1
|
Watts JA, Burdick J, Daigneault J, Zhu Z, Grunseich C, Bruzel A, Cheung VG. cis Elements that Mediate RNA Polymerase II Pausing Regulate Human Gene Expression. Am J Hum Genet 2019; 105:677-688. [PMID: 31495490 PMCID: PMC6817524 DOI: 10.1016/j.ajhg.2019.08.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 08/09/2019] [Indexed: 12/11/2022] Open
Abstract
Aberrant gene expression underlies many human diseases. RNA polymerase II (Pol II) pausing is a key regulatory step in transcription. Here, we mapped the locations of RNA Pol II in normal human cells and found that RNA Pol II pauses in a consistent manner across individuals and cell types. At more than 1,000 genes including MYO1E and SESN2, RNA Pol II pauses at precise nucleotide locations. Characterization of these sites shows that RNA Pol II pauses at GC-rich regions that are marked by a sequence motif. Sixty-five percent of the pause sites are cytosines. By differential allelic gene expression analysis, we showed in our samples and a population dataset from the Genotype-Tissue Expression (GTEx) consortium that genes with more paused polymerase have lower expression levels. Furthermore, mutagenesis of the pause sites led to a significant increase in promoter activities. Thus, our data uncover that RNA Pol II pauses precisely at sites with distinct sequence features that in turn regulate gene expression.
Collapse
Affiliation(s)
- Jason A Watts
- Department of Internal Medicine, Division of Nephrology, University of Michigan, Ann Arbor, MI, USA
| | | | | | - Zhengwei Zhu
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | - Christopher Grunseich
- National Institute of Neurological Disorders and Stroke, National Institute of Health, Bethesda, MD, USA
| | - Alan Bruzel
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | - Vivian G Cheung
- Howard Hughes Medical Institute, Chevy Chase, MD, USA; Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA; Department of Pediatrics, Division of Neurology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
2
|
Bahat A, Lahav O, Plotnikov A, Leshkowitz D, Dikstein R. Targeting Spt5-Pol II by Small-Molecule Inhibitors Uncouples Distinct Activities and Reveals Additional Regulatory Roles. Mol Cell 2019; 76:617-631.e4. [PMID: 31564557 DOI: 10.1016/j.molcel.2019.08.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 06/12/2019] [Accepted: 08/26/2019] [Indexed: 12/27/2022]
Abstract
Spt5 is a conserved and essential transcription elongation factor that promotes promoter-proximal pausing, promoter escape, elongation, and mRNA processing. Spt5 plays specific roles in the transcription of inflammation and stress-induced genes and tri-nucleotide expanded-repeat genes involved in inherited neurological pathologies. Here, we report the identification of Spt5-Pol II small-molecule inhibitors (SPIs). SPIs faithfully reproduced Spt5 knockdown effects on promoter-proximal pausing, NF-κB activation, and expanded-repeat huntingtin gene transcription. Using SPIs, we identified Spt5 target genes that responded with profoundly diverse kinetics. SPIs uncovered the regulatory role of Spt5 in metabolism via GDF15, a food intake- and body weight-inhibitory hormone. SPIs further unveiled a role for Spt5 in promoting the 3' end processing of histone genes. While several SPIs affect all Spt5 functions, a few inhibit a single one, implying uncoupling and selective targeting of Spt5 activities. SPIs expand the understanding of Spt5-Pol II functions and are potential drugs against metabolic and neurodegenerative diseases.
Collapse
Affiliation(s)
- Anat Bahat
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Or Lahav
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Alexander Plotnikov
- The Nancy and Stephen Grand Israel National Center for Personalized Medicine, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Dena Leshkowitz
- Bioinformatics Unit, Department of Life Sciences Core Facilities, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Rivka Dikstein
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|
3
|
Chen FX, Smith ER, Shilatifard A. Born to run: control of transcription elongation by RNA polymerase II. Nat Rev Mol Cell Biol 2019; 19:464-478. [PMID: 29740129 DOI: 10.1038/s41580-018-0010-5] [Citation(s) in RCA: 285] [Impact Index Per Article: 47.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The dynamic regulation of transcription elongation by RNA polymerase II (Pol II) is an integral part of the implementation of gene expression programmes during development. In most metazoans, the majority of transcribed genes exhibit transient pausing of Pol II at promoter-proximal regions, and the release of Pol II into gene bodies is controlled by many regulatory factors that respond to environmental and developmental cues. Misregulation of the elongation stage of transcription is implicated in cancer and other human diseases, suggesting that mechanistic understanding of transcription elongation control is therapeutically relevant. In this Review, we discuss the features, establishment and maintenance of Pol II pausing, the transition into productive elongation, the control of transcription elongation by enhancers and by factors of other cellular processes, such as topoisomerases and poly(ADP-ribose) polymerases (PARPs), and the potential of therapeutic targeting of the elongation stage of transcription by Pol II.
Collapse
Affiliation(s)
- Fei Xavier Chen
- Simpson Querrey Center for Epigenetics and the Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Edwin R Smith
- Simpson Querrey Center for Epigenetics and the Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Ali Shilatifard
- Simpson Querrey Center for Epigenetics and the Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
4
|
Werner MS, Sieriebriennikov B, Loschko T, Namdeo S, Lenuzzi M, Dardiry M, Renahan T, Sharma DR, Sommer RJ. Environmental influence on Pristionchus pacificus mouth form through different culture methods. Sci Rep 2017; 7:7207. [PMID: 28775277 PMCID: PMC5543044 DOI: 10.1038/s41598-017-07455-7] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 06/28/2017] [Indexed: 12/29/2022] Open
Abstract
Environmental cues can impact development to elicit distinct phenotypes in the adult. The consequences of phenotypic plasticity can have profound effects on morphology, life cycle, and behavior to increase the fitness of the organism. The molecular mechanisms governing these interactions are beginning to be elucidated in a few cases, such as social insects. Nevertheless, there is a paucity of systems that are amenable to rigorous experimentation, preventing both detailed mechanistic insight and the establishment of a generalizable conceptual framework. The mouth dimorphism of the model nematode Pristionchus pacificus offers the rare opportunity to examine the genetics, genomics, and epigenetics of environmental influence on developmental plasticity. Yet there are currently no easily tunable environmental factors that affect mouth-form ratios and are scalable to large cultures required for molecular biology. Here we present a suite of culture conditions to toggle the mouth-form phenotype of P. pacificus. The effects are reversible, do not require the costly or labor-intensive synthesis of chemicals, and proceed through the same pathways previously examined from forward genetic screens. Different species of Pristionchus exhibit different responses to culture conditions, demonstrating unique gene-environment interactions, and providing an opportunity to study environmental influence on a macroevolutionary scale.
Collapse
Affiliation(s)
- Michael S Werner
- Department of Evolutionary Biology, Max Planck Institute for Developmental Biology, 72076, Tübingen, Germany
| | - Bogdan Sieriebriennikov
- Department of Evolutionary Biology, Max Planck Institute for Developmental Biology, 72076, Tübingen, Germany
| | - Tobias Loschko
- Department of Evolutionary Biology, Max Planck Institute for Developmental Biology, 72076, Tübingen, Germany
| | - Suryesh Namdeo
- Department of Evolutionary Biology, Max Planck Institute for Developmental Biology, 72076, Tübingen, Germany
| | - Masa Lenuzzi
- Department of Evolutionary Biology, Max Planck Institute for Developmental Biology, 72076, Tübingen, Germany
| | - Mohannad Dardiry
- Department of Evolutionary Biology, Max Planck Institute for Developmental Biology, 72076, Tübingen, Germany
| | - Tess Renahan
- Department of Evolutionary Biology, Max Planck Institute for Developmental Biology, 72076, Tübingen, Germany
| | - Devansh Raj Sharma
- Department of Evolutionary Biology, Max Planck Institute for Developmental Biology, 72076, Tübingen, Germany
| | - Ralf J Sommer
- Department of Evolutionary Biology, Max Planck Institute for Developmental Biology, 72076, Tübingen, Germany.
| |
Collapse
|
5
|
Paparidis NFDS, Durvale MC, Canduri F. The emerging picture of CDK9/P-TEFb: more than 20 years of advances since PITALRE. MOLECULAR BIOSYSTEMS 2017; 13:246-276. [PMID: 27833949 DOI: 10.1039/c6mb00387g] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
CDK9 is a prominent member of the transcriptional CDKs subfamily, a group of kinases whose function is to control the primary steps of mRNA synthesis and processing by eukaryotic RNA polymerase II. As a cyclin-dependent kinase, CDK9 activation in vivo depends upon its association with T-type cyclins to assemble the positive transcription elongation factor (P-TEFb). Although CDK9/P-TEFb phosphorylates the C-terminal domain of RNAP II in the same positions targeted by CDK7 (TFIIH) and CDK8 (Mediator), the former does not participate in the transcription initiation, but rather plays a unique role by driving the polymerase to productive elongation. In addition to RNAP II CTD, the negative transcription elongation factors DSIF and NELF also represent major CDK9 substrates, whose phosphorylation is required to overcome the proximal pause of the polymerase. CDK9 is recruited to specific genes through proteins that interact with both P-TEFb and distinct elements in DNA, RNA or chromatin, where it modulates the activity of individual RNAP II transcription complexes. The regulation of CDK9 function is an intricate network that includes post-translational modifications (phosphorylation/dephosphorylation and acetylation/deacetylation of key residues) as well as the association of P-TEFb with various proteins that can stimulate or inhibit its kinase activity. Several cases of CDK9 deregulation have been linked to important human diseases, including various types of cancer and also AIDS (due to its essential role in HIV replication). Not only HIV, but also many other human viruses have been shown to depend strongly on CDK9 activity to be transcribed within host cells. This review summarizes the main advances made on CDK9/P-TEFb field in more than 20 years, introducing the structural, functional and genetic aspects that have been elucidated ever since.
