the University of Sydney, Sydney NSW 2006, Australia.
| |
Collapse
|
31
|
Lin HP, Oksuz I, Svaren J, Awatramani R. Egr2-dependent microRNA-138 is dispensable for peripheral nerve myelination. Sci Rep 2018; 8:3817. [PMID: 29491350 PMCID: PMC5830491 DOI: 10.1038/s41598-018-22010-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 02/14/2018] [Indexed: 12/27/2022] Open
Abstract
Recent studies have elucidated the crucial role for microRNAs in peripheral nerve myelination by ablating components of the microRNA synthesis machinery. Few studies have focused on the role of individual microRNAs. To fill this gap, we focused this study on miR-138, which was shown to be drastically reduced in Dicer1 and Dgcr8 knockout mice with hypomyelinating phenotypes and to potentially target the negative regulators of Schwann cell differentiation. Here, we show that of two miR-138 encoding loci, mir-138-1 is the predominant locus transcribed in Schwann cells. mir-138-1 is transcriptionally upregulated during myelination and downregulated upon nerve injury. EGR2 is required for mir-138-1 transcription during development, and both SOX10 and EGR2 bind to an active enhancer near the mir-138-1 locus. Based on expression analyses, we hypothesized that miR-138 facilitates the transition between undifferentiated Schwann cells and myelinating Schwann cells. However, in conditional knockouts, we could not detect significant changes in Schwann cell proliferation, cell cycle exit, or myelination. Overall, our results demonstrate that miR-138 is an Egr2-dependent microRNA but is dispensable for Schwann cell myelination.
Collapse
Affiliation(s)
- Hsin-Pin Lin
- Department of Neurology and Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Idil Oksuz
- Department of Neurology and Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - John Svaren
- Waisman Center and Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Rajeshwar Awatramani
- Department of Neurology and Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.
| |
Collapse
|
32
|
Li WY, Zhang WT, Cheng YX, Liu YC, Zhai FG, Sun P, Li HT, Deng LX, Zhu XF, Wang Y. Inhibition of KLF7-Targeting MicroRNA 146b Promotes Sciatic Nerve Regeneration. Neurosci Bull 2018; 34:419-437. [PMID: 29356943 DOI: 10.1007/s12264-018-0206-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 10/28/2017] [Indexed: 12/12/2022] Open
Abstract
A previous study has indicated that Krüppel-like factor 7 (KLF7), a transcription factor that stimulates Schwann cell (SC) proliferation and axonal regeneration after peripheral nerve injury, is a promising therapeutic transcription factor in nerve injury. We aimed to identify whether inhibition of microRNA-146b (miR-146b) affected SC proliferation, migration, and myelinated axon regeneration following sciatic nerve injury by regulating its direct target KLF7. SCs were transfected with miRNA lentivirus, miRNA inhibitor lentivirus, or KLF7 siRNA lentivirus in vitro. The expression of miR146b and KLF7, as well as SC proliferation and migration, were subsequently evaluated. In vivo, an acellular nerve allograft (ANA) followed by injection of GFP control vector or a lentiviral vector encoding an miR-146b inhibitor was used to assess the repair potential in a model of sciatic nerve gap. miR-146b directly targeted KLF7 by binding to the 3'-UTR, suppressing KLF7. Up-regulation of miR-146b and KLF7 knockdown significantly reduced the proliferation and migration of SCs, whereas silencing miR-146b resulted in increased proliferation and migration. KLF7 protein was localized in SCs in which miR-146b was expressed in vivo. Similarly, 4 weeks after the ANA, anti-miR-146b increased KLF7 and its target gene nerve growth factor cascade, promoting axonal outgrowth. Closer analysis revealed improved nerve conduction and sciatic function index score, and enhanced expression of neurofilaments, P0 (anti-peripheral myelin), and myelinated axon regeneration. Our findings provide new insight into the regulation of KLF7 by miR-146b during peripheral nerve regeneration and suggest a potential therapeutic strategy for peripheral nerve injury.
Collapse
Affiliation(s)
- Wen-Yuan Li
- Department of Anatomy, Mudanjiang College of Medicine, Mudanjiang, 157011, China
| | - Wei-Ting Zhang
- The Affiliated Hongqi Hospital, Mudanjiang College of Medicine, Mudanjiang, 157011, China
| | - Yong-Xia Cheng
- Department of Pathology, Mudanjiang College of Medicine, Mudanjiang, 157011, China
| | - Yan-Cui Liu
- Department of Anatomy, Mudanjiang College of Medicine, Mudanjiang, 157011, China
| | - Feng-Guo Zhai
- Department of Pharmacy, Mudanjiang College of Medicine, Mudanjiang, 157011, China
| | - Ping Sun
- Department of Anatomy, Mudanjiang College of Medicine, Mudanjiang, 157011, China
| | - Hui-Ting Li
- The Affiliated Hongqi Hospital, Mudanjiang College of Medicine, Mudanjiang, 157011, China
| | - Ling-Xiao Deng
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Xiao-Feng Zhu
- Department of Anatomy, Mudanjiang College of Medicine, Mudanjiang, 157011, China.
| | - Ying Wang
- Department of Anatomy, Mudanjiang College of Medicine, Mudanjiang, 157011, China.
