1
|
Li M, Yao T, Lin W, Hinckley WE, Galli M, Muchero W, Gallavotti A, Chen JG, Huang SSC. Double DAP-seq uncovered synergistic DNA binding of interacting bZIP transcription factors. Nat Commun 2023; 14:2600. [PMID: 37147307 PMCID: PMC10163045 DOI: 10.1038/s41467-023-38096-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 04/15/2023] [Indexed: 05/07/2023] Open
Abstract
Many eukaryotic transcription factors (TF) form homodimer or heterodimer complexes to regulate gene expression. Dimerization of BASIC LEUCINE ZIPPER (bZIP) TFs are critical for their functions, but the molecular mechanism underlying the DNA binding and functional specificity of homo- versus heterodimers remains elusive. To address this gap, we present the double DNA Affinity Purification-sequencing (dDAP-seq) technique that maps heterodimer binding sites on endogenous genomic DNA. Using dDAP-seq we profile twenty pairs of C/S1 bZIP heterodimers and S1 homodimers in Arabidopsis and show that heterodimerization significantly expands the DNA binding preferences of these TFs. Analysis of dDAP-seq binding sites reveals the function of bZIP9 in abscisic acid response and the role of bZIP53 heterodimer-specific binding in seed maturation. The C/S1 heterodimers show distinct preferences for the ACGT elements recognized by plant bZIPs and motifs resembling the yeast GCN4 cis-elements. This study demonstrates the potential of dDAP-seq in deciphering the DNA binding specificities of interacting TFs that are key for combinatorial gene regulation.
Collapse
Affiliation(s)
- Miaomiao Li
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY, 10003, USA
| | - Tao Yao
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Wanru Lin
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY, 10003, USA
| | - Will E Hinckley
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY, 10003, USA
| | - Mary Galli
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ, 08854-8020, USA
| | - Wellington Muchero
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Andrea Gallavotti
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ, 08854-8020, USA
| | - Jin-Gui Chen
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Shao-Shan Carol Huang
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY, 10003, USA.
| |
Collapse
|
2
|
Alonso CAI, David CD, Toufaily C, Wang Y, Zhou X, Ongaro L, Nudelman G, Nair VD, Ruf-Zamojski F, Boehm U, Sealfon SC, Bernard DJ. Activating Transcription Factor 3 Stimulates Follicle-Stimulating Hormone-β Expression In Vitro But Is Dispensable for Follicle-Stimulating Hormone Production in Murine Gonadotropes In Vivo. Endocrinology 2023; 164:bqad050. [PMID: 36951304 PMCID: PMC10282924 DOI: 10.1210/endocr/bqad050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/07/2023] [Accepted: 03/21/2023] [Indexed: 03/24/2023]
Abstract
Follicle-stimulating hormone (FSH), a dimeric glycoprotein produced by pituitary gonadotrope cells, regulates spermatogenesis in males and ovarian follicle growth in females. Hypothalamic gonadotropin-releasing hormone (GnRH) stimulates FSHβ subunit gene (Fshb) transcription, though the underlying mechanisms are poorly understood. To address this gap in knowledge, we examined changes in pituitary gene expression in GnRH-deficient mice (hpg) treated with a regimen of exogenous GnRH that increases pituitary Fshb but not luteinizing hormone β (Lhb) messenger RNA levels. Activating transcription factor 3 (Atf3) was among the most upregulated genes. Activating transcription factor 3 (ATF3) can heterodimerize with members of the activator protein 1 family to regulate gene transcription. Co-expression of ATF3 with JunB stimulated murine Fshb, but not Lhb, promoter-reporter activity in homologous LβT2b cells. ATF3 also synergized with a constitutively active activin type I receptor to increase endogenous Fshb expression in these cells. Nevertheless, FSH production was intact in gonadotrope-specific Atf3 knockout [conditional knockout (cKO)] mice. Ovarian follicle development, ovulation, and litter sizes were equivalent between cKOs and controls. Testis weights and sperm counts did not differ between genotypes. Following gonadectomy, increases in LH secretion were enhanced in cKO animals. Though FSH levels did not differ between genotypes, post-gonadectomy increases in pituitary Fshb and gonadotropin α subunit expression were more pronounced in cKO than control mice. These data indicate that ATF3 can selectively stimulate Fshb expression in vitro but is not required for FSH production in vivo.
Collapse
Affiliation(s)
- Carlos A I Alonso
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Caroline D David
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Chirine Toufaily
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Ying Wang
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Xiang Zhou
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Luisina Ongaro
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC H3G 1Y6, Canada
| | - German Nudelman
- Department of Neurology, Center for Advanced Research on Diagnostic Assay, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Venugopalan D Nair
- Department of Neurology, Center for Advanced Research on Diagnostic Assay, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Frederique Ruf-Zamojski
- Department of Neurology, Center for Advanced Research on Diagnostic Assay, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ulrich Boehm
- Department of Experimental Pharmacology, Center for Molecular Signaling, Saarland University School of Medicine, Homburg 66421, Germany
| | - Stuart C Sealfon
- Department of Neurology, Center for Advanced Research on Diagnostic Assay, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Daniel J Bernard
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC H3G 1Y6, Canada
| |
Collapse
|
3
|
Srivastava M, Kaplan MH. Transcription Factors in the Development and Pro-Allergic Function of Mast Cells. FRONTIERS IN ALLERGY 2021; 2:679121. [PMID: 35387064 PMCID: PMC8974754 DOI: 10.3389/falgy.2021.679121] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 05/12/2021] [Indexed: 11/13/2022] Open
Abstract
Mast cells (MCs) are innate immune cells of hematopoietic origin localized in the mucosal tissues of the body and are broadly implicated in the pathogenesis of allergic inflammation. Transcription factors have a pivotal role in the development and differentiation of mast cells in response to various microenvironmental signals encountered in the resident tissues. Understanding the regulation of mast cells by transcription factors is therefore vital for mechanistic insights into allergic diseases. In this review we summarize advances in defining the transcription factors that impact the development of mast cells throughout the body and in specific tissues, and factors that are involved in responding to the extracellular milieu. We will further describe the complex networks of transcription factors that impact mast cell physiology and expansion during allergic inflammation and functions from degranulation to cytokine secretion. As our understanding of the heterogeneity of mast cells becomes more detailed, the contribution of specific transcription factors in mast cell-dependent functions will potentially offer new pathways for therapeutic targeting.