Collapse
Affiliation(s)
- Nikolas Ferreira Dos Santos Paparidis
- Department of Chemistry and Molecular Physics, Institute of Chemistry of Sao Carlos, Sao Paulo University, Av. Trabalhador Sãocarlense, 400, Zip Code 780, 13560-970, São Carlos-SP, Brazil.
| | - Maxwell Castro Durvale
- Department of Biochemistry, Institute of Chemistry, Sao Paulo University, Av. Prof. Lineu Prestes, 748, 05508-000, Butantã - São Paulo - SP, Brazil
| | - Fernanda Canduri
- Department of Chemistry and Molecular Physics, Institute of Chemistry of Sao Carlos, Sao Paulo University, Av. Trabalhador Sãocarlense, 400, Zip Code 780, 13560-970, São Carlos-SP, Brazil.
| |
Collapse
|
6
|
Chambers M, Turki-Judeh W, Kim MW, Chen K, Gallaher SD, Courey AJ. Mechanisms of Groucho-mediated repression revealed by genome-wide analysis of Groucho binding and activity. BMC Genomics 2017; 18:215. [PMID: 28245789 PMCID: PMC5331681 DOI: 10.1186/s12864-017-3589-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Accepted: 02/13/2017] [Indexed: 12/24/2022] Open
Abstract
Background The transcriptional corepressor Groucho (Gro) is required for the function of many developmentally regulated DNA binding repressors, thus helping to define the gene expression profile of each cell during development. The ability of Gro to repress transcription at a distance together with its ability to oligomerize and bind to histones has led to the suggestion that Gro may spread along chromatin. However, much is unknown about the mechanism of Gro-mediated repression and about the dynamics of Gro targeting. Results Our chromatin immunoprecipitation sequencing analysis of temporally staged Drosophila embryos shows that Gro binds in a highly dynamic manner primarily to clusters of discrete (<1 kb) segments. Consistent with the idea that Gro may facilitate communication between silencers and promoters, Gro binding is enriched at both cis-regulatory modules, as well as within the promotors of potential target genes. While this Gro-recruitment is required for repression, our data show that it is not sufficient for repression. Integration of Gro binding data with transcriptomic analysis suggests that, contrary to what has been observed for another Gro family member, Drosophila Gro is probably a dedicated repressor. This analysis also allows us to define a set of high confidence Gro repression targets. Using publically available data regarding the physical and genetic interactions between these targets, we are able to place them in the regulatory network controlling development. Through analysis of chromatin associated pre-mRNA levels at these targets, we find that genes regulated by Gro in the embryo are enriched for characteristics of promoter proximal paused RNA polymerase II. Conclusions Our findings are inconsistent with a one-dimensional spreading model for long-range repression and suggest that Gro-mediated repression must be regulated at a post-recruitment step. They also show that Gro is likely a dedicated repressor that sits at a prominent highly interconnected regulatory hub in the developmental network. Furthermore, our findings suggest a role for RNA polymerase II pausing in Gro-mediated repression. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3589-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Michael Chambers
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, 90095, USA
| | - Wiam Turki-Judeh
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, 90095, USA.,Molecular Biology Institute, University of California, Los Angeles, CA, 90095, USA
| | - Min Woo Kim
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, 90095, USA
| | - Kenny Chen
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, 90095, USA
| | - Sean D Gallaher
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, 90095, USA.,Department of Energy, Institute of Genomics and Proteomics, University of California, Los Angeles, CA, 90095, USA
| | - Albert J Courey
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, 90095, USA. .,Molecular Biology Institute, University of California, Los Angeles, CA, 90095, USA.
| |
Collapse
|
7
|
Tsai SY, Chang YL, Swamy KBS, Chiang RL, Huang DH. GAGA factor, a positive regulator of global gene expression, modulates transcriptional pausing and organization of upstream nucleosomes. Epigenetics Chromatin 2016; 9:32. [PMID: 27468311 PMCID: PMC4962548 DOI: 10.1186/s13072-016-0082-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 07/20/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Genome-wide studies in higher eukaryotes have revealed the presence of paused RNA polymerase II (RNA-Pol) at about 30-50 bp downstream of the transcription start site of genes involved in developmental control, cell proliferation and intercellular signaling. Promoter-proximal pausing is believed to represent a critical step in transcriptional regulation. GAGA sequence motifs have frequently been found in the upstream region of paused genes in Drosophila, implicating a prevalent binding factor, GAF, in transcriptional pausing. RESULTS Using newly isolated mutants that retain only ~3 % normal GAF level, we analyzed its impacts on transcriptional regulation in whole animals. We first examined the abundance of three major isoforms of RNA-Pol on Hsp70 during heat shock. By cytogenetic analyses on polytene chromosomes and chromatin immunoprecipitation (ChIP), we show that paused RNA-Pol of Hsp70 is substantially reduced in mutants. Conversely, a global increase in paused RNA-Pol is observed when GAF is over-expressed. Coupled analyses of transcriptome and GAF genomic distribution show that 269 genes enriched for upstream GAF binding are down-regulated in mutants. Interestingly, ~15 % of them encode transcriptional factors, which might control ~2000 additional genes down-regulated in mutants. Further examination of RNA-Pol distribution in GAF targets reveals that a positive correlation exists between promoter-proximal RNA-Pol density and GAF occupancy in WT, but not in mutants. Comparison of nucleosome profiles indicates that nucleosome occupancy is preferentially attenuated by GAF in the upstream region that strongly favors nucleosome assembly. Using a dominant eye phenotype caused by GAF over-expression, we detect significant genetic interactions between GAF and the nucleosome remodeler NURF, the pausing factor NELF, and BAB1 whose binding sites are enriched specifically in genes displaying GAF-dependent pausing. CONCLUSION Our results provide direct evidence to support a critical role of GAF in global gene expression, transcriptional pausing and upstream nucleosome organization of a group of genes. By cooperating with factors acting at different levels, GAF orchestrates a series of events from local nucleosome displacement to paused transcription. The use of whole animals containing broad tissue types attests the physiological relevance of this regulatory network.
