1
|
Mullins EA, Salay LE, Durie CL, Bradley NP, Jackman JE, Ohi MD, Chazin WJ, Eichman BF. A mechanistic model of primer synthesis from catalytic structures of DNA polymerase α-primase. Nat Struct Mol Biol 2024; 31:777-790. [PMID: 38491139 PMCID: PMC11102853 DOI: 10.1038/s41594-024-01227-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 01/12/2024] [Indexed: 03/18/2024]
Abstract
The mechanism by which polymerase α-primase (polα-primase) synthesizes chimeric RNA-DNA primers of defined length and composition, necessary for replication fidelity and genome stability, is unknown. Here, we report cryo-EM structures of Xenopus laevis polα-primase in complex with primed templates representing various stages of DNA synthesis. Our data show how interaction of the primase regulatory subunit with the primer 5' end facilitates handoff of the primer to polα and increases polα processivity, thereby regulating both RNA and DNA composition. The structures detail how flexibility within the heterotetramer enables synthesis across two active sites and provide evidence that termination of DNA synthesis is facilitated by reduction of polα and primase affinities for the varied conformations along the chimeric primer-template duplex. Together, these findings elucidate a critical catalytic step in replication initiation and provide a comprehensive model for primer synthesis by polα-primase.
Collapse
Affiliation(s)
- Elwood A Mullins
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
- Center for Structural Biology, Vanderbilt University, Nashville, TN, USA
| | - Lauren E Salay
- Center for Structural Biology, Vanderbilt University, Nashville, TN, USA
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, USA
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Clarissa L Durie
- Department of Cell and Developmental Biology, University of Michigan School of Medicine, Ann Arbor, MI, USA
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Biochemistry, University of Missouri, Columbia, MO, USA
| | - Noah P Bradley
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
- Center for Structural Biology, Vanderbilt University, Nashville, TN, USA
| | - Jane E Jackman
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA
- Center for RNA Biology, The Ohio State University, Columbus, OH, USA
| | - Melanie D Ohi
- Department of Cell and Developmental Biology, University of Michigan School of Medicine, Ann Arbor, MI, USA
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | - Walter J Chazin
- Center for Structural Biology, Vanderbilt University, Nashville, TN, USA.
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, USA.
- Department of Chemistry, Vanderbilt University, Nashville, TN, USA.
| | - Brandt F Eichman
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA.
- Center for Structural Biology, Vanderbilt University, Nashville, TN, USA.
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, USA.
| |
Collapse
|
2
|
Mullins EA, Salay LE, Durie CL, Bradley NP, Jackman JE, Ohi MD, Chazin WJ, Eichman BF. A mechanistic model of primer synthesis from catalytic structures of DNA polymerase α-primase. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.16.533013. [PMID: 36993335 PMCID: PMC10055150 DOI: 10.1101/2023.03.16.533013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
The mechanism by which polymerase α-primase (polα-primase) synthesizes chimeric RNA-DNA primers of defined length and composition, necessary for replication fidelity and genome stability, is unknown. Here, we report cryo-EM structures of polα-primase in complex with primed templates representing various stages of DNA synthesis. Our data show how interaction of the primase regulatory subunit with the primer 5'-end facilitates handoff of the primer to polα and increases polα processivity, thereby regulating both RNA and DNA composition. The structures detail how flexibility within the heterotetramer enables synthesis across two active sites and provide evidence that termination of DNA synthesis is facilitated by reduction of polα and primase affinities for the varied conformations along the chimeric primer/template duplex. Together, these findings elucidate a critical catalytic step in replication initiation and provide a comprehensive model for primer synthesis by polα-primase.
Collapse
|
3
|
Cordoba JJ, Mullins EA, Salay LE, Eichman BF, Chazin WJ. Flexibility and distributive synthesis regulate RNA priming and handoff in human DNA polymerase α-primase. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.01.551538. [PMID: 37577606 PMCID: PMC10418221 DOI: 10.1101/2023.08.01.551538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
DNA replication in eukaryotes relies on the synthesis of a ~30-nucleotide RNA/DNA primer strand through the dual action of the heterotetrameric polymerase α-primase (pol-prim) enzyme. Synthesis of the 7-10-nucleotide RNA primer is regulated by the C-terminal domain of the primase regulatory subunit (PRIM2C) and is followed by intramolecular handoff of the primer to pol α for extension by ~20 nucleotides of DNA. Here we provide evidence that RNA primer synthesis is governed by a combination of the high affinity and flexible linkage of the PRIM2C domain and the low affinity of the primase catalytic domain (PRIM1) for substrate. Using a combination of small angle X-ray scattering and electron microscopy, we found significant variability in the organization of PRIM2C and PRIM1 in the absence and presence of substrate, and that the population of structures with both PRIM2C and PRIM1 in a configuration aligned for synthesis is low. Crosslinking was used to visualize the orientation of PRIM2C and PRIM1 when engaged by substrate as observed by electron microscopy. Microscale thermophoresis was used to measure substrate affinities for a series of pol-prim constructs, which showed that the PRIM1 catalytic domain does not bind the template or emergent RNA-primed templates with appreciable affinity. Together, these findings support a model of RNA primer synthesis in which generation of the nascent RNA strand and handoff of the RNA-primed template from primase to polymerase α is mediated by the high degree of inter-domain flexibility of pol-prim, the ready dissociation of PRIM1 from its substrate, and the much higher affinity of the POLA1cat domain of polymerase α for full-length RNA-primed templates.
Collapse
Affiliation(s)
- John J. Cordoba
- Chemical and Physical Biology Program, Vanderbilt University, Nashville, Tennessee, USA
- Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, USA
| | - Elwood A. Mullins
- Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, USA
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, USA
| | - Lauren E. Salay
- Chemical and Physical Biology Program, Vanderbilt University, Nashville, Tennessee, USA
- Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, USA
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee, USA
| | - Brandt F. Eichman
- Chemical and Physical Biology Program, Vanderbilt University, Nashville, Tennessee, USA
- Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, USA
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, USA
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee, USA
| | - Walter J. Chazin
- Chemical and Physical Biology Program, Vanderbilt University, Nashville, Tennessee, USA
- Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, USA
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee, USA
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee, USA
| |
Collapse
|
4
|
Salay LE, Blee AM, Raza MK, Gallagher KS, Chen H, Dorfeuille AJ, Barton JK, Chazin WJ. Modification of the 4Fe-4S Cluster Charge Transport Pathway Alters RNA Synthesis by Yeast DNA Primase. Biochemistry 2022; 61:1113-1123. [PMID: 35617695 DOI: 10.1021/acs.biochem.2c00100] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
DNA synthesis during replication begins with the generation of an ∼10-nucleotide primer by DNA primase. Primase contains a redox-active 4Fe-4S cluster in the C-terminal domain of the p58 subunit (p58C). The redox state of this 4Fe-4S cluster can be modulated via the transport of charge through the protein and the DNA substrate (redox switching); changes in the redox state of the cluster alter the ability of p58C to associate with its substrate. The efficiency of redox switching in p58C can be altered by mutating tyrosine residues that bridge the 4Fe-4S cluster and the nucleic acid binding site. Here, we report the effects of mutating bridging tyrosines to phenylalanines in yeast p58C. High-resolution crystal structures show that these mutations, even with six tyrosines simultaneously mutated, do not perturb the three-dimensional structure of the protein. In contrast, measurements of the electrochemical properties on DNA-modified electrodes of p58C containing multiple tyrosine to phenylalanine mutations reveal deficiencies in their ability to engage in DNA charge transport. Significantly, this loss of electrochemical activity correlates with decreased primase activity. While single-site mutants showed modest decreases in activity compared to that of the wild-type primase, the protein containing six mutations exhibited a 10-fold or greater decrease. Thus, many possible tyrosine-mediated pathways for charge transport in yeast p58C exist, but inhibiting these pathways together diminishes the ability of yeast primase to generate primers. These results support a model in which redox switching is essential for primase activity.
