1
|
Xu L, Li Z, Wang S. Development of a Virus-Based Reporter System for Functional Analysis of Plant rRNA Gene Promoter. Front Microbiol 2021; 12:637347. [PMID: 33679673 PMCID: PMC7928365 DOI: 10.3389/fmicb.2021.637347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 01/25/2021] [Indexed: 11/27/2022] Open
Abstract
Reporter gene-based expression systems have been intensively used in plants for monitoring the activity of gene promoters. However, rRNA transcripts are unable to efficiently express a reporter gene due to a lack of a 5' cap. Because of this obstacle, plant rRNA gene promoters are less well characterized to this day. We developed a virus-based reporter system to characterize the Nicotiana benthamiana rRNA (NbrRNA) gene promoter. The system utilizes the cap-independent translation strategy of viral genomic mRNA and uses the virus-expressed green fluorescent protein (GFP) as an indicator of the rRNA gene promoter activity in virus-infected plants. Based on the reporter system, some characteristics of the N. benthamiana rRNA gene promoter were revealed. The results showed that the strength of the NbrRNA gene promoter was lower than that of the cauliflower mosaic virus (CaMV) 35S promoter, a well-characterized polymerase II promoter. The sequences between −77 and +42 are sufficient for the NbrRNA gene promoter-mediated transcription and the NbrRNA gene promoter may lack the functional upstream control element (UCE). Interestingly, NbrRNA gene promoter activity was increased when the 35S enhancer was introduced. An intron-excision mediated assay revealed that the NbrRNA gene promoter can be inefficiently used by RNA polymerase II in N. benthamiana cells. This virus-based reporter system is easier to operate and more convenient when compared with the previously Pol I promoter assays. And it offers a promising solution to analyzing the functional architecture of plant rRNA gene promoter.
Collapse
Affiliation(s)
- Li Xu
- Key Laboratory of Ministry of Education for Protection and Utilization of Special Biological Resources in Western China, School of Life Science, Ningxia University, Yinchuan, China
| | - Zhiying Li
- Key Laboratory of Ministry of Education for Protection and Utilization of Special Biological Resources in Western China, School of Life Science, Ningxia University, Yinchuan, China.,Key Laboratory of Modern Molecular Breeding for Dominant and Special Crops in Ningxia, School of Life Science, Ningxia University, Yinchuan, China
| | - Sheng Wang
- Key Laboratory of Ministry of Education for Protection and Utilization of Special Biological Resources in Western China, School of Life Science, Ningxia University, Yinchuan, China.,Key Laboratory of Modern Molecular Breeding for Dominant and Special Crops in Ningxia, School of Life Science, Ningxia University, Yinchuan, China
| |
Collapse
|
2
|
Dyomin A, Galkina S, Fillon V, Cauet S, Lopez-Roques C, Rodde N, Klopp C, Vignal A, Sokolovskaya A, Saifitdinova A, Gaginskaya E. Structure of the intergenic spacers in chicken ribosomal DNA. Genet Sel Evol 2019; 51:59. [PMID: 31655542 PMCID: PMC6815422 DOI: 10.1186/s12711-019-0501-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 10/14/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Ribosomal DNA (rDNA) repeats are situated in the nucleolus organizer regions (NOR) of chromosomes and transcribed into rRNA for ribosome biogenesis. Thus, they are an essential component of eukaryotic genomes. rDNA repeat units consist of rRNA gene clusters that are transcribed into single pre-rRNA molecules, each separated by intergenic spacers (IGS) that contain regulatory elements for rRNA gene cluster transcription. Because of their high repeat content, rDNA sequences are usually absent from genome assemblies. In this work, we used the long-read sequencing technology to describe the chicken IGS and fill the knowledge gap on rDNA sequences of one of the key domesticated animals. METHODS We used the long-read PacBio RSII technique to sequence the BAC clone WAG137G04 (Wageningen BAC library) known to contain chicken NOR elements and the HGAP workflow software suit to assemble the PacBio RSII reads. Whole-genome sequence contigs homologous to the chicken rDNA repetitive unit were identified based on the Gallus_gallus-5.0 assembly with BLAST. We used the Geneious 9.0.5 and Mega software, maximum likelihood method and Chickspress project for sequence evolution analysis, phylogenetic tree construction and analysis of the raw transcriptome data. RESULTS Three complete IGS sequences in the White Leghorn chicken genome and one IGS sequence in the red junglefowl contig AADN04001305.1 (Gallus_gallus-5.0) were detected. They had various lengths and contained three groups of tandem repeats (some of them being very GC rich) that form highly organized arrays. Initiation and termination sites of rDNA transcription were located within small and large unique regions (SUR and LUR), respectively. No functionally significant sites were detected within the tandem repeat sequences. CONCLUSIONS Due to the highly organized GC-rich repeats, the structure of the chicken IGS differs from that of IGS in human, apes, Xenopus or fish rDNA. However, the chicken IGS shares some molecular organization features with that of the turtles, which are other representatives of the Sauropsida clade that includes birds and reptiles. Our current results on the structure of chicken IGS together with the previously reported ribosomal gene cluster sequence provide sufficient data to consider that the complete chicken rDNA sequence is assembled with confidence in terms of molecular DNA organization.
Collapse
Affiliation(s)
- Alexander Dyomin
- Saint Petersburg State University, Universitetskaya emb. 7/9, Saint Petersburg, 199034, Russian Federation.,Saratov State Medical University, Bolshaya Kazachia Str. 112, Saratov, Russian Federation
| | - Svetlana Galkina
- Saint Petersburg State University, Universitetskaya emb. 7/9, Saint Petersburg, 199034, Russian Federation
| | - Valerie Fillon
- INRA, GenPhySE, 24 Chemin de Borde Rouge, Auzeville, 31326, Castanet Tolosan, France
| | - Stephane Cauet
- INRA, CNRGV, 24 Chemin de Borde Rouge, Auzeville, 31326, Castanet Tolosan, France
| | - Celine Lopez-Roques
- INRA, GeT-PlaGe, 24 Chemin de Borde Rouge, Auzeville, 31326, Castanet Tolosan, France
| | - Nathalie Rodde
- INRA, CNRGV, 24 Chemin de Borde Rouge, Auzeville, 31326, Castanet Tolosan, France
| | - Christophe Klopp
- INRA, Sigenae, MIAT, 24 Chemin de Borde Rouge, Auzeville, 31326, Castanet Tolosan, France
| | - Alain Vignal
- INRA, GenPhySE, 24 Chemin de Borde Rouge, Auzeville, 31326, Castanet Tolosan, France
| | - Anastasia Sokolovskaya
- Saint Petersburg State University, Universitetskaya emb. 7/9, Saint Petersburg, 199034, Russian Federation
| | - Alsu Saifitdinova
- Herzen State Pedagogical University of Russia, Moika Emb. 48, Saint Petersburg, 191186, Russian Federation
| | - Elena Gaginskaya
- Saint Petersburg State University, Universitetskaya emb. 7/9, Saint Petersburg, 199034, Russian Federation.
| |
Collapse
|
3
|
The chromatin landscape of the ribosomal RNA genes in mouse and human. Chromosome Res 2019; 27:31-40. [PMID: 30617621 DOI: 10.1007/s10577-018-09603-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 12/21/2018] [Accepted: 12/26/2018] [Indexed: 12/21/2022]
Abstract
The rRNA genes of mouse and human encode the three major RNAs of the ribosome and as such are essential for growth and development. These genes are present in high copy numbers and arranged as direct repeats at the Nucleolar Organizer Regions on multiple chromosomes. Not all the rRNA genes are transcriptionally active, but the molecular mechanisms that determine activity are complex and still poorly understood. Recent studies applying a novel Deconvolution Chromatin Immunoprecipitation (DChIP-Seq) technique in conjunction with conditional gene inactivation provide new insights into the structure of the active rRNA genes and question previous assumptions on the role of chromatin and histone modifications. We suggest an alternative model for the active rRNA gene chromatin and discuss how this structure is determined and maintained.