Collapse
Affiliation(s)
- Shih-Ying Tsai
- Institute of Molecular Biology, Academia Sinica, Nankang, Taipei Taiwan, ROC ; Molecular Cell Biology, Taiwan International Graduate Program, Institute of Molecular Biology, Academia Sinica, Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Yuh-Long Chang
- Institute of Molecular Biology, Academia Sinica, Nankang, Taipei Taiwan, ROC
| | - Krishna B S Swamy
- Institute of Molecular Biology, Academia Sinica, Nankang, Taipei Taiwan, ROC
| | - Ruei-Lin Chiang
- Institute of Molecular Biology, Academia Sinica, Nankang, Taipei Taiwan, ROC
| | - Der-Hwa Huang
- Institute of Molecular Biology, Academia Sinica, Nankang, Taipei Taiwan, ROC
| |
Collapse
|
8
|
|
9
|
Morris DP, Lei B, Longo LD, Bomsztyk K, Schwinn DA, Michelotti GA. Temporal Dissection of Rate Limiting Transcriptional Events Using Pol II ChIP and RNA Analysis of Adrenergic Stress Gene Activation. PLoS One 2015; 10:e0134442. [PMID: 26244980 PMCID: PMC4526373 DOI: 10.1371/journal.pone.0134442] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 07/10/2015] [Indexed: 12/13/2022] Open
Abstract
In mammals, increasing evidence supports mechanisms of co-transcriptional gene regulation and the generality of genetic control subsequent to RNA polymerase II (Pol II) recruitment. In this report, we use Pol II Chromatin Immunoprecipitation to investigate relationships between the mechanistic events controlling immediate early gene (IEG) activation following stimulation of the α1a-Adrenergic Receptor expressed in rat-1 fibroblasts. We validate our Pol II ChIP assay by comparison to major transcriptional events assessable by microarray and PCR analysis of precursor and mature mRNA. Temporal analysis of Pol II density suggests that reduced proximal pausing often enhances gene expression and was essential for Nr4a3 expression. Nevertheless, for Nr4a3 and several other genes, proximal pausing delayed the time required for initiation of productive elongation, consistent with a role in ensuring transcriptional fidelity. Arrival of Pol II at the 3’ cleavage site usually correlated with increased polyadenylated mRNA; however, for Nfil3 and probably Gprc5a expression was delayed and accompanied by apparent pre-mRNA degradation. Intragenic pausing not associated with polyadenylation was also found to regulate and delay Gprc5a expression. Temporal analysis of Nr4a3, Dusp5 and Nfil3 shows that transcription of native IEG genes can proceed at velocities of 3.5 to 4 kilobases/min immediately after activation. Of note, all of the genes studied here also used increased Pol II recruitment as an important regulator of expression. Nevertheless, the generality of co-transcriptional regulation during IEG activation suggests temporal and integrated analysis will often be necessary to distinguish causative from potential rate limiting mechanisms.
Collapse
Affiliation(s)
- Daniel P. Morris
- Center for Perinatal Biology, Loma Linda University, Loma Linda, California, United States of America
- * E-mail:
| | - Beilei Lei
- Department of Anesthesiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Lawrence D. Longo
- Center for Perinatal Biology, Loma Linda University, Loma Linda, California, United States of America
| | - Karol Bomsztyk
- Department of Medicine, University of Washington, Seattle, Washington, United States of America
| | - Debra A. Schwinn
- Department of Anesthesiology, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States of America
- Department of Pharmacology, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States of America
- Department of Biochemistry, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States of America
| | - Gregory A. Michelotti
- Department of Medicine, Division of Gastroenterology, Duke University Medical Center, Durham, North Carolina, United States of America
| |
Collapse
|
10
|
Promoter-proximal pausing of RNA polymerase II: emerging roles in metazoans. Nat Rev Genet 2012; 13:720-31. [PMID: 22986266 DOI: 10.1038/nrg3293] [Citation(s) in RCA: 904] [Impact Index Per Article: 69.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Recent years have witnessed a sea change in our understanding of transcription regulation: whereas traditional models focused solely on the events that brought RNA polymerase II (Pol II) to a gene promoter to initiate RNA synthesis, emerging evidence points to the pausing of Pol II during early elongation as a widespread regulatory mechanism in higher eukaryotes. Current data indicate that pausing is particularly enriched at genes in signal-responsive pathways. Here the evidence for pausing of Pol II from recent high-throughput studies will be discussed, as well as the potential interconnected functions of promoter-proximally paused Pol II.
Collapse
|
11
|
Core LJ, Waterfall JJ, Gilchrist DA, Fargo DC, Kwak H, Adelman K, Lis JT. Defining the status of RNA polymerase at promoters. Cell Rep 2012; 2:1025-35. [PMID: 23062713 DOI: 10.1016/j.celrep.2012.08.034] [Citation(s) in RCA: 194] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Revised: 08/24/2012] [Accepted: 08/30/2012] [Indexed: 10/27/2022] Open
Abstract
Recent genome-wide studies in metazoans have shown that RNA polymerase II (Pol II) accumulates to high densities on many promoters at a rate-limited step in transcription. However, the status of this Pol II remains an area of debate. Here, we compare quantitative outputs of a global run-on sequencing assay and chromatin immunoprecipitation sequencing assays and demonstrate that the majority of the Pol II on Drosophila promoters is transcriptionally engaged; very little exists in a preinitiation or arrested complex. These promoter-proximal polymerases are inhibited from further elongation by detergent-sensitive factors, and knockdown of negative elongation factor, NELF, reduces their levels. These results not only solidify the notion that pausing occurs at most promoters, but demonstrate that it is the major rate-limiting step in early transcription at these promoters. Finally, the divergent elongation complexes seen at mammalian promoters are far less prevalent in Drosophila, and this specificity in orientation correlates with directional core promoter elements, which are abundant in Drosophila.
Collapse
Affiliation(s)
- Leighton J Core
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | | | | | | | | | | | | |
Collapse
|
12
|
Abstract
Cellular reprogramming involves the artificial dedifferentiation of somatic cells to a pluripotent state. When affected by overexpressing specific transcription factors, the process is highly inefficient, as only 0.1-1% of cells typically undergo the transformation. This low efficiency has been attributed to high kinetic barriers that affect all cells equally and can only be overcome by rare stochastic events. The barriers to reprogramming are likely to involve transformations of chromatin state because (i) inhibitors of chromatin-modifying enzymes can enhance the efficiency of reprogramming and (ii) knockdown or knock-out of chromatin-modifying enzymes can lower the efficiency of reprogramming. Here, we review the relationship between chromatin state transformations (chromatin reprogramming) and cellular reprogramming, with an emphasis on transcription factors, chromatin remodeling factors, histone modifications and DNA methylation.
Collapse
|
13
|
Control of Transcriptional Elongation by RNA Polymerase II: A Retrospective. GENETICS RESEARCH INTERNATIONAL 2012; 2012:170173. [PMID: 22567377 PMCID: PMC3335475 DOI: 10.1155/2012/170173] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Accepted: 10/11/2011] [Indexed: 11/17/2022]
Abstract
The origins of our current understanding of control of transcription elongation lie in pioneering experiments that mapped RNA polymerase II on viral and cellular genes. These studies first uncovered the surprising excess of polymerase molecules that we now know to be situated at the at the 5' ends of most genes in multicellular organisms. The pileup of pol II near transcription start sites reflects a ubiquitous bottle-neck that limits elongation right at the start of the transcription elongation. Subsequent seminal work identified conserved protein factors that positively and negatively control the flux of polymerase through this bottle-neck, and make a major contribution to control of gene expression.
Collapse
|
14
|
Werner F. A nexus for gene expression-molecular mechanisms of Spt5 and NusG in the three domains of life. J Mol Biol 2012; 417:13-27. [PMID: 22306403 PMCID: PMC3382729 DOI: 10.1016/j.jmb.2012.01.031] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Revised: 01/10/2012] [Accepted: 01/13/2012] [Indexed: 11/25/2022]
Abstract
Evolutionary related multisubunit RNA polymerases (RNAPs) transcribe the genomes of all living organisms. Whereas the core subunits of RNAPs are universally conserved in all three domains of life—indicative of a common evolutionary descent—this only applies to one RNAP-associated transcription factor—Spt5, also known as NusG in bacteria. All other factors that aid RNAP during the transcription cycle are specific for the individual domain or only conserved between archaea and eukaryotes. Spt5 and its bacterial homologue NusG regulate gene expression in several ways by (i) modulating transcription processivity and promoter proximal pausing, (ii) coupling transcription and RNA processing or translation, and (iii) recruiting termination factors and thereby silencing laterally transferred DNA and protecting the genome against double-stranded DNA breaks. This review discusses recent discoveries that identify Spt5-like factors as evolutionary conserved nexus for the regulation and coordination of the machineries responsible for information processing in the cell.
Collapse
Affiliation(s)
- Finn Werner
- RNAP Laboratory, Institute of Structural and Molecular Biology, Division of Biosciences, University College London, Gower Street, London WC1E 6BT, UK.
| |
Collapse
|
15
|
Kadonaga JT. Perspectives on the RNA polymerase II core promoter. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2011; 1:40-51. [PMID: 23801666 DOI: 10.1002/wdev.21] [Citation(s) in RCA: 167] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The RNA polymerase II core promoter is sometimes referred to as the gateway to transcription. The core promoter is generally defined to be the stretch of DNA that directs the initiation of transcription. This simple description belies a complex multidimensional regulatory element, as there is considerable diversity in core promoter structure and function. Core promoters can be viewed at the levels of DNA sequences, transcription factors, and biological networks. Key DNA sequences are known as core promoter elements, which include the TATA box, initiator (Inr), polypyrimidine initiator (TCT), TFIIB recognition element (BRE), motif ten element (MTE), and downstream core promoter element (DPE) motifs. There are no universal core promoter elements that are present in all promoters. Different types of core promoters are transcribed by different sets of transcription factors and exhibit distinct properties, such as specific interactions with transcriptional enhancers, that are determined by the presence or absence of particular core promoter motifs. Moreover, some core promoter elements have been found to be associated with specific biological networks. For instance, the TCT motif is dedicated to the transcription of ribosomal protein genes in Drosophila and humans. In addition, nearly all of the Drosophila Hox genes have a DPE motif in their core promoters. The complexity of the core promoter is further seen in the relation among transcription initiation patterns, the stability or lability of transcriptional states, and the organization of the chromatin structure in the promoter region. Hence, the current data indicate that the core promoter is a critical component in the regulation of gene activity.
