1
|
Lamarche BJ, Orazio NI, Goben B, Meisenhelder J, You Z, Weitzman MD, Hunter T. Repair of protein-linked DNA double strand breaks: Using the adenovirus genome as a model substrate in cell-based assays. DNA Repair (Amst) 2018; 74:80-90. [PMID: 30583959 DOI: 10.1016/j.dnarep.2018.12.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 12/07/2018] [Accepted: 12/07/2018] [Indexed: 11/29/2022]
Abstract
The DNA double strand breaks (DSBs) created during meiotic recombination and during some types of chemotherapy contain protein covalently attached to their 5' termini. Removal of the end-blocking protein is a prerequisite to DSB processing by non-homologous end-joining or homologous recombination. One mechanism for removing the protein involves CtIP-stimulated Mre11-catalyzed nicking of the protein-linked strand distal to the DSB terminus, releasing the end-blocking protein while it remains covalently attached to an oligonucleotide. Much of what is known about this repair process has recently been deciphered through in vitro reconstitution studies. We present here a novel model system based on adenovirus (Ad), which contains the Ad terminal protein covalently linked to the 5' terminus of its dsDNA genome, for studying the repair of 5' protein-linked DSBs in vivo. It was previously shown that the genome of Ad mutants that lack early region 4 (E4) can be joined into concatemers in vivo, suggesting that the Ad terminal protein had been removed from the genome termini prior to ligation. Here we show that during infection with the E4-deleted Ad mutant dl1004, the Ad terminal protein is removed in a manner that recapitulates removal of end-blocking proteins from cellular DSBs. In addition to displaying a dependence on CtIP, and Mre11 acting as the endonuclease, the protein-linked oligonucleotides that are released from the viral genome are similar in size to the oligos that remain attached to Spo11 and Top2 after they are removed from the 5' termini of DSBs during meiotic recombination and etoposide chemotherapy, respectively. The single nucleotide resolution that is possible with this assay, combined with the single sequence context in which the lesion is presented, make it a useful tool for further refining our mechanistic understanding of how blocking proteins are removed from the 5' termini of DSBs.
Collapse
Affiliation(s)
- Brandon J Lamarche
- Laboratory of Genetics, Salk Institute for Biological Studies, La Jolla, California, 92037, USA; Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, California, 92037, USA
| | - Nicole I Orazio
- Laboratory of Genetics, Salk Institute for Biological Studies, La Jolla, California, 92037, USA
| | - Brittany Goben
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, California, 92037, USA
| | - Jill Meisenhelder
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, California, 92037, USA
| | - Zhongsheng You
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri, 63110, USA
| | - Matthew D Weitzman
- Laboratory of Genetics, Salk Institute for Biological Studies, La Jolla, California, 92037, USA.
| | - Tony Hunter
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, California, 92037, USA.
| |
Collapse
|
2
|
Kumala S, Hadj-Sahraoui Y, Rzeszowska-Wolny J, Hancock R. DNA of a circular minichromosome linearized by restriction enzymes or other reagents is resistant to further cleavage: an influence of chromatin topology on the accessibility of DNA. Nucleic Acids Res 2012; 40:9417-28. [PMID: 22848103 PMCID: PMC3479189 DOI: 10.1093/nar/gks723] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The accessibility of DNA in chromatin is an essential factor in regulating its activities. We studied the accessibility of the DNA in a ∼170 kb circular minichromosome to DNA-cleaving reagents using pulsed-field gel electrophoresis and fibre-fluorescence in situ hybridization on combed DNA molecules. Only one of several potential sites in the minichromosome DNA was accessible to restriction enzymes in permeabilized cells, and in growing cells only a single site at an essentially random position was cut by poisoned topoisomerase II, neocarzinostatin and γ-radiation, which have multiple potential cleavage sites; further sites were then inaccessible in the linearized minichromosomes. Sequential exposure to combinations of these reagents also resulted in cleavage at only a single site. Minichromosome DNA containing single-strand breaks created by a nicking endonuclease to relax any unconstrained superhelicity was also cut at only a single position by a restriction enzyme. Further sites became accessible after ≥95% of histones H2A, H2B and H1, and most non-histone proteins were extracted. These observations suggest that a global rearrangement of the three-dimensional packing and interactions of nucleosomes occurs when a circular minichromosome is linearized and results in its DNA becoming inaccessible to probes.
Collapse
Affiliation(s)
- Sławomir Kumala
- Laval University Cancer Research Centre, 9 rue MacMahon, Québec QC G1R2J6, Canada
| | | | | | | |
Collapse
|
3
|
Petesch SJ, Lis JT. Activator-induced spread of poly(ADP-ribose) polymerase promotes nucleosome loss at Hsp70. Mol Cell 2011; 45:64-74. [PMID: 22178397 DOI: 10.1016/j.molcel.2011.11.015] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Revised: 07/21/2011] [Accepted: 10/20/2011] [Indexed: 11/17/2022]
Abstract
Eukaryotic cells possess many transcriptionally regulated mechanisms to alleviate the nucleosome barrier. Dramatic changes to the chromatin structure of Drosophila melanogaster Hsp70 gene loci are dependent on the transcriptional activator, heat shock factor (HSF), and poly(ADP-ribose) polymerase (PARP). Here, we find that PARP is associated with the 5' end of Hsp70, and its enzymatic activity is rapidly induced by heat shock. This activation causes PARP to redistribute throughout Hsp70 loci and Poly(ADP-ribose) to concurrently accumulate in the wake of PARP's spread. HSF is necessary for both the activation of PARP's enzymatic activity and its redistribution. Upon heat shock, HSF triggers these PARP activities mechanistically by directing Tip60 acetylation of histone H2A lysine 5 at the 5' end of Hsp70, where inactive PARP resides before heat shock. This acetylation is critical for the activation and spread of PARP as well as for the rapid nucleosome loss over the Hsp70 loci.
Collapse
Affiliation(s)
- Steven J Petesch
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | | |
Collapse
|
4
|
Chelouah S, Monod-Wissler C, Bailly C, Barret JM, Guilbaud N, Vispé S, Käs E. An integrated Drosophila model system reveals unique properties for F14512, a novel polyamine-containing anticancer drug that targets topoisomerase II. PLoS One 2011; 6:e23597. [PMID: 21853156 PMCID: PMC3154508 DOI: 10.1371/journal.pone.0023597] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Accepted: 07/21/2011] [Indexed: 11/19/2022] Open
Abstract
F14512 is a novel anti-tumor molecule based on an epipodophyllotoxin core coupled to a cancer-cell vectoring spermine moiety. This polyamine linkage is assumed to ensure the preferential uptake of F14512 by cancer cells, strong interaction with DNA and potent inhibition of topoisomerase II (Topo II). The antitumor activity of F14512 in human tumor models is significantly higher than that of other epipodophyllotoxins in spite of a lower induction of DNA breakage. Hence, the demonstrated superiority of F14512 over other Topo II poisons might not result solely from its preferential uptake by cancer cells, but could also be due to unique effects on Topo II interactions with DNA. To further dissect the mechanism of action of F14512, we used Drosophila melanogaster mutants whose genetic background leads to an easily scored phenotype that is sensitive to changes in Topo II activity and/or localization. F14512 has antiproliferative properties in Drosophila cells and stabilizes ternary Topo II/DNA cleavable complexes at unique sites located in moderately repeated sequences, suggesting that the drug specifically targets a select and limited subset of genomic sequences. Feeding F14512 to developing mutant Drosophila larvae led to the recovery of flies expressing a striking phenotype, "Eye wide shut," where one eye is replaced by a first thoracic segment. Other recovered F14512-induced gain- and loss-of-function phenotypes similarly correspond to precise genetic dysfunctions. These complex in vivo results obtained in a whole developing organism can be reconciled with known genetic anomalies and constitute a remarkable instance of specific alterations of gene expression by ingestion of a drug. "Drosophila-based anticancer pharmacology" hence reveals unique properties for F14512, demonstrating the usefulness of an assay system that provides a low-cost, rapid and effective complement to mammalian models and permits the elucidation of fundamental mechanisms of action of candidate drugs of therapeutic interest in humans.