Collapse
|
4
|
Agrawal S, Ganley ARD. The conservation landscape of the human ribosomal RNA gene repeats. PLoS One 2018; 13:e0207531. [PMID: 30517151 PMCID: PMC6281188 DOI: 10.1371/journal.pone.0207531] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Accepted: 11/01/2018] [Indexed: 01/27/2023] Open
Abstract
Ribosomal RNA gene repeats (rDNA) encode ribosomal RNA, a major component of ribosomes. Ribosome biogenesis is central to cellular metabolic regulation, and several diseases are associated with rDNA dysfunction, notably cancer, However, its highly repetitive nature has severely limited characterization of the elements responsible for rDNA function. Here we make use of phylogenetic footprinting to provide a comprehensive list of novel, potentially functional elements in the human rDNA. Complete rDNA sequences for six non-human primate species were constructed using de novo whole genome assemblies. These new sequences were used to determine the conservation profile of the human rDNA, revealing 49 conserved regions in the rDNA intergenic spacer (IGS). To provide insights into the potential roles of these conserved regions, the conservation profile was integrated with functional genomics datasets. We find two major zones that contain conserved elements characterised by enrichment of transcription-associated chromatin factors, and transcription. Conservation of some IGS transcripts in the apes underpins the potential functional significance of these transcripts and the elements controlling their expression. Our results characterize the conservation landscape of the human IGS and suggest that noncoding transcription and chromatin elements are conserved and important features of this unique genomic region.
Collapse
Affiliation(s)
- Saumya Agrawal
- Institute of Natural and Mathematical Sciences, Massey University, Auckland, New Zealand
| | - Austen R. D. Ganley
- Institute of Natural and Mathematical Sciences, Massey University, Auckland, New Zealand
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
5
|
Mars JC, Sabourin-Felix M, Tremblay MG, Moss T. A Deconvolution Protocol for ChIP-Seq Reveals Analogous Enhancer Structures on the Mouse and Human Ribosomal RNA Genes. G3 (BETHESDA, MD.) 2018; 8:303-314. [PMID: 29158335 PMCID: PMC5765358 DOI: 10.1534/g3.117.300225] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 11/15/2017] [Indexed: 02/07/2023]
Abstract
The combination of Chromatin Immunoprecipitation and Massively Parallel Sequencing, or ChIP-Seq, has greatly advanced our genome-wide understanding of chromatin and enhancer structures. However, its resolution at any given genetic locus is limited by several factors. In applying ChIP-Seq to the study of the ribosomal RNA genes, we found that a major limitation to resolution was imposed by the underlying variability in sequence coverage that very often dominates the protein-DNA interaction profiles. Here, we describe a simple numerical deconvolution approach that, in large part, corrects for this variability, and significantly improves both the resolution and quantitation of protein-DNA interaction maps deduced from ChIP-Seq data. This approach has allowed us to determine the in vivo organization of the RNA polymerase I preinitiation complexes that form at the promoters and enhancers of the mouse (Mus musculus) and human (Homo sapiens) ribosomal RNA genes, and to reveal a phased binding of the HMG-box factor UBF across the rDNA. The data identify and map a "Spacer Promoter" and associated stalled polymerase in the intergenic spacer of the human ribosomal RNA genes, and reveal a very similar enhancer structure to that found in rodents and lower vertebrates.
Collapse
Affiliation(s)
- Jean-Clement Mars
- Laboratory of Growth and Development, St-Patrick Research Group in Basic Oncology, Cancer Division of the Quebec University Hospital Research Centre, G1R 3S3, Canada
- Department of Molecular Biology, Medical Biochemistry and Pathology, Faculty of Medicine, Laval University, Québec, Canada
| | - Marianne Sabourin-Felix
- Laboratory of Growth and Development, St-Patrick Research Group in Basic Oncology, Cancer Division of the Quebec University Hospital Research Centre, G1R 3S3, Canada
- Department of Molecular Biology, Medical Biochemistry and Pathology, Faculty of Medicine, Laval University, Québec, Canada
| | - Michel G Tremblay
- Laboratory of Growth and Development, St-Patrick Research Group in Basic Oncology, Cancer Division of the Quebec University Hospital Research Centre, G1R 3S3, Canada
| | - Tom Moss
- Laboratory of Growth and Development, St-Patrick Research Group in Basic Oncology, Cancer Division of the Quebec University Hospital Research Centre, G1R 3S3, Canada
- Department of Molecular Biology, Medical Biochemistry and Pathology, Faculty of Medicine, Laval University, Québec, Canada
| |
Collapse
|
6
|
Havlová K, Dvořáčková M, Peiro R, Abia D, Mozgová I, Vansáčová L, Gutierrez C, Fajkus J. Variation of 45S rDNA intergenic spacers in Arabidopsis thaliana. PLANT MOLECULAR BIOLOGY 2016; 92:457-471. [PMID: 27531496 DOI: 10.1007/s11103-016-0524-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 08/03/2016] [Indexed: 05/28/2023]
Abstract
Approximately seven hundred 45S rRNA genes (rDNA) in the Arabidopsis thaliana genome are organised in two 4 Mbp-long arrays of tandem repeats arranged in head-to-tail fashion separated by an intergenic spacer (IGS). These arrays make up 5 % of the A. thaliana genome. IGS are rapidly evolving sequences and frequent rearrangements inside the rDNA loci have generated considerable interspecific and even intra-individual variability which allows to distinguish among otherwise highly conserved rRNA genes. The IGS has not been comprehensively described despite its potential importance in regulation of rDNA transcription and replication. Here we describe the detailed sequence variation in the complete IGS of A. thaliana WT plants and provide the reference/consensus IGS sequence, as well as genomic DNA analysis. We further investigate mutants dysfunctional in chromatin assembly factor-1 (CAF-1) (fas1 and fas2 mutants), which are known to have a reduced number of rDNA copies, and plant lines with restored CAF-1 function (segregated from a fas1xfas2 genetic background) showing major rDNA rearrangements. The systematic rDNA loss in CAF-1 mutants leads to the decreased variability of the IGS and to the occurrence of distinct IGS variants. We present for the first time a comprehensive and representative set of complete IGS sequences, obtained by conventional cloning and by Pacific Biosciences sequencing. Our data expands the knowledge of the A. thaliana IGS sequence arrangement and variability, which has not been available in full and in detail until now. This is also the first study combining IGS sequencing data with RFLP analysis of genomic DNA.
Collapse
Affiliation(s)
- Kateřina Havlová
- Mendel Centre for Plant Genomics and Proteomics, CEITEC, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic
| | - Martina Dvořáčková
- Mendel Centre for Plant Genomics and Proteomics, CEITEC, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic.