Collapse
Affiliation(s)
- Mansi Srivastava
- Department of BioHealth Informatics, School of Informatics and Computing, Indiana University-Purdue University, Indianapolis, IN, United States
| | - Mark H. Kaplan
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, United States
- *Correspondence: Mark H. Kaplan
| |
Collapse
|
4
|
Yin L, Guo X, Zhang C, Cai Z, Xu C. In silico analysis of expression data during the early priming stage of liver regeneration after partial hepatectomy in rat. Oncotarget 2018; 9:11794-11804. [PMID: 29545936 PMCID: PMC5837750 DOI: 10.18632/oncotarget.24370] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 12/05/2017] [Indexed: 12/13/2022] Open
Abstract
The priming stage is the first step of liver regeneration (LR). This stage is characterized by the transition from G0 to cell cycle for 4 hours in rat. In this study, individual gene level and gene set level (GSEA) was performed to identify the candidate genes and significantly changed biological processes at 2 h after partial hepatectomy (PH). The leading edge analysis is performed to identify the key genes and iRegulon was employed for transcription factor (TF) analysis. A total of 53 differentially expressed genes were identified using RMA package based on R language at 2 h after PH, including the transcription factor, enzyme and cytokine. As the most important genes in our analysis, Socs3 was selected with a special analysis so as to find the pathways correlate to the expression of it. The changed significantly pathways in LR involved response to stress, ATP metabolism, and regulation of cell cycle mainly. Several transcription factors were identified including Stat5a, Cnot3 and zfp384. Taken together, at the early priming stage of LR in rat, the liver is experiencing some changes including response to stress, activated ATP metabolism and inhibition of cell cycle. Our analysis provided a detailed and comprehensive map for further research of the early priming stage of LR in rat.
Collapse
Affiliation(s)
- Li Yin
- College of Life Science, Henan Normal University, Xinxiang 453007, Henan Province, China.,State Key Laboratory Cultivation Base for Cell Differentiation Regulation and Henan Engineering Laboratory for Bioengineering and Drug Development, Henan Normal University, Xinxiang 453007, Henan Province, China.,Luohe Medical College, Luohe 462002, Henan Province, China
| | - Xueqiang Guo
- College of Life Science, Henan Normal University, Xinxiang 453007, Henan Province, China
| | - Chunyan Zhang
- College of Life Science, Henan Normal University, Xinxiang 453007, Henan Province, China
| | - Zhihui Cai
- College of Life Science, Henan Normal University, Xinxiang 453007, Henan Province, China.,Luohe Medical College, Luohe 462002, Henan Province, China
| | - Cunshuan Xu
- College of Life Science, Henan Normal University, Xinxiang 453007, Henan Province, China.,State Key Laboratory Cultivation Base for Cell Differentiation Regulation and Henan Engineering Laboratory for Bioengineering and Drug Development, Henan Normal University, Xinxiang 453007, Henan Province, China
| |
Collapse
|
5
|
Zhang H, Liang S, Du Y, Li R, He C, Wang W, Liu S, Ye Z, Liang X, Shi W, Zhang B. Inducible ATF3-NFAT axis aggravates podocyte injury. J Mol Med (Berl) 2017; 96:53-64. [PMID: 29038896 PMCID: PMC5760612 DOI: 10.1007/s00109-017-1601-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 09/12/2017] [Accepted: 10/05/2017] [Indexed: 01/25/2023]
Abstract
Abstract Podocyte injury and loss contribute to proteinuria, glomerulosclerosis, and eventually kidney failure. Activating transcription factor 3 (ATF3) is a stress inducible transcription factor that is transiently expressed following stimulation. However, we show for the first time an induction of ATF3 in podocytes from patients with chronic kidney disease, including minimal change disease, focal segmental glomerulosclerosis, and diabetic nephropathy. The role of ATF3 induction in podocytes under chronic conditions is currently unknown. Compared with the control (C57 or BKS), ATF3 expression was elevated in animal model of proteinuria (LPS-treated C57 mice) and the model of diabetic nephropathy (db/db mice). Similarly, ATF3 was increased in high glucose (HG)-treated, lipopolysaccharide (LPS)-treated, or Ionomycin-treated podocytes in vitro. Overexpression of ATF3 increased podocyte apoptosis and decreased expression of podocin, the cell marker of podocyte; in contrast, ATF3–small interfering RNA knockdown reduced podocyte apoptosis and increased podocin expression. The translocation of ATF3 to the nucleus was increased upon stimulation. ATF3 directly modulates the regulation of NFATc1 gene promoter activity and alters the expression of Wnt6 and Fzd9, direct target genes of NFATc1 signaling. The ATF3 binding site of NFATc1 gene promoter is located at the region 671–775 base pairs upstream of the transcription start site. These results indicate a novel inducible axis of ATF3–NFAT in podocyte injury and loss. Key messages • The stress factor ATF3 is induced in podocytes from proteinuric patients, including diabetes. • ATF3 increased podocyte apoptosis and injury. • ATF3 directly modulates the regulation of NFATc1 gene promoter activity.
