1
|
Huang J, Ji X. Never a dull enzyme, RNA polymerase II. Transcription 2023; 14:49-67. [PMID: 37132022 PMCID: PMC10353340 DOI: 10.1080/21541264.2023.2208023] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/18/2023] [Accepted: 04/21/2023] [Indexed: 05/04/2023] Open
Abstract
RNA polymerase II (Pol II) is composed of 12 subunits that collaborate to synthesize mRNA within the nucleus. Pol II is widely recognized as a passive holoenzyme, with the molecular functions of its subunits largely ignored. Recent studies employing auxin-inducible degron (AID) and multi-omics techniques have revealed that the functional diversity of Pol II is achieved through the differential contributions of its subunits to various transcriptional and post-transcriptional processes. By regulating these processes in a coordinated manner through its subunits, Pol II can optimize its activity for diverse biological functions. Here, we review recent progress in understanding Pol II subunits and their dysregulation in diseases, Pol II heterogeneity, Pol II clusters and the regulatory roles of RNA polymerases.
Collapse
Affiliation(s)
- Jie Huang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Xiong Ji
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| |
Collapse
|
2
|
Yeo IC, Devarenne TP. Screening for potential nuclear substrates for the plant cell death suppressor kinase Adi3 using peptide microarrays. PLoS One 2020; 15:e0234011. [PMID: 32484825 PMCID: PMC7266335 DOI: 10.1371/journal.pone.0234011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 05/15/2020] [Indexed: 12/29/2022] Open
Abstract
The tomato AGC protein kinase Adi3 is a Ser/Thr kinase that functions as a negative regulator of programmed cell death through cell death suppression (CDS) activity in the nucleus. In this study, to understand the mechanism of Adi3 CDS, peptide microarrays containing random Ser- and Thr-peptide phosphorylation substrates were used to screen for downstream phosphorylation substrates. In the microarray phosphorylation assay, Adi3 showed promiscuous kinase activity more toward Ser-peptides compared to Thr-peptides, and a preference for aromatic and cyclic amino acids on both Ser- and Thr-peptides was seen. The 63 highest phosphorylated peptide sequences from the Ser-peptide microarray were selected as queries for a BLAST search against the tomato proteome. As a result, 294 candidate nuclear Adi3 substrates were selected and categorized based on their functions. Many of these proteins were classified as DNA/RNA polymerases or regulators involved in transcription and translation events. The list of potential Adi3 substrates was narrowed to eleven and four candidates were tested for phosphorylation by Adi3. Two of these candidates, RNA polymerase II 2nd largest subunit (RPB2) and the pathogen defense related transcription factor Pti5, were confirmed as Adi3 phosphorylation substrates by in vitro kinase assays. Using a mutational approach two residues, Thr675 and Thr676, were identified as Adi3 phosphorylation sites on RPB2. This study provides the foundation for understanding Adi3 CDS mechanisms in the nucleus as well as other cellular functions.
Collapse
Affiliation(s)
- In-Cheol Yeo
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, Texas, United States of America
| | - Timothy P. Devarenne
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, Texas, United States of America
| |
Collapse
|
3
|
Abstract
Circular RNAs (circRNAs) are a class of noncoding RNA that are present in wide variety of cells in various tissue types across species. They are non-polyadenylated, single-stranded, covalently closed RNAs. CircRNAs are more stable than other RNAs due to lack of 5' or 3' end leading to resistance to exonuclease digestion. The length of circRNAs varies from 1 to 5 exons with retention of introns in mature circRNAs with ~25% frequency. They are primarily found in the cytosol within the cell although the mechanism of their nuclear export remains elusive. However, there is a subpopulation of circRNAs that remain in the nucleus and regulate RNA-Pol-II-mediated transcription. Bioinformatic approaches mining RNA sequencing data enabled genome-wide identification of circRNAs. In mammalian genome over 20% of the expressed genes in cells and tissues can produce these transcripts. Owing to their abundance, stability, and diverse expression profile, circRNAs likely play a pivotal role in regulatory pathways controlling lineage determination, cell differentiation, and function of various cell types. Yet, the impact of circRNA-mediated regulation on various cell transcriptome remains largely unknown. In this chapter, we will review the regulatory effects of circRNAs in the transcription of their own or other genes. Also, we will discuss the association of circRNAs with miRNAs and RNA-binding proteins (RBPs), with special reference to Drosophila circMbl and their role as an "mRNA trap," which might play a role in its regulatory potential transcriptionally or posttranscriptionally.
Collapse
|
4
|
Molecular evidence of RNA polymerase II gene reveals the origin of worldwide cultivated barley. Sci Rep 2016; 6:36122. [PMID: 27786300 PMCID: PMC5081693 DOI: 10.1038/srep36122] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 10/11/2016] [Indexed: 12/12/2022] Open
Abstract
The origin and domestication of cultivated barley have long been under debate. A population-based resequencing and phylogenetic analysis of the single copy of RPB2 gene was used to address barley domestication, to explore genetic differentiation of barley populations on the worldwide scale, and to understand gene-pool exchanges during the spread and subsequent development of barley cultivation. Our results revealed significant genetic differentiation among three geographically distinct wild barley populations. Differences in haplotype composition among populations from different geographical regions revealed that modern cultivated barley originated from two major wild barley populations: one from the Near East Fertile Crescent and the other from the Tibetan Plateau, supporting polyphyletic origin of cultivated barley. The results of haplotype frequencies supported multiple domestications coupled with widespread introgression events that generated genetic admixture between divergent barley gene pools. Our results not only provide important insight into the domestication and evolution of cultivated barley, but also enhance our understanding of introgression and distinct selection pressures in different environments on shaping the genetic diversity of worldwide barley populations, thus further facilitating the effective use of the wild barley germplasm.
Collapse
|
5
|
Higo T, Suka N, Ehara H, Wakamori M, Sato S, Maeda H, Sekine SI, Umehara T, Yokoyama S. Development of a hexahistidine-3× FLAG-tandem affinity purification method for endogenous protein complexes in Pichia pastoris. JOURNAL OF STRUCTURAL AND FUNCTIONAL GENOMICS 2014; 15:191-9. [PMID: 25398586 PMCID: PMC4237914 DOI: 10.1007/s10969-014-9190-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 11/08/2014] [Indexed: 12/11/2022]
Abstract
We developed a method for efficient chromosome tagging in Pichia pastoris, using a useful tandem affinity purification (TAP) tag. The TAP tag, designated and used here as the THF tag, contains a thrombin protease cleavage site for removal of the TAP tag and a hexahistidine sequence (6× His) followed by three copies of the FLAG sequence (3× FLAG) for affinity purification. Using this method, THF-tagged RNA polymerases I, II, and III were successfully purified from P. pastoris. The method also enabled us to purify the tagged RNA polymerase II on a large scale, for its crystallization and preliminary X-ray crystallographic analysis. The method described here will be widely useful for the rapid and large-scale preparation of crystallization grade eukaryotic multi-subunit protein complexes.