- Institute of Biophysics ASCR, v.v.i., Královopolská 135, 61265, Brno, Czech Republic.
| | - Ramon Peiro
- Centro de Biologia Molecular Severo Ochoa, CSIC-UAM, Nicolas Cabrera 1, Madrid, 28049, Spain
| | - David Abia
- Centro de Biologia Molecular Severo Ochoa, CSIC-UAM, Nicolas Cabrera 1, Madrid, 28049, Spain
| | - Iva Mozgová
- Faculty of Science, Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research, Masaryk University, Kotlářská 2, 61137, Brno, Czech Republic
| | - Lenka Vansáčová
- Faculty of Science, Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research, Masaryk University, Kotlářská 2, 61137, Brno, Czech Republic
| | - Crisanto Gutierrez
- Centro de Biologia Molecular Severo Ochoa, CSIC-UAM, Nicolas Cabrera 1, Madrid, 28049, Spain
| | - Jiří Fajkus
- Mendel Centre for Plant Genomics and Proteomics, CEITEC, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic.
- Faculty of Science, Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research, Masaryk University, Kotlářská 2, 61137, Brno, Czech Republic.
| |
Collapse
|
7
|
Abstract
Nucleoli are formed on the basis of ribosomal genes coding for RNAs of ribosomal particles, but also include a great variety of other DNA regions. In this article, we discuss the characteristics of ribosomal DNA: the structure of the rDNA locus, complex organization and functions of the intergenic spacer, multiplicity of gene copies in one cell, selective silencing of genes and whole gene clusters, relation to components of nucleolar ultrastructure, specific problems associated with replication. We also review current data on the role of non-ribosomal DNA in the organization and function of nucleoli. Finally, we discuss probable causes preventing efficient visualization of DNA in nucleoli.
Collapse
|
8
|
Kakou B, Angers B, Glémet H. Extensive length variation in the ribosomal DNA intergenic spacer of yellow perch (Perca flavescens). Genome 2016; 59:149-58. [PMID: 26841134 DOI: 10.1139/gen-2015-0114] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The intergenic spacer (IGS) is located between ribosomal RNA (rRNA) gene copies. Within the IGS, regulatory elements for rRNA gene transcription are found, as well as a varying number of other repetitive elements that are at the root of IGS length heterogeneity. This heterogeneity has been shown to have a functional significance through its effect on growth rate. Here, we present the structural organization of yellow perch (Perca flavescens) IGS based on its entire sequence, as well as the IGS length variation within a natural population. Yellow perch IGS structure has four discrete regions containing tandem repeat elements. For three of these regions, no specific length class was detected as allele size was seemingly normally distributed. However, for one repeat region, PCR amplification uncovered the presence of two distinctive IGS variants representing a length difference of 1116 bp. This repeat region was also devoid of any CpG sites despite a high GC content. Balanced selection may be holding the alleles in the population and would account for the high diversity of length variants observed for adjacent regions. Our study is an important precursor for further work aiming to assess the role of IGS length variation in influencing growth rate in fish.
Collapse
Affiliation(s)
- Bidénam Kakou
- a Département des sciences de l'environnement, Université du Québec à Trois-Rivières, Trois-Rivières, QC G9A 5H7, Canada
| | - Bernard Angers
- b Department of Biological Sciences, Université de Montréal, Montréal, QC H3C 3J7, Canada.,c GRIL - Groupe de recherche interuniversitaire en limnologie et en environnement aquatique
| | - Hélène Glémet
- a Département des sciences de l'environnement, Université du Québec à Trois-Rivières, Trois-Rivières, QC G9A 5H7, Canada.,c GRIL - Groupe de recherche interuniversitaire en limnologie et en environnement aquatique
| |
Collapse
|
9
|
Hamdane N, Stefanovsky VY, Tremblay MG, Németh A, Paquet E, Lessard F, Sanij E, Hannan R, Moss T. Conditional inactivation of Upstream Binding Factor reveals its epigenetic functions and the existence of a somatic nucleolar precursor body. PLoS Genet 2014; 10:e1004505. [PMID: 25121932 PMCID: PMC4133168 DOI: 10.1371/journal.pgen.1004505] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Accepted: 05/24/2014] [Indexed: 11/21/2022] Open
Abstract
Upstream Binding Factor (UBF) is a unique multi-HMGB-box protein first identified as a co-factor in RNA polymerase I (RPI/PolI) transcription. However, its poor DNA sequence selectivity and its ability to generate nucleosome-like nucleoprotein complexes suggest a more generalized role in chromatin structure. We previously showed that extensive depletion of UBF reduced the number of actively transcribed ribosomal RNA (rRNA) genes, but had little effect on rRNA synthesis rates or cell proliferation, leaving open the question of its requirement for RPI transcription. Using gene deletion in mouse, we now show that UBF is essential for embryo development beyond morula. Conditional deletion in cell cultures reveals that UBF is also essential for transcription of the rRNA genes and that it defines the active chromatin conformation of both gene and enhancer sequences. Loss of UBF prevents formation of the SL1/TIF1B pre-initiation complex and recruitment of the RPI-Rrn3/TIF1A complex. It is also accompanied by recruitment of H3K9me3, canonical histone H1 and HP1α, but not by de novo DNA methylation. Further, genes retain penta-acetyl H4 and H2A.Z, suggesting that even in the absence of UBF the rRNA genes can maintain a potentially active state. In contrast to canonical histone H1, binding of H1.4 is dependent on UBF, strongly suggesting that it plays a positive role in gene activity. Unexpectedly, arrest of rRNA synthesis does not suppress transcription of the 5S, tRNA or snRNA genes, nor expression of the several hundred mRNA genes implicated in ribosome biogenesis. Thus, rRNA gene activity does not coordinate global gene expression for ribosome biogenesis. Loss of UBF also unexpectedly induced the formation in cells of a large sub-nuclear structure resembling the nucleolar precursor body (NPB) of oocytes and early embryos. These somatic NPBs contain rRNA synthesis and processing factors but do not associate with the rRNA gene loci (NORs). Upstream Binding Factor (UBF) is multi-HMGB-box protein found in all vertebrates. Although this protein has been implicated in transcription of the ribosomal RNA (rRNA) gene in vitro, little is known of its function in vivo. We previously found that UBF creates a nucleosome-like structure on DNA, and that this structure is remodeled by MAP-kinase phosphorylation. Using conditional gene deletion in mouse and mouse cells we show that UBF defines the active chromatin domains of the rRNA genes and is essential for transcription of these genes. Using this system we show that, contrary to expectation, rRNA gene activity does not coordinate ribosome production. We further show that in the complete absence of rRNA synthesis a somatic nucleolar precursor body is formed. Our data show that UBF determines a dynamic transition between the active and inactive rRNA gene states that is independent of changes in DNA methylation.
