1
|
González J, Castillo R, García-Campos MA, Noriega-Samaniego D, Escobar-Sánchez V, Romero-Aguilar L, Alba-Lois L, Segal-Kischinevzky C. Tolerance to Oxidative Stress in Budding Yeast by Heterologous Expression of Catalases A and T from Debaryomyces hansenii. Curr Microbiol 2020; 77:4000-4015. [PMID: 33064189 DOI: 10.1007/s00284-020-02237-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 10/01/2020] [Indexed: 01/24/2023]
Abstract
The function of catalases A and T from the budding yeast Saccharomyces cerevisiae (ScCta1 and ScCtt1) is to decompose hydrogen peroxide (H2O2) to mitigate oxidative stress. Catalase orthologs are widely found in yeast, suggesting that scavenging H2O2 is crucial to avoid the oxidative damage caused by reactive oxygen species (ROS). However, the function of catalase orthologs has not yet been experimentally characterized in vivo. Here, we heterologously expressed Debaryomyces hansenii DhCTA1 and DhCTT1 genes, encoding ScCta1 and ScCtt1 orthologs, respectively, in a S. cerevisiae acatalasemic strain (cta1Δ ctt1Δ). We performed a physiological analysis evaluating growth, catalase activity, and H2O2 tolerance of the strains grown with glucose or ethanol as carbon source, as well as under NaCl stress. We found that both genes complement the catalase function in S. cerevisiae. Particularly, the strain harboring DhCTT1 showed improved growth when ethanol was used as carbon source both in the absence or presence of salt stress. This phenotype is attributed to the high catalase activity of DhCtt1 detected at the exponential growth phase, which prevents intracellular ROS accumulation and confers oxidative stress resistance.
Collapse
Affiliation(s)
- James González
- Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México. Avenida Universidad 3000, Cd. Universitaria, 04510, Coyoacán, Ciudad de México, México
| | - Román Castillo
- Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México. Avenida Universidad 3000, Cd. Universitaria, 04510, Coyoacán, Ciudad de México, México
| | - Miguel Angel García-Campos
- Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México. Avenida Universidad 3000, Cd. Universitaria, 04510, Coyoacán, Ciudad de México, México
| | - Diego Noriega-Samaniego
- Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México. Avenida Universidad 3000, Cd. Universitaria, 04510, Coyoacán, Ciudad de México, México
| | - Viviana Escobar-Sánchez
- Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México. Avenida Universidad 3000, Cd. Universitaria, 04510, Coyoacán, Ciudad de México, México
| | - Lucero Romero-Aguilar
- Departamento de Bioquímica, Facultad de Medicina, Facultad de Medicina, Universidad Nacional Autónoma de México. Avenida Universidad 3000, Cd. Universitaria, 04510, Coyoacán, Ciudad de México, México
| | - Luisa Alba-Lois
- Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México. Avenida Universidad 3000, Cd. Universitaria, 04510, Coyoacán, Ciudad de México, México
| | - Claudia Segal-Kischinevzky
- Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México. Avenida Universidad 3000, Cd. Universitaria, 04510, Coyoacán, Ciudad de México, México.
| |
Collapse
|
2
|
Buttinelli M, Panetta G, Bucci A, Frascaria D, Morea V, Miele AE. Protein Engineering of Multi-Modular Transcription Factor Alcohol Dehydrogenase Repressor 1 (Adr1p), a Tool for Dissecting In Vitro Transcription Activation. Biomolecules 2019; 9:biom9090497. [PMID: 31533362 PMCID: PMC6769490 DOI: 10.3390/biom9090497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 09/03/2019] [Accepted: 09/11/2019] [Indexed: 11/17/2022] Open
Abstract
Studying transcription machinery assembly in vitro is challenging because of long intrinsically disordered regions present within the multi-modular transcription factors. One example is alcohol dehydrogenase repressor 1 (Adr1p) from fermenting yeast, responsible for the metabolic switch from glucose to ethanol. The role of each individual transcription activation domain (TAD) has been previously studied, but their interplay and their roles in enhancing the stability of the protein is not known. In this work, we designed five unique miniAdr1 constructs containing either TADs I-II-III or TAD I and III, connected by linkers of different sizes and compositions. We demonstrated that miniAdr1-BL, containing only PAR-TAD I+III with a basic linker (BL), binds the cognate DNA sequence, located in the promoter of the ADH2 (alcohol dehydrogenase 2) gene, and is necessary to stabilize the heterologous expression. In fact, we found that the sequence of the linker between TAD I and III affected the solubility of free miniAdr1 proteins, as well as the stability of their complexes with DNA. miniAdr1-BL is the stable unit able to recognize ADH2 in vitro, and hence it is a promising tool for future studies on nucleosomal DNA binding and transcription machinery assembly in vitro.
Collapse
Affiliation(s)
- Memmo Buttinelli
- Department of Biology and Biotechnology “Charles Darwin”, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; (M.B.); (A.B.); (D.F.)
| | - Gianna Panetta
- Department of Biochemical Sciences, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy;
| | - Ambra Bucci
- Department of Biology and Biotechnology “Charles Darwin”, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; (M.B.); (A.B.); (D.F.)
- Department of Biochemical Sciences, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy;
| | - Daniele Frascaria
- Department of Biology and Biotechnology “Charles Darwin”, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; (M.B.); (A.B.); (D.F.)
| | - Veronica Morea
- National Research Council of Italy (CNR), Institute of Molecular Biology and Pathology, P.le Aldo Moro 5, 00185 Rome, Italy;
| | - Adriana Erica Miele
- Department of Biochemical Sciences, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy;
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires (ICBMS), UMR 5246 CNRS–UCBL-Université de Lyon, 43 boulevard du 11 Novembre 1918, 69622 Villeurbanne, France
- Correspondence: ; Tel.: +39-06-4991-0556
| |
Collapse
|
3
|
Ctt1 catalase activity potentiates antifungal azoles in the emerging opportunistic pathogen Saccharomyces cerevisiae. Sci Rep 2019; 9:9185. [PMID: 31235707 PMCID: PMC6591360 DOI: 10.1038/s41598-019-45070-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 05/28/2019] [Indexed: 12/20/2022] Open
Abstract
Fungi respond to antifungal drugs by increasing their antioxidant stress response. How this impacts antifungal efficacy remains controversial and not well understood. Here we examine the role of catalase activity in the resistance of Saccharomyces cerevisiae to the common antifungals, fluconazole and miconazole, for which we report minimum inhibitory concentrations (MICs) of 104 and 19 μM, respectively. At sub-MIC concentrations, fluconazole and miconazole stimulate catalase activity 2-3-fold but, unexpectedly, deletion of cytosolic catalase (ctt1) makes cells more resistant to these azoles and to clotrimazole, itraconazole and posaconazole. On the other hand, upregulating Ctt1 activity by preconditioning with 0.2 mM H2O2 potentiates miconazole 32-fold and fluconazole 4-fold. Since H2O2 preconditioning does not alter the resistance of ctt1Δ cells, which possess negligible catalase activity, we link azole potentiation with Ctt1 upregulation. In contrast, sod2Δ cells deleted for mitochondrial superoxide dismutase are 4–8-fold more azole sensitive than wild-type cells, revealing that Sod2 activity protects cells against azole toxicity. In fact, the ctt1Δ mutant has double the Sod2 activity of wild-type cells so ctt1 deletion increases azole resistance in part by Sod2 upregulation. Notably, deletion of peroxisomal/mitochondrial cta1 or cytosolic sod1 does not alter fluconazole or miconazole potency.
Collapse
|
4
|
Pfanzagl V, Görner W, Radolf M, Parich A, Schuhmacher R, Strauss J, Reiter W, Schüller C. A constitutive active allele of the transcription factor Msn2 mimicking low PKA activity dictates metabolic remodeling in yeast. Mol Biol Cell 2018; 29:2848-2862. [PMID: 30256697 PMCID: PMC6249869 DOI: 10.1091/mbc.e18-06-0389] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
In yeast, protein kinase A (PKA) adjusts transcriptional profiles, metabolic rates, and cell growth in accord with carbon source availability. PKA affects gene expression mostly via the transcription factors Msn2 and Msn4, two key regulators of the environmental stress response. Here we analyze the role of the PKA-Msn2 signaling module using an Msn2 allele that harbors serine-to-alanine substitutions at six functionally important PKA motifs (Msn2A6) . Expression of Msn2A6 mimics low PKA activity, entails a transcription profile similar to that of respiring cells, and prevents formation of colonies on glucose-containing medium. Furthermore, Msn2A6 leads to high oxygen consumption and hence high respiratory activity. Substantially increased intracellular concentrations of several carbon metabolites, such as trehalose, point to a metabolic adjustment similar to diauxic shift. This partial metabolic switch is the likely cause for the slow-growth phenotype in the presence of glucose. Consistently, Msn2A6 expression does not interfere with growth on ethanol and tolerated is to a limited degree in deletion mutant strains with a gene expression signature corresponding to nonfermentative growth. We propose that the lethality observed in mutants with hampered PKA activity resides in metabolic reprogramming that is initiated by Msn2 hyperactivity.
Collapse
Affiliation(s)
- Vera Pfanzagl
- Department of Chemistry, University of Natural Resources and Life Sciences, Vienna (BOKU), 1190 Vienna, Austria
| | - Wolfram Görner
- Department for Biochemistry, Max. F. Perutz Laboratories, University of Vienna, 1030 Vienna, Austria
| | - Martin Radolf
- Management Scientific Service/EHS, Research Institute of Molecular Pathology (IMP), 1030 Vienna, Austria
| | - Alexandra Parich
- Department of Agrobiotechnology (IFA-Tulln), Center for Analytical Chemistry, University of Natural Resources and Life Sciences, 3430 Tulln, Austria
| | - Rainer Schuhmacher
- Department of Agrobiotechnology (IFA-Tulln), Center for Analytical Chemistry, University of Natural Resources and Life Sciences, 3430 Tulln, Austria
| | - Joseph Strauss
- Department of Chemistry, University of Natural Resources and Life Sciences, Vienna (BOKU), 1190 Vienna, Austria
| | - Wolfgang Reiter
- Department for Biochemistry, Max. F. Perutz Laboratories, University of Vienna, 1030 Vienna, Austria
| | - Christoph Schüller
- Department of Applied Genetics and Cell Biology (DAGZ), University of Natural Resources and Life Sciences, 3430 Tulln, Austria
| |
Collapse
|
5
|
Schweifer A, Hammerschmidt F. Stereochemical Course of Methyl Transfer by Cobalamin-Dependent Radical SAM Methyltransferase in Fosfomycin Biosynthesis. Biochemistry 2018; 57:2069-2073. [PMID: 29578699 DOI: 10.1021/acs.biochem.8b00264] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The methyl groups of [ methyl-( S)]- and [ methyl-( R)]-[ methyl-D,T]-l-methionine fed to Streptomyces fradiae were incorporated into fosfomycin, which was chemically degraded to chiral AcONa. The enzymatic test gave the ( S)-configuration for the chiral AcONa derived from methionine with the ( S)-[D,T]methyl group ( F = 31.7) and ( R) for the one derived from methionine with the ( R)-[D,T]methyl group ( F = 83.0). The radical SAM methyltransferase transfers the methyl group of MeCbl to HEP-CMP with inversion of configuration.
