1
|
Hu P, Wang B, Chen T, Xu Y, Zheng G, Zhu Y, Du X. RNA polymerase II subunit 3 regulates vesicular, overexpressed in cancer, prosurvival protein 1 expression to promote hepatocellular carcinoma. J Int Med Res 2021; 49:300060521990512. [PMID: 33845647 PMCID: PMC8047087 DOI: 10.1177/0300060521990512] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 01/05/2021] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVE To explore the relationships between hepatocellular carcinoma (HCC) and the expression of RNA polymerase II subunit 3 (RPB3) and vesicular, overexpressed in cancer, prosurvival protein 1 (VOPP1), and to determine whether RPB3 regulates VOPP1 expression to promote HCC cell proliferation, tumor growth, and tumorigenesis. METHODS HCC and adjacent liver samples were collected from 51 patients with HCC who underwent surgical excision between September 20, 2010 and June 22, 2017. Immunohistochemical staining, western blot, quantitative PCR, plate colony assay, and RNA microarray were used to detect relevant indexes for further analyses. RESULTS VOPP1 was shown to function as a target gene of RPB3 in facilitating HCC proliferation, and was downregulated after RBP3 silencing. Additionally, hepatic tumor tissues demonstrated high VOPP1 expression. Furthermore, VOPP1 silencing suppressed tumor growth and cell proliferation and elicited apoptosis. CONCLUSION RPB3 regulates VOPP1 expression to promote HCC cell proliferation, tumor growth, and tumorigenesis.
Collapse
Affiliation(s)
- Peng Hu
- Department of Hepatobiliary Surgery, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Linhai, Zhejiang, China
| | - Binfeng Wang
- Department of Hepatobiliary Surgery, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Linhai, Zhejiang, China
| | - Ting Chen
- Department of Hepatobiliary Surgery, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Linhai, Zhejiang, China
| | - Yongfu Xu
- Department of Hepatobiliary Surgery, Enze Hospital,Wenzhou Medical University, Taizhou, Zhejiang, China
| | - Guoqun Zheng
- Department of Hepatobiliary Surgery, Enze Hospital,Wenzhou Medical University, Taizhou, Zhejiang, China
| | - Yu Zhu
- Department of Hepatobiliary Surgery, Enze Hospital,Wenzhou Medical University, Taizhou, Zhejiang, China
| | - Xuefeng Du
- Department of Hepatobiliary Surgery, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Linhai, Zhejiang, China
| |
Collapse
|
2
|
Li Y, Yuan Y, Fang X, Lu X, Lian B, Zhao G, Qi Y. A Role for MINIYO and QUATRE-QUART2 in the Assembly of RNA Polymerases II, IV, and V in Arabidopsis. THE PLANT CELL 2018; 30:466-480. [PMID: 29352065 PMCID: PMC5868690 DOI: 10.1105/tpc.17.00380] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 01/09/2018] [Accepted: 01/17/2018] [Indexed: 05/15/2023]
Abstract
RNA polymerases IV and V (Pol IV and Pol V) are required for the generation of noncoding RNAs in RNA-directed DNA methylation (RdDM). Their subunit compositions resemble that of Pol II. The mechanism and accessory factors involved in their assembly remain largely unknown. In this study, we identified mutant alleles of MINIYO (IYO), QUATRE-QUART2 (QQT2), and NUCLEAR RNA POLYMERASE B11/D11/E11 (NRPB/D/E11) that cause defects in RdDM in Arabidopsis thaliana We found that Pol IV-dependent small interfering RNAs and Pol V-dependent transcripts were greatly reduced in the mutants. NRPE1, the largest subunit of Pol V, failed to associate with other Pol V subunits in the iyo and qqt2 mutants, suggesting the involvement of IYO and QQT2 in Pol V assembly. In addition, we found that IYO and QQT2 were mutually dependent for their association with the NRPE3 subassembly prior to the assembly of Pol V holoenzyme. Finally, we show that IYO and QQT2 are similarly required for the assembly of Pol II and Pol IV. Our findings reveal IYO and QQT2 as cofactors for the assembly of Pol II, Pol IV, and Pol V and provide mechanistic insights into how RNA polymerases are assembled in plants.
Collapse
Affiliation(s)
- Yaoxi Li
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Graduate Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
- National Institute of Biological Sciences, Beijing 102206, China
| | - Yuxiang Yuan
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Peking University-Tsinghua University-National Institute of Biological Sciences Joint Graduate Program, Tsinghua University, Beijing 100084, China
| | - Xiaofeng Fang
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xiuli Lu
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Bi Lian
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Gaozhan Zhao
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Yijun Qi
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Graduate Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| |
Collapse
|
3
|
Kaplan CD. Basic mechanisms of RNA polymerase II activity and alteration of gene expression in Saccharomyces cerevisiae. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012; 1829:39-54. [PMID: 23022618 DOI: 10.1016/j.bbagrm.2012.09.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Revised: 09/18/2012] [Accepted: 09/20/2012] [Indexed: 01/12/2023]
Abstract
Transcription by RNA polymerase II (Pol II), and all RNA polymerases for that matter, may be understood as comprising two cycles. The first cycle relates to the basic mechanism of the transcription process wherein Pol II must select the appropriate nucleoside triphosphate (NTP) substrate complementary to the DNA template, catalyze phosphodiester bond formation, and translocate to the next position on the DNA template. Performing this cycle in an iterative fashion allows the synthesis of RNA chains that can be over one million nucleotides in length in some larger eukaryotes. Overlaid upon this enzymatic cycle, transcription may be divided into another cycle of three phases: initiation, elongation, and termination. Each of these phases has a large number of associated transcription factors that function to promote or regulate the gene expression process. Complicating matters, each phase of the latter transcription cycle are coincident with cotranscriptional RNA processing events. Additionally, transcription takes place within a highly dynamic and regulated chromatin environment. This chromatin environment is radically impacted by active transcription and associated chromatin modifications and remodeling, while also functioning as a major platform for Pol II regulation. This review will focus on our basic knowledge of the Pol II transcription mechanism, and how altered Pol II activity impacts gene expression in vivo in the model eukaryote Saccharomyces cerevisiae. This article is part of a Special Issue entitled: RNA Polymerase II Transcript Elongation.