| |
Collapse
|
33
|
Ward NJ, Green D, Higgins J, Dalmay T, Münsterberg A, Moxon S, Wheeler GN. microRNAs associated with early neural crest development in Xenopus laevis. BMC Genomics 2018; 19:59. [PMID: 29347911 PMCID: PMC5774138 DOI: 10.1186/s12864-018-4436-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 01/04/2018] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The neural crest (NC) is a class of transitory stem cell-like cells unique to vertebrate embryos. NC cells arise within the dorsal neural tube where they undergo an epithelial to mesenchymal transition in order to migrate and differentiate throughout the developing embryo. The derivative cell types give rise to multiple tissues, including the craniofacial skeleton, peripheral nervous system and skin pigment cells. Several well-studied gene regulatory networks underpin NC development, which when disrupted can lead to various neurocristopathies such as craniofrontonasal dysplasia, DiGeorge syndrome and some forms of cancer. Small RNAs, such as microRNAs (miRNAs) are non-coding RNA molecules important in post-transcriptional gene silencing and critical for cellular regulation of gene expression. RESULTS To uncover novel small RNAs in NC development we used high definition adapters and next generation sequencing of libraries derived from ectodermal explants of Xenopus laevis embryos induced to form neural and NC tissue. Ectodermal and blastula animal pole (blastula) stage tissues were also sequenced. We show that miR-427 is highly abundant in all four tissue types though in an isoform specific manner and we define a set of 11 miRNAs that are enriched in the NC. In addition, we show miR-301a and miR-338 are highly expressed in both the NC and blastula suggesting a role for these miRNAs in maintaining the stem cell-like phenotype of NC cells. CONCLUSION We have characterised the miRNAs expressed in Xenopus embryonic explants treated to form ectoderm, neural or NC tissue. This has identified novel tissue specific miRNAs and highlighted differential expression of miR-427 isoforms.
Collapse
Affiliation(s)
- Nicole J. Ward
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ UK
| | - Darrell Green
- Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ UK
| | - Janet Higgins
- Regulatory Genomics, Earlham Institute, Norwich Research Park, Norwich, NR4 7UZ UK
| | - Tamas Dalmay
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ UK
| | - Andrea Münsterberg
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ UK
| | - Simon Moxon
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ UK
| | - Grant N. Wheeler
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ UK
| |
Collapse
|
34
|
Wohl SG, Jorstad NL, Levine EM, Reh TA. Müller glial microRNAs are required for the maintenance of glial homeostasis and retinal architecture. Nat Commun 2017; 8:1603. [PMID: 29150673 PMCID: PMC5693933 DOI: 10.1038/s41467-017-01624-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 10/02/2017] [Indexed: 01/21/2023] Open
Abstract
To better understand the roles of microRNAs in glial function, we used a conditional deletion of Dicer1 (Dicer-CKOMG) in retinal Müller glia (MG). Dicer1 deletion from the MG leads to an abnormal migration of the cells as early as 1 month after the deletion. By 6 months after Dicer1 deletion, the MG form large aggregations and severely disrupt normal retinal architecture and function. The most highly upregulated gene in the Dicer-CKOMG MG is the proteoglycan Brevican (Bcan) and overexpression of Bcan results in similar aggregations of the MG in wild-type retina. One potential microRNA that regulates Bcan is miR-9, and overexpression of miR-9 can partly rescue the effects of Dicer1 deletion on the MG phenotype. We also find that MG from retinitis pigmentosa patients display an increase in Brevican immunoreactivity at sites of MG aggregation, linking the retinal remodeling that occurs in chronic disease with microRNAs.
Collapse
Affiliation(s)
- Stefanie G Wohl
- Department of Biological Structure, University of Washington, Health Sciences Center, Box 357420, 1959 Pacific Street NE, Seattle, WA, 98195, USA
| | - Nikolas L Jorstad
- Department of Biological Structure, University of Washington, Health Sciences Center, Box 357420, 1959 Pacific Street NE, Seattle, WA, 98195, USA
| | - Edward M Levine
- Department of Ophthalmology and Visual Sciences, Vanderbilt University, Nashville, TN, 37232, USA
| | - Thomas A Reh
- Department of Biological Structure, University of Washington, Health Sciences Center, Box 357420, 1959 Pacific Street NE, Seattle, WA, 98195, USA.
| |
Collapse
|
35
|
Ghibaudi M, Boido M, Vercelli A. Functional integration of complex miRNA networks in central and peripheral lesion and axonal regeneration. Prog Neurobiol 2017; 158:69-93. [PMID: 28779869 DOI: 10.1016/j.pneurobio.2017.07.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 07/24/2017] [Accepted: 07/28/2017] [Indexed: 01/06/2023]
Abstract
New players are emerging in the game of peripheral and central nervous system injury since their physiopathological mechanisms remain partially elusive. These mechanisms are characterized by several molecules whose activation and/or modification following a trauma is often controlled at transcriptional level. In this scenario, microRNAs (miRNAs/miRs) have been identified as main actors in coordinating important molecular pathways in nerve or spinal cord injury (SCI). miRNAs are small non-coding RNAs whose functionality at network level is now emerging as a new level of complexity. Indeed they can act as an organized network to provide a precise control of several biological processes. Here we describe the functional synergy of some miRNAs in case of SCI and peripheral damage. In particular we show how several small RNAs can cooperate in influencing simultaneously the molecular pathways orchestrating axon regeneration, inflammation, apoptosis and remyelination. We report about the networks for which miRNA-target bindings have been experimentally demonstrated or inferred based on target prediction data: in both cases, the connection between one miRNA and its downstream pathway is derived from a validated observation or is predicted from the literature. Hence, we discuss the importance of miRNAs in some pathological processes focusing on their functional structure as participating in a cooperative and/or convergence network.
Collapse
Affiliation(s)
- M Ghibaudi
- Department of Neuroscience "Rita Levi Montalcini", Neuroscience Institute Cavalieri Ottolenghi, University of Torino, Italian Institute of Neuroscience, Italy.