Collapse
Affiliation(s)
- Lauren E Salay
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee 37240, United States.,Center for Structural Biology, Vanderbilt University, Nashville, Tennessee 37240, United States
| | - Alexandra M Blee
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee 37240, United States.,Center for Structural Biology, Vanderbilt University, Nashville, Tennessee 37240, United States
| | - Md Kausar Raza
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Kaitlyn S Gallagher
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee 37240, United States.,Center for Structural Biology, Vanderbilt University, Nashville, Tennessee 37240, United States
| | - Huiqing Chen
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee 37240, United States
| | - Andrew J Dorfeuille
- Center for Structural Biology, Vanderbilt University, Nashville, Tennessee 37240, United States
| | - Jacqueline K Barton
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Walter J Chazin
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee 37240, United States.,Center for Structural Biology, Vanderbilt University, Nashville, Tennessee 37240, United States.,Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
| |
Collapse
|
5
|
Onwubiko NO, Borst A, Diaz SA, Passkowski K, Scheffel F, Tessmer I, Nasheuer HP. SV40 T antigen interactions with ssDNA and replication protein A: a regulatory role of T antigen monomers in lagging strand DNA replication. Nucleic Acids Res 2020; 48:3657-3677. [PMID: 32128579 PMCID: PMC7144908 DOI: 10.1093/nar/gkaa138] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 02/14/2020] [Accepted: 02/26/2020] [Indexed: 01/08/2023] Open
Abstract
DNA replication is a central process in all living organisms. Polyomavirus DNA replication serves as a model system for eukaryotic DNA replication and has considerably contributed to our understanding of basic replication mechanisms. However, the details of the involved processes are still unclear, in particular regarding lagging strand synthesis. To delineate the complex mechanism of coordination of various cellular proteins binding simultaneously or consecutively to DNA to initiate replication, we investigated single-stranded DNA (ssDNA) interactions by the SV40 large T antigen (Tag). Using single molecule imaging by atomic force microscopy (AFM) combined with biochemical and spectroscopic analyses we reveal independent activity of monomeric and oligomeric Tag in high affinity binding to ssDNA. Depending on ssDNA length, we obtain dissociation constants for Tag-ssDNA interactions (KD values of 10–30 nM) that are in the same order of magnitude as ssDNA binding by human replication protein A (RPA). Furthermore, we observe the formation of RPA-Tag-ssDNA complexes containing hexameric as well as monomeric Tag forms. Importantly, our data clearly show stimulation of primase function in lagging strand Okazaki fragment synthesis by monomeric Tag whereas hexameric Tag inhibits the reaction, redefining DNA replication initiation on the lagging strand.
Collapse
Affiliation(s)
- Nichodemus O Onwubiko
- Biochemistry, School of Natural Sciences, Center for Chromosome Biology, Biomedical SciencesBuilding, NUI Galway, New Castle Road, Galway, Ireland
| | - Angela Borst
- Rudolf Virchow Center for Experimental Biomedicine, University ofWürzburg, Josef Schneider Strasse 2, 97080 Würzburg, Germany
| | - Suraya A Diaz
- Biochemistry, School of Natural Sciences, Center for Chromosome Biology, Biomedical SciencesBuilding, NUI Galway, New Castle Road, Galway, Ireland
| | - Katharina Passkowski
- Rudolf Virchow Center for Experimental Biomedicine, University ofWürzburg, Josef Schneider Strasse 2, 97080 Würzburg, Germany
| | - Felicia Scheffel
- Rudolf Virchow Center for Experimental Biomedicine, University ofWürzburg, Josef Schneider Strasse 2, 97080 Würzburg, Germany
| | - Ingrid Tessmer
- Rudolf Virchow Center for Experimental Biomedicine, University ofWürzburg, Josef Schneider Strasse 2, 97080 Würzburg, Germany
| | - Heinz P Nasheuer
- Biochemistry, School of Natural Sciences, Center for Chromosome Biology, Biomedical SciencesBuilding, NUI Galway, New Castle Road, Galway, Ireland
| |
Collapse
|
6
|
Witkin AE, Banerji J, Bullock PA. A model for the formation of the duplicated enhancers found in polyomavirus regulatory regions. Virology 2020; 543:27-33. [PMID: 32056844 DOI: 10.1016/j.virol.2020.01.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 01/27/2020] [Accepted: 01/27/2020] [Indexed: 12/14/2022]
Abstract
When purified from persistent infections, the genomes of most human polyomaviruses contain single enhancers. However, when isolated from productively infected cells from immunocompromised individuals, the genomes of several polyomaviruses contain duplicated enhancers that promote a number of polyoma-based diseases. The mechanism(s) that gives rise to the duplicated enhancers in the polyomaviruses is, however, not known. Herein we propose a model for the duplication of the enhancers that is based on recent advances in our understanding of; 1) the initiation of polyomavirus DNA replication, 2) the formation of long flaps via displacement synthesis and 3) the subsequent generation of duplicated enhancers via double stranded break repair. Finally, we discuss the possibility that the polyomavirus based replication dependent enhancer duplication model may be relevant to the enhancer-associated rearrangements detected in human genomes that are associated with various diseases, including cancers.
Collapse
Affiliation(s)
- Anna E Witkin
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA, 02111, USA
| | - Julian Banerji
- Center for Computational and Integrative Biology, Simches Research Center, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA, 02114, USA
| | - Peter A Bullock
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA, 02111, USA.
| |
Collapse
|
7
|
Khalili A, Craigie M, Donadoni M, Sariyer IK. Host-Immune Interactions in JC Virus Reactivation and Development of Progressive Multifocal Leukoencephalopathy (PML). J Neuroimmune Pharmacol 2019; 14:649-660. [PMID: 31452013 PMCID: PMC6898772 DOI: 10.1007/s11481-019-09877-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 08/20/2019] [Indexed: 12/12/2022]
Abstract
With the advent of immunomodulatory therapies and the HIV epidemic, the impact of JC Virus (JCV) on the public health system has grown significantly due to the increased incidence of Progressive Multifocal Leukoencephalopathy (PML). Currently, there are no pharmaceutical agents targeting JCV infection for the treatment and the prevention of viral reactivation leading to the development of PML. As JCV primarily reactivates in immunocompromised patients, it is proposed that the immune system (mainly the cellular-immunity component) plays a key role in the regulation of JCV to prevent productive infection and PML development. However, the exact mechanism of JCV immune regulation and reactivation is not well understood. Likewise, the impact of host factors on JCV regulation and reactivation is another understudied area. Here we discuss the current literature on host factor-mediated and immune factor-mediated regulation of JCV gene expression with the purpose of developing a model of the factors that are bypassed during JCV reactivation, and thus are potential targets for the development of therapeutic interventions to suppress PML initiation. Graphical Abstract.
Collapse
Affiliation(s)
- Amir Khalili
- Department of Neuroscience and Center for Neurovirology, Lewis Katz School of Medicine at Temple University, 3500 North Broad Street, Medical Education and Research Building, 7th Floor, Philadelphia, PA, 19140, USA
| | - Michael Craigie
- Department of Neuroscience and Center for Neurovirology, Lewis Katz School of Medicine at Temple University, 3500 North Broad Street, Medical Education and Research Building, 7th Floor, Philadelphia, PA, 19140, USA
| | - Martina Donadoni
- Department of Neuroscience and Center for Neurovirology, Lewis Katz School of Medicine at Temple University, 3500 North Broad Street, Medical Education and Research Building, 7th Floor, Philadelphia, PA, 19140, USA
| | - Ilker Kudret Sariyer
- Department of Neuroscience and Center for Neurovirology, Lewis Katz School of Medicine at Temple University, 3500 North Broad Street, Medical Education and Research Building, 7th Floor, Philadelphia, PA, 19140, USA.
| |
Collapse
|
8
|
Aria V, Yeeles JTP. Mechanism of Bidirectional Leading-Strand Synthesis Establishment at Eukaryotic DNA Replication Origins. Mol Cell 2018; 73:S1097-2765(18)30879-7. [PMID: 30451148 PMCID: PMC6344338 DOI: 10.1016/j.molcel.2018.10.019] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 09/17/2018] [Accepted: 10/11/2018] [Indexed: 11/29/2022]
Abstract
DNA replication commences at eukaryotic replication origins following assembly and activation of bidirectional CMG helicases. Once activated, CMG unwinds the parental DNA duplex and DNA polymerase α-primase initiates synthesis on both template strands. By utilizing an origin-dependent replication system using purified yeast proteins, we have mapped start sites for leading-strand replication. Synthesis is mostly initiated outside the origin sequence. Strikingly, rightward leading strands are primed left of the origin and vice versa. We show that each leading strand is established from a lagging-strand primer synthesized by the replisome on the opposite side of the origin. Preventing elongation of primers synthesized left of the origin blocked rightward leading strands, demonstrating that replisomes are interdependent for leading-strand synthesis establishment. The mechanism we reveal negates the need for dedicated leading-strand priming and necessitates a crucial role for the lagging-strand polymerase Pol δ in connecting the nascent leading strand with the advancing replisome.
Collapse
Affiliation(s)
- Valentina Aria
- Division of Protein and Nucleic Acid Chemistry, Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Joseph T P Yeeles
- Division of Protein and Nucleic Acid Chemistry, Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK.
| |
Collapse
|
9
|
Stodola JL, Burgers PM. Mechanism of Lagging-Strand DNA Replication in Eukaryotes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1042:117-133. [PMID: 29357056 DOI: 10.1007/978-981-10-6955-0_6] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
This chapter focuses on the enzymes and mechanisms involved in lagging-strand DNA replication in eukaryotic cells. Recent structural and biochemical progress with DNA polymerase α-primase (Pol α) provides insights how each of the millions of Okazaki fragments in a mammalian cell is primed by the primase subunit and further extended by its polymerase subunit. Rapid kinetic studies of Okazaki fragment elongation by Pol δ illuminate events when the polymerase encounters the double-stranded RNA-DNA block of the preceding Okazaki fragment. This block acts as a progressive molecular break that provides both time and opportunity for the flap endonuclease 1 (FEN1) to access the nascent flap and cut it. The iterative action of Pol δ and FEN1 is coordinated by the replication clamp PCNA and produces a regulated degradation of the RNA primer, thereby preventing the formation of long-strand displacement flaps. Occasional long flaps are further processed by backup nucleases including Dna2.
