1
|
Glyakina AV, Galzitskaya OV. Structural and functional analysis of actin point mutations leading to nemaline myopathy to elucidate their role in actin function. Biophys Rev 2022; 14:1527-1538. [PMID: 36659996 PMCID: PMC9842827 DOI: 10.1007/s12551-022-01027-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/15/2022] [Indexed: 12/15/2022] Open
Abstract
In this work, we analyzed 78 mutations in the actin protein that cause the disease nemaline myopathy. We analyzed how these mutations are distributed in important regions of the actin molecule (folding nucleus, core of the filament, amyloidogenic regions, disordered regions, regions involved in interaction with other proteins). It was found that 54 mutations (43 residues) fall into the folding nucleus (Ф ≥ 0.5), 11 mutations (10 residues) into the filament core, 14 mutations into the amyloidogenic regions (11 residues), 14 mutations (9 residues) in the unstructured regions, and 24 mutations (22 residues) in regions involved in interaction with other proteins. It was also found that the occurrence of single mutations G44V, V45F, T68I, P72R, K338I and S350L leads to the appearance of new amyloidogenic regions that are not present in native actin. The largest number of mutations (54 out of 78) occurs in the folding nucleus; these mutations are important for folding and therefore can affect the protein folding rate. We have shown that almost all of the considered mutations are associated with the structural characteristics of the actin molecule, and some of the residues we have considered have several important characteristics.
Collapse
Affiliation(s)
- Anna V. Glyakina
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Russia ,Institute of Mathematical Problems of Biology RAS, Keldysh Institute of Applied Mathematics, Russian Academy of Sciences, Pushchino, Russia
| | - Oxana V. Galzitskaya
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Russia ,Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Russia
| |
Collapse
|
2
|
Li D, Zhen F, Le J, Chen G, Zhu J. Identification of hub genes and pathways in bladder cancer using bioinformatics analysis. AMERICAN JOURNAL OF CLINICAL AND EXPERIMENTAL UROLOGY 2022; 10:13-24. [PMID: 35291419 PMCID: PMC8918393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 05/30/2020] [Indexed: 06/14/2023]
Abstract
Bladder cancer (BC) is the most common malignant tumor of urinary tract system. The aim of this study was to investigate the genetic signatures of bladder cancer (BC) and identify its potential molecular mechanisms. The gene expression profiles of GSE3167 (50 samples, including 41BC and 9 non-cancerous urothelial cells) was downloaded from the GEO database. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes pathway (KEGG) were performed to identify enriched pathways, and a protein-protein interaction (PPI) network was used to identify hub genes and for module analysis. Moreover, we conducted expression and survival analyses to screen and validate hub genes. In total, 1528 DEGs were identified in bladder cancer (BC), including 1212 up-regulated genes and 316 down-regulated genes. Up-regulated differentially expressed genes (DEGs) were significantly enriched in negative regulation of macromolecule metabolic process, macromolecule catabolic process, proteolysis and regulation of cell death, while the down-regulated differentially expressed genes (DEGs) were mainly involved in cell surface receptor linked signal transduction, ion transport, cell-cell signaling and defense response. The top 10 hub genes with the highest degrees were selected from the PPI network. These genes included HSP90AA1, MYH11, MYL9, CNN1, ACTC1, RAN, ENO1, HNRNPC, ACTG2 and YWHAZ. From sub-networks, we found these genes were involved in the proteasome, pathways in cancer and cell cycle. Hence, the identified DEGs and hub genes may be beneficial to elucidate the mechanisms underlying BC.
Collapse
Affiliation(s)
- Danhui Li
- Department of ICU, Ningbo First Hospital Ningbo, Zhejiang Province, P. R. China
| | - Fan Zhen
- Department of ICU, Ningbo First Hospital Ningbo, Zhejiang Province, P. R. China
| | - Jianwei Le
- Department of ICU, Ningbo First Hospital Ningbo, Zhejiang Province, P. R. China
| | - Guodong Chen
- Department of ICU, Ningbo First Hospital Ningbo, Zhejiang Province, P. R. China
| | - Jianhua Zhu
- Department of ICU, Ningbo First Hospital Ningbo, Zhejiang Province, P. R. China
| |
Collapse
|
3
|
James KN, Lau M, Shayan K, Lenberg J, Mardach R, Ignacio R, Halbach J, Choi L, Kumar S, Ellsworth KA. Expanding the genotypic spectrum of ACTG2-related visceral myopathy. Cold Spring Harb Mol Case Stud 2021; 7:mcs.a006085. [PMID: 33883208 PMCID: PMC8208046 DOI: 10.1101/mcs.a006085] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 03/30/2021] [Indexed: 12/13/2022] Open
Abstract
Visceral myopathies (VMs) encompass a spectrum of disorders characterized by chronic disruption of gastrointestinal function, with or without urinary system involvement. Pathogenic missense variation in smooth muscle γ-actin gene (ACTG2) is associated with autosomal dominant VM. Whole-genome sequencing of an infant presenting with chronic intestinal pseudo-obstruction revealed a homozygous 187 bp (c.589_613 + 163del188) deletion spanning the exon 6–intron 6 boundary within ACTG2. The patient's clinical course was marked by prolonged hospitalizations, multiple surgeries, and intermittent total parenteral nutrition dependence. This case supports the emerging understanding of allelic heterogeneity in ACTG2-related VM, in which both biallelic and monoallelic variants in ACTG2 are associated with gastrointestinal dysfunction of similar severity and overlapped clinical presentation. Moreover, it illustrates the clinical utility of rapid whole-genome sequencing, which can comprehensively and precisely detect different types of genomic variants including small deletions, leading to guidance of clinical care decisions.
Collapse
Affiliation(s)
- Kiely N James
- Rady Children's Institute for Genomic Medicine, San Diego, California 92123, USA
| | - Megan Lau
- UC San Diego School of Medicine, La Jolla, California 92093, USA
| | - Katayoon Shayan
- Pathology Department, Hepatology and Nutrition, Rady Children's Hospital, San Diego, California 92123, USA
| | - Jerica Lenberg
- Rady Children's Institute for Genomic Medicine, San Diego, California 92123, USA
| | - Rebecca Mardach
- Rady Children's Institute for Genomic Medicine, San Diego, California 92123, USA
| | - Romeo Ignacio
- Division of Pediatric Surgery, Hepatology and Nutrition, Rady Children's Hospital, San Diego, California 92123, USA
| | - Jonathan Halbach
- Division of Pediatric Surgery, Hepatology and Nutrition, Rady Children's Hospital, San Diego, California 92123, USA
| | - Lillian Choi
- Division of Gastroenterology, Hepatology and Nutrition, Rady Children's Hospital, San Diego, California 92123, USA
| | - Soma Kumar
- Division of Gastroenterology, Hepatology and Nutrition, Rady Children's Hospital, San Diego, California 92123, USA
| | | |
Collapse
|
4
|
Malek N, Michrowska A, Mazurkiewicz E, Mrówczyńska E, Mackiewicz P, Mazur AJ. The origin of the expressed retrotransposed gene ACTBL2 and its influence on human melanoma cells' motility and focal adhesion formation. Sci Rep 2021; 11:3329. [PMID: 33558623 PMCID: PMC7870945 DOI: 10.1038/s41598-021-82074-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 01/08/2021] [Indexed: 01/30/2023] Open
Abstract
We have recently found that β-actin-like protein 2 (actbl2) forms complexes with gelsolin in human melanoma cells and can polymerize. Phylogenetic and bioinformatic analyses showed that actbl2 has a common origin with two non-muscle actins, which share a separate history from the muscle actins. The actin groups' divergence started at the beginning of vertebrate evolution, and actbl2 actins are characterized by the largest number of non-conserved amino acid substitutions of all actins. We also discovered that ACTBL2 is expressed at a very low level in several melanoma cell lines, but a small subset of cells exhibited a high ACTBL2 expression. We found that clones with knocked-out ACTBL2 (CR-ACTBL2) or overexpressing actbl2 (OE-ACTBL2) differ from control cells in the invasion, focal adhesion formation, and actin polymerization ratio, as well as in the formation of lamellipodia and stress fibers. Thus, we postulate that actbl2 is the seventh actin isoform and is essential for cell motility.
Collapse
Affiliation(s)
- Natalia Malek
- Department of Cell Pathology, Faculty of Biotechnology, University of Wroclaw, ul. Joliot-Curie 14a, 50-383, Wroclaw, Poland
| | - Aleksandra Michrowska
- Department of Cell Pathology, Faculty of Biotechnology, University of Wroclaw, ul. Joliot-Curie 14a, 50-383, Wroclaw, Poland
| | - Ewa Mazurkiewicz
- Department of Cell Pathology, Faculty of Biotechnology, University of Wroclaw, ul. Joliot-Curie 14a, 50-383, Wroclaw, Poland
| | - Ewa Mrówczyńska
- Department of Cell Pathology, Faculty of Biotechnology, University of Wroclaw, ul. Joliot-Curie 14a, 50-383, Wroclaw, Poland
| | - Paweł Mackiewicz
- Department of Bioinformatics and Genomics, Faculty of Biotechnology, University of Wroclaw, ul. Joliot-Curie 14a, Wroclaw, 50-383, Poland
| | - Antonina J Mazur
- Department of Cell Pathology, Faculty of Biotechnology, University of Wroclaw, ul. Joliot-Curie 14a, 50-383, Wroclaw, Poland.
| |
Collapse
|
5
|
Glyakina AV, Galzitskaya OV. Bioinformatics Analysis of Actin Molecules: Why Quantity Does Not Translate Into Quality? Front Genet 2020; 11:617763. [PMID: 33362870 PMCID: PMC7758494 DOI: 10.3389/fgene.2020.617763] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 11/20/2020] [Indexed: 11/13/2022] Open
Abstract
It is time to review all the available data and find the distinctive characteristics of actin that make it such an important cell molecule. The presented double-stranded organization of filamentous actin cannot explain the strong polymorphism of actin fibrils. In this work, we performed bioinformatics analysis of a set of 296 amino acid actin sequences from representatives of different classes of the Chordate type. Based on the results of the analysis, the degree of conservatism of the primary structure of this protein in representatives of the Chordate type was determined. In addition, 155 structures of rabbit actin obtained using X-ray diffraction analysis and electron microscopy have been analyzed over the past 30 years. From pairwise alignments and the calculation of root-mean-square deviations (RMSDs) for these structures, it follows that they are very similar to each other without correlation with the structure resolution and the reconstruction method: the RMSDs for 11,781 pairs did not exceed 3 Å. It turned out that in rabbit actin most of the charged amino acid residues are located inside the protein, which is not typical for the protein structure. We found that two of six exon regions correspond to structural subdomains. To test the double-stranded organization of the actin structure, it is necessary to use new approaches and new techniques, taking into account our new data obtained from the structural analysis of actin.
Collapse
Affiliation(s)
- Anna V Glyakina
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Russia.,Institute of Mathematical Problems of Biology RAS, Keldysh Institute of Applied Mathematics, Russian Academy of Sciences, Pushchino, Russia
| | - Oxana V Galzitskaya
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Russia.,Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Russia
| |
Collapse
|
6
|
Dusart P, Hallström BM, Renné T, Odeberg J, Uhlén M, Butler LM. A Systems-Based Map of Human Brain Cell-Type Enriched Genes and Malignancy-Associated Endothelial Changes. Cell Rep 2020; 29:1690-1706.e4. [PMID: 31693905 DOI: 10.1016/j.celrep.2019.09.088] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 04/09/2019] [Accepted: 09/27/2019] [Indexed: 02/02/2023] Open
Abstract
Changes in the endothelium of the cerebral vasculature can contribute to inflammatory, thrombotic, and malignant disorders. The importance of defining cell-type-specific genes and their modification in disease is increasingly recognized. Here, we develop a bioinformatics-based approach to identify normal brain cell-enriched genes, using bulk RNA sequencing (RNA-seq) data from 238 normal human cortex samples from 2 independent cohorts. We compare endothelial cell-enriched gene profiles with astrocyte, oligodendrocyte, neuron, and microglial cell profiles. Endothelial changes in malignant disease are explored using RNA-seq data from 516 lower-grade gliomas and 401 glioblastomas. Lower-grade gliomas appear to be an "endothelial intermediate" between normal brain and glioblastoma. We apply our method for the prediction of glioblastoma-specific endothelial biomarkers, providing potential diagnostic or therapeutic targets. In summary, we provide a roadmap of endothelial cell identity in normal and malignant brain, using a method developed to resolve bulk RNA-seq into constituent cell-type-enriched profiles.