Collapse
Affiliation(s)
- Craig D Kaplan
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843-2128, USA.
| |
Collapse
|
4
|
Boulon S, Bertrand E, Pradet-Balade B. HSP90 and the R2TP co-chaperone complex: building multi-protein machineries essential for cell growth and gene expression. RNA Biol 2012; 9:148-54. [PMID: 22418846 DOI: 10.4161/rna.18494] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
HSP90 (Heat Shock Protein 90) is an essential chaperone involved in the last folding steps of client proteins. It has many clients, and these are often recognized through specific adaptors. Recently, the conserved R2TP complex was identified as a key HSP90 co-chaperone. Current evidences indicate that the HSP90/R2TP system assembles multi-molecular protein complexes. Strikingly, these comprise basic machineries of gene expression: (1) nuclear RNA polymerases; (2) the snoRNPs, essential to produce ribosomes; and (3) mTOR Complex 1 and 2, which control translational activity and cell growth. Another important substrate is the telomerase RNP, required for continuous cell proliferation. We discuss here the assembly of RNA polymerases in bacteria and eukaryotes, the role of HSP90/R2TP in this process and in the assembly of snoRNPs and the PIKK family of TORC1 kinase. Finally, we speculate on the roles of R2TP as a master regulator of cell growth under normal or pathological conditions.
Collapse
Affiliation(s)
- Séverine Boulon
- Centre de Recherche de Biochimie Macromoléculaire, CNRS, Université Montpellier; Montpellier, France
| | | | | |
Collapse
|
5
|
Wild T, Cramer P. Biogenesis of multisubunit RNA polymerases. Trends Biochem Sci 2012; 37:99-105. [PMID: 22260999 DOI: 10.1016/j.tibs.2011.12.001] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Revised: 12/08/2011] [Accepted: 12/16/2011] [Indexed: 01/11/2023]
Abstract
Gene transcription in the nucleus of eukaryotic cells is carried out by three related multisubunit RNA polymerases, Pol I, Pol II and Pol III. Although the structure and function of the polymerases have been studied extensively, little is known about their biogenesis and their transport from the cytoplasm (where the subunits are synthesized) to the nucleus. Recent studies have revealed polymerase assembly intermediates and putative assembly factors, as well as factors required for Pol II nuclear import. In this review, we integrate the available data into a model of Pol II biogenesis that provides a framework for future analysis of the biogenesis of all RNA polymerases.
Collapse
Affiliation(s)
- Thomas Wild
- Gene Center and Department of Biochemistry, Center for Integrated Protein Science Munich (CIPSM), Ludwig-Maximilians-Universität München, Feodor-Lynen-Str. 25, 81377 Munich, Germany
| | | |
Collapse
|
6
|
Corbi N, Di Padova M, De Angelis R, Bruno T, Libri V, Iezzi S, Floridi A, Fanciulli M, Passananti C. The alpha-like RNA polymerase II core subunit 3 (RPB3) is involved in tissue-specific transcription and muscle differentiation via interaction with the myogenic factor myogenin. FASEB J 2002; 16:1639-41. [PMID: 12207009 DOI: 10.1096/fj.02-0123fje] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
RNA polymerase II core subunit 3 (RPB3) is an a-like core subunit of RNA polymerase II (pol II). It is selectively down-regulated upon treatment with doxorubicin (dox). Due to the failure of skeletal muscle cells to differentiate when exposed to dox, we hypothesized that RPB3 is involved in muscle differentiation. To this end, we have isolated human muscle RPB3-interacting proteins by using yeast two-hybrid screening. It is of interest that an interaction between RPB3 and the myogenic transcription factor myogenin was identified. This interaction involves a specific region of RPB3 protein that is not homologous to the prokaryotic a subunit. Although RPB3 contacts the basic helix-loop-helix (HLH) region of myogenin, it does not bind other HLH myogenic factors such as MyoD, Myf5, and MRF4. Coimmunoprecipitation experiments indicate that myogenin contacts the pol II complex and that the RPB3 subunit is responsible for this interaction. We show that RPB3 expression is regulated during muscle differentiation. Exogenous expression of RPB3 slightly promotes myogenin transactivation activity and muscle differentiation, whereas the region of RPB3 that contacts myogenin, when used as a dominant negative molecule (Sud), counteracts these effects. These results indicate for the first time that the RPB3 pol II subunit is involved in the regulation of tissue-specific transcription.