Collapse
Affiliation(s)
- Joseph L Stodola
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, MO, USA
| | - Peter M Burgers
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, MO, USA.
| |
Collapse
|
10
|
Abstract
This review focuses on the biogenesis and composition of the eukaryotic DNA replication fork, with an emphasis on the enzymes that synthesize DNA and repair discontinuities on the lagging strand of the replication fork. Physical and genetic methodologies aimed at understanding these processes are discussed. The preponderance of evidence supports a model in which DNA polymerase ε (Pol ε) carries out the bulk of leading strand DNA synthesis at an undisturbed replication fork. DNA polymerases α and δ carry out the initiation of Okazaki fragment synthesis and its elongation and maturation, respectively. This review also discusses alternative proposals, including cellular processes during which alternative forks may be utilized, and new biochemical studies with purified proteins that are aimed at reconstituting leading and lagging strand DNA synthesis separately and as an integrated replication fork.
Collapse
Affiliation(s)
- Peter M J Burgers
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110;
| | - Thomas A Kunkel
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709;
| |
Collapse
|
11
|
Chung WH. To peep into Pif1 helicase: multifaceted all the way from genome stability to repair-associated DNA synthesis. J Microbiol 2014; 52:89-98. [PMID: 24500472 DOI: 10.1007/s12275-014-3524-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Accepted: 10/29/2013] [Indexed: 01/05/2023]
Abstract
Pif1 DNA helicase is the prototypical member of a 5' to 3' helicase superfamily conserved from bacteria to humans. In Saccharomyces cerevisiae, Pif1 and its homologue Rrm3, localize in both mitochondria and nucleus playing multiple roles in the maintenance of genomic homeostasis. They display relatively weak processivities in vitro, but have largely non-overlapping functions on common genomic loci such as mitochondrial DNA, telomeric ends, and many replication forks especially at hard-to-replicate regions including ribosomal DNA and G-quadruplex structures. Recently, emerging evidence shows that Pif1, but not Rrm3, has a significant new role in repair-associated DNA synthesis with Polδ during homologous recombination stimulating D-loop migration for conservative DNA replication. Comparative genetic and biochemical studies on the structure and function of Pif1 family helicases across different biological systems are further needed to elucidate both diversity and specificity of their mechanisms of action that contribute to genome stability.
Collapse
Affiliation(s)
- Woo-Hyun Chung
- College of Pharmacy, Duksung Women's University, Seoul, 132-714, Republic of Korea,
| |
Collapse
|
12
|
Waisertreiger ISR, Liston VG, Menezes MR, Kim HM, Lobachev KS, Stepchenkova EI, Tahirov TH, Rogozin IB, Pavlov YI. Modulation of mutagenesis in eukaryotes by DNA replication fork dynamics and quality of nucleotide pools. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2012; 53:699-724. [PMID: 23055184 PMCID: PMC3893020 DOI: 10.1002/em.21735] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Revised: 08/13/2012] [Accepted: 08/15/2012] [Indexed: 06/01/2023]
Abstract
The rate of mutations in eukaryotes depends on a plethora of factors and is not immediately derived from the fidelity of DNA polymerases (Pols). Replication of chromosomes containing the anti-parallel strands of duplex DNA occurs through the copying of leading and lagging strand templates by a trio of Pols α, δ and ϵ, with the assistance of Pol ζ and Y-family Pols at difficult DNA template structures or sites of DNA damage. The parameters of the synthesis at a given location are dictated by the quality and quantity of nucleotides in the pools, replication fork architecture, transcription status, regulation of Pol switches, and structure of chromatin. The result of these transactions is a subject of survey and editing by DNA repair.
Collapse
Affiliation(s)
- Irina S.-R. Waisertreiger
- Eppley Institute for Research in Cancer and Allied Diseases, ESH 7009, 986805 Nebraska Medical Center, Omaha, NE 68198-6805, U.S.A
| | - Victoria G. Liston
- Eppley Institute for Research in Cancer and Allied Diseases, ESH 7009, 986805 Nebraska Medical Center, Omaha, NE 68198-6805, U.S.A
| | - Miriam R. Menezes
- Eppley Institute for Research in Cancer and Allied Diseases, ESH 7009, 986805 Nebraska Medical Center, Omaha, NE 68198-6805, U.S.A
| | - Hyun-Min Kim
- School of Biology and Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, U.S.A
| | - Kirill S. Lobachev
- School of Biology and Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, U.S.A
| | - Elena I. Stepchenkova
- Eppley Institute for Research in Cancer and Allied Diseases, ESH 7009, 986805 Nebraska Medical Center, Omaha, NE 68198-6805, U.S.A
- Saint Petersburg Branch of Vavilov Institute of General Genetics, Universitetskaya emb. 7/9, St Petersburg, 199034, Russia
- Department of Genetics, Saint Petersburg University, Universitetskaya emb. 7/9, St Petersburg, 199034, Russia
| | - Tahir H. Tahirov
- Eppley Institute for Research in Cancer and Allied Diseases, ESH 7009, 986805 Nebraska Medical Center, Omaha, NE 68198-6805, U.S.A
| | - Igor B. Rogozin
- National Center for Biotechnology Information NLM, National Institutes of Health, Bethesda, MD 20894, U.S.A
- Institute of Cytology and Genetics, 630090 Novosibirsk, Russia
| | - Youri. I. Pavlov
- Eppley Institute for Research in Cancer and Allied Diseases, ESH 7009, 986805 Nebraska Medical Center, Omaha, NE 68198-6805, U.S.A
- Department of Genetics, Saint Petersburg University, Universitetskaya emb. 7/9, St Petersburg, 199034, Russia
| |
Collapse
|
13
|
Abstract
Replicative DNA helicases generally unwind DNA as a single hexamer that encircles and translocates along one strand of the duplex while excluding the complementary strand (“steric exclusion”). In contrast, large T antigen (T-ag), the replicative DNA helicase of the Simian Virus 40 (SV40), is reported to function as a pair of stacked hexamers that pumps double-stranded DNA through its central channel while laterally extruding single-stranded DNA. Here, we use single-molecule and ensemble assays to show that T-ag assembled on the SV40 origin unwinds DNA efficiently as a single hexamer that translocates on single-stranded DNA in the 3′ to 5′ direction. Unexpectedly, T-ag unwinds DNA past a DNA-protein crosslink on the translocation strand, suggesting that the T-ag ring can open to bypass bulky adducts. Together, our data underscore the profound conservation among replicative helicase mechanisms while revealing a new level of plasticity in their interactions with DNA damage.
Collapse
|
14
|
Kang YH, Lee CH, Seo YS. Dna2 on the road to Okazaki fragment processing and genome stability in eukaryotes. Crit Rev Biochem Mol Biol 2010; 45:71-96. [PMID: 20131965 DOI: 10.3109/10409230903578593] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
DNA replication is a primary mechanism for maintaining genome integrity, but it serves this purpose best by cooperating with other proteins involved in DNA repair and recombination. Unlike leading strand synthesis, lagging strand synthesis has a greater risk of faulty replication for several reasons: First, a significant part of DNA is synthesized by polymerase alpha, which lacks a proofreading function. Second, a great number of Okazaki fragments are synthesized, processed and ligated per cell division. Third, the principal mechanism of Okazaki fragment processing is via generation of flaps, which have the potential to form a variety of structures in their sequence context. Finally, many proteins for the lagging strand interact with factors involved in repair and recombination. Thus, lagging strand DNA synthesis could be the best example of a converging place of both replication and repair proteins. To achieve the risky task with extraordinary fidelity, Okazaki fragment processing may depend on multiple layers of redundant, but connected pathways. An essential Dna2 endonuclease/helicase plays a pivotal role in processing common structural intermediates that occur during diverse DNA metabolisms (e.g. lagging strand synthesis and telomere maintenance). Many roles of Dna2 suggest that the preemptive removal of long or structured flaps ultimately contributes to genome maintenance in eukaryotes. In this review, we describe the function of Dna2 in Okazaki fragment processing, and discuss its role in the maintenance of genome integrity with an emphasis on its functional interactions with other factors required for genome maintenance.