Collapse
Affiliation(s)
- Anna Schweifer
- Institute of Organic Chemistry , University of Vienna , Währingerstraße 38 , A-1090 Vienna , Austria
| | - Friedrich Hammerschmidt
- Institute of Organic Chemistry , University of Vienna , Währingerstraße 38 , A-1090 Vienna , Austria
| |
Collapse
|
6
|
Zhan C, Yang Y, Zhang Z, Li X, Liu X, Bai Z. Transcription factor Mxr1 promotes the expression of Aox1 by repressing glycerol transporter 1 in Pichia pastoris. FEMS Yeast Res 2017; 17:3061371. [DOI: 10.1093/femsyr/fox015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 03/02/2017] [Indexed: 11/14/2022] Open
|
7
|
Cardarelli S, D'Amici S, Tassone P, Tramonti A, Uccelletti D, Mancini P, Saliola M. Characterization of the transcription factor encoding gene, KlADR1: metabolic role in Kluyveromyces lactis and expression in Saccharomyces cerevisiae. MICROBIOLOGY-SGM 2016; 162:1933-1944. [PMID: 27655407 DOI: 10.1099/mic.0.000374] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In Saccharomyces cerevisiae, Adr1 is a zinc-finger transcription factor involved in the transcriptional activation of ADH2. Deletion of KlADR1, its putative ortholog in Kluyveromyces lactis, led to reduced growth in glycerol, oleate and yeast extract-peptone medium suggesting, as in S. cerevisiae, its requirement for glycerol, fatty acid and nitrogen utilization. Moreover, growth comparison on yeast extract and peptone plates showed in K. lactis a KlAdr1-dependent growth trait not present in S. cerevisiae, indicating different metabolic roles of the two factors in their environmental niches. KlADR1 is required for growth under respiratory and fermentative conditions like KlADH, alcohol dehydrogenase genes necessary for metabolic adaptation during the growth transition. Using in-gel native alcohol dehydrogenase assay, we showed that this factor affected the Adh pattern by altering the balance between these activities. Since the activity most affected by KlAdr1 is KlAdh3, a deletion analysis of the KlADH3 promoter allowed the isolation of a DNA fragment through which KlAdr1 modulated its expression. The expression of the KlADR1-GFP gene allowed the intracellular localization of the factor in K. lactis and S. cerevisiae, suggesting in the two yeasts a common mechanism of KlAdr1 translocation under fermentative and respiratory conditions. Finally, the chimeric Kl/ScADR1 gene encoding the zinc-finger domains of KlAdr1 fused to the transactivating domains of the S. cerevisiae factor activated in Scadr1Δ the transcription of ADH2 in a ScAdr1-dependent fashion.
Collapse
Affiliation(s)
- Silvia Cardarelli
- Department of Biology and Biotechnology 'C. Darwin', Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Sirio D'Amici
- Department of Biology and Biotechnology 'C. Darwin', Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Paola Tassone
- Department of Biology and Biotechnology 'C. Darwin', Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Angela Tramonti
- CNR Department of Biochemical Sciences 'Rossi Fanelli', Istituto di Biologia e Patologia Molecolari, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Daniela Uccelletti
- Department of Biology and Biotechnology 'C. Darwin', Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Patrizia Mancini
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy
| | - Michele Saliola
- Department of Biology and Biotechnology 'C. Darwin', Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|
8
|
Kullik I, Storz G. Transcriptional regulators of the oxidative stress response in prokaryotes and eukaryotes. Redox Rep 2016; 1:23-9. [DOI: 10.1080/13510002.1994.11746951] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
9
|
Schaefke B, Wang TY, Wang CY, Li WH. Gains and Losses of Transcription Factor Binding Sites in Saccharomyces cerevisiae and Saccharomyces paradoxus. Genome Biol Evol 2015. [PMID: 26220934 PMCID: PMC4558856 DOI: 10.1093/gbe/evv138] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Gene expression evolution occurs through changes in cis- or trans-regulatory elements or both. Interactions between transcription factors (TFs) and their binding sites (TFBSs) constitute one of the most important points where these two regulatory components intersect. In this study, we investigated the evolution of TFBSs in the promoter regions of different Saccharomyces strains and species. We divided the promoter of a gene into the proximal region and the distal region, which are defined, respectively, as the 200-bp region upstream of the transcription starting site and as the 200-bp region upstream of the proximal region. We found that the predicted TFBSs in the proximal promoter regions tend to be evolutionarily more conserved than those in the distal promoter regions. Additionally, Saccharomyces cerevisiae strains used in the fermentation of alcoholic drinks have experienced more TFBS losses than gains compared with strains from other environments (wild strains, laboratory strains, and clinical strains). We also showed that differences in TFBSs correlate with the cis component of gene expression evolution between species (comparing S. cerevisiae and its sister species Saccharomyces paradoxus) and within species (comparing two closely related S. cerevisiae strains).
Collapse
Affiliation(s)
- Bernhard Schaefke
- Institute of Biomedical Informatics, National Yang-Ming University, Taipei, Taiwan National Yang-Ming University, Taipei, Taiwan Bioinformatics Program, Institute of Information Science, Taiwan International Graduate Program, Academia Sinica, Taipei, Taiwan
| | | | | | - Wen-Hsiung Li
- National Yang-Ming University, Taipei, Taiwan China Medical University Hospital, Taichung, Taiwan Department of Ecology and Evolution, University of Chicago
| |
Collapse
|
10
|
Zhang Y, Liu Y, Guo X, Li Y, Gao H, Guo X, Xu B. sHsp22.6, an intronless small heat shock protein gene, is involved in stress defence and development in Apis cerana cerana. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2014; 53:1-12. [PMID: 25008786 DOI: 10.1016/j.ibmb.2014.06.007] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 06/19/2014] [Accepted: 06/21/2014] [Indexed: 05/24/2023]
Abstract
Small heat shock proteins (sHSPs) play an important role in protecting against stress-induced cell damage and fundamental physiological processes. In this study, we identified an intronless sHsp gene from Apis cerana cerana (AccsHsp22.6). The open reading frame of AccsHsp22.6 was 585 bp and encoded a 194 amino acid protein. Furthermore, a 2064 bp 5'-flanking region was isolated, and potential transcription factor binding sites associated with development and stress response were identified. Quantitative PCR and western blot analyses demonstrated that AccsHsp22.6 was detected at higher levels in the midgut than in other tissues tested, and it is highly expressed during the shift to different development stages. Moreover, AccsHsp22.6 was significantly up-regulated by abiotic and biotic stresses, such as 4 °C, 16 °C, 42 °C, cyhalothrin, pyridaben, H2O2, UV, CdCl2, 20-hydroxyecdysone and Ascosphaera apis treatments. However, AccsHsp22.6 was slightly repressed by other stresses, including 25 °C, phoxim, paraquat and HgCl2 treatments. The recombinant AccsHSP22.6 also exhibited significant temperature tolerance, antioxidation and molecular chaperone activity. In addition, we found that knockdown of AccsHsp22.6 by RNA interference remarkably reduced temperature tolerance in A. cerana cerana. Taken together, these results suggest that AccsHsp22.6 plays an essential role in the development stages and defence against cellular stress.
Collapse
Affiliation(s)
- Yuanying Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, PR China; School of Basic Medical Sciences, Taishan Medical University, Taian, Shandong 271000, PR China
| | - Yaling Liu
- School of Basic Medical Sciences, Taishan Medical University, Taian, Shandong 271000, PR China
| | - Xulei Guo
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - Yalu Li
- School of Basic Medical Sciences, Taishan Medical University, Taian, Shandong 271000, PR China
| | - Hongru Gao
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - Xingqi Guo
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, PR China.
| | - Baohua Xu
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong 271018, PR China.
| |
Collapse
|
11
|
Crespo-Sempere A, Selma-Lázaro C, Martínez-Culebras P, González-Candelas L. Characterization and disruption of the cipC gene in the ochratoxigenic fungus Aspergillus carbonarius. Food Res Int 2013. [DOI: 10.1016/j.foodres.2013.08.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
12
|
Regulation of Pichia pastoris promoters and its consequences for protein production. N Biotechnol 2013; 30:385-404. [DOI: 10.1016/j.nbt.2012.11.010] [Citation(s) in RCA: 216] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2012] [Accepted: 11/05/2012] [Indexed: 12/18/2022]
|
13
|
Sasano Y, Yurimoto H, Kuriyama M, Sakai Y. Trm2p-dependent derepression is essential for methanol-specific gene activation in the methylotrophic yeast Candida boidinii. FEMS Yeast Res 2010; 10:535-44. [PMID: 20491943 DOI: 10.1111/j.1567-1364.2010.00640.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
We identified a gene, designated TRM2, responsible for methanol-inducible gene expression in the methylotrophic yeast Candida boidinii. The encoded protein Trm2p contains two C(2)H(2)-type zinc finger motifs near the N terminus and shows high similarity to Saccharomyces cerevisiae Adr1p and Pichia pastoris Mxr1p. A C. boidinii gene-disrupted strain (trm2Delta) could not grow on methanol or oleate, but could grow on glucose or ethanol. Trm2p was necessary for the activation of five methanol-inducible promoters tested. Trm2p was localized to the nucleus during growth on nonfermentable carbon sources, but to the cytosol during growth on glucose. A chromatin immunoprecipitation assay revealed that Trm2p specifically bound to the promoters of the alcohol oxidase gene (AOD1) and the dihydroxyacetone synthase gene in cells grown on methanol or oleate, but did not bind to these promoters in cells grown on glucose. The derepressed level of expression of AOD1, which was observed in the trm1Delta strain (the TRM1 gene encodes a transcription factor responsible for methanol-specific gene activation), was decreased in the trm1Deltatrm2Delta strain to a level similar to that observed in the trm2Delta strain. These results suggest that Trm2p-dependent derepression is essential for the Trm1p-dependent methanol-specific gene activation in C. boidinii.