Collapse
Affiliation(s)
- Toshiaki Higo
- Department of Supramolecular Biology, Graduate School of Nanobioscience, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi, Yokohama, Kanagawa 230-0045 Japan
- RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa 230-0045 Japan
- Division of Structural and Synthetic Biology, RIKEN Center for Life Science Technologies, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045 Japan
| | - Noriyuki Suka
- RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa 230-0045 Japan
- Department of Interdisciplinary Science and Engineering, School of Science and Engineering, Meisei University, 2-1-1 Hodokubo, Hino, Tokyo 191-8506 Japan
| | - Haruhiko Ehara
- RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa 230-0045 Japan
- Division of Structural and Synthetic Biology, RIKEN Center for Life Science Technologies, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045 Japan
- Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033 Japan
| | - Masatoshi Wakamori
- RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa 230-0045 Japan
- Division of Structural and Synthetic Biology, RIKEN Center for Life Science Technologies, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045 Japan
| | - Shin Sato
- RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa 230-0045 Japan
- Division of Structural and Synthetic Biology, RIKEN Center for Life Science Technologies, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045 Japan
| | - Hideaki Maeda
- Department of Supramolecular Biology, Graduate School of Nanobioscience, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi, Yokohama, Kanagawa 230-0045 Japan
- RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa 230-0045 Japan
- Division of Structural and Synthetic Biology, RIKEN Center for Life Science Technologies, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045 Japan
| | - Shun-ichi Sekine
- RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa 230-0045 Japan
- Division of Structural and Synthetic Biology, RIKEN Center for Life Science Technologies, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045 Japan
- Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033 Japan
| | - Takashi Umehara
- RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa 230-0045 Japan
- Division of Structural and Synthetic Biology, RIKEN Center for Life Science Technologies, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045 Japan
| | - Shigeyuki Yokoyama
- RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa 230-0045 Japan
- Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033 Japan
- RIKEN Structural Biology Laboratory, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045 Japan
| |
Collapse
|
6
|
The intraspecific variability of mitochondrial genes of Agaricus bisporus reveals an extensive group I intron mobility combined with low nucleotide substitution rates. Curr Genet 2014; 61:87-102. [DOI: 10.1007/s00294-014-0448-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 08/12/2014] [Accepted: 08/18/2014] [Indexed: 12/16/2022]
|
7
|
The RNA polymerase II Rpb4/7 subcomplex regulates cellular lifespan through an mRNA decay process. Biochem Biophys Res Commun 2013. [DOI: 10.1016/j.bbrc.2013.10.079] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
8
|
The fate of the messenger is pre-determined: a new model for regulation of gene expression. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2013; 1829:643-53. [PMID: 23337853 DOI: 10.1016/j.bbagrm.2013.01.004] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Revised: 01/07/2013] [Accepted: 01/08/2013] [Indexed: 02/08/2023]
Abstract
Recent years have seen a rise in publications demonstrating coupling between transcription and mRNA decay. This coupling most often accompanies cellular processes that involve transitions in gene expression patterns, for example during mitotic division and cellular differentiation and in response to cellular stress. Transcription can affect the mRNA fate by multiple mechanisms. The most novel finding is the process of co-transcriptional imprinting of mRNAs with proteins, which in turn regulate cytoplasmic mRNA stability. Transcription therefore is not only a catalyst of mRNA synthesis but also provides a platform that enables imprinting, which coordinates between transcription and mRNA decay. Here we present an overview of the literature, which provides the evidence of coupling between transcription and decay, review the mechanisms and regulators by which the two processes are coupled, discuss why such coupling is beneficial and present a new model for regulation of gene expression. This article is part of a Special Issue entitled: RNA Decay mechanisms.
Collapse
|
9
|
Sharma N, Kumari R. Rpb4 and Rpb7: multifunctional subunits of RNA polymerase II. Crit Rev Microbiol 2012; 39:362-72. [DOI: 10.3109/1040841x.2012.711742] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
10
|
liao JQ, Fan X, Zhang HQ, Sha LN, Kang HY, Wang XL, Liu J, Zhou YH. Molecular phylogeny of RNA polymerase II gene reveals the relationships of tetraploid species with St genome (Triticeae: Poaceae). BIOCHEM SYST ECOL 2011. [DOI: 10.1016/j.bse.2011.05.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
11
|
Burke SJ, Collier JJ, Scott DK. cAMP prevents glucose-mediated modifications of histone H3 and recruitment of the RNA polymerase II holoenzyme to the L-PK gene promoter. J Mol Biol 2009; 392:578-88. [PMID: 19631660 PMCID: PMC2771933 DOI: 10.1016/j.jmb.2009.07.053] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2009] [Revised: 07/16/2009] [Accepted: 07/17/2009] [Indexed: 10/20/2022]
Abstract
Glucose and cAMP reciprocally regulate expression of the L-type pyruvate kinase (L-PK) gene by controlling the formation of a complex containing the carbohydrate response element binding protein (ChREBP) and the coactivator CREB binding protein (CBP) on the L-PK promoter. However, the role of posttranslational histone modifications on the opposing effects of glucose and cAMP on the L-PK gene is unknown. Using the highly glucose-sensitive 832/13 rat insulinoma cell line, we demonstrated that glucose regulates acetylation and methylation of various histone residues at the L-PK gene promoter. These glucose-dependent histone modifications correlated with an increase in the recruitment and phosphorylation of RNA polymerase II (Pol II) on the L-PK gene promoter. Conversely, the cAMP agonist forskolin prevented glucose-mediated expression of the L-PK gene by decreasing the acetylation of histones H3 and H4 on the promoter, decreasing the methylation of H3-K4 on the coding region, and increasing the methylation of H3-K9 on the coding region. These changes induced by cAMP culminated with a decrease in the glucose-dependent recruitment of phosphorylated Pol II to the L-PK gene promoter. Furthermore, maneuvers that interfere with the glucose-dependent assembly of ChREBP and CBP on the L-PK promoter, such as increasing intracellular cAMP levels, overexpression of a dominant-negative form of ChREBP, and small-interfering-RNA-mediated suppression of CBP abundance, all altered the acetylation and methylation of histones on the L-PK promoter, which decreased Pol II recruitment and subsequently inhibited transcriptional activation of the L-PK gene. We conclude that the effects of glucose and cAMP are mediated in part by epigenetic modulation of histones.
Collapse
Affiliation(s)
- Susan J. Burke
- Department of Medicine, Division of Endocrinology and Metabolism, University of Pittsburgh, Pittsburgh, PA
| | - J. Jason Collier
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC
- Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, NC
| | - Donald K. Scott
- Department of Medicine, Division of Endocrinology and Metabolism, University of Pittsburgh, Pittsburgh, PA
| |
Collapse
|
12
|
Sun G, Pourkheirandish M, Komatsuda T. Molecular evolution and phylogeny of the RPB2 gene in the genus Hordeum. ANNALS OF BOTANY 2009; 103:975-83. [PMID: 19213797 PMCID: PMC2707890 DOI: 10.1093/aob/mcp020] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
BACKGROUND AND AIMS It is known that the miniature inverted-repeat terminal element (MITE) preferentially inserts into low-copy-number sequences or genic regions. Characterization of the second largest subunit of low-copy nuclear RNA polymerase II (RPB2) has indicated that MITE and indels have shaped the homoeologous RPB2 loci in the St and H genome of Eymus species in Triticeae. The aims of this study was to determine if there is MITE in the RPB2 gene in Hordeum genomes, and to compare the gene evolution of RPB2 with other diploid Triticeae species. The sequences were used to reconstruct the phylogeny of the genus Hordeum. METHODS RPB2 regions from all diploid species of Hordeum, one tetraploid species (H. brevisubulatum) and ten accessions of diploid Triticeae species were amplified and sequenced. Parsimony analysis of the DNA dataset was performed in order to reveal the phylogeny of Hordeum species. KEY RESULTS MITE was detected in the Xu genome. A 27-36 bp indel sequence was found in the I and Xu genome, but deleted in the Xa and some H genome species. Interestingly, the indel length in H genomes corresponds well to their geographical distribution. Phylogenetic analysis of the RPB2 sequences positioned the H and Xa genome in one monophyletic group. The I and Xu genomes are distinctly separated from the H and Xa ones. The RPB2 data also separated all New World H genome species except H. patagonicum ssp. patagonicum from the Old World H genome species. CONCLUSIONS MITE and large indels have shaped the RPB2 loci between the Xu and H, I and Xa genomes. The phylogenetic analysis of the RPB2 sequences confirmed the monophyly of Hordeum. The maximum-parsimony analysis demonstrated the four genomes to be subdivided into two groups.
Collapse
Affiliation(s)
- Genlou Sun
- Biology Department, Saint Mary's University, 923 Robie Street, Halifax, NS, B3H 3C3, Canada.
| | | | | |
Collapse
|
13
|
Werner F. Structural evolution of multisubunit RNA polymerases. Trends Microbiol 2008; 16:247-50. [PMID: 18468900 DOI: 10.1016/j.tim.2008.03.008] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2008] [Revised: 03/05/2008] [Accepted: 03/05/2008] [Indexed: 11/29/2022]
Abstract
Evolutionarily related multisubunit RNA polymerases (RNAPs) facilitate gene transcription throughout the three domains of life. During the past seven years an increasing number of bacterial and eukaryotic RNAP structures have been solved; however, the archaeal enzyme remained elusive. Two reports from the Murakami and Cramer laboratories have now filled this gap in our knowledge and enable us to hypothesize about the evolution of the structure and function of RNAPs.