Collapse
Affiliation(s)
- Young-Hoon Kang
- Center for DNA Replication and Genome Instability, Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| | | | | |
Collapse
|
15
|
Dai H, Liu J, Malkas LH, Hickey RJ. Characterization of RNA primers synthesized by the human breast cancer cell DNA synthesome. J Cell Biochem 2009; 106:798-811. [PMID: 19204933 DOI: 10.1002/jcb.22015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We previously reported on the purification and characterization of a functional multi-protein DNA replication complex (the DNA synthesome) from human cells and tissues. The synthesome is fully competent to carry-out all phases of the DNA replication process in vitro. In this study, DNA primase, a component of the synthesome, is examined to determine its activity and processivity in the in vitro synthesis and extension of RNA primers. Our results show that primase activity in the P4 fraction of the synthesome is 30-fold higher than that of crude cell extracts. The synthesome synthesizes RNA primers that are 7-10 ribonucleotides long and DNA primers that are 20-40 deoxyribonucleotides long using a poly(dT) template of exogenous single-stranded DNA. The synthesome-catalyzed RNA primers can be elongated by E. coli DNA polymerase I to form the complementary DNA strands on the poly(dT) template. In addition, the synthesome also supports the synthesis of native RNA primers in vitro using an endogenous supercoiled double-stranded DNA template. Gel analysis demonstrates that native RNA primers are oligoribonucleotides of 10-20 nt in length and the primers are covalently link to DNA to form RNA-primed nascent DNA of 100-200 nt. Our study reveals that the synthesome model is capable of priming and continuing DNA replication. The ability of the synthesome to synthesize and extend RNA primers in vitro elucidates the organizational and functional properties of the synthesome as a potentially useful replication apparatus to study the function of primase and the interaction of primase with other replication proteins.
Collapse
Affiliation(s)
- Heqiao Dai
- Department of Medicine, Division of Hematology/Oncology, Indiana University School of Medicine, Indiana University Cancer Research Institute, Indiana University Simon Cancer Center, 1044 W. Walnut Street R4-170 Indianapolis, Indiana 46202, USA
| | | | | | | |
Collapse
|
16
|
Baird DM. Telomere dynamics in human cells. Biochimie 2008; 90:116-21. [DOI: 10.1016/j.biochi.2007.08.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2007] [Accepted: 08/02/2007] [Indexed: 01/18/2023]
|
17
|
Rytkönen AK, Vaara M, Nethanel T, Kaufmann G, Sormunen R, Läärä E, Nasheuer HP, Rahmeh A, Lee MYWT, Syväoja JE, Pospiech H. Distinctive activities of DNA polymerases during human DNA replication. FEBS J 2006; 273:2984-3001. [PMID: 16762037 DOI: 10.1111/j.1742-4658.2006.05310.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The contributions of human DNA polymerases (pols) alpha, delta and epsilon during S-phase progression were studied in order to elaborate how these enzymes co-ordinate their functions during nuclear DNA replication. Pol delta was three to four times more intensely UV cross-linked to nascent DNA in late compared with early S phase, whereas the cross-linking of pols alpha and epsilon remained nearly constant throughout the S phase. Consistently, the chromatin-bound fraction of pol delta, unlike pols alpha and epsilon, increased in the late S phase. Moreover, pol delta neutralizing antibodies inhibited replicative DNA synthesis most efficiently in late S-phase nuclei, whereas antibodies against pol epsilon were most potent in early S phase. Ultrastructural localization of the pols by immuno-electron microscopy revealed pol epsilon to localize predominantly to ring-shaped clusters at electron-dense regions of the nucleus, whereas pol delta was mainly dispersed on fibrous structures. Pol alpha and proliferating cell nuclear antigen displayed partial colocalization with pol delta and epsilon, despite the very limited colocalization of the latter two pols. These data are consistent with models where pols delta and epsilon pursue their functions at least partly independently during DNA replication.
Collapse
Affiliation(s)
- Anna K Rytkönen
- Biocenter Oulu and Department of Biochemistry, University of Oulu, Finland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Pavlov YI, Shcherbakova PV, Rogozin IB. Roles of DNA Polymerases in Replication, Repair, and Recombination in Eukaryotes. INTERNATIONAL REVIEW OF CYTOLOGY 2006; 255:41-132. [PMID: 17178465 DOI: 10.1016/s0074-7696(06)55002-8] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The functioning of the eukaryotic genome depends on efficient and accurate DNA replication and repair. The process of replication is complicated by the ongoing decomposition of DNA and damage of the genome by endogenous and exogenous factors. DNA damage can alter base coding potential resulting in mutations, or block DNA replication, which can lead to double-strand breaks (DSB) and to subsequent chromosome loss. Replication is coordinated with DNA repair systems that operate in cells to remove or tolerate DNA lesions. DNA polymerases can serve as sensors in the cell cycle checkpoint pathways that delay cell division until damaged DNA is repaired and replication is completed. Eukaryotic DNA template-dependent DNA polymerases have different properties adapted to perform an amazingly wide spectrum of DNA transactions. In this review, we discuss the structure, the mechanism, and the evolutionary relationships of DNA polymerases and their possible functions in the replication of intact and damaged chromosomes, DNA damage repair, and recombination.
Collapse
Affiliation(s)
- Youri I Pavlov
- Eppley Institute for Research in Cancer and Allied Diseases, Departments of Biochemistry and Molecular Biology, and Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska 68198-6805, USA
| | | | | |
Collapse
|
19
|
Mitkova AV, Biswas-Fiss EE, Biswas SB. Modulation of DNA synthesis in Saccharomyces cerevisiae nuclear extract by DNA polymerases and the origin recognition complex. J Biol Chem 2004; 280:6285-92. [PMID: 15590683 DOI: 10.1074/jbc.m410129200] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have analyzed the modulation of DNA synthesis on a supercoiled plasmid DNA template by DNA polymerases (pol), minichromosome maintenance protein complex (Mcm), topoisomerases, and the origin recognition complex (ORC) using an in vitro assay system. Antisera specific against the four-subunit pol alpha, the catalytic subunit of pol delta, and the Mcm467 complex each inhibited DNA synthesis. However, DNA synthesis in this system appeared to be independent of polepsilon. Consequently, DNA synthesis in the in vitro system appeared to depend only on two polymerases, alpha and delta, as well as the Mcm467 DNA helicase. This system requires supercoiled plasmid DNA template and DNA synthesis absolutely required DNA topoisomerase I. In addition, we also report here a novel finding that purified recombinant six subunit ORC significantly stimulated the DNA synthesis on a supercoiled plasmid DNA template containing an autonomously replicating sequence, ARS1.
Collapse
Affiliation(s)
- Atanaska V Mitkova
- Department of Molecular Biology, GSBS & SOM, University of Medicine & Dentistry of New Jersey, Stratford, New Jersey 08084, USA
| | | | | |
Collapse
|
20
|
Gai D, Zhao R, Li D, Finkielstein CV, Chen XS. Mechanisms of conformational change for a replicative hexameric helicase of SV40 large tumor antigen. Cell 2004; 119:47-60. [PMID: 15454080 DOI: 10.1016/j.cell.2004.09.017] [Citation(s) in RCA: 256] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2004] [Revised: 09/03/2004] [Accepted: 09/03/2004] [Indexed: 10/26/2022]
Abstract
The large tumor antigen (LTag) of simian virus 40, an AAA(+) protein, is a hexameric helicase essential for viral DNA replication in eukaryotic cells. LTag functions as an efficient molecular machine powered by ATP binding and hydrolysis for origin DNA melting and replication fork unwinding. To understand how ATP binding and hydrolysis are coupled to conformational changes, we have determined high-resolution structures ( approximately 1.9 A) of LTag hexamers in distinct nucleotide binding states. The structural differences of LTag in various nucleotide states detail the molecular mechanisms of conformational changes triggered by ATP binding/hydrolysis and reveal a potential mechanism of concerted nucleotide binding and hydrolysis. During these conformational changes, the angles and orientations between domains of a monomer alter, creating an "iris"-like motion in the hexamer. Additionally, six unique beta hairpins on the channel surface move longitudinally along the central channel, possibly serving as a motor for pulling DNA into the LTag double hexamer for unwinding.
Collapse
Affiliation(s)
- Dahai Gai
- Department of Biochemistry and Molecular Genetics, University of Colorado Health Sciences Center, Denver, CO 80262, USA
| | | | | | | | | |
Collapse
|
21
|
Gai D, Li D, Finkielstein CV, Ott RD, Taneja P, Fanning E, Chen XS. Insights into the oligomeric states, conformational changes, and helicase activities of SV40 large tumor antigen. J Biol Chem 2004; 279:38952-9. [PMID: 15247252 DOI: 10.1074/jbc.m406160200] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The large T (LT) antigen encoded by SV40 virus is a multi-domain, multi-functional protein that can not only transform cells but can also function as an efficient molecular machine to unwind duplex DNA for DNA replication. Here we report our findings on the oligomeric forms, domain interactions, and ATPase and helicase activities of various LT constructs. For the LT constructs that hexamerize, only two oligomeric forms, hexameric and monomeric, were detected in the absence of ATP/ADP. However, the presence of ATP/ADP stabilizes LT in the hexameric form. The LT constructs lacking the N- and C-terminal domains, but still retaining hexamerization ability, have ATPase as well as helicase activities at a level comparable to the full-length LT, suggesting the importance of hexamerization for these activities. The domain structures and the possible interactions between different LT fragments were probed with limited protease (trypsin) digestion. Such protease digestion generated a distinct pattern in the presence and absence of ATP/ADP and Mg(2+). The most C-terminal fragment (residues 628-708, containing the host-range domain), which was thought to be completely unstructured, was somewhat trypsin-resistant despite the presence of multiple Arg and Lys, possibly due to a rather structured C terminus. Furthermore, the N- and C-terminal fragments cleaved by trypsin were associated with other parts of the molecule, suggesting the interdomain interactions for the fragments at both ends.