Collapse
Affiliation(s)
- Yu Sasano
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, Japan.
| | | | | | | |
Collapse
|
14
|
Reimand J, Vaquerizas JM, Todd AE, Vilo J, Luscombe NM. Comprehensive reanalysis of transcription factor knockout expression data in Saccharomyces cerevisiae reveals many new targets. Nucleic Acids Res 2010; 38:4768-77. [PMID: 20385592 PMCID: PMC2919724 DOI: 10.1093/nar/gkq232] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Transcription factor (TF) perturbation experiments give valuable insights into gene regulation. Genome-scale evidence from microarray measurements may be used to identify regulatory interactions between TFs and targets. Recently, Hu and colleagues published a comprehensive study covering 269 TF knockout mutants for the yeast Saccharomyces cerevisiae. However, the information that can be extracted from this valuable dataset is limited by the method employed to process the microarray data. Here, we present a reanalysis of the original data using improved statistical techniques freely available from the BioConductor project. We identify over 100,000 differentially expressed genes-nine times the total reported by Hu et al. We validate the biological significance of these genes by assessing their functions, the occurrence of upstream TF-binding sites, and the prevalence of protein-protein interactions. The reanalysed dataset outperforms the original across all measures, indicating that we have uncovered a vastly expanded list of relevant targets. In summary, this work presents a high-quality reanalysis that maximizes the information contained in the Hu et al. compendium. The dataset is available from ArrayExpress (accession: E-MTAB-109) and it will be invaluable to any scientist interested in the yeast transcriptional regulatory system.
Collapse
Affiliation(s)
- Jüri Reimand
- EMBL-European Bioinformatics Institute, Wellcome Trust Genome Campus, Cambridge, UK.
| | | | | | | | | |
Collapse
|
15
|
Rosado T, Conim A, Alves-Pereira I, Ferreira R. Vanadium pentoxide effects on stress responses in wine Saccharomyces cerevisiae strain UE-ME3. ECOTOXICOLOGY (LONDON, ENGLAND) 2009; 18:1116-1122. [PMID: 19597706 DOI: 10.1007/s10646-009-0363-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2009] [Accepted: 06/24/2009] [Indexed: 05/28/2023]
Abstract
Vanadium pentoxide mainly used as catalyst in sulphuric acid, maleic anhydride and ceramics industry, is a pollutant watering redistributed around the environment. Research on biological influence of vanadium pentoxide has gained major importance because it exerts toxic effects on a wide variety of biological systems. In this work we intent to evaluate the effects of vanadium pentoxide ranging from 0 to 2 mM in culture media on a wine wild-type Saccharomyces cerevisiae from Alentejo region of Portugal. Our results show that 2.0 mM vanadium pentoxide in culture medium induced a significant increase of malonaldehyde level and Glutathione peroxidase activity, a slightly increase of Catalase A activity as well as a decrease of wet weight and mitochondrial NADH cit c reductase of S. cerevisiae UE-ME(3). Also our results show that cycloheximide prevent cell death when cells grows 30 min in presence of 1.5 mM of vanadium pentoxide.
Collapse
Affiliation(s)
- Tânia Rosado
- Departamento de Química, Universidade de Evora, R.Romão Ramalho, 59, 7002-671, Evora, Portugal
| | | | | | | |
Collapse
|
16
|
Roetzer A, Gratz N, Kovarik P, Schüller C. Autophagy supports Candida glabrata survival during phagocytosis. Cell Microbiol 2009; 12:199-216. [PMID: 19811500 PMCID: PMC2816358 DOI: 10.1111/j.1462-5822.2009.01391.x] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The opportunistic human fungal pathogen Candida glabrata is confronted with phagocytic cells of the host defence system. Survival of internalized cells is thought to contribute to successful dissemination. We investigated the reaction of engulfed C. glabrata cells using fluorescent protein fusions of the transcription factors CgYap1 and CgMig1 and catalase CgCta1. The expression level and peroxisomal localization of catalase was used to monitor the metabolic and stress status of internalized C. glabrata cells. These reporters revealed that the phagocytosed C. glabrata cells were exposed to transient oxidative stress and starved for carbon source. Cells trapped within macrophages increased their peroxisome numbers indicating a metabolic switch. Prolonged phagocytosis caused a pexophagy-mediated decline in peroxisome numbers. Autophagy, and in particular pexophagy, contributed to survival of C. glabrata during engulfment. Mutants lacking CgATG11 or CgATG17, genes required for pexophagy and non-selective autophagy, respectively, displayed reduced survival rates. Furthermore, both CgAtg11 and CgAtg17 contribute to survival, since the double mutant was highly sensitive to engulfment. Inhibition of peroxisome formation by deletion of CgPEX3 partially restored viability of CgATG11 deletion mutants during engulfment. This suggests that peroxisome formation and maintenance might sequester resources required for optimal survival. Mobilization of intracellular resources via autophagy is an important virulence factor that supports the viability of C. glabrata in the phagosomal compartment of infected innate immune cells.
Collapse
Affiliation(s)
- Andreas Roetzer
- Department of Biochemistry and Cell Biology, Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
| | | | | | | |
Collapse
|
17
|
Gurvitz A. A novel circuit overrides Adr1p control during expression of Saccharomyces cerevisiae 2-trans-enoyl-ACP reductase Etr1p of mitochondrial type 2 fatty acid synthase. FEMS Microbiol Lett 2009; 297:255-60. [PMID: 19583790 PMCID: PMC2784040 DOI: 10.1111/j.1574-6968.2009.01688.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2009] [Accepted: 06/08/2009] [Indexed: 11/30/2022] Open
Abstract
The significance of the chronicled role of the yeast transcription factor Adr1p in regulating ETR1 was examined in wild type and isogenic adr1Delta mutant cells. An ETR1-lacZ reporter construct was used to verify Adr1p-dependent gene expression. On solid glycerol medium containing X-gal, wild-type cells expressing the reporter turned blue, whereas the adr1Delta mutants remained white. beta-Galactosidase activity measurements following 24-h cell growth in liquid glycerol medium revealed a 6.5-fold greater expression level of the reporter gene in the wild type compared with the adr1Delta mutant. In contrast, immunoblotting showed that Etr1p abundance was essentially indistinguishable between the two strains whereas Cta1p, whose expression depends on Adr1p, was present in the wild-type cells, but not in the mutants. Moreover, enzyme assays conducted on transformed wild-type and adr1Delta mutant cells expressing a plasmid-borne ETR1 tethered behind the native promoter revealed similar levels of reductase activity, and the lipoic acid content in the two parental strains was equivalent. Hence, while Adr1p influenced the transcription levels of ETR1, it did not alter the abundance of Etr1p, the level of reductase activity, or the cellular amount of lipoic acid. The results point toward a potentially novel layer of control for maintaining physiological levels of lipoic acid.
Collapse
|
18
|
Turcotte B, Liang XB, Robert F, Soontorngun N. Transcriptional regulation of nonfermentable carbon utilization in budding yeast. FEMS Yeast Res 2009; 10:2-13. [PMID: 19686338 DOI: 10.1111/j.1567-1364.2009.00555.x] [Citation(s) in RCA: 190] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Saccharomyces cerevisiae preferentially uses glucose as a carbon source, but following its depletion, it can utilize a wide variety of other carbons including nonfermentable compounds such as ethanol. A shift to a nonfermentable carbon source results in massive reprogramming of gene expression including genes involved in gluconeogenesis, the glyoxylate cycle, and the tricarboxylic acid cycle. This review is aimed at describing the recent progress made toward understanding the mechanism of transcriptional regulation of genes responsible for utilization of nonfermentable carbon sources. A central player for the use of nonfermentable carbons is the Snf1 kinase, which becomes activated under low glucose levels. Snf1 phosphorylates various targets including the transcriptional repressor Mig1, resulting in its inactivation allowing derepression of gene expression. For example, the expression of CAT8, encoding a member of the zinc cluster family of transcriptional regulators, is then no longer repressed by Mig1. Cat8 becomes activated through phosphorylation by Snf1, allowing upregulation of the zinc cluster gene SIP4. These regulators control the expression of various genes including those involved in gluconeogenesis. Recent data show that another zinc cluster protein, Rds2, plays a key role in regulating genes involved in gluconeogenesis and the glyoxylate pathway. Finally, the role of additional regulators such as Adr1, Ert1, Oaf1, and Pip2 is also discussed.
Collapse
Affiliation(s)
- Bernard Turcotte
- Department of Medicine, Royal Victoria Hospital, McGill University, Montréal, QC, Canada.
| | | | | | | |
Collapse
|
19
|
Chang YW, Robert Liu FG, Yu N, Sung HM, Yang P, Wang D, Huang CJ, Shih MC, Li WH. Roles of cis- and trans-changes in the regulatory evolution of genes in the gluconeogenic pathway in yeast. Mol Biol Evol 2008; 25:1863-75. [PMID: 18573843 PMCID: PMC2515871 DOI: 10.1093/molbev/msn138] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/03/2008] [Indexed: 11/14/2022] Open
Abstract
The yeast Saccharomyces cerevisiae proliferates rapidly in glucose-containing media. As glucose is getting depleted, yeast cells enter the transition from fermentative to nonfermentative metabolism, known as the diauxic shift, which is associated with major changes in gene expression. To understand the expression evolution of genes involved in the diauxic shift and in nonfermentative metabolism within species, a laboratory strain (BY), a wild strain (RM), and a clinical isolate (YJM) were used in this study. Our data showed that the RM strain enters into the diauxic shift approximately 1 h earlier than the BY strain with an earlier, higher induction of many key transcription factors (TFs) involved in the diauxic shift. Our sequence data revealed sequence variations between BY and RM in both coding and promoter regions of the majority of these TFs. The key TF Cat8p, a zinc-finger cluster protein, is required for the expression of many genes in gluconeogenesis under nonfermentative growth, and its derepression is mediated by deactivation of Mig1p. Our kinetic study of CAT8 expression revealed that CAT8 induction corresponded to the timing of glucose depletion in both BY and RM and CAT8 was induced up to 50- to 90-folds in RM, whereas only 20- to 30-folds in BY. In order to decipher the relative importance of cis- and trans-variations in expression divergence in the gluconeogenic pathway during the diauxic shift, we studied the expression levels of MIG1, CAT8, and their downstream target genes in the cocultures and in the hybrid diploids of BY-RM, BY-YJM, and RM-YJM and in strains with swapped promoters. Our data showed that the differences between BY and RM in the expression of MIG1, the upstream regulator of CAT8, were affected mainly by changes in cis-elements, though also by changes in trans-acting factors, whereas those of CAT8 and its downstream target genes were predominantly affected by changes in trans-acting factors.