Collapse
Affiliation(s)
- Philip Dusart
- Science for Life Laboratory, Department of Protein Science, Royal Institute of Technology (KTH), 171 21 Stockholm, Sweden; K.G. Jebsen Thrombosis Research and Expertise Centre, Department of Clinical Medicine, The Arctic University of Norway, 9019 Tromsø, Norway
| | - Björn Mikael Hallström
- Science for Life Laboratory, Department of Protein Science, Royal Institute of Technology (KTH), 171 21 Stockholm, Sweden
| | - Thomas Renné
- Institute for Clinical Chemistry and Laboratory Medicine, University Medical Centre Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Jacob Odeberg
- Science for Life Laboratory, Department of Protein Science, Royal Institute of Technology (KTH), 171 21 Stockholm, Sweden; K.G. Jebsen Thrombosis Research and Expertise Centre, Department of Clinical Medicine, The Arctic University of Norway, 9019 Tromsø, Norway; The University Hospital of North Norway (UNN), PB100, 9038 Tromsø, Norway; Department of Hematology, Karolinska University Hospital, 171 77 Stockholm, Sweden
| | - Mathias Uhlén
- Science for Life Laboratory, Department of Protein Science, Royal Institute of Technology (KTH), 171 21 Stockholm, Sweden
| | - Lynn Marie Butler
- Science for Life Laboratory, Department of Protein Science, Royal Institute of Technology (KTH), 171 21 Stockholm, Sweden; K.G. Jebsen Thrombosis Research and Expertise Centre, Department of Clinical Medicine, The Arctic University of Norway, 9019 Tromsø, Norway; Institute for Clinical Chemistry and Laboratory Medicine, University Medical Centre Hamburg-Eppendorf, 20246 Hamburg, Germany; Clinical Chemistry and Blood Coagulation Research, Department of Molecular Medicine and Surgery, Karolinska Institute, 171 76 Stockholm, Sweden.
| |
Collapse
|
7
|
Assia Batzir N, Kishor Bhagwat P, Larson A, Coban Akdemir Z, Bagłaj M, Bofferding L, Bosanko KB, Bouassida S, Callewaert B, Cannon A, Enchautegui Colon Y, Garnica AD, Harr MH, Heck S, Hurst ACE, Jhangiani SN, Isidor B, Littlejohn RO, Liu P, Magoulas P, Mar Fan H, Marom R, McLean S, Nezarati MM, Nugent KM, Petersen MB, Rocha ML, Roeder E, Smigiel R, Tully I, Weisfeld-Adams J, Wells KO, Posey JE, Lupski JR, Beaudet AL, Wangler MF. Recurrent arginine substitutions in the ACTG2 gene are the primary driver of disease burden and severity in visceral myopathy. Hum Mutat 2020; 41:641-654. [PMID: 31769566 PMCID: PMC7720429 DOI: 10.1002/humu.23960] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 10/04/2019] [Accepted: 11/06/2019] [Indexed: 02/06/2023]
Abstract
Visceral myopathy with abnormal intestinal and bladder peristalsis includes a clinical spectrum with megacystis-microcolon intestinal hypoperistalsis syndrome and chronic intestinal pseudo-obstruction. The vast majority of cases are caused by dominant variants in ACTG2; however, the overall genetic architecture of visceral myopathy has not been well-characterized. We ascertained 53 families, with visceral myopathy based on megacystis, functional bladder/gastrointestinal obstruction, or microcolon. A combination of targeted ACTG2 sequencing and exome sequencing was used. We report a molecular diagnostic rate of 64% (34/53), of which 97% (33/34) is attributed to ACTG2. Strikingly, missense mutations in five conserved arginine residues involving CpG dinucleotides accounted for 49% (26/53) of disease in the cohort. As a group, the ACTG2-negative cases had a more favorable clinical outcome and more restricted disease. Within the ACTG2-positive group, poor outcomes (characterized by total parenteral nutrition dependence, death, or transplantation) were invariably due to one of the arginine missense alleles. Analysis of specific residues suggests a severity spectrum of p.Arg178>p.Arg257>p.Arg40 along with other less-frequently reported sites p.Arg63 and p.Arg211. These results provide genotype-phenotype correlation for ACTG2-related disease and demonstrate the importance of arginine missense changes in visceral myopathy.
Collapse
Affiliation(s)
- Nurit Assia Batzir
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
- Texas Children's Hospital, Houston, Texas
| | - Pranjali Kishor Bhagwat
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas
| | - Austin Larson
- Department of Pediatrics, Section of Clinical Genetics and Metabolism, University of Colorado School of Medicine, Aurora, Colorado
| | - Zeynep Coban Akdemir
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Maciej Bagłaj
- Department of Pediatric Surgery and Urology, Wroclaw Medical University, Wroclaw, Poland
| | - Leon Bofferding
- Département de Pédiatrie Néonatologie, Kannerklinik, Centre Hospitalier de Luxembourg, Luxembourg City, Luxembourg
| | - Katherine B Bosanko
- Section of Genetics and Metabolism, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Skander Bouassida
- Humboldt Clinic, Vivantes Health Network GmbH, Charité Academic Teaching Hospital, Medical University of Berlin, Berlin, Germany
| | - Bert Callewaert
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University Hospital, Ghent, Belgium
| | - Ashley Cannon
- Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama
| | - Yazmin Enchautegui Colon
- Inherited Metabolic Diseases Clinic, Section of Clinical Genetics and Metabolism, University of Colorado Denver, Aurora, Colorado
| | - Adolfo D Garnica
- Section of Genetics and Metabolism, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Margaret H Harr
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Sandra Heck
- Département de Pédiatrie Néonatologie, Kannerklinik, Centre Hospitalier de Luxembourg, Luxembourg City, Luxembourg
| | - Anna C E Hurst
- Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama
| | | | - Bertrand Isidor
- CHU de Nantes, Service de Génétique Médicale, Nantes 44093 Cedex 1, Nantes, France
| | - Rebecca O Littlejohn
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
- Department of Pediatrics, Baylor College of Medicine, San Antonio, Texas
| | - Pengfei Liu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Pilar Magoulas
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
- Texas Children's Hospital, Houston, Texas
| | - Helen Mar Fan
- Genetic Health Queensland, Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia
| | - Ronit Marom
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
- Texas Children's Hospital, Houston, Texas
| | - Scott McLean
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
- Department of Pediatrics, Baylor College of Medicine, San Antonio, Texas
| | - Marjan M Nezarati
- Genetics Program, North York General Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Kimberly M Nugent
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
- Department of Pediatrics, Baylor College of Medicine, San Antonio, Texas
| | | | - Maria L Rocha
- Humboldt Clinic, Vivantes Health Network GmbH, Charité Academic Teaching Hospital, Medical University of Berlin, Berlin, Germany
| | - Elizabeth Roeder
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
- Department of Pediatrics, Baylor College of Medicine, San Antonio, Texas
| | - Robert Smigiel
- Department of Pediatrics, Division of Pediatrics and Rare Disorders, Wroclaw Medical University, Wroclaw, Poland
| | - Ian Tully
- Genetic Health Queensland, Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia
| | - James Weisfeld-Adams
- Inherited Metabolic Diseases Clinic, Section of Clinical Genetics and Metabolism, University of Colorado Denver, Aurora, Colorado
| | - Katerina O Wells
- Department of Surgery, Division of Colorectal Surgery, Baylor University Medical Center, Dallas, Texas
| | - Jennifer E Posey
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - James R Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
- Texas Children's Hospital, Houston, Texas
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Arthur L Beaudet
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
- Texas Children's Hospital, Houston, Texas
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Michael F Wangler
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
- Texas Children's Hospital, Houston, Texas
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
8
|
Hetmańczyk-Sawicka K, Iwanicka-Nowicka R, Fogtman A, Cieśla J, Włodarski P, Żyżyńska-Granica B, Filocamo M, Dardis A, Peruzzo P, Bednarska-Makaruk M, Koblowska M, Ługowska A. Changes in global gene expression indicate disordered autophagy, apoptosis and inflammatory processes and downregulation of cytoskeletal signalling and neuronal development in patients with Niemann-Pick C disease. Neurogenetics 2020; 21:105-119. [PMID: 31927669 DOI: 10.1007/s10048-019-00600-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Accepted: 11/28/2019] [Indexed: 11/26/2022]
Abstract
Changes in gene expression profiles were investigated in 23 patients with Niemann-Pick C1 disease (NPC). cDNA expression microarrays with subsequent validation by qRT-PCR were used. Comparison of NPC to control samples revealed upregulation of genes involved in inflammation (MMP3, THBS4), cytokine signalling (MMP3), extracellular matrix degradation (MMP3, CTSK), autophagy and apoptosis (CTSK, GPNMB, PTGIS), immune response (AKR1C3, RCAN2, PTGIS) and processes of neuronal development (RCAN2). Downregulated genes were associated with cytoskeletal signalling (ACTG2, CNN1); inflammation and oxidative stress (CNN1); inhibition of cell proliferation, migration and differentiation; ERK-MAPK pathway (COL4A1, COL4A2, CPA4); cell adhesion (IGFBP7); autophagy and apoptosis (CDH2, IGFBP7, COL4A2); neuronal function and development (CSRP1); and extracellular matrix stability (PLOD2). When comparing NPC and Gaucher patients together versus controls, upregulation of SERPINB2 and IL13RA2 and downregulation of CSRP1 and CNN1 were characteristic. Notably, in NPC patients, the expression of PTGIS is upregulated while the expression of PLOD2 is downregulated when compared to Gaucher patients or controls and potentially could serve to differentiate these patients. Interestingly, in NPC patients with (i) jaundice, splenomegaly and cognitive impairment/psychomotor delay-the expression of ACTG2 was especially downregulated; (ii) ataxia-the expression of ACTG2 and IGFBP5 was especially downregulated; and (iii) VSGP, dysarthria, dysphagia and epilepsy-the expression of AKR1C3 was especially upregulated while the expression of ACTG2 was downregulated. These results indicate disordered apoptosis, autophagy and cytoskeleton remodelling as well as upregulation of immune response and inflammation to play an important role in the pathogenesis of NPC in humans.