Collapse
Affiliation(s)
- Hong Zhang
- Department of Nephrology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, 106# Zhongshan No. 2 Road, Guangzhou, 510080, China.,Southern Medical University, Guangzhou, 510515, China
| | - Shun Liang
- Department of Nephrology, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, China
| | - Yue Du
- Department of Nephrology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, 106# Zhongshan No. 2 Road, Guangzhou, 510080, China.,School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Ruizhao Li
- Department of Nephrology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, 106# Zhongshan No. 2 Road, Guangzhou, 510080, China
| | - Chaosheng He
- Department of Nephrology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, 106# Zhongshan No. 2 Road, Guangzhou, 510080, China
| | - Wenjian Wang
- Department of Nephrology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, 106# Zhongshan No. 2 Road, Guangzhou, 510080, China
| | - Shuangxin Liu
- Department of Nephrology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, 106# Zhongshan No. 2 Road, Guangzhou, 510080, China
| | - Zhiming Ye
- Department of Nephrology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, 106# Zhongshan No. 2 Road, Guangzhou, 510080, China
| | - Xinling Liang
- Department of Nephrology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, 106# Zhongshan No. 2 Road, Guangzhou, 510080, China
| | - Wei Shi
- Department of Nephrology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, 106# Zhongshan No. 2 Road, Guangzhou, 510080, China
| | - Bin Zhang
- Department of Nephrology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, 106# Zhongshan No. 2 Road, Guangzhou, 510080, China. .,Southern Medical University, Guangzhou, 510515, China. .,School of Medicine, South China University of Technology, Guangzhou, 510006, China.
| |
Collapse
|
6
|
Rodríguez-Martínez JA, Reinke AW, Bhimsaria D, Keating AE, Ansari AZ. Combinatorial bZIP dimers display complex DNA-binding specificity landscapes. eLife 2017; 6:e19272. [PMID: 28186491 PMCID: PMC5349851 DOI: 10.7554/elife.19272] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 02/06/2017] [Indexed: 01/06/2023] Open
Abstract
How transcription factor dimerization impacts DNA-binding specificity is poorly understood. Guided by protein dimerization properties, we examined DNA binding specificities of 270 human bZIP pairs. DNA interactomes of 80 heterodimers and 22 homodimers revealed that 72% of heterodimer motifs correspond to conjoined half-sites preferred by partnering monomers. Remarkably, the remaining motifs are composed of variably-spaced half-sites (12%) or 'emergent' sites (16%) that cannot be readily inferred from half-site preferences of partnering monomers. These binding sites were biochemically validated by EMSA-FRET analysis and validated in vivo by ChIP-seq data from human cell lines. Focusing on ATF3, we observed distinct cognate site preferences conferred by different bZIP partners, and demonstrated that genome-wide binding of ATF3 is best explained by considering many dimers in which it participates. Importantly, our compendium of bZIP-DNA interactomes predicted bZIP binding to 156 disease associated SNPs, of which only 20 were previously annotated with known bZIP motifs.
Collapse
Affiliation(s)
| | - Aaron W Reinke
- Department of Biology, Massachusetts Institute of Technology, Cambridge, United States
| | - Devesh Bhimsaria
- Department of Biochemistry, University of Wisconsin-Madison, Madison, United States
- Department of Electrical and Computer Engineering, University of Wisconsin-Madison, Madison, Unites States
| | - Amy E Keating
- Department of Biology, Massachusetts Institute of Technology, Cambridge, United States
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, United States
| | - Aseem Z Ansari
- Department of Biochemistry, University of Wisconsin-Madison, Madison, United States
- The Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, United States
| |
Collapse
|
7
|
Transforming growth factor-β1 regulation of ATF-3, c-Jun and JunB proteins for activation of matrix metalloproteinase-13 gene in human breast cancer cells. Int J Biol Macromol 2017; 94:370-377. [DOI: 10.1016/j.ijbiomac.2016.10.026] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Revised: 10/09/2016] [Accepted: 10/11/2016] [Indexed: 12/30/2022]
|
8
|
Abstract
Dysregulation of the normal gene expression program is the cause of a broad range of diseases, including cancer. Detecting the specific perturbed regulators that have an effect on the generation and the development of the disease is crucial for understanding the disease mechanism and for taking decisions on efficient preventive and curative therapies. Moreover, detecting such perturbations at the patient level is even more important from the perspective of personalized medicine. We applied the Transcription Factor Target Enrichment Analysis, a method that detects the activity of transcription factors based on the quantification of the collective transcriptional activation of their targets, to a large collection of 5607 cancer samples covering eleven cancer types. We produced for the first time a comprehensive catalogue of altered transcription factor activities in cancer, a considerable number of them significantly associated to patient’s survival. Moreover, we described several interesting TFs whose activity do not change substantially in the cancer with respect to the normal tissue but ultimately play an important role in patient prognostic determination, which suggest they might be promising therapeutic targets. An additional advantage of this method is that it allows obtaining personalized TF activity estimations for individual patients.
Collapse
|
9
|
Transcriptional and Epigenetic Regulation in Injury-Mediated Neuronal Dendritic Plasticity. Neurosci Bull 2016; 33:85-94. [PMID: 27730386 DOI: 10.1007/s12264-016-0071-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 08/27/2016] [Indexed: 12/26/2022] Open
Abstract
Injury to the nervous system induces localized damage in neural structures and neuronal death through the primary insult, as well as delayed atrophy and impaired plasticity of the delicate dendritic fields necessary for interneuronal communication. Excitotoxicity and other secondary biochemical events contribute to morphological changes in neurons following injury. Evidence suggests that various transcription factors are involved in the dendritic response to injury and potential therapies. Transcription factors play critical roles in the intracellular regulation of neuronal morphological plasticity and dendritic growth and patterning. Mounting evidence supports a crucial role for epigenetic modifications via histone deacetylases, histone acetyltransferases, and DNA methyltransferases that modify gene expression in neuronal injury and repair processes. Gene regulation through epigenetic modification is of great interest in neurotrauma research, and an early picture is beginning to emerge concerning how injury triggers intracellular events that modulate such responses. This review provides an overview of injury-mediated influences on transcriptional regulation through epigenetic modification, the intracellular processes involved in the morphological consequences of such changes, and potential approaches to the therapeutic manipulation of neuronal epigenetics for regulating gene expression to facilitate growth and signaling through dendritic arborization following injury.