Collapse
Affiliation(s)
- Ya-Wen Chang
- Department of Ecology and Evolution, University of Chicago, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Trzcinska-Danielewicz J, Ishikawa T, Miciałkiewicz A, Fronk J. Yeast transcription factor Oaf1 forms homodimer and induces some oleate-responsive genes in absence of Pip2. Biochem Biophys Res Commun 2008; 374:763-6. [PMID: 18671944 DOI: 10.1016/j.bbrc.2008.07.105] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2008] [Accepted: 07/22/2008] [Indexed: 10/21/2022]
Abstract
Genes encoding peroxisomal proteins in the yeast Saccharomyces cereviasiae are induced in the presence of oleate in growth medium. This induction is known to be mediated by the binding of a heterodimer of transcription factors Oaf1 and Pip2 to an upstream activating sequence called ORE (oleate response element). By analyzing expression of nine ORE-containing genes we show that the presence of an ORE sequence is not sufficient to confer oleate inducibility, as three such genes were in fact expressed constitutively. Moreover, some of the oleate-inducible genes undergo activation even in the absence of Pip2. Using coimmunoprecipitation we show that, when Pip2 is missing, Oaf1 may form homodimers which apparently substitute for the Oaf1-Pip2 heterodimer.
Collapse
|
21
|
Gurvitz A, Rottensteiner H. The biochemistry of oleate induction: Transcriptional upregulation and peroxisome proliferation. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2006; 1763:1392-402. [PMID: 16949166 DOI: 10.1016/j.bbamcr.2006.07.011] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2006] [Accepted: 07/24/2006] [Indexed: 01/08/2023]
Abstract
Unicellular organisms such as yeast constantly monitor their environment and respond to nutritional cues. Rapid adaptation to ambient changes may include modification and degradation of proteins; alterations in mRNA stability; and differential rates of translation. However, for a more prolonged response, changes are initiated in the expression of genes involved in the utilization of energy sources whose availability constantly fluctuates. For example, in the presence of oleic acid as a sole carbon source, yeast cells induce the expression of a discrete set of enzymes for fatty acid beta-oxidation as well as proteins involved in the expansion of the peroxisomal compartment containing this process. In this review chapter, we discuss the factors regulating oleate induction in Saccharomyces cerevisiae, and we also deal with peroxisome proliferation in other organisms, briefly mentioning fatty acid-independent signals that can trigger this process.
Collapse
Affiliation(s)
- Aner Gurvitz
- Medical University of Vienna, Center of Physiology and Pathophysiology, Department of Physiology, Section of Physiology of Fatty Acid Lipid Metabolism, 1090 Vienna, Austria
| | | |
Collapse
|
22
|
Borecky J, Nogueira FTS, de Oliveira KAP, Maia IG, Vercesi AE, Arruda P. The plant energy-dissipating mitochondrial systems: depicting the genomic structure and the expression profiles of the gene families of uncoupling protein and alternative oxidase in monocots and dicots. JOURNAL OF EXPERIMENTAL BOTANY 2006; 57:849-64. [PMID: 16473895 DOI: 10.1093/jxb/erj070] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The simultaneous existence of alternative oxidases and uncoupling proteins in plants has raised the question as to why plants need two energy-dissipating systems with apparently similar physiological functions. A probably complete plant uncoupling protein gene family is described and the expression profiles of this family compared with the multigene family of alternative oxidases in Arabidopsis thaliana and sugarcane (Saccharum sp.) employed as dicot and monocot models, respectively. In total, six uncoupling protein genes, AtPUMP1-6, were recognized within the Arabidopsis genome and five (SsPUMP1-5) in a sugarcane EST database. The recombinant AtPUMP5 protein displayed similar biochemical properties as AtPUMP1. Sugarcane possessed four Arabidopsis AOx1-type orthologues (SsAOx1a-1d); no sugarcane orthologue corresponding to Arabidopsis AOx2-type genes was identified. Phylogenetic and expression analyses suggested that AtAOx1d does not belong to the AOx1-type family but forms a new (AOx3-type) family. Tissue-enriched expression profiling revealed that uncoupling protein genes were expressed more ubiquitously than the alternative oxidase genes. Distinct expression patterns among gene family members were observed between monocots and dicots and during chilling stress. These findings suggest that the members of each energy-dissipating system are subject to different cell or tissue/organ transcriptional regulation. As a result, plants may respond more flexibly to adverse biotic and abiotic conditions, in which oxidative stress is involved.
Collapse
Affiliation(s)
- Jirí Borecky
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, UNICAMP, CP 6109, 13083-970, Campinas, SP, Brazil
| | | | | | | | | | | |
Collapse
|
23
|
Abstract
The abundance and size of cellular organelles vary depending on the cell type and metabolic needs. Peroxisomes constitute a class of cellular organelles renowned for their ability to adapt to cellular and environmental conditions. Together with transcriptional regulators, two groups of peroxisomal proteins have a pronounced influence on peroxisome size and abundance. Pex11-type peroxisome proliferators are involved in the proliferation of peroxisomes, defined here as an increase in size and/or number of peroxisomes. Dynamin-related proteins have recently been suggested to be required for the scission of peroxisomal membranes. This review surveys the function of Pex11-type peroxisome proliferators and dynamin-related proteins in peroxisomal proliferation and division.
Collapse
Affiliation(s)
- Sven Thoms
- Ruhr-University-Bochum, Medical Faculty, Institute of Physiological Chemistry, Bochum, Germany
| | | |
Collapse
|
24
|
Borecký J, Vercesi AE. Plant Uncoupling Mitochondrial Protein and Alternative Oxidase: Energy Metabolism and Stress. Biosci Rep 2005; 25:271-86. [PMID: 16283557 DOI: 10.1007/s10540-005-2889-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Energy-dissipation in plant mitochondria can be mediated by inner membrane proteins via two processes: redox potential-dissipation or proton electrochemical potential-dissipation. Alternative oxidases (AOx) and the plant uncoupling mitochondrial proteins (PUMP) perform a type of intrinsic and extrinsic regulation of the coupling between respiration and phosphorylation, respectively. Expression analyses and functional studies on AOx and PUMP under normal and stress conditions suggest that the physiological role of both systems lies most likely in tuning up the mitochondrial energy metabolism in response of cells to stress situations. Indeed, the expression and function of these proteins in non-thermogenic tissues suggest that their primary functions are not related to heat production.
Collapse
Affiliation(s)
- Jirí Borecký
- Departamento de Patologia Clínica (NMCE), FCM, Universidade Estadual de Campinas (UNICAMP), CP 6111, 13083-970 Campinas, SP, Brazil
| | | |
Collapse
|
25
|
Kim S, Ohkuni K, Couplan E, Jazwinski SM. The histone acetyltransferase GCN5 modulates the retrograde response and genome stability determining yeast longevity. Biogerontology 2005; 5:305-16. [PMID: 15547318 DOI: 10.1007/s10522-004-2568-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Transcriptional silencing decreases at both subtelomeric and silent mating-type loci and increases at the ribosomal DNA locus during the replicative life span of the yeast Saccharomyces cerevisiae . Evidence exists that epigenetic changes in the regulatory state of chromatin may be a causal factor in determining yeast longevity and that histone deacetylases play a role. The significance of histone acetylation has been examined here in more detail. Deletion of the histone acetyltransferase gene GCN5 suppressed the extension of replicative life span afforded by the induction of the retrograde response, which signals mitochondrial dysfunction and leads to changes in nuclear gene expression. It was difficult to ascribe this effect to changes in transcriptional silencing in any of the three known types of heterochromatin. However, a promoter related effect was uncovered by the participation of GCN5 in the induction of the retrograde response. Gcn5p and the retrograde signal transducer Rtg2p are components of the histone acetyltransferase coactivator complex SLIK. Rtg2p blocks the production of extrachromosomal ribosomal DNA circles when it is not engaged in transmission of the retrograde signal. Deletion of GCN5 , which disrupts the integrity of SLIK, suppressed circle accumulation. The results indicate that Gcn5p and SLIK impact the interplay between the retrograde response signal and Rtg2p with consequences for the induction of the response and circle production. Rtg2p and Gcn5p in the SLIK complex link metabolism to stress responses, chromatin-dependent gene regulation, and genome stability in yeast aging.
Collapse
Affiliation(s)
- Sangkyu Kim
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | | | | | | |
Collapse
|
26
|
Oliveira MA, Genu V, Salmazo AP, Carraro DM, Pereira GA. The transcription factor Snf1p is involved in a Tup1p-independent manner in the glucose regulation of the major methanol metabolism genes of Hansenula polymorpha. Genet Mol Biol 2003. [DOI: 10.1590/s1415-47572003000400017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
27
|
Rottensteiner H, Wabnegger L, Erdmann R, Hamilton B, Ruis H, Hartig A, Gurvitz A. Saccharomyces cerevisiae PIP2 mediating oleic acid induction and peroxisome proliferation is regulated by Adr1p and Pip2p-Oaf1p. J Biol Chem 2003; 278:27605-11. [PMID: 12748191 DOI: 10.1074/jbc.m304097200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Saccharomyces cerevisiae genes involved in fatty acid degradation contain in their promoters oleate response elements (OREs) and type 1 upstream activation sequences (UAS1s) that bind Pip2p-Oaf1p and Adr1p, respectively. The promoter of the PIP2 gene was found to contain a potential UAS1 that consists of a tandem array of CYCCRR half-sites in an overlapping arrangement with a previously characterized ORE. Electrophoretic mobility shift analysis demonstrated that Adr1p bound to UAS1PIP2, and Northern analysis in combination with a lacZ reporter gene confirmed that Adr1p influenced the transcription of PIP2. Immunoprecipitation showed that, in adr1delta mutant cells grown on oleic acid, Pip2p was less abundant compared with the corresponding wild-type. In addition, the amount of Pip2p-Oaf1p that bound to a target ORE in vitro was reduced in mutant extracts compared with the wild-type. Transcription of the oleic acid-inducible genes SPS19 and CTA1, which rely on both Pip2p-Oaf1p and Adr1p for their regulation, was reduced in adr1delta mutant cells. However, by ectopically restoring levels of Pip2p in adr1delta cells grown on oleic acid medium, transcription of both genes increased 2-fold compared with the control. This partial suppression of the adr1delta mutant phenotype was additionally manifested by moderate utilization of oleic acid. Hence, both the expression as well as the action of the two transcription factors, Adr1p and Pip2p-Oaf1p, are interconnected, which allows for an elaborate control of fatty acid-inducible genes.