Collapse
Affiliation(s)
- Finn Werner
- Research Department of Structural and Molecular Biology, University College London, Gower Street, London, UK.
| |
Collapse
|
14
|
Hubbard K, Catalano J, Puri RK, Gnatt A. Knockdown of TFIIS by RNA silencing inhibits cancer cell proliferation and induces apoptosis. BMC Cancer 2008; 8:133. [PMID: 18474089 PMCID: PMC2390572 DOI: 10.1186/1471-2407-8-133] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2007] [Accepted: 05/12/2008] [Indexed: 01/11/2023] Open
Abstract
Background A common element among cancer cells is the presence of improperly controlled transcription. In these cells, the degree of specific activation of some genes is abnormal, and altering the aberrant transcription may therefore directly target cancer. TFIIS is a transcription elongation factor, which directly binds the transcription motor, RNA Polymerase II and allows it to read through various transcription arrest sites. We report on RNA interference of TFIIS, a transcription elongation factor, and its affect on proliferation of cancer cells in culture. Methods RNA interference was performed by transfecting siRNA to specifically knock down TFIIS expression in MCF7, MCF10A, PL45 and A549 cells. Levels of TFIIS expression were determined by the Quantigene method, and relative protein levels of TFIIS, c-myc and p53 were determined by C-ELISA. Induction of apoptosis was determined by an enzymatic Caspase 3/7 assay, as well as a non-enzymatic assay detecting cytoplasmic mono- and oligonucleosomes. A gene array analysis was conducted for effects of TFIIS siRNA on MCF7 and MCF10A cell lines. Results Knockdown of TFIIS reduced cancer cell proliferation in breast, lung and pancreatic cancer cell lines. More specifically, TFIIS knockdown in the MCF7 breast cancer cell line induced cancer cell death and increased c-myc and p53 expression whereas TFIIS knockdown in the non-cancerous breast cell line MCF10A was less affected. Differential effects of TFIIS knockdown in MCF7 and MCF10A cells included the estrogenic, c-myc and p53 pathways, as observed by C-ELISA and gene array, and were likely involved in MCF7 cell-death. Conclusion Although transcription is a fundamental process, targeting select core transcription factors may provide for a new and potent avenue for cancer therapeutics. In the present study, knockdown of TFIIS inhibited cancer cell proliferation, suggesting that TFIIS could be studied as a potential cancer target within the transcription machinery.
Collapse
Affiliation(s)
- Kyle Hubbard
- Pharmacology and Experimental Therapeutics, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| | | | | | | |
Collapse
|
15
|
Xue X, Lehming N. Nhp6p and Med3p regulate gene expression by controlling the local subunit composition of RNA polymerase II. J Mol Biol 2008; 379:212-30. [PMID: 18448120 DOI: 10.1016/j.jmb.2008.03.069] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2007] [Revised: 03/19/2008] [Accepted: 03/31/2008] [Indexed: 11/28/2022]
Abstract
Nhp6p is an architectural Saccharomyces cerevisiae non-histone chromosomal protein that bends DNA and plays an important role in transcription and genome stability. We used the split-ubiquitin system to isolate proteins that interact with Nhp6p in vivo, and we confirmed 11 of these protein-protein interactions with glutathione S-transferase pull-down experiments in vitro. Most of the Nhp6p-interacting proteins are involved in transcription and DNA repair. We utilized the ZDS1, PUR5 and UME6 genes, which are repressed by Nhp6p and its interacting partners Rpb4p and Med3p, to study the chromosomal localization of these three proteins in wild-type and gene deletion strains. Nhp6p, Med3p and Rpb4p were found at the promoters of ZDS1, PUR5 and UME6, indicating that the repressing effects the three proteins had on the expression of these three genes had been direct ones. We also found that Med3p inhibited promoter clearance of RNA polymerase II, which contained the dissociable subunit Rpb4p, while Nhp6p recruited Rpb4p to the basal promoters of ZDS1, PUR5 and UME6. Our results further suggest that Rpb4p inhibits transcription initiation but stimulates transcription elongation and that Nhp6p and Med3p regulate gene expression by controlling the local subunit composition of RNA polymerase II.
Collapse
Affiliation(s)
- Xiaowei Xue
- Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2, Singapore
| | | |
Collapse
|
16
|
Molecular phylogeny of RPB2 gene reveals multiple origin, geographic differentiation of H genome, and the relationship of the Y genome to other genomes in Elymus species. Mol Phylogenet Evol 2008; 46:897-907. [DOI: 10.1016/j.ympev.2007.12.024] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2007] [Revised: 10/02/2007] [Accepted: 12/29/2007] [Indexed: 11/20/2022]
|
17
|
Gerber J, Reiter A, Steinbauer R, Jakob S, Kuhn CD, Cramer P, Griesenbeck J, Milkereit P, Tschochner H. Site specific phosphorylation of yeast RNA polymerase I. Nucleic Acids Res 2007; 36:793-802. [PMID: 18084032 PMCID: PMC2241885 DOI: 10.1093/nar/gkm1093] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
All nuclear RNA polymerases are phosphoprotein complexes. Yeast RNA polymerase I (Pol I) contains approximately 15 phosphate groups, distributed to 5 of the 14 subunits. Information about the function of the single phosphosites and their position in the primary, secondary and tertiary structure is lacking. We used a rapid and efficient way to purify yeast RNA Pol I to determine 13 phosphoserines and –threonines. Seven of these phosphoresidues could be located in the 3D-homology model for Pol I, five of them are more at the surface. The single phosphorylated residues were systematically mutated and the resulting strains and Pol I preparations were analyzed in cellular growth, Pol I composition, stability and genetic interaction with non-essential components of the transcription machinery. Surprisingly, all Pol I phosphorylations analyzed were found to be non-essential post-translational modifications. However, one mutation (subunit A190 S685D) led to higher growth rates in the presence of 6AU or under environmental stress conditions, and was synthetically lethal with a deletion of the Pol I subunit A12.2, suggesting a role in RNA cleavage/elongation or termination. Our results suggest that individual major or constitutively phosphorylated residues contribute to non-essential Pol I-functions.
Collapse
Affiliation(s)
- Jochen Gerber
- Institut für Biochemie, Mikrobiologie und Genetik, Universität Regensburg, Munich, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Sampath V, Balakrishnan B, Verma-Gaur J, Onesti S, Sadhale PP. Unstructured N terminus of the RNA polymerase II subunit Rpb4 contributes to the interaction of Rpb4.Rpb7 subcomplex with the core RNA polymerase II of Saccharomyces cerevisiae. J Biol Chem 2007; 283:3923-31. [PMID: 18056993 DOI: 10.1074/jbc.m708746200] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Two subunits of eukaryotic RNA polymerase II, Rpb7 and Rpb4, form a subcomplex that has counterparts in RNA polymerases I and III. Although a medium resolution structure has been solved for the 12-subunit RNA polymerase II, the relative contributions of the contact regions between the subcomplex and the core polymerase and the consequences of disrupting them have not been studied in detail. We have identified mutations in the N-terminal ribonucleoprotein-like domain of Saccharomyces cerevisiae Rpb7 that affect its role in certain stress responses, such as growth at high temperature and sporulation. These mutations increase the dependence of Rpb7 on Rpb4 for interaction with the rest of the polymerase. Complementation analysis and RNA polymerase pulldown assays reveal that the Rpb4.Rbp7 subcomplex associates with the rest of the core RNA polymerase II through two crucial interaction points: one at the N-terminal ribonucleoprotein-like domain of Rpb7 and the other at the partially ordered N-terminal region of Rpb4. These findings are in agreement with the crystal structure of the 12-subunit polymerase. We show here that the weak interaction predicted for the N-terminal region of Rpb4 with Rpb2 in the crystal structure actually plays a significant role in interaction of the subcomplex with the core in vivo. Our mutant analysis also suggests that Rpb7 plays an essential role in the cell through its ability to interact with the rest of the polymerase.
Collapse
Affiliation(s)
- Vinaya Sampath
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India
| | | | | | | | | |
Collapse
|
19
|
Sun G, Daley T, Ni Y. Molecular evolution and genome divergence at RPB2 gene of the St and H genome in Elymus species. PLANT MOLECULAR BIOLOGY 2007; 64:645-55. [PMID: 17551673 DOI: 10.1007/s11103-007-9183-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2006] [Accepted: 05/04/2007] [Indexed: 05/15/2023]
Abstract
Molecular evolution of the second largest subunit of low copy nuclear RNA polymerase II (RPB2) in allotetrploid StH genomic species of Elymus is characterized here. Our study first reported a 39-bp MITE stowaway element insertion in the genic region of RPB2 gene for all tetraploid Elymus St genome and diploid Pseudoroegneria spicata and P. stipifolia St genome. The sequences on 3'-end are highly conserved, with AGTA in all sequences but H10339 (E. fibrosis), in which the AGTA was replaced with AGAA. All 12 Stowaway-containing sequences encompassed a 9 bp conserved TIRs (GAGGGAGTA). Interestingly, the 5'-end sequence of GGTA which was changed to AGTA or deleted resulted in Stowaway excision in the H genome of Elymus sepcies, in which Stowaway excision did not leave footprint. Another two large insertions in all St genome sequences are also transposable-like elements detected in the genic region of RPB2 gene. Our results indicated that these three transposable element indels have occurred prior to polyploidization, and shaped the homoeologous RPB2 loci in St and H genome of Eymus species. Nucleotide diversity analysis suggested that the RPB2 sequence may evolve faster in the polyploid species than in the diploids. Higher level of polymorphism and genome-specific amplicons generated by this gene indicated that RPB2 is an excellent tool for investigating the phylogeny and evolutionary dynamics of speciation, and the mode of polyploidy formation in Elymus species.