Collapse
|
10
|
Leiting S, Seidl S, Martinez-Palacian A, Muhl L, Kanse SM. Transforming Growth Factor-β (TGF-β) Inhibits the Expression of Factor VII-activating Protease (FSAP) in Hepatocytes. J Biol Chem 2016; 291:21020-21028. [PMID: 27462075 DOI: 10.1074/jbc.m116.744631] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Indexed: 01/09/2023] Open
Abstract
Deletion of the Habp2 gene encoding Factor VII-activating protease (FSAP) increases liver fibrosis in mice. A single nucleotide polymorphism (G534E) in HABP2 leads to lower enzymatic activity and is associated with enhanced liver fibrosis in humans. Liver fibrosis is associated with a decrease in FSAP expression but, to date, nothing is known about how this might be regulated. Primary mouse hepatocytes or the hepatocyte cell line, AML12, were treated with different factors, and expression of FSAP was determined. Of the various regulatory factors tested, only transforming growth factor-β (TGF-β) demonstrated a concentration- and time-dependent inhibition of FSAP expression at the mRNA and protein level. The TGF-β-Type I receptor (ALK-5) antagonist SB431542 and Smad2 siRNA, but neither SIS3, which inhibits SMAD3, nor siRNA against Smad3 could block this effect. Various regions of the HABP2 promoter region were cloned into reporter constructs, and the promoter activity was determined. Accordingly, the promoter activity, which could phenocopy changes in Habp2 mRNA in response to TGF-β, was found to be located in the 177-bp region upstream of the transcription start site, and this region did not contain any SMAD binding sites. Mutation analysis of the promoter and chromatin immunoprecipitation assays were performed to identify an important role for the ATF3 binding element. Thus, TGF-β is the most likely mediator responsible for the decrease in FSAP expression in liver fibrosis.
Collapse
Affiliation(s)
- Silke Leiting
- From the Institute for Biochemistry, Justus-Liebig-University, 35392 Giessen, Germany
| | | | | | - Lars Muhl
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, 17177 Stockholm, Sweden
| | - Sandip M Kanse
- From the Institute for Biochemistry, Justus-Liebig-University, 35392 Giessen, Germany, Oslo University Hospital and Institute for Basic Medical Sciences, University of Oslo, 0372 Oslo, Norway, and
| |
Collapse
|
11
|
Maisanaba S, Hercog K, Ortuño N, Jos Á, Žegura B. Induction of micronuclei and alteration of gene expression by an organomodified clay in HepG2 cells. CHEMOSPHERE 2016; 154:240-248. [PMID: 27058916 DOI: 10.1016/j.chemosphere.2016.03.115] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 03/08/2016] [Accepted: 03/25/2016] [Indexed: 06/05/2023]
Abstract
Clay2 is an organomodified montmorillonite developed by the Technological Institute of Packaging, Transport and Logistic (ITENE) in order to improve polymeric materials used in food packaging. There is not much known on Clay2 toxic potential, particularly at DNA level, therefore it is mandatory to assess its toxicity prior to its commercialization. In the present study the human hepatoma cell line (HepG2) was exposed to non-cytotoxic concentrations of Clay2 and the genomic stability was studied with the Cytokinesis block micronucleus cytome assay, by determining the formation of micronuclei (MN), nucleoplasmic bridges (NPBs) and nuclear buds (NBUDs). Moreover, the expression of various genes involved in the mechanisms of its action using the real-time quantitative PCR was studied. The results obtained provide the evidence that Clay2 is potentially genotoxic as it increased the frequency of micronuclei. In addition it deregulated genes involved in the metabolism, immediate-early response/signaling, DNA damage and oxidative stress showing new valuable information on the cellular response to Clay2. Nonetheless, further studies are highly needed to elucidate the molecular mechanisms of clays toxicity.
Collapse
Affiliation(s)
- Sara Maisanaba
- Area of Toxicology, Faculty of Pharmacy, University of Sevilla, Profesor García González n°2, 41012 Seville, Spain.
| | - Klara Hercog
- National Institute of Biology, Department for Genetic Toxicology and Cancer Biology, Vecna Pot 111, 1000 Ljubljana, Slovenia
| | - Natalia Ortuño
- Area of Packaging Materials and Systems, ITENE, C/Albert Einstein 1, 46980 Paterna, Valencia, Spain
| | - Ángeles Jos
- Area of Toxicology, Faculty of Pharmacy, University of Sevilla, Profesor García González n°2, 41012 Seville, Spain
| | - Bojana Žegura
- National Institute of Biology, Department for Genetic Toxicology and Cancer Biology, Vecna Pot 111, 1000 Ljubljana, Slovenia
| |
Collapse
|
12
|
Kuttippurathu L, Juskeviciute E, Dippold RP, Hoek JB, Vadigepalli R. A novel comparative pattern analysis approach identifies chronic alcohol mediated dysregulation of transcriptomic dynamics during liver regeneration. BMC Genomics 2016; 17:260. [PMID: 27012785 PMCID: PMC4807561 DOI: 10.1186/s12864-016-2492-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 02/17/2016] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Liver regeneration is inhibited by chronic ethanol consumption and this impaired repair response may contribute to the risk for alcoholic liver disease. We developed and applied a novel data analysis approach to assess the effect of chronic ethanol intake in the mechanisms responsible for liver regeneration. We performed a time series transcriptomic profiling study of the regeneration response after 2/3rd partial hepatectomy (PHx) in ethanol-fed and isocaloric control rats. RESULTS We developed a novel data analysis approach focusing on comparative pattern counts (COMPACT) to exhaustively identify the dominant and subtle differential expression patterns. Approximately 6500 genes were differentially regulated in Ethanol or Control groups within 24 h after PHx. Adaptation to chronic ethanol intake significantly altered the immediate early gene expression patterns and nearly completely abrogated the cell cycle induction in hepatocytes post PHx. The patterns highlighted by COMPACT analysis contained several non-parenchymal cell specific markers indicating their aberrant transcriptional response as a novel mechanism through which chronic ethanol intake deregulates the integrated liver tissue response. CONCLUSIONS Our novel comparative pattern analysis revealed new insights into ethanol-mediated molecular changes in non-parenchymal liver cells as a possible contribution to the defective liver regeneration phenotype. The results revealed for the first time an ethanol-induced shift of hepatic stellate cells from a pro-regenerative phenotype to that of an anti-regenerative state after PHx. Our results can form the basis for novel interventions targeting the non-parenchymal cells in normalizing the dysfunctional repair response process in alcoholic liver disease. Our approach is illustrated online at http://compact.jefferson.edu .