| | - M Boido
- Department of Neuroscience "Rita Levi Montalcini", Neuroscience Institute Cavalieri Ottolenghi, University of Torino, Italian Institute of Neuroscience, Italy
| | - A Vercelli
- Department of Neuroscience "Rita Levi Montalcini", Neuroscience Institute Cavalieri Ottolenghi, University of Torino, Italian Institute of Neuroscience, Italy
| |
Collapse
|
36
|
Reiprich S, Cantone M, Weider M, Baroti T, Wittstatt J, Schmitt C, Küspert M, Vera J, Wegner M. Transcription factor Sox10 regulates oligodendroglial Sox9 levels via microRNAs. Glia 2017; 65:1089-1102. [PMID: 28370559 DOI: 10.1002/glia.23146] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 03/15/2017] [Accepted: 03/16/2017] [Indexed: 01/12/2023]
Abstract
During development of myelin-forming oligodendrocytes in the central nervous system the two closely related transcription factors Sox9 and Sox10 play essential roles that are partly shared and partly unique. Whereas Sox9 primarily functions during oligodendroglial specification, Sox10 is uniquely required to induce terminal differentiation and myelination. During this process, Sox10 protein levels rise substantially. As this coincides with a reciprocal decrease in Sox9, we postulated that Sox10 influences Sox9 amounts in differentiating oligodendrocytes. Here we show that Sox9 levels are indeed inversely coupled to Sox10 levels such that Sox10 deletion in oligodendroglial cells evokes a reciprocal increase in Sox9. We furthermore provide evidence that this coupling involves upregulation of microRNAs miR335 and miR338 as direct transcriptional targets of Sox10. The two microRNAs in turn recognize the 3'-UTR of Sox9 mRNA and may thereby reduce Sox9 protein levels posttranscriptionally in oligodendroglial cells. Such a mechanism may enable oligodendroglial cells to adapt the ratio of both related Sox proteins in a manner required for successful lineage progression and differentiation. Mathematical modeling furthermore shows that the identified regulatory circuit has the potential to convert a transient stimulus into an irreversible switch of cellular properties and may thus contribute to terminal differentiation of oligodendrocytes.
Collapse
Affiliation(s)
- Simone Reiprich
- Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Martina Cantone
- Department of Dermatology, Laboratory of Systems Tumor Immunology, Erlangen University Hospital, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Matthias Weider
- Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Tina Baroti
- Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Jan Wittstatt
- Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Christian Schmitt
- Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Melanie Küspert
- Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Julio Vera
- Department of Dermatology, Laboratory of Systems Tumor Immunology, Erlangen University Hospital, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Michael Wegner
- Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
37
|
Gopinath C, Law WD, Rodríguez-Molina JF, Prasad AB, Song L, Crawford GE, Mullikin JC, Svaren J, Antonellis A. Stringent comparative sequence analysis reveals SOX10 as a putative inhibitor of glial cell differentiation. BMC Genomics 2016; 17:887. [PMID: 27821050 PMCID: PMC5100263 DOI: 10.1186/s12864-016-3167-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 10/18/2016] [Indexed: 01/22/2023] Open
Abstract
Background The transcription factor SOX10 is essential for all stages of Schwann cell development including myelination. SOX10 cooperates with other transcription factors to activate the expression of key myelin genes in Schwann cells and is therefore a context-dependent, pro-myelination transcription factor. As such, the identification of genes regulated by SOX10 will provide insight into Schwann cell biology and related diseases. While genome-wide studies have successfully revealed SOX10 target genes, these efforts mainly focused on myelinating stages of Schwann cell development. We propose that less-biased approaches will reveal novel functions of SOX10 outside of myelination. Results We developed a stringent, computational-based screen for genome-wide identification of SOX10 response elements. Experimental validation of a pilot set of predicted binding sites in multiple systems revealed that SOX10 directly regulates a previously unreported alternative promoter at SOX6, which encodes a transcription factor that inhibits glial cell differentiation. We further explored the utility of our computational approach by combining it with DNase-seq analysis in cultured Schwann cells and previously published SOX10 ChIP-seq data from rat sciatic nerve. Remarkably, this analysis enriched for genomic segments that map to loci involved in the negative regulation of gliogenesis including SOX5, SOX6, NOTCH1, HMGA2, HES1, MYCN, ID4, and ID2. Functional studies in Schwann cells revealed that: (1) all eight loci are expressed prior to myelination and down-regulated subsequent to myelination; (2) seven of the eight loci harbor validated SOX10 binding sites; and (3) seven of the eight loci are down-regulated upon repressing SOX10 function. Conclusions Our computational strategy revealed a putative novel function for SOX10 in Schwann cells, which suggests a model where SOX10 activates the expression of genes that inhibit myelination during non-myelinating stages of Schwann cell development. Importantly, the computational and functional datasets we present here will be valuable for the study of transcriptional regulation, SOX protein function, and glial cell biology. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-3167-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Chetna Gopinath
- Cellular and Molecular Biology Program, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - William D Law
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - José F Rodríguez-Molina
- Cellular and Molecular Pathology Program, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Arjun B Prasad
- Genome Technology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Lingyun Song
- Center for Genomic and Computational Biology, Duke University Medical Center, Durham, NC, 27708, USA
| | - Gregory E Crawford
- Center for Genomic and Computational Biology, Duke University Medical Center, Durham, NC, 27708, USA.,Department of Pediatrics, Duke University Medical Center, Durham, NC, 27708, USA
| | - James C Mullikin
- Genome Technology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - John Svaren
- Waisman Center, University of Wisconsin-Madison, Madison, WI, 53706, USA.,Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Anthony Antonellis
- Cellular and Molecular Biology Program, University of Michigan Medical School, Ann Arbor, MI, 48109, USA. .,Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, 48109, USA. .,Department of Neurology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
38
|
Weider M, Wegner M. SoxE factors: Transcriptional regulators of neural differentiation and nervous system development. Semin Cell Dev Biol 2016; 63:35-42. [PMID: 27552919 DOI: 10.1016/j.semcdb.2016.08.013] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 08/16/2016] [Accepted: 08/18/2016] [Indexed: 12/20/2022]
Abstract
Sox8, Sox9 and Sox10 represent the three vertebrate members of the SoxE subclass of high-mobility-group domain containing Sox transcription factors. They play important roles in the peripheral and central nervous systems as regulators of stemness, specification, survival, lineage progression, glial differentiation and homeostasis. Functions are frequently overlapping, but sometimes antagonistic. SoxE proteins dynamically interact with transcriptional regulators, chromatin changing complexes and components of the transcriptional machinery. By establishing regulatory circuits with other transcription factors and microRNAs, SoxE proteins perform divergent functions in several cell lineages of the vertebrate nervous system, and at different developmental stages in the same cell lineage. The underlying molecular mechanisms are the topic of this review.