Collapse
Affiliation(s)
- Nourdine Hamdane
- Laboratory of Growth and Development, St-Patrick Research Group in Basic Oncology, Cancer Division of the Quebec University Hospital Research Centre, Edifice St Patrick, Québec, Québec, Canada
- Department of Molecular Biology, Medical Biochemistry and Pathology, Faculty of Medicine, Laval University, Québec, Québec, Canada
| | - Victor Y. Stefanovsky
- Laboratory of Growth and Development, St-Patrick Research Group in Basic Oncology, Cancer Division of the Quebec University Hospital Research Centre, Edifice St Patrick, Québec, Québec, Canada
- Department of Molecular Biology, Medical Biochemistry and Pathology, Faculty of Medicine, Laval University, Québec, Québec, Canada
| | - Michel G. Tremblay
- Laboratory of Growth and Development, St-Patrick Research Group in Basic Oncology, Cancer Division of the Quebec University Hospital Research Centre, Edifice St Patrick, Québec, Québec, Canada
- Department of Molecular Biology, Medical Biochemistry and Pathology, Faculty of Medicine, Laval University, Québec, Québec, Canada
| | - Attila Németh
- Department of Biochemistry III, Biochemistry Center Regensburg, University of Regensburg, Regensburg, Germany
| | - Eric Paquet
- Laboratory of Growth and Development, St-Patrick Research Group in Basic Oncology, Cancer Division of the Quebec University Hospital Research Centre, Edifice St Patrick, Québec, Québec, Canada
| | - Frédéric Lessard
- Laboratory of Growth and Development, St-Patrick Research Group in Basic Oncology, Cancer Division of the Quebec University Hospital Research Centre, Edifice St Patrick, Québec, Québec, Canada
- Department of Molecular Biology, Medical Biochemistry and Pathology, Faculty of Medicine, Laval University, Québec, Québec, Canada
| | - Elaine Sanij
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia
- Research Division, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia
| | - Ross Hannan
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia
- Research Division, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia
| | - Tom Moss
- Laboratory of Growth and Development, St-Patrick Research Group in Basic Oncology, Cancer Division of the Quebec University Hospital Research Centre, Edifice St Patrick, Québec, Québec, Canada
- Department of Molecular Biology, Medical Biochemistry and Pathology, Faculty of Medicine, Laval University, Québec, Québec, Canada
- * E-mail:
| |
Collapse
|
10
|
Pontvianne F, Abou-Ellail M, Douet J, Comella P, Matia I, Chandrasekhara C, DeBures A, Blevins T, Cooke R, Medina FJ, Tourmente S, Pikaard CS, Sáez-Vásquez J. Nucleolin is required for DNA methylation state and the expression of rRNA gene variants in Arabidopsis thaliana. PLoS Genet 2010; 6:e1001225. [PMID: 21124873 PMCID: PMC2991258 DOI: 10.1371/journal.pgen.1001225] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2010] [Accepted: 10/27/2010] [Indexed: 01/11/2023] Open
Abstract
In eukaryotes, 45S rRNA genes are arranged in tandem arrays in copy numbers ranging from several hundred to several thousand in plants. Although it is clear that not all copies are transcribed under normal growth conditions, the molecular basis controlling the expression of specific sets of rRNA genes remains unclear. Here, we report four major rRNA gene variants in Arabidopsis thaliana. Interestingly, while transcription of one of these rRNA variants is induced, the others are either repressed or remain unaltered in A. thaliana plants with a disrupted nucleolin-like protein gene (Atnuc-L1). Remarkably, the most highly represented rRNA gene variant, which is inactive in WT plants, is reactivated in Atnuc-L1 mutants. We show that accumulated pre-rRNAs originate from RNA Pol I transcription and are processed accurately. Moreover, we show that disruption of the AtNUC-L1 gene induces loss of symmetrical DNA methylation without affecting histone epigenetic marks at rRNA genes. Collectively, these data reveal a novel mechanism for rRNA gene transcriptional regulation in which the nucleolin protein plays a major role in controlling active and repressed rRNA gene variants in Arabidopsis.
Collapse
Affiliation(s)
- Frédéric Pontvianne
- UMR 5096 CNRS-IRD-University de Perpignan, Perpignan, France
- Department of Biology and Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, Indiana, United States of America
| | | | - Julien Douet
- UMR CNRS 6247, INSERM U931, University Blaise Pascal, Aubière, France
| | - Pascale Comella
- UMR 5096 CNRS-IRD-University de Perpignan, Perpignan, France
| | - Isabel Matia
- Centro de Investigaciones Biológicas, Consejo Superior de Investigacion Científicas, Madrid, Spain
| | - Chinmayi Chandrasekhara
- Department of Biology and Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, Indiana, United States of America
| | - Anne DeBures
- UMR 5096 CNRS-IRD-University de Perpignan, Perpignan, France
| | - Todd Blevins
- Department of Biology and Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, Indiana, United States of America
| | - Richard Cooke
- UMR 5096 CNRS-IRD-University de Perpignan, Perpignan, France
| | - Francisco J. Medina
- Centro de Investigaciones Biológicas, Consejo Superior de Investigacion Científicas, Madrid, Spain
| | | | - Craig S. Pikaard
- Department of Biology and Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, Indiana, United States of America
| | | |
Collapse
|
11
|
Preuss SB, Costa-Nunes P, Tucker S, Pontes O, Lawrence RJ, Mosher R, Kasschau KD, Carrington JC, Baulcombe DC, Viegas W, Pikaard CS. Multimegabase silencing in nucleolar dominance involves siRNA-directed DNA methylation and specific methylcytosine-binding proteins. Mol Cell 2009; 32:673-84. [PMID: 19061642 DOI: 10.1016/j.molcel.2008.11.009] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2008] [Revised: 10/31/2008] [Accepted: 11/07/2008] [Indexed: 01/01/2023]
Abstract
In genetic hybrids, the silencing of nucleolar rRNA genes inherited from one progenitor is the epigenetic phenomenon known as nucleolar dominance. An RNAi knockdown screen identified the Arabidopsis de novo cytosine methyltransferase, DRM2, and the methylcytosine binding domain proteins, MBD6 and MBD10, as activities required for nucleolar dominance. MBD10 localizes throughout the nucleus, but MBD6 preferentially associates with silenced rRNA genes and does so in a DRM2-dependent manner. DRM2 methylation is thought to be guided by siRNAs whose biogenesis requires RNA-DEPENDENT RNA POLYMERASE 2 (RDR2) and DICER-LIKE 3 (DCL3). Consistent with this hypothesis, knockdown of DCL3 or RDR2 disrupts nucleolar dominance. Collectively, these results indicate that in addition to directing the silencing of retrotransposons and noncoding repeats, siRNAs specify de novo cytosine methylation patterns that are recognized by MBD6 and MBD10 in the large-scale silencing of rRNA gene loci.
Collapse
Affiliation(s)
- Sasha B Preuss
- Biology Department, Washington University, St. Louis, MO 63130, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Netchvolodov KK, Boiko AV, Ryskov AP, Kupriyanova NS. Evolutionary divergence of the pre-promotor region of ribosomal DNA in the great apes. ACTA ACUST UNITED AC 2007; 17:378-91. [PMID: 17343212 DOI: 10.1080/10425170600752643] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The human ribosomal intergenic spacer (rIGS) differs considerably on nucleotide sequence and regulatory elements positioning from their counterparts in the mouse, rat and Xenopus laevis. In the present study, we have PCR amplified, cloned and sequenced the rIGS fragments of about 4.5 kb length, located approximately 2 kb upstream of the rRNA transcription start point for the great apes, Pan paniscus, Pan troglodytes, Gorilla gorilla and Pongo pygmaeus. Alignment of the primates' orthologic nucleotide sequences reveals high extent of similarity, with the exception of highly repetitious region between the two Alu repeats, nearest to the onset of transcription. Data obtained have been analyzed for further understanding of the evolution of repetitive sequences. We have also shown, that MARs/SARs distribution patterns in the pre-promoter rIGSs of the great apes and the mouse are surprisingly similar in spite of an absence of similarity in the primary structure and regulatory elements organization in the region under study.