Collapse
Affiliation(s)
- Sonia Chelouah
- Université de Toulouse, UPS, Université Paul Sabatier, Laboratoire de Biologie Moléculaire Eucaryote; Toulouse; France
- CNRS, Centre National de la Recherche Scientifique, UMR5099, Laboratoire de Biologie Moléculaire Eucaryote, Toulouse, France
| | - Caroline Monod-Wissler
- Université de Toulouse, UPS, Université Paul Sabatier, Laboratoire de Biologie Moléculaire Eucaryote; Toulouse; France
- CNRS, Centre National de la Recherche Scientifique, UMR5099, Laboratoire de Biologie Moléculaire Eucaryote, Toulouse, France
| | - Christian Bailly
- Centre de Recherche en Oncologie Expérimentale, Institut de Recherche Pierre Fabre, Toulouse, France
| | - Jean-Marc Barret
- Centre de Recherche en Oncologie Expérimentale, Institut de Recherche Pierre Fabre, Toulouse, France
| | - Nicolas Guilbaud
- Centre de Recherche en Oncologie Expérimentale, Institut de Recherche Pierre Fabre, Toulouse, France
| | - Stéphane Vispé
- Centre de Recherche en Oncologie Expérimentale, Institut de Recherche Pierre Fabre, Toulouse, France
- * E-mail: (EK); (SV)
| | - Emmanuel Käs
- Université de Toulouse, UPS, Université Paul Sabatier, Laboratoire de Biologie Moléculaire Eucaryote; Toulouse; France
- CNRS, Centre National de la Recherche Scientifique, UMR5099, Laboratoire de Biologie Moléculaire Eucaryote, Toulouse, France
- * E-mail: (EK); (SV)
| |
Collapse
|
5
|
Sano K, Miyaji-Yamaguchi M, Tsutsui KM, Tsutsui K. Topoisomerase IIbeta activates a subset of neuronal genes that are repressed in AT-rich genomic environment. PLoS One 2008; 3:e4103. [PMID: 19116664 PMCID: PMC2605559 DOI: 10.1371/journal.pone.0004103] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2008] [Accepted: 11/26/2008] [Indexed: 12/11/2022] Open
Abstract
DNA topoisomerase II (topo II) catalyzes a strand passage reaction in that one duplex is passed through a transient brake or gate in another. Completion of late stages of neuronal development depends on the presence of active β isoform (topo IIβ). The enzyme appears to aid the transcriptional induction of a limited number of genes essential for neuronal maturation. However, this selectivity and underlying molecular mechanism remains unknown. Here we show a strong correlation between the genomic location of topo IIβ action sites and the genes it regulates. These genes, termed group A1, are functionally biased towards membrane proteins with ion channel, transporter, or receptor activities. Significant proportions of them encode long transcripts and are juxtaposed to a long AT-rich intergenic region (termed LAIR). We mapped genomic sites directly targeted by topo IIβ using a functional immunoprecipitation strategy. These sites can be classified into two distinct classes with discrete local GC contents. One of the classes, termed c2, appears to involve a strand passage event between distant segments of genomic DNA. The c2 sites are concentrated both in A1 gene boundaries and the adjacent LAIR, suggesting a direct link between the action sites and the transcriptional activation. A higher-order chromatin structure associated with AT richness and gene poorness is likely to serve as a silencer of gene expression, which is abrogated by topo IIβ releasing nearby genes from repression. Positioning of these genes and their control machinery may have developed recently in vertebrate evolution to support higher functions of central nervous system.
Collapse
Affiliation(s)
- Kuniaki Sano
- Department of Neurogenomics, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Mary Miyaji-Yamaguchi
- Department of Neurogenomics, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Kimiko M. Tsutsui
- Department of Neurogenomics, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Ken Tsutsui
- Department of Genome Dynamics, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
- * E-mail:
| |
Collapse
|
6
|
Lavelle C. DNA torsional stress propagates through chromatin fiber and participates in transcriptional regulation. Nat Struct Mol Biol 2008; 15:123-5. [DOI: 10.1038/nsmb0208-123] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
7
|
Mirault ME, Boucher P, Tremblay A. Nucleotide-resolution mapping of topoisomerase-mediated and apoptotic DNA strand scissions at or near an MLL translocation hotspot. Am J Hum Genet 2006; 79:779-91. [PMID: 17033956 PMCID: PMC1698565 DOI: 10.1086/507791] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2006] [Accepted: 07/18/2006] [Indexed: 11/03/2022] Open
Abstract
The emergence of therapy-related acute myeloid leukemia (t-AML) has been associated with DNA topoisomerase II (TOP2)-targeted drug treatments and chromosomal translocations frequently involving the MLL, or ALL-1, gene. Two distinct mechanisms have been implicated as potential triggers of t-AML translocations: TOP2-mediated DNA cleavage and apoptotic higher-order chromatin fragmentation. Assessment of the role of TOP2 in this process has been hampered by a lack of techniques allowing in vivo mapping of TOP2-mediated DNA cleavage at nucleotide resolution in single-copy genes. A novel method, extension ligation-mediated polymerase chain reaction (ELMPCR), was used here for mapping topoisomerase-mediated DNA strand breaks and apoptotic DNA cleavage across a translocation-prone region of MLL in human cells. We report the first genomic map integrating translocation breakpoints and topoisomerase I, TOP2, and apoptotic DNA cleavage sites at nucleotide resolution across an MLL region harboring a t-AML translocation hotspot. This hotspot is flanked by a TOP2 cleavage site and is localized at one extremity of a minor apoptotic cleavage region, where multiple single- and double-strand breaks were induced by caspase-activated apoptotic nucleases. This cleavage pattern was in sharp contrast to that observed approximately 200 bp downstream in the exon 12 region, which displayed much stronger apoptotic cleavage but where no double-strand breaks were detected and no t-AML-associated breakpoints were reported. The localization and remarkable clustering of the t-AML breakpoints cannot be explained simply by the DNA cleavage patterns but might result from potential interactions between TOP2 poisoning, apoptotic DNA cleavage, and DNA repair attempts at specific sites of higher-order chromatin structure in apoptosis-evading cells. ELMPCR provides a new tool for investigating the role of DNA topoisomerases in fundamental genetic processes and translocations associated with cancer treatments involving topoisomerase-targeted drugs.
Collapse
Affiliation(s)
- Marc-Edouard Mirault
- Unit of Health and Environment, Centre de Recherche du Centre Hospitalier Universitaire de Quebec-Centre Hospitalier de l'Universite Laval, Quebec City, Quebec, Canada.
| | | | | |
Collapse
|
8
|
Abstract
Recurring chromosome abnormalities are strongly associated with certain subtypes of leukemia, lymphoma and sarcomas. More recently, their potential involvement in carcinomas, i.e. prostate cancer, has been recognized. They are among the most important factors in determining disease prognosis, and in many cases, identification of these chromosome abnormalities is crucial in selecting appropriate treatment protocols. Chromosome translocations are frequently observed in both de novo and therapy-related acute myeloid leukemia (AML) and myelodysplastic syndromes (MDS). The mechanisms that result in such chromosome translocations in leukemia and other cancers are largely unknown. Genomic breakpoints in all the common chromosome translocations in leukemia, including t(4;11), t(9;11), t(8;21), inv(16), t(15;17), t(12;21), t(1;19) and t(9;22), have been cloned. Genomic breakpoints tend to cluster in certain intronic regions of the relevant genes including MLL, AF4, AF9, AML1, ETO, CBFB, MYHI1, PML, RARA, TEL, E2A, PBX1, BCR and ABL. However, whereas the genomic breakpoints in MLL tend to cluster in the 5' portion of the 8.3 kb breakpoint cluster region (BCR) in de novo and adult patients and in the 3' portion in infant leukemia patients and t-AML patients, those in both the AML1 and ETO genes occur in the same clustered regions in both de novo and t-AML patients. These differences may reflect differences in the mechanisms involved in the formation of the translocations. Specific chromatin structural elements, such as in vivo topoisomerase II (topo II) cleavage sites, DNase I hypersensitive sites and scaffold attachment regions (SARs) have been mapped in the breakpoint regions of the relevant genes. Strong in vivo topo II cleavage sites and DNase I hypersensitive sites often co-localize with each other and also with many of the BCRs in most of these genes, whereas SARs are associated with BCRs in MLL, AF4, AF9, AML1, ETO and ABL, but not in the BCR gene. In addition, the BCRs in MLL, AML1 and ETO have the lowest free energy level for unwinding double strand DNA. Virtually all chromosome translocations in leukemia that have been analyzed to date show no consistent homologous sequences at the breakpoints, whereas a strong non-homologous end joining (NHEJ) repair signature exists at all of these chromosome translocation breakpoint junctions; this includes small deletions and duplications in each breakpoint, and micro-homologies and non-template insertions at genomic junctions of each chromosome translocation. Surprisingly, the size of these deletions and duplications in the same translocation is much larger in de novo leukemia than in therapy-related leukemia. We propose a non-homologous chromosome recombination model as one of the mechanisms that results in chromosome translocations in leukemia. The topo II cleavage sites at open chromatin regions (DNase I hypersensitive sites), SARs or the regions with low energy level are vulnerable to certain genotoxic or other agents and become the initial breakage sites, which are followed by an excision end joining repair process.