Collapse
Affiliation(s)
- James T Kadonaga
- Department of Molecular Biology, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
16
|
Genome-Wide Analysis of Nascent Transcription in Saccharomyces cerevisiae. G3-GENES GENOMES GENETICS 2011; 1:549-58. [PMID: 22384366 PMCID: PMC3276176 DOI: 10.1534/g3.111.000810] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Accepted: 10/07/2011] [Indexed: 02/06/2023]
Abstract
The assessment of transcriptional regulation requires a genome-wide survey of active RNA polymerases. Thus, we combined the nuclear run-on assay, which labels and captures nascent transcripts, with high-throughput DNA sequencing to examine transcriptional activity in exponentially growing Saccharomyces cerevisiae. Sequence read data from these nuclear run-on libraries revealed that transcriptional regulation in yeast occurs not only at the level of RNA polymerase recruitment to promoters but also at postrecruitment steps. Nascent synthesis signals are strongly enriched at TSS throughout the yeast genome, particularly at histone loci. Nascent transcripts reveal antisense transcription for more than 300 genes, with the read data providing support for the activity of distinct promoters driving transcription in opposite directions rather than bidirectional transcription from single promoters. By monitoring total RNA in parallel, we found that transcriptional activity accounts for 80% of the variance in transcript abundance. We computed RNA stabilities from nascent and steady-state transcripts for each gene and found that the most stable and unstable transcripts encode proteins whose functional roles are consistent with these stabilities. We also surveyed transcriptional activity after heat shock and found that most, but not all, heat shock-inducible genes increase their abundance by increasing their RNA synthesis. In summary, this study provides a genome-wide view of RNA polymerase activity in yeast, identifies regulatory steps in the synthesis of transcripts, and analyzes transcript stabilities.
Collapse
|
17
|
H2A.Z nucleosomes enriched over active genes are homotypic. Nat Struct Mol Biol 2010; 17:1500-7. [PMID: 21057526 PMCID: PMC3051840 DOI: 10.1038/nsmb.1926] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Accepted: 09/09/2010] [Indexed: 02/07/2023]
Abstract
Nucleosomes that contain the histone variant H2A.Z are enriched around transcriptional start sites, but the mechanistic basis for this enrichment is unknown. A single octameric nucleosome can contain two H2A.Z histones (homotypic) or one H2A.Z and one canonical H2A (heterotypic). To elucidate the function of H2A.Z, we generated high-resolution maps of homotypic and heterotypic Drosophila H2A.Z (H2Av) nucleosomes. Although homotypic and heterotypic H2A.Z nucleosomes mapped throughout most of the genome, homotypic nucleosomes were enriched and heterotypic nucleosomes were depleted downstream of active promoters and intron-exon junctions. The distribution of homotypic H2A.Z nucleosomes resembled that of classical active chromatin and showed evidence of disruption during transcriptional elongation. Both homotypic H2A.Z nucleosomes and classical active chromatin were depleted downstream of paused polymerases. Our results suggest that H2A.Z enrichment patterns result from intrinsic structural differences between heterotypic and homotypic H2A.Z nucleosomes that follow disruption during transcriptional elongation.
Collapse
|
18
|
Ranjan A, Ansari SA, Srivastava R, Mantri S, Asif MH, Sawant SV, Tuli R. A T9G mutation in the prototype TATA-box TCACTATATATAG determines nucleosome formation and synergy with upstream activator sequences in plant promoters. PLANT PHYSIOLOGY 2009; 151:2174-86. [PMID: 19812181 PMCID: PMC2785982 DOI: 10.1104/pp.109.148064] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2009] [Accepted: 09/30/2009] [Indexed: 05/19/2023]
Abstract
We had earlier reported that mutations to G and C at the seventh and eighth positions in the prototype TATA-box TCACTATATATAG inhibited light-dependent activation of transcription from the promoter. In this study, we characterized mutations at the ninth position of the prototype TATA-box. Substitution of T at the ninth position with G or C enhanced transcription from the promoter in transgenic tobacco (Nicotiana tabacum) plants. The effect of T9G/C mutations was not light dependent, although the 9G/C TATA-box showed synergy with the light-responsive element (lre). However, the 9G/C mutants in the presence of lre failed to respond to phytochromes, sugar, and calcium signaling, in contrast to the prototype TATA-box with lre. The 9G/C mutation shifted the point of initiation of transcription, and transcription activation was dependent upon the type of activating element present upstream. The synergy in activation was noticed with lre and legumin activators but not with rbcS, Pcec, and PR-1a activators. The 9G mutation resulted in a micrococcal nuclease-sensitive region over the TATA-box, suggesting a nucleosome-free region, in contrast to the prototype promoter, which had a distinct nucleosome on the TATA-box. Thus, the transcriptional augmentation with mutation at the ninth position might be because of the loss of a repressive nucleosomal structure on the TATA-box. In agreement with our findings, the promoters containing TATAGATA as identified by genome-wide analysis of Arabidopsis (Arabidopsis thaliana) are not tightly repressed.
Collapse
Affiliation(s)
| | | | | | | | | | - Samir V. Sawant
- National Botanical Research Institute, Council of Scientific and Industrial Research, Lucknow 226001, India
| | | |
Collapse
|
19
|
The structure-function link of compensated chromatin in Drosophila. Curr Opin Genet Dev 2009; 19:550-6. [PMID: 19880310 DOI: 10.1016/j.gde.2009.10.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2009] [Revised: 09/04/2009] [Accepted: 10/07/2009] [Indexed: 01/26/2023]
Abstract
All the aspects of transcription are controlled by complexes that modify or remodel chromatin at the level of individual genes, gene clusters, or whole chromosomes. The MSL complex that is responsible for dosage compensation in Drosophila is an example of complexes that operate at the whole-chromosome level on the transcription of individual genes. Recent experiments using traditional genetic analysis, molecular cytology, chromatin immunoprecipitation, or microarray technology have characterized the function of the two known enzymatic components of the MSL core complex and have identified the sequence characteristics that allow spreading of the complex along the X chromosome and a specific histone modification of active X-linked genes to which it is attracted. Further progress in understanding the function of this complex will benefit from biophysical approaches.
Collapse
|
20
|
The transcription elongation factors NELF, DSIF and P-TEFb control constitutive transcription in a gene-specific manner. FEBS Lett 2009; 583:2893-8. [PMID: 19654008 DOI: 10.1016/j.febslet.2009.07.050] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2009] [Revised: 07/21/2009] [Accepted: 07/29/2009] [Indexed: 11/21/2022]
Abstract
We examined whether transcription elongation factors control constitutive transcription of the histone H1(0) and GAPDH genes. Chromatin immunoprecipitation demonstrated positive transcription elongation factor b (P-TEFb) and 5,6-dichloro-1-beta-D-ribofuranosylbenzimidazole (DRB) sensitivity-inducing factor (DSIF) present together with RNA polymerase II (pol II) throughout the histone H1(0) gene, whereas negative elongation factor (NELF) was confined to the 5' region. Contrarily, DSIF, NELF and pol II were confined to the 5' region on the GAPDH. Inhibition of those factors affected the constitutive transcription of the histone H1(0) gene but not the GAPDH gene. Thus, NELF, DSIF and P-TEFb control constitutive transcription in a gene-specific manner.
Collapse
|
21
|
Chopra VS, Hong JW, Levine M. Regulation of Hox gene activity by transcriptional elongation in Drosophila. Curr Biol 2009; 19:688-93. [PMID: 19345103 DOI: 10.1016/j.cub.2009.02.055] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2009] [Revised: 02/23/2009] [Accepted: 02/25/2009] [Indexed: 10/20/2022]
Abstract
Hox genes control the anterior-posterior patterning of most metazoan embryos. Their sequential expression is initially established by the segmentation gene cascade in the early Drosophila embryo [1]. The maintenance of these patterns depends on the Polycomb group (PcG) and trithorax group (trxG) complexes during the remainder of the life cycle [2]. We provide both genetic and molecular evidence that the Hox genes are subject to an additional tier of regulation, i.e., at the level of transcription elongation. Both Ultrabithorax (Ubx) and Abdominal-B (Abd-B) genes contain stalled or paused RNA polymerase II (Pol II) even when silent [3, 4]. The Pol II elongation factors Elongin-A and Cdk9 are essential for optimal Ubx and Abd-B expression. Mitotic recombination assays suggest that these elongation factors are also important for the regulation of Notch-, EGF-, and Dpp-signaling genes. Stalled Pol II persists in tissues where Ubx and Abd-B are silenced by the PcG complex. We propose that stalling fosters both the rapid induction and precise silencing of Hox gene expression during development.