Collapse
Affiliation(s)
- Genlou Sun
- Department of Biology, Saint Mary's University, 923 Robie Street, Halifax, NS, Canada, B3H 3C3.
| | | | | |
Collapse
|
20
|
Wei Y, Liu S, Lausen J, Woodrell C, Cho S, Biris N, Kobayashi N, Wei Y, Yokoyama S, Werner MH. A TAF4-homology domain from the corepressor ETO is a docking platform for positive and negative regulators of transcription. Nat Struct Mol Biol 2007; 14:653-61. [PMID: 17572682 DOI: 10.1038/nsmb1258] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2006] [Accepted: 05/02/2007] [Indexed: 11/09/2022]
Abstract
The eight twenty-one protein, ETO, is implicated in 12%-15% of acute human leukemias as part of a gene fusion with RUNX1 (also called AML1). Of the four ETO domains related to Drosophila melanogaster Nervy, only two are required to induce spontaneous myeloid leukemia upon transplantation into the mouse. One of these domains is related in sequence to TAF4, a component of TFIID. The structure of this domain, ETO-TAFH, is similar to yeast Rpb4 and to Escherichia coli sigma(70); it is the first TAF-related protein with structural similarity to the multisubunit RNA polymerases. Overlapping surfaces of ETO-TAFH interact with an autonomous repression domain of the nuclear receptor corepressor N-CoR and with a conserved activation domain from the E-box family of transcription factors. Thus, ETO-TAFH acts as a structural platform that can interchange negative and positive coregulatory proteins to control transcription.
Collapse
Affiliation(s)
- Yufeng Wei
- Laboratory of Molecular Biophysics, The Rockefeller University, 1230 York Avenue, New York, New York, 10021, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Singh SR, Pillai B, Balakrishnan B, Naorem A, Sadhale PP. Relative levels of RNA polII subunits differentially affect starvation response in budding yeast. Biochem Biophys Res Commun 2007; 356:266-72. [PMID: 17346670 DOI: 10.1016/j.bbrc.2007.02.120] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2007] [Accepted: 02/22/2007] [Indexed: 10/23/2022]
Abstract
The Rpb4/7 subcomplex of RNA polymerase II in Saccharomyces cerevisiae is known to play an important role in stress response and stress survival. These two proteins perform overlapping functions ensuring an appropriate cellular response through transcriptional regulation of gene expression. Rpb4 and Rpb7 also perform many cellular functions either together or independent of one another. Here, we show that Rpb4 and Rpb7 differently affect during the nutritional starvation response pathways of sporulation and pseudohyphae formation. Rpb4 enhances the cells' proficiency to sporulate but suppresses pseudohyphal growth. On the other hand, Rpb7 promotes pseudohyphal growth and suppresses sporulation in a dose-dependent manner. We present a model whereby the stoichiometry of Rpb4 and Rpb7 and their relative levels in the cell play a switch like role in establishing either sporulation or pseudohyphal gene expression.
Collapse
Affiliation(s)
- Sunanda R Singh
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 12, India
| | | | | | | | | |
Collapse
|
22
|
Hayashi S, Yamazaki T, Okamoto K. Nonapoptotic cell death caused by the inhibition of RNA polymerase disrupts organelle distribution. J Neurol Sci 2007; 256:10-20. [PMID: 17360003 DOI: 10.1016/j.jns.2007.01.077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2006] [Revised: 01/18/2007] [Accepted: 01/23/2007] [Indexed: 11/20/2022]
Abstract
It is controversial whether the mode of cell death induced by CAG repeat diseases is apoptotic. One technical problem that affects this issue is that the very methods used for DNA injection may induce artificial apoptosis. A recent study demonstrated that the functions of RNA polymerase II are disrupted in spinocerebellar ataxia type 1 (SCA 1) pathology, one of the CAG repeat diseases, and that alpha-amanitin can inhibit the activity of RNA polymerase. To examine the cell death mechanisms involved in CAG repeat diseases, we treated cultured rat neurons with alpha-amanitin to avoid the artifacts caused by DNA transfection. Mature and immature rat neurons were treated with alpha-amanitin for 4-6 days and the effects of the treatment on the elongation of neurites, the distribution or morphology of organelles, and the nature of cell death were assessed by immunocytochemistry and quantitative analysis. Neurons exhibited a disruption of neurite elongation and eventually died by day 15 of the treatment. However, apoptosis was not detected. When the neurons survived well, but showed altered neurites, Golgi complexes and lysosomes exhibited changes in their normal intracellular distribution or morphology, but the endoplasmic reticulum and mitochondria did not. The distribution of phosphorylated Trk receptors was also disrupted in the neurites of treated neurons. The signal intensity of the dynein intermediate chain was markedly decreased in the treated neurons. Thus, organelle transport systems, particularly a minus-end-directed microtubule-dependent pathway, would be disrupted by the inhibition of RNA polymerase, and this change is likely to be an early event involved in SCA 1 pathology.
Collapse
Affiliation(s)
- Shintaro Hayashi
- Department of Neurology, Gunma University, Graduate School of Medicine, 3-39-15 Showa-Machi, Maebashi, Gunma, Japan
| | | | | |
Collapse
|
23
|
Kang ME, Dahmus ME. The unique C-terminal domain of RNA polymerase II and its role in transcription. ADVANCES IN ENZYMOLOGY AND RELATED AREAS OF MOLECULAR BIOLOGY 2006; 71:41-77. [PMID: 8644491 DOI: 10.1002/9780470123171.ch2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- M E Kang
- Section of Molecular and Cellular Biology, University of California, Davis 95616, USA
| | | |
Collapse
|
24
|
Nguyen TN, Schimanski B, Zahn A, Klumpp B, Günzl A. Purification of an eight subunit RNA polymerase I complex in Trypanosoma brucei. Mol Biochem Parasitol 2006; 149:27-37. [PMID: 16730080 DOI: 10.1016/j.molbiopara.2006.02.023] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2005] [Revised: 02/20/2006] [Accepted: 02/28/2006] [Indexed: 11/25/2022]
Abstract
Trypanosoma brucei harbors a unique multifunctional RNA polymerase (pol) I which transcribes, in addition to ribosomal RNA genes, the gene units encoding the major cell surface antigens variant surface glycoprotein and procyclin. In consequence, this RNA pol I is recruited to three structurally different types of promoters and sequestered to two distinct nuclear locations, namely the nucleolus and the expression site body. This versatility may require parasite-specific protein-protein interactions, subunits or subunit domains. Thus far, data mining of trypanosomatid genomes have revealed 13 potential RNA pol I subunits which include two paralogous sets of RPB5, RPB6, and RPB10. Here, we analyzed a cDNA library prepared from procyclic insect form T. brucei and found that all 13 candidate subunits are co-expressed. Moreover, we PTP-tagged the largest subunit TbRPA1, tandem affinity-purified the enzyme complex to homogeneity, and determined its subunit composition. In addition to the already known subunits RPA1, RPA2, RPC40, 1RPB5, and RPA12, the complex contained RPC19, RPB8, and 1RPB10. Finally, to evaluate the absence of RPB6 in our purifications, we used a combination of epitope-tagging and reciprocal coimmunoprecipitation to demonstrate that 1RPB6 but not 2RPB6 binds to RNA pol I albeit in an unstable manner. Collectively, our data strongly suggest that T. brucei RNA pol I binds a distinct set of the RPB5, RPB6, and RPB10 paralogs.
Collapse
Affiliation(s)
- Tu N Nguyen
- Department of Genetics and Developmental Biology and Department of Molecular, Microbial and Structural Biology, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT 06030-3301, USA
| | | | | | | | | |
Collapse
|
25
|
Göttler T, Holler E. Screening for beta-poly(L-malate) binding proteins by affinity chromatography. Biochem Biophys Res Commun 2006; 341:1119-27. [PMID: 16476581 DOI: 10.1016/j.bbrc.2006.01.064] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2006] [Accepted: 01/17/2006] [Indexed: 10/25/2022]
Abstract
Poly(beta-L-malic acid) is a cell type-specific polymer of myxomycetes (true slime molds) with the physiological role to organize mobility of certain proteins over the giant multinucleated plasmodia. We have developed an affinity chromatography employing 1,6-diamino-n-hexane-Sepharose-coupled poly(malic acid) to identify such proteins in cellular extracts of Physarum polycephalum. Molecular masses were measured by SDS-PAGE and non-denaturing PAGE after silver staining and/or Western blotting. Protein complexes/subunits were detected by 2-dimensional non-denaturing PAGE/SDS-PAGE. A simplified gel shift experiment displayed binding to fragmented calf thymus DNA. Nuclei were richest in poly(malate) binding proteins followed by cytoplasm and membranes. A protein of 370 kDa dissociated into 11 subunits of 11-29 kDa, indicative of a highly complex protein. This and other proteins displayed binding to nucleic acid in gel shift experiments. Poly(malate) is considered a structural and functional equivalent of long contiguous aspartate repeats in proteins of eukaryotes.