Collapse
Affiliation(s)
| | - Roksana Iwanicka-Nowicka
- Laboratory of Microarray Analysis, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
- Laboratory of Systems Biology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Anna Fogtman
- Laboratory of Microarray Analysis, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Jarosław Cieśla
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Paweł Włodarski
- Center for Preclinical Research, Department of Methodology, Medical University of Warsaw, Warsaw, Poland
| | - Barbara Żyżyńska-Granica
- Department of Biochemistry, Second Faculty of Medicine with the English Division and the Physiotherapy Division, Medical University of Warsaw, Warsaw, Poland
| | - Mirella Filocamo
- Laboratorio di Genetica Molecolare e Biobanche, Istituto G. Gaslini, L.go G. Gaslini, 16147, Genoa, Italy
| | - Andrea Dardis
- Regional Coordinator Centre for Rare Diseases, Department of Laboratory Medicine, Academic Hospital "Santa Maria della Misericordia" Udine, Udine, Italy
| | - Paolo Peruzzo
- Regional Coordinator Centre for Rare Diseases, Department of Laboratory Medicine, Academic Hospital "Santa Maria della Misericordia" Udine, Udine, Italy
| | | | - Marta Koblowska
- Laboratory of Microarray Analysis, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
- Laboratory of Systems Biology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Agnieszka Ługowska
- Department of Genetics, Institute of Psychiatry and Neurology, Al. Sobieskiego 9, 02-957, Warsaw, Poland.
| |
Collapse
|
9
|
A new evolutionary model for the vertebrate actin family including two novel groups. Mol Phylogenet Evol 2019; 141:106632. [DOI: 10.1016/j.ympev.2019.106632] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 09/19/2019] [Accepted: 09/23/2019] [Indexed: 02/06/2023]
|
10
|
Da Silva AC, Jammal MP, Crispim PCA, Murta EFC, Nomelini RS. The Role of Stroma in Ovarian Cancer. Immunol Invest 2019; 49:406-424. [PMID: 32264761 DOI: 10.1080/08820139.2019.1658770] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Background: Ovarian cancer is one of the gynecological malignancies responsible for thousands of deaths in women worldwide. Malignant solid tumors are formed by malignant cells and stroma that influence each other, where different types of cells in the stromal environment can be recruited by malignant cells to promote tumor growth and facilitate metastasis. The chronic inflammatory response is increasingly accepted in its relation to the pathophysiology of the onset and development of tumors, sustained cell proliferation in an environment rich in inflammatory cells, growth factors, activated stroma and DNA damage agents may increase the risk to develop a neoplasm.Methods: A search for the following keywords was performed in the PubMed database; "Ovarian cancer", "stroma", "tumor-associated macrophages", "cancer-associated fibroblasts", "cytokines", "angiogenesis", "epithelial-mesenchymal transition", and "extracellular matrix".Results: The articles identified were published in English between 1971 and 2018. A total of 154 articles were selected for further analysis. Conclusion: We consider ovarian cancer as a heterogeneous disease, not only in the sense that different histological or molecular subtypes may be behind the same clinical result, but also that multiple cell types besides cancer cells, like other non-cellular components, need to be mobilized and coordinated to support tumor survival, growth, invasion and progression.
Collapse
Affiliation(s)
- Ana Carolinne Da Silva
- Research Institute of Oncology (IPON)/Department of Gynecology and Obstetrics, Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Millena Prata Jammal
- Research Institute of Oncology (IPON)/Department of Gynecology and Obstetrics, Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Paula Carolina Arvelos Crispim
- Research Institute of Oncology (IPON)/Department of Gynecology and Obstetrics, Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Eddie Fernando Candido Murta
- Research Institute of Oncology (IPON)/Department of Gynecology and Obstetrics, Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Rosekeila Simões Nomelini
- Research Institute of Oncology (IPON)/Department of Gynecology and Obstetrics, Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| |
Collapse
|
11
|
Kovacs AM, Zimmer WE. Cell-specific transcription of the smooth muscle gamma-actin gene requires both positive- and negative-acting cis elements. Gene Expr 2018; 7:115-29. [PMID: 9699483 PMCID: PMC6190202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
We have characterized the function of putative regulatory sequences upon the smooth muscle transcription of the SMGA gene, using promoter deletion analyses. We demonstrate that the SMGA promoter contains four domains: a basal promoter (-1 to -100), a smooth muscle specifier sequence (-100 to -400), a negative regulator (-400 to -1000), and a smooth muscle-specific modulator (-1000 to -2000). The basal or core promoter supports equivalent transcription in both smooth and skeletal muscle cells. Addition of sequences containing a CArG motif juxtaposed to an E-box element stimulates smooth muscle transcription by five- to sixfold compared to skeletal muscle. This smooth muscle-specific segment is maintained for about 200 bp, after which is a segment of DNA that appears to inhibit the transcriptional capacity of the SMGA promoter in smooth muscle cells. Within the boundary between the smooth muscle specifier and negative regulatory sequences (-400 to -500) are three E-box elements. The smooth muscle modulator domain contains two CArG elements and multiple E-boxes. When added to the SMGA promoter it causes an additional three- to fivefold increase in smooth muscle-specific transcription over that stimulated by the smooth muscle specifier domain. Thus, our studies show that the appropriate cell-specific transcription of the SMGA gene involves complex interactions directed by multiple cis-acting elements. Moreover, our characterization of a cell culture system employing embryonic gizzard smooth muscle cells lays the foundation for further molecular analyses of factors that regulate or control SMGA and other smooth muscle genes during differentiation.
Collapse
Affiliation(s)
- Adrienne M. Kovacs
- Department of Structural and Cellular Biology, University of South Alabama, Mobile, AL 36688
| | - Warren E. Zimmer
- Department of Structural and Cellular Biology, University of South Alabama, Mobile, AL 36688
- Address correspondence to Warren E. Zimmer. Tel: (334) 460-7982; Fax: (334) 460-6771; E-mail:
| |
Collapse
|
12
|
Vedula P, Kashina A. The makings of the 'actin code': regulation of actin's biological function at the amino acid and nucleotide level. J Cell Sci 2018; 131:131/9/jcs215509. [PMID: 29739859 DOI: 10.1242/jcs.215509] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The actin cytoskeleton plays key roles in every eukaryotic cell and is essential for cell adhesion, migration, mechanosensing, and contractility in muscle and non-muscle tissues. In higher vertebrates, from birds through to mammals, actin is represented by a family of six conserved genes. Although these genes have evolved independently for more than 100 million years, they encode proteins with ≥94% sequence identity, which are differentially expressed in different tissues, and tightly regulated throughout embryogenesis and adulthood. It has been previously suggested that the existence of such similar actin genes is a fail-safe mechanism to preserve the essential function of actin through redundancy. However, knockout studies in mice and other organisms demonstrate that the different actins have distinct biological roles. The mechanisms maintaining this distinction have been debated in the literature for decades. This Review summarizes data on the functional regulation of different actin isoforms, and the mechanisms that lead to their different biological roles in vivo We focus here on recent studies demonstrating that at least some actin functions are regulated beyond the amino acid level at the level of the actin nucleotide sequence.
Collapse
Affiliation(s)
- Pavan Vedula
- Department of Biomedical Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Anna Kashina
- Department of Biomedical Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
13
|
Butler LM, Hallström BM, Fagerberg L, Pontén F, Uhlén M, Renné T, Odeberg J. Analysis of Body-wide Unfractionated Tissue Data to Identify a Core Human Endothelial Transcriptome. Cell Syst 2016; 3:287-301.e3. [PMID: 27641958 DOI: 10.1016/j.cels.2016.08.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 05/23/2016] [Accepted: 08/03/2016] [Indexed: 12/11/2022]
Abstract
Endothelial cells line blood vessels and regulate hemostasis, inflammation, and blood pressure. Proteins critical for these specialized functions tend to be predominantly expressed in endothelial cells across vascular beds. Here, we present a systems approach to identify a panel of human endothelial-enriched genes using global, body-wide transcriptomics data from 124 tissue samples from 32 organs. We identified known and unknown endothelial-enriched gene transcripts and used antibody-based profiling to confirm expression across vascular beds. The majority of identified transcripts could be detected in cultured endothelial cells from various vascular beds, and we observed maintenance of relative expression in early passage cells. In summary, we describe a widely applicable method to determine cell-type-specific transcriptome profiles in a whole-organism context, based on differential abundance across tissues. We identify potential vascular drug targets or endothelial biomarkers and highlight candidates for functional studies to increase understanding of the endothelium in health and disease.
Collapse
Affiliation(s)
- Lynn Marie Butler
- Institute for Clinical Chemistry and Laboratory Medicine, University Medical Centre Hamburg-Eppendorf, 20246 Hamburg, Germany; Clinical Chemistry and Blood Coagulation, Department of Molecular Medicine and Surgery, Karolinska Institute, 171 76 Stockholm, Sweden.
| | - Björn Mikael Hallström
- Science for Life Laboratory, School of Biotechnology, Royal Institute of Technology (KTH), 171 21 Stockholm, Sweden
| | - Linn Fagerberg
- Science for Life Laboratory, School of Biotechnology, Royal Institute of Technology (KTH), 171 21 Stockholm, Sweden
| | - Fredrik Pontén
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, 751 85 Uppsala, Sweden
| | - Mathias Uhlén
- Science for Life Laboratory, School of Biotechnology, Royal Institute of Technology (KTH), 171 21 Stockholm, Sweden
| | - Thomas Renné
- Institute for Clinical Chemistry and Laboratory Medicine, University Medical Centre Hamburg-Eppendorf, 20246 Hamburg, Germany; Clinical Chemistry and Blood Coagulation, Department of Molecular Medicine and Surgery, Karolinska Institute, 171 76 Stockholm, Sweden
| | - Jacob Odeberg
- Science for Life Laboratory, School of Biotechnology, Royal Institute of Technology (KTH), 171 21 Stockholm, Sweden; Coagulation Unit, Centre for Hematology, Karolinska University Hospital, 171 76 Stockholm, Sweden
| |
Collapse
|
14
|
Li X, Cao S, Mao B, Bai Y, Chen X, Wang X, Wu Y, Li L, Lin H, Lian Q, Huang P, Ge RS. Effects of butylated hydroxyanisole on the steroidogenesis of rat immature Leydig cells. Toxicol Mech Methods 2016; 26:511-519. [PMID: 27388148 DOI: 10.1080/15376516.2016.1202367] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Xiaoheng Li
- Center of Scientific Research, the Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Shuyan Cao
- Center of Scientific Research, the Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Baiping Mao
- Center of Scientific Research, the Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yanfang Bai
- Center of Scientific Research, the Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaomin Chen
- Center of Scientific Research, the Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiudi Wang
- Center of Scientific Research, the Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Ying Wu
- Center of Scientific Research, the Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Linxi Li
- Center of Scientific Research, the Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Han Lin
- Center of Scientific Research, the Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Qingquan Lian
- Center of Scientific Research, the Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Ping Huang
- Department of Pharmacy, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, People’s Republic of China
| | - Ren-Shan Ge
- Center of Scientific Research, the Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
15
|
Szcześniak KA, Ciecierska A, Ostaszewski P, Sadkowski T. Transcriptomic profile adaptations following exposure of equine satellite cells to nutriactive phytochemical gamma-oryzanol. GENES & NUTRITION 2016; 11:5. [PMID: 27482297 PMCID: PMC4959553 DOI: 10.1186/s12263-016-0523-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 02/08/2016] [Indexed: 12/13/2022]
Abstract
BACKGROUND Adult skeletal muscle myogenesis depends on the activation of satellite cells that have the potential to differentiate into new fibers. Gamma-oryzanol (GO), a commercially available nutriactive phytochemical, has gained global interest on account of its muscle-building and regenerating effects. Here, we investigated GO for its potential influence on myogenesis, using equine satellite cell culture model, since the horse is a unique animal, bred and exercised for competitive sport. To our knowledge, this is the first report where the global gene expression in cultured equine satellite cells has been described. METHODS Equine satellite cells were isolated from semitendinosus muscle and cultured until the second day of differentiation. Differentiating cells were incubated with GO for the next 24 h. Subsequently, total RNA from GO-treated and control cells was isolated, amplified, labeled, and hybridized to two-color Horse Gene Expression Microarray slides. Quantitative PCR was used for the validation of microarray data. RESULTS Our results revealed 58 genes with changed expression in GO-treated vs. control cells. Analysis of expression changes suggests that various processes are reinforced by GO in differentiating equine satellite cells, including inhibition of myoblast differentiation, increased proliferation and differentiation, stress response, and increased myogenic lineage commitment. CONCLUSIONS The present study may confirm putative muscle-enhancing abilities of GO; however, the collective role of GO in skeletal myogenesis remains equivocal. The diversity of these changes is likely due to heterogenous growth rate of cells in primary culture. Genes identified in our study, modulated by the presence of GO, may become potential targets of future research investigating impact of this supplement in skeletal muscle on proteomic and biochemical level.