Collapse
Affiliation(s)
- Vivek S Chopra
- Division of Genetics, Center for Integrative Genomics, University of California, Berkeley, Berkeley, CA 94720-3200, USA
| | | | | |
Collapse
|
22
|
Gilchrist DA, Fargo DC, Adelman K. Using ChIP-chip and ChIP-seq to study the regulation of gene expression: genome-wide localization studies reveal widespread regulation of transcription elongation. Methods 2009; 48:398-408. [PMID: 19275938 DOI: 10.1016/j.ymeth.2009.02.024] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2008] [Revised: 02/25/2009] [Accepted: 02/27/2009] [Indexed: 10/21/2022] Open
Abstract
Transcription is a sophisticated multi-step process in which RNA polymerase II (Pol II) transcribes a DNA template into RNA in concert with a broad array of transcription initiation, elongation, capping, termination, and histone modifying factors. Recent global analyses of Pol II distribution have indicated that many genes are regulated during the elongation phase, shedding light on a previously underappreciated mechanism for controlling gene expression. Understanding how various factors regulate transcription elongation in living cells has been greatly aided by chromatin immunoprecipitation (ChIP) studies, which can provide spatial and temporal resolution of protein-DNA binding events. The coupling of ChIP with DNA microarray and high-throughput sequencing technologies (ChIP-chip and ChIP-seq) has significantly increased the scope of ChIP studies and genome-wide maps of Pol II or elongation factor binding sites can now be readily produced. However, while ChIP-chip/ChIP-seq data allow for high-resolution localization of protein-DNA binding sites, they are not sufficient to dissect protein function. Here we describe techniques for coupling ChIP-chip/ChIP-seq with genetic, chemical, and experimental manipulation to obtain mechanistic insight from genome-wide protein-DNA binding studies. We have employed these techniques to discern immature promoter-proximal Pol II from productively elongating Pol II, and infer a critical role for the transition between initiation and full elongation competence in regulating development and gene induction in response to environmental signals.
Collapse
Affiliation(s)
- Daniel A Gilchrist
- Laboratory of Molecular Carcinogenesis, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | | | | |
Collapse
|
23
|
Gilmour DS, Fan R. Detecting transcriptionally engaged RNA polymerase in eukaryotic cells with permanganate genomic footprinting. Methods 2009; 48:368-74. [PMID: 19272453 DOI: 10.1016/j.ymeth.2009.02.020] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2008] [Revised: 02/23/2009] [Accepted: 02/25/2009] [Indexed: 11/27/2022] Open
Abstract
Analysis of the distribution of RNA polymerase II on the genomes of Drosophila and human cells using in vivo protein-DNA crosslinking reveals that RNA polymerase II (Pol II) is concentrated at the 5'-ends of thousands of genes. This appears to be irrespective of transcription levels. Hence, a potential regulatory step in the transcription of many genes occurs after Pol II has associated with the promoter. The protein-DNA crosslinking technique widely used to monitor Pol II and other proteins on chromosomes in vivo, however, does not reveal if Pol II is transcriptionally engaged on DNA. Genomic footprinting with potassium permanganate provides one method for detecting transcriptionally engaged Pol II. Using this approach, we have determined that the Pol II associated with the promoters of many genes has initiated transcription but paused in the region 20-50 nucleotides from the start. Here we describe the application of this method in Drosophila and human cells. The method should prove useful in assessing if promoter bound Pol II has engaged in transcription and for investigating the establishment and regulation of transcriptionally engaged Pol II.
Collapse
Affiliation(s)
- David S Gilmour
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, 208 Althouse, University Park, PA 16802, United States.
| | | |
Collapse
|
24
|
Petesch SJ, Lis JT. Rapid, transcription-independent loss of nucleosomes over a large chromatin domain at Hsp70 loci. Cell 2008; 134:74-84. [PMID: 18614012 DOI: 10.1016/j.cell.2008.05.029] [Citation(s) in RCA: 260] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2008] [Revised: 04/13/2008] [Accepted: 05/19/2008] [Indexed: 11/26/2022]
Abstract
To efficiently transcribe genes, RNA Polymerase II (Pol II) must overcome barriers imposed by nucleosomes and higher-order chromatin structure. Many genes, including Drosophila melanogaster Hsp70, undergo changes in chromatin structure upon activation. To characterize these changes, we mapped the nucleosome landscape of Hsp70 after an instantaneous heat shock at high spatial and temporal resolution. Surprisingly, we find an initial disruption of nucleosomes across the entire gene within 30 s after activation, faster than the rate of Pol II transcription, followed by a second further disruption within 2 min. This initial change occurs independently of Pol II transcription. Furthermore, the rapid loss of nucleosomes extends beyond Hsp70 and halts at the scs and scs' insulating elements. An RNAi screen of 28 transcription and chromatin-related factors reveals that depletion of heat shock factor, GAGA Factor, or Poly(ADP)-Ribose Polymerase or its activity abolishes the loss of nucleosomes upon Hsp70 activation.
Collapse
Affiliation(s)
- Steven J Petesch
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | | |
Collapse
|
25
|
Petesch SJ, Lis JT. Rapid, transcription-independent loss of nucleosomes over a large chromatin domain at Hsp70 loci. Cell 2008. [PMID: 18614012 DOI: 10.1016/j.cell2008.05.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2023]
Abstract
To efficiently transcribe genes, RNA Polymerase II (Pol II) must overcome barriers imposed by nucleosomes and higher-order chromatin structure. Many genes, including Drosophila melanogaster Hsp70, undergo changes in chromatin structure upon activation. To characterize these changes, we mapped the nucleosome landscape of Hsp70 after an instantaneous heat shock at high spatial and temporal resolution. Surprisingly, we find an initial disruption of nucleosomes across the entire gene within 30 s after activation, faster than the rate of Pol II transcription, followed by a second further disruption within 2 min. This initial change occurs independently of Pol II transcription. Furthermore, the rapid loss of nucleosomes extends beyond Hsp70 and halts at the scs and scs' insulating elements. An RNAi screen of 28 transcription and chromatin-related factors reveals that depletion of heat shock factor, GAGA Factor, or Poly(ADP)-Ribose Polymerase or its activity abolishes the loss of nucleosomes upon Hsp70 activation.
Collapse
Affiliation(s)
- Steven J Petesch
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | | |
Collapse
|
26
|
Yaniv M, Elgin SCR. Chromosomes and expression mechanisms: bringing together the roles of DNA, RNA and proteins. Curr Opin Genet Dev 2008; 18:107-8. [PMID: 18375113 DOI: 10.1016/j.gde.2008.02.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
27
|
Imaging Drosophila gene activation and polymerase pausing in vivo. Nature 2008; 450:198-202. [PMID: 17994086 DOI: 10.1038/nature06324] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2007] [Accepted: 09/28/2007] [Indexed: 01/15/2023]
Abstract
Since the early 1960s, imaging studies of Drosophila sp. polytene chromosomes have provided unique views of gene transcription in vivo. The dramatic changes in chromatin structure that accompany gene activation can be visualized as chromosome puffs. Now, live-cell imaging techniques coupled with protein-DNA crosslinking assays on a genome-wide scale allow more detailed mechanistic questions to be addressed and are prompting the re-evaluation of models of transcription regulation in both Drosophila and mammals.
Collapse
|
28
|
Muse GW, Gilchrist DA, Nechaev S, Shah R, Parker JS, Grissom SF, Zeitlinger J, Adelman K. RNA polymerase is poised for activation across the genome. Nat Genet 2007; 39:1507-11. [PMID: 17994021 DOI: 10.1038/ng.2007.21] [Citation(s) in RCA: 607] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2007] [Accepted: 09/07/2007] [Indexed: 02/08/2023]
Abstract
Regulation of gene expression is integral to the development and survival of all organisms. Transcription begins with the assembly of a pre-initiation complex at the gene promoter, followed by initiation of RNA synthesis and the transition to productive elongation. In many cases, recruitment of RNA polymerase II (Pol II) to a promoter is necessary and sufficient for activation of genes. However, there are a few notable exceptions to this paradigm, including heat shock genes and several proto-oncogenes, whose expression is attenuated by regulated stalling of polymerase elongation within the promoter-proximal region. To determine the importance of polymerase stalling for transcription regulation, we carried out a genome-wide search for Drosophila melanogaster genes with Pol II stalled within the promoter-proximal region. Our data show that stalling is widespread, occurring at hundreds of genes that respond to stimuli and developmental signals. This finding indicates a role for regulation of polymerase elongation in the transcriptional responses to dynamic environmental and developmental cues.