Collapse
|
28
|
Young ET, Dombek KM, Tachibana C, Ideker T. Multiple pathways are co-regulated by the protein kinase Snf1 and the transcription factors Adr1 and Cat8. J Biol Chem 2003; 278:26146-58. [PMID: 12676948 DOI: 10.1074/jbc.m301981200] [Citation(s) in RCA: 225] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
ADR1 and CAT8 encode carbon source-responsive transcriptional regulators that cooperatively control expression of genes involved in ethanol utilization. These transcription factors are active only after the diauxic transition, when glucose is depleted and energy-generating metabolism has shifted to the aerobic oxidation of non-fermentable carbon sources. The Snf1 protein kinase complex is required for activation of their downstream target genes described previously. Using DNA microarrays, we determined the extent to which these three factors collaborate in regulating the expression of the yeast genome after glucose depletion. The expression of 108 genes is significantly decreased in the absence of ADR1. The importance of ADR1 during the diauxic transition is illustrated by the observation that expression of almost one-half of the 40 most highly glucose-repressed genes is ADR1-dependent. ADR1-dependent genes fall into a variety of functional classes with carbon metabolism containing the largest number of members. Most of the genes in this class are involved in the oxidation of different non-fermentable carbon sources. These microarray data show that ADR1 coordinates the biochemical pathways that generate acetyl-CoA and NADH from non-fermentable substrates. Only a small number of ADR1-dependent genes are also CAT8-dependent. However, nearly one-half of the ADR1-dependent genes are also dependent on the Snf1 protein kinase for derepression. Many more genes are SNF1-dependent than are either ADR1- or CAT8-dependent suggesting that SNF1 plays a broader role in gene expression than either ADR1 or CAT8. The largest class of SNF1-dependent genes encodes regulatory proteins that could extend SNF1 dependence to additional pathways.
Collapse
Affiliation(s)
- Elton T Young
- Department of Biochemistry, the University of Washington, Seattle, Washington 98195-7350, USA.
| | | | | | | |
Collapse
|
29
|
Schüller HJ. Transcriptional control of nonfermentative metabolism in the yeast Saccharomyces cerevisiae. Curr Genet 2003; 43:139-60. [PMID: 12715202 DOI: 10.1007/s00294-003-0381-8] [Citation(s) in RCA: 337] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2002] [Revised: 01/20/2003] [Accepted: 01/21/2003] [Indexed: 11/30/2022]
Abstract
Although sugars are clearly the preferred carbon sources of the yeast Saccharomyces cerevisiae, nonfermentable substrates such as ethanol, glycerol, lactate, acetate or oleate can also be used for the generation of energy and cellular biomass. Several regulatory networks of glucose repression (carbon catabolite repression) are involved in the coordinate biosynthesis of enzymes required for the utilization of nonfermentable substrates. Positively and negatively acting complexes of pleiotropic regulatory proteins have been characterized. The Snf1 (Cat1) protein kinase complex, together with its regulatory subunit Snf4 (Cat3) and alternative beta-subunits Sip1, Sip2 or Gal83, plays an outstanding role for the derepression of structural genes which are repressed in the presence of a high glucose concentration. One molecular function of the Snf1 complex is deactivation by phosphorylation of the general glucose repressor Mig1. In addition to regulation of alternative sugar fermentation, Mig1 also influences activators of respiration and gluconeogenesis, although to a lesser extent. Snf1 is also required for conversion of specific regulatory factors into transcriptional activators. This review summarizes regulatory cis-acting elements of structural genes of the nonfermentative metabolism, together with the corresponding DNA-binding proteins (Hap2-5, Rtg1-3, Cat8, Sip4, Adr1, Oaf1, Pip2), and describes the molecular interactions among general regulators and pathway-specific factors. In addition to the influence of the carbon source at the transcriptional level, mechanisms of post-transcriptional control such as glucose-regulated stability of mRNA are also discussed briefly.
Collapse
Affiliation(s)
- Hans-Joachim Schüller
- Institut für Mikrobiologie, Abteilung Genetik und Biochemie, Ernst-Moritz-Arndt-Universität, Jahnstrasse 15a, 17487 Greifswald, Germany.
| |
Collapse
|
30
|
Genu V, Gödecke S, Hollenberg CP, Pereira GG. The Hansenula polymorpha MOX gene presents two alternative transcription start points differentially utilized and sensitive to respiratory activity. EUROPEAN JOURNAL OF BIOCHEMISTRY 2003; 270:2467-75. [PMID: 12755702 DOI: 10.1046/j.1432-1033.2003.03618.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The peroxisomal methanol metabolism of Hansenula polymorpha depends on a group of genes that are coordinately regulated. Methanol oxidase (Mox) plays a key role in this pathway and its synthesis has been shown to be regulated at the transcriptional level. MOX expression is strongly repressed on glucose and activated on glycerol or methanol. In this study we have identified two MOX transcripts that are differentially expressed along MOX derepression. The first one, named l-MOX (for longer MOX), starts at position -425, is only weakly and transiently transcribed and is not translated into the Mox protein. The other is the true MOX mRNA, which initiates around position -25. Using a strain bearing multiple copies of MOX(Q1N) and a reporter gene fused to the MOX promoter, regulation of the two transcripts was investigated. Initiation of the true MOX correlates with repression of l-MOX and conditions that are repressive for MOX transcription, such as the inhibition of mitochondrial activity, lead to higher levels of l-MOX expression. This effect was first observed in a mox mutant (Q1N-M8) unable to grow on nonfermentable carbon sources. No function was detected for l-MOX, but its regulation follows a pattern similar to that of catalase, which is essential for methanol metabolism. This suggests that, l-MOX, although precisely regulated, seems to be a remnant of the evolution of the methanol metabolism network.
Collapse
Affiliation(s)
- Victor Genu
- Laboratório de Genômica e Expressão, Departamento de Genética e Evolução, Instituto de Biologia, Universidade Estadual de Campinas, SP, Brazil
| | | | | | | |
Collapse
|
31
|
Rottensteiner H, Hartig A, Hamilton B, Ruis H, Erdmann R, Gurvitz A. Saccharomyces cerevisiae Pip2p-Oaf1p regulates PEX25 transcription through an adenine-less ORE. EUROPEAN JOURNAL OF BIOCHEMISTRY 2003; 270:2013-22. [PMID: 12709061 DOI: 10.1046/j.1432-1033.2003.03575.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The role of the Saccharomyces cerevisiae Pip2p-Oaf1p transcription factor was examined in reference to the regulation of the peroxin gene PEX25 involved in peroxisome proliferation. The PEX25 promoter contains an oleate response element (ORE)-like sequence comprising a CGG palindrome lacking a canonical adenine, which is considered critical for element function and Pip2p-Oaf1p binding. Pex25p levels were higher in wild-type cells grown on oleic acid medium than in those grown on ethanol, but this induction was abolished in cells devoid of Pip2p-Oaf1p. Studies based on lacZ reporter genes and in vitro protein-DNA interactions revealed that the PEX25 ORE could bind Pip2p-Oaf1p and confer activation on a basal promoter. These findings reinforced the central role played by Pip2p-Oaf1p in regulating peroxisome proliferation. We also investigated whether Pip2p-Oaf1p is important for regulating genes encoding peroxins involved in protein import into the peroxisomal matrix. Pip2p-Oaf1p was able to bind efficiently to the PEX5 ORE but not to an ORE-like CGG palindrome in the PEX14 promoter. However, immunoblotting revealed that both Pex5p and Pex14p (as well as Pex7p and Pex13p) were not more abundant in cells grown on oleic acid medium compared with ethanol. These data on a functional, adenine-less, PEX25 ORE and a nonfunctional N13-spaced ORE-like sequence in the PEX14 promoter capable of binding Pip2p-Oaf1p prompts readjustment of the ORE consensus to comprise CGGN3TNA/(R)N8-12CCG.
Collapse
|
32
|
Hiltunen JK, Mursula AM, Rottensteiner H, Wierenga RK, Kastaniotis AJ, Gurvitz A. The biochemistry of peroxisomal beta-oxidation in the yeast Saccharomyces cerevisiae. FEMS Microbiol Rev 2003; 27:35-64. [PMID: 12697341 DOI: 10.1016/s0168-6445(03)00017-2] [Citation(s) in RCA: 252] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
Peroxisomal fatty acid degradation in the yeast Saccharomyces cerevisiae requires an array of beta-oxidation enzyme activities as well as a set of auxiliary activities to provide the beta-oxidation machinery with the proper substrates. The corresponding classical and auxiliary enzymes of beta-oxidation have been completely characterized, many at the structural level with the identification of catalytic residues. Import of fatty acids from the growth medium involves passive diffusion in combination with an active, protein-mediated component that includes acyl-CoA ligases, illustrating the intimate linkage between fatty acid import and activation. The main factors involved in protein import into peroxisomes are also known, but only one peroxisomal metabolite transporter has been characterized in detail, Ant1p, which exchanges intraperoxisomal AMP with cytosolic ATP. The other known transporter is Pxa1p-Pxa2p, which bears similarity to the human adrenoleukodystrophy protein ALDP. The major players in the regulation of fatty acid-induced gene expression are Pip2p and Oaf1p, which unite to form a transcription factor that binds to oleate response elements in the promoter regions of genes encoding peroxisomal proteins. Adr1p, a transcription factor, binding upstream activating sequence 1, also regulates key genes involved in beta-oxidation. The development of new, postgenomic-era tools allows for the characterization of the entire transcriptome involved in beta-oxidation and will facilitate the identification of novel proteins as well as the characterization of protein families involved in this process.