Collapse
|
7
|
Lenssen E, Oberholzer U, Labarre J, De Virgilio C, Collart MA. Saccharomyces cerevisiae Ccr4-not complex contributes to the control of Msn2p-dependent transcription by the Ras/cAMP pathway. Mol Microbiol 2002; 43:1023-37. [PMID: 11929548 DOI: 10.1046/j.1365-2958.2002.02799.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The Ccr4-Not complex is a global regulator of transcription that affects genes positively and negatively and is thought to modulate the activity of TFIID. In the present work, we provide evidence that the Ccr4-Not complex may contribute to transcriptional regulation by the Ras/cAMP pathway. Several observations support this model. First, Msn2/4p-dependent transcription, which is known to be under negative control of cAMP-dependent protein kinase (PKA), is derepressed in all ccr4-not mutants. This phenotype is paralleled by specific post-translational modification defects of Msn2p in ccr4-not mutants relative to wild-type cells. Secondly, mutations in various NOT genes result in a synthetic temperature-sensitive growth defect when combined with mutations that compromise cells for PKA activity and at least partially suppress the effects of both a dominant-active RAS2Val-19 allele and loss of Rim15p. Thirdly, Not3p and Not5p, which are modified and subsequently degraded by stress signals that also lead to increased Msn2/4p-dependent activity, show a specific two-hybrid interaction with Tpk2p. Together, our results suggest that the Ccr4-Not complex may function as an effector of the Ras/cAMP pathway that contributes to repress basal, stress- and starvation-induced transcription by Msn2/4p.
Collapse
Affiliation(s)
- E Lenssen
- Department Biochimie Médicale, CMU, 1 rue Michel Servet, 1211 Genève 4, Switzerland. CEA Saclay, France
| | | | | | | | | |
Collapse
|
8
|
Naryshkina T, Rogulja D, Golub L, Severinov K. Inter- and intrasubunit interactions during the formation of RNA polymerase assembly intermediate. J Biol Chem 2000; 275:31183-90. [PMID: 10906130 DOI: 10.1074/jbc.m003884200] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We used yeast two-hybrid and in vitro co-immobilization assays to study the interaction between the Escherichia coli RNA polymerase (RNAP) alpha and beta subunits during the formation of alpha(2)beta, a physiological RNAP assembly intermediate. We show that a 430-amino acid-long fragment containing beta conserved segments F, G, H, and a short part of segment I forms a minimal domain capable of specific interaction with alpha. The alpha-interacting domain is held together by protein-protein interactions between beta segments F and I. Residues in catalytically important beta segments H and I directly participate in alpha binding; substitutions of strictly conserved segment H Asp(1084) and segment I Gly(1215) abolish alpha(2)beta formation in vitro and are lethal in vivo. The importance of these beta amino acids in alpha binding is fully supported by the structural model of the Thermus aquaticus RNAP core enzyme. We also demonstrate that determinants of RNAP assembly are conserved, and that a homologue of beta Asp(1084) in A135, the beta-like subunit of yeast RNAP I, is responsible for interaction with AC40, the largest alpha-like subunit. However, the A135-AC40 interaction is weak compared with the E. coli alpha-beta interaction, and A135 mutation that abolishes the interaction is phenotypically silent. The results suggest that in eukaryotes additional RNAP subunits orchestrate the enzyme assembly by stabilizing weak, but specific interactions of core subunits.
Collapse
Affiliation(s)
- T Naryshkina
- Waksman Institute for Microbiology and the Department of Genetics, Rutgers, State University of New Jersey, Piscataway, New Jersey 08854, USA
| | | | | | | |
Collapse
|
9
|
Schlegel BP, Green VJ, Ladias JA, Parvin JD. BRCA1 interaction with RNA polymerase II reveals a role for hRPB2 and hRPB10 in activated transcription. Proc Natl Acad Sci U S A 2000; 97:3148-53. [PMID: 10725406 PMCID: PMC16207 DOI: 10.1073/pnas.97.7.3148] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The functions of most of the 12 subunits of the RNA polymerase II (Pol II) enzyme are unknown. In this study, we demonstrate that two of the subunits, hRPB2 and hRPB10alpha, mediate the regulated stimulation of transcription. We find that the transcriptional coactivator BRCA1 interacts directly with the core Pol II complex in vitro. We tested whether single subunits from Pol II would compete with the intact Pol II complex to inhibit transcription stimulated by BRCA1. Excess purified Pol II subunits hRPB2 or hRPB10alpha blocked BRCA1- and VP16-dependent transcriptional activation in vitro with minimal effect on basal transcription. No other Pol II subunits tested inhibited activated transcription in these assays. Furthermore, hRPB10alpha, but not hRPB2, blocked Sp1-dependent activation.