Collapse
Affiliation(s)
- Thomas Göttler
- Institut für Biophysik und Physikalische Biochemie, Universität Regensburg, D-93040 Regensburg, Germany
| | | |
Collapse
|
26
|
Sareen A, Choudhry P, Mehta S, Sharma N. Mapping the interaction site of Rpb4 and Rpb7 subunits of RNA polymerase II in Saccharomyces cerevisiae. Biochem Biophys Res Commun 2005; 332:763-70. [PMID: 15913559 DOI: 10.1016/j.bbrc.2005.05.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2005] [Accepted: 05/02/2005] [Indexed: 10/25/2022]
Abstract
Rpb4 and Rpb7, the fourth and the seventh largest subunits of RNA polymerase II, form a heterodimer in Saccharomyces cerevisiae. To identify the site of interaction between these subunits, we constructed truncation mutants of both these proteins and carried out yeast two hybrid analysis. Deletions in the amino and carboxyl terminal domains of Rpb7 abolished its interaction with Rpb4. In comparison, deletion of up to 49 N-terminal amino acids of Rpb4 reduced its interaction with Rpb7. Complete abolishment of interaction between Rpb4 and Rpb7 occurred by truncation of 1-106, 1-142, 108-221, 172-221 or 198-221 amino acids of Rpb4. Use of the yeast two-hybrid analysis in conjunction with computational analysis of the recently reported crystal structure of Rpb4/Rpb7 sub-complex allowed us to identify regions previously not suspected to be involved in the functional interaction of these proteins. Taken together, our results have identified the regions that are involved in interaction between the Rpb4 and Rpb7 subunits of S. cerevisiae RNA polymerase II in vivo.
Collapse
Affiliation(s)
- Archana Sareen
- School of Biotechnology, G.G.S. Indraprastha University, Kashmere Gate, Delhi 110006, India
| | | | | | | |
Collapse
|
27
|
Sampath V, Sadhale P. Rpb4 and Rpb7: A Sub-complex Integral to Multi-subunit RNA Polymerases Performs a Multitude of Functions. IUBMB Life 2005; 57:93-102. [PMID: 16036568 DOI: 10.1080/15216540500078905] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Rpb4 and Rpb7, are conserved subunits of RNA polymerase II that play important roles in stress responses such as growth at extreme temperatures, recovery from stationary phase, sporulation and pseudohyphal growth. Recent reports have shown that apart from stress response, these proteins also affect a multitude of processes including activated transcription, mRNA export, transcription coupled repair etc. We propose a model that integrates the multifarious roles of this sub-complex. We suggest that these proteins function by modulating interactions of one or more ancillary factors with the polymerase leading to specific transcription of subsets of these genes. Preliminary experimental evidence in support of such a model is discussed.
Collapse
Affiliation(s)
- Vinaya Sampath
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | | |
Collapse
|
28
|
Sampath V, Rekha N, Srinivasan N, Sadhale P. The Conserved and Non-conserved Regions of Rpb4 Are Involved in Multiple Phenotypes in Saccharomyces cerevisiae. J Biol Chem 2003; 278:51566-76. [PMID: 14530281 DOI: 10.1074/jbc.m305863200] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Rpb4, the fourth largest subunit of RNA polymerase II in Saccharomyces cerevisiae, is required for many phenotypes, including growth at high and low temperatures, sporulation, pseudohyphal growth, activated transcription of a subset of genes, and efficient carbon and energy metabolism. We have used deletion analysis to delineate the domains of the protein involved in these multiple phenotypes. The scRpb4 protein is conserved at the N and C termini but possesses certain non-conserved regions in the central portion. Our deletion analysis and molecular modeling results show that the N- and C-terminal conserved regions of Rpb4 are involved in interaction with Rpb7, the Rpb4 interacting partner in the RNA polymerase II. We further show that the conserved N terminus is required for efficient activated transcription from the INO1 promoter but not the GAL10- or the HSE-containing promoters. The N terminus is not required for any of the stress responses tested: growth at high temperatures, sporulation, and pseudohyphal growth. The conserved C-terminal 23 amino acids are not required for the role of Rpb4 in the pseudohyphal growth phenotype but might play a role in other stress responses and activated transcription. From the deletion analysis of the non-conserved regions, we report that they influence phenotypes involving both the N and C termini (interaction with Rpb7 and transcription from the INO1 promoter) but not any of the stress-responsive phenotypes tested suggesting that they might be involved in maintaining the two conserved domains in an appropriate conformation for interaction with Rpb7 and other proteins. Taken together, our results allow us to assign phenotype-specific roles for the different conserved and non-conserved regions of Rpb4.
Collapse
Affiliation(s)
- Vinaya Sampath
- Department of Microbiology & Cell Biology, Indian Institute of Science, Bangalore 560012, India
| | | | | | | |
Collapse
|
29
|
Muratoglu S, Georgieva S, Pápai G, Scheer E, Enünlü I, Komonyi O, Cserpán I, Lebedeva L, Nabirochkina E, Udvardy A, Tora L, Boros I. Two different Drosophila ADA2 homologues are present in distinct GCN5 histone acetyltransferase-containing complexes. Mol Cell Biol 2003. [PMID: 12482983 DOI: 10.1128/mcb.23.1.306-21.2003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023] Open
Abstract
We have isolated a novel Drosophila (d) gene coding for two distinct proteins via alternative splicing: a homologue of the yeast adaptor protein ADA2, dADA2a, and a subunit of RNA polymerase II (Pol II), dRPB4. Moreover, we have identified another gene in the Drosophila genome encoding a second ADA2 homologue (dADA2b). The two dADA2 homologues, as well as many putative ADA2 homologues from different species, all contain, in addition to the ZZ and SANT domains, several evolutionarily conserved domains. The dada2a/rpb4 and dada2b genes are differentially expressed at various stages of Drosophila development. Both dADA2a and dADA2b interacted with the GCN5 histone acetyltransferase (HAT) in a yeast two-hybrid assay, and dADA2b, but not dADA2a, also interacted with Drosophila ADA3. Both dADA2s further potentiate transcriptional activation in insect and mammalian cells. Antibodies raised either against dADA2a or dADA2b both immunoprecipitated GCN5 as well as several Drosophila TATA binding protein-associated factors (TAFs). Moreover, following glycerol gradient sedimentation or chromatographic purification combined with gel filtration of Drosophila nuclear extracts, dADA2a and dGCN5 were detected in fractions with an apparent molecular mass of about 0.8 MDa whereas dADA2b was found in fractions corresponding to masses of at least 2 MDa, together with GCN5 and several Drosophila TAFs. Furthermore, in vivo the two dADA2 proteins showed different localizations on polytene X chromosomes. These results, taken together, suggest that the two Drosophila ADA2 homologues are present in distinct GCN5-containing HAT complexes.
Collapse
|
30
|
Corbi N, Di Padova M, De Angelis R, Bruno T, Libri V, Iezzi S, Floridi A, Fanciulli M, Passananti C. The alpha-like RNA polymerase II core subunit 3 (RPB3) is involved in tissue-specific transcription and muscle differentiation via interaction with the myogenic factor myogenin. FASEB J 2002; 16:1639-41. [PMID: 12207009 DOI: 10.1096/fj.02-0123fje] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
RNA polymerase II core subunit 3 (RPB3) is an a-like core subunit of RNA polymerase II (pol II). It is selectively down-regulated upon treatment with doxorubicin (dox). Due to the failure of skeletal muscle cells to differentiate when exposed to dox, we hypothesized that RPB3 is involved in muscle differentiation. To this end, we have isolated human muscle RPB3-interacting proteins by using yeast two-hybrid screening. It is of interest that an interaction between RPB3 and the myogenic transcription factor myogenin was identified. This interaction involves a specific region of RPB3 protein that is not homologous to the prokaryotic a subunit. Although RPB3 contacts the basic helix-loop-helix (HLH) region of myogenin, it does not bind other HLH myogenic factors such as MyoD, Myf5, and MRF4. Coimmunoprecipitation experiments indicate that myogenin contacts the pol II complex and that the RPB3 subunit is responsible for this interaction. We show that RPB3 expression is regulated during muscle differentiation. Exogenous expression of RPB3 slightly promotes myogenin transactivation activity and muscle differentiation, whereas the region of RPB3 that contacts myogenin, when used as a dominant negative molecule (Sud), counteracts these effects. These results indicate for the first time that the RPB3 pol II subunit is involved in the regulation of tissue-specific transcription.