Collapse
Affiliation(s)
- K A Szcześniak
- Department of Physiological Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences - SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland
| | - A Ciecierska
- Department of Physiological Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences - SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland
| | - P Ostaszewski
- Department of Physiological Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences - SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland
| | - T Sadkowski
- Department of Physiological Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences - SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland
| |
Collapse
|
16
|
Halim D, Hofstra RMW, Signorile L, Verdijk RM, van der Werf CS, Sribudiani Y, Brouwer RWW, van IJcken WFJ, Dahl N, Verheij JBGM, Baumann C, Kerner J, van Bever Y, Galjart N, Wijnen RMH, Tibboel D, Burns AJ, Muller F, Brooks AS, Alves MM. ACTG2 variants impair actin polymerization in sporadic Megacystis Microcolon Intestinal Hypoperistalsis Syndrome. Hum Mol Genet 2015; 25:571-83. [PMID: 26647307 DOI: 10.1093/hmg/ddv497] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 11/30/2015] [Indexed: 12/13/2022] Open
Abstract
Megacystis Microcolon Intestinal Hypoperistalsis Syndrome (MMIHS) is a rare congenital disorder, in which heterozygous missense variants in the Enteric Smooth Muscle actin γ-2 (ACTG2) gene have been recently identified. To investigate the mechanism by which ACTG2 variants lead to MMIHS, we screened a cohort of eleven MMIHS patients, eight sporadic and three familial cases, and performed immunohistochemistry, molecular modeling and molecular dynamics (MD) simulations, and in vitro assays. In all sporadic cases, a heterozygous missense variant in ACTG2 was identified. ACTG2 expression was detected in all intestinal layers where smooth muscle cells are present in different stages of human development. No histopathological abnormalities were found in the patients. Using molecular modeling and MD simulations, we predicted that ACTG2 variants lead to significant changes to the protein function. This was confirmed by in vitro studies, which showed that the identified variants not only impair ACTG2 polymerization, but also contribute to reduced cell contractility. Taken together, our results confirm the involvement of ACTG2 in sporadic MMIHS, and bring new insights to MMIHS pathogenesis.
Collapse
Affiliation(s)
| | - Robert M W Hofstra
- Department of Clinical Genetics, Birth Defects Research Centre, UCL Institute of Child Health, London, UK
| | | | | | | | | | - Rutger W W Brouwer
- Erasmus Center for Biomics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Wilfred F J van IJcken
- Erasmus Center for Biomics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Niklas Dahl
- Department of Immunology, Genetics and Pathology, Medical Genetics and Genomics, Uppsala University, Uppsala, Sweden
| | - Joke B G M Verheij
- Department of Genetics, University Medical Center Groningen, Groningen, The Netherlands
| | | | - John Kerner
- Lucile Salter Packard Children's Hospital, Stanford University, Palo Alto, CA, USA and
| | | | | | - Rene M H Wijnen
- Department of Pediatric Surgery, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Dick Tibboel
- Department of Pediatric Surgery, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Alan J Burns
- Department of Clinical Genetics, Birth Defects Research Centre, UCL Institute of Child Health, London, UK
| | - Françoise Muller
- Biochimie Prenatalé, Hôpital Universitaire Robert Debré, Paris, France
| | | | | |
Collapse
|
17
|
Tuzovic L, Tang S, Miller RS, Rohena L, Shahmirzadi L, Gonzalez K, Li X, LeDuc CA, Guo J, Wilson A, Mills A, Glassberg K, Rotterdam H, Sepulveda AR, Zeng W, Chung WK, Anyane-Yeboa K. New Insights into the Genetics of Fetal Megacystis: ACTG2 Mutations, Encoding γ-2 Smooth Muscle Actin in Megacystis Microcolon Intestinal Hypoperistalsis Syndrome (Berdon Syndrome). Fetal Diagn Ther 2015; 38:296-306. [PMID: 25998219 DOI: 10.1159/000381638] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 03/12/2015] [Indexed: 11/19/2022]
Abstract
OBJECTIVE To identify the molecular basis for prenatally suspected cases of megacystis microcolon intestinal hypoperistalsis syndrome (MMIHS) (MIM 249210) in 3 independent families with clinical and radiographic evidence of MMIHS. METHODS Whole-exome sequencing (WES) and Sanger sequencing of the ACTG2 gene. RESULTS We identified a novel heterozygous de novo missense variant in ACTG2 c.770G>A (p.Arg257His) encoding x03B3;-2 smooth muscle actin (ACTG2) in 2 siblings with MMIHS, suggesting gonadal mosaicism of one of the parents. Two additional de novo missense variants (p.Arg257Cys and p.Arg178His) in ACTG2 were identified in 2 additional MMHIS patients. All of our patients had evidence of fetal megacystis and a normal or slightly increased amniotic fluid volume. Additional findings included bilateral renal hydronephrosis, an enlarged fetal stomach, and transient dilated bowel loops. ACTG2 immunostaining of the intestinal tissue showed an altered muscularis propria, a markedly thinned longitudinal muscle layer, and a reduced amount and abnormal distribution of ACTG2. CONCLUSION Our study demonstrates that de novo mutations in ACTG2 are a cause of fetal megacystis in MMIHS and that gonadal mosaicism may be present in a subset of cases. These findings have implications for the counseling of families with a diagnosis of fetal megacystis with a preserved amniotic fluid volume and associated gastrointestinal findings.
Collapse
Affiliation(s)
- Lea Tuzovic
- Department of Pediatrics, Columbia University Medical Center, New York, N.Y., USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Galkin VE, Orlova A, Vos MR, Schröder GF, Egelman EH. Near-atomic resolution for one state of F-actin. Structure 2014; 23:173-182. [PMID: 25533486 DOI: 10.1016/j.str.2014.11.006] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 11/03/2014] [Accepted: 11/14/2014] [Indexed: 01/15/2023]
Abstract
Actin functions as a helical polymer, F-actin, but attempts to build an atomic model for this filament have been hampered by the fact that the filament cannot be crystallized and by structural heterogeneity. We have used a direct electron detector, cryo-electron microscopy, and the forces imposed on actin filaments in thin films to reconstruct one state of the filament at 4.7 Å resolution, which allows for building a reliable pseudo-atomic model of F-actin. We also report a different state of the filament where actin protomers adopt a conformation observed in the crystal structure of the G-actin-profilin complex with an open ATP-binding cleft. Comparison of the two structural states provides insights into ATP-hydrolysis and filament dynamics. The atomic model provides a framework for understanding why every buried residue in actin has been under intense selective pressure.
Collapse
Affiliation(s)
- Vitold E Galkin
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, VA 23507, USA.
| | - Albina Orlova
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22908-0733, USA
| | - Matthijn R Vos
- FEI Company, Nanoport Europe, 5651 GG Eindhoven, the Netherlands
| | - Gunnar F Schröder
- Institute of Complex Systems, Forschungszentrum Jülich, 52425 Jülich, Germany; Physics Department, University of Düsseldorf, 40225 Düsseldorf, Germany
| | - Edward H Egelman
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22908-0733, USA.
| |
Collapse
|
19
|
Maruyama T, Hatakeyama S, Miwa T, Nishimori K. Human Smooth Muscle α-Actin Promoter Drives Cre Recombinase Expression in the Cranial Suture in Addition to Smooth Muscle Cell. Biosci Biotechnol Biochem 2014; 71:1103-6. [PMID: 17420573 DOI: 10.1271/bbb.70043] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Tissue-specific gene deletion by the Cre-loxp system is a powerful tool to investigate the roles of specific genes. To determine the specificity and efficiency of the Cre-mediated recombination under the control of the human smooth muscle alpha-actin promoter, we mated SMalphaA-Cre mice and R26R reporter mice. Cre-mediated recombination was observed in visceral and vascular smooth muscle cells. Partial recombination was also found in heart and musculoskeletal connective tissues. Highly efficient recombination was found in cranial sutures. Hence, we propose that SMalphaA-Cre mice are good tool for conditionally deleting gene function in the cranial suture in addition to smooth muscle cells.
Collapse
Affiliation(s)
- Takamitsu Maruyama
- Department of Molecular Biology, Graduate School of Agriculture, Tohoku University, Sendai, Japan
| | | | | | | |
Collapse
|
20
|
Transcriptional analysis of apoptotic cerebellar granule neurons following rescue by gastric inhibitory polypeptide. Int J Mol Sci 2014; 15:5596-622. [PMID: 24694544 PMCID: PMC4013584 DOI: 10.3390/ijms15045596] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 03/04/2014] [Accepted: 03/17/2014] [Indexed: 12/31/2022] Open
Abstract
Apoptosis triggered by exogenous or endogenous stimuli is a crucial phenomenon to determine the fate of neurons, both in physiological and in pathological conditions. Our previous study established that gastric inhibitory polypeptide (Gip) is a neurotrophic factor capable of preventing apoptosis of cerebellar granule neurons (CGNs), during its pre-commitment phase. In the present study, we conducted whole-genome expression profiling to obtain a comprehensive view of the transcriptional program underlying the rescue effect of Gip in CGNs. By using DNA microarray technology, we identified 65 genes, we named survival related genes, whose expression is significantly de-regulated following Gip treatment. The expression levels of six transcripts were confirmed by real-time quantitative polymerase chain reaction. The proteins encoded by the survival related genes are functionally grouped in the following categories: signal transduction, transcription, cell cycle, chromatin remodeling, cell death, antioxidant activity, ubiquitination, metabolism and cytoskeletal organization. Our data outline that Gip supports CGNs rescue via a molecular framework, orchestrated by a wide spectrum of gene actors, which propagate survival signals and support neuronal viability.
Collapse
|
21
|
Rockey DC, Weymouth N, Shi Z. Smooth muscle α actin (Acta2) and myofibroblast function during hepatic wound healing. PLoS One 2013; 8:e77166. [PMID: 24204762 PMCID: PMC3812165 DOI: 10.1371/journal.pone.0077166] [Citation(s) in RCA: 136] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Accepted: 08/30/2013] [Indexed: 01/18/2023] Open
Abstract
Smooth muscle α actin (Acta2) expression is largely restricted to smooth muscle cells, pericytes and specialized fibroblasts, known as myofibroblasts. Liver injury, associated with cirrhosis, induces transformation of resident hepatic stellate cells into liver specific myofibroblasts, also known as activated cells. Here, we have used in vitro and in vivo wound healing models to explore the functional role of Acta2 in this transformation. Acta2 was abundant in activated cells isolated from injured livers but was undetectable in quiescent cells isolated from normal livers. Both cellular motility and contraction were dramatically increased in injured liver cells, paralleled by an increase in Acta2 expression, when compared with quiescent cells. Inhibition of Acta2 using several different techniques had no effect on cytoplasmic actin isoform expression, but led to reduced cellular motility and contraction. Additionally, Acta2 knockdown was associated with a significant reduction in Erk1/2 phosphorylation compared to control cells. The data indicate that Acta2 is important specifically in myofibroblast cell motility and contraction and raise the possibility that the Acta2 cytoskeleton, beyond its structural importance in the cell, could be important in regulating signaling processes during wound healing in vivo.
Collapse
Affiliation(s)
- Don C. Rockey
- Department of Internal Medicine, Medical University of South Carolina, Charleston, South Carolina, United States of America
- * E-mail:
| | - Nate Weymouth
- Division of Digestive and Liver Diseases, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Zengdun Shi
- Department of Internal Medicine, Medical University of South Carolina, Charleston, South Carolina, United States of America
| |
Collapse
|
22
|
Bosco N, Brahmbhatt V, Oliveira M, Martin FP, Lichti P, Raymond F, Mansourian R, Metairon S, Pace-Asciak C, Bastic Schmid V, Rezzi S, Haller D, Benyacoub J. Effects of increase in fish oil intake on intestinal eicosanoids and inflammation in a mouse model of colitis. Lipids Health Dis 2013; 12:81. [PMID: 23725086 PMCID: PMC3691874 DOI: 10.1186/1476-511x-12-81] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Accepted: 05/24/2013] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Inflammatory bowel diseases (IBD) are chronic intestinal inflammatory diseases affecting about 1% of western populations. New eating behaviors might contribute to the global emergence of IBD. Although the immunoregulatory effects of omega-3 fatty acids have been well characterized in vitro, their role in IBD is controversial. METHODS The aim of this study was to assess the impact of increased fish oil intake on colonic gene expression, eicosanoid metabolism and development of colitis in a mouse model of IBD. Rag-2 deficient mice were fed fish oil (FO) enriched in omega-3 fatty acids i.e. EPA and DHA or control diet for 4 weeks before colitis induction by adoptive transfer of naïve T cells and maintained in the same diet for 4 additional weeks. Onset of colitis was monitored by colonoscopy and further confirmed by immunological examinations. Whole genome expression profiling was made and eicosanoids were measured by HPLC-MS/MS in colonic samples. RESULTS A significant reduction of colonic proinflammatory eicosanoids in FO fed mice compared to control was observed. However, neither alteration of colonic gene expression signature nor reduction in IBD scores was observed under FO diet. CONCLUSION Thus, increased intake of dietary FO did not prevent experimental colitis.