Collapse
Affiliation(s)
- B P Schlegel
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
10
|
Shpakovski GV, Gadal O, Labarre-Mariotte S, Lebedenko EN, Miklos I, Sakurai H, Proshkin SA, Van Mullem V, Ishihama A, Thuriaux P. Functional conservation of RNA polymerase II in fission and budding yeasts. J Mol Biol 2000; 295:1119-27. [PMID: 10653691 DOI: 10.1006/jmbi.1999.3399] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The complementary DNAs of the 12 subunits of fission yeast (Schizosaccharomyces pombe) RNA polymerase II were expressed from strong promoters in Saccharomyces cerevisiae and tested for heterospecific complementation by monitoring their ability to replace in vivo the null mutants of the corresponding host genes. Rpb1 and Rpb2, the two largest subunits and Rpb8, a small subunit shared by all three polymerases, failed to support growth in S. cerevisiae. The remaining nine subunits were all proficient for heterospecific complementation and led in most cases to a wild-type level of growth. The two alpha-like subunits (Rpb3 and Rpb11), however, did not support growth at high (37 degrees C) or low (25 degrees C) temperatures. In the case of Rpb3, growth was restored by increasing the gene dosage of the host Rpb11 or Rpb10 subunits, confirming previous evidence of a close genetic interaction between these three subunits.
Collapse
Affiliation(s)
- G V Shpakovski
- Service de Biochimie & Génétique Moléculaire, CEA-Saclay, Bât. 142, F-91191, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Tan Q, Linask KL, Ebright RH, Woychik NA. Activation mutants in yeast RNA polymerase II subunit RPB3 provide evidence for a structurally conserved surface required for activation in eukaryotes and bacteria. Genes Dev 2000; 14:339-48. [PMID: 10673505 PMCID: PMC316356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/1999] [Accepted: 12/14/1999] [Indexed: 02/15/2023]
Abstract
We have identified a mutant in RPB3, the third-largest subunit of yeast RNA polymerase II, that is defective in activator-dependent transcription, but not defective in activator-independent, basal transcription. The mutant contains two amino-acid substitutions, C92R and A159G, that are both required for pronounced defects in activator-dependent transcription. Synthetic enhancement of phenotypes of C92R and A159G, and of several other pairs of substitutions, is consistent with a functional relationship between residues 92-95 and 159-161. Homology modeling of RPB3 on the basis of the crystallographic structure of alphaNTD indicates that residues 92-95 and 159-162 are likely to be adjacent within the structure of RPB3. In addition, homology modeling indicates that the location of residues 159-162 within RPB3 corresponds to the location of an activation target within alphaNTD (the target of activating region 2 of catabolite activator protein, an activation target involved in a protein-protein interaction that facilitates isomerization of the RNA polymerase promoter closed complex to the RNA polymerase promoter open complex). The apparent finding of a conserved surface required for activation in eukaryotes and bacteria raises the possibility of conserved mechanisms of activation in eukaryotes and bacteria.
Collapse
Affiliation(s)
- Q Tan
- University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, Department of Molecular Genetics and Microbiology, Piscataway, New Jersey 08854, USA
| | | | | | | |
Collapse
|
12
|
McHugh PJ, Gill RD, Waters R, Hartley JA. Excision repair of nitrogen mustard-DNA adducts in Saccharomyces cerevisiae. Nucleic Acids Res 1999; 27:3259-66. [PMID: 10454632 PMCID: PMC148558 DOI: 10.1093/nar/27.16.3259] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The bifunctional alkylating anticancer drug nitrogen mustard forms a variety of DNA lesions, including monoadducts and intrastrand and interstrand crosslinks. Although it is known that nucleotide excision repair (NER) is important in processing these adducts, the role of the other principal excision repair pathway, base excision repair (BER) is less well defined. Using isogenic Saccharomyces cerevisiae strains disrupted for a variety of NER and BER genes we have examined the relative importance of the two pathways in the repair of nitrogen mustard adducts. As expected, NER defective cells (rad4 and rad14 strains) are extremely sensitive to the drug. One of the BER mutants, a 3-methyladenine glycosylase defective (mag1) strain also shows significant hypersensitivity. Using a rad4/mag1 double mutant it is shown that the two excision repair pathways are epistatic to each other for nitrogen mustard sensitivity. Furthermore, both rad14 and mag1 disruptants show elevated levels of nitrogen mustard-induced forward mutation. Measurements of repair rates of nitrogen mustard N-alkylpurine adducts in the highly transcribed RPB2 gene demonstrate defects in the processing of mono-adducts in rad4, rad14 and mag1 strains. However, there are differences in the kinetics of adduct removal in the NER mutants compared to the mag1 strain. In the mag1 strain significant repair occurs within 1 h with evidence of enhanced repair on the transcribed strand. Adducts however accumulate at later times in this strain. In contrast, in the NER mutants repair is only evident at times greater than 1 h. In a mag1/rad4 double mutant damage accumulates with no evidence of repair. Comparison of the rates of repair in this gene with those in a different genomic region indicate that the contributions of NER and BER to the repair of nitrogen mustard adducts may not be the same genome wide.