Collapse
Affiliation(s)
- Matthias Weider
- Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91054 Erlangen, Germany
| | - Michael Wegner
- Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91054 Erlangen, Germany.
| |
Collapse
|
39
|
Fogarty EA, Brewer MH, Rodriguez-Molina JF, Law WD, Ma KH, Steinberg NM, Svaren J, Antonellis A. SOX10 regulates an alternative promoter at the Charcot-Marie-Tooth disease locus MTMR2. Hum Mol Genet 2016; 25:3925-3936. [PMID: 27466180 DOI: 10.1093/hmg/ddw233] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 06/21/2016] [Accepted: 07/11/2016] [Indexed: 11/13/2022] Open
Abstract
Schwann cells are the myelinating glia of the peripheral nervous system and dysfunction of these cells causes motor and sensory peripheral neuropathy. The transcription factor SOX10 is critical for Schwann cell development and maintenance, and many SOX10 target genes encode proteins required for Schwann cell function. Loss-of-function mutations in the gene encoding myotubularin-related protein 2 (MTMR2) cause Charcot-Marie-Tooth disease type 4B1 (CMT4B1), a severe demyelinating peripheral neuropathy characterized by myelin outfoldings along peripheral nerves. Previous reports indicate that MTMR2 is ubiquitously expressed making it unclear how loss of this gene causes a Schwann cell-specific phenotype. To address this, we performed computational and functional analyses at MTMR2 to identify transcriptional regulatory elements important for Schwann cell expression. Through these efforts, we identified an alternative, SOX10-responsive promoter at MTMR2 that displays strong regulatory activity in immortalized rat Schwann (S16) cells. This promoter directs transcription of a previously unidentified MTMR2 transcript that is enriched in mouse Schwann cells compared to immortalized mouse motor neurons (MN-1), and is predicted to encode an N-terminally truncated protein isoform. The expression of the endogenous transcript is induced in a heterologous cell line by ectopically expressing SOX10, and is nearly ablated in Schwann cells by impairing SOX10 function. Intriguingly, overexpressing the two MTMR2 protein isoforms in HeLa cells revealed that both localize to nuclear puncta and the shorter isoform displays higher nuclear localization compared to the longer isoform. Combined, our data warrant further investigation of the truncated MTMR2 protein isoform in Schwann cells and in CMT4B1 pathogenesis.
Collapse
Affiliation(s)
| | - Megan H Brewer
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | | | - William D Law
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Ki H Ma
- Cellular and Molecular Pathology (CMP) Program
| | - Noah M Steinberg
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - John Svaren
- Waisman Center.,Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Anthony Antonellis
- Neuroscience Graduate Program .,Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA.,Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
40
|
YAP and TAZ control peripheral myelination and the expression of laminin receptors in Schwann cells. Nat Neurosci 2016; 19:879-87. [PMID: 27273766 PMCID: PMC4925303 DOI: 10.1038/nn.4316] [Citation(s) in RCA: 154] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 05/04/2016] [Indexed: 12/13/2022]
Abstract
Myelination is essential for nervous system function. Schwann cells interact with neurons and the basal lamina to myelinate axons, using known receptors, signals and transcription factors. In contrast, the transcriptional control of axonal sorting and the role of mechanotransduction in myelination are largely unknown. Yap and Taz are effectors of the Hippo pathway that integrate chemical and mechanical signals in cells. We describe a previously unknown role for the Hippo pathway in myelination. Using conditional mutagenesis in mice we show that Taz is required in Schwann cells for radial sorting and myelination, and that Yap is redundant with Taz. Yap/Taz are activated in Schwann cells by mechanical stimuli, and regulate Schwann cell proliferation and transcription of basal lamina receptor genes, both necessary for proper radial sorting of axons and subsequent myelination. These data link transcriptional effectors of the Hippo pathway and of mechanotransduction to myelin formation in Schwann cells.
Collapse
|
41
|
Magner WJ, Weinstock-Guttman B, Rho M, Hojnacki D, Ghazi R, Ramanathan M, Tomasi TB. Dicer and microRNA expression in multiple sclerosis and response to interferon therapy. J Neuroimmunol 2016; 292:68-78. [PMID: 26943961 PMCID: PMC4779496 DOI: 10.1016/j.jneuroim.2016.01.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 01/06/2016] [Accepted: 01/14/2016] [Indexed: 12/11/2022]
Abstract
Dysregulation of microRNA expression has been shown in multiple sclerosis (MS); however, the mechanisms underlying these changes, their response to therapy and the impact of microRNA changes in MS are not completely understood. Dicer mediates the cleavage of precursor microRNAs to mature microRNAs and is dysregulated in multiple pathologies. Having shown that interferons regulate Dicer in vitro, we hypothesized that MS patient IFNβ1a treatment could potentially alter Dicer expression. Dicer mRNA and protein levels, as well as microRNA expression, were determined in MS patient and healthy control PBL. Acute responses to IFNβ1a were assessed in 50 patients. We found that Dicer protein but not mRNA levels decreases in MS patients while both are selectively induced in patients responding well to IFNβ1a. Potential microRNA biomarkers for relapsing remitting multiple sclerosis (RRMS), secondary progressive multiple sclerosis (SPMS) and IFNβ1a response are described. Contrasts in Dicer and microRNA expression levels between patient populations may offer insight into mechanisms underlying disease courses and responses to IFNβ1a therapy. This work identifies Dicer regulation as both a potential mediator of MS pathology and a therapeutic target.
Collapse
Affiliation(s)
- William J Magner
- Laboratory of Molecular Medicine, Department of Immunology, Roswell Park Cancer Institute, Buffalo, NY 14263, USA; Department of Microbiology and Immunology, State University of New York, School of Medicine and Biomedical Sciences, Buffalo, NY, USA.
| | - Bianca Weinstock-Guttman
- Jacobs Neurological Institute, Buffalo, NY, USA; Department of Neurology, State University of New York, School of Medicine and Biomedical Sciences, Buffalo, NY, USA.
| | - Mina Rho
- Division of Computer Science and Engineering, Hanyang University, Seoul, Republic of Korea.
| | - David Hojnacki
- Jacobs Neurological Institute, Buffalo, NY, USA; Department of Neurology, State University of New York, School of Medicine and Biomedical Sciences, Buffalo, NY, USA.
| | - Rabia Ghazi
- Jacobs Neurological Institute, Buffalo, NY, USA; Department of Neurology, State University of New York, School of Medicine and Biomedical Sciences, Buffalo, NY, USA.