Collapse
Affiliation(s)
- J Kalervo Hiltunen
- Biocenter Oulu and Department of Biochemistry, P.O. Box 3000, FIN-90014 University of Oulu, Oulu, Finland.
| | | | | | | | | | | |
Collapse
|
33
|
Khanday FA, Saha M, Bhat PJ. Molecular characterization of MRG19 of Saccharomyces cerevisiae. Implication in the regulation of galactose and nonfermentable carbon source utilization. EUROPEAN JOURNAL OF BIOCHEMISTRY 2002; 269:5840-50. [PMID: 12444972 DOI: 10.1046/j.1432-1033.2002.03303.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We have reported previously that multiple copies of MRG19 suppress GAL genes in a wild-type but not in a gal80 strain of Saccharomyces cerevisiae. In this report we show that disruption of MRG19 leads to a decrease in GAL induction when S. cerevisiae is induced with 0.02% but not with 2.0% galactose. Disruption of MRG19 in a gal3 background (this strain shows long-term adaptation phenotype) further delays the GAL induction, supporting the notion that its function is important only under low inducing signals. As a corollary, disruption of MRG19 in a gal80 strain did not decrease the constitutive expression of GAL genes. These results suggest that MRG19 has a role in GAL regulation only when the induction signal is weak. Unlike the effect on GAL gene expression, disruption of MRG19 leads to de-repression of CYC1-driven beta-galactosidase activity. MRG19 disruptant also showed a twofold increase in the rate of oxygen uptake as compared with the wild-type strain. ADH2, CTA1, DLD1, and CYC7 promoters that are active during nonfermentative growth did not show any de-repression of beta-galactosidase activity in the MRG19 disruptant. Western blot analysis indicated that MRG19 is a glucose repressible gene and is expressed in galactose and glycerol plus lactate. Experiments using green fluorescent protein fusion constructs indicate that Mrg19p is localized in the nucleus consistent with the presence of a consensus nuclear localization signal sequence. Based on the above results, we propose that Mrg19p is a regulator of galactose and nonfermentable carbon utilization.
Collapse
Affiliation(s)
- Firdous A Khanday
- Laboratory of Molecular Genetics, Biotechnology Center, Indian Institute of Technology, Powai, Mumbai, India
| | | | | |
Collapse
|
34
|
Felenbok B, Flipphi M, Nikolaev I. Ethanol catabolism in Aspergillus nidulans: a model system for studying gene regulation. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2001; 69:149-204. [PMID: 11550794 DOI: 10.1016/s0079-6603(01)69047-0] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
This article reviews our knowledge of the ethanol utilization pathway (alc system) in the hyphal fungus Aspergillus nidulans. We discuss the progress made over the past decade in elucidating the two regulatory circuits controlling ethanol catabolism at the level of transcription, specific induction, and carbon catabolite repression, and show how their interplay modulates the utilization of nutrient carbon sources. The mechanisms featuring in this regulation are presented and their modes of action are discussed: First, AlcR, the transcriptional activator, which demonstrates quite remarkable structural features and an original mode of action; second, the physiological inducer acetaldehyde, whose intracellular accumulation induces the alc genes and thereby a catabolic flux while avoiding intoxification; third, CreA, the transcriptional repressor mediating carbon catabolite repression in A. nidulans, which acts in different ways on the various alc genes; Fourth, the promoters of the structural genes for alcohol dehydrogenase (alcA) and aldehyde dehydrogenase (aldA) and the regulatory alcR gene, which exhibit exceptional strength compared to other genes of the respective classes. alc gene expression depends on the number and localization of regulatory cis-acting elements and on the particular interaction between the two regulator proteins, AlcR and CreA, binding to them. All these characteristics make the ethanol regulon a suitable system for induced expression of heterologous protein in filamentous fungi.
Collapse
Affiliation(s)
- B Felenbok
- Institut de Génétique et Microbiologie, Université Paris-Sud, Centre Universitaire d'Orsay, France.
| | | | | |
Collapse
|
35
|
Hagerman RA, Trotter PJ. A mutation in the yeast mitochondrial ribosomal protein Rml2p is associated with a defect in catalase gene expression. MOLECULAR CELL BIOLOGY RESEARCH COMMUNICATIONS : MCBRC 2001; 4:299-306. [PMID: 11529680 DOI: 10.1006/mcbr.2001.0294] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Yeast strains containing a new temperature-sensitive allele of the RML2 gene, encoding a component of the large subunit of the mitochondrial ribosome, display normal growth on acetate, slowed growth on glycerol and an inability to grow on oleic acid. These cells, denoted rml2(fat21), have an apparent inability to induce peroxisomal function, as evidenced by a deficiency in oleic acid induction of beta-oxidation. However, the oleic acid regulation of genes encoding core enzymes of peroxisomal beta-oxidation is normal. In contrast, up-regulation of CTA1 (catalase) mRNA expression and enzyme activity is interrupted. Upon comparison of the induction requirements of catalase and the genes of beta-oxidation, we hypothesized that the rml2(fat21) mutation alters the activity of the transcription factor Adr1p. In support of this hypothesis, over-expression of ADR1 in rml2(fat21) cells restores CTA1 induction. Several assays of mitochondria from rml2(fat21) strains suggest normal mitochondrial function. Thus, the modulation of Adr1p-associated gene regulation is not due to overt mitochondrial dysfunction.
Collapse
Affiliation(s)
- R A Hagerman
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas 78712, USA
| | | |
Collapse
|
36
|
Gurvitz A, Hiltunen JK, Erdmann R, Hamilton B, Hartig A, Ruis H, Rottensteiner H. Saccharomyces cerevisiae Adr1p governs fatty acid beta-oxidation and peroxisome proliferation by regulating POX1 and PEX11. J Biol Chem 2001; 276:31825-30. [PMID: 11431484 DOI: 10.1074/jbc.m105989200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Saccharomyces cerevisiae Adr1p is essential for fatty acid degradation and peroxisome proliferation. Here, the role of Adr1p was examined with respect to the transcriptional regulation of the Pip2p-Oaf1p dependent genes POX1 and PEX11. POX1 encodes the rate-limiting enzyme of peroxisomal beta-oxidation, acyl-CoA oxidase. The POX1 promoter was shown to contain a canonical Adr1p element (UAS1), within which the oleate response element (ORE) was nested. PEX11 codes for a peroxin that is critical for normal peroxisome proliferation, and its promoter was shown similarly to contain a UAS1-like element overlapping the ORE. Northern analysis demonstrated that transcriptional up-regulation of both POX1 and PEX11 was abolished in adr1 Delta mutant cells, and immunoblotting confirmed that the abundance of their gene products was dramatically reduced. Studies of an overlapping ORE/UAS1 arrangement in the CTA1 promoter revealed synergy between these elements. We conclude that overlapping ORE and UAS1 elements in conjunction with their binding factors Pip2p-Oaf1p and Adr1p coordinate the carbon flux through beta-oxidation with peroxisome proliferation.
Collapse
Affiliation(s)
- A Gurvitz
- Institut für Biochemie und Molekulare Zellbiologie der Universität Wien and Ludwig Boltzmann-Forschungsstelle für Biochemie, Vienna Biocenter, Dr Bohrgasse 9, A-1030 Vienna, Austria.
| | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
Long-chain fatty acids are a vital metabolic energy source and are building blocks of membrane lipids. The yeast Saccharomyces cerevisiae is a valuable model system for elucidation of gene-function relationships in such eukaryotic processes as fatty acid metabolism. Yeast degrades fatty acids only in the peroxisome, and recently, genes encoding core and auxiliary enzymes of peroxisomal beta-oxidation have been identified. Mechanisms involved in fatty acid induction of gene expression have been described, and novel fatty acid-responsive genes have been discovered via yeast genome analysis. In addition, a number of genes essential for synthesis of the variety of fatty acids in yeast have been cloned. Advances in understanding such processes in S. cerevisiae will provide helpful insights to functional genomics approaches in more complex organisms.
Collapse
Affiliation(s)
- P J Trotter
- The Division of Nutritional Sciences and the Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas 78712, USA.
| |
Collapse
|
38
|
Ramil E, Agrimonti C, Shechter E, Gervais M, Guiard B. Regulation of the CYB2 gene expression: transcriptional co-ordination by the Hap1p, Hap2/3/4/5p and Adr1p transcription factors. Mol Microbiol 2000; 37:1116-32. [PMID: 10972830 DOI: 10.1046/j.1365-2958.2000.02065.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Expression of the Saccharomyces cerevisiae nuclear gene CYB2 encoding the mitochondrial enzyme L-(+)-lactate-cytochrome c oxidoreductase (EC 1.2.2.3) is subject to several strict metabolic controls at the transcriptional level: repression due to glucose fermentation, derepression by ethanol, induction by lactate and inhibition under anaerobic conditions or in response to deficiency of haem biosynthesis. In this respect, the data obtained from the transcriptional analysis of the CYB2 gene contribute to a better understanding of the control of mitochondrial biogenesis. In this study, we show that Hap1p is the main transcriptional activator involved in the control of CYB2 transcription. We found that Hap1p activity, known to be oxygen dependent, is effected by DNA-protein interaction with two binding sites present in the CYB2 promoter. Control is moreover dependent on carbon sources. This regulation by the carbon substrates is subordinate to the activity of the complex Hap2/3/4/5p, which counteracts the negative effect of the URS1 element. Finally, our results suggest that the Adr1p transcriptional activator is also required in CYB2 transcription control. This work provides new data which allows a better understanding of the molecular mechanisms implicated in the co-regulation at the transcriptional level of the genes encoding proteins involved in various aspects of oxidative metabolism.