Collapse
Affiliation(s)
- P J McHugh
- CRC Drug-DNA Interactions Research Group, Department of Oncology, Royal Free and University College Medical School, 91 Riding House Street, London W1P 8BT, UK and.
| | | | | | | |
Collapse
|
13
|
Woychik NA. Fractions to functions: RNA polymerase II thirty years later. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 1999; 63:311-7. [PMID: 10384295 DOI: 10.1101/sqb.1998.63.311] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- N A Woychik
- Department of Molecular Genetics and Microbiology, University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, Piscataway 08854, USA
| |
Collapse
|
14
|
Svetlov V, Nolan K, Burgess RR. Rpb3, stoichiometry and sequence determinants of the assembly into yeast RNA polymerase II in vivo. J Biol Chem 1998; 273:10827-30. [PMID: 9556554 DOI: 10.1074/jbc.273.18.10827] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Stoichiometry of the third largest subunit (Rpb3) of the yeast RNA polymerase II is a subject of continuing controversy. In this work we utilized immunoaffinity and nickel-chelate chromatographic techniques to isolate the RNA polymerase II species assembled in vivo in the presence of the His6-tagged and untagged Rpb3. The distribution pattern of tagged and untagged subunits among the RNA polymerase II molecules is consistent with a stoichiometry of 1 Rpb3 polypeptide per molecule of RNA polymerase. Deletion of either alpha-homology region (amino acids 29-55 or 226-267) from the Rpb3 sequence abolished its ability to assemble into RNA polymerase II in vivo.
Collapse
Affiliation(s)
- V Svetlov
- McArdle Laboratory for Cancer Research, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | | | |
Collapse
|
15
|
Kimura M, Ishiguro A, Ishihama A. RNA polymerase II subunits 2, 3, and 11 form a core subassembly with DNA binding activity. J Biol Chem 1997; 272:25851-5. [PMID: 9325316 DOI: 10.1074/jbc.272.41.25851] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
RNA polymerase II purified from the fission yeast Schizosaccharomyces pombe consists of 10 species of subunit polypeptide. We introduced a histidine cluster tag sequence into the chromosomal rpb1 and rpb3 genes, which encode subunit 1 (Rpb1) and subunit 3 (Rpb3), respectively, and purified the RNA polymerase by Ni2+ affinity chromatography. After stepwise dissociation of the Rpb1- and Rpb3-tagged RNA polymerases fixed on Ni2+-resin by increasing concentrations of urea or guanidium hydrochloride, Rpb2-Rpb3-Rpb11 or Rpb2-Rpb3-Rpb11-Rpb10 complexes were obtained. Since the complex consisting of Rpb2, Rpb3, and Rpb11 cannot be dissociated even after treatment with 6 M urea buffer, we propose that this complex represents a core subassembly of the RNA polymerase II, analogous to the alpha2beta complex in the assembly of Escherichia coli RNA polymerase. Both the Rpb2-Rpb3-Rpb11 complex and the free Rpb1 protein showed DNA binding activity, although the affinity was weaker compared with the intact RNA polymerase.
Collapse
Affiliation(s)
- M Kimura
- Department of Molecular Genetics, National Institute of Genetics, Mishima, Shizuoka 411, Japan
| | | | | |
Collapse
|
16
|
Wang Y, Severinov K, Loizos N, Fenyö D, Heyduk E, Heyduk T, Chait BT, Darst SA. Determinants for Escherichia coli RNA polymerase assembly within the beta subunit. J Mol Biol 1997; 270:648-62. [PMID: 9245594 DOI: 10.1006/jmbi.1997.1139] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We used binding assays and other approaches to identify fragments of the Escherichia coli RNAP beta subunit involved in the obligatory interaction with the alpha subunit to form the stable assembly intermediate alpha2beta as well as in the interaction to recruit the beta' subunit into the alpha2beta sub-assembly. We show that two regions of evolutionarily conserved sequence near the C terminus of beta (conserved regions H and I) are central to the assembly of RNAP and likely make subunit-subunit contacts with both alpha and beta'.
Collapse
Affiliation(s)
- Y Wang
- Laboratory of Molecular Biophysics, The Rockefeller University, 1230 York Avenue, New York, NY, 10021, USA
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Acker J, de Graaff M, Cheynel I, Khazak V, Kedinger C, Vigneron M. Interactions between the human RNA polymerase II subunits. J Biol Chem 1997; 272:16815-21. [PMID: 9201987 DOI: 10.1074/jbc.272.27.16815] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
As an initial approach to characterizing the molecular structure of the human RNA polymerase II (hRPB), we systematically investigated the protein-protein contacts that the subunits of this enzyme may establish with each other. To this end, we applied a glutathione S-transferase-pulldown assay to extracts from Sf9 insect cells, which were coinfected with all possible combinations of recombinant baculoviruses expressing hRPB subunits, either as untagged polypeptides or as glutathione S-transferase fusion proteins. This is the first comprehensive study of interactions between eukaryotic RNA polymerase subunits; among the 116 combinations of hRPB subunits tested, 56 showed significant to strong interactions, whereas 60 were negative. Within the intricate network of interactions, subunits hRPB3 and hRPB5 play a central role in polymerase organization. These subunits, which are able to homodimerize and to interact, may constitute the nucleation center for polymerase assembly, by providing a large interface to most of the other subunits.