Collapse
|
13
|
Grozdanov P, Georgiev O, Karagyozov L. Complete sequence of the 45-kb mouse ribosomal DNA repeat: analysis of the intergenic spacer. Genomics 2004; 82:637-43. [PMID: 14611805 DOI: 10.1016/s0888-7543(03)00199-x] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
DNA from a single bacterial artificial chromosome clone was used to sequence the mouse ribosomal DNA intergenic spacer from the 3' end of the 45S pre-RNA to the spacer promoter (Accession No. AF441733). This made possible the assembly of a complete mouse ribosomal DNA repeat unit (45309 bp long, TPA Accession No. BK000964). Analysis of the intergenic spacer (IGS) showed a high density of simple sequence repeats and transposable elements. The IGS contains two long sequence blocks, which are repeated tandemly. Some of the sequences in these blocks are also present in other parts of the IGS. A difference in the mutation rate along the mouse IGS was observed. The significance of sequence motifs in the IGS for transcription enhancement, transcription termination, origin of replication, and nucleolar organization is discussed.
Collapse
Affiliation(s)
- Petar Grozdanov
- Cell Biology Department, Institute of Molecular Biology, Acad. G Bonchev Street, Building 21, 1113 Sofia, Bulgaria
| | | | | |
Collapse
|
14
|
Pikaard CS. Transcription and tyranny in the nucleolus: the organization, activation, dominance and repression of ribosomal RNA genes. THE ARABIDOPSIS BOOK 2002; 1:e0083. [PMID: 22303219 PMCID: PMC3243331 DOI: 10.1199/tab.0083] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Affiliation(s)
- Craig S Pikaard
- Biology Department, Washington University, Campus box 1137, 1 Brookings Drive, St. Louis, Missouri, 63130, USA ; FAX: 314-935-4432;
| |
Collapse
|
15
|
Yang W, Zeng W, Zhou D, Shi Y. Cloning, expression, secondary structure characterization of HMG box 1 of hUBF from E. coli and its binding to DNA. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1598:147-155. [PMID: 12147355 DOI: 10.1016/s0167-4838(02)00367-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Human upstream binding factor (hUBF) belonging to a family of protein containing DNA binding domain-HMG box, is important in the activation of rRNA gene transcription. It contains six tandemly arranged HMG box domains, each of which is thought to be as a basic architectural unit in the interaction of DNA and protein. Here the DNA binding domain of hUBF HMG box 1 was cloned and heterologously expressed in Escherichia coli. Through a single purification step using a Ni2+-chelating column, the highly purified recombinant protein could be obtained. This recombinant protein contains 99 amino acids with a hexahistidine tag added to the C-terminus. It was expressed as a monomer, which was determined by gel filtration. Circular dischroism studies show that it comprises approximately 54.3% alpha-helix and 43.6% random coil at pH 7. This result is in good agreement with that of FTIR, which are 59.9% alpha-helix and 40.1% random coil. There is no obvious change for the secondary structure of the recombinant protein as increasing pH from 5.0 to 12.0. But denaturation occurs at pH 3.0. Like many HMG box domains that were found in other proteins, it could bind to four-way DNA junction, a putative intermediate in DNA recombination, in a structure-specific manner. Magnesium ion has no effect on this binding activity, which is determined by both gel mobility shift assays and surface plasmon resonance (SPR). Since Mg2+ is present in the nucleus and RNA polymerase I is Mg2+-stimulated, we believe that this property is relevant for hUBF in vivo. SPR research shows that the recombinant hUBF HMG box 1 also has a strong binding ability to a GC-rich fragment within the rRNA gene core promoter.
Collapse
Affiliation(s)
- Wulin Yang
- Laboratory of Structure Biology, School of Life Science, University of Science and Technology of China, Anhui, Hefei, People's Republic of China
| | | | | | | |
Collapse
|
16
|
Pikaard CS. Nucleolar dominance: uniparental gene silencing on a multi-megabase scale in genetic hybrids. PLANT MOLECULAR BIOLOGY 2000; 43:163-77. [PMID: 10999402 DOI: 10.1023/a:1006471009225] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Nucleolar dominance is a phenomenon in hybrids or allopolyploids in which nucleoli form on chromosomes inherited from only one of the two parents. The molecular basis for nucleolar dominance is the transcription by RNA polymerase I of only one parental set of ribosomal RNA genes (rRNA genes). These rRNA genes are clustered by the hundreds, or thousands, of copies, often spanning tens of millions of basepairs of chromosomal DNA at loci known as nucleolus organizer regions (NORs). Enforcement of nucleolar dominance appears to be accomplished by selectively silencing one set of rRNA genes via chemical modifications of chromatin. However, the mechanisms responsible for initially discriminating among the parental sets of rRNA genes and establishing nucleolar dominance remain unclear. Possibilities include mechanisms that act on each rRNA gene or mechanisms that affect whole NORs or even larger chromosomal domains. This review provides a historical perspective of nucleolar dominance research, explores the most popular hypotheses and their shortcomings, and offers some speculations concerning alternative hypotheses to be considered.
Collapse
Affiliation(s)
- C S Pikaard
- Biology Department, Washington University, St. Louis, MO 63130, USA.
| |
Collapse
|
17
|
Yan S, Lodes MJ, Fox M, Myler PJ, Stuart K. Characterization of the Leishmania donovani ribosomal RNA promoter. Mol Biochem Parasitol 1999; 103:197-210. [PMID: 10551363 DOI: 10.1016/s0166-6851(99)00126-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The rRNA genes of Leishmania donovani are organized on chromosome 27 as tandem repeats of approximately 12.5-kb units that each contain a promoter, the subunit rRNAs, and approximately 39 copies of a 64-bp species-specific sequence. The transcription initiation site was mapped to 1020 bp upstream of the 18S rRNA gene by RNase protection and primer extension. A 349-bp sequence between the 64-bp repeats and the 18S rRNA gene appears to contain a promoter, since it directs a 60-fold increase in luciferase expression over the no-insert control in transient transfection assays. Stepwise deletion and 10-bp replacement studies identified three domains that affect promoter activity. In strain LSB-51.1, a naturally occurring gene conversion with a portion of the LD1 sequence from chromosome 35 replaced the rRNA genes within one repeat unit, from downstream of the promoter to within the 64-bp repeats. Northern blot analysis of RNA from LSB-51.1 showed large transcripts from the external spacer regions that are not normally transcribed. These results imply that the gene conversion eliminated sequences at or near the 5' terminus of the 64-bp repeats which normally function in transcription termination.