Collapse
Affiliation(s)
- Nabil Bosco
- Nestlé Research Center, Vers-chez-les-Blanc, Lausanne 26, CH-1000, Switzerland
| | - Viral Brahmbhatt
- Nestlé Research Center, Vers-chez-les-Blanc, Lausanne 26, CH-1000, Switzerland
| | - Manuel Oliveira
- Nestlé Research Center, Vers-chez-les-Blanc, Lausanne 26, CH-1000, Switzerland
| | - Francois-Pierre Martin
- Nestlé Research Center, Vers-chez-les-Blanc, Lausanne 26, CH-1000, Switzerland
- Current address: Nestlé Institute of Health Sciences SA, EPFL campus, Quartier de l’innovation, Building G, Lausanne, 1015, Switzerland
| | - Pia Lichti
- Technische Universität München, Biofunctionality, ZIEL–Research Center for Nutrition and Food Science, CDD - Center for Diet and Disease, Gregor-Mendel-Straße 2, Freising-Weihenstephan, 85350, Germany
| | - Frederic Raymond
- Nestlé Research Center, Vers-chez-les-Blanc, Lausanne 26, CH-1000, Switzerland
- Current address: Nestlé Institute of Health Sciences SA, EPFL campus, Quartier de l’innovation, Building G, Lausanne, 1015, Switzerland
| | - Robert Mansourian
- Nestlé Research Center, Vers-chez-les-Blanc, Lausanne 26, CH-1000, Switzerland
| | - Sylviane Metairon
- Nestlé Research Center, Vers-chez-les-Blanc, Lausanne 26, CH-1000, Switzerland
- Current address: Nestlé Institute of Health Sciences SA, EPFL campus, Quartier de l’innovation, Building G, Lausanne, 1015, Switzerland
| | - Cecil Pace-Asciak
- Research Institute, E. McMaster Building, The Hospital for Sick Children, Toronto, Canada
| | | | - Serge Rezzi
- Nestlé Research Center, Vers-chez-les-Blanc, Lausanne 26, CH-1000, Switzerland
- Current address: Nestlé Institute of Health Sciences SA, EPFL campus, Quartier de l’innovation, Building G, Lausanne, 1015, Switzerland
| | - Dirk Haller
- Technische Universität München, Biofunctionality, ZIEL–Research Center for Nutrition and Food Science, CDD - Center for Diet and Disease, Gregor-Mendel-Straße 2, Freising-Weihenstephan, 85350, Germany
| | - Jalil Benyacoub
- Nestlé Research Center, Vers-chez-les-Blanc, Lausanne 26, CH-1000, Switzerland
| |
Collapse
|
23
|
Cho YS, Lee SY, Kim YK, Kim DS, Nam YK. Functional ability of cytoskeletal β-actin regulator to drive constitutive and ubiquitous expression of a fluorescent reporter throughout the life cycle of transgenic marine medaka Oryzias dancena. Transgenic Res 2011; 20:1333-55. [PMID: 21437716 DOI: 10.1007/s11248-011-9501-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2010] [Accepted: 02/20/2011] [Indexed: 01/16/2023]
Abstract
Marine medaka Oryzias dancena, a candidate model organism, represents many attractive merits as a material for experimental transgenesis and/or heterologous expression assay particularly in the field of ecotoxicology and developmental biology. In this study, cytoskeletal β-actin gene was characterized from O. dancena and the functional capability of its promoter to drive constitutive expression of foreign reporter protein was evaluated. The O. dancena β-actin gene possessed a conserved genomic organization of vertebrate major cytoplasmic actin genes and the bioinformatic analysis of its 5'-upstream regulatory region predicted various transcription factor binding motifs. Heterologous expression assay using a red fluorescent protein (RFP) reporter construct driven by the O. dancena β-actin regulator resulted in stunningly bright expression of red fluorescence signals in not only microinjected embryos but also grown-up transgenic adults. Although founder transgenics exhibited mosaic patterns of RFP expression, transgenic offspring in subsequent generations displayed a vivid and uniform expression of RFP continually from embryos to adults. Based on the blot hybridization assays, two transgenic lines established in this study were proven to possess high copy numbers of transgene integrants (approximately 240 and 34 copies, respectively), and the transgenic genotype in both lines could successfully be passed stably up to three generations, although the rate of transgene transmission in one of the two transgenic lines was significantly lower than expected Mendelian ratio. Significant red fluorescence color could be ubiquitously observable in all the tissues or organs of the transgenics. Quantitative real-time RT-PCR represented that the expression pattern of transgene under the regulation of β-actin promoter would resemble, in overall, the regulation of endogenous β-actin gene in adult tissues, although putative mechanism for competitive or independent regulation between transgene and endogenous gene could also be found in several tissues. Results from this study undoubtedly indicate that the O. dancena β-actin promoter would be powerful enough to fluorescently visualize most cell types in vivo throughout its whole lifespan. This study could be a useful start point for a variety of transgenic experiments with this species concerning the constitutive expression of living fluorescent color reporters and other foreign proteins.
Collapse
MESH Headings
- Actins/genetics
- Actins/metabolism
- Animal Structures/cytology
- Animal Structures/metabolism
- Animals
- Animals, Genetically Modified/genetics
- Animals, Genetically Modified/metabolism
- Blotting, Southern
- Cloning, Molecular
- Computational Biology
- Cytoskeleton/genetics
- Cytoskeleton/metabolism
- Embryo, Nonmammalian/cytology
- Embryo, Nonmammalian/embryology
- Embryo, Nonmammalian/metabolism
- Embryonic Development
- Female
- Fish Proteins/genetics
- Fish Proteins/metabolism
- Gene Dosage
- Gene Expression Regulation, Developmental
- Gene Library
- Genes, Reporter
- Genetic Vectors/genetics
- Genetic Vectors/metabolism
- Inheritance Patterns
- Luminescent Proteins/genetics
- Luminescent Proteins/metabolism
- Male
- Microinjections
- Microscopy, Fluorescence
- Oryzias/embryology
- Oryzias/genetics
- Oryzias/metabolism
- Promoter Regions, Genetic
- Reverse Transcriptase Polymerase Chain Reaction/methods
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Transgenes
- Red Fluorescent Protein
Collapse
Affiliation(s)
- Young Sun Cho
- Institute of Marine Living Modified Organisms, Pukyong National University, Busan 608-737, Korea
| | | | | | | | | |
Collapse
|
24
|
Weymouth N, Shi Z, Rockey DC. Smooth muscle α actin is specifically required for the maintenance of lactation. Dev Biol 2011; 363:1-14. [PMID: 22123032 DOI: 10.1016/j.ydbio.2011.11.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Revised: 11/03/2011] [Accepted: 11/04/2011] [Indexed: 11/30/2022]
Abstract
Smooth muscle α-actin (Acta2) is one of six highly conserved mammalian actin isoforms that appear to exhibit functional redundancy. Nonetheless, we have postulated a specific functional role for the smooth muscle specific isoform. Here, we show that Acta2 deficient mice have a remarkable mammary phenotype such that dams lacking Acta2 are unable to nurse their offspring effectively. The phenotype was rescued in cross fostering experiments with wild type mice, excluding a developmental defect in Acta2 null pups. The mechanism for the underlying phenotype is due to myoepithelial dysfunction postpartum resulting in precocious involution. Further, we demonstrate a specific defect in myoepithelial cell contractility in Acta2 null mammary glands, despite normal expression of cytoplasmic actins. We conclude that Acta2 specifically mediates myoepithelial cell contraction during lactation and that this actin isoform therefore exhibits functional specificity.
Collapse
Affiliation(s)
- Nate Weymouth
- University of Texas Southwestern Medical Center, Dallas, TX 75390-8887, USA
| | | | | |
Collapse
|
25
|
Production of human β-actin and a mutant using a bacterial expression system with a cold shock vector. Protein Expr Purif 2011; 78:1-5. [DOI: 10.1016/j.pep.2010.09.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2010] [Revised: 09/04/2010] [Accepted: 09/12/2010] [Indexed: 11/21/2022]
|
26
|
Davuluri G, Seiler C, Abrams J, Soriano AJ, Pack M. Differential effects of thin and thick filament disruption on zebrafish smooth muscle regulatory proteins. Neurogastroenterol Motil 2010; 22:1100-e285. [PMID: 20591105 PMCID: PMC3902778 DOI: 10.1111/j.1365-2982.2010.01545.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
BACKGROUND The smooth muscle actin binding proteins Caldesmon and Tropomyosin (Tm) promote thin filament assembly by stabilizing actin polymerization, however, whether filament assembly affects either the stability or activation of these and other smooth muscle regulatory proteins is not known. METHODS Measurement of smooth muscle regulatory protein levels in wild type zebrafish larvae following antisense knockdown of smooth muscle actin (Acta2) and myosin heavy chain (Myh11) proteins, and in colourless mutants that lack enteric nerves. Comparison of intestinal peristalsis in wild type and colourless larvae. KEY RESULTS Knockdown of Acta2 led to reduced levels of phospho-Caldesmon and Tm. Total Caldesmon and phospho-myosin light chain (p-Mlc) levels were unaffected. Knockdown of Myh11 had no effect on the levels of either of these proteins. Phospho-Caldesmon and p-Mlc levels were markedly reduced in colourless mutants that have intestinal motility comparable with wild type larvae. CONCLUSIONS & INFERENCES These in vivo findings provide new information regarding the activation and stability of smooth muscle regulatory proteins in zebrafish larvae and their role in intestinal peristalsis in this model organism.