Collapse
Affiliation(s)
- Lakshmi Kuttippurathu
- Daniel Baugh Institute for Functional Genomics and Computational Biology, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Egle Juskeviciute
- MitoCare Center for Mitochondrial Research, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Rachael P Dippold
- MitoCare Center for Mitochondrial Research, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Jan B Hoek
- Daniel Baugh Institute for Functional Genomics and Computational Biology, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, 19107, USA.,MitoCare Center for Mitochondrial Research, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Rajanikanth Vadigepalli
- Daniel Baugh Institute for Functional Genomics and Computational Biology, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, 19107, USA. .,MitoCare Center for Mitochondrial Research, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, 19107, USA.
| |
Collapse
|
13
|
Mallano T, Palumbo-Zerr K, Zerr P, Ramming A, Zeller B, Beyer C, Dees C, Huang J, Hai T, Distler O, Schett G, Distler JHW. Activating transcription factor 3 regulates canonical TGFβ signalling in systemic sclerosis. Ann Rheum Dis 2016; 75:586-92. [PMID: 25589515 DOI: 10.1136/annrheumdis-2014-206214] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Accepted: 12/20/2014] [Indexed: 01/15/2023]
Abstract
BACKGROUND Activating transcription factor 3 (ATF3), a member of the ATF/cAMP-responsive element binding (CREB) family of transcription factors, regulates cellular response to stress including oxidative stress. The aim of this study was to analyse the role of ATF3 in fibroblast activation in systemic sclerosis (SSc). METHODS ATF3 was analysed by reverse transcription quantitative PCR, western blot and immunohistochemistry. ATF3 knockout fibroblasts and mice were used to study the functional role of ATF3. Knockdown experiments, reporter assays and coimmunoprecipitation were performed to study the effects of ATF3 on Smad and activation protein 1 (AP-1) signalling. The role of c-Jun was analysed by costaining, specific inactivation and coimmunoprecipitation. RESULTS Transforming growth factor-β (TGFβ) upregulates the expression of ATF3 in SSc fibroblasts. ATF3-deficient fibroblasts were less sensitive to TGFβ, whereas ectopic expression of ATF3 enhanced the profibrotic effects of TGFβ. Mechanistically, ATF3 interacts with Smad3 directly on stimulation with TGFβ and regulates Smad activity in a c-Jun-dependent manner. Knockout of ATF3 protected mice from bleomycin-induced fibrosis and fibrosis induced by overexpression of a constitutively active TGFβ receptor I. Reporter assays and analyses of the expression of Smad target genes demonstrated that binding of ATF3 regulates the transcriptional activity of Smad3. CONCLUSIONS We demonstrate for the first time a key role for ATF3 in fibrosis. Knockout of the ATF3 gene reduced the stimulatory effect of TGFβ on fibroblasts by interfering with canonical Smad signalling and protected the mice from experimental fibrosis in two different models. ATF3 might thus be a candidate for molecular targeted therapies for SSc.
Collapse
Affiliation(s)
- Tatjana Mallano
- Department of Internal Medicine 3, Institute for Clinical Immunology, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Katrin Palumbo-Zerr
- Department of Internal Medicine 3, Institute for Clinical Immunology, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Pawel Zerr
- Department of Internal Medicine 3, Institute for Clinical Immunology, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Andreas Ramming
- Department of Internal Medicine 3, Institute for Clinical Immunology, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Barbara Zeller
- Department of Internal Medicine 3, Institute for Clinical Immunology, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Christian Beyer
- Department of Internal Medicine 3, Institute for Clinical Immunology, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Clara Dees
- Department of Internal Medicine 3, Institute for Clinical Immunology, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Jingang Huang
- Department of Internal Medicine 3, Institute for Clinical Immunology, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Tsonwin Hai
- Department of Molecular and Cellular Biochemistry, The Ohio State University, Columbus, Ohio, USA
| | - Oliver Distler
- Rheumaklinik, University Hospital Zurich, Zurich, Switzerland
| | - Georg Schett
- Department of Internal Medicine 3, Institute for Clinical Immunology, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Jörg H W Distler
- Department of Internal Medicine 3, Institute for Clinical Immunology, University of Erlangen-Nuremberg, Erlangen, Germany
| |
Collapse
|
14
|
Eiselein L, Nyunt T, Lamé MW, Ng KF, Wilson DW, Rutledge JC, Aung HH. TGRL Lipolysis Products Induce Stress Protein ATF3 via the TGF-β Receptor Pathway in Human Aortic Endothelial Cells. PLoS One 2015; 10:e0145523. [PMID: 26709509 PMCID: PMC4699200 DOI: 10.1371/journal.pone.0145523] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 12/05/2015] [Indexed: 01/24/2023] Open
Abstract
Studies have suggested a link between the transforming growth factor beta 1 (TGF-β1) signaling cascade and the stress-inducible activating transcription factor 3 (ATF3). We have demonstrated that triglyceride-rich lipoproteins (TGRL) lipolysis products activate MAP kinase stress associated JNK/c-Jun pathways resulting in up-regulation of ATF3, pro-inflammatory genes and induction of apoptosis in human aortic endothelial cells. Here we demonstrate increased release of active TGF-β at 15 min, phosphorylation of Smad2 and translocation of co-Smad4 from cytosol to nucleus after a 1.5 h treatment with lipolysis products. Activation and translocation of Smad2 and 4 was blocked by addition of SB431542 (10 μM), a specific inhibitor of TGF-β-activin receptor ALKs 4, 5, 7. Both ALK receptor inhibition and anti TGF-β1 antibody prevented lipolysis product induced up-regulation of ATF3 mRNA and protein. ALK inhibition prevented lipolysis product-induced nuclear accumulation of ATF3. ALKs 4, 5, 7 inhibition also prevented phosphorylation of c-Jun and TGRL lipolysis product-induced p53 and caspase-3 protein expression. These findings demonstrate that TGRL lipolysis products cause release of active TGF-β and lipolysis product-induced apoptosis is dependent on TGF-β signaling. Furthermore, signaling through the stress associated JNK/c-Jun pathway is dependent on TGF-β signaling suggesting that TGF-β signaling is necessary for nuclear accumulation of the ATF3/cJun transcription complex and induction of pro-inflammatory responses.