Collapse
Affiliation(s)
- J Acker
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (CNRS/INSERM/ULP), F-67404 Illkirch Cedex C.U. de Strasbourg, France
| | | | | | | | | | | |
Collapse
|
18
|
Larkin RM, Guilfoyle TJ. Reconstitution of yeast and Arabidopsis RNA polymerase alpha-like subunit heterodimers. J Biol Chem 1997; 272:12824-30. [PMID: 9139743 DOI: 10.1074/jbc.272.19.12824] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Two subunits of about 36-44 kDa and 13-19 kDa in the eukaryotic nuclear RNA polymerases share limited amino acid sequence similarity to the alpha subunit in Escherichia coli RNA polymerase. The alpha subunit in the prokaryotic enzyme has a stoichiometry of 2, but the stoichiometry of the alpha-like subunits in the eukaryotic enzymes is not entirely clear. To gain insight into the subunit stoichiometry and assembly pathway for eukaryotic RNA polymerases, in vitro reconstitution experiments have been carried out with recombinant alpha-like subunits from yeast and plant RNA polymerase II. The large and small alpha-like subunits from each species formed stable heterodimers in vitro, but neither the large or small alpha-like subunits formed stable homodimers. Furthermore, mixed heterodimers were formed between corresponding subunits of yeast and plants, but were not formed between corresponding subunits in different RNA polymerases from the same species. Our results suggest that RNA polymerase II alpha-like heterodimers may be the equivalent of alpha homodimers found in E. coli RNA polymerase.
Collapse
Affiliation(s)
- R M Larkin
- Department of Biochemistry, University of Missouri, Columbia, Missouri 65211, USA
| | | |
Collapse
|
19
|
Yao Y, Yamamoto K, Nishi Y, Nogi Y, Muramatsu M. Mouse RNA polymerase I 16-kDa subunit able to associate with 40-kDa subunit is a homolog of yeast AC19 subunit of RNA polymerases I and III. J Biol Chem 1996; 271:32881-5. [PMID: 8955128 DOI: 10.1074/jbc.271.51.32881] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
We have previously isolated a mouse RPA40 (mRPA40) cDNA encoding the 40-kDa subunit of mouse RNA polymerase I and demonstrated that mRPA40 is a mouse homolog of the yeast subunit AC40, which is a subunit of RNA polymerases I and III, having a limited homology to bacterial RNA polymerase subunit alpha (Song, C. Z., Hanada, K., Yano, K., Maeda, Y., Yamamoto, K., and Muramatsu, M. (1994) J. Biol. Chem. 269, 26976-26981). In an extension of the study we have now cloned mouse RPA16 (mRPA16) cDNA encoding the 16-kDa subunit of mouse RNA polymerase I by a yeast two-hybrid system using mRPA40 as a bait. The deduced amino acid sequence shows 45% identity to the yeast subunit AC19 of RNA polymerases I and III, known to associate with AC40, and a local similarity to bacterial alpha subunit. We have shown that mRPA40 mutants failed to interact with mRPA16 and that neither mRPA16 nor mRPA40 can interact by itself in the yeast two-hybrid system. These results suggest that higher eukaryotic RNA polymerase I conserves two distinct alpha-related subunits that function to associate with each other in an early stage of RNA polymerase I assembly.
Collapse
Affiliation(s)
- Y Yao
- Department of Biochemistry, Saitama Medical School, 38 Morohongo, Moroyama, Iruma-gun, Saitama 350-04, Japan.
| | | | | | | | | |
Collapse
|
20
|
Severinov K, Mustaev A, Kukarin A, Muzzin O, Bass I, Darst SA, Goldfarb A. Structural modules of the large subunits of RNA polymerase. Introducing archaebacterial and chloroplast split sites in the beta and beta' subunits of Escherichia coli RNA polymerase. J Biol Chem 1996; 271:27969-74. [PMID: 8910400 DOI: 10.1074/jbc.271.44.27969] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The beta and beta' subunits of Escherichia coli DNA-dependent RNA polymerase are highly conserved throughout eubacterial and eukaryotic kingdoms. However, in some archaebacteria and chloroplasts, the corresponding sequences are "split" into smaller polypeptides that are encoded by separate genes. To test if such split sites can be accommodated into E. coli RNA polymerase, subunit fragments encoded by the segments of E. coli rpoB and rpoC genes corresponding to archaebacterial and chloroplast split subunits were individually overexpressed. The purified fragments, when mixed in vitro with complementing intact RNA polymerase subunits, yielded an active enzyme capable of catalyzing the phosphodiester bond formation. Thus, the large subunits of eubacteria and eukaryotes are composed of independent structural modules corresponding to the smaller subunits of archaebacteria and chloroplasts.
Collapse
Affiliation(s)
- K Severinov
- The Rockefeller University, New York, New York 10021, USA
| | | | | | | | | | | | | |
Collapse
|
21
|
Archambault J, Jansma DB, Friesen JD. Underproduction of the largest subunit of RNA polymerase II causes temperature sensitivity, slow growth, and inositol auxotrophy in Saccharomyces cerevisiae. Genetics 1996; 142:737-47. [PMID: 8849884 PMCID: PMC1207015 DOI: 10.1093/genetics/142.3.737] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
In the yeast Saccharomyces cerevisiae, mutations in genes encoding subunits of RNA polymerase II (RNAPII) often give rise to a set of pleiotropic phenotypes that includes temperature sensitivity, slow growth and inositol auxotrophy. In this study, we show that these phenotypes can be brought about by a reduction in the intracellular concentration of RNAPII. Underproduction of RNAPII was achieved by expressing the gene (RPO21), encoding the largest subunit of the enzyme, from the LEU2 promoter or a weaker derivative of it, two promoters that can be repressed by the addition of leucine to the growth medium. We found that cells that underproduced RPO21 were unable to derepress fully the expression of a reporter gene under the control of the INO1 UAS. Our results indicate that temperature sensitivity, slow growth and inositol auxotrophy is a set of phenotypes that can be caused by lowering the steady-state amount of RNAPII; these results also lead to the prediction that some of the previously identified RNAPII mutations that confer this same set of phenotypes affect the assembly/stability of the enzyme. We propose a model to explain the hypersensitivity of INO1 transcription to mutations that affect components of the RNAPII transcriptional machinery.