Collapse
Affiliation(s)
- E Ramil
- Centre de Génétique Moléculaire, Laboratoire propre du CNRS associé à l'Université Pierre et Marie Curie, 91198 Gif sur Yvette, France
| | | | | | | | | |
Collapse
|
39
|
Skoneczny M, Rytka J. Oxygen and haem regulate the synthesis of peroxisomal proteins: catalase A, acyl-CoA oxidase and Pex1p in the yeast Saccharomyces cerevisiae; the regulation of these proteins by oxygen is not mediated by haem. Biochem J 2000. [PMID: 10926859 DOI: 10.1042/0264-6021:3500313] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Saccharomyces cerevisiae genes related to respiration are typically controlled by oxygen and haem. Usually the regulation by these factors is co-ordinated; haem is indicated as the oxygen sensor. However, the responsiveness of peroxisome functions to these regulatory factors is poorly understood. The expression of CTA1, POX1 and PEX1 genes encoding the peroxisomal proteins catalase A, acyl-CoA oxidase and Pex1p peroxin respectively was studied under various conditions: in anaerobiosis, in the absence of haem and in respiratory incompetence caused by the lack of a mitochondrial genome (rho(0)). The influence of haem deficiency or rho(0) on peroxisomal morphology was also investigated. Respiratory incompetence has no effect on the expression of CTA1 and POX1, whereas in the absence of haem their expression is markedly decreased. The synthesis of Pex1p is decreased in rho(0) cells and is decreased even more in haem-deficient cells. Nevertheless, peroxisomal morphology in both these types of cell does not differ significantly from the morphology of peroxisomes in wild-type cells. The down-regulating effect of anoxia on the expression of CTA1 and POX1 is even stronger than the effect of haem deficiency and is not reversed by the addition of exogenous haem or the presence of endogenous haem. Moreover, neither of these genes responds to the known haem-controlled transcriptional factor Hap1p. In contrast with the other two genes studied, PEX1 is up-regulated in anaerobiosis. The existence of one or more novel mechanisms of regulation of peroxisomal genes by haem and oxygen, different from those already known in S. cerevisiae, is postulated.
Collapse
Affiliation(s)
- M Skoneczny
- Department of Genetics, Institute of Biochemistry and Biophysics Polish Academy of Sciences, Pawinskiego 5A, 02-106 Warszawa, Poland
| | | |
Collapse
|
40
|
Gurvitz A, Wabnegger L, Rottensteiner H, Dawes IW, Hartig A, Ruis H, Hamilton B. Adr1p-dependent regulation of the oleic acid-inducible yeast gene SPS19 encoding the peroxisomal beta-oxidation auxiliary enzyme 2,4-dienoyl-CoA reductase. MOLECULAR CELL BIOLOGY RESEARCH COMMUNICATIONS : MCBRC 2000; 4:81-9. [PMID: 11170837 DOI: 10.1006/mcbr.2000.0261] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The role of Saccharomyces cerevisiae Adr1p was examined with respect to the transcriptional regulation of the SPS19 gene encoding the peroxisomal beta-oxidation auxiliary enzyme 2,4-dienoyl-CoA reductase. The SPS19 promoter contains both an oleate response element that binds the Pip2p-Oaf1p transcription factor as well as a canonical Adr1p-binding element, termed UAS1(SPS19). Northern analysis demonstrated that transcriptional up-regulation of SPS19 was abolished in cells devoid of Adr1p. Expression of an SPS19-lacZ reporter gene was shown to be quiescent in the adr1Delta mutant and abnormally elevated in cells containing multiple ADR1 copies. UAS1(SPS19) was able to compete for formation of a specific complex between recombinant Adr1p-LacZ and UAS1(CTA1) representing the corresponding Adr1p-binding element in the promoter of the catalase A gene, and to interact directly with this fusion protein. We conclude that in the presence of fatty acids in the medium transcription of SPS19 is directly regulated by both Pip2p-Oaf1p and Adr1p.
Collapse
Affiliation(s)
- A Gurvitz
- Institut für Biochemie und Molekulare Zellbiologie, Universität Wien and Ludwig Boltzmann-Forschungsstelle für Biochemie, Vienna Biocenter, Dr Bohrgasse 9, A-1030 Vienna, Austria.
| | | | | | | | | | | | | |
Collapse
|
41
|
Nestelbacher R, Laun P, Vondráková D, Pichová A, Schüller C, Breitenbach M. The influence of oxygen toxicity on yeast mother cell-specific aging. Exp Gerontol 2000; 35:63-70. [PMID: 10705040 DOI: 10.1016/s0531-5565(99)00087-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The effect of deleting both catalase genes and of increased oxygen as well as paraquat (a pro-oxidant) on the replicative life span of yeast mother cells has been investigated to test the so-called oxygen theory of aging. This is well established in higher organisms, but has not been extensively tested in the unicellular yeast model system. Life span determinations were performed in ambient air or in a controlled atmosphere (55% oxygen) and an isogenic series of strains deleted for one or both yeast catalases was used and compared with wild type. In the absence of cellular catalase, increased oxygen caused a marked decrease in life span that could be completely reversed by adding 1 mM GSH, a physiological antioxidant, to the yeast growth medium. In a second unrelated strain, the effects were similar although even the wild type showed a decrease in life span when oxygen was increased. The effect could again be compensated by addition of extracellular GSH. Our results show that manipulating the detoxification of reactive oxygen species has a profound effect on yeast aging. These findings are discussed in the light of recent results relating to oxygen toxicity in the aging process of higher organisms.
Collapse
Affiliation(s)
- R Nestelbacher
- Institut für Genetik und Allgemeine Biologie, Hellbrunnerstr. 34, A-5020, Salzburg, Austria
| | | | | | | | | | | |
Collapse
|
42
|
Nakagawa Y, Koide K, Watanabe K, Morita Y, Mizuguchi I, Akashi T. The expression of the pathogenic yeast Candida albicans catalase gene in response to hydrogen peroxide. Microbiol Immunol 1999; 43:645-51. [PMID: 10529105 DOI: 10.1111/j.1348-0421.1999.tb02452.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The catalase gene of the pathogenic yeast Candida albicans was cloned and its expression was examined. Activity of the catalase was detected when cells which were in the early logarithmic stage were treated with hydrogen peroxide. Additionally, activity was detected without any treatment to cells in the late logarithmic and stationary phases. When cells were cultured in galactose, glycerol, or ethanol, catalase activity was always observed without the hydrogen peroxide treatment, suggesting that glucose represses the induction of catalase expression. To elucidate the molecular mechanism of catalase expression, the putative gene for catalase and its 5' untranscribed region were cloned. Sequences of the gene and its potential regulatory region revealed several motifs, including a GC box-like element and stress-responsive element (STRE), which could be involved in the transcriptional regulation. Northern analysis showed that hydrogen peroxide and sorbitol activated transcription of the catalase. On the other hand, treatment of glucose strictly repressed the expression of the catalase even when co-treated with hydrogen peroxide. The expression of catalase against treatment with hydrogen peroxide took place very quickly and decreased slowly in the experimental condition adopted here. From these results, we assumed that the expression of the catalase in Candida albicans is regulated by various environmental conditions via motifs for transcriptional activation as in other yeast catalases.
Collapse
Affiliation(s)
- Y Nakagawa
- Laboratory of Medical Mycology, Research Institute for Disease Mechanism and Control, Nagoya University School of Medicine, Aichi, Japan
| | | | | | | | | | | |
Collapse
|
43
|
Baumgartner U, Hamilton B, Piskacek M, Ruis H, Rottensteiner H. Functional analysis of the Zn(2)Cys(6) transcription factors Oaf1p and Pip2p. Different roles in fatty acid induction of beta-oxidation in Saccharomyces cerevisiae. J Biol Chem 1999; 274:22208-16. [PMID: 10428786 DOI: 10.1074/jbc.274.32.22208] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Fatty acid induction of the peroxisomal beta-oxidation machinery in Saccharomyces cerevisiae involves transcriptional control of genes regulated by the oleate response element (ORE). Glucose as the preferred carbon source antagonizes this effect. Induction is dependent on the Zn(2)Cys(6) family members Oaf1p and Pip2p, which bind to this element as a heterodimer. We show here by ectopically expressing both components and LexA fusion derivatives that this transcription factor complex is only active in the presence of oleate. In contrast to Pip2p, Oaf1p is responsive to oleate activation in the absence of the other component of the heterodimer. Therefore, it is the exclusive receptor of the oleate signal. Pip2p is active also under noninducing conditions but is effectively inhibited when complexed with Oaf1p in the absence of inducer. It contributes to the trans-activation properties of the Oaf1p-Pip2p heterodimer and is required for efficient binding of Oaf1p to OREs in vivo. Repression of ORE-dependent transcription by glucose occurs via both Oaf1p and Pip2p. By dissecting functional domains of both proteins, we identified a region required for regulated activity of the C-terminal activation domain. These findings allow us to postulate a model for carbon source-regulated transcription of peroxisomal protein genes.
Collapse
Affiliation(s)
- U Baumgartner
- Vienna Biocenter, Institut für Biochemie und Molekulare Zellbiologie der Universität Wien and Ludwig Boltzmann Forschungsstelle für Biochemie, Dr. Bohrgasse 9, A-1030 Wien, Austria
| | | | | | | | | |
Collapse
|
44
|
Abstract
The ability of a microorganism to adhere to a solid support and to initiate a colony is often the first stage of microbial infections. To date, studies on S. cerevisiae cell-cell and cell-solid support interactions concerned only cell agglutination during mating and flocculation. Colony formation has not been studied before probably because this species is not pathogenic. However, S. cerevisiae can be a convenient model to study this process, thanks to well-developed genetics and the full knowledge of its nucleotide sequence. A preliminary characterization of the recently cloned essential IRR1 gene indicated that it may participate in cell-cell/substrate interactions. Here we show that lowering the level of expression of IRR1 (after fusion with a regulatory catalase A gene promoter) affects colony formation and disturbs zygote formation and spore germination. All these processes involve cell-cell or cell-solid support contacts. The IRR1 protein is localized in the cytosol as verified by immunofluorescence microscopy, and confirmed by cell fractionation and Western blotting. This indicates that Irr1p is not directly involved in the cell-solid support adhesion, but may be an element of a communication pathway between the cell and its surroundings.
Collapse
Affiliation(s)
- A Kurlandzka
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warszawa, Poland
| | | | | | | |
Collapse
|
45
|
Young ET, Saario J, Kacherovsky N, Chao A, Sloan JS, Dombek KM. Characterization of a p53-related activation domain in Adr1p that is sufficient for ADR1-dependent gene expression. J Biol Chem 1998; 273:32080-7. [PMID: 9822683 DOI: 10.1074/jbc.273.48.32080] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The yeast transcriptional activator Adr1p controls expression of the glucose-repressible alcohol dehydrogenase gene (ADH2), genes involved in glycerol metabolism, and genes required for peroxisome biogenesis and function. Previous data suggested that promoter-specific activation domains might contribute to expression of the different types of ADR1-dependent genes. By using gene fusions encoding the Gal4p DNA binding domain and portions of Adr1p, we identified a single, strong acidic activation domain spanning amino acids 420-462 of Adr1p. Both acidic and hydrophobic amino acids within this activation domain were important for its function. The critical hydrophobic residues are in a motif previously identified in p53 and related acidic activators. A mini-Adr1 protein consisting of the DNA binding domain of Adr1p fused to this 42-residue activation domain carried out all of the known functions of wild-type ADR1. It conferred stringent glucose repression on the ADH2 locus and on UAS1-containing reporter genes. The putative inhibitory region of Adr1p encompassing the protein kinase A phosphorylation site at Ser-230 is thus not essential for glucose repression mediated by ADR1. Mini-ADR1 allowed efficient derepression of gene expression. In addition it complemented an ADR1-null allele for growth on glycerol and oleate media, indicating efficient activation of genes required for glycerol metabolism and peroxisome biogenesis. Thus, a single activation domain can activate all ADR1-dependent promoters.