Collapse
Affiliation(s)
- Dahai Gai
- Biochemistry and Molecular Genetics, University of Colorado Health Sciences Center, School of Medicine, Denver, Colorado 80262, USA
| | | | | | | | | | | | | |
Collapse
|
22
|
Kao HI, Bambara RA. The protein components and mechanism of eukaryotic Okazaki fragment maturation. Crit Rev Biochem Mol Biol 2004; 38:433-52. [PMID: 14693726 DOI: 10.1080/10409230390259382] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
An initiator RNA (iRNA) is required to prime cellular DNA synthesis. The structure of double-stranded DNA allows the synthesis of one strand to be continuous but the other must be generated discontinuously. Frequent priming of the discontinuous strand results in the formation of many small segments, designated Okazaki fragments. These short pieces need to be processed and joined to form an intact DNA strand. Our knowledge of the mechanism of iRNA removal is still evolving. Early reconstituted systems suggesting that the removal of iRNA requires sequential action of RNase H and flap endonuclease 1 (FEN1) led to the RNase H/FEN1 model. However, genetic analyses implied that Dna2p, an essential helicase/nuclease, is required. Subsequent biochemical studies suggested sequential action of RPA, Dna2p, and FEN1 for iRNA removal, leading to the second model, the Dna2p/RPA/FEN1 model. Studies of strand-displacement synthesis by polymerase delta indicated that in a reconstituted system, FEN1 could act as soon as short flaps are created, giving rise to a third model, the FEN1-only model. Each of the three pathways is supported by different genetic and biochemical results. Properties of the major protein components in this process will be discussed, and the validity of each model as a true representation of Okazaki fragment processing will be critically evaluated in this review.
Collapse
Affiliation(s)
- Hui-I Kao
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, USA
| | | |
Collapse
|
23
|
Kaufmann G, Nethanel T. Did an early version of the eukaryal replisome enable the emergence of chromatin? PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2004; 77:173-209. [PMID: 15196893 DOI: 10.1016/s0079-6603(04)77005-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Gabriel Kaufmann
- Biochemistry Department, Tel Aviv University, Ramat Aviv 69978, Israel
| | | |
Collapse
|
24
|
Podust VN, Chang LS, Ott R, Dianov GL, Fanning E. Reconstitution of human DNA polymerase delta using recombinant baculoviruses: the p12 subunit potentiates DNA polymerizing activity of the four-subunit enzyme. J Biol Chem 2002; 277:3894-901. [PMID: 11711545 DOI: 10.1074/jbc.m109684200] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Eukaryotic DNA polymerase delta is thought to consist of three (budding yeast) or four subunits (fission yeast, mammals). Four human genes encoding polypeptides p125, p50, p66, and p12 have been assigned as subunits of DNA polymerase delta. However, rigorous purification of human or bovine DNA polymerase delta from natural sources has usually yielded two-subunit preparations containing only p125 and p50 polypeptides. To reconstitute an intact DNA polymerase delta, we have constructed recombinant baculoviruses encoding the p125, p50, p66, and p12 subunits. From insect cells infected with four baculoviruses, protein preparations containing the four polypeptides of expected sizes were isolated. The four-subunit DNA polymerase delta displayed a specific activity comparable with that of the human, bovine, and fission yeast proteins isolated from natural sources. Recombinant DNA polymerase delta efficiently replicated singly primed M13 DNA in the presence of replication protein A, proliferating cell nuclear antigen, and replication factor C and was active in the SV40 DNA replication system. A three-subunit subcomplex consisting of the p125, p50, and p66 subunits, but lacking the p12 subunit, was also isolated. The p125, p50, and p66 polypeptides formed a stable complex that displayed DNA polymerizing activity 15-fold lower than that of the four-subunit polymerase. p12, expressed and purified individually, stimulated the activity of the three-subunit complex 4-fold on poly(dA)-oligo(dT) template-primer but had no effect on the activity of the four-subunit enzyme. Therefore, the p12 subunit is required to reconstitute fully active recombinant human DNA polymerase delta.
Collapse
Affiliation(s)
- Vladimir N Podust
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee 37232, USA.
| | | | | | | | | |
Collapse
|
25
|
Lin YL, Dutta A. In vitro analysis of SV40 DNA replication. CURRENT PROTOCOLS IN CELL BIOLOGY 2001; Chapter 11:Unit 11.5. [PMID: 18228310 DOI: 10.1002/0471143030.cb1105s02] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
This unit describes a method for studying cellular factors that affect eukaryotic replication by using a plasmid that contains an SV40 origin of replication and supplying the viral helicase T antigen. Replication factors are supplied by S100 extracts of 293 cells. The unit also contains protocols for expression and purification of T antigen and analysis of the products of replication.
Collapse
Affiliation(s)
- Y L Lin
- Genetics Institute, Cambridge, Massachusetts, USA
| | | |
Collapse
|
26
|
Affiliation(s)
- D T Simmons
- Department of Biological Sciences, University of Delaware, Newark 19716, USA
| |
Collapse
|
27
|
Jaffe AB, Jongens TA. Structure-specific abnormalities associated with mutations in a DNA replication accessory factor in Drosophila. Dev Biol 2001; 230:161-76. [PMID: 11161570 DOI: 10.1006/dbio.2000.0117] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have phenotypically and molecularly analyzed the cutlet locus in Drosophila. Homozygous cutlet flies exhibit abnormal development of a subset of adult tissues, including the eye, wing, and ovary. We show that abnormal development of these tissues is due to a defect in normal cell growth. Surprisingly, cell growth is affected in all developing precursor tissues in cutlet mutant animals, including those that give rise to phenotypically wild-type adult structures. The cutlet gene encodes a Drosophila homologue of yeast CHL12 and has similarity to mammalian replication factor C. In addition, cutlet genetically interacts with multiple subunits of Drosophila replication factor C. Our results suggest that the cutlet gene product acts as an accessory factor for DNA replication and has different requirements for the formation of various adult structures during Drosophila development.
Collapse
Affiliation(s)
- A B Jaffe
- Cell and Molecular Biology Graduate Group, University of Pennsylvania School of Medicine, Philadelphia 19104, USA
| | | |
Collapse
|
28
|
Weisshart K, Förster H, Kremmer E, Schlott B, Grosse F, Nasheuer HP. Protein-protein interactions of the primase subunits p58 and p48 with simian virus 40 T antigen are required for efficient primer synthesis in a cell-free system. J Biol Chem 2000; 275:17328-37. [PMID: 10747950 DOI: 10.1074/jbc.m000717200] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
DNA polymerase alpha-primase (pol-prim, consisting of p180-p68-p58-p48), and primase p58-p48 (prim(2)) synthesize short RNA primers on single-stranded DNA. In the SV40 DNA replication system, only pol-prim is able to start leading strand DNA replication that needs unwinding of double-stranded (ds) DNA prior to primer synthesis. At high concentrations, pol-prim and prim(2) indistinguishably reduce the unwinding of dsDNA by SV40 T antigen (Tag). RNA primer synthesis on ssDNA in the presence of replication protein A (RPA) and Tag has served as a model system to study the initiation of Okazaki fragments on the lagging strand in vitro. On ssDNA, Tag stimulates whereas RPA inhibits the initiation reaction of both enzymes. Tag reverses and even overcompensates the inhibition of primase by RPA. Physical binding of Tag to the primase subunits and RPA, respectively, is required for these activities. Each subunit of the primase complex, p58 and p48, performs physical contacts with Tag and RPA independently of p180 and p68. Using surface plasmon resonance, the dissociation constants of the Tag/pol-prim and Tag/primase interactions were 1.2 x 10(-8) m and 1.3 x 10(-8) m, respectively.