Collapse
Affiliation(s)
- Yanming Zhang
- Section of Hematology/Oncology, Department of Medicine, University of Chicago, 5841 S. Maryland Ave., Chicago, IL, USA
| | | |
Collapse
|
9
|
Strick R, Zhang Y, Emmanuel N, Strissel PL. Common chromatin structures at breakpoint cluster regions may lead to chromosomal translocations found in chronic and acute leukemias. Hum Genet 2006; 119:479-95. [PMID: 16572268 DOI: 10.1007/s00439-006-0146-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2005] [Accepted: 01/16/2006] [Indexed: 10/24/2022]
Abstract
The t(9;22) BCR/ABL fusion is associated with over 90% of chronic myelogenous and 25% of acute lymphocytic leukemia. Chromosome 11q23 translocations in acute myeloid and lymphoid leukemia cells demonstrate myeloid lymphoid leukemia (MLL) fusions with over 40 gene partners, like AF9 and AF4 on chromosomes 9 and 4, respectively. Therapy-related leukemia is associated with the above gene rearrangements following the treatment with topoisomerase II (topo II) inhibitors. BCR, ABL, MLL, AF9 and AF4 have defined patient breakpoint cluster regions. Chromatin structural elements including topo II and DNase I cleavage sites and scaffold attachment sites have previously been shown to closely associate with the MLL and AF9 breakpoint cluster regions, implicating these elements in non-homologous recombination (NHR). In this report, using cell lines and primary cells, chromatin structural elements were analyzed in BCR, ABL and AF4 and, for comparison, in MLL2, which is a homolog to MLL, but not associated with chromosome translocations. Topo II and DNase I cleavage sites associated with all breakpoint cluster regions, whereas SARs associated with ABL and AF4, but not with BCR. No close breakpoint clustering with the topo II/DNase I sites were observed; however, a statistically significant 5' or 3' distribution of patient breakpoints to the topo II DNase I sites was found, implicating DNA repair and exonucleases. Although MLL2 was expressed in all cell lines tested, except for the presence of one DNAse I site in the promoter, no other structural elements were found in MLL2. A NHR model presented demonstrates the importance of chromatin structure in chromosome translocations involved with leukemia.
Collapse
Affiliation(s)
- Reiner Strick
- Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, IL, USA.
| | | | | | | |
Collapse
|
10
|
Smith ST, Petruk S, Sedkov Y, Cho E, Tillib S, Canaani E, Mazo A. Modulation of heat shock gene expression by the TAC1 chromatin-modifying complex. Nat Cell Biol 2004; 6:162-7. [PMID: 14730313 DOI: 10.1038/ncb1088] [Citation(s) in RCA: 142] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2003] [Accepted: 11/24/2003] [Indexed: 11/08/2022]
Abstract
Rapid induction of the Drosophila melanogaster heat shock gene hsp70 is achieved through the binding of heat shock factor (HSF) to heat shock elements (HSEs) located upstream of the transcription start site (reviewed in ref. 3). The subsequent recruitment of several other factors, including Spt5, Spt6 and FACT, is believed to facilitate Pol II elongation through nucleosomes downstream of the start site. Here, we report a novel mechanism of heat shock gene regulation that involves modifications of nucleosomes by the TAC1 histone modification complex. After heat stress, TAC1 is recruited to several heat shock gene loci, where its components are required for high levels of gene expression. Recruitment of TAC1 to the 5'-coding region of hsp70 seems to involve the elongating Pol II complex. TAC1 has both histone H3 Lys 4-specific (H3-K4) methyltransferase (HMTase) activity and histone acetyltransferase activity through Trithorax (Trx) and CREB-binding protein (CBP), respectively. Consistently, TAC1 is required for methylation and acetylation of nucleosomal histones in the 5'-coding region of hsp70 after induction, suggesting an unexpected role for TAC1 during transcriptional elongation.
Collapse
Affiliation(s)
- Sheryl T Smith
- Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | | | | | | | | | | | |
Collapse
|
11
|
Spence JM, Critcher R, Ebersole TA, Valdivia MM, Earnshaw WC, Fukagawa T, Farr CJ. Co-localization of centromere activity, proteins and topoisomerase II within a subdomain of the major human X alpha-satellite array. EMBO J 2002; 21:5269-80. [PMID: 12356743 PMCID: PMC129033 DOI: 10.1093/emboj/cdf511] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2002] [Revised: 08/06/2002] [Accepted: 08/06/2002] [Indexed: 11/12/2022] Open
Abstract
Dissection of human centromeres is difficult because of the lack of landmarks within highly repeated DNA. We have systematically manipulated a single human X centromere generating a large series of deletion derivatives, which have been examined at four levels: linear DNA structure; the distribution of constitutive centromere proteins; topoisomerase IIalpha cleavage activity; and mitotic stability. We have determined that the human X major alpha-satellite locus, DXZ1, is asymmetrically organized with an active subdomain anchored approximately 150 kb in from the Xp-edge. We demonstrate a major site of topoisomerase II cleavage within this domain that can shift if juxtaposed with a telomere, suggesting that this enzyme recognizes an epigenetic determinant within the DXZ1 chromatin. The observation that the only part of the DXZ1 locus shared by all deletion derivatives is a highly restricted region of <50 kb, which coincides with the topo isomerase II cleavage site, together with the high levels of cleavage detected, identify topoisomerase II as a major player in centromere biology.