Collapse
MESH Headings
- Animals
- Base Sequence
- Kinetoplastida/genetics
- Leishmania donovani/genetics
- Molecular Sequence Data
- Promoter Regions, Genetic
- RNA, Ribosomal/genetics
- RNA, Ribosomal, 18S/genetics
- RNA, Ribosomal, 28S/genetics
- Repetitive Sequences, Nucleic Acid
- Sequence Analysis, DNA
- Sequence Homology, Nucleic Acid
- Terminator Regions, Genetic
- Transcription, Genetic
Collapse
Affiliation(s)
- S Yan
- Seattle Biomedical Research Institute, WA 98109-1651, USA
| | | | | | | | | |
Collapse
|
18
|
Reeder RH. Regulation of RNA polymerase I transcription in yeast and vertebrates. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1999; 62:293-327. [PMID: 9932458 DOI: 10.1016/s0079-6603(08)60511-5] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
This article focuses on what is currently known about the regulation of transcription by RNA polymerase I (pol I) in eukaryotic organisms at opposite ends of the evolutionary spectrum--a yeast, Saccharomyces cerevisiae, and vertebrates, including mice, frogs, and man. Contemporary studies that have defined the DNA sequence elements are described, as well as the majority of the basal transcription factors essential for pol I transcription. Situations in which pol I transcription is known to be regulated are reviewed and possible regulatory mechanisms are critically discussed. Some aspects of basal pol I transcription machinery appear to have been conserved from fungi to vertebrates, but other aspects have evolved, perhaps to meet the needs of a metazoan organism. Different parts of the pol I transcription machinery are regulatory targets depending on different physiological stimuli. This suggests that multiple signaling pathways may also be involved. The involvement of ribosomal genes and their transcripts in events such as mitosis, cancer, and aging is discussed.
Collapse
Affiliation(s)
- R H Reeder
- Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| |
Collapse
|
19
|
Grummt I. Regulation of mammalian ribosomal gene transcription by RNA polymerase I. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1999; 62:109-54. [PMID: 9932453 DOI: 10.1016/s0079-6603(08)60506-1] [Citation(s) in RCA: 190] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
All cells, from prokaryotes to vertebrates, synthesize vast amounts of ribosomal RNA to produce the several million new ribosomes per generation that are required to maintain the protein synthetic capacity of the daughter cells. Ribosomal gene (rDNA) transcription is governed by RNA polymerase I (Pol I) assisted by a dedicated set of transcription factors that mediate the specificity of transcription and are the targets of the pleiotrophic pathways the cell uses to adapt rRNA synthesis to cell growth. In the past few years we have begun to understand the specific functions of individual factors involved in rDNA transcription and to elucidate on a molecular level how transcriptional regulation is achieved. This article reviews our present knowledge of the molecular mechanism of rDNA transcriptional regulation.
Collapse
Affiliation(s)
- I Grummt
- Division of Molecular Biology of the Cell II, German Cancer Research Center, Heidelberg, Germany
| |
Collapse
|
20
|
Pulido M, Martínez-Calvillo S, Hernández R. Trypanosoma cruzi rRNA genes: a repeated element from the non-transcribed spacer is locus specific. Acta Trop 1996; 62:163-70. [PMID: 9025984 DOI: 10.1016/s0001-706x(96)00034-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
To determine the occurrence of conserved domains of presumed functional selection, a genomic restriction analysis was carried out in the region surrounding a transcription start point (tsp) from the rRNA cistron in T. cruzi. The transcribed spacer was found highly conserved among several isolates, whereas at 146 bp upstream from the tsp a highly polymorphic pattern was evidenced with a probe that contains sequences of a repetitive element (172 bp). Both genomic and chromosomal hybridizations indicated the linkage of the repetitive element to coding regions of the rRNA cistron. This represents the first example of a repetitive element not interspersed throughout the genome of T. cruzi, and strongly suggests that a functional role is being selected.
Collapse
Affiliation(s)
- M Pulido
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México D.F., México
| | | | | |
Collapse
|
21
|
Mougey EB, Pape LK, Sollner-Webb B. Virtually the entire Xenopus laevis rDNA multikilobase intergenic spacer serves to stimulate polymerase I transcription. J Biol Chem 1996; 271:27138-45. [PMID: 8900206 DOI: 10.1074/jbc.271.43.27138] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The promoter-distal half of the spacer separating the tandem Xenopus laevis rRNA genes consists of "0" and "1" repetitive elements that have been considered unimportant in polymerase I transcriptional activation. Utilizing oocyte microinjection, we now demonstrate that the 0/1 region, as well as its component 0 and 1 repeats, substantially stimulate transcription from a ribosomal promoter in cis and inhibit transcription when located in trans. Both the cis and trans responses increase linearly with increasing numbers of 0 or 1 repeats until saturation is approached. The 0/1 block and its component elements stimulate transcription in both orientations, over distances, and when placed downstream of the initiation site, properties for which the 60/81-base pair (bp) repeats have been defined as polymerase I enhancers. In their natural promoter-distal rDNA location, the 0/1 repeats can stimulate transcription from the rRNA gene promoter, above the level afforded by the intervening 60/81-bp repeats and spacer promoter. In addition, as with the 60/81-bp repeats, the 0/1 repeats bind a factor in common with the rDNA promoter. Thus, the entire X. laevis rDNA intergenic spacer (the 0 repeats, 1 repeats, spacer promoter repeats, and 60/81-bp repeats) acts together to enhance ribosomal transcription.
Collapse
Affiliation(s)
- E B Mougey
- Department of Biological Chemistry, Johns Hopkins University, School of Medicine, Baltimore, Maryland 21205, USA
| | | | | |
Collapse
|
22
|
Fassler JS, Gussin GN. Promoters and basal transcription machinery in eubacteria and eukaryotes: concepts, definitions, and analogies. Methods Enzymol 1996; 273:3-29. [PMID: 8791596 DOI: 10.1016/s0076-6879(96)73003-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- J S Fassler
- Department of Biological Sciences, University of Iowa, Iowa City 52242, USA
| | | |
Collapse
|
23
|
Bustin M, Reeves R. High-mobility-group chromosomal proteins: architectural components that facilitate chromatin function. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1996; 54:35-100. [PMID: 8768072 DOI: 10.1016/s0079-6603(08)60360-8] [Citation(s) in RCA: 568] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- M Bustin
- Laboratory of Molecular Carcinogenesis, National Cancer Institute, National Institute of Health, Bethesda, Maryland 20892, USA
| | | |
Collapse
|
24
|
Abstract
An unusual property of ribosomal gene transcription is its marked species specificity. This results from distinct promoter-recognition properties of the RNA polymerase I transcription apparatus. The purification and functional characterization of TIF-IB/SL1, a promoter-recognition factor containing the TATA-binding protein, as well as the recent cloning of cDNAs encoding the three subunits (TAF(I)s) of the respective human and mouse factor, will facilitate the molecular analysis of the mechanisms underlying species-specific rDNA transcription and reveal how the basal transcriptional machinery has evolved.
Collapse
Affiliation(s)
- J Heix
- Division of Molecular Biology of the Cell II, German Cancer Research Center, Heidelberg, Germany
| | | |
Collapse
|
25
|
Tyler-Cross RE, Short SL, Floeter-Winter LM, Buck GA. Transient expression mediated by the Trypanosoma cruzi rRNA promoter. Mol Biochem Parasitol 1995; 72:23-31. [PMID: 8538693 DOI: 10.1016/0166-6851(95)00061-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Plasmid constructs containing a putative Trypanosoma cruzi rRNA promoter and transcription start point upstream from the bacterial chloramphenicol acetyltransferase (CAT) reporter gene were transfected into cultured T. cruzi epimastigotes to verify the presence of a promoter activity. Constructs bearing the putative promoter and a 3' trans-splicing acceptor site in the proper orientation yielded approx. two orders of magnitude greater CAT expression than that previously observed with the T. cruzi spliced leader (SL) gene promoter. In contrast, similar constructs lacking the known 3' splice site yielded reduced but readily measurable expression suggesting that sequences near the promoter may function as cryptic 3' splice sites. A repeated sequence upstream from the putative basal rRNA promoter in a position analogous to rRNA gene enhancer elements in other eukaryotes did not enhance expression from the T. cruzi rRNA promoter. Finally, these constructs were functional in some but not all T. cruzi isolates, and were inactive in other kinetoplastid species, suggesting that the T. cruzi rRNA promoter may have a limited host range.