Collapse
Affiliation(s)
- Larissa Eiselein
- Department of Internal Medicine, Division of Cardiovascular Medicine, School of Medicine, University of California Davis, Davis, California, 95616, United States of America
| | - Tun Nyunt
- Department of Internal Medicine, Division of Cardiovascular Medicine, School of Medicine, University of California Davis, Davis, California, 95616, United States of America
| | - Michael W. Lamé
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California Davis, Davis, California, 95616, United States of America
| | - Kit F. Ng
- Department of Internal Medicine, Division of Cardiovascular Medicine, School of Medicine, University of California Davis, Davis, California, 95616, United States of America
| | - Dennis W. Wilson
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California Davis, Davis, California, 95616, United States of America
| | - John C. Rutledge
- Department of Internal Medicine, Division of Cardiovascular Medicine, School of Medicine, University of California Davis, Davis, California, 95616, United States of America
| | - Hnin H. Aung
- Department of Internal Medicine, Division of Cardiovascular Medicine, School of Medicine, University of California Davis, Davis, California, 95616, United States of America
- * E-mail:
| |
Collapse
|
15
|
Pisanti S, Picardi P, Pallottini V, Martini C, Petrosino S, Proto MC, Vitale M, Laezza C, Gazzerro P, Di Marzo V, Bifulco M. Anandamide drives cell cycle progression through CB1 receptors in a rat model of synchronized liver regeneration. J Cell Physiol 2015; 230:2905-14. [PMID: 25684344 DOI: 10.1002/jcp.24959] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 02/09/2015] [Indexed: 01/15/2023]
Abstract
The endocannabinoid system, through cannabinoid receptor signaling by endocannabinoids, is involved in a wide range of functions and physiopathological conditions. To date, very little is known concerning the role of the endocannabinoids in the control and regulation of cell proliferation. An anti-proliferative action of CB1 signaling blockade in neurogenesis and angiogenesis argues in favor of proliferation-promoting functions of endocannabinoids through CB1 receptors when pro-growth signals are present. Furthermore, liver regeneration, a useful in vivo model of synchronized cell proliferation, is characterized by a peak of anandamide that elicits through CB1 receptor, the expression of critical mitosis genes. The aim of this study was to focus on the timing of endocannabinoid signaling changes during the different phases of the cell cycle, exploiting the rat liver regeneration model following partial hepatectomy, the most useful to study synchronized cell cycle in vivo. Hepatic regeneration led to increased levels of anandamide and endocannabinoid-like molecules oleoylethanolamide (OEA) and palmitoylethanolamide (PEA) in the G1 phase of the cell cycle, with a concomitant increase in CB1 mRNA levels, whose protein expression peaked later during the S phase. Blocking of CB1 receptor with a low dose of the selective antagonist/inverse agonist SR141716 (0.7 mg/kg/dose) affected cell cycle progression reducing the expression of PCNA, and through the inhibition of pERK and pSTAT3 pathways. These results support the notion that the signaling mediated by anandamide through CB1 receptor may be important for the entry and progression of cells into the cell cycle and hence for their proliferation under mitogenic signals.