Collapse
Affiliation(s)
| | | | - Thomas A. Ebersole
- Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH,
Wellcome Trust Centre for Cell Biology, Institute of Cell and Molecular Biology, University of Edinburgh, King’s Buildings, Mayfield Road, Edinburgh EH9 3JR, UK, Laboratory of Biosystems and Cancer Genome Structure and Function Section, National Cancer Institute, NIH, Building 49, Room 4A56, Bethesda, MD 20892-4471, USA, Department of Biochemistry and Molecular Biology, University of Cadiz, 11510 Puerto Real, Cadiz, Spain and PRESTO of the Japan Science and Technology Corporation, National Institute of Genetics and Graduate University for Advanced Studies, Mishima, Shizuoka 411-8540, Japan Corresponding author e-mail:
| | - Manuel M. Valdivia
- Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH,
Wellcome Trust Centre for Cell Biology, Institute of Cell and Molecular Biology, University of Edinburgh, King’s Buildings, Mayfield Road, Edinburgh EH9 3JR, UK, Laboratory of Biosystems and Cancer Genome Structure and Function Section, National Cancer Institute, NIH, Building 49, Room 4A56, Bethesda, MD 20892-4471, USA, Department of Biochemistry and Molecular Biology, University of Cadiz, 11510 Puerto Real, Cadiz, Spain and PRESTO of the Japan Science and Technology Corporation, National Institute of Genetics and Graduate University for Advanced Studies, Mishima, Shizuoka 411-8540, Japan Corresponding author e-mail:
| | - William C. Earnshaw
- Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH,
Wellcome Trust Centre for Cell Biology, Institute of Cell and Molecular Biology, University of Edinburgh, King’s Buildings, Mayfield Road, Edinburgh EH9 3JR, UK, Laboratory of Biosystems and Cancer Genome Structure and Function Section, National Cancer Institute, NIH, Building 49, Room 4A56, Bethesda, MD 20892-4471, USA, Department of Biochemistry and Molecular Biology, University of Cadiz, 11510 Puerto Real, Cadiz, Spain and PRESTO of the Japan Science and Technology Corporation, National Institute of Genetics and Graduate University for Advanced Studies, Mishima, Shizuoka 411-8540, Japan Corresponding author e-mail:
| | - Tatsuo Fukagawa
- Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH,
Wellcome Trust Centre for Cell Biology, Institute of Cell and Molecular Biology, University of Edinburgh, King’s Buildings, Mayfield Road, Edinburgh EH9 3JR, UK, Laboratory of Biosystems and Cancer Genome Structure and Function Section, National Cancer Institute, NIH, Building 49, Room 4A56, Bethesda, MD 20892-4471, USA, Department of Biochemistry and Molecular Biology, University of Cadiz, 11510 Puerto Real, Cadiz, Spain and PRESTO of the Japan Science and Technology Corporation, National Institute of Genetics and Graduate University for Advanced Studies, Mishima, Shizuoka 411-8540, Japan Corresponding author e-mail:
| | - Christine J. Farr
- Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH,
Wellcome Trust Centre for Cell Biology, Institute of Cell and Molecular Biology, University of Edinburgh, King’s Buildings, Mayfield Road, Edinburgh EH9 3JR, UK, Laboratory of Biosystems and Cancer Genome Structure and Function Section, National Cancer Institute, NIH, Building 49, Room 4A56, Bethesda, MD 20892-4471, USA, Department of Biochemistry and Molecular Biology, University of Cadiz, 11510 Puerto Real, Cadiz, Spain and PRESTO of the Japan Science and Technology Corporation, National Institute of Genetics and Graduate University for Advanced Studies, Mishima, Shizuoka 411-8540, Japan Corresponding author e-mail:
| |
Collapse
|
12
|
Li G, Tolstonog GV, Sabasch M, Traub P. Interaction in vitro of type III intermediate filament proteins with supercoiled plasmid DNA and modulation of eukaryotic DNA topoisomerase I and II activities. DNA Cell Biol 2002; 21:743-69. [PMID: 12443544 DOI: 10.1089/104454902760599726] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
To further characterize the interaction of cytoplasmic intermediate filament (cIF) proteins with supercoiled (sc)DNA, and to support their potential function as complementary nuclear matrix proteins, the type III IF proteins vimentin, glial fibrillary acidic protein, and desmin were analyzed for their capacities to interact with supercoiled plasmids containing a bent mouse gamma-satellite insert or inserts capable of non-B-DNA transitions into triplex, Z, and cruciform DNA, that is, DNA conformations typically bound by nuclear matrices. While agarose gel electrophoresis revealed a rough correlation between the superhelical density of the plasmids and their affinity for cIF proteins as well as cIF protein-mediated protection of the plasmid inserts from S1 nucleolytic cleavage, electron microscopy disclosed binding of the cIF proteins to DNA strand crossovers in the plasmids, in accordance with their potential to interact with both negatively and positively supercoiled DNA. In addition, the three cIF proteins were analyzed for their effects on eukaryotic DNA topoisomerases I and II. Possibly because cIF proteins interact with the same plectonemic and paranemic scDNA conformations also recognized by topoisomerases, but select the major groove of DNA for binding in contrast to topoisomerases that insert into the minor groove, the cIF proteins were able to stimulate the enzymes in their supercoil-relaxing activity on both negatively and positively supercoiled plasmids. The stimulatory effect was considerably stronger on topoisomerase I than on topoisomerase II. Moreover, cIF proteins assisted topoisomerases I and II in overwinding plasmid DNA with the formation of positive supercoils. Results obtained with the N-terminal head domain of vimentin harboring the DNA binding region and terminally truncated vimentin proteins indicated the involvement of both protein-DNA and protein-protein interactions in these activities. Based on these observations, it seems conceivable that cIF proteins participate in the control of the steady-state level of DNA superhelicity in the interphase nucleus in conjunction with such topoisomerase-controlled processes as DNA replication, transcription, recombination, maintenance of genome stability, and chromosome condensation and segregation.
Collapse
Affiliation(s)
- Guohong Li
- Max-Planck-Institut für Zellbiologie, Ladenburg, Germany
| | | | | | | |
Collapse
|
13
|
Tsutsui K, Tsutsui K, Sano K, Kikuchi A, Tokunaga A. Involvement of DNA topoisomerase IIbeta in neuronal differentiation. J Biol Chem 2001; 276:5769-78. [PMID: 11106659 DOI: 10.1074/jbc.m008517200] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Two isoforms of DNA topoisomerase II (topo II) have been identified in mammalian cells. While topo IIalpha is essential for chromosome segregation in mitotic cells, in vivo function of topo IIbeta remains to be clarified. Here we demonstrate that the nucleoplasmic topo IIbeta, highly expressed in differentiating cerebellar neurons, is the catalytically competent entity operating directly on chromatin DNA in vivo. When the cells reached terminal differentiation, this in vivo activity decreased to a negligible level with concomitant loss of the nucleoplasmic enzyme. Effects of topo II-specific inhibitors were analyzed in a primary culture of cerebellar granule neurons that can mimic the in vivo situation. Only the beta isoform was expressed in granule cells differentiating in vitro. ICRF-193, a catalytic topo II inhibitor, suppressed the transcriptional induction of amphiphysin I which is essential for mature neuronal activity. The effect decreased significantly as the cells differentiate. Expression profiling with a cDNA macroarray showed that 18% of detectable transcripts were up-regulated during the differentiation and one-third of them were susceptible to ICRF-193. The results suggest that topo IIbeta is involved in an early stage of granule cell differentiation by potentiating inducible neuronal genes to become transcribable probably through alterations in higher order chromatin structure.
Collapse
Affiliation(s)
- K Tsutsui
- Department of Molecular Biology, Institute of Cellular and Molecular Biology, Okayama University Medical School, Okayama 700-8558, Japan.
| | | | | | | | | |
Collapse
|
14
|
Ahuja HG, Felix CA, Aplan PD. Potential role for DNA topoisomerase II poisons in the generation of t(11;20)(p15;q11) translocations. Genes Chromosomes Cancer 2000; 29:96-105. [PMID: 10959088 DOI: 10.1002/1098-2264(2000)9999:9999<::aid-gcc1013>3.0.co;2-t] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Chromosomal aberrations are frequently associated with therapy-related myelodysplastic syndromes and acute myelogenous leukemia (t-MDS/AML) and are thought to result from exposure to genotoxic drugs, including alkylating agents and DNA topoisomerase II poisons. The NUP98 gene on chromosome band 11p15 is involved in several different chromosomal aberrations that have been associated with t-MDS/AML. We have cloned the translocation breakpoints from two cases of t-MDS harboring a t(11;20)(p15;q11). Sequence analysis of the breakpoints from both cases revealed almost perfectly balanced translocations between NUP98 and TOP1. There were no known recombinogenic sequences identified at or near the breakpoints. However, four bp microduplications present at the translocation crossover points suggested that these translocations may have been initiated by 4 bp staggered double-stranded DNA breaks, which are known to be associated with the action of topoisomerase II. Given the history of patient exposure to topoisomerase II poisons, and the fact that these drugs stabilize staggered breaks with a 4 bp overhang, it seems possible that drug-induced topoisomerase II cleavage and subunit exchange was involved in these translocations. These results suggest that NUP98 is a recurrent target for therapy-related malignancies induced by multiagent chemotherapy, and suggest a role for DNA topoisomerase II poisons in the generation of these translocations. Published 2000 Wiley-Liss, Inc.