Collapse
|
31
|
Abstract
Essential components of the eukaryotic transcription apparatus include RNA polymerase II, a common set of initiation factors, and a Mediator complex that transmits regulatory information to the enzyme. Insights into mechanisms of transcription have been gained by three-dimensional structures for many of these factors and their complexes, especially for yeast RNA polymerase II at atomic resolution.
Collapse
Affiliation(s)
- Nancy A Woychik
- Department of Molecular Genetics and Microbiology, Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
| | | |
Collapse
|
32
|
Wang Q, Fondell JD. Generation of a mammalian cell line stably expressing a tetracycline-regulated epitope-tagged human androgen receptor: implications for steroid hormone receptor research. Anal Biochem 2001; 289:217-30. [PMID: 11161315 DOI: 10.1006/abio.2000.4960] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The androgen receptor (AR) is hormone-activated transcription factor that regulates the expression of genes involved in differentiation, development, and maintenance of male reproductive functions. To establish a useful model system for studying molecular mechanisms of AR action, we generated a HeLa-derived cell line (termed E19) that stably expresses human AR. Because overexpression of AR in cultured cells can be cytotoxic, we placed AR expression under the control of a tetracycline-regulated promoter. The stably expressed AR also contains an N-terminal FLAG-epitope tag (f:AR) that provides an advantageous method for immunopurification. We show that f:AR expression in E19 cells can be precisely modulated by varying the concentration of tetracycline or its chemical derivative doxycycline in the growth media. The functional activity of E19-expressed f:AR is demonstrated in vivo by its ability to activate transiently transfected AR reporter genes in an androgen-dependent manner, and in vitro by its ability to specifically bind AR-response elements using DNA-mobility shift assays. We further show that f:AR in androgen-stimulated E19 cells is markedly phosphorylated and coimmunopurifies with the transcriptional coactivator CREB-binding protein (CBP). The implications of these findings on steroid receptor research and the identification of receptor coregulatory factors will be discussed.
Collapse
Affiliation(s)
- Q Wang
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | | |
Collapse
|
33
|
Donaldson IM, Friesen JD. Zinc stoichiometry of yeast RNA polymerase II and characterization of mutations in the zinc-binding domain of the largest subunit. J Biol Chem 2000; 275:13780-8. [PMID: 10788499 DOI: 10.1074/jbc.275.18.13780] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Atomic absorption spectroscopy demonstrated that highly purified RNA polymerase II from the yeast Saccharomyces cerevisiae binds seven zinc ions. This number agrees with the number of potential zinc-binding sites among the 12 different subunits of the enzyme and with our observation that the ninth largest subunit alone is able to bind two zinc ions. The zinc-binding motif in the largest subunit of the enzyme was investigated using mutagenic analysis. Altering any one of the six conserved residues in the zinc-binding motif conferred either a lethal or conditional phenotype, and zinc blot analysis indicated that mutant forms of the domain had a 2-fold reduction in zinc affinity. Mutations in the zinc-binding domain reduced RNA polymerase II activity in cell-free extracts, even though protein blot analysis indicated that the mutant subunit was present in excess of wild-type levels. Purification of one mutant RNA polymerase revealed a subunit profile that was wild-type like with the exception of two subunits not required for core enzyme activity (Rpb4p and Rpb7p), which were missing. Core activity of the mutant enzyme was reduced 20-fold. We conclude that mutations in the zinc-binding domain can reduce core activity without altering the association of any of the subunits required for this activity.
Collapse
Affiliation(s)
- I M Donaldson
- Banting and Best Department of Medical Research, Toronto, Ontario M5G 1L6, Canada
| | | |
Collapse
|
34
|
Woychik NA. Fractions to functions: RNA polymerase II thirty years later. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 1999; 63:311-7. [PMID: 10384295 DOI: 10.1101/sqb.1998.63.311] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- N A Woychik
- Department of Molecular Genetics and Microbiology, University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, Piscataway 08854, USA
| |
Collapse
|
35
|
Kershnar E, Wu SY, Chiang CM. Immunoaffinity purification and functional characterization of human transcription factor IIH and RNA polymerase II from clonal cell lines that conditionally express epitope-tagged subunits of the multiprotein complexes. J Biol Chem 1998; 273:34444-53. [PMID: 9852112 DOI: 10.1074/jbc.273.51.34444] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Purification of multiprotein complexes such as transcription factor (TF) IIH and RNA polymerase II (pol II) has been a tedious task by conventional chromatography. To facilitate the purification, we have developed an effective scheme that allows human TFIIH and pol II to be isolated from HeLa-derived cell lines that conditionally express the FLAG-tagged p62 subunit of human TFIIH and the RPB9 subunit of human pol II, respectively. An approximate 2000-fold enrichment of FLAG-tagged TFIIH and a 1000-fold enhancement of total pol II are achieved by a one-step immunoaffinity purification. The purified complexes are functional in mediating basal and activated transcription, regardless of whether TATA-binding protein or TFIID is used as the TATA-binding factor. Interestingly, repression of basal transcription by the positive cofactor PC4 is alleviated by increasing amounts of TFIID, TFIIH, and pol II holoenzyme, suggesting that phosphorylation of PC4 by these proteins may cause a conformational change in the structure of PC4 that allows for preinitiation complex formation and initiation of transcription. Furthermore, pol II complexes with different phosphorylation states on the carboxyl-terminal domain of the largest subunit are selectively purified from the inducible pol II cell line, making it possible to dissect the role of carboxyl-terminal domain phosphorylation in the transcription process in a highly defined in vitro transcription system.
Collapse
Affiliation(s)
- E Kershnar
- Department of Biochemistry, University of Illinois, Urbana, Illinois 61801, USA
| | | | | |
Collapse
|
36
|
Hengartner CJ, Myer VE, Liao SM, Wilson CJ, Koh SS, Young RA. Temporal regulation of RNA polymerase II by Srb10 and Kin28 cyclin-dependent kinases. Mol Cell 1998; 2:43-53. [PMID: 9702190 DOI: 10.1016/s1097-2765(00)80112-4] [Citation(s) in RCA: 324] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Two cyclin-dependent kinases have been identified in yeast and mammalian RNA polymerase II transcription initiation complexes. We find that the two yeast kinases are indistinguishable in their ability to phosphorylate the RNA polymerase II CTD, and yet in living cells one kinase is a positive regulator and the other a negative regulator. This paradox is resolved by the observation that the negative regulator, Srb10, is uniquely capable of phosphorylating the CTD prior to formation of the initiation complex on promoter DNA, with consequent inhibition of transcription. In contrast, the TFIIH kinase phosphorylates the CTD only after the transcription apparatus is associated with promoter DNA. These results reveal that the timing of CTD phosphorylation can account for the positive and negative functions of the two kinases and provide a model for Srb10-dependent repression of genes involved in cell type specificity, meiosis, and sugar utilization.
Collapse
Affiliation(s)
- C J Hengartner
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142, USA
| | | | | | | | | | | |
Collapse
|
37
|
Svetlov V, Nolan K, Burgess RR. Rpb3, stoichiometry and sequence determinants of the assembly into yeast RNA polymerase II in vivo. J Biol Chem 1998; 273:10827-30. [PMID: 9556554 DOI: 10.1074/jbc.273.18.10827] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Stoichiometry of the third largest subunit (Rpb3) of the yeast RNA polymerase II is a subject of continuing controversy. In this work we utilized immunoaffinity and nickel-chelate chromatographic techniques to isolate the RNA polymerase II species assembled in vivo in the presence of the His6-tagged and untagged Rpb3. The distribution pattern of tagged and untagged subunits among the RNA polymerase II molecules is consistent with a stoichiometry of 1 Rpb3 polypeptide per molecule of RNA polymerase. Deletion of either alpha-homology region (amino acids 29-55 or 226-267) from the Rpb3 sequence abolished its ability to assemble into RNA polymerase II in vivo.
Collapse
Affiliation(s)
- V Svetlov
- McArdle Laboratory for Cancer Research, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | | | |
Collapse
|
38
|
Krapp S, Kelly G, Reischl J, Weinzierl RO, Matthews S. Eukaryotic RNA polymerase subunit RPB8 is a new relative of the OB family. NATURE STRUCTURAL BIOLOGY 1998; 5:110-4. [PMID: 9461075 DOI: 10.1038/nsb0298-110] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
RNA polymerase II subunit RPB8 is an essential subunit that is highly conserved throughout eukaryotic evolution and is present in all three types of nuclear RNA polymerases. We report the first high resolution structural insight into eukaryotic RNA polymerase architecture with the solution structure of RPB8 from Saccharomyces cerevisiae. It consists of an eight stranded, antiparallel beta-barrel, four short helical regions and a large, unstructured omega-loop. The strands are connected in classic Greek-key fashion. The overall topology is unusual and contains a striking C2 rotational symmetry. Furthermore, it is most likely a novel associate of the oligonucleotide/oligosaccharide (OB) binding protein class.