Collapse
Affiliation(s)
- Simona Pisanti
- Department of Medicine and Surgery, University of Salerno, Baronissi, Salerno, Italy.,Department of Pharmacy, University of Salerno, Fisciano, Salerno, Italy
| | - Paola Picardi
- Department of Medicine and Surgery, University of Salerno, Baronissi, Salerno, Italy.,Department of Pharmacy, University of Salerno, Fisciano, Salerno, Italy
| | - Valentina Pallottini
- Department of Science, Section Biomedical Science and Technologies, University Roma Tre, Rome, Italy
| | - Chiara Martini
- Department of Science, Section Biomedical Science and Technologies, University Roma Tre, Rome, Italy
| | | | - Maria Chiara Proto
- Department of Medicine and Surgery, University of Salerno, Baronissi, Salerno, Italy.,Department of Pharmacy, University of Salerno, Fisciano, Salerno, Italy
| | - Mario Vitale
- Department of Medicine and Surgery, University of Salerno, Baronissi, Salerno, Italy.,Department of Pharmacy, University of Salerno, Fisciano, Salerno, Italy
| | - Chiara Laezza
- Institute of Experimental Oncology and Endocrinology, IEOS, CNR, Naples, Italy
| | - Patrizia Gazzerro
- Department of Pharmacy, University of Salerno, Fisciano, Salerno, Italy
| | | | - Maurizio Bifulco
- Department of Medicine and Surgery, University of Salerno, Baronissi, Salerno, Italy.,Department of Pharmacy, University of Salerno, Fisciano, Salerno, Italy
| |
Collapse
|
16
|
Jang HJ, Lee HJ, Kang KS, Song KD, Kim TH, Song CS, Park MN. Molecular responses to the influenza A virus in chicken trachea-derived cells. Poult Sci 2015; 94:1190-201. [DOI: 10.3382/ps/pev033] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/28/2014] [Indexed: 01/10/2023] Open
|
17
|
Age-related brain expression and regulation of the chemokine CCL4/MIP-1β in APP/PS1 double-transgenic mice. J Neuropathol Exp Neurol 2014; 73:362-74. [PMID: 24607962 DOI: 10.1097/nen.0000000000000060] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The detrimental effect of activation of the chemokine CCL4/MIP-1β on neuronal integrity in patients with HIV-associated dementia has directed attention to the potential role of CCL4 expression and regulation in Alzheimer disease. Here, we show that CCL4 mRNA and protein are overexpressed in the brains of APPswe/PS1ΔE9 (APP/PS1) double-transgenic mice, a model of cerebral amyloid deposition; expression was minimal in brains from nontransgenic littermates or single-mutant controls. Increased levels of CCL4 mRNA and protein directly correlated with the age-related progression of cerebral amyloid-β (Aβ) levels in APP/PS1 mice. We also found significantly increased expression of activating transcription factor 3 (ATF3), which was positively correlated with age-related Aβ deposition and CCL4 in the brains of APP/PS1 mice. Results from chromatin immunoprecipitation-quantitative polymerase chain reaction confirmed that ATF3 binds to the promoter region of the CCL4 gene, consistent with a potential role in regulating CCL4 transcription. Finally, elevated ATF3 mRNA expression in APP/PS1 brains was associated with hypomethylation of the ATF3 gene promoter region. These observations prompt the testable hypothesis for future study that CCL4 overexpression, regulated in part by hypomethylation of the ATF3 gene, may contribute to neuropathologic progression associated with amyloid deposition in Alzheimer disease.
Collapse
|
18
|
Bezinover D, Ramamoorthy S, Postula M, Weller G, Mahmoud S, Mani H, Kadry Z, Uemura T, Mets B, Spiess B, Brucklacher R, Freeman W, Janicki PK. Effect of cold perfusion and perfluorocarbons on liver graft ischemia in a donation after cardiac death model. J Surg Res 2014; 188:517-26. [PMID: 24582069 DOI: 10.1016/j.jss.2014.01.045] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2013] [Revised: 01/10/2014] [Accepted: 01/24/2014] [Indexed: 01/22/2023]
Abstract
BACKGROUND Effects of two perfluorocarbon (PFC) formulations (perfluorodecalin emulsion and perfluorodecalin liquid) on the quality of liver graft preservation, in a donation after cardiac death (DCD) rat model, were investigated. The significance of continuous graft perfusion during cold preservation was also explored. MATERIALS AND METHODS DCD model: 30 min after cardiopulmonary arrest was initiated, livers were excised and flushed with cold University of Wisconsin (UW) solution (± PFC) and preserved in the same solution for 8 h. The study groups were preserved as follows: group 1: no perfusion; group 2: perfusion with UW; group 3: PFC was administered before cardiac arrest and the liver was perfused with UW alone; and groups 4 and 5: perfused with UW + 1 of two PFCs. In a baseline group used only for comparison of gene expression, livers were quick-frozen after cardiac arrest. Microarrays were used to analyze liver messenger RNA transcripts. Histopathologic, immunohistochemical, and ADP/ATP ratio evaluations were performed to assess the quality of graft preservation. RESULTS Significant decreases in downregulation and increases in upregulation of hepatic genes (relative to baseline) were demonstrated in all perfusion groups. This trend was most pronounced in the PFC groups. Lower fat content and ADP/ATP ratio and a reduction in Caspase 3 activation were found in all perfusion groups. CONCLUSION Hypothermic perfusion of rat DCD liver grafts with oxygenated UW solution (± PFC) produced superior preservation compared with nonperfusion storage. The observed changes in expression of hepatic genes may represent a protective effect in the DCD model.
Collapse
Affiliation(s)
- Dmitri Bezinover
- Department of Anesthesiology, Penn State Hershey Medical Center, Penn State College of Medicine, Hershey, Pennsylvania.