Collapse
Affiliation(s)
- H G Ahuja
- Roswell Park Cancer Institute, Department of Medicine, Buffalo, New York
| | | | | |
Collapse
|
15
|
Murray V. A survey of the sequence-specific interaction of damaging agents with DNA: emphasis on antitumor agents. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1999; 63:367-415. [PMID: 10506836 DOI: 10.1016/s0079-6603(08)60727-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
This article reviews the literature concerning the sequence specificity of DNA-damaging agents. DNA-damaging agents are widely used in cancer chemotherapy. It is important to understand fully the determinants of DNA sequence specificity so that more effective DNA-damaging agents can be developed as antitumor drugs. There are five main methods of DNA sequence specificity analysis: cleavage of end-labeled fragments, linear amplification with Taq DNA polymerase, ligation-mediated polymerase chain reaction (PCR), single-strand ligation PCR, and footprinting. The DNA sequence specificity in purified DNA and in intact mammalian cells is reviewed for several classes of DNA-damaging agent. These include agents that form covalent adducts with DNA, free radical generators, topoisomerase inhibitors, intercalators and minor groove binders, enzymes, and electromagnetic radiation. The main sites of adduct formation are at the N-7 of guanine in the major groove of DNA and the N-3 of adenine in the minor groove, whereas free radical generators abstract hydrogen from the deoxyribose sugar and topoisomerase inhibitors cause enzyme-DNA cross-links to form. Several issues involved in the determination of the DNA sequence specificity are discussed. The future directions of the field, with respect to cancer chemotherapy, are also examined.
Collapse
Affiliation(s)
- V Murray
- School of Biochemistry and Molecular Genetics, University of New South Wales, Sydney, Australia
| |
Collapse
|
16
|
Savoldi-Barbosa M, Sakamoto-Hojo ET, Takahashi CS. Influence of novobiocin on <FONT FACE=Symbol>g</font>-irradiation G0-lymphocytes as analyzed by cytogenetic endpoints. Genet Mol Biol 1999. [DOI: 10.1590/s1415-47571999000200014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Experiments with novobiocin (NB) post-treatment were performed to verify its effect on the frequencies of micronuclei (MN) and chromosomal aberrations (CA) induced by <FONT FACE="Symbol">g</font>-irradiation (0.75, 1.5 and 3.0 Gy) in human lymphocytes at G0-phase. The frequencies of MN significantly decreased by 44 and 50%, for the treatment with NB 50 µg/ml (30-min pulse) after radiation doses of 1.5 and 3.0 Gy, respectively. However, CA frequencies were not significantly affected. No significant effect on CA was observed when lymphocyte cultures were exposed to a single dose of 2.0 Gy at the G0-phase and posttreated with 25 µg/ml NB for three hours either immediately after irradiation (G0-phase) or after 24 h (S-phase). The significant suppressive effect of NB on MN frequencies supports the hypothesis that NB interaction with chromatin increases access to DNA repair enzymes.
Collapse
|
17
|
Borgnetto ME, Tinelli S, Carminati L, Capranico G. Genomic sites of topoisomerase II activity determined by comparing DNA breakage enhanced by three distinct poisons. J Mol Biol 1999; 285:545-54. [PMID: 9878428 DOI: 10.1006/jmbi.1998.2330] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To define the sites of topoisomerase II activity in two genomic regions of Drosophila melanogaster Kc cells, we have investigated in vivo DNA cleavage sites stimulated by three poisons with diverse sequence specificity, clerocidin, VM-26 and dh-EPI (an anthracycline analog). DNA cleavage was studied by PFGE (pulse-field gel electrophoresis), standard gel electrophoresis, and by genomic primer extension. Poisons stimulated specific intensity patterns of cleavage in the two genomic regions studied. At the centromeric satellite III DNA, fragments of about 270-310 and 385-430 kb could be detected specifically after treatment with clerocidin, suggesting a complex DNA loop organisation, which may correspond with a centromere-specific higher-order chromatin structure. Clerocidin-dependent DNA fragmentation was detectable by PFGE but not by standard agarose gel electrophoresis; while VM-26-dependent cleavage was detected with either method, dh-EPI was ineffective at this locus. Thus, clerocidin DNA cleavage sites were rarer than those of VM-26 at the satellite locus. In the histone H2A-H2B intergenic region, clerocidin and dh-EPI stimulated cleavage whereas VM-26 was only weakly effective. Some clerocidin cleavage sites did not undergo spontaneous reversion, indicating that this agent can stimulate irreversible cleavage in vivo. Direct genomic sequencing showed that many clerocidin and dh-EPI sites, although distinct, mapped to the transcription start and to the proximal promoter of the H2A gene, suggesting that the region is highly accessible to topoisomerase II. Thus, the enzyme may play a role in maintaining a highly accessible chromatin structure under normal cell growth conditions, possibly mediated by specialised protein complexes. This study demonstrates that the use of distinct poisons greatly improves the definition of genomic sites of topoisomerase II activity.
Collapse
Affiliation(s)
- M E Borgnetto
- Molecular Pharmacology Unit, Department of Experimental Oncology, Istituto Nazionale per lo Studio e la Cura dei Tumori, via Venezian 1, Milan, 20133, Italy
| | | | | | | |
Collapse
|
18
|
Halmer L, Vestner B, Gruss C. Involvement of topoisomerases in the initiation of simian virus 40 minichromosome replication. J Biol Chem 1998; 273:34792-8. [PMID: 9857004 DOI: 10.1074/jbc.273.52.34792] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Topoisomerases provide the unlinking activity necessary for replication fork movement during DNA replication. It is uncertain, however, whether topoisomerases are also required for the initiation of replication. To investigate this point, we have performed pulse-chase experiments with SV40 minichromosomes as template to distinguish between the initiation and the elongation of replication. Using an unfractionated cytosolic extract as a source of replication functions, we found that the addition of topoisomerases at the initiation step significantly increased the number of active chromatin templates, whereas addition of topoisomerases at the elongation step had only minor effects. Minichromosomes with an extended chromatin structure as well as protein-free DNA required less topoisomerase for effective replication initiation. We could exclude the possibility that topoisomerases enhance the origin binding of T antigen, the SV40 replication initiator, and propose instead that the arrangement of nucleosomes influences the diffusion of supercoils during initial DNA unwinding. Efficient initiation therefore requires a high local concentration of topoisomerases to relax the torsional stress.
Collapse
Affiliation(s)
- L Halmer
- University of Konstanz, Department of Biology, Universitätsstr. 10, 78457 Konstanz, Federal Republic of Germany
| | | | | |
Collapse
|
19
|
Kokileva L. Disassembly of genome of higher eukaryotes: pulsed-field gel electrophoretic study of initial stages of chromatin and DNA degradation in rat liver and thymus nuclei by VM-26 and selected proteases. Comp Biochem Physiol B Biochem Mol Biol 1998; 121:145-51. [PMID: 9972290 DOI: 10.1016/s0305-0491(98)10082-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Nuclei were treated with VM-26, topoisomerase II inhibitor, or exogenous proteases. Initial stages of multi-step chromatin degradation were analyzed by pulsed-field gel (PFG) electrophoresis. VM-26 induced the total genome breakdown into discrete chromatin fragments containing 0.3 Mbp DNA. Treatment of nuclei with recombinant cathepsin B and chymotrypsin also revealed 0.3-Mbp DNA fragments which were mediated by endonucleolysis. Longer incubation of nuclei with chymotrypsin exhibited the appearance of 0.05-Mbp DNA fragments and their oligomers. Proteases might trigger the detachment of chromatin from nuclear matrix and contribute to the release or activation of the endonucleolytic activity leading to the initial degradation of the DNA into high-molecular weight fragments. The fragments observed correspond in size to the suggested chromatin higher-order structures. The presented data imply that the initial stages of chromatin degradation represents in reality the genome disassembly into two basic units of genome topology--0.3-Mbp DNA chromatin loop-domains which are presumably the bits of biological information, and fundamental 0.05-Mbp DNA loopsize units which might generate the functional loops of different sizes.