| | - Murali Ramanathan
- Jacobs Neurological Institute, Buffalo, NY, USA; Department of Neurology, State University of New York, School of Medicine and Biomedical Sciences, Buffalo, NY, USA; Department of Pharmaceutical Sciences, State University of New York, School of Medicine and Biomedical Sciences, Buffalo, NY, USA.
| | - Thomas B Tomasi
- Laboratory of Molecular Medicine, Department of Immunology, Roswell Park Cancer Institute, Buffalo, NY 14263, USA; Department of Microbiology and Immunology, State University of New York, School of Medicine and Biomedical Sciences, Buffalo, NY, USA; Department of Medicine, State University of New York, School of Medicine and Biomedical Sciences, Buffalo, NY, USA.
| |
Collapse
|
42
|
Yu B, Zhou S, Yi S, Gu X. The regulatory roles of non-coding RNAs in nerve injury and regeneration. Prog Neurobiol 2015; 134:122-39. [PMID: 26432164 DOI: 10.1016/j.pneurobio.2015.09.006] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 08/20/2015] [Accepted: 09/05/2015] [Indexed: 12/16/2022]
Abstract
Non-coding RNAs (ncRNAs), especially microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), have attracted much attention since their regulatory roles in diverse cell processes were recognized. Emerging studies demonstrate that many ncRNAs are differentially expressed after injury to the nervous system, significantly affecting nerve regeneration. In this review, we compile the miRNAs and lncRNAs that have been reported to be dysregulated following a variety of central and peripheral nerve injuries, including acquired brain injury, spinal cord injury, and peripheral nerve injury. We also list investigations on how these miRNAs and lncRNAs exert the regulatory actions in neurodegenerative and neuroregenerative processes through different mechanisms involving their interaction with target coding genes. We believe that comprehension of the expression profiles and the possible functions of ncRNAs during the processes of nerve injury and regeneration will help understand the molecular mechanisms responsible for post-nerve-injury changes, and may contribute to the potential use of ncRNAs as a diagnostic marker and therapeutic target for nerve injury.
Collapse
Affiliation(s)
- Bin Yu
- Jiangsu Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, JS 226001, China
| | - Songlin Zhou
- Jiangsu Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, JS 226001, China
| | - Sheng Yi
- Jiangsu Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, JS 226001, China
| | - Xiaosong Gu
- Jiangsu Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, JS 226001, China.
| |
Collapse
|
43
|
Stolt CC, Wegner M. Schwann cells and their transcriptional network: Evolution of key regulators of peripheral myelination. Brain Res 2015; 1641:101-110. [PMID: 26423937 DOI: 10.1016/j.brainres.2015.09.025] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 09/18/2015] [Accepted: 09/20/2015] [Indexed: 11/29/2022]
Abstract
As derivatives of the neural crest, Schwann cells represent a vertebrate invention. Their development and differentiation is under control of a newly constructed, vertebrate-specific regulatory network that contains Sox10, Oct6 and Krox20 as cornerstones and central regulators of peripheral myelination. In this review, we discuss the function and relationship of these transcription factors among each other and in the context of their regulatory network, and present ideas of how neofunctionalization may have helped to recruit them to their novel task in Schwann cells. This article is part of a Special Issue entitled SI: Myelin Evolution.
Collapse
Affiliation(s)
- C Claus Stolt
- Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91054 Erlangen, Germany
| | - Michael Wegner
- Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91054 Erlangen, Germany.
| |
Collapse
|
44
|
Lin HP, Oksuz I, Hurley E, Wrabetz L, Awatramani R. Microprocessor complex subunit DiGeorge syndrome critical region gene 8 (Dgcr8) is required for schwann cell myelination and myelin maintenance. J Biol Chem 2015; 290:24294-307. [PMID: 26272614 DOI: 10.1074/jbc.m115.636407] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Indexed: 01/25/2023] Open
Abstract
We investigated the role of a key component of the Microprocessor complex, DGCR8, in the regulation of myelin formation and maintenance. We found that conditionally ablating Dgcr8 in Schwann cells (SCs) during development results in an arrest of SC differentiation. Dgcr8 conditional knock-out (cKO) SCs fail to form 1:1 relationships with axons or, having achieved this, fail to form myelin sheaths. The expression of genes normally found in immature SCs, such as sex-determining region Y-box 2 (Sox2), is increased in Dgcr8 cKO SCs, whereas the expression of myelin-related genes, including the master regulatory transcription factor early growth response 2 (Egr2), is decreased. Additionally, expression of a novel gene expression program involving sonic hedgehog (Shh), activated de novo in injured nerves, is elevated in Dgcr8 cKOs but not in Egr2 null mice, a model of SC differentiation arrest, suggesting that the injury-related gene expression program in Dgcr8 cKOs cannot be attributed to differentiation arrest. Inducible ablation of Dgcr8 in adult SCs results in gene expression changes similar to those found in cKOs, including an increase in the expression of Sox2 and Shh. Analyses of these nerves mainly reveal normal myelin thickness and axon size distribution but some dedifferentiated SCs and increased macrophage infiltration. Together our data suggest that Dgcr8 is responsible for modulation of gene expression programs underlying myelin formation and maintenance as well as suppression of an injury-related gene expression program.