Collapse
Affiliation(s)
- G. Davuluri
- Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - C. Seiler
- Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - J. Abrams
- Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - A. J. Soriano
- Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - M. Pack
- Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA, USA,Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
27
|
Proteomic analysis of pubocervical fascia in women with and without pelvic organ prolapse and urodynamic stress incontinence. Int Urogynecol J 2010; 21:1377-84. [DOI: 10.1007/s00192-010-1203-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2009] [Accepted: 06/02/2010] [Indexed: 02/03/2023]
|
28
|
Dong L, Jensen RV, De Rienzo A, Gordon GJ, Xu Y, Sugarbaker DJ, Bueno R. Differentially expressed alternatively spliced genes in malignant pleural mesothelioma identified using massively parallel transcriptome sequencing. BMC MEDICAL GENETICS 2009; 10:149. [PMID: 20043850 PMCID: PMC2808307 DOI: 10.1186/1471-2350-10-149] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2009] [Accepted: 12/31/2009] [Indexed: 12/22/2022]
Abstract
Background Analyses of Expressed Sequence Tags (ESTs) databases suggest that most human genes have multiple alternative splice variants. The alternative splicing of pre-mRNA is tightly regulated during development and in different tissue types. Changes in splicing patterns have been described in disease states. Recently, we used whole-transcriptome shotgun pryrosequencing to characterize 4 malignant pleural mesothelioma (MPM) tumors, 1 lung adenocarcinoma and 1 normal lung. We hypothesized that alternative splicing profiles might be detected in the sequencing data for the expressed genes in these samples. Methods We developed a software pipeline to map the transcriptome read sequences of the 4 MPM samples and 1 normal lung sample onto known exon junction sequences in the comprehensive AceView database of expressed sequences and to count how many reads map to each junction. 13,274,187 transcriptome reads generated by the Roche/454 sequencing platform for 5 samples were compared with 151,486 exon junctions from the AceView database. The exon junction expression index (EJEI) was calculated for each exon junction in each sample to measure the differential expression of alternative splicing events. Top ten exon junctions with the largest EJEI difference between the 4 mesothelioma and the normal lung sample were then examined for differential expression using Quantitative Real Time PCR (qRT-PCR) in the 5 sequenced samples. Two of the differentially expressed exon junctions (ACTG2.aAug05 and CDK4.aAug05) were further examined with qRT-PCR in additional 18 MPM and 18 normal lung specimens. Results We found 70,953 exon junctions covered by at least one sequence read in at least one of the 5 samples. All 10 identified most differentially expressed exon junctions were validated as present by RT-PCR, and 8 were differentially expressed exactly as predicted by the sequence analysis. The differential expression of the AceView exon junctions for the ACTG2 and CDK4 genes were also observed to be statistically significant in an additional 18 MPM and 18 normal lung samples examined using qRT-PCR. The differential expression of these two junctions was shown to successfully classify these mesothelioma and normal lung specimens with high sensitivity (89% and 78%, respectively). Conclusion Whole-transcriptome shotgun sequencing, combined with a downstream bioinformatics pipeline, provides powerful tools for the identification of differentially expressed exon junctions resulting from alternative splice variants. The alternatively spliced genes discovered in the study could serve as useful diagnostic markers as well as potential therapeutic targets for MPM.
Collapse
Affiliation(s)
- Lingsheng Dong
- The Thoracic Surgery Oncology Laboratory and Division of Thoracic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | | | | | | | | | | | | |
Collapse
|
29
|
Tondeleir D, Vandamme D, Vandekerckhove J, Ampe C, Lambrechts A. Actin isoform expression patterns during mammalian development and in pathology: insights from mouse models. ACTA ACUST UNITED AC 2009; 66:798-815. [PMID: 19296487 DOI: 10.1002/cm.20350] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The dynamic actin cytoskeleton, consisting of six actin isoforms in mammals and a variety of actin binding proteins is essential for all developmental processes and for the viability of the adult organism. Actin isoform specific functions have been proposed for muscle contraction, cell migration, endo- and exocytosis and maintaining cell shape. However, these specific functions for each of the actin isoforms during development are not well understood. Based on transgenic mouse models, we will discuss the expression patterns of the six conventional actin isoforms in mammals during development and adult life. Ablation of actin genes usually leads to lethality and affects expression of other actin isoforms at the cell or tissue level. A good knowledge of their expression and functions will contribute to fully understand severe phenotypes or diseases caused by mutations in actin isoforms.
Collapse
Affiliation(s)
- Davina Tondeleir
- Department of Medical Protein Research, Flanders Interuniversity Institute for Biotechnology (VIB), Albert Baertsoenkaai 3, Ghent, Belgium
| | | | | | | | | |
Collapse
|
30
|
Kim KY, Lee SY, Cho YS, Bang IC, Kim DS, Nam YK. Characterization and phylogeny of two β-cytoskeletal actins fromHemibarbus mylodon(Cyprinidae, Cypriniformes), a threatened fish species in Korea. ACTA ACUST UNITED AC 2009; 19:87-97. [PMID: 17852350 DOI: 10.1080/10425170701445691] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Complementary DNA and genomic sequences representing two different beta-actins were isolated from a threatened freshwater fish species Hemibarbus mylodon. The beta-actin 1 and 2 encoded an identical number of amino acids (375 aa), and shared 88.8 and 99.7% of identity at coding nucleotide and amino acid levels, respectively. Genomic open reading frame (ORF) sequences of both isoforms contained five translated exons interrupted by four introns with conserved GT/AG exon/intron boundary rule. Semi-quantitative RT-PCR showed that the two isoform mRNAs were ubiquitously detected in all tissues tested, but transcript levels were variable across tissues. Phylogenetic analysis showed that H. mylodon beta-actin 1 and 2 were clustered into two distinct major and minor branches of Cypriniformes, respectively. Comparisons of the 5'-upstream region and 3'-UTR of H. mylodon beta-actin 1 also showed a high degree of homology with those of the major teleost beta-actins and warmblooded vertebrate beta-cytoskeletal actins, suggesting their more recent common origin.
Collapse
Affiliation(s)
- Keun-Yong Kim
- Department of Aquaculture, Institute of Marine Living Modified Organisms, Pukyong National University, Busan 608-737, South Korea
| | | | | | | | | | | |
Collapse
|
31
|
Feng H, Cheng J, Luo J, Liu SJ, Liu Y. Cloning of black carp beta-actin gene and primarily detecting the function of its promoter region. ACTA ACUST UNITED AC 2009; 33:133-40. [PMID: 16529297 DOI: 10.1016/s0379-4172(06)60032-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A 3 338 bp DNA fragment including the open reading frame and 5'-flanking region of beta-actin gene for black carp genome was obtained through PCR amplification. Analysis of the sequencing results indicated the ORF of black carp beta-actin gene encoding a 375 amino acid protein that shares a high degree of conservation to other known actins. The black carp beta-actin sequence showed 100% identity to common carp, grass carp, and zebrafish, 99.2% identity to human and Norway rat beta-actin gene, 98.9% and 98.1% identity to chicken and Kenyan clawed frog beta-actin gene, respectively. The promoter region of black carp beta-actin gene was inserted into the promoterless pEGFP1 vector. The recombinant plasmid was microinjected into the fertilized eggs of mud loach before two-cell stage as well as transfected into HeLa cell line. GFP expression was found in 50% of mud loach embryos and 2/3 HeLa cells. The GFP expression could be observed in every part of the mud loach embryos, and in some embryos, the GFP was expressed in the whole body. Thus, the usefulness of black carp beta-actin promoter as a ubiquitous expression promoter was confirmed using the EGFP as a reporter gene.
Collapse
Affiliation(s)
- Hao Feng
- Key Lab of Protein Chemistry and Developmental Biology of the Educational Department of China, College of Life Science, Hunan Normal University, Changsha 410081, China
| | | | | | | | | |
Collapse
|
32
|
Laasanen J, Helisalmi S, Iivonen S, Eloranta ML, Hiltunen M, Heinonen S. Gamma 2 Actin Gene (Enteric Type) Polymorphism Is Not Associated with Obstetric Cholestasis or Preeclampsia. Fetal Diagn Ther 2007; 23:36-40. [DOI: 10.1159/000109224] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2006] [Accepted: 10/11/2006] [Indexed: 12/25/2022]
|
33
|
Wasko AP, Severino FE, Presti FT, Poletto AB, Martins C. Partial molecular characterization of the Nile tilapia (Oreochromis niloticus) alpha-cardiac muscle actin gene and its relationship to actin isoforms of other fish species. Genet Mol Biol 2007. [DOI: 10.1590/s1415-47572007000600010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023] Open
|
34
|
Bryant MJ, Flint HJ, Sin FYT. Isolation, characterization, and expression analysis of three actin genes in the New Zealand black-footed abalone, Haliotis iris. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2006; 8:110-9. [PMID: 16372160 DOI: 10.1007/s10126-005-5139-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2004] [Accepted: 08/17/2005] [Indexed: 05/05/2023]
Abstract
Three actin genes -- H. irisA1, H. irisA2, and H. irisA3 -- from the mollusc Haliotis iris (New Zealand black-footed abalone) were isolated by polymerase chain reaction (PCR). The genes were similar to molluscan (84.1% to 94.9%) and vertebrate (84.5% to 86.6%) actins. The sequence similarity between the genes ranged from 88.5% to 93.2%. The greatest disparity, 32.3%, was found over a 99-nt region located at nt 808-906 of H. irisA1, corresponding to amino acids 212-244 of the three actins. The H. iris actin gene family contains at least eight members. Reverse transcription (RT)-PCR analysis of the three genes showed H. irisA1 and H. irisA2 were expressed at low levels in fertilized eggs and blastula stages and at high levels in trochophore and veliger larvae. H. irisA3 was detected in fertilized eggs; it was not detected in the blastula stages and at high levels in the trochophore and veliger larvae. The structure and expression of the three actin genes are discussed.
Collapse
Affiliation(s)
- Maxine J Bryant
- School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch, 8001, New Zealand,
| | | | | |
Collapse
|
35
|
Diez-Tascón C, Keane OM, Wilson T, Zadissa A, Hyndman DL, Baird DB, McEwan JC, Crawford AM. Microarray analysis of selection lines from outbred populations to identify genes involved with nematode parasite resistance in sheep. Physiol Genomics 2005; 21:59-69. [PMID: 15623564 DOI: 10.1152/physiolgenomics.00257.2004] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Gastrointestinal nematodes infect sheep grazing contaminated pastures. Traditionally, these have been controlled with anthelmintic drenching. The selection of animals resistant to nematodes is an alternative to complete reliance on drugs, but the genetic basis of host resistance is poorly understood. Using a 10,204 bovine cDNA microarray, we have examined differences in gene expression between genetically resistant and susceptible lambs previously field challenged with larval nematodes. Northern blot analysis for a selection of genes validated the data obtained from the microarrays. The results identified over one hundred genes that were differentially expressed based on conservative criteria. The microarray results were further analyzed to identify promoter motifs common to the differentially expressed genes. Motifs identified in upregulated gene promoters were primarily restricted to those promoters; however, motifs identified in downregulated gene promoters were also found in the promoters of upregulated genes but not in the promoters of genes whose expression was unaltered. Protein Annotators’ Assistant was used for lexical analysis of the differentially expressed genes, and Gene Ontology was used to look for metabolic and cell signaling pathways associated with parasite resistance. Two pathways represented by genes differentially expressed in resistant animals were those involved with the development of an acquired immune response and those related to the structure of the intestine smooth muscle. Genes involved in these processes appear from our analysis to be key genetic determinants of parasite resistance.
Collapse
Affiliation(s)
- Cristina Diez-Tascón
- AgResearch, Molecular Biology Unit, Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Phiel CJ, Gabbeta V, Parsons LM, Rothblat D, Harvey RP, McHugh KM. Differential binding of an SRF/NK-2/MEF2 transcription factor complex in normal versus neoplastic smooth muscle tissues. J Biol Chem 2001; 276:34637-50. [PMID: 11457859 DOI: 10.1074/jbc.m105826200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The malignant potential of smooth muscle tumors correlates strongly with the disappearance of gamma-smooth muscle isoactin, a lineage-specific marker of smooth muscle development. In this paper, we identify a 36-base pair regulatory motif containing an AT-rich domain, CArG box, and a non-canonical NK-2 homeodomain-binding site that has the capacity to regulate smooth muscle-specific gene expression in cultured intestinal smooth muscle cells. Serum-response factor associates with an NK-2 transcription factor via protein-protein interactions and binds to the core CArG box element. Our studies suggest that the NK-2 transcription factor that associates with serum-response factor during smooth muscle differentiation is Nkx2-3. Myocyte-specific enhancer factor 2 binding to this regulatory complex was also observed but limited to uterine smooth muscle tissues. Smooth muscle neoplasms displayed altered transcription factor binding when compared with normal myometrium. Differential nuclear accessibility of serum-response factor protein during smooth muscle differentiation and neoplastic transformation was also observed. Thus, we have identified a unique regulatory complex whose differential binding properties and nuclear accessibility are associated with modulating gamma-smooth muscle isoactin-specific gene expression in both normal and neoplastic tissues.