Collapse
Affiliation(s)
- L Kokileva
- Bulgarian Academy of Sciences, Institute of Molecular Biology, Sofia, Bulgaria.
| |
Collapse
|
20
|
Borde V, Duguet M. The mapping of DNA topoisomerase sites in vivo: a tool to enlight the functions of topoisomerases. Biochimie 1998; 80:223-33. [PMID: 9615862 DOI: 10.1016/s0300-9084(98)80005-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The possibility to record a trace of the precise sites of topoisomerase action has been exploited for almost 12 years in many laboratories. The large majority of the studies were performed in vitro, giving a good picture of sequence specificities of topoisomerases, and of the preference of various drugs for some sequences. Only a relatively small number of reports concern in vivo studies. Their main conclusions are the following: i) topoisomerase II sites are often found near replication origins and termini, where they are supposed to play a role in the decatenation of daughter DNA molecules, and possibly in the initiation of replication; ii) topoisomerase II sites are found in the promoter region of many genes, but they seem related to the condensation state of chromatin in this region, rather than to transcription per se; iii) some topoisomerase II sites, resistant to high salt, are found in or near matrix associated regions (MARs), suggesting a role in loop anchorage or (and) in the control of topology of individual chromatin loops; iv) topoisomerase I sites appear less localized, acting all along the transcription units, where they seem directly involved in transcription; and v) topoisomerase I sites are possibly connected with replication fork progression and (or) with the termination of replication. Despite these advances, the precise role of topoisomerases in vivo is still poorly understood, especially in recombination and chromatin condensation and decondensation during the cell cycle. Future attempts should take into account the possible specialization of the multiple topoisomerases found in a given cell, and the use of highly synchronized systems.
Collapse
Affiliation(s)
- V Borde
- Laboratoire d'Enzymologie des Acides Nucléiques, URA 2225 CNRS, Université de Paris Sud, Centre d'Orsay, France
| | | |
Collapse
|
21
|
Yoon HJ, Choi IY, Kang MR, Kim SS, Muller MT, Spitzner JR, Chung IK. DNA topoisomerase II cleavage of telomeres in vitro and in vivo. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1395:110-20. [PMID: 9434158 DOI: 10.1016/s0167-4781(97)00139-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In this work, we have analyzed the reactivity of DNA topoisomerase II with telomeric DNA both in vitro and in vivo. Topoisomerase II cleavage reactions were performed on the tandem repeats of telomeric DNA. Analysis of this DNA on sequencing gels revealed that DNA topoisomerase II is catalytically active in cleaving the telomere DNA repeat. The topoisomerase II cleavage site is 5'TTAGG*G3' (cleavage site marked by the asterisk) and since telomere DNA is a tandem array of the above sequence, topoisomerase cleavage sites could exist every six base pairs. Detection of topoisomerase II cleavages was strongly dependent upon one specific topoisomerase II poison, etoposide (VP-16). A number of other topoisomerase II poisons were tested but did not stimulate cleavage activity at the telomere repeat. We have also analyzed the association of endogenous topoisomerase II with chromosomal telomeric DNA in HeLa cells. The in vivo complex of enzyme (ICE) bioassay was used to isolate topoisomerase II-DNA covalent complexes. In consistence with in vitro cleavage data, endogenous topoisomerase II-telomeric DNA complexes were detected in only etoposide-treated HeLa cells.
Collapse
Affiliation(s)
- H J Yoon
- Department of Biology, Yonsei University, Seoul, South Korea
| | | | | | | | | | | | | |
Collapse
|
22
|
Khodarev NN, Narayana A, Constantinou A, Vaughan AT. Topologically constrained domains of supercoiled DNA in eukaryotic cells. DNA Cell Biol 1997; 16:1051-8. [PMID: 9324307 DOI: 10.1089/dna.1997.16.1051] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The size of supercoiled, topologically constrained DNA domains within the squamous carcinoma cell line SQ-20B were determined by direct comparison with a panel of irradiated supercoiled plasmid DNAs. Loss of supercoiling in plasmids was determined by gel electrophoresis and in cells by nucleoid flow cytometry. Comparison of dose-response data for plasmid relaxation with that obtained from SQ-20B cells enabled a direct estimation of supercoil target size in these cells. Plasmids pUCD9P (3.9 kbp), pXT-1 (10.1 kbp), pdBPV-MMT-neo (14.6 kbp), pRK290 (20.0 kbp), and R6K (38 kbp) were used and analyzed under the same exposure conditions as nucleoid DNA. Two sizes of topologically closed domains were found in nucleoids of 0.51+/-0.17Mbp and 1.34+/-0.3 Mbp. In an attempt to relate these large-scale organizations of DNA with function, cells were exposed to the DNA topoisomerase II inhibitor, VP16 and the G1/S cell cycle blocking agent mimosine. A 1 h exposure to VP16 was effective in reducing DNA synthesis which was associated with a parallel increase in nucleoid supercoiling. Addition of the G1 > S inhibitor mimosine enhanced both responses. It is concluded that chromosomes and interphase nuclei are organized into at least two sizes of topologically constrained domains of DNA which may have functional relevance to the control and execution of DNA synthesis.
Collapse
Affiliation(s)
- N N Khodarev
- Loyola University Medical Center, Dept. of Radiotherapy, Cancer Center, Maywood, IL 60153, USA
| | | | | | | |
Collapse
|
23
|
Galande S, Muniyappa K. Effects of nucleosomes and anti-tumor drugs on the catalytic activity of type II DNA topoisomerase from rat testis. Biochem Pharmacol 1997; 53:1229-38. [PMID: 9214683 DOI: 10.1016/s0006-2952(96)00897-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
To gain insight into the relative catalytic efficiencies of mammalian type I and type II DNA topoisomerases, in the cellular context, we have used naked DNA and DNA incorporated into nucleosomes as substrates. We observed that the relaxation activity of both the enzymes declined with DNA containing increasing densities of nucleosomes; however, kinetic analysis revealed that topoisomerase I seemed less affected than topoisomerase II. The addition of histone H1, in stoichiometric amounts, to naked DNA or minichromosomes lessened the activity of topoisomerase II, and required 7-fold less for complete inhibition when the latter was used as the substrate. To ascertain if the observed differences are specific to topoisomerase II from testis, we examined the effect of nucleosomes on the catalytic efficiency of its isoform from liver. Interestingly, the suppression of relaxation activity of liver topoisomerase II required substrates containing higher mass ratios of histone octamer/DNA. Studies on the effect of nucleosomes on the action of teniposide displayed significant differences in the kinetics of the reaction, in its IC50 values, and have provided biochemical evidence for the first time that nucleosomes increased inhibition caused by teniposide. Further, this feature appears to be specific for topoisomerase II-directed drugs and is not shared by the generic class of either DNA-intercalating or non-DNA-intercalating ligands.
Collapse
Affiliation(s)
- S Galande
- Department of Biochemistry, Indian Institute of Science, Bangalore
| | | |
Collapse
|
24
|
Abstract
In this chapter, we review the structure and composition of interphase and mitotic chromosomes. We discuss how these observations support the model that mitotic condensation is a deterministic process leading to the invariant folding of a given chromosome. The structural studies have also placed constraints on the mechanism of condensation and defined several activities needed to mediate condensation. In the context of these activities and structural information, we present our current understanding of the role of cis sites, histones, topoisomerase II, and SMC proteins in condensation. We conclude by using our current knowledge of mitotic condensation to address the differences in chromosome condensation observed from bacteria to humans and to explore the relevance of this process to other processes such as gene expression.