Collapse
Affiliation(s)
- S Krapp
- Department of Biochemistry, Imperial college of Science, Technology, and Medicine, London, UK
| | | | | | | | | |
Collapse
|
39
|
Kimura M, Ishiguro A, Ishihama A. RNA polymerase II subunits 2, 3, and 11 form a core subassembly with DNA binding activity. J Biol Chem 1997; 272:25851-5. [PMID: 9325316 DOI: 10.1074/jbc.272.41.25851] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
RNA polymerase II purified from the fission yeast Schizosaccharomyces pombe consists of 10 species of subunit polypeptide. We introduced a histidine cluster tag sequence into the chromosomal rpb1 and rpb3 genes, which encode subunit 1 (Rpb1) and subunit 3 (Rpb3), respectively, and purified the RNA polymerase by Ni2+ affinity chromatography. After stepwise dissociation of the Rpb1- and Rpb3-tagged RNA polymerases fixed on Ni2+-resin by increasing concentrations of urea or guanidium hydrochloride, Rpb2-Rpb3-Rpb11 or Rpb2-Rpb3-Rpb11-Rpb10 complexes were obtained. Since the complex consisting of Rpb2, Rpb3, and Rpb11 cannot be dissociated even after treatment with 6 M urea buffer, we propose that this complex represents a core subassembly of the RNA polymerase II, analogous to the alpha2beta complex in the assembly of Escherichia coli RNA polymerase. Both the Rpb2-Rpb3-Rpb11 complex and the free Rpb1 protein showed DNA binding activity, although the affinity was weaker compared with the intact RNA polymerase.
Collapse
Affiliation(s)
- M Kimura
- Department of Molecular Genetics, National Institute of Genetics, Mishima, Shizuoka 411, Japan
| | | | | |
Collapse
|
40
|
Acker J, de Graaff M, Cheynel I, Khazak V, Kedinger C, Vigneron M. Interactions between the human RNA polymerase II subunits. J Biol Chem 1997; 272:16815-21. [PMID: 9201987 DOI: 10.1074/jbc.272.27.16815] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
As an initial approach to characterizing the molecular structure of the human RNA polymerase II (hRPB), we systematically investigated the protein-protein contacts that the subunits of this enzyme may establish with each other. To this end, we applied a glutathione S-transferase-pulldown assay to extracts from Sf9 insect cells, which were coinfected with all possible combinations of recombinant baculoviruses expressing hRPB subunits, either as untagged polypeptides or as glutathione S-transferase fusion proteins. This is the first comprehensive study of interactions between eukaryotic RNA polymerase subunits; among the 116 combinations of hRPB subunits tested, 56 showed significant to strong interactions, whereas 60 were negative. Within the intricate network of interactions, subunits hRPB3 and hRPB5 play a central role in polymerase organization. These subunits, which are able to homodimerize and to interact, may constitute the nucleation center for polymerase assembly, by providing a large interface to most of the other subunits.
Collapse
Affiliation(s)
- J Acker
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (CNRS/INSERM/ULP), F-67404 Illkirch Cedex C.U. de Strasbourg, France
| | | | | | | | | | | |
Collapse
|
41
|
Larkin RM, Guilfoyle TJ. Reconstitution of yeast and Arabidopsis RNA polymerase alpha-like subunit heterodimers. J Biol Chem 1997; 272:12824-30. [PMID: 9139743 DOI: 10.1074/jbc.272.19.12824] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Two subunits of about 36-44 kDa and 13-19 kDa in the eukaryotic nuclear RNA polymerases share limited amino acid sequence similarity to the alpha subunit in Escherichia coli RNA polymerase. The alpha subunit in the prokaryotic enzyme has a stoichiometry of 2, but the stoichiometry of the alpha-like subunits in the eukaryotic enzymes is not entirely clear. To gain insight into the subunit stoichiometry and assembly pathway for eukaryotic RNA polymerases, in vitro reconstitution experiments have been carried out with recombinant alpha-like subunits from yeast and plant RNA polymerase II. The large and small alpha-like subunits from each species formed stable heterodimers in vitro, but neither the large or small alpha-like subunits formed stable homodimers. Furthermore, mixed heterodimers were formed between corresponding subunits of yeast and plants, but were not formed between corresponding subunits in different RNA polymerases from the same species. Our results suggest that RNA polymerase II alpha-like heterodimers may be the equivalent of alpha homodimers found in E. coli RNA polymerase.
Collapse
Affiliation(s)
- R M Larkin
- Department of Biochemistry, University of Missouri, Columbia, Missouri 65211, USA
| | | |
Collapse
|
42
|
Bednenko J, Melek M, Greene EC, Shippen DE. Developmentally regulated initiation of DNA synthesis by telomerase: evidence for factor-assisted de novo telomere formation. EMBO J 1997; 16:2507-18. [PMID: 9171363 PMCID: PMC1169850 DOI: 10.1093/emboj/16.9.2507] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Telomerase serves a dual role at telomeres, maintaining tracts of telomere repeats and forming telomeres de novo on broken chromosomes in a process called chromosome healing. In ciliates, both mechanisms are readily observed. Vegetatively growing cells maintain pre-existing telomeres, while cells undergoing macronuclear development fragment their chromosomes and form telomeres de novo. Here we provide the first evidence for developmentally regulated initiation of DNA synthesis by telomerase. In vitro assays were conducted with telomerase from vegetative and developing Euplotes macronuclei using chimeric primers that contained non-telomeric 3' ends and an upstream stretch of telomeric DNA. In developing macronuclei, chimeric primers had two fates: nucleotides were either polymerized directly onto the 3' terminus or residues were removed from the 3' end by endonucleolytic cleavage before polymerization began. In contrast, telomerase from vegetative macronuclei used only the cleavage pathway. Telomere repeat addition onto non-telomeric 3' ends was lost when developing macronuclei were lysed and the contents purified on glycerol gradients. However, when fractions from the glycerol gradient were added back to partially purified telomerase, telomere synthesis was restored. The data indicate that a dissociable chromosome healing factor (CHF) collaborates with telomerase to initiate developmentally programmed de novo telomere formation.
Collapse
Affiliation(s)
- J Bednenko
- Department of Biochemistry and Biophysics, Texas A&M University, College Station 77843-2128, USA
| | | | | | | |
Collapse
|
43
|
Ulmasov T, Larkin RM, Guilfoyle TJ. Association between 36- and 13.6-kDa alpha-like subunits of Arabidopsis thaliana RNA polymerase II. J Biol Chem 1996; 271:5085-94. [PMID: 8617787 DOI: 10.1074/jbc.271.9.5085] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Two subunits in RNA polymerase II (e.g. RPB3 and RPB11 in yeast) and two subunits common to RNA polymerases I and III (e.g. AC40 and AC19 in yeast) contain one or two motifs related to the alpha subunit in prokaryotic RNA polymerases. We have sequenced two different cDNAs (AtRPB36a and AtRPB36b), the two corresponding genes from Arabidopsis thaliana that are homologs of yeast RPB3, and an Arabidopsis cDNA (AtRPB13.6) that is a homolog of yeast RPB11. The B36a subunit is the predominant B36 subunit associated with RNA polymerase II purified from Arabidopsis suspension culture cells, and this subunit has a stoichiometry of about 1. Results from protein association assays showed that the B36a and B36b subunits did not associate, but each of these subunits did associate with the B13.6 subunit in vivo and in vitro. Two motifs in the B36b subunit related to the prokaryotic alpha subunit were shown to be required for the in vitro interactions with the B13.6 subunit. Our results suggest that the B36 and B13.6 subunits associate to form heterodimers in Arabidopsis RNA polymerase II like the AC40 and AC19 heterodimers reported for yeast RNA polymerases I and III but unlike the B44 homodimers reported for yeast RNA polymerase II.