Collapse
Affiliation(s)
- J Archambault
- Department of Genetics, Hospital for Sick Children, Toronto, Ontario, Canada
| | | | | |
Collapse
|
22
|
Ulmasov T, Larkin RM, Guilfoyle TJ. Association between 36- and 13.6-kDa alpha-like subunits of Arabidopsis thaliana RNA polymerase II. J Biol Chem 1996; 271:5085-94. [PMID: 8617787 DOI: 10.1074/jbc.271.9.5085] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Two subunits in RNA polymerase II (e.g. RPB3 and RPB11 in yeast) and two subunits common to RNA polymerases I and III (e.g. AC40 and AC19 in yeast) contain one or two motifs related to the alpha subunit in prokaryotic RNA polymerases. We have sequenced two different cDNAs (AtRPB36a and AtRPB36b), the two corresponding genes from Arabidopsis thaliana that are homologs of yeast RPB3, and an Arabidopsis cDNA (AtRPB13.6) that is a homolog of yeast RPB11. The B36a subunit is the predominant B36 subunit associated with RNA polymerase II purified from Arabidopsis suspension culture cells, and this subunit has a stoichiometry of about 1. Results from protein association assays showed that the B36a and B36b subunits did not associate, but each of these subunits did associate with the B13.6 subunit in vivo and in vitro. Two motifs in the B36b subunit related to the prokaryotic alpha subunit were shown to be required for the in vitro interactions with the B13.6 subunit. Our results suggest that the B36 and B13.6 subunits associate to form heterodimers in Arabidopsis RNA polymerase II like the AC40 and AC19 heterodimers reported for yeast RNA polymerases I and III but unlike the B44 homodimers reported for yeast RNA polymerase II.
Collapse
Affiliation(s)
- T Ulmasov
- Department of Biochemistry, University of Missouri, Columbia, Missouri 65211, USA
| | | | | |
Collapse
|
23
|
Ulmasov T, Larkin RM, Guilfoyle TJ. Arabidopsis expresses two genes that encode polypeptides similar to the yeast RNA polymerase I and III AC40 subunit. Gene X 1995; 167:203-7. [PMID: 8566778 DOI: 10.1016/0378-1119(95)00643-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
A 40-kDa subunit in eukaryotic RNA polymerases (Pol) I and III (e.g., yeast yAC40) is related in a part of its aa sequence to the alpha subunit of prokaryotic Pol and to a 35-44-kDa subunit in Pol II (e.g., yeast yB44). We have cloned two cDNAs, AtRPAC42 and AtRPAC43, from an Arabidopsis thaliana (At) (ecotype Columbia) lambda Yes expression library that encode Pol I and III subunits related to yAC40. The aa sequences derived from the cDNA clones were found to be 72% identical to each other and 40% identical to yeast Pol I and III subunits yAC40, but only 30% identical to yeast Pol II subunit yB44. While most other nuclear Pol genes identified to date are single-copy genes, two genes encode 42 and 43-kDa subunits of At Pol I and/or III. A 42-kDa subunit with identical mobility in SDS-PAGE to the aAC42 in vitro translated subunit is found in Pol III purified from At suspension culture cells.
Collapse
Affiliation(s)
- T Ulmasov
- Department of Biochemistry, University of Missouri, Columbia 65211, USA
| | | | | |
Collapse
|
24
|
[12] Genetic dissection of complex heteromultimeric enzymes: The case of yeast DNA-dependent RNA polymerases. ACTA ACUST UNITED AC 1995. [DOI: 10.1016/s1067-2389(06)80015-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
25
|
Skantar AM, Greenleaf AL. Identifying a transcription factor interaction site on RNA polymerase II. Gene Expr 1995; 5:49-69. [PMID: 7488860 PMCID: PMC6138034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/1994] [Accepted: 03/09/1995] [Indexed: 01/25/2023]
Abstract
We have generated a series of fusion proteins carrying portions of subunit IIc, the second largest subunit of Drosophila RNA polymerase I, and have used them in a domain interference assay to identify a fragment of the IIc subunit that carries the binding site for a basal transcription factor. Fusion proteins carrying a subunit IIc fragment spanning residues Ala519-Gly992 strongly inhibit promoter-driven transcription in both unfractionated nuclear extracts and in reconstituted systems. The same fusion proteins similarly inhibit dTFIIF stimulation of Pol II elongation on dC-tailed templates, suggesting that the IIc(A519-G992) fragment, which carries conserved regions D-H, interferes with transcription by binding to dTFIIF. Finally, dTFIIF can be specifically cross-linked to a GST-IIc(A519-G992) fusion protein or to subunit IIc in intact Pol II.