Collapse
Affiliation(s)
- D Koshland
- Department of Embryology, Carnegie Institution of Washington, Baltimore, Maryland 21210, USA
| | | |
Collapse
|
25
|
Neece SH, Carles-Kinch K, Tomso DJ, Kreuzer KN. Role of recombinational repair in sensitivity to an antitumour agent that inhibits bacteriophage T4 type II DNA topoisomerase. Mol Microbiol 1996; 20:1145-54. [PMID: 8809767 DOI: 10.1111/j.1365-2958.1996.tb02635.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The bacteriophage T4-encoded type II DNA topoisomerase is the major target for the antitumour agent m-AMSA (4'-(9-acridinylamino)methanesulphonm-ansidide) in phage-infected bacterial cells. Inhibition of the purified enzyme by m-AMSA results in formation of a cleavage complex that contains the enzyme covalently attached to DNA on both sides of a double-strand break. In this article, we provide evidence that this cleavage complex is responsible for inhibition of phage growth and that recombinational repair can reduce sensitivity to the antitumour agent, presumably by eliminating the complex (or some derivative thereof). First, topoisomerase-deficient mutants were shown to be resistant to m-AMSA, indicating that m-AMSA inhibits growth by inducing the cleavage complex rather than by inhibiting enzyme activity. Second, mutations in several phage genes that encode recombination proteins (uvsX, uvsY, 46 and 59) increased the sensitivity of phage T4 to m-AMSA, strongly suggesting that recombination participates in the repair of topoisomerase-mediated damage. Third, m-AMSA stimulated recombination in phage-infected bacterial cells, as would be expected from the recombinational repair of DNA damage. Finally, m-AMSA induced the production of cleavage complexes involving the T4 topoisomerase within phage-infected cells.
Collapse
Affiliation(s)
- S H Neece
- Department of Microbiology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | |
Collapse
|
26
|
Affiliation(s)
- S Joel
- ICRF Department of Medical Oncology, St Bartholomew's Hospital, London, U.K
| |
Collapse
|
27
|
Razin SV, Gromova II, Iarovaia OV. Specificity and functional significance of DNA interaction with the nuclear matrix: new approaches to clarify the old questions. INTERNATIONAL REVIEW OF CYTOLOGY 1996; 162B:405-48. [PMID: 8557493 DOI: 10.1016/s0074-7696(08)62623-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
In this chapter the specificity of chromosomal DNA partitioning into topological loops is discussed. Different experimental approaches used for the analysis of the above problem are critically reviewed. This discussion is followed by presentation of a novel approach for mapping the DNA loop anchorage sites that we have developed. This approach, based on the excision of the whole DNA loops by topoisomerase II-mediated DNA cleavage at matrix attachment sites, seems to constitute a unique tool for the analysis of topological organization of chromosomal DNA in living cells. We also discuss experimental results indicating that the DNA-loop anchorage sites form "weak points" in chromosomes that are preferentially sensitive to cleavage with both endogenous and exogenous nucleases. In connection with this discussion, rationales for the supposition that DNA loops constitute basic units of eukaryotic genome organization and evolution are considered. The chapter concludes by suggesting a new model of spatial organization of eukaryotic genome within the cell nucleus that resolves apparent contradictions between different data on the specificity of DNA interaction with the nuclear matrix.
Collapse
Affiliation(s)
- S V Razin
- Institute of Gene Biology of the Russian Academy of Sciences, Moscow, Russia
| | | | | |
Collapse
|
28
|
Kokileva L. Comparative study of induction of endogenous DNA degradation in rat liver nuclei and intact thymocytes. Comp Biochem Physiol B Biochem Mol Biol 1995; 111:35-43. [PMID: 7749635 DOI: 10.1016/0305-0491(94)00233-k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
A common strongly ordered multi-step-pattern of endogenous DNA degradation was induced in rat liver nuclei and intact thymocytes, prepared in the presence of chelating agents and incubated in the presence of CaCl2 and/or MgCl2. It consisted of sequential generation of 0.3 Mbp, then 0.05 Mbp DNA fragments and finally of oligo- and mononucleosomal DNA. Oligonucleosomal DNA was generated when the genome had already been disintegrated into 0.05 Mbp DNA fragments. ZnCl2 completely inhibited advanced genome cleavage to oligo- and mononucleosomal DNA without affecting the initial generation of large DNA fragments. Therefore, the endonucleolytic activity which produce large DNA fragments is different from Ca2+/Mg2+ endonuclease. The similar pattern of DNA degradation was observed in thymocytes treated with dexamethasone and with the topoisomerase II inhibitor VM-26, the agents known to induce apoptosis. The effect of VM-26 strongly suggests the involvement of topoisomerase II in generation of large DNA fragments. Multi-level organization and regulation of the chromatin structure determine the stepwise process of genome degradation. Detachment of chromatin from the nuclear matrix attachment regions may be one of the possible mechanisms of switching off the genome function and triggering the multi-step process of endogenous chromatin degradation thus leading to cell death in terminal differentiation or stress-induced apoptosis.
Collapse
Affiliation(s)
- L Kokileva
- Bulgarian Academy of Sciences, Institute of Molecular Biology, Sofia
| |
Collapse
|
29
|
Abstract
The specificity of eukaryotic DNA organization into loops fixed to the nuclear matrix/chromosomal scaffold has been studied for more than fifteen years. The results and conclusions of different authors remain, however, controversial. Recently, we have elaborated a new approach to the study of chromosomal DNA loops. Instead of characterizing loop basements (nuclear matrix DNA), we have concentrated our efforts on the characterization of individual loops after their excision by DNA topoisomerase II-mediated DNA cleavage at matrix attachment sites. In this review the results of applying this mapping approach are compared with the results and conclusions from studies of nuclear matrix DNA. An attempt is also made to reconsider all data about the specificity of DNA interactions with the nuclear matrix and to suggest a model of spatial organization of the eukaryotic genome which resolves apparent contradictions between these data.
Collapse
Affiliation(s)
- S V Razin
- Institute of Gene Biology, Russian Academy of Sciences, Moscow
| | | |
Collapse
|
30
|
|
31
|
Nahon E, Best-Belpomme M, Saucier JM. Analysis of the DNA topoisomerase-II-mediated cleavage of the long terminal repeat of Drosophila 1731 retrotransposon. EUROPEAN JOURNAL OF BIOCHEMISTRY 1993; 218:95-102. [PMID: 8243480 DOI: 10.1111/j.1432-1033.1993.tb18355.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The interaction of DNA topoisomerase II with the long terminal repeat (LTR) of the Drosophila melanogaster 1731 retrotransposon was studied. The covalent binding of topoisomerase II to the LTR was strongly stimulated by different inhibitors of the enzyme 4'-demethylepipodophyllotoxin-9-(4,6-O-2-ethylidene-beta-D-glucopy ranoside (VP-16), 4'-(9-acridinylamino)methanesulfon-m-anisidine) (m-AMSA) and an ellipticine derivative. Enzyme-mediated DNA cleavage could be observed in the absence of inhibitors and was stimulated in their presence. Cleavage occurred predominantly at sites located within or at the boundary of alternating purine/pyrimidine tracts in agreement with previous observations [Spitzner, J. R., Chung, I. K. & Muller, M. T. (1990) Eukaryotic topoisomerase II preferentially cleaves alternating purine-pyrimidine repeats, Nucleic Acids Res. 18, 1-11]. In addition, all of the cleavage sites observed in the absence of inhibitor were located in the U3 region of the LTR. The site specificity of drug-induced cleavage was studied and the conformity of the cleavage sites with previously established consensus sequences was examined. Our results suggest that DNA topoisomerase II, through its ability to alter the degree of DNA supercoiling, might be involved in the control of different functions of the LTR.
Collapse
Affiliation(s)
- E Nahon
- URA Centre National de la Recherche Scientifique, Université Pierre et Marie Curie, Paris, France
| | | | | |
Collapse
|
32
|
Paoletti C. The localization of topoisomerase II cleavage sites on DNA in the presence of antitumor drugs. Pharmacol Ther 1993; 60:381-7. [PMID: 8022867 DOI: 10.1016/0163-7258(93)90018-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Type II topoisomerase are enzymes that break and religate DNA phosphodiester bonds while crossing over DNA strands and altering DNA topology. They also are structural proteins that play a role in the spatial organization of chromatin and are involved in several crucial biological functions, such as DNA replication and transcription, chromosome segregation and recombination. Many drugs interfere with type II topoisomerases and can be assigned to two groups. Coumarin derivatives and synthetic quinolones act at the level of ATP binding or hydrolysis and are used for controlling bacterial infections. Drugs belonging to the second group produce DNA lesions by trapping a "cleavable complex" consisting of the normal transient topoisomerase II-DNA reaction intermediate in which the enzyme and the DNA are joined by two covalent bonds. There are four main categories of antitumour drugs that form cleavable complexes in eukaryotes: acridines, anthracyclines, ellipticines and epipodophyllotoxins. These drugs are cytotoxic and many--but not all--are endowed with antitumoral properties. The mechanisms of this pharmacological activity are not understood. Topoisomerase II-induced DNA breaks generated from cleavable complexes display different levels of cytotoxicity depending on their localization on DNA. The primary structure of DNA is not the only parameter that determines this localization. The spatial organization of the enzyme-DNA complex and both the topology and the structure of the underlying chromatin fiber constitute additional critical factors. It, therefore, may be unrealistic to expect that the actual pharmacological potency of antitumor drugs that act on type II topoisomerases can be accurately predicted solely on the basis of simple in vitro test tube experiments carried out using pure enzymes and naked DNA.