Collapse
Affiliation(s)
- R E Tyler-Cross
- Department of Microbiology and Immunology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond 23298, USA
| | | | | | | |
Collapse
|
26
|
UBF, an Architectural Element for RNA Polymerase I Promoters. NUCLEIC ACIDS AND MOLECULAR BIOLOGY 1995. [DOI: 10.1007/978-3-642-79488-9_12] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
27
|
Moss T, Stefanovsky VY. Promotion and regulation of ribosomal transcription in eukaryotes by RNA polymerase I. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1995; 50:25-66. [PMID: 7754036 DOI: 10.1016/s0079-6603(08)60810-7] [Citation(s) in RCA: 160] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- T Moss
- Cancer Research Centre, Laval University, Hôtel-Dieu de Québec, Canada
| | | |
Collapse
|
28
|
Ghosh AK, Kermekchiev M, Jacob ST. Effects of repetitive and non-repetitive rat rDNA enhancer elements on in vivo transcription by RNA polymerases I and II. Gene X 1994; 141:271-5. [PMID: 8163201 DOI: 10.1016/0378-1119(94)90584-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Previous study has demonstrated that a far upstream 174-bp spacer sequence of the rat rRNA-encoding (rDNA) gene can function as an enhancer in vitro in an orientation- and distance-independent manner [Dixit et al., J. Biol. Chem. 262 (1987) 11616-11622]. To demonstrate that this element can also function in vivo, two rat rDNA-cat plasmids, one with the 174-bp element and the other without this sequence, were constructed and transfected into CHO cells. Primer extension analysis of the transcripts produced after transfection showed that transcription initiation occurred at the +1 site of the rDNA. The 174-bp sequence stimulated the rat polI promoter activity in cis 4-5-fold over the control (with the promoter alone). This RNA polymerase (polI) enhancer also stimulated the mouse metallothionein-I (MT-I) and SV40 promoter activities in vivo, irrespective of its distance and orientation. Further dissection of the 174-bp element revealed that the stimulatory activity on the RNA polymerase II (polII) promoter resides within the 37-bp and 43-bp domains at the 3' end of the 174-bp element. Unlike this spacer enhancer, the 130-bp repeat element (RE) proximal to the rat promoter [Ghosh et al., Gene 125 (1993) 217-222] was unable to modulate the polII promoter activity in vivo. These data show that while the non-repetitive enhancer sequence of rat rDNA is interchangeable for the polI and polII promoters, the RE is polI-specific.
Collapse
Affiliation(s)
- A K Ghosh
- Department of Pharmacology and Molecular Biology, Chicago Medical School, IL 60064
| | | | | |
Collapse
|
29
|
Ghosh AK, Hoff CM, Jacob ST. Characterization of the 130-bp repeat enhancer element of the rat ribosomal gene: functional interaction with transcription factor E1BF. Gene 1993; 125:217-22. [PMID: 8462876 DOI: 10.1016/0378-1119(93)90332-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The 130-bp repetitive element (RE) of the rat rDNA (ribosomal RNA-encoding gene) intergenic spacer stimulated the synthesis of rRNA four- to sixfold, in comparison with that of the promoter alone, both in vivo and in vitro, when ligated to the rat rDNA promoter. The addition of increasing amounts of highly purified E1BF (enhancer-1 binding factor), which binds to the rat rDNA promoter and an upstream nonrepetitive enhancer element [Zhang and Jacob, Mol. Cell. Biol. 10 (1990) 5177-5186], to an in vitro transcription system resulted in enhancement of rDNA transcription from the recombinant plasmids containing the promoter or promoter-RE. However, E1BF-mediated stimulation of transcription under the influence of the RE continued at higher concentrations of E1BF than did the control transcription from the promoter alone. The binding affinity of E1BF for the RE was comparable to its affinity for the nonrepetitive far upstream enhancer element previously characterized in our laboratory. The sequences protected by E1BF in the RE differed from those protected by UBF (upstream control element-binding factor), a well characterized pol I transcription factor. These data suggest that E1BF belongs to a class of transcription factors which interact with the promoter and spacer cis-acting RE to modulate rDNA transcription.
Collapse
Affiliation(s)
- A K Ghosh
- Department of Pharmacology and Molecular Biology, Chicago Medical School, IL 60064
| | | | | |
Collapse
|
30
|
Dietrich P, Soares MB, Affonso MH, Floeter-Winter LM. The Trypanosoma cruzi ribosomal RNA-encoding gene: analysis of promoter and upstream intergenic spacer sequences. Gene X 1993; 125:103-7. [PMID: 8449407 DOI: 10.1016/0378-1119(93)90753-p] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The transcription start point (tsp) of the ribosomal RNA(rRNA)-encoding gene of Trypanosoma cruzi was mapped at 1550 bp upstream from the 18S rRNA coding sequence. The + 1 nucleotide (tsp) was determined to be a guanosine. As described for other eukaryotes, no consensus sequence was found when the putative promoter sequence (-200 to + 50) was compared with that described for Trypanosoma brucei and Crithidia fasciculata. However, a repeated element was found in the upstream intergenic spacer sequence (IGS) of T. cruzi. Motifs, present in this element, exhibit significant homology to the T. cruzi promoter sequence. Furthermore, the same motifs could be found, in a similar sequence organization, within the T. brucei promoter region. Therefore, the data described in this paper strongly indicate that the IGS rDNA (DNA coding for rRNA) organization in trypanosomatids appears similar to that found in higher eukaryotes.
Collapse
Affiliation(s)
- P Dietrich
- Departmento de Parasitologia, Universidade de São Paulo, Brazil
| | | | | | | |
Collapse
|
31
|
Roussel P, André C, Masson C, Géraud G, Hernandez-Verdun D. Localization of the RNA polymerase I transcription factor hUBF during the cell cycle. J Cell Sci 1993; 104 ( Pt 2):327-37. [PMID: 8505363 DOI: 10.1242/jcs.104.2.327] [Citation(s) in RCA: 116] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Autoantibodies directed against nucleoli that recognized a doublet of 97–94 kDa in HeLa nuclear protein extracts were identified. The two polypeptides bound equal amounts of antibody, and each was recognized by antibodies affinity purified using the other polypeptide. These antigens were localized in the secondary constriction of PtK1 cells, i.e. the nucleolar organizer regions (NORs) where ribosomal genes accumulate. They were observed in human cells in the same sites as the NOR-silver-stained proteins. The molecular mass of the antigens, their characteristics in Western blotting and their localization in nucleoli and NORs during mitosis are consistent with them being RNA polymerase I transcriptional factor, UBF. This identification was confirmed on Western blotted proteins by their identical labelling patterns, using these autoantibodies and an anti-mUBF antibody that had been previously described. We obtained definitive evidence that these autoantibodies recognize UBF by the strong positive labelling of purified hUBF (1 to 4 ng). During interphase, these autoantibodies directed against UBF labelled in a folded filament pattern as small beads that may correspond to individual transcriptional units. In electron microscopy, the antibodies were observed in the dense fibrillar component (DFC) of the nucleoli and at the periphery of the fibrillar centers (FCs). At the end of G2 phase, transcription inactivation was concomitant with the gathering of UBF at mitotic NORs. UBF was not equally distributed between NORs in human cells: some NORs scored negative (2 to 4) and the intensity of labelling of positive NORs (6 to 8) differed. In confocal microscopy, 3-dimensional analysis of mitosis indicated that UBF remained associated with NORs during all mitotic stages and that there was equal partition of UBF between the daughter cells. The relationship between proteins associated with the NORs and ribosomal gene transcription is discussed.