Collapse
Affiliation(s)
- Ginger W Muse
- Laboratory of Molecular Carcinogenesis, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709, USA
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Tachibana C, Biddick R, Law GL, Young ET. A poised initiation complex is activated by SNF1. J Biol Chem 2007; 282:37308-15. [PMID: 17974563 DOI: 10.1074/jbc.m707363200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Snf1, the yeast AMP kinase homolog, is essential for derepression of glucose-repressed genes that are activated by Adr1. Although required for Adr1 DNA binding, the precise role of Snf1 is unknown. Deletion of histone deacetylase genes allowed constitutive promoter binding of Adr1 and Cat8, another activator of glucose-repressed genes. In repressed conditions, at the Adr1-and Cat8-dependent ADH2 promoter, partial chromatin remodeling had occurred, and the activators recruited a partial preinitiation complex that included RNA polymerase II. Transcription did not occur, however, unless Snf1 was activated, suggesting a Snf1-dependent event that occurs after RNA polymerase II recruitment. Glucose regulation persisted because shifting to low glucose increased expression. Glucose repression could be completely relieved by combining the three elements of 1) chromatin perturbation by mutation of histone deacetylases, 2) activation of Snf1, and 3) the addition of an Adr1 mutant that by itself confers only weak constitutive activity.
Collapse
Affiliation(s)
- Christine Tachibana
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | | | | | | |
Collapse
|
30
|
Saunders A, Core LJ, Lis JT. Breaking barriers to transcription elongation. Nat Rev Mol Cell Biol 2006; 7:557-67. [PMID: 16936696 DOI: 10.1038/nrm1981] [Citation(s) in RCA: 387] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Abbie Saunders
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853, USA
| | | | | |
Collapse
|
31
|
Peterlin BM, Price DH. Controlling the elongation phase of transcription with P-TEFb. Mol Cell 2006; 23:297-305. [PMID: 16885020 DOI: 10.1016/j.molcel.2006.06.014] [Citation(s) in RCA: 881] [Impact Index Per Article: 46.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2006] [Indexed: 11/16/2022]
Abstract
The positive transcription elongation factor b (P-TEFb) is a cyclin-dependent kinase that controls the elongation phase of transcription by RNA polymerase II (RNAPII). This process is made possible by the reversal of effects of negative elongation factors that include NELF and DSIF. In complex organisms, elongation control is critical for the regulated expression of most genes. In those organisms, the function of P-TEFb is influenced negatively by HEXIM proteins and 7SK snRNA and positively by a variety of recruiting factors. Phylogenetic analyses of the components of the human elongation control machinery indicate that the number of mechanisms utilized to regulate P-TEFb function increased as organisms developed more complex developmental patterns.
Collapse
Affiliation(s)
- B Matija Peterlin
- Department of Medicine, Microbiology and Immunology, Rosalind Russell Medical Research Center, University of California, San Francisco, San Francisco, California 94143, USA.
| | | |
Collapse
|
32
|
Kahn TG, Schwartz YB, Dellino GI, Pirrotta V. Polycomb complexes and the propagation of the methylation mark at the Drosophila ubx gene. J Biol Chem 2006; 281:29064-75. [PMID: 16887811 DOI: 10.1074/jbc.m605430200] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Polycomb group proteins are transcriptional repressors that control many developmental genes. The Polycomb group protein Enhancer of Zeste has been shown in vitro to methylate specifically lysine 27 and lysine 9 of histone H3 but the role of this modification in Polycomb silencing is unknown. We show that H3 trimethylated at lysine 27 is found on the entire Ubx gene silenced by Polycomb. However, Enhancer of Zeste and other Polycomb group proteins stay primarily localized at their response elements, which appear to be the least methylated parts of the silenced gene. Our results suggest that, contrary to the prevailing view, the Polycomb group proteins and methyltransferase complexes are recruited to the Polycomb response elements independently of histone methylation and then loop over to scan the entire region, methylating all accessible nucleosomes. We propose that the Polycomb chromodomain is required for the looping mechanism that spreads methylation over a broad domain, which in turn is required for the stability of the Polycomb group protein complex. Both the spread of methylation from the Polycomb response elements, and the silencing effect can be blocked by the gypsy insulator.
Collapse
Affiliation(s)
- Tatyana G Kahn
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, New Jersey 08854, USA
| | | | | | | |
Collapse
|
33
|
Bon M, McGowan SJ, Cook PR. Many expressed genes in bacteria and yeast are transcribed only once per cell cycle. FASEB J 2006; 20:1721-3. [PMID: 16818468 DOI: 10.1096/fj.06-6087fje] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The steady-state levels of all mature transcripts expressed in bacteria and yeast have been cataloged, but we do not yet know the numbers of nascent transcripts and so RNA polymerases engaged on all genes. Such catalogs are presented here. As mRNA levels depend on the balance between synthesis and degradation, we use published data to calculate the numbers of engaged polymerases required to maintain these levels in the face of the known rate of degradation. Most genes, including essential ones, prove not to be transcribed most of the time, and many produce only one message per cell cycle. Some cells even fail to produce an essential message during a cycle, and so must depend on their mother's messages and/or proteins for survival. We speculate that evolution sets the rate of message production so low to conserve energy, minimize transcription-induced mutation, and permit regulation over the widest range.
Collapse
Affiliation(s)
- Michaël Bon
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
| | | | | |
Collapse
|
34
|
Van Driessche B, Coddens S, Van Mullem V, Vandenhaute J. Glucose deprivation mediates interaction between CTDK-I and Snf1 in Saccharomyces cerevisiae. FEBS Lett 2005; 579:5318-24. [PMID: 16182287 DOI: 10.1016/j.febslet.2005.08.057] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2005] [Revised: 08/18/2005] [Accepted: 08/30/2005] [Indexed: 11/18/2022]
Abstract
Ctk1 is a kinase involved in transcriptional control. We show in the two-hybrid system that Ctk1 interacts with Snf1, a kinase regulating glucose-dependent genes. Co-purification experiments confirmed the two-hybrid interaction but only when cells were grown at low glucose concentrations. Deletion of Ctk1 or its associated partners, Ctk2 and Ctk3, conferred synthetic lethality with null mutants of Snf1 or Snf1-associated proteins. Northern blot analysis suggested that Ctk1 and Snf1 act together in vivo to regulate GSY2. These findings support the view that Ctk1 interacts with Snf1 in a functional module involved in the cellular response to glucose limitation.
Collapse
|
35
|
Cai L, Zhu JD. The tumor-selective over-expression of the human Hsp70 gene is attributed to the aberrant controls at both initiation and elongation levels of transcription. Cell Res 2003; 13:93-109. [PMID: 12737518 DOI: 10.1038/sj.cr.7290154] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The tumor selective over-expression of the human Hsp70 gene has been well documented in human tumors, linked to the poor prognosis, being refractory to chemo- and radio-therapies as well as the advanced stage of tumorous lesions in particular. However, both the nature and details of aberrations in the control of the Hsp70 expression in tumor remain enigmatic. By comparing various upstream segments of the Hsp70 gene for each's ability to drive the luciferase reporter genes in the context of the tumor cell lines varying in their p53 status and an immortal normal liver cell line, we demonstrated in a great detail the defects in the control mechanisms at the both initiation and elongation levels of transcription being instrumental to the tumor selective profile of its expression. Our data should not only offer new insights into our understanding of the tumor specific over-expression of the human Hsp70 gene, but also paved the way for the rational utilization of the tumor selective mechanism with the Hsp70 at the central stage for targeting the therapeutic gene expression to human tumors.