Collapse
Affiliation(s)
- Hsin-Pin Lin
- From the Department of Neurology and Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611 and
| | - Idil Oksuz
- From the Department of Neurology and Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611 and
| | - Edward Hurley
- Hunter James Kelly Research Institute, University at Buffalo, State University of New York, Buffalo, New York 14203
| | - Lawrence Wrabetz
- Hunter James Kelly Research Institute, University at Buffalo, State University of New York, Buffalo, New York 14203
| | - Rajeshwar Awatramani
- From the Department of Neurology and Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611 and
| |
Collapse
|
45
|
Lardenoije R, Iatrou A, Kenis G, Kompotis K, Steinbusch HWM, Mastroeni D, Coleman P, Lemere CA, Hof PR, van den Hove DLA, Rutten BPF. The epigenetics of aging and neurodegeneration. Prog Neurobiol 2015; 131:21-64. [PMID: 26072273 PMCID: PMC6477921 DOI: 10.1016/j.pneurobio.2015.05.002] [Citation(s) in RCA: 246] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 05/13/2015] [Accepted: 05/13/2015] [Indexed: 12/14/2022]
Abstract
Epigenetics is a quickly growing field encompassing mechanisms regulating gene expression that do not involve changes in the genotype. Epigenetics is of increasing relevance to neuroscience, with epigenetic mechanisms being implicated in brain development and neuronal differentiation, as well as in more dynamic processes related to cognition. Epigenetic regulation covers multiple levels of gene expression; from direct modifications of the DNA and histone tails, regulating the level of transcription, to interactions with messenger RNAs, regulating the level of translation. Importantly, epigenetic dysregulation currently garners much attention as a pivotal player in aging and age-related neurodegenerative disorders, such as Alzheimer's disease, Parkinson's disease, and Huntington's disease, where it may mediate interactions between genetic and environmental risk factors, or directly interact with disease-specific pathological factors. We review current knowledge about the major epigenetic mechanisms, including DNA methylation and DNA demethylation, chromatin remodeling and non-coding RNAs, as well as the involvement of these mechanisms in normal aging and in the pathophysiology of the most common neurodegenerative diseases. Additionally, we examine the current state of epigenetics-based therapeutic strategies for these diseases, which either aim to restore the epigenetic homeostasis or skew it to a favorable direction to counter disease pathology. Finally, methodological challenges of epigenetic investigations and future perspectives are discussed.
Collapse
Affiliation(s)
- Roy Lardenoije
- School for Mental Health and Neuroscience (MHeNS), Department of Psychiatry and Neuropsychology, Maastricht University, Universiteitssingel 50, 6200 MD Maastricht, The Netherlands
| | - Artemis Iatrou
- School for Mental Health and Neuroscience (MHeNS), Department of Psychiatry and Neuropsychology, Maastricht University, Universiteitssingel 50, 6200 MD Maastricht, The Netherlands
| | - Gunter Kenis
- School for Mental Health and Neuroscience (MHeNS), Department of Psychiatry and Neuropsychology, Maastricht University, Universiteitssingel 50, 6200 MD Maastricht, The Netherlands
| | - Konstantinos Kompotis
- Center for Integrative Genomics, University of Lausanne, Genopode Building, 1015 Lausanne-Dorigny, Switzerland
| | - Harry W M Steinbusch
- School for Mental Health and Neuroscience (MHeNS), Department of Psychiatry and Neuropsychology, Maastricht University, Universiteitssingel 50, 6200 MD Maastricht, The Netherlands
| | - Diego Mastroeni
- School for Mental Health and Neuroscience (MHeNS), Department of Psychiatry and Neuropsychology, Maastricht University, Universiteitssingel 50, 6200 MD Maastricht, The Netherlands; L.J. Roberts Alzheimer's Disease Center, Banner Sun Health Research Institute, 10515 W. Santa Fe Drive, Sun City, AZ 85351, USA
| | - Paul Coleman
- L.J. Roberts Alzheimer's Disease Center, Banner Sun Health Research Institute, 10515 W. Santa Fe Drive, Sun City, AZ 85351, USA
| | - Cynthia A Lemere
- Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Patrick R Hof
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Daniel L A van den Hove
- School for Mental Health and Neuroscience (MHeNS), Department of Psychiatry and Neuropsychology, Maastricht University, Universiteitssingel 50, 6200 MD Maastricht, The Netherlands; Laboratory of Translational Neuroscience, Department of Psychiatry, Psychosomatics and Psychotherapy, University of Wuerzburg, Fuechsleinstrasse 15, 97080 Wuerzburg, Germany
| | - Bart P F Rutten
- School for Mental Health and Neuroscience (MHeNS), Department of Psychiatry and Neuropsychology, Maastricht University, Universiteitssingel 50, 6200 MD Maastricht, The Netherlands.
| |
Collapse
|
46
|
Jacovetti C, Jimenez V, Ayuso E, Laybutt R, Peyot ML, Prentki M, Bosch F, Regazzi R. Contribution of Intronic miR-338-3p and Its Hosting Gene AATK to Compensatory β-Cell Mass Expansion. Mol Endocrinol 2015; 29:693-702. [PMID: 25751313 DOI: 10.1210/me.2014-1299] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The elucidation of the mechanisms directing β-cell mass regeneration and maintenance is of interest, because the deficit of β-cell mass contributes to diabetes onset and progression. We previously found that the level of the microRNA (miRNA) miR-338-3p is decreased in pancreatic islets from rodent models displaying insulin resistance and compensatory β-cell mass expansion, including pregnant rats, diet-induced obese mice, and db/db mice. Transfection of rat islet cells with oligonucleotides that specifically block miR-338-3p activity increased the fraction of proliferating β-cells in vitro and promoted survival under proapoptotic conditions without affecting the capacity of β-cells to release insulin in response to glucose. Here, we evaluated the role of miR-338-3p in vivo by injecting mice with an adeno-associated viral vector permitting specific sequestration of this miRNA in β-cells. We found that the adeno-associated viral construct increased the fraction of proliferating β-cells confirming the data obtained in vitro. miR-338-3p is generated from an intron of the gene coding for apoptosis-associated tyrosine kinase (AATK). Similarly to miR-338-3p, we found that AATK is down-regulated in rat and human islets and INS832/13 β-cells in the presence of the cAMP-raising agents exendin-4, estradiol, and a G-protein-coupled Receptor 30 agonist. Moreover, AATK expression is reduced in islets of insulin resistant animal models and selective silencing of AATK in INS832/13 cells by RNA interference promoted β-cell proliferation. The results point to a coordinated reduction of miR-338-3p and AATK under insulin resistance conditions and provide evidence for a cooperative action of the miRNA and its hosting gene in compensatory β-cell mass expansion.