Collapse
Affiliation(s)
- T Ulmasov
- Department of Biochemistry, University of Missouri, Columbia, Missouri 65211, USA
| | | | | |
Collapse
|
44
|
Ulmasov T, Larkin RM, Guilfoyle TJ. Arabidopsis expresses two genes that encode polypeptides similar to the yeast RNA polymerase I and III AC40 subunit. Gene X 1995; 167:203-7. [PMID: 8566778 DOI: 10.1016/0378-1119(95)00643-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
A 40-kDa subunit in eukaryotic RNA polymerases (Pol) I and III (e.g., yeast yAC40) is related in a part of its aa sequence to the alpha subunit of prokaryotic Pol and to a 35-44-kDa subunit in Pol II (e.g., yeast yB44). We have cloned two cDNAs, AtRPAC42 and AtRPAC43, from an Arabidopsis thaliana (At) (ecotype Columbia) lambda Yes expression library that encode Pol I and III subunits related to yAC40. The aa sequences derived from the cDNA clones were found to be 72% identical to each other and 40% identical to yeast Pol I and III subunits yAC40, but only 30% identical to yeast Pol II subunit yB44. While most other nuclear Pol genes identified to date are single-copy genes, two genes encode 42 and 43-kDa subunits of At Pol I and/or III. A 42-kDa subunit with identical mobility in SDS-PAGE to the aAC42 in vitro translated subunit is found in Pol III purified from At suspension culture cells.
Collapse
Affiliation(s)
- T Ulmasov
- Department of Biochemistry, University of Missouri, Columbia 65211, USA
| | | | | |
Collapse
|
45
|
Schneider BL, Seufert W, Steiner B, Yang QH, Futcher AB. Use of polymerase chain reaction epitope tagging for protein tagging in Saccharomyces cerevisiae. Yeast 1995; 11:1265-74. [PMID: 8553697 DOI: 10.1002/yea.320111306] [Citation(s) in RCA: 291] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Epitope tagging is the insertion of a short stretch of amino acids constituting an epitope into another protein. Tagged proteins can be identified by Western, immunoprecipitation and immunofluorescence assays using pre-existing antibodies. We have designed vectors containing the URA3 gene flanked by direct repeats of epitope tags. We use the polymerase chain reaction (PCR) to amplify the tag-URA3-tag cassette such that the ends of the PCR fragments possess homology to the gene of interest. In vivo recombination is then used to direct integration of the fragment to the location of interest, and transformants are selected by their Ura+ phenotype. Finally, selection for Ura- cells on 5-fluoro-orotic acid plates yields cells where recombination between the repeated epitopes has 'popped out' the URA3 gene, leaving a single copy of the epitope at the desired location. PCR epitope tagging (PET) provides a rapid and direct technique for tagging that does not require any cloning steps. We have used PET to tag three Saccharomyces cerevisiae proteins, Cln1, Sic1 and Est1.
Collapse
|
46
|
Sridhara S, Mattes CE. 20-Hydroxyecdysone stimulates RNA polymerase I activity in silkmoth wing epidermis by increased synthesis and phosphorylation. Mol Cell Endocrinol 1995; 111:39-49. [PMID: 7649351 DOI: 10.1016/0303-7207(95)03545-i] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The activities of RNA polymerases I and II in the wing epidermis of diapausing silkmoth pupae increased about tenfold during the first day after administration of either 20-hydroxyecdysone (20E) or 20E plus juvenile hormone (Katula et al., 1981a). The aim of these studies was to correlate these increases in RNA polymerase I and II activities to their amounts in hormone stimulated wing epidermis. The enzyme activities were measured by standard procedures while their amounts were determined by the application of a modified ELISA with subunit-specific monoclonal antibodies. Results showed that the increase in the amount of RNA polymerase I during the first 24 h accounted for only about 60% of the increase in activity. Alkaline phosphatase decreased the activity of the newly synthesized enzyme by 40-50%. These results indicate that hormone-stimulation of RNA polymerase I activity is due to a combination of synthesis of the enzyme and phosphorylation of the enzyme and/or tightly associated factors. RNA polymerases II and III determined by differential ELISA using a monoclonal antibody specific to a common subunit followed developmental changes similar to those of RNA polymerase I. The amounts and activity of the enzymes during the first 48 h were similar in wing tissue that followed the second pupal development (20E + juvenile hormone) compared to tissue that developed into adult wings (20E).
Collapse
Affiliation(s)
- S Sridhara
- Department of Biochemistry and Molecular Biology, Texas Tech University Health Sciences Center, Lubbock 79430, USA
| | | |
Collapse
|
47
|
Serizawa H, Mäkelä TP, Conaway JW, Conaway RC, Weinberg RA, Young RA. Association of Cdk-activating kinase subunits with transcription factor TFIIH. Nature 1995; 374:280-2. [PMID: 7885450 DOI: 10.1038/374280a0] [Citation(s) in RCA: 288] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The RNA polymerase II large subunit contains an essential carboxy-terminal domain (CTD) believed to be involved in the response to regulators during transcription initiation. The CTD is phosphorylated on a portion of RNA polymerase II molecules in vivo and it can be phosphorylated by the general transcription factor TFIIH in vitro. A highly purified TFIIH from rat liver has been described; this, like human and yeast TFIIH, contains associated CTD kinase and helicase activities. We report here that two polypeptides of the purified mammalian TFIIH are the MO15/Cdk7 kinase and cyclin H subunits of the Cdk-activating kinase Cak, previously identified as a positive regulator of Cdc2 and Cdk2. TFIIH and Cak preparations are each capable of phosphorylating recombinant CTD and recombinant Cdk2 proteins. The presence of Cak in TFIIH indicates that Cak may have roles in transcriptional regulation and in cell-cycle control.
Collapse
Affiliation(s)
- H Serizawa
- Whitehead Institute for Biomedical Research, Nine Cambridge Center, Massachusetts 02142
| | | | | | | | | | | |
Collapse
|
48
|
Abstract
The RNA polymerase II (Pol II) transcription initiation apparatus consists of several multisubunit complexes, including Pol II, general transcription factors and suppressor of RNA polymerase B (SRB) proteins. Recent evidence indicates that many of these components assemble into a large complex, called the RNA polymerase holoenzyme, the SRB components of which participate in the response to transcriptional regulators. We discuss these results and their implications for the regulation of gene expression.
Collapse
Affiliation(s)
- A J Koleske
- Whitehead Institute for Biomedical Research, Nine Cambridge Center, MA 02142, USA
| | | |
Collapse
|
49
|
O'Brien T, Hardin S, Greenleaf A, Lis JT. Phosphorylation of RNA polymerase II C-terminal domain and transcriptional elongation. Nature 1994; 370:75-7. [PMID: 8015613 DOI: 10.1038/370075a0] [Citation(s) in RCA: 267] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The carboxy-terminal domain (CTD) of the large subunit of RNA polymerase II is essential in vivo, and is found in either an unphosphorylated (IIa) or hyperphosphorylated (IIo) form. The Drosophila uninduced hsp70 and hsp26 genes, and the constitutively expressed beta-1 tubulin and Gapdh-2 genes, contain an RNA polymerase II complex which pauses after synthesizing a short transcript. We report here that, using an in vivo ultraviolet crosslinking technique and antibodies directed against the IIa and IIo forms of the CTD, these paused polymerases have an unphosphorylated CTD. For genes containing a 5' paused polymerase, passage of the paused RNA polymerase into an elongationally competent mode in vivo coincides with phosphorylation of the CTD. Also, the level of phosphorylation of the CTD of elongating polymerases is shown not to be related to the level of transcription, but is promoter specific.
Collapse
Affiliation(s)
- T O'Brien
- Section of Biochemistry, Molecular and Cell Biology, Cornell University, Ithaca, New York 14853
| | | | | | | |
Collapse
|
50
|
Ding HF, Winkler HH. The molar ratio of sigma 73 to core polymerase in the obligate intracellular bacterium, Rickettsia prowazekii. Mol Microbiol 1994; 11:869-73. [PMID: 8022263 DOI: 10.1111/j.1365-2958.1994.tb00365.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
In the obligate intracellular parasitic bacterium, Rickettsia prowazekii, the molar ratio of sigma 73 to core RNA polymerase, that is, the degree of saturation of the core polymerase by the catalytically active sigma factor, was very low. This ratio was determined from the radioactivity in rickettsial RNA polymerase immunoprecipitated from crude extracts of infected L929 cells in which the parasite was exponentially growing. If we assume that, as is true for the sigma subunit, in R. prowazekii and Escherichia coli the beta', and beta subunits of the RNA polymerase have similar methionine and cysteine contents (the radiolabelled amino acids), the molar ratio of sigma 73 to core polymerase in R. prowazekii would be 0.1. This is in striking contrast to E. coli where the ratio is typically 0.4. It remains to be established whether this low sigma saturation results in a limitation of active RNA polymerase in R. prowazekii and contributes to its slow growth.
Collapse
Affiliation(s)
- H F Ding
- Department of Microbiology and Immunology, University of South Alabama College of Medicine, Mobile 36688
| | | |
Collapse
|