Collapse
Affiliation(s)
- Ling Cai
- The State-key Laboratory for Oncogenes and Related Genes, Shanghai Cancer Institute, LN 25/2200, Xie-tu Road, Shanghai 200032, China
| | | |
Collapse
|
36
|
Sandaltzopoulos R, Becker PB. Analysis of Activator-Dependent Transcription Reinitiation In Vitro. Methods Enzymol 2003; 370:487-501. [PMID: 14712670 DOI: 10.1016/s0076-6879(03)70042-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Affiliation(s)
- Raphael Sandaltzopoulos
- Department of Molecular Biology, Democritus University of Thrace, University Hospital at Dragana, G-68100 Alexandroupolis, Greece
| | | |
Collapse
|
37
|
Abstract
RNA polymerase II transcribes most eukaryotic genes. Its catalytic subunit was tagged with green fluorescent protein and expressed in Chinese hamster cells bearing a mutation in the same subunit; it complemented the defect and so was functional. Photobleaching revealed two kinetic fractions of polymerase in living nuclei: approximately 75% moved rapidly, but approximately 25% was transiently immobile (association t1/2 approximately 20 min) and transcriptionally active, as incubation with 5,6-dichloro-1-beta-D-ribofuranosylbenzimidazole eliminated it. No immobile but inactive fraction was detected, providing little support for the existence of a stable holoenzyme, or the slow stepwise assembly of a preinitiation complex on promoters or the nuclear substructure. Actinomycin D decreased the rapidly moving fraction, suggesting that engaged polymerases stall at intercalated molecules while others initiate. When wild-type cells containing only the endogenous enzyme were incubated with [3H]uridine, nascent transcripts became saturated with tritium with similar kinetics (t1/2 approximately 14 min). These data are consistent with a polymerase being mobile for one half to five sixths of a transcription cycle, and rapid assembly into the preinitiation complex. Then, most expressed transcription units would spend significant times unassociated with engaged polymerases.
Collapse
Affiliation(s)
- Hiroshi Kimura
- Sir William Dunn School of Pathology, Oxford OX1 3RE, UK
| | | | | |
Collapse
|
38
|
Tanaka M, Ito S, Kiuchi K. The 5'-untranslated region of the mouse glial cell line-derived neurotrophic factor gene regulates expression at both the transcriptional and translational levels. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2001; 91:81-95. [PMID: 11457495 DOI: 10.1016/s0169-328x(01)00125-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
We previously cloned mouse glial cell line-derived neurotrophic factor (GDNF) cDNA and genomic DNA and found that the mouse gene contains a 1086-bp 5'-untranslated region (5'-UTR). We investigated the contributions of the 5'-UTR to promoter activity and found one positive regulatory region and two negative regulatory regions in the 5'-UTR. In the present study, using gel retardation assays and mutation analyses, two novel cis-elements that interact with nuclear extracts from mouse astrocytes were identified. The first cis-element (nucleotides (nt) +70 to +81) enhances promoter activity, whereas the second cis-element (nt +239 to +247) attenuates promoter activity in a position- and orientation-dependent manner. Suppression of gene expression by a third region (nt +509 to +580) occurs at the translational level. The ATG sequence (nt +547 to +549) has the potential to initiate translation and to attenuate the efficiency of translation for the GDNF precursor coding region. Furthermore, we identified an alternative promoter in the 5'-UTR that is driven by an Sp1 element, circumventing the translational suppression. Taken together, the 5'-UTR of mouse GDNF contains two novel cis-elements, a short upstream open reading frame and an alternative promoter that influences gene expression at both the transcriptional and translational levels.
Collapse
Affiliation(s)
- M Tanaka
- The Laboratory for Genes of Motor Systems, Bio-Mimetic Control Research Program, The Institute of Physical and Chemical Research, Moriyama, 463-0003, Nagoya, Japan.
| | | | | |
Collapse
|
39
|
Tanaka M, Ito S, Matsushita N, Mori N, Kiuchi K. Promoter analysis and characteristics of the 5'-untranslated region of the mouse glial cell line-derived neurotrophic factor gene. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2000; 85:91-102. [PMID: 11146111 DOI: 10.1016/s0169-328x(00)00250-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We have cloned the mouse GDNF cDNA and genomic DNA to study the molecular mechanism of gene expression. Primer extension and RT-PCR analyses indicated that the mouse gene contains 1086 bp of 5'-untranslated region (5'-UTR) [Gene 203 (1997) 149]. In this report, we identified the core promoter region of mouse GDNF and examined the role of the 5'-UTR in gene expression. Promoter deletion analyses indicated that the proximal region (-81 to +28), which includes a TATA-box, is necessary for high-level expression of GDNF. Using reporter constructs encoding luciferase or fusion gene of GDNF to enhanced green fluorescent protein that were transiently transfected to mouse astroglial cell-line TGA-3 cells and rat glioma C6 cells, we investigated effects of the 5'-UTR on promoter activity. Luciferase reporter assay indicated that a region downstream of the transcription initiation site may include a positive regulatory element, while two more distal regions appear to contain negative regulatory elements, which was correlated to the mRNA level based on RNase protection assay. Both negative regulatory elements attenuated promoter activity in a position-dependent manner. Nuclear proteins from C6 glioma cells were shown to interact with several regions (+65/+105, +233/+265, and +554/+582) including each of the regulatory elements, suggesting that regulation of GDNF expression by the 5'-UTR occurred mainly at the transcriptional level.
Collapse
Affiliation(s)
- M Tanaka
- Laboratory for Genes of Motor Systems, Bio-Mimetic Control Research Program, The Institute of Physical and Chemical Research (RIKEN), Moriyama, Nagoya 463-0003, Japan
| | | | | | | | | |
Collapse
|
40
|
Lis JT, Mason P, Peng J, Price DH, Werner J. P-TEFb kinase recruitment and function at heat shock loci. Genes Dev 2000; 14:792-803. [PMID: 10766736 PMCID: PMC316500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/1999] [Accepted: 02/15/2000] [Indexed: 02/16/2023]
Abstract
P-TEFb, a heterodimer of the kinase Cdk9 and cyclin T, was isolated as a factor that stimulates formation of productive transcription elongation complexes in vitro. Here, we show that P-TEFb is located at >200 distinct sites on Drosophila polytene chromosomes. Upon heat shock, P-TEFb, like the regulatory factor HSF, is rapidly recruited to heat shock loci, and this recruitment is blocked in an HSF mutant. Yet, HSF binding to DNA is not sufficient to recruit P-TEFb in vivo, and HSF and P-TEFb immunostainings within a heat shock locus are not coincident. Insight to the function of P-TEFb is offered by experiments showing that the direct recruitment of a Gal4-binding domain P-TEFb hybrid to an hsp70 promoter in Drosophila cells is sufficient to activate transcription in the absence of heat shock. Analyses of point mutants show this P-TEFb stimulation is dependent on Cdk9 kinase activity and on Cdk9's interaction with cyclin T. These results, coupled with the frequent colocalization of P-TEFb and the hypophosphorylated form of RNA polymerase II (Pol II) found at promoter-pause sites, support a model in which P-TEFb acts to stimulate promoter-paused Pol II to enter into productive elongation.
Collapse
Affiliation(s)
- J T Lis
- Department of Molecular Biology and Genetics, Biotechnology Building, Cornell University, Ithaca, New York 14853, USA.
| | | | | | | | | |
Collapse
|
41
|
Cryderman DE, Tang H, Bell C, Gilmour DS, Wallrath LL. Heterochromatic silencing of Drosophila heat shock genes acts at the level of promoter potentiation. Nucleic Acids Res 1999; 27:3364-70. [PMID: 10454645 PMCID: PMC148571 DOI: 10.1093/nar/27.16.3364] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In a variety of organisms, genes placed near heterochromatin are transcriptionally silenced. In order to understand the molecular mechanisms responsible for this block in transcription, high resolution in vivo chromatin structure analysis was performed on two heat shock genes, hsp26 and hsp70. These genes normally reside in euchromatin where GAGA factor and RNA Pol II are present on the promoter prior to heat shock induction. P-element transformation experiments led to the identification of stocks in which these two genes were inserted within heterochromatin of the chromosome 4 telomeric region. These transgenes exhibit silencing that is partially suppressed by mutations in the gene encoding HP1. Micrococcal nuclease analysis revealed that the heterochromatic transgenes were packaged in a more regular nucleosome array than when located in euchromatin. High resolution DNase I analysis demonstrated that GAGA factor and TFIID were not associated with these promoters in heterochromatin; potassium permanganate experiments showed a loss of Pol II association. Taken together, these data suggest that occlusion of trans-acting factors from their cis- acting regulatory elements leading to a block in promoter potentiation is a mechanism for heterochromatin gene silencing.