Collapse
Affiliation(s)
- P Roussel
- Institut Jacques Monod, Paris, France
| | | | | | | | | |
Collapse
|
32
|
|
33
|
|
34
|
Griess EA, Grasser KD, Feix G. Repeat units from a maize rDNA external spacer region exhibit DNA curvature and interact with high-mobility-group proteins. PLANTA 1993; 191:524-531. [PMID: 7764230 DOI: 10.1007/bf00195754] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The 3-kb external spacer from a maize (Zea mays L. cv. A619) nuclear rRNA gene unit which contains nine highly homologous 200-bp repeat elements was found to include a region with DNA-curvature properties. The centre of curvature was localized within repeats 5 and 6 using a circular permutation assay. A 60-bp-long subfragment of this region was found to interact with nuclear proteins, including high-mobility-group (HMG) proteins, and with the maize HMGa protein synthesized in Escherichia coli from a recombinant plasmid. The potential influence of the binding of the HMG proteins on the conformation of this subfragment was studied with a permutation assay based on a bending vector.
Collapse
Affiliation(s)
- E A Griess
- Institut für Biologie III, Albert-Ludwigs-Universität Freiburg, FRG
| | | | | |
Collapse
|
35
|
Baldridge GD, Dalton MW, Fallon AM. Is higher-order structure conserved in eukaryotic ribosomal DNA intergenic spacers? J Mol Evol 1992; 35:514-23. [PMID: 1474605 DOI: 10.1007/bf00160212] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Computer-based structural analysis of the ribosomal DNA intergenic spacer (IGS) from the mosquito Aedes albopictus revealed a potential to form strong and extensive secondary structures throughout a 4.7-kilobase (kb) region. The predicted stability of secondary structures was particularly high within a 3.15-kb region containing 17 tandem 201 base-pair subrepeats. Similarly strong secondary structure potential was also found when IGS subrepeats were analyzed from 17 phylogenetically diverse eukaryotes, including vertebrates, invertebrates, and plants. Conservation of higher-order structure potential in the IGS region of ribosomal DNA may reflect evolutionary and functional constraints on chromatin organization, transcriptional regulation of the ribosomal RNA genes, and/or transcript processing and stability.
Collapse
Affiliation(s)
- G D Baldridge
- Department of Entomology, University of Minnesota, St. Paul 55108
| | | | | |
Collapse
|
36
|
Rosenberg-Nicolson NL, Nicolson GL. Nucleoproteins derived from subnuclear RNA polymerase complexes of metastatic large-cell lymphoma cells possess transcription activities and regulatory properties in vitro. J Cell Biochem 1992; 50:301-15. [PMID: 1469066 DOI: 10.1002/jcb.240500311] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Intact nuclei derived from poorly or highly liver-metastatic murine large-cell lymphoma cell line RAW117 were digested to discrete subchromatin deoxyribonucleoprotein/ribonucleoprotein (DNP/RNP) complexes with Msp-I. The DNP/RNP complexes were composed of DNP/RNPs which were derived from the DNP/RNP complexes by incubation in the presence or absence of DNase-I and subsequent isolation by two-dimensional [isoelectric focusing/sodium dodecylsulfate (SDS)] polyacrylamide gel electrophoresis (PAGE), electroelution from the gel, and removal of SDS. Approximately 450 DNP/RNPs in the two-dimensional gels corresponding to discrete spots or in some cases streaks were analyzed for the presence of v-abl, p53, c-neu, c-H-ras, beta-casein, 18s rDNA, and mu-chain immunoglobulin genes using a hybridization technique. Ten DNP/RNP complexes contained tightly associated p53 DNA, whereas six contained c- or v-abl, four contained mu-chain gene, two contained c-H-ras, one contained dot-blot beta-casein, two contained 18s rDNA, and c-neu was found in one of the DNP/RNPs. The DNP/RNPs were also analyzed for in vitro RNA polymerase and primase activities. To assess the potential transcription abilities of the isolated DNP/RNPs, individual DNP/RNPs or DNP/RNP mixtures (reconstituted after SDS-PAGE separation) were examined for RNA polymerase initiation and synthesis. When RNA products were formed, these were purified by extracellulose chromatography and used as back-hybridization probes for the genes of interest. The RNA products were also analyzed by RNA gel electrophoresis. RNA formation was inhibitable by actinomycin D, and the RNAs formed ranged in size from approximately 80 kbp to approximately 1 kbp. By mixing various DNP/RNP complexes together, different patterns of RNA synthesis were found. For example, one DNP/RNP of M(r) approximately 140,000, isoelectric point (pl) approximately 5.8 synthesized a high molecular weight RNA in vitro that hybridized with beta-casein cDNA, but beta-casein is not expressed in RAW117 cells, suggesting that the silencing of the beta-casein gene was negated by isolation of the DNP/RNP. Mixing this DNP/RNP with two other specific DNP/RNPs again inhibited the synthesis of beta-casein RNA, suggesting that interactions between DNP/RNP complexes can result in differential RNA expression or regulation of RNA polymerases in vitro.
Collapse
Affiliation(s)
- N L Rosenberg-Nicolson
- Department of Tumor Biology, University of Texas M.D. Anderson Cancer Center, Houston 77030
| | | |
Collapse
|
37
|
|
38
|
Abstract
Although the typical, actively growing eukaryotic cell contains over 10,000 different transcripts, half of its RNA synthetic capacity is devoted to the production of a single kind of RNA. This is the pre-ribosomal RNA, which is synthesized in a special compartment of the nucleus, the nucleolus, and is the exclusive product of transcription by RNA polymerase I. In vivo and in vitro approaches have revealed the major features of rRNA gene transcription and of the subsequent processing of the primary transcript.
Collapse
Affiliation(s)
- B Sollner-Webb
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205-2185
| | | |
Collapse
|
39
|
Abstract
The past year has seen advances in our understanding of three broad areas that concern ribosomal RNA production. It is becoming apparent that for a large number of eukaryotes, sequence elements that regulate ribosomal RNA transcription are arranged in a similar pattern. This conservation of arrangement implies conservation of regulatory mechanisms. Better understanding of the ribosomal gene transcription factors has emerged, and one factor has been purified and cloned. In vitro systems for processing ribosomal RNA are beginning to be developed, allowing the first direct proof that a small nuclear ribonucleoprotein (U3) is involved in ribosomal RNA processing.
Collapse
Affiliation(s)
- R H Reeder
- Fred Hutchinson Cancer Research Center, Seattle, WA 98104
| |
Collapse
|