Collapse
Affiliation(s)
- Cécile Jacovetti
- Department of Fundamental Neurosciences (C.J., R.R.), University of Lausanne, 1005 Lausanne, Switzerland; Center of Animal Biotechnology and Gene Therapy and Department of Biochemistry and Molecular Biology (V.J., E.A., F.B.), School of Veterinary Medicine, Universitat Autònoma de Barcelona, 08193 Bellaterra, Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, Barcelona, Spain; Diabetes and Obesity Research Program (R.L.), Garvan Institute of Medical Research, St. Vincent's Hospital, Sydney, 2010 New South Wales, Australia; and Montreal Diabetes Research Center and Centre de Recherche du Centre Hospitalier de l'Université de Montréal (M.-L.P., M.P.), and Departments of Nutrition, Biochemistry and Molecular Medicine, University of Montreal, Quebec, H2X 0A9 Canada
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Liang J, Li X, Li Y, Wei J, Daniels G, Zhong X, Wang J, Sfanos K, Melamed J, Zhao J, Lee P. LEF1 targeting EMT in prostate cancer invasion is mediated by miR-181a. Am J Cancer Res 2015; 5:1124-1132. [PMID: 26045991 PMCID: PMC4449440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 02/15/2015] [Indexed: 06/04/2023] Open
Abstract
Lymphoid enhancer-binding factor-1 (LEF1) is a key transcription factor mediating Wnt signaling pathway. Our previous studies indicate that LEF1 is highly expressed in androgen-independent prostate cancer (PCa) and enhances invasion ability in androgen-independent PCa cells. However, the molecular mechanism of LEF1 effect on invasion remains largely unknown. Using microRNA profiling analysis comparing androgen-independent LNCaP-AI PCa cells with high levels of endogenous LEF1 to LNCaP-AI cells with LEF1 knockdown by LEF1shRNA, we found miR-181a to be increased 12.3-fold in LNCaP-AI cells. We confirmed a positive correlation between LEF1 and miR-181a expression across multiple PCa cell lines. Additionally, we showed that in PCa cells, overexpression of LEF1 increased miR-181a expression and subsequently induced EMT associated migration and invasion, whereas LEF1 knockdown decreased miR-181a expression and subsequently resulted in inhibition of EMT, migration and invasion. Mechanistically, we demonstrated by chromatin immunoprecipitation assays that LEF1 could enhance miR-181a expression via its binding to the promoter regions of hsa-miR-181a. Overall, this study identified a novel LEF1-miR-181a-EMT axis in regulation of PCa migration and invasion.
Collapse
Affiliation(s)
- Jiaqian Liang
- Department of Pathology, New York University School of MedicineNew York, NY
- Department of Urology, Wuhan No. 1 Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan, China
| | - Xin Li
- Basic Science and Craniofacial Biology, New York University College of DentistryNew York, NY
- Department of Urology, New York University School of MedicineNew York, NY
- Department of NYU Cancer Institute, New York University School of MedicineNew York, NY
| | - Yirong Li
- Department of Pathology, New York University School of MedicineNew York, NY
| | - Jianjun Wei
- Department of Pathology, Northwestern UniversityChicago, IL
| | - Garrett Daniels
- Department of Pathology, New York University School of MedicineNew York, NY
| | - Xuelin Zhong
- Department of Pathology, New York University School of MedicineNew York, NY
| | - Jinhua Wang
- Department of NYU Cancer Institute, New York University School of MedicineNew York, NY
| | - Karen Sfanos
- Department of Pathology, Johns Hopkins UniversityBaltimore, MD
| | - Jonathan Melamed
- Department of Pathology, New York University School of MedicineNew York, NY
| | - Jun Zhao
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan, China
| | - Peng Lee
- Department of Pathology, New York University School of MedicineNew York, NY
- Department of Urology, New York University School of MedicineNew York, NY
- Department of NYU Cancer Institute, New York University School of MedicineNew York, NY
- Department of New York Harbor Healthcare System, New York University School of MedicineNew York, NY
| |
Collapse
|
48
|
Liang J, Li Y, Daniels G, Sfanos K, De Marzo A, Wei J, Li X, Chen W, Wang J, Zhong X, Melamed J, Zhao J, Lee P. LEF1 Targeting EMT in Prostate Cancer Invasion Is Regulated by miR-34a. Mol Cancer Res 2015; 13:681-8. [PMID: 25587085 DOI: 10.1158/1541-7786.mcr-14-0503] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 12/30/2014] [Indexed: 12/16/2022]
Abstract
UNLABELLED The microRNA-34a (miR-34a), a tumor-suppressive microRNA (miRNA), is implicated in epithelial-mesenchymal transition (EMT) and cancer stem cells. Lymphoid enhancer-binding factor-1 (LEF1) is a key transcription factor in the Wnt signaling pathway, and has been suggested to be involved in regulation of cell proliferation and invasion. Here, the molecular mechanism of miR-34a and LEF1 in cooperatively regulating prostate cancer cell invasion is described. Molecular profiling analysis of miRNA levels in prostate cancer cells revealed a negative correlation between miR-34a and LEF1 expression, and the downregulation of LEF1 by miR-34a was confirmed by luciferase assays. Furthermore, miR-34a specifically repressed LEF1 expression through direct binding to its 3'-untranslated regions (3'-UTR). miR-34a modulated the levels of LEF1 to regulate EMT in prostate cancer cells. Functionally, miR-34a negatively correlated with the migration and invasion of prostate cancer cells through LEF1. An analysis of miR-34a expression levels in matched human tumor and benign tissues demonstrated consistent and statistically significant downregulation of miR-34a in primary prostate cancer specimens. These data strongly suggest that miR-34a/LEF1 regulation of EMT plays an important role in prostate cancer migration and invasion. IMPLICATIONS The miR-34a-LEF1 axis represents a potential molecular target for novel therapeutic strategies in prostate cancer.