Collapse
Affiliation(s)
- D E Cryderman
- Department of Biochemistry, 4-772 Bowen Science Building, University of Iowa, Iowa City, IA 52242, USA
| | | | | | | | | |
Collapse
|
42
|
Hirayoshi K, Lis JT. Nuclear run-on assays: assessing transcription by measuring density of engaged RNA polymerases. Methods Enzymol 1999; 304:351-62. [PMID: 10372370 DOI: 10.1016/s0076-6879(99)04021-5] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- K Hirayoshi
- Department of Ultrastructural Research, Kyoto University, Japan
| | | |
Collapse
|
43
|
Biggin MD. Ultraviolet cross-linking assay to measure sequence-specific DNA binding in vivo. Methods Enzymol 1999; 304:496-515. [PMID: 10372378 DOI: 10.1016/s0076-6879(99)04029-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Affiliation(s)
- M D Biggin
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, USA
| |
Collapse
|
44
|
Kuras L, Struhl K. Binding of TBP to promoters in vivo is stimulated by activators and requires Pol II holoenzyme. Nature 1999; 399:609-13. [PMID: 10376605 DOI: 10.1038/21239] [Citation(s) in RCA: 392] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In eukaryotes, transcriptional activators have been proposed to function by recruiting the RNA polymerase II (Pol II) machinery, by altering the conformation of this machinery, or by affecting steps after initiation, but the evidence is not definitive. Genomic footprinting of yeast TATA-box elements reveals activator-dependent alterations of chromatin structure and activator-independent protection, but little is known about the association of specific components of the Pol II machinery with promoters in vivo. Here we analyse TATA-box-binding-protein (TBP) occupancy of 30 yeast promoters in vivo. We find that TBP association with promoters is stimulated by activators and inhibited by the Cyc8-Tup1 repressor, and that transcriptional activity correlates strongly with the degree of TBP occupancy. In a small subset of promoters, TBP occupancy is higher than expected when gene activity is low, and the activator-dependent increase is modest. TBP association depends on the Pol II holoenzyme component Srb4, but not on the Kin28 subunit of the transcription factor TFIIH, even though both proteins are generally required for transcription. Thus in yeast cells, TBP association with promoters occurs in concert with the Pol II holoenzyme, activator-dependent recruitment of the Pol II machinery occurs at the vast majority of promoters, and Kin28 acts after the initial recruitment.
Collapse
Affiliation(s)
- L Kuras
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
45
|
Affiliation(s)
- I F Zhimulev
- Institute of Cytology and Genetics, Siberian Division of Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
46
|
Pinaud S, Mirkovitch J. Regulation of c-fos expression by RNA polymerase elongation competence. J Mol Biol 1998; 280:785-98. [PMID: 9671550 DOI: 10.1006/jmbi.1998.1905] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The molecular mechanisms underlying transcription elongation and their role in gene regulation are poorly characterized in eukaryotes. A number of genes, however, have been proposed to be regulated at the level of transcription elongation, including c-myc, c-fos and c-myb. Here, we analyze the control of transcription elongation at the mouse c-fos gene at the nucleotide level in intact cells. We find that RNA polymerases are engaged in the promoter-proximal part of the gene in the absence of gene activation signals and mRNA synthesis. Importantly, we determine that the engaged RNA polymerases originate from a continuous initiation of transcription which, in the absence of gene activation signals, terminate close to the promoter. We also observe that the c-fos gene presents an active chromatin conformation, with the promoter and upstream regulatory sequences constitutively occupied by proteins, accounting for the continuous initiation of RNA polymerase complexes. We propose that activation of c-fos gene expression results primarily from the assembly of elongation-competent RNA polymerases that can transcribe the complete gene. Our results suggest that the engaged RNA polymerases found downstream of a number of other eukaryotic promoters may be associated with transcription termination of elongation-incompetent polymerases in the absence of activating signals.
Collapse
Affiliation(s)
- S Pinaud
- Swiss Institute for Experimental Cancer Research (ISREC), Chemin des Boveresses 155, Epalinges, CH-1066, Switzerland
| | | |
Collapse
|
47
|
Palangat M, Meier TI, Keene RG, Landick R. Transcriptional pausing at +62 of the HIV-1 nascent RNA modulates formation of the TAR RNA structure. Mol Cell 1998; 1:1033-42. [PMID: 9651586 DOI: 10.1016/s1097-2765(00)80103-3] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
A strong transcriptional pause delays human RNA polymerase II three nt after the last potentially paired base in HIV-1 TAR, the RNA structure that binds the transactivator protein Tat. We report here that the HIV-1 pause depends in part on an alternative RNA structure (the HIV-1 pause hairpin) that competes with formation of TAR. By probing the nascent RNA structure in halted transcription complexes, we found that the transcript folds as the pause hairpin before and at the pause, and rearranges to TAR concurrent with or just after escape from the pause. The pause signal triggers a 2 nt reverse translocation by RNA polymerase that may block the active site and be counteracted by formation of TAR. Thus, the HIV-1 pause site modulates nascent RNA rearrangement from a structure that favors pausing to one that both recruits Tat and promotes escape from the pause.
Collapse
Affiliation(s)
- M Palangat
- Department of Bacteriology, University of Wisconsin-Madison 53706, USA
| | | | | | | |
Collapse
|
48
|
Keaveney M, Struhl K. Activator-mediated recruitment of the RNA polymerase II machinery is the predominant mechanism for transcriptional activation in yeast. Mol Cell 1998; 1:917-24. [PMID: 9660975 DOI: 10.1016/s1097-2765(00)80091-x] [Citation(s) in RCA: 102] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Eukaryotic transcriptional activators bind to enhancer elements and stimulate the RNA polymerase II (pol II) machinery via functionally autonomous activation domains. In yeast cells, the normal requirement for an activation domain can be bypassed by artificially connecting an enhancer-bound protein to a component of the pol II machinery. This observation suggests, but does not necessarily indicate, that the physiological role of activation domains is to recruit the pol II apparatus to promoters. Here, we show that transcriptional stimulation does not occur when the activation domain is physically disconnected from the enhancer-bound protein and transferred to components of the pol II machinery. The observation that autonomous activation domains are functional when connected to enhancer-bound proteins but not to components of the pol II machinery strongly argues that recruitment is the predominant mechanism for transcriptional activation in yeast.
Collapse
Affiliation(s)
- M Keaveney
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
49
|
Lucchesi JC. Dosage compensation in flies and worms: the ups and downs of X-chromosome regulation. Curr Opin Genet Dev 1998; 8:179-84. [PMID: 9610408 DOI: 10.1016/s0959-437x(98)80139-1] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Dosage compensation ensures that individuals with a single X chromosome have the same amount of most X-linked gene products as those with two. In Drosophila, this equalization is achieved by a two-fold enhancement of the level of transcription of the X in males (XY) relative to each X chromosome in females (XX). In Caenorhabditis, equalization of X-linked gene products between hermaphrodites (XX) and males (XO) is achieved by decreasing the activity of genes in the former. These two different solutions to the common problem of unequal dosage of X-linked genes in different sexes provide invaluable paradigms for the study of gene regulation at the level of chromatin remodeling.
Collapse
Affiliation(s)
- J C Lucchesi
- Department of Biology, Emory University, Atlanta, Georgia 30322, USA.
| |
Collapse
|
50
|
Dubois MF, Vincent M, Vigneron M, Adamczewski J, Egly JM, Bensaude O. Heat-shock inactivation of the TFIIH-associated kinase and change in the phosphorylation sites on the C-terminal domain of RNA polymerase II. Nucleic Acids Res 1997; 25:694-700. [PMID: 9016617 PMCID: PMC146510 DOI: 10.1093/nar/25.4.694] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The C-terminal domain (CTD) of the RNA polymerase II largest subunit (RPB1) plays a central role in transcription. The CTD is unphosphorylated when the polymerase assembles into a preinitiation complex of transcription and becomes heavily phosphorylated during promoter clearance and entry into elongation of transcription. A kinase associated to the general transcription factor TFIIH, in the preinitiation complex, phosphorylates the CTD. The TFIIH-associated CTD kinase activity was found to decrease in extracts from heat-shocked HeLa cells compared to unstressed cells. This loss of activity correlated with a decreased solubility of the TFIIH factor. The TFIIH-kinase impairment during heat-shock was accompanied by the disappearance of a particular phosphoepitope (CC-3) on the RPB1 subunit. The CC-3 epitope was localized on the C-terminal end of the CTD and generated in vitro when the RPB1 subunit was phosphorylated by the TFIIH-associated kinase but not by another CTD kinase such as MAP kinase. In apparent discrepancy, the overall RPB1 subunit phosphorylation increased during heat-shock. The decreased activity in vivo of the TFIIH kinase might be compensated by a stress-activated CTD kinase such as MAP kinase. These results also suggest that heat-shock gene transcription may have a weak requirement for TFIIH kinase activity.
Collapse
Affiliation(s)
- M F Dubois
- Laboratoire de Génétique Moléculaire, URA CNRS 1302, Ecole Normale Supérieure, Paris, France
| | | | | | | | | | | |
Collapse
|