Collapse
Affiliation(s)
- A M Skantar
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
| | | |
Collapse
|
26
|
Sengupta P, Colbert HA, Bargmann CI. The C. elegans gene odr-7 encodes an olfactory-specific member of the nuclear receptor superfamily. Cell 1994; 79:971-80. [PMID: 8001144 DOI: 10.1016/0092-8674(94)90028-0] [Citation(s) in RCA: 146] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Olfactory discrimination is achieved through the action of olfactory neurons with diverse chemical specificities. In C. elegans, at least ten different types of chemosensory neurons respond to different chemicals. The odr-7 gene is required for the function of one pair of chemosensory neurons called AWA neurons. odr-7 null mutants fail to respond to all odorants detected by the AWA neurons, while a missense mutation in odr-7 causes a specific defect in one odorant response. odr-7 encodes a protein with similarity to the DNA-binding domain of the nuclear receptor genes; it is expressed predominantly in the AWA neurons. odr-7 may regulate the expression of olfactory signaling molecules that define a single type of olfactory neuron.
Collapse
Affiliation(s)
- P Sengupta
- Department of Anatomy, University of California, San Francisco 94143-0452
| | | | | |
Collapse
|
27
|
Song CZ, Hanada K, Yano K, Maeda Y, Yamamoto K, Muramatsu M. High conservation of subunit composition of RNA polymerase I(A) between yeast and mouse and the molecular cloning of mouse RNA polymerase I 40-kDa subunit RPA40. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(18)47114-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
28
|
Chiannilkulchai N, Moenne A, Sentenac A, Mann C. Biochemical and genetic dissection of the Saccharomyces cerevisiae RNA polymerase C53 subunit through the analysis of a mitochondrially mis-sorted mutant construct. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)50062-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
29
|
Acker J, Wintzerith M, Vigneron M, Kédinger C. Primary structure of the second largest subunit of human RNA polymerase II (or B). J Mol Biol 1992; 226:1295-9. [PMID: 1518060 DOI: 10.1016/0022-2836(92)91071-v] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The cDNA of the second largest subunit of RNA polymerase II (or B) from HeLa cells has been cloned and sequenced. A predicted amino acid sequence of 1174 residues (calculated molecular mass of 133,896 Da) was derived from the longest open reading frame and compared to the sequences of homologous subunits of polymerases of eukaryotic, archaeal and bacterial origin. After optimal alignment, about 16% of the residues were found to be conserved throughout evolution, from human to Escherichia coli. About 2/3 of the overall length of the conserved domains delineated by these residues are clustered within the C-terminal half of the human polypeptide, whereas the remaining is spread over its N-terminal half. The putative functional significance of these conserved domains is discussed.
Collapse
Affiliation(s)
- J Acker
- Laboratoire de Génétique Moléculaire des Eucaryotes (CNRS) Unité 184 de Biologie Moléculaire et de Génie Génétique (INSERM), Strasbourg, France
| | | | | | | |
Collapse
|
30
|
Archambault J, Drebot MA, Stone JC, Friesen JD. Isolation and phenotypic analysis of conditional-lethal, linker-insertion mutations in the gene encoding the largest subunit of RNA polymerase II in Saccharomyces cerevisiae. MOLECULAR & GENERAL GENETICS : MGG 1992; 232:408-14. [PMID: 1588909 DOI: 10.1007/bf00266244] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Linker-insertion mutagenesis was used to isolate mutations in the Saccharomyces cerevisiae gene encoding the largest subunit of RNA polymerase II (RPO21, also called RPB1). The mutant rpo21 alleles carried on a plamid were introduced into a haploid yeast strain that conditionally expresses RPO21 from the inducible promoter pGAL10. Growth of this strain on medium containing glucose is sustained only if the plasmid-borne rpo21 allele encodes a functional protein. Of nineteen linker-insertion alleles tested, five (rpo21-4 to -8) were found that impose a temperature-sensitive (ts) lethal phenotype on yeast cells. Four of these five ts alleles encode mutant proteins in which the site of insertion lies near one of the regions of the largest subunit that have been conserved during evolution. Two of the ts mutants (rpo21-4 and rpo21-7) display pleiotropic phenotypes, including an auxotrophy for inositol and a decreased proliferation rate at the permissive temperature. The functional relationship between RPO21 and RPO26, the gene encoding the 17.9 kDa subunit shared by RNA polymerases I, II, and III was investigated by determining the ability of increased dosage of RPO26 to suppress the ts phenotype imposed by rpo21-4 to -8. Suppression of the ts defect was specific for the rpo21-4 allele and was accompanied by co-suppression of the inositol auxotrophy. These results suggest that mutations in the largest subunit of RNA polymerase II can have profound effects on the expression of specific subsets of genes, such as those involved in the metabolism of inositol. In the rpo21-4 mutant, these pleiotropic phenotypes can be attributed to a defective interaction between the largest subunit and the RPO26 subunit of RNA polymerase II.
Collapse
Affiliation(s)
- J Archambault
- Department of Genetics, Hospital for Sick Children, Toronto, Ontario, Canada
| | | | | | | |
Collapse
|