Collapse
Affiliation(s)
- E T Young
- Department of Biochemistry, University of Washington, Seattle, Washington 98195-7350, USA.
| | | | | | | | | | | |
Collapse
|
46
|
Phelan SA, Johnson KA, Beier DR, Paigen B. Characterization of the murine gene encoding Aop2 (antioxidant protein 2) and identification of two highly related genes. Genomics 1998; 54:132-9. [PMID: 9806838 DOI: 10.1006/geno.1998.5568] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The mouse Aop2 (antioxidant protein 2) cDNA recently cloned from liver and kidney is a member of the thiol-specific antioxidant gene family. We have isolated the mouse gene encoding Aop2 and have shown that it comprises five exons and four introns. Analysis of the sequence upstream of the translation start site revealed several potential Sp1-binding sites and two putative transcription initiation sites. Primer extension studies were used to determine the 5' end of the Aop2 transcript. This upstream region also contains consensus recognition sequences for the transcription factors USF, SREBP, and ADR1, all of which have been shown to regulate genes involved in lipid metabolism, and multiple consensus binding sites for HSF, whose activity is modulated by oxidative stress. Since Aop2 has recently been proposed as a candidate gene for atherosclerosis susceptibility differences in mice, the presence of these binding sites may have biological significance. We also isolated two highly related intronless genes and determined their chromosomal locations. Further characterization of this highly conserved gene family and its regulation will help to elucidate their biological functions.
Collapse
Affiliation(s)
- S A Phelan
- The Jackson Laboratory, Bar Harbor, Maine, 04609, USA.
| | | | | | | |
Collapse
|
47
|
Wang H, Le Clainche A, Le Dall MT, Wache Y, Pagot Y, Belin JM, Gaillardin C, Nicaud JM. Cloning and characterization of the peroxisomal acyl CoA oxidase ACO3 gene from the alkane-utilizing yeast Yarrowia lipolytica. Yeast 1998; 14:1373-86. [PMID: 9848229 DOI: 10.1002/(sici)1097-0061(199811)14:15<1373::aid-yea332>3.0.co;2-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The ACO3 gene, which encodes one of the acyl-CoA oxidase isoenzymes, was isolated from the alkane-utilizing yeast Yarrowia lipolytica as a 10 kb genomic fragment. It was sequenced and found to encode a 701-amino acid protein very similar to other ACOs, 67.5% identical to Y. lipolytica Aco1p and about 40% identical to S. cerevisiae Pox1p. Haploid strains with a disrupted allele were able to grow on fatty acids. The levels of acyl-CoA oxidase activity in the ACO3 deleted strain, in an ACO1 deleted strain and in the wild-type strain, suggested that ACO3 encodes a short chain acyl-CoA oxidase isoenzyme. This narrow substrate spectrum was confirmed by expression of Aco3p in E. coli.
Collapse
Affiliation(s)
- H Wang
- Laboratoire de Génétique des Microorganismes, CNRS ERS567, INRA Centre de Grignon, Thiverval Grignon, France
| | | | | | | | | | | | | | | |
Collapse
|
48
|
van den Berg MA, de Jong-Gubbels P, Steensma HY. Transient mRNA responses in chemostat cultures as a method of defining putative regulatory elements: application to genes involved in Saccharomyces cerevisiae acetyl-coenzyme A metabolism. Yeast 1998; 14:1089-104. [PMID: 9778795 DOI: 10.1002/(sici)1097-0061(19980915)14:12<1089::aid-yea312>3.0.co;2-k] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
To identify common regulatory sequences in the promoters of genes, transcription of 31 genes of Saccharomyces cerevisiae was analysed during the transient response to a glucose pulse in a chemostat culture. mRNA levels were monitored during the subsequent excess glucose, ethanol and acetate phases, while other conditions were kept constant. This setup allowed a direct comparison between regulation by glucose, ethanol and acetate. Genes with identical regulation patterns were grouped to identify regulatory elements in the promoters. In respect to regulation on glucose four classes were identified: no transcription under any of the conditions tested, no difference in regulation on glucose, induced on glucose and repressed on glucose. In addition, genes were found that were repressed or induced on ethanol or acetate. Sequence alignment of genes with similar regulation patterns revealed five new, putative regulatory promoter elements. (i) The glucose-inducible fermentation genes PDC1 and ADH1 share the sequence ATACCTTCSTT. (ii) Acetate-repression might be mediated by the decamer CCCGAG RGGA, present in the promoters of ACS2 and ACR1. (iii) A specific element (CCWTTSRNCCG) for the glyoxylate cycle was present in seven genes studied: CIT2, ICL1, MLS1, MDH2, CAT2, ACR1 and ACH1. These genes were derepressed on ethanol or acetate. (iv) The sequence ACGTSCRGAATGA was found in the promoters of the partially ethanol-repressed genes ACS1 and YAT1. (v) Ethanol induction, as seen for ACS2, ADH3 and MDH1, might be mediated via the sequence CGGSGCCGRAG.
Collapse
MESH Headings
- Acetates/metabolism
- Acetyl Coenzyme A/drug effects
- Acetyl Coenzyme A/genetics
- Acetyl Coenzyme A/metabolism
- Blotting, Northern
- Culture Media/pharmacology
- DNA, Fungal/drug effects
- DNA, Fungal/genetics
- Ethanol/metabolism
- Fermentation
- Gene Expression Regulation, Enzymologic/drug effects
- Gene Expression Regulation, Fungal/drug effects
- Genes, Fungal/drug effects
- Genes, Fungal/genetics
- Glyoxylates/metabolism
- Kinetics
- RNA, Messenger/analysis
- RNA, Messenger/drug effects
- RNA, Messenger/genetics
- Regulatory Sequences, Nucleic Acid/drug effects
- Regulatory Sequences, Nucleic Acid/genetics
- Saccharomyces cerevisiae/drug effects
- Saccharomyces cerevisiae/enzymology
- Saccharomyces cerevisiae/genetics
Collapse
Affiliation(s)
- M A van den Berg
- Kluyver Institute for Biotechnology, Delft University of Technology, The Netherlands
| | | | | |
Collapse
|
49
|
Hyre DE, Klevit RE. A disorder-to-order transition coupled to DNA binding in the essential zinc-finger DNA-binding domain of yeast ADR1. J Mol Biol 1998; 279:929-43. [PMID: 9642072 DOI: 10.1006/jmbi.1998.1811] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The motional dynamics and solvent-exchange behavior of free and DNA-bound forms of the minimal zinc-finger DNA-binding domain of the yeast transcription factor ADR1 (ADR1-DBD) are investigated using NMR. The parameters measured include the 1H-15N heteronuclear NOE, 15N and 1H T1 relaxation rates, 15N T2 relaxation rates, and solvent-exchange rates. The spin relaxation parameters, spectral density maps, and solvent-exchange behavior show that, exclusive of the N and C termini, three distinct regions of free ADR1-DBD exhibit different motions on multiple timescales. The N-terminal proximal, or accessory, region appears to be unstructured and highly flexible: it exhibits large amplitude motions on a picosecond timescale, little or no protection from solvent exchange, and random-coil proton chemical shifts. The two zinc fingers tumble anisotropically as folded domains, with the tumbling of the individual fingers being only partly correlated to each other, and are modestly protected from solvent exchange except near the tips of the fingers and in the linker joining them. Free ADR1-DBD exhibits exchange broadening around P97 in the proximal region, at the tip of finger 1, and throughout finger 2. Upon binding, most of the proximal region and both zinc fingers tumble as a single domain and exhibit significantly reduced picosecond timescale motions. This region becomes more protected from solvent exchange. The bound portion of the proximal region is proposed to lie exposed on the surface of the DNA. Exchange broadening remains around P97 but also becomes evident for residues in direct contact with the DNA and in the linker. We conclude that the region of ADR1-DBD essential for high-affinity binding undergoes a disorder-to-order transition upon binding to its cognate DNA and, together with the zinc fingers, forms a cohesive molecular complex with the nucleic acid.
Collapse
Affiliation(s)
- D E Hyre
- Department of Biochemistry and Biomolecular Structure Center, University of Washington, Seattle, WA, 98195-7742, USA
| | | |
Collapse
|
50
|
Verdone L, Cesari F, Denis CL, Di Mauro E, Caserta M. Factors affecting Saccharomyces cerevisiae ADH2 chromatin remodeling and transcription. J Biol Chem 1997; 272:30828-34. [PMID: 9388226 DOI: 10.1074/jbc.272.49.30828] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The chromatin structure of the Saccharomyces cerevisiae ADH2 gene is modified during the switch from repressing (high glucose) to derepressing (low glucose) conditions of growth. Loss of protection toward micrococcal nuclease cleavage for the nucleosomes covering the TATA box and the RNA initiation sites (-1 and +1, respectively) is the major modification taking place and is strictly dependent on the presence of the transcriptional activator ADR1. To identify separate functions involved in the transition from a repressed to a transcribing promoter, we have analyzed the ADH2 chromatin organization in various genetic backgrounds. Deletion of the CCR4 gene coding for a general transcription factor impaired ADH2 expression without affecting chromatin remodeling. Growing yeast at 37 degrees C also resulted in chromatin remodeling at the ADH2 locus even under glucose repressing conditions. However, although this temperature-induced remodeling was dependent on the ADR1 protein, no ADH2 mRNA was observed. In addition, inactivating RNA polymerase II (and therefore, elongation) was found to have no effect on the ability to reconfigure nucleosomes. Taken together, these data indicate that chromatin remodeling by itself is insufficient to induce transcription at the ADH2 promoter.
Collapse
Affiliation(s)
- L Verdone
- Dipartimento di Genetica e Biologia Molecolare, Università "La Sapienza," 00185 Rome, Italy
| | | | | | | | | |
Collapse
|