Collapse
Affiliation(s)
- C J Phiel
- Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | | | | | | | |
Collapse
|
37
|
Van Assche G, Depoortere I, Thijs T, Missiaen L, Penninckx F, Takanashi H, Geboes K, Janssens J, Peeters TL. Contractile effects and intracellular Ca2+ signalling induced by motilin and erythromycin in the circular smooth muscle of human colon. Neurogastroenterol Motil 2001; 13:27-35. [PMID: 11169123 DOI: 10.1046/j.1365-2982.2001.00237.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Motilin has excitatory effects on the colon of the rabbit and the dog, but little is known of its effect on the human colon. The aim of this study was to investigate the effects induced by motilin and erythromycin A (EMA) on muscle strips and on single cells from primary cultures from human colon. Isotonic contraction was recorded in circular muscle strips from macroscopically normal resection specimens of patients operated on for colonic neoplasm. Agonist-induced intracellular Ca2+ ([Ca2+]i) signalling was studied in primary cultures of colonic smooth-muscle cells using the ratiometric Ca2+ indicator Indo 1, on a laser-scanning confocal epifluorescence microscope. In circular muscle strips, norleucine13-porcine motilin ([Nle13]-pm)and EMA induced tonic contractions with an EC50 of 92 +/- 21 nmol L(-1) and 31 +/- 16 micromol L(-1), respectively. The maximal contraction was 21 +/- 4% (motilin) and 33 +/- 12% (EMA) of the response to 10(-4) mol L(-1) acetylcholine (ACh). The motilin antagonist OHM-11526 (10(-5.5) mol L(-1)) abolished the effects of both [Nle13]-pm and EMA. Neither tetrodotoxin (10(-5.5) mol L(-1)), L-nitro-D-arginine methyl ester (L-NAME) (10(-3.5) mol L(-1)) nor guanethidine (10(-5) mol L(-1)) interfered with the effects of [Nle13]-pm or EMA. [Nle13]-pm (10(-11)-10(-6) mol L(-1)) induced rises of [Ca2+]i in cultured colonic myocytes. At 10(-6) mol L-1, 94% of the cells responded, and half of the cells responded at 1.4 nmol L(-1) [Nle13]-pm. 81% (35/43) and 95% (75/79) responded to EMA (10(-6) mol L(-1)) and acetylcholine (ACh, 10(-4) mol L(-1)), respectively. The motilin antagonist GM-109 inhibited motilin- and EMA-induced [Ca2+]i rises. In the absence of extracellular Ca2+, only 13% (7/52) of the cells responded to [Nle13]-pm (10(-6) mol L(-1)) vs. 90% (47/52) to ACh (10(-4) mol L(-1)). Motilin and EMA have direct excitatory effects on circular smooth muscle from the human colon and these effects are mediated via a smooth-muscle motilin receptor. These findings suggest that motilin may regulate colonic motility and that motilides may have therapeutic potential for the treatment of colonic hypomotility.
Collapse
Affiliation(s)
- G Van Assche
- Center for Gastroenterological Research, University of Leuven, B-3000 Leuven, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Carson JA, Fillmore RA, Schwartz RJ, Zimmer WE. The smooth muscle gamma-actin gene promoter is a molecular target for the mouse bagpipe homologue, mNkx3-1, and serum response factor. J Biol Chem 2000; 275:39061-72. [PMID: 10993896 DOI: 10.1074/jbc.m006532200] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
An evolutionarily conserved vertebrate homologue of the Drosophila NK-3 homeodomain gene bagpipe, Nkx3-1, is expressed in vascular and visceral mesoderm-derived muscle tissues and may influence smooth muscle cell differentiation. Nkx3-1 was evaluated for mediating smooth muscle gamma-actin (SMGA) gene activity, a specific marker of smooth muscle differentiation. Expression of mNkx3-1 in heterologous CV-1 fibroblasts was unable to elicit SMGA promoter activity but required the coexpression of serum response factor (SRF) to activate robust SMGA transcription. A novel complex element containing a juxtaposed Nkx-binding site (NKE) and an SRF-binding element (SRE) in the proximal promoter region was found to be necessary for the Nkx3-1/SRF coactivation of SMGA transcription. Furthermore, Nkx3-1 and SRF associate through protein-protein interactions and the homeodomain region of Nkx3-1 facilitated SRF binding to the complex NKE.SRE. Mutagenesis of Nkx3-1 revealed an inhibitory domain within its C-terminal segment. In addition, mNkx3-1/SRF cooperative activity required an intact Nkx3-1 homeodomain along with the MADS box of SRF, which contains DNA binding and dimerization structural domains, and the contiguous C-terminal SRF activation domain. Thus, SMGA is a novel target for Nkx3-1, and the activity of Nkx3-1 on the SMGA promoter is dependent upon SRF.
Collapse
Affiliation(s)
- J A Carson
- Department of Cellular and Molecular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | |
Collapse
|
39
|
Tubb BE, Bardien-Kruger S, Kashork CD, Shaffer LG, Ramagli LS, Xu J, Siciliano MJ, Bryan J. Characterization of human retinal fascin gene (FSCN2) at 17q25: close physical linkage of fascin and cytoplasmic actin genes. Genomics 2000; 65:146-56. [PMID: 10783262 DOI: 10.1006/geno.2000.6156] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Retinal fascin is a newly identified photoreceptor-specific paralog of the actin-bundling protein fascin. Fascins crosslink f-actin into highly ordered bundles within dynamic cell extensions such as neuronal growth cone filopodia. We have isolated cDNA and genomic clones of human retinal fascin and characterized the structure of the human retinal fascin gene (FSCN2). The cDNA predicts a protein of 492 amino acids and molecular mass 55,057 that shows 94% identity to bovine retinal fascin and 56% identity to human fascin. Promoter analysis reveals a consensus retinoic acid response element and several potential binding sites for transcription factors Crx and Nrl, which correlates with the retina-specific expression of FSCN2 mRNA. Fluorescence in situ hybridization analysis and genomic clone sequencing indicate that the FSCN2 gene lies within 200 kb of the actin gene ACTG1 at 17q25. Database searches revealed that the human fascin gene FSCN1 and actin gene ACTB at 7p22 also coexist within a 200-kb genomic clone. The close physical linkage of these fascin/actin gene pairs suggests that they derive from a common gene duplication event and allows comparison of fascin and actin phylogenetic analyses. Finally, a possible link to the retinitis pigmentosa 17 allele (RP17) at distal 17q was excluded by demonstration of multiple independent segregation events in two RP17 kindreds. Informative FSCN2 polymorphisms were identified and will serve as useful markers in future linkage studies. The likely function of retinal fascin, in light of known fascin roles in other cell types, is to assemble actin microfilaments in support of photoreceptor disk morphogenesis.
Collapse
Affiliation(s)
- B E Tubb
- Department of Cell Biology, Baylor College of Medicine, Houston, Texas, 77030, USA.
| | | | | | | | | | | | | | | |
Collapse
|
40
|
|
41
|
Li S, MacLaughlin FC, Fewell JG, Li Y, Mehta V, French MF, Nordstrom JL, Coleman M, Belagali NS, Schwartz RJ, Smith LC. Increased level and duration of expression in muscle by co-expression of a transactivator using plasmid systems. Gene Ther 1999; 6:2005-11. [PMID: 10637452 DOI: 10.1038/sj.gt.3301032] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Skeletal muscle is an attractive target for gene therapies to treat either local or systemic disorders, as well as for genetic vaccination. An ideal expression system for skeletal muscle would be characterized by high level, extended duration of expression and muscle specificity. Viral promoters, such as the cytomegalovirus (CMV) promoter, produce high levels of transgene expression, which last for only a few days at high levels. Moreover, many promoters lack muscle tissue specificity. A muscle-specific skeletal alpha-actin promoter (SkA) has shown tissue specificity but lower peak activity than that of the CMV promoter in vivo. It has been reported in vitro that serum response factor (SRF) can stimulate the transcriptional activity of some muscle-specific promoters. In this study, we show that co- expression of SRF in vivo is able to up-regulate SkA promoter-driven expression about 10-fold and CMV/SkA chimeric promoter activity by five-fold in both mouse gastrocnemius and tibialis muscle. In addition, co-expression of transactivator with the CMV/SkA chimeric promoter in muscle has produced significantly enhanced duration of expression compared with that shown by the CMV promoter-driven expression system. A dominant negative mutant of SRF, SRFpm, abrogated the enhancement to SkA promoter activity, confirming the specificity of the response. Since all the known muscle-specific promoters contain SRF binding sites, this strategy for enhanced expression may apply to other muscle-specific promoters in vivo.
Collapse
Affiliation(s)
- S Li
- Otolaryngology-Head and Neck Surgery, UAMS, Little Rock, AR, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Abstract
One factor limiting the success of non-viral gene therapy vectors is the relative inability to target genes specifically to a desired cell type. To address this limitation, we have begun to develop cell-specific vectors whose specificity is at the level of the nuclear import of the plasmid DNA. We have recently shown that nuclear import of plasmid DNA is a sequence-specific event, requiring the SV40 enhancer, a region known to bind to a number of general transcription factors (Dean DA, Exp Cell Res 1997; 230: 293). From these studies we developed a model whereby transcription factor(s) bind to the DNA in the cytoplasm to create a protein-DNA complex that can enter the nucleus using the protein import machinery. Our model predicts that by using DNA elements containing binding sites for transcription factors expressed in unique cell types, we should be able to create plasmids that target to the nucleus in a cell-specific manner. Using the promoter from the smooth muscle gamma actin (SMGA) gene whose expression is limited to smooth muscle cells, we have created a series of reporter plasmids that are expressed selectively in smooth muscle cells. Moreover, when injected into the cytoplasm, plasmids containing portions of the SMGA promoter localize to the nucleus of smooth muscle cells, but remain cytoplasmic in fibroblasts and CV1 cells. In contrast, a similar plasmid carrying the SV40 enhancer is transported into the nuclei of all cell types tested. Nuclear import of the SMGA promoter-containing plasmids could be achieved when the smooth muscle specific transcription factor SRF was expressed in stably transfected CV1 cells, supporting our model for the nuclear import of plasmids. Finally, these nuclear targeting sequences were also able to promote increased gene expression in liposome- and polycation-transfected non-dividing cells in a cell-specific manner, similar to their nuclear import activity. These results provide proof of principle for the development of cell-specific non-viral vectors for any desired cell type.
Collapse
Affiliation(s)
- J Vacik
- Department of Microbiology and Immunology, College of Medicine, University of South Alabama, Mobile, AL 36688, USA
| | | | | | | |
Collapse
|
43
|
Kusakabe R, Satoh N, Holland LZ, Kusakabe T. Genomic organization and evolution of actin genes in the amphioxus Branchiostoma belcheri and Branchiostoma floridae. Gene 1999; 227:1-10. [PMID: 9931404 DOI: 10.1016/s0378-1119(98)00608-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
We previously described the cDNA cloning and expression patterns of actin genes from amphioxus Branchiostoma floridae (Kusakabe, R., Kusakabe, T., Satoh, N., Holland, N.D., Holland, L.Z., 1997. Differential gene expression and intracellular mRNA localization of amphioxus actin isoforms throughout development: implications for conserved mechanisms of chordate development. Dev. Genes Evol. 207, 203-215). In the present paper, we report the characterization of cDNA clones for actin genes from a closely related species, Branchiostoma belcheri, and the exon-intron organization of B. floridae actin genes. Each of these two amphioxus species has two types of actin genes, muscle and cytoplasmic. The coding and non-coding regions of each type are well-conserved between the two species. A comparison of nucleotide sequences of muscle actin genes between the two species suggests that a gene conversion may have occurred between two B. floridae muscle actin genes BfMA1 and BfMA2. From the conserved positions of introns between actin genes of amphioxus and those of other deuterostomes, the evolution of deuterostome actin genes can be inferred. Thus, the presence of an intron at codon 328/329 in vertebrate muscle and cytoplasmic actin genes but not in any known actin gene in other deuterostomes suggests that a gene conversion may have occurred between muscle and cytoplasmic actin genes during the early evolution of the vertebrates after separation from other deuterostomes. A Southern blot analysis of genomic DNA revealed that the amphioxus genome contains multiple muscle and cytoplasmic actin genes. Some of these actin genes seem to have arisen from recent duplication and gene conversion. Our findings suggest that the multiple genes encoding muscle and cytoplasmic actin isoforms arose independently in each of the three chordate lineages, and gene duplications and gene conversions established the extant actin multigene family during the evolution of chordates.