Collapse
Affiliation(s)
- K Weisshart
- Institut für Molekulare Biotechnologie e.V., Abteilung Biochemie, Beutenbergstrasse 11, D-07745 Jena, Germany
| | | | | | | | | | | |
Collapse
|
29
|
Li CJ, Bogan JA, Natale DA, DePamphilis ML. Selective activation of pre-replication complexes in vitro at specific sites in mammalian nuclei. J Cell Sci 2000; 113 ( Pt 5):887-98. [PMID: 10671378 DOI: 10.1242/jcs.113.5.887] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
As the first step in determining whether or not pre-replication complexes are assembled at specific sites along mammalian chromosomes, nuclei from G(1)-phase hamster cells were incubated briefly in Xenopus egg extract in order to initiate DNA replication. Most of the nascent DNA consisted of RNA-primed DNA chains 0.5 to 2 kb in length, and its origins in the DHFR gene region were mapped using both the early labeled fragment assay and the nascent strand abundance assay. The results revealed three important features of mammalian replication origins. First, Xenopus egg extract can selectively activate the same origins of bi-directional replication (e.g. ori-beta) and (beta') that are used by hamster cells in vivo. Previous reports of a broad peak of nascent DNA centered at ori-(beta/(beta)' appeared to result from the use of aphidicolin to synchronize nuclei and from prolonged exposure of nuclei to egg extracts. Second, these sites were not present until late G(1)-phase of the cell division cycle, and their appearance did not depend on the presence of Xenopus Orc proteins. Therefore, hamster pre-replication complexes appear to be assembled at specific chromosomal sites during G(1)-phase. Third, selective activation of ori-(beta) in late G(1)-nuclei depended on the ratio of Xenopus egg extract to nuclei, revealing that epigenetic parameters such as the ratio of initiation factors to DNA substrate could determine the number of origins activated.
Collapse
Affiliation(s)
- C J Li
- National Institute of Child Health and Human Development, Building 6, Room 416, National Institutes of Health, Bethesda, MD 20892-2753, USA
| | | | | | | |
Collapse
|
30
|
Zuo S, Bermudez V, Zhang G, Kelman Z, Hurwitz J. Structure and activity associated with multiple forms of Schizosaccharomyces pombe DNA polymerase delta. J Biol Chem 2000; 275:5153-62. [PMID: 10671561 DOI: 10.1074/jbc.275.7.5153] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
DNA polymerase delta (Pol delta) isolated from Schizosaccharomyces pombe (sp) consists of at least four subunits, Pol3, Cdc1, Cdc27, and Cdm1. We have reconstituted the four-subunit complex by simultaneously expressing these polypeptides in baculovirus-infected insect cells. The properties of the purified cloned spPol delta were identical to the native spPol delta isolated from S. pombe cells. In addition, we also isolated a three-subunit complex containing Pol3, Cdc1, and Cdm1. Both three- and four-subunit complexes required replication factor C and proliferating cell nuclear antigen for DNA replication. However, in the presence of low levels of polymerase complexes, the three-subunit complex was less efficient than the four-subunit complex in supporting DNA replication. The inefficient synthesis of DNA by the three-subunit complex can be remedied by the addition of Cdc27, the subunit missing in the three-subunit complex. Gel filtration analysis demonstrated that the three-subunit complex is a monomer of the heterotrimer (Pol3, Cdc1, and Cdm1) and that the four-subunit complex is a dimer of the heterotetramer (Pol3, Cdc1, Cdc27, and Cdm1), similar to the structure of native spPol delta. We have further shown that Cdc1 and Cdc27 interact to form a heterodimeric complex. Gel filtration studies indicate that the structure of this complex is dimeric. These observations suggest that the Cdc27 subunit may play an important role contributing to the dimerization of Pol delta.
Collapse
Affiliation(s)
- S Zuo
- Graduate Program in Molecular Biology, Memorial Sloan-Kettering Cancer Center, New York, New York 10021, USA
| | | | | | | | | |
Collapse
|
31
|
Abstract
To duplicate their genomes, eukaryotic cells have to overcome some formidable chemical and topological hurdles, considering the number of nucleotides that have to be polymerized faithfully and the sheer physical size of the DNA molecules that have to be disentangled and partitioned in an orderly way. This article tackles one particular aspect of the process: the organization of the apparatus that advances the replicative growing forks along the DNA molecule. Here, I suggest a solution to the difficulty of separating the daughter molecules in an orderly way and propose an alternative to the current models, which reconciles the use of a single polarity of synthesis by the DNA polymerases with the need for parallel polymerization of two strands of opposite polarity.
Collapse
Affiliation(s)
- A Falaschi
- International Centre for Genetic Engineering and Biotechnology, Padriciano 99. I 34012, Trieste, Italy.
| |
Collapse
|
32
|
Mossi R, Keller RC, Ferrari E, Hübscher U. DNA polymerase switching: II. Replication factor C abrogates primer synthesis by DNA polymerase alpha at a critical length. J Mol Biol 2000; 295:803-14. [PMID: 10656792 DOI: 10.1006/jmbi.1999.3395] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A crucial event in DNA replication is the polymerase switch from the synthesis of a short RNA/DNA primer by DNA polymerase alpha/primase to the pro?cessive elongation by DNA polymerase delta. In order to shed light on the role of replication factor C (RF-C) in this process, the effects of RF-C on DNA polymerase alpha were investigated. We show that RF-C stalls DNA polymerase alpha after synthesis of approximately 30 nucleotides, while not inhibiting the polymerase activity per se. This suggested that RF-C and the length of the primer may be two important factors contributing to the polymerase switch. Furthermore the DNA binding properties of RF-C were tested. Band shift experiments indicated that RF-C has a preference for 5' recessed ends and double-stranded DNA over 3' ends. Finally PCNA can be loaded onto a DNA template carrying a RNA primer, suggesting that a DNA moiety is not necessarily required for the loading of the clamp. Thus we propose a model where RF-C, upon binding to the RNA/DNA primer, influences primer synthesis and sets the conditions for a polymerase switch after recruiting PCNA to DNA.
Collapse
Affiliation(s)
- R Mossi
- Department of Veterinary Biochemistry, University of Zürich-Irchel, Winterthurerstrasse 190, Zürich, CH-8057, Switzerland
| | | | | | | |
Collapse
|
33
|
Walther AP, Bjerke MP, Wold MS. A novel assay for examining the molecular reactions at the eukaryotic replication fork: activities of replication protein A required during elongation. Nucleic Acids Res 1999; 27:656-64. [PMID: 9862994 PMCID: PMC148229 DOI: 10.1093/nar/27.2.656] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Studies to elucidate the reactions that occur at the eukaryotic replication fork have been limited by the model systems available. We have established a method for isolating and characterizing Simian Virus 40 (SV40) replication complexes. SV40 rolling circle complexes are isolated using paramagnetic beads and then incubated under replication conditions to obtain continued elongation. In rolling circle replication, the normal mechanism for termination of SV40 replication does not occur and the elongation phase of replication is prolonged. Thus, using this assay system, elongation phase reactions can be examined in the absence of initiation or termination. We show that the protein requirements for elongation of SV40 rolling circles are equivalent to complete SV40 replication reactions. The DNA produced by SV40 rolling circles is double-stranded, unmethylated and with a much longer length than the template DNA. These properties are similar to those of physiological replication forks. We show that proteins associated with the isolated rolling circles, including SV40 T antigen, DNA polymerase alpha, replication protein A (RPA) and RF-C, are necessary for continued DNA synthesis. PCNA is also required but is not associated with the isolated complexes. We present evidence suggesting that synthesis of the leading and lagging strands are co-ordinated in SV40 rolling circle replication. We have used this system to show that both RPA-protein and RPA-DNA interactions are important for RPA's function in elongation.
Collapse
Affiliation(s)
- A P Walther
- Department of Biochemistry, University of Iowa College of Medicine, 51 Newton Road, Iowa City, IA 52242-1109, USA
| | | | | |
Collapse
|
34
|
Abstract
Replication of the two template strands at eukaryotic cell DNA replication forks is a highly coordinated process that ensures accurate and efficient genome duplication. Biochemical studies, principally of plasmid DNAs containing the Simian Virus 40 origin of DNA replication, and yeast genetic studies have uncovered the fundamental mechanisms of replication fork progression. At least two different DNA polymerases, a single-stranded DNA-binding protein, a clamp-loading complex, and a polymerase clamp combine to replicate DNA. Okazaki fragment synthesis involves a DNA polymerase-switching mechanism, and maturation occurs by the recruitment of specific nucleases, a helicase, and a ligase. The process of DNA replication is also coupled to cell-cycle progression and to DNA repair to maintain genome integrity.
Collapse
Affiliation(s)
- S Waga
- Cold Spring Harbor Laboratory, New York 11724, USA
| | | |
Collapse
|
35
|
Abstract
DNA replication is a complicated process that is largely regulated during stages of initiation. The Siman Virus 40 in vitro replication system has served as an excellent model for studies of the initiation of DNA replication, and its regulation, in eukaryotes. Initiation of SV40 replication requires a single viral protein termed T-antigen, all other proteins are supplied by the host. The recent determination of the solution structure of the T-antigen domain that recognizes the SV40 origin has provided significant insights into the initiation process. For example, it has afforded a clearer understanding of origin recognition, T-antigen oligomerization, and DNA unwinding. Furthermore, the Simian virus 40 in vitro replication system has been used to study nascent DNA formation in the vicinity of the viral origin of replication. Among the conclusions drawn from these experiments is that nascent DNA synthesis does not initiate in the core origin in vitro and that Okazaki fragment formation is complex. These and related studies demonstrate that significant progress has been made in understanding the initiation of DNA synthesis at the molecular level.