Collapse
Affiliation(s)
- C Paoletti
- Institut Gustave Roussy, Villejuif, France
| |
Collapse
|
33
|
Abstract
Recent in situ three-dimensional structural studies have provided a new model for the 30 nm chromatin fiber. In addition, research during the past year has revealed some of the molecular complexity of non-histone chromosomal proteins. Still to come is the unification of molecular insights with chromosomal architecture.
Collapse
Affiliation(s)
- J R Swedlow
- Howard Hughes Medical Institute, Department of Biochemistry and Biophysics, University of California, San Francisco 94143-0554
| | | | | |
Collapse
|
34
|
Buchenau P, Saumweber H, Arndt-Jovin DJ. Consequences of topoisomerase II inhibition in early embryogenesis of Drosophila revealed by in vivo confocal laser scanning microscopy. J Cell Sci 1993; 104 ( Pt 4):1175-85. [PMID: 8391015 DOI: 10.1242/jcs.104.4.1175] [Citation(s) in RCA: 59] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The regulation of DNA topology by topoisomerase II from Drosophila melanogaster has been studied extensively by biochemical methods but little is known about its roles in vivo. We have performed experiments on the inhibition of topoisomerase II in living Drosophila blastoderm embryos. We show that the enzymatic activity can be specifically disrupted by microinjection of antitopoisomerase II antibodies as well as the epipodophyllotoxin VM26, a known inhibitor of topoisomerase II in vitro. By labeling the chromatin of live embryos with tetramethylrhodamine-coupled histones, the effects of inhibition on nuclear morphology and behaviour was followed in vivo using confocal laser scanning microscopy. Both the antibodies and the drug prevented or hindered the segregation of chromatin daughter sets at the anaphase stage of mitosis. In addition, high concentrations of inhibitor interfered with the condensation of chromatin and its proper arrangement into the metaphase plate. The observed effects yielded non-functional nuclei, which were drawn into the inner yolk mass of the embryo. Concurrently, undamaged nuclei surrounding the affected region underwent compensatory division, leading to the restoration of the nuclear population, and thereby demonstrating the regulative capacity of Drosophila blastoderm embryos.
Collapse
Affiliation(s)
- P Buchenau
- Abteilung Molekulare Biologie, Max Planck Institut für biophysikalische Chemie, Göttingen, FRG
| | | | | |
Collapse
|
35
|
Espinás ML, Carballo M. Pulsed-field gel electrophoresis analysis of higher-order chromatin structures of Zea mays. Highly methylated DNA in the 50 kb chromatin structure. PLANT MOLECULAR BIOLOGY 1993; 21:847-57. [PMID: 8385508 DOI: 10.1007/bf00027116] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
We have investigated the presence of higher-order chromatin structures in different maize tissues. Taking advantage of the pulsed-field gel electrophoresis technique to analyse large DNA fragments from intact nuclei and cells, we have determined the size distribution of the high-molecular-weight DNA fragments obtained from chromatin degradation by endogenous nucleases in isolated nuclei. Chromatin digestion leads to the appearance of stable DNA fragments of about 50 kb in all the tissues examined, suggesting the folding of DNA in higher-order chromatin domain structures. It has been reported that such chromatin domains are formed by loops of the 30 nm fibers anchored to the nuclear matrix by a complex set of proteins, including DNA topoisomerase II. Treatment of maize protoplasts with the calcium ionophore A23187 and the antitumour drug VM-26, which specifically inhibit the religation of the cleaved DNA in the topoisomerase II reaction, also produces the 50 kb structure. Analysis of the DNA contained in the 50 kb chromatin structure shows a higher degree of methylation than in bulk maize chromosomal DNA. The role of methylated DNA in the chromatin folding is discussed.
Collapse
Affiliation(s)
- M L Espinás
- Departamento de Génetica Molecular, Centro de Investigación y Desarrollo (CSIC), Barcelona, Spain
| | | |
Collapse
|
36
|
Abstract
Traditionally, many people doing research in molecular biology attribute coding properties to a given DNA sequence if this sequence contains an open reading frame for translation into a sequence of amino acids. This protein coding capability of DNA was detected about 30 years ago. The underlying genetic code is highly conserved and present in every biological species studied so far. Today, it is obvious that DNA has a much larger coding potential for other important tasks. Apart from coding for specific RNA molecules such as rRNA, snRNA and tRNA molecules, specific structural and sequence patterns of the DNA chain itself express distinct codes for the regulation and expression of its genetic activity. A chromatin code has been defined for phasing of the histone-octamer protein complex in the nucleosome. A translation frame code has been shown to exist that determines correct triplet counting at the ribosome during protein synthesis. A loop code seems to organize the single stranded interaction of the nascent RNA chain with proteins during the splicing process, and a splicing code phases successive 5' and 3' splicing sites. Most of these DNA codes are not exclusively based on the primary DNA sequence itself, but also seem to include specific features of the corresponding higher order structures. Based on the view that these various DNA codes are genetically instructive for specific molecular interactions or processes, important in the nucleus during interphase and during cell division, the coding capability of tandem repetitive DNA sequences has recently been reconsidered.
Collapse
Affiliation(s)
- P Vogt
- Section Molecular Human Genetics, University of Heidelberg, Federal Republic of Germany
| |
Collapse
|
37
|
Gasser SM, Walter R, Dang Q, Cardenas ME. Topoisomerase II: its functions and phosphorylation. Antonie Van Leeuwenhoek 1992; 62:15-24. [PMID: 1332607 DOI: 10.1007/bf00584459] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The gene encoding topoisomerase II in yeast is unique and essential, required for both mitotic and meiotic proliferation. The use of temperature-sensitive mutants in topoisomerase II have demonstrated roles in the relaxation of tortional stress, reduction of recombination rates, and in the separation of sister chromatids after replication. In vertebrate cells, topoisomerase II was shown to be the most abundant component of the metaphase chromosomal scaffold, and has been shown to play a role in chromosome condensation in vitro. The cell cycle control of chromosome condensation may well require phosphorylation of topoisomerase II, since the enzyme is more highly phosphorylated in metaphase than in G1. Recent studies have identified casein kinase II as the major enzyme phosphorylating topoisomerase II in intact yeast cells. The target sites of CKII are exclusively in the C-terminal 400 amino acids of topoisomerase II, the region that is most divergent among the eukaryotic type II enzymes and which is absent in the bacterial gyrase homologues.
Collapse
Affiliation(s)
- S M Gasser
- Swiss Institute for Experimental Cancer Research (ISREC), Epalinges s/Lausanne
| | | | | | | |
Collapse
|
38
|
Abstract
DNA topoisomerases play an important role in regulating DNA structure, thus affecting many aspects of chromosome function inside cells. Recent progress in this field raises exciting questions regarding the distinct and critical functions of multiple topoisomerases, and the roles of DNA topoisomerases in the processes of chromosome condensation, decondensation, and segregation.
Collapse
Affiliation(s)
- T S Hsieh
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710
| |
Collapse
|
39
|
Affiliation(s)
- G Capranico
- Division of Experimental Oncology B, Istituto Nazionale per lo Studio e la Cura dei Tumori, Milan, Italy
| | | |
Collapse
|