Collapse
Affiliation(s)
- R Kusakabe
- Division of Biological Sciences, Graduate School of Science, Hokkaido University, Sapporo 060-0810, Japan
| | | | | | | |
Collapse
|
44
|
Barrallo A, González-Sarmiento R, García-Isidoro M, Cidad P, Porteros A, Rodríguez RE. Differential brain expression of a new beta-actin gene from zebrafish (Danio rerio). Eur J Neurosci 1999; 11:369-72. [PMID: 9987040 DOI: 10.1046/j.1460-9568.1999.00474.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
It has been shown that actin genes exhibit distinct tissue and stage-specific patterns of expression. We have cloned a new beta-actin gene from the teleost zebrafish (Danio rerio), a well-established model for developmental studies, and analysed its expression by Northern blot and in situ hybridization studies. Our results suggest that in adult brain zebrafish, this new gene is expressed during neuronal cell proliferation.
Collapse
Affiliation(s)
- A Barrallo
- Department of Biochemistry and Molecular Biology, University of Salamanca, Spain
| | | | | | | | | | | |
Collapse
|
45
|
Browning CL, Culberson DE, Aragon IV, Fillmore RA, Croissant JD, Schwartz RJ, Zimmer WE. The developmentally regulated expression of serum response factor plays a key role in the control of smooth muscle-specific genes. Dev Biol 1998; 194:18-37. [PMID: 9473329 DOI: 10.1006/dbio.1997.8808] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Serum response factor (SRF) is a MADS box transcription factor that has been shown to be important in the regulation of a variety of muscle-specific genes. We have previously shown SRF to be a major component of multiple cis/trans interactions found along the smooth muscle gamma-actin (SMGA) promoter. In the studies reported here, we have further characterized the role of SRF in the regulation of the SMGA gene in the developing gizzard. EMSA analyses, using nuclear extracts derived from gizzards at various stages in development, showed that the SRF-containing complexes were not present early in gizzard smooth muscle development, but appeared as development progressed. We observed an increase in SRF protein and mRNA levels during gizzard development by Western and Northern blot analyses, with a large increase just preceding an increase in SMGA expression. Thus, changes in SRF DNA-binding activity were paralleled with increased SRF gene expression. Immunohistochemical analyses demonstrated a correspondence of SRF and SMGA expression in differentiating visceral smooth muscle cells (SMCs) during gizzard tissue development. This correspondence of SRF and SMGA expression was also observed in cultured smooth muscle mesenchyme induced to express differentiated gene products in vitro. In gene transfer experiments with SMGA promoter-luciferase reporter gene constructs we observed four- to fivefold stronger SMGA promoter activity in differentiated SMCs relative to replicating visceral smooth muscle cells. Further, we demonstrate the ability of a dominant negative SRF mutant protein to specifically inhibit transcription of the SMGA promoter in visceral smooth muscle, directly linking SRF with the control of SMGA gene expression. Taken together, these data suggest that SRF plays a prominent role in the developmental regulation of the SMGA gene.
Collapse
Affiliation(s)
- C L Browning
- Department of Structural and Cellular Biology, University of South Alabama, Mobile, Alabama, 36688, USA
| | | | | | | | | | | | | |
Collapse
|
46
|
Miano JM, Krahe R, Garcia E, Elliott JM, Olson EN. Expression, genomic structure and high resolution mapping to 19p13.2 of the human smooth muscle cell calponin gene. Gene 1997; 197:215-24. [PMID: 9332369 DOI: 10.1016/s0378-1119(97)00265-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Smooth muscle cells (SMC) express a battery of cell-restricted differentiation genes, many of which are down-regulated during the course of vascular disease. Here, we present the mRNA expression, genomic structure and chromosomal mapping of the gene encoding human smooth muscle cell calponin (SMCC). Human SMCC transcripts are restricted to tissues and cells of SMC origin and, in the latter case, appear to be uniquely controlled in two distinct human SMC lines of uterine and aortic origin. Restriction mapping. Southern blot and PCR analysis of a 70-kb human bacterial artificial chromosome (BAC) revealed a genomic structure (seven exons spanning > 11 kb) very similar to that reported for the mouse SMCC gene. Using a variety of human-rodent somatic cell hybrid and radiation hybrid mapping panels, the human SMCC gene was mapped to a genomic interval of less than 1.32 Mb in 19p13.2. These results provide new information concerning the regulation of SMCC gene expression and demonstrate the utility of two human SMC lines for the further characterization of this gene's expression control. The identification of a BAC harboring the entire human SMCC locus represents an important reagent for future analysis of SMCC regulatory sequences. Finally, the localization of SMCC to a defined genomic interval will facilitate an analysis of its potential as a candidate gene for disease phenotypes mapping to 19p13.2.
Collapse
Affiliation(s)
- J M Miano
- Medical College of Wisconsin, Department of Physiology, Milwaukee 53226, USA.
| | | | | | | | | |
Collapse
|
47
|
Martin KA, Gualberto A, Kolman MF, Lowry J, Walsh K. A competitive mechanism of CArG element regulation by YY1 and SRF: implications for assessment of Phox1/MHox transcription factor interactions at CArG elements. DNA Cell Biol 1997; 16:653-61. [PMID: 9174170 DOI: 10.1089/dna.1997.16.653] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
In the promoters of many immediate early genes, including c-fos, CArG DNA regulatory elements mediate basal constituitive expression and rapid and transient serum induction. CArG boxes also occur in the promoters of muscle-specific genes, including skeletal alpha-actin, where it confers muscle-specific expression. These elements are regulated, at least in part, by the ubiquitous transcription factors serum response factor (SRF) and YY1. The homeobox transcription factor Phox1/MHox has also been implicated in regulation of the c-fos CArG element and is thought to function by facilitating SRF binding to DNA. Here, we provide in vitro and in vivo evidence that the mechanism of YY1 repression of CArG elements results from competition with SRF for overlapping binding sites. We describe in detail the binding sites of YY1 and SRF through serial point mutations of the skeletal alpha-actin proximal CArG element and identify a mutation that dramatically reduces YY1 binding but retains normal SRF binding. YY1 competes with SRF for binding to wild-type CArG elements, but not to this point mutant in vitro. This mutant is sufficient for muscle-specific expression in vivo but is much less sensitive to repression by YY1 overexpression. We utilized the YY1/SRF competition to address the role of Phox1 at these elements. Phox1 overexpression did not diminish YY1-mediated repression, suggesting that transcriptional activation by Phox1 does not result from enhanced SRF binding to these elements. These methods may prove to be useful for assessing interactions between other CArG element regulatory factors.
Collapse
Affiliation(s)
- K A Martin
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | | | | | | | | |
Collapse
|
48
|
Qian J, Kumar A, Szucsik JC, Lessard JL. Tissue and developmental specific expression of murine smooth muscle gamma-actin fusion genes in transgenic mice. Dev Dyn 1996; 207:135-44. [PMID: 8906417 DOI: 10.1002/(sici)1097-0177(199610)207:2<135::aid-aja2>3.0.co;2-i] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Smooth muscle gamma-actin (SMGA) is an excellent marker of smooth muscle differentiation because it is essentially restricted to smooth muscle. As a first step toward unraveling the mechanisms underlying smooth muscle development and differentiation, we have examined the tissue-specific and developmental expression patterns of six constructs carrying portions of the murine SMGA gene linked to chloramphenicol acetyltransferase (CAT) in stable lines of transgenic mice. Based on the transgenic studies most, if not all, of the regulatory elements necessary for proper spatial and temporal expression of SMGA are present within a 13.7 kb segment of the SMGA gene containing 4.9 kb of upstream sequence, exon 1, intron 1, and a portion of exon 2 up to the start codon for translation. A second construct (SMGA11.6CAT) that lacks the distal 2.1 kb of upstream sequence but is otherwise identical to SMGA13.7CAT shows a similar level of smooth muscle-specific CAT activity. However, SMGA9.3CAT fusion gene containing only 571 bp of 5' flanking sequence, but otherwise identical to SMGA13.7CAT, and SMGA6.0CAT containing only the 4.9 kb upstream sequence, exon 1, and a miniintron 1 show a more than a 100-fold reduction of CAT activity in most smooth muscle-rich tissues. Furthermore, removal of most or all of intron 1 from a transgene with 571 bp of upstream sequence (SMGA2.0 CAT and SMGA0.6CAT) results in a near-complete or complete loss of activity, respectively, in all tissues. Overall, the studies suggest that upstream elements between -2.7 kb and -571 bp and elements within intron 1 are required for high levels of SMGA gene expression in an appropriate temporal-spatial fashion.
Collapse
Affiliation(s)
- J Qian
- Division of Developmental Biology, Children's Hospital Medical Center, College of Medicine, University of Cincinnati, Ohio 45229-3039, USA
| | | | | | | |
Collapse
|
49
|
Kelm RJ, Sun S, Strauch AR, Getz MJ. Repression of transcriptional enhancer factor-1 and activator protein-1-dependent enhancer activity by vascular actin single-stranded DNA binding factor 2. J Biol Chem 1996; 271:24278-85. [PMID: 8798674 DOI: 10.1074/jbc.271.39.24278] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Transcriptional repression of the murine vascular smooth muscle alpha-actin gene in fibroblasts results from the interaction of two sequence-specific single-stranded DNA binding activities (VACssBF1 and VACssBF2) with opposite strands of an essential transcriptional enhancer factor-1 (TEF-1) element (Sun, S., Stoflet, E. S., Cogan, J. G., Strauch, A. R., and Getz, M. J. (1995) Mol. Cell. Biol. 15, 2429-2436). Here, we identify a sequence element located within a protein-coding exon of the gene that bears structural similarity with the TEF-1 enhancer. This includes a 30-base pair region of purine-pyrimidine asymmetry encompassing a perfect 6-base pair GGAATG TEF-1 recognition motif. Unlike the enhancer, however, the exon sequence exhibits no TEF-1 binding activity nor does the pyrimidine-rich strand bind VACssBF1. However, VACssBF2 interacts equally well with the purine-rich strand of both the enhancer and the exon sequence. To test the ability of VACssBF2 to independently repress transcription, the exon sequence was placed upstream of a deletionally activated promoter containing an intact TEF-1 binding site. The exon sequence repressed promoter activity, whereas a mutant deficient in VACssBF2 binding did not. Moreover, VACssBF2 similarly repressed activator protein-1-dependent transcription of a heterologous tissue factor promoter. These results suggest that VACssBF2 possesses an intrinsic ability to disrupt enhancer function independently of the enhancer-binding proteins involved.
Collapse
Affiliation(s)
- R J Kelm
- Department of Biochemistry and Molecular Biology, Mayo Clinic/Foundation, Rochester, Minnesota 55905, USA
| | | | | | | |
Collapse
|
50
|
Bagavathi S, Malathi R. Introns and protein revolution--an analysis of the exon/intron organisation of actin genes. FEBS Lett 1996; 392:63-5. [PMID: 8769316 DOI: 10.1016/0014-5793(96)00769-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
A catalogue of intron positions obtained from a large number of actin genes has been compiled with a view to understanding the possible origin of intervening sequences. Actins are ubiquitous proteins conserved in evolution and an analysis of their gene structures from various organisms has revealed that there may be at least 25 intron positions distributed at different positions in the coding regions. A comparison of intron positions from a wide range of organisms from that of yeast to human actins shows that introns could be more ancestral in origin. The conservation in the observed intron patterns within the different tissue types hints at a possible functional significance of introns in present day actin genes.
Collapse
Affiliation(s)
- S Bagavathi
- Department of Genetics, Dr. ALM Post Graduate Institute of Basic Medical Sciences, University of Madras, India
| | | |
Collapse
|