Collapse
Affiliation(s)
- Jiaqian Liang
- Department of Pathology, New York University School of Medicine, New York, New York. Department of Urology, Wuhan No. 1 Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yirong Li
- Department of Pathology, New York University School of Medicine, New York, New York
| | - Garrett Daniels
- Department of Pathology, New York University School of Medicine, New York, New York
| | - Karen Sfanos
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland
| | - Angelo De Marzo
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland
| | - Jianjun Wei
- Department of Pathology, Northwestern University, Chicago, Illinois
| | - Xin Li
- NYU Cancer Institute, New York University School of Medicine, New York, New York. Department of Urology, New York University School of Medicine, New York, New York. Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, New York
| | - Wenqiang Chen
- Pediatric Lab of Medical Science Experiment Center, Guangxi Medical University, Nanning, Guangxi, China
| | - Jinhua Wang
- NYU Cancer Institute, New York University School of Medicine, New York, New York
| | - Xuelin Zhong
- Department of Pathology, New York University School of Medicine, New York, New York
| | - Jonathan Melamed
- Department of Pathology, New York University School of Medicine, New York, New York
| | - Jun Zhao
- Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Peng Lee
- Department of Pathology, New York University School of Medicine, New York, New York. NYU Cancer Institute, New York University School of Medicine, New York, New York. Department of Urology, New York University School of Medicine, New York, New York. New York Harbor Healthcare System, New York University School of Medicine, New York, New York.
| |
Collapse
|
49
|
Wang Y, Zhao Y, Sun C, Hu W, Zhao J, Li G, Zhang L, Liu M, Liu Y, Ding F, Yang Y, Gu X. Chitosan Degradation Products Promote Nerve Regeneration by Stimulating Schwann Cell Proliferation via miR-27a/FOXO1 Axis. Mol Neurobiol 2014; 53:28-39. [PMID: 25399953 DOI: 10.1007/s12035-014-8968-2] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Accepted: 10/28/2014] [Indexed: 12/20/2022]
Abstract
Natural polysaccharides are biomaterials widely used for constructing scaffolds in tissue engineering. While natural polysaccharides have been shown to robustly promote tissue regeneration, the underlying molecular mechanism remains largely unknown. Here, we show that chitooligosaccharides (COS), the intermediate products of chitosan degradation, stimulate peripheral nerve regeneration in rats. Our experiment also shows that COS stimulate the proliferation of Schwann cells (SCs) during nerve regeneration. By analyzing the transcriptome and gene regulatory network, we identified the miR-27a/FOXO1 axis as the main signaling pathway for mediating the proliferative effects of COS on SCs. COS increase the expression level of miR-27a and cause a reduction of FOXO1, which subsequently accelerates the cell cycle and stimulates SC proliferation to stimulate nerve regeneration. These findings define a basic pathway for oligosaccharides-mediated cell proliferation and reveal a novel aspect of polysaccharide biomaterials in tissue engineering.
Collapse
Affiliation(s)
- Yongjun Wang
- Key Laboratory of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong, 226001, China.,Co-innovation Center of Neuroregeneration, Nantong, 226001, Jiangsu Province, China
| | - Yahong Zhao
- Key Laboratory of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong, 226001, China.,Co-innovation Center of Neuroregeneration, Nantong, 226001, Jiangsu Province, China
| | - Cheng Sun
- Key Laboratory of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong, 226001, China.,Co-innovation Center of Neuroregeneration, Nantong, 226001, Jiangsu Province, China
| | - Wen Hu
- Key Laboratory of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong, 226001, China.,Co-innovation Center of Neuroregeneration, Nantong, 226001, Jiangsu Province, China
| | - Jing Zhao
- Key Laboratory of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong, 226001, China.,Co-innovation Center of Neuroregeneration, Nantong, 226001, Jiangsu Province, China
| | - Guicai Li
- Key Laboratory of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong, 226001, China.,Co-innovation Center of Neuroregeneration, Nantong, 226001, Jiangsu Province, China
| | - Luzhong Zhang
- Key Laboratory of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong, 226001, China.,Co-innovation Center of Neuroregeneration, Nantong, 226001, Jiangsu Province, China
| | - Mei Liu
- Key Laboratory of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong, 226001, China.,Co-innovation Center of Neuroregeneration, Nantong, 226001, Jiangsu Province, China
| | - Yan Liu
- Key Laboratory of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong, 226001, China.,Co-innovation Center of Neuroregeneration, Nantong, 226001, Jiangsu Province, China
| | - Fei Ding
- Key Laboratory of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong, 226001, China.,Co-innovation Center of Neuroregeneration, Nantong, 226001, Jiangsu Province, China
| | - Yumin Yang
- Key Laboratory of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong, 226001, China. .,Co-innovation Center of Neuroregeneration, Nantong, 226001, Jiangsu Province, China.
| | - Xiaosong Gu
- Key Laboratory of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong, 226001, China. .,Co-innovation Center of Neuroregeneration, Nantong, 226001, Jiangsu Province, China.
| |
Collapse
|
50
|
Svaren J. MicroRNA and transcriptional crosstalk in myelinating glia. Neurochem Int 2014; 77:50-7. [PMID: 24979526 PMCID: PMC4177339 DOI: 10.1016/j.neuint.2014.06.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 06/10/2014] [Accepted: 06/17/2014] [Indexed: 12/21/2022]
Abstract
Several recent studies have addressed the important role of microRNA in regulation of differentiation of myelinating glia. While Schwann cells and oligodendrocytes in the peripheral and central nervous systems, respectively, exhibit significant morphological and regulatory differences, some aspects of transcriptional and microRNA regulation are shared between these two cell types. This review focuses on the intersection of microRNAs with transcriptional regulation in Schwann cell and oligodendrocyte differentiation. In particular, several microRNAs have been shown to modulate expression of critical transcription factors, and in turn, the regulation of microRNA expression is enmeshed within transcriptional networks that coordinate both coding gene and noncoding RNA profiles of myelinating cells. These hubs of regulation control both myelin gene expression as well as the cell cycle transitions of Schwann cells and oligodendrocytes as they terminally differentiate. In addition, some studies have begin to highlight the combinatorial effects of different microRNAs that establish the narrow range of gene regulation required for efficient and stable myelin formation. Overall, the integration of microRNA and transcriptional aspects will help elucidate mechanistic control of the myelination process.
Collapse
Affiliation(s)
- John Svaren
- Department of Comparative Biosciences and Waisman Center, University of Wisconsin-Madison, 1500 Highland Ave., Madison, WI 53705, USA.
| |
Collapse
|