Collapse
Affiliation(s)
- P A Bullock
- Department of Biochemistry, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| |
Collapse
|
36
|
Lin YL, Shivji MK, Chen C, Kolodner R, Wood RD, Dutta A. The evolutionarily conserved zinc finger motif in the largest subunit of human replication protein A is required for DNA replication and mismatch repair but not for nucleotide excision repair. J Biol Chem 1998; 273:1453-61. [PMID: 9430682 DOI: 10.1074/jbc.273.3.1453] [Citation(s) in RCA: 114] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The largest subunit of the replication protein A (RPA) contains an evolutionarily conserved zinc finger motif that lies outside of the domains required for binding to single-stranded DNA or forming the RPA holocomplex. In previous studies, we showed that a point mutation in this motif (RPAm) cannot support SV40 DNA replication. We have now investigated the role of this motif in several steps of DNA replication and in two DNA repair pathways. RPAm associates with T antigen, assists the unwinding of double-stranded DNA at an origin of replication, stimulates DNA polymerases alpha and delta, and supports the formation of the initial short Okazaki fragments. However, the synthesis of a leading strand and later Okazaki fragments is impaired. In contrast, RPAm can function well during the incision step of nucleotide excision repair and in a full repair synthesis reaction, with either UV-damaged or cisplatin-adducted DNA. Two deletion mutants of the Rpa1 subunit (eliminating amino acids 1-278 or 222-411) were not functional in nucleotide excision repair. We report for the first time that wild type RPA is required for a mismatch repair reaction in vitro. Neither the deletion mutants nor RPAm can support this reaction. Therefore, the zinc finger of the largest subunit of RPA is required for a function that is essential for DNA replication and mismatch repair but not for nucleotide excision repair.
Collapse
Affiliation(s)
- Y L Lin
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | |
Collapse
|
37
|
Nesper J, Smith RW, Kautz AR, Sock E, Wegner M, Grummt F, Nasheuer HP. A cell-free replication system for human polyomavirus JC DNA. J Virol 1997; 71:7421-8. [PMID: 9311820 PMCID: PMC192087 DOI: 10.1128/jvi.71.10.7421-7428.1997] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The human polyomavirus JC virus (JCV) establishes persistent infections in most individuals and is the etiologic agent of progressive multifocal leukoencephalopathy. In this report, we describe the establishment of a soluble cell-free system that is capable of replicating exogenous plasmid DNA containing the JCV origin of replication. Replication in this system is completely dependent on the addition of JCV large T antigen (TAg). To prepare JCV TAg for replication analysis, a recombinant baculovirus containing the JCV TAg-coding sequence was generated. TAg expressed in insect cells was purified by metal chelate chromatography. JCV TAg supported initiation of JCV DNA replication in the presence of DNA polymerase alpha-primase, replication protein A, and topoisomerase I in a dose-dependent manner and was also capable of supporting DNA replication in crude human cell extracts. Point mutation of TAg-binding site I strongly diminished TAg binding and concomitantly reduced JCV DNA replication in vivo and in vitro by approximately 50%. Point mutation of TAg-binding site II or deletion of the early palindrome completely abolished replication of JCV origin-containing plasmid DNA in vivo and in vitro, marking these sequences as essential components of the JCV core origin. A comparison of several TAgs showed that simian virus 40 TAg, but not mouse polyomavirus (PyV) TAg, supported replication of a plasmid containing a JCV origin. These findings provide evidence that replication in the cell-free system faithfully mimics JCV DNA replication in vivo. Therefore, it may be a useful tool for future analysis of interactions between JCV and its host cell.
Collapse
MESH Headings
- Animals
- Antigens, Viral, Tumor/biosynthesis
- Antigens, Viral, Tumor/isolation & purification
- Antigens, Viral, Tumor/metabolism
- Baculoviridae
- Base Sequence
- Binding Sites
- Cell Line
- Cell-Free System
- Chromatography, Affinity
- DNA Primase
- DNA Replication
- DNA Topoisomerases, Type I/metabolism
- DNA-Binding Proteins/metabolism
- Glioblastoma
- Humans
- JC Virus/genetics
- JC Virus/physiology
- Mice
- Mutagenesis, Site-Directed
- Oligodeoxyribonucleotides
- Point Mutation
- Polyomavirus/physiology
- RNA Nucleotidyltransferases/metabolism
- Recombinant Fusion Proteins/biosynthesis
- Recombinant Fusion Proteins/isolation & purification
- Replication Protein A
- Sequence Deletion
- Spodoptera
- Transfection
- Tumor Cells, Cultured
- Virus Replication
Collapse
Affiliation(s)
- J Nesper
- Abteilung Biochemie, Institut für Molekulare Biotechnologie, Jena, Germany
| | | | | | | | | | | | | |
Collapse
|
38
|
Ennas MG, Suzuki H, Menegazzi M, Carcereri A, Hanaoka F, Gremo F, Nieddu M, Mezzanotte R. On the presence of DNA polymerase alpha in human lymphocyte nuclei and chromosomes. Heredity (Edinb) 1996; 77 ( Pt 2):186-91. [PMID: 8760400 DOI: 10.1038/hdy.1996.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Experiments were carried out to correlate the cytological localization of DNA polymerase alpha with the presence of its specific mRNA in human lymphocytes studied at different times after phytohaemagglutinin stimulation. Our data indicated that in resting cells it is not possible to detect DNA polymerase alpha protein or mRNA by Northern hybridization. By contrast, in stimulated cells the detection of mRNA specific for DNA polymerase alpha synthesis is possible after 16 h phytohaemagglutin stimulation, whereas immunolocalization is possible after only 4 h stimulation. Observation of cytological preparations from cells stimulated for times long enough to obtain mitoses surprisingly showed an intense immunoreaction in mitotic chromosomes treated with monoclonal antibodies to DNA polymerase alpha.
Collapse
Affiliation(s)
- M G Ennas
- Dipartimento di Citomorfologia, Università di Cagliari, Italy
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Zlotkin T, Kaufmann G, Jiang Y, Lee MY, Uitto L, Syväoja J, Dornreiter I, Fanning E, Nethanel T. DNA polymerase epsilon may be dispensable for SV40- but not cellular-DNA replication. EMBO J 1996; 15:2298-305. [PMID: 8641295 PMCID: PMC450155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The contributions of DNA polymerases alpha, delta, and epsilon to SV40 and nuclear DNA syntheses were evaluated. Proteins were UV-crosslinked to nascent DNA within replicating chromosomes and the photolabelled polymerases were immunopurified. Only DNA polymerases alpha and delta were detectably photolabelled by nascent SV40 DNA, whether synthesized in soluble viral chromatin or within nuclei isolated from SV40-infected cells. In contrast, all three enzymes were photolabelled by the nascent cellular DNA. Mitogenic stimulation enhanced the photolabelling of the polymerases in the alpha>delta>epsilon order of preference. The data agree with the notion that DNA polymerases alpha and delta catalyse the principal DNA polymerisation reactions at the replication fork of SV40 and, perhaps, also of nuclear chromosomes. DNA polymerase epsilon, implicated by others as a cell-cycle checkpoint regulator sensing DNA replication lesions, may be dispensable for replication of the small, fast propagating virus that subverts cell cycle controls.
Collapse
Affiliation(s)
- T Zlotkin
- Department of Biochemistry, Tel Aviv University, Ramat Aviv, Israel
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Lee SH, Kim DK, Drissi R. Human xeroderma pigmentosum group A protein interacts with human replication protein A and inhibits DNA replication. J Biol Chem 1995; 270:21800-5. [PMID: 7665601 DOI: 10.1074/jbc.270.37.21800] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Human replication protein A (RPA; also known as human single-stranded DNA binding protein, or HSSB) is a multisubunit complex involved in both DNA replication and repair. While the role of RPA in replication has been well studied, its function in repair is less clear, although it is known to be involved in the early stages of the repair process. We found that RPA interacts with xeroderma pigmentosum group A complementing protein (XPAC), a protein that specifically recognizes UV-damaged DNA. We examined the effect of this XPAC-RPA interaction on in vitro simian virus 40 (SV40) DNA replication catalyzed by the monopolymerase system. XPAC inhibited SV40 DNA replication in vitro, and this inhibition was reversed by the addition of RPA but not by the addition of DNA polymerase alpha-primase complex, SV40 large tumor antigen, or topoisomerase I. This inhibition did not result from an interaction between XPAC and single-stranded DNA (ssDNA), or from competition between RPA and XPAC for DNA binding, because XPAC does not show any ssDNA binding activity and, in fact, stimulates RPA's ssDNA binding activity. Furthermore, XPAC inhibited DNA polymerase alpha activity in the presence of RPA but not in RPA's absence. These results suggest that the inhibitory effect of XPAC on DNA replication probably occurs through its interaction with RPA.
Collapse
Affiliation(s)
- S H Lee
- Department of Virology and Molecular Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38101-0318, USA
| | | | | |
Collapse
|
41
|
Ruiz MT, Pearson CE, Nielsen T, Price GB, Zannis-Hadjopoulos M. Cofractionation of HeLa cell replication proteins with ors-binding activity. J Cell Biochem 1995; 58:221-36. [PMID: 7673329 DOI: 10.1002/jcb.240580211] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Ors (origin enriched sequence) 8 is a mammalian autonomously replicating DNA sequence previously isolated by extrusion of nascent monkey (CV-1) DNA in early S phase. A 186 bp fragment of ors 8 has been identified as the minimal sequence required for origin function, since upon its deletion the in vivo and in vitro replication activity of this ors is abolished. We have fractionated total HeLa cell extracts on a DEAE-Sephadex and then on a Affi-Gel Heparin column and identified a protein fraction that interacts with the 186 bp fragment of ors 8 in a specific manner. The same fraction is able to support the in vitro replication of ors 8 plasmid. The ors binding activity (OBA) present in this fraction sediments at approximately 150 kDa in a glycerol gradient. Band-shift elution experiments of the specific protein-DNA complex detect by silver-staining predominantly two protein bands with molecular weights of 146 kDa and 154 kDa, respectively. The fraction containing the OBA is also enriched for polymerases alpha and delta, topoisomerase II, and replication protein A, (RP-A).
Collapse
Affiliation(s)
- M T Ruiz
- McGill Cancer Centre, Department of Medicine, McGill University, Montréal, Québec, Canada
| | | | | | | | | |
Collapse
|
42
|
Singleton RW, Mishra NC. Genetic evidence that aphidicolin inhibits in vivo DNA synthesis in Chinese hamster ovary cells. MOLECULAR & GENERAL GENETICS : MGG 1995; 247:462-70. [PMID: 7770054 DOI: 10.1007/bf00293148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Using a genetic approach, Chinese hamster ovary (CHO) cells sensitive (aphS) and resistant (aphR) to aphidicolin were grown in the presence or absence of various DNA polymerase inhibitors, and the newly synthesized DNA isolated from [32P]dNMP-labelled, detergent-permeabilized cells, was characterized after fractionation by gel electrophoresis. The particular aphR mutant CHO cell line used was one selected for resistance to aphidicolin and found to possess an altered DNA polymerase of the alpha-family. The synthesis of a 24 kb replication intermediate was inhibited in wild-type CHO cells grown in the presence of aphidicolin, whereas the synthesis of this replication intermediate was not inhibited by this drug in the mutant CHO cells or in the aphidicolin-resistant somatic cell hybrid progeny constructed by fusion of wild-type and mutant cell lines. Arabinofuranosylcytosine (ara-C), like aphidicolin, inhibited the synthesis of this 24 kb DNA replication intermediate in the wild-type CHO cells but not in the aphR mutant cells. However, carbonyldiphosphonate (COMDP) inhibited the synthesis of the 24 kb replication intermediate in both wild-type and mutant cells. N2-(p-n-Butylphenyl)-2' deoxyguanisine-5'-triphosphate (BuPdGTP) was found to inhibit the formation of Okazaki fragments equally well in the wild-type and mutant cell lines and thus led to inhibition of synthesis of DNA intermediates in both cases. It appears that aphidicolin and ara-C both affect a common target on the DNA polymerase, which is different from that affected by COMDP in vivo.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- R W Singleton
- Department of Biological Sciences, University of South Carolina, Columbia 29208, USA
| | | |
Collapse
|
43
|
Abstract
Structural similarity reveals that prokaryotic and eukaryotic DNA polymerases share a mechanism for processivity--but the conservation of additional chromosomal replication mechanisms remains to be determined.
Collapse
Affiliation(s)
- C Wyman
- Division of Molecular Biology and Biochemistry, University of California, Berkeley 94720, USA
| | | |
Collapse
|
44
|
Affiliation(s)
- M L DePamphilis
- Roche Research Center, Roche Institute of Molecular Biology, Nutley, New Jersey 07110, USA
| |
Collapse
|
45
|
Brush GS, Kelly TJ, Stillman B. Identification of eukaryotic DNA replication proteins using simian virus 40 in vitro replication system. Methods Enzymol 1995; 262:522-48. [PMID: 8594377 DOI: 10.1016/0076-6879(95)62043-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
MESH Headings
- Antigens, Polyomavirus Transforming/biosynthesis
- Cell Fractionation/methods
- Cell Nucleus/metabolism
- Cell-Free System
- Chromatography/methods
- Chromatography, Gel/methods
- Chromatography, Ion Exchange/methods
- Cytoplasm/metabolism
- DNA Ligases/analysis
- DNA Ligases/isolation & purification
- DNA Ligases/metabolism
- DNA Polymerase III
- DNA Replication
- DNA Topoisomerases, Type I/analysis
- DNA Topoisomerases, Type I/isolation & purification
- DNA Topoisomerases, Type I/metabolism
- DNA Topoisomerases, Type II/analysis
- DNA Topoisomerases, Type II/isolation & purification
- DNA Topoisomerases, Type II/metabolism
- DNA, Viral/biosynthesis
- DNA-Binding Proteins/analysis
- DNA-Binding Proteins/isolation & purification
- DNA-Binding Proteins/metabolism
- DNA-Directed DNA Polymerase/analysis
- DNA-Directed DNA Polymerase/isolation & purification
- DNA-Directed DNA Polymerase/metabolism
- Deoxycytosine Nucleotides/metabolism
- Deoxyribonucleotides/metabolism
- Durapatite
- Genetic Complementation Test
- HeLa Cells
- Homeodomain Proteins
- Humans
- Indicators and Reagents
- Minor Histocompatibility Antigens
- Models, Genetic
- Phosphoprotein Phosphatases/analysis
- Phosphoprotein Phosphatases/isolation & purification
- Phosphoprotein Phosphatases/metabolism
- Phosphorus Radioisotopes
- Proliferating Cell Nuclear Antigen/analysis
- Proliferating Cell Nuclear Antigen/isolation & purification
- Proliferating Cell Nuclear Antigen/metabolism
- Proto-Oncogene Proteins c-bcl-2
- Radioisotope Dilution Technique
- Replication Origin
- Replication Protein C
- Repressor Proteins
- Saccharomyces cerevisiae Proteins
- Simian virus 40/genetics
- Simian virus 40/metabolism
Collapse
Affiliation(s)
- G S Brush
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | |
Collapse
|
46
|
Müller F, Seo Y, Hurwitz J. Replication of bovine papillomavirus type 1 origin-containing DNA in crude extracts and with purified proteins. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)32524-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
47
|
Waga S, Stillman B. Anatomy of a DNA replication fork revealed by reconstitution of SV40 DNA replication in vitro. Nature 1994; 369:207-12. [PMID: 7910375 DOI: 10.1038/369207a0] [Citation(s) in RCA: 419] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Complete enzymatic replication of DNA from the simian virus 40 origin has been reconstituted with T antigen and highly purified cellular proteins. DNA polymerase-alpha/primase functions primarily to synthesize RNA-DNA primers for initiation of DNA replication at the origin and for priming each Okazaki fragment. A polymerase switching mechanism requiring replication factor C and the proliferating cell nuclear antigen allows two molecules of DNA polymerase-delta to replicate both strands of the double helix conjointly.
Collapse
Affiliation(s)
- S Waga
- Cold Spring Harbor Laboratory, New York 11724
| | | |
Collapse
|
48
|
Waga S, Bauer G, Stillman B. Reconstitution of complete SV40 DNA replication with purified replication factors. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)34146-7] [Citation(s) in RCA: 267] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
49
|
|
50
|
Li R, Botchan MR. The acidic transcriptional activation domains of VP16 and p53 bind the cellular replication protein A and stimulate in vitro BPV-1 DNA replication. Cell 1993; 73:1207-21. [PMID: 8390328 DOI: 10.1016/0092-8674(93)90649-b] [Citation(s) in RCA: 256] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
For papillomavirus DNA replication, the E2 enhancer protein cooperatively assists in binding of the E1 helicase to the origin. We report that, at limiting E1 and E2 levels, the enhancer proteins GAL4-VP16 and GAL4-p53(1-73) stimulate BPV in vitro DNA replication. This cell-free system was used to ascertain whether the acidic activation domains have a cellular target important for replication. Cellular extracts were depleted of replication activity by passage through a VP16 affinity column. The protein depleted was the cellular factor replication protein A. The direct interaction between replication protein A and VP16, as well as the activation of replication by VP16, is dependent upon the C-terminus of the VP16 activation domain. E2 and the activation domain of p53 also interact with replication protein A. We suggest that a link between transcription and replication involves factors that help convert a closed DNA complex to an open complex.
Collapse
Affiliation(s)
- R Li
- Department of Molecular and Cell Biology University of California, Berkeley 94720
| | | |
Collapse
|