| | - Saravanan Ramamoorthy
- Department of Anesthesiology, Penn State Hershey Medical Center, Penn State College of Medicine, Hershey, Pennsylvania
| | - Marek Postula
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Warsaw, Poland
| | - Gregory Weller
- Department of Anesthesiology, Penn State Hershey Medical Center, Penn State College of Medicine, Hershey, Pennsylvania
| | - Saifeldin Mahmoud
- Department of Anesthesiology, Penn State Hershey Medical Center, Penn State College of Medicine, Hershey, Pennsylvania
| | - Haresh Mani
- Department of Pathology, Penn State Hershey Medical Center, Penn State College of Medicine, Hershey, Pennsylvania
| | - Zakiyah Kadry
- Department of Transplant Surgery, Penn State Hershey Medical Center, Penn State College of Medicine, Hershey, Pennsylvania
| | - Tadahiro Uemura
- Department of Transplant Surgery, Penn State Hershey Medical Center, Penn State College of Medicine, Hershey, Pennsylvania
| | - Berend Mets
- Department of Anesthesiology, Penn State Hershey Medical Center, Penn State College of Medicine, Hershey, Pennsylvania
| | - Bruce Spiess
- Department of Anesthesiology, Virginia Commonwealth University Medical Center, Richmond, Virginia
| | - Robert Brucklacher
- Genome Sciences Core Facility, Penn State Hershey Medical Center, Penn State College of Medicine, Hershey, Pennsylvania
| | - Willard Freeman
- Genome Sciences Core Facility, Penn State Hershey Medical Center, Penn State College of Medicine, Hershey, Pennsylvania
| | - Piotr K Janicki
- Department of Anesthesiology, Penn State Hershey Medical Center, Penn State College of Medicine, Hershey, Pennsylvania
| |
Collapse
|
19
|
Aung HH, Lame MW, Gohil K, An CI, Wilson DW, Rutledge JC. Induction of ATF3 gene network by triglyceride-rich lipoprotein lipolysis products increases vascular apoptosis and inflammation. Arterioscler Thromb Vasc Biol 2013; 33:2088-96. [PMID: 23868936 DOI: 10.1161/atvbaha.113.301375] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
OBJECTIVE Elevation of triglyceride-rich lipoproteins (TGRLs) contributes to the risk of atherosclerotic cardiovascular disease. Our work has shown that TGRL lipolysis products in high physiological to pathophysiological concentrations cause endothelial cell injury; however, the mechanisms remain to be delineated. APPROACH AND RESULTS We analyzed the transcriptional signaling networks in arterial endothelial cells exposed to TGRL lipolysis products. When human aortic endothelial cells in culture were exposed to TGRL lipolysis products, activating transcription factor 3 (ATF3) was identified as a principal response gene. Induction of ATF3 mRNA and protein was confirmed by quantitative reverse-transcription polymerase chain reaction and Western blot respectively. Immunofluorescence analysis showed that ATF3 accumulated in the nuclei of cells treated with lipolysis products. Nuclear expression of phosphorylated c-Jun N-terminal kinase (JNK), previously shown to be an initiator of the ATF3 signaling cascade, also was demonstrated. Small interfering RNA (siRNA)-mediated inhibition of ATF3 blocked lipolysis products-induced transcription of E-selectin and interleukin-8, but not interleukin-6 or nuclear factor-κB. c-Jun, a downstream protein in the JNK pathway, was phosphorylated, whereas expression of nuclear factor-κB-dependent JunB was downregulated. Additionally, JNK siRNA suppressed ATF3 and p-c-Jun protein expression, suggesting that JNK is upstream of the ATF3 signaling pathway. In vivo studies demonstrated that infusion of TGRL lipolysis products into wild-type mice induced nuclear ATF3 accumulation in carotid artery endothelium. ATF3(-/-) mice were resistant to vascular apoptosis precipitated by treatment with TGRL lipolysis products. Also peripheral blood monocytes isolated from postprandial humans had increased ATF3 expression as compared with fasting monocytes. CONCLUSIONS This study demonstrates that TGRL lipolysis products activate ATF3-JNK transcription factor networks and induce endothelial cells inflammatory response.
Collapse
Affiliation(s)
- Hnin H Aung
- Division of Cardiovascular Medicine, Department of Internal Medicine, School of Medicine, University of California, Davis, CA 95616, USA
| | | | | | | | | | | |
Collapse
|
20
|
Koren L, Elhanani O, Kehat I, Hai T, Aronheim A. Adult cardiac expression of the activating transcription factor 3, ATF3, promotes ventricular hypertrophy. PLoS One 2013; 8:e68396. [PMID: 23874609 PMCID: PMC3707568 DOI: 10.1371/journal.pone.0068396] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Accepted: 05/29/2013] [Indexed: 12/21/2022] Open
Abstract
Cardiac hypertrophy is an adaptive response to various mechanophysical and
pathophysiological stresses. However, when chronic stress is sustained, the
beneficial response turns into a maladaptive process that eventually leads to
heart failure. Although major advances in the treatment of patients have reduced
mortality, there is a dire need for novel treatments for cardiac hypertrophy.
Accordingly, considerable efforts are being directed towards developing mice
models and understanding the processes that lead to cardiac hypertrophy. A case
in point is ATF3, an immediate early transcription factor whose expression is
induced in various cardiac stress models but has been reported to have
conflicting functional significance in hypertrophy. To address this issue, we
generated a transgenic mouse line with tetracycline-regulated ATF3 cardiac
expression. These mice allowed us to study the consequence of ATF3 expression in
the embryo or during the adult period, thus distinguishing the effect of ATF3 on
development versus pathogenesis of cardiac dysfunction. Importantly, ATF3
expression in adult mice resulted in rapid ventricles hypertrophy, heart
dysfunction, and fibrosis. When combined with a phenylephrine-infusion pressure
overload model, the ATF3 expressing mice displayed a severe outcome and heart
dysfunction. In a complementary approach, ATF3 KO mice displayed a lower level
of heart hypertrophy in the same pressure overload model. In summary, ectopic
expression of ATF3 is sufficient to promote cardiac hypertrophy and exacerbates
the deleterious effect of chronic pressure overload; conversely, ATF3 deletion
protects the heart. Therefore, ATF3 may serve as an important drug target to
reduce the detrimental consequences of heart hypertrophy.
Collapse
Affiliation(s)
- Lilach Koren
- Department of Molecular Genetics, the Rappaport Family Institute for
Research in the Medical Sciences, Technion-Israel Institute of Technology,
Haifa, Israel
| | - Ofer Elhanani
- Department of Molecular Genetics, the Rappaport Family Institute for
Research in the Medical Sciences, Technion-Israel Institute of Technology,
Haifa, Israel
| | - Izhak Kehat
- Department of Physiology The Rappaport Family Institute for Research in
the Medical Sciences, Technion-Israel Institute of Technology, Haifa,
Israel
| | - Tsonwin Hai
- Department of Molecular and Cellular Biochemistry, Ohio State University,
Columbus, Ohio, United States of America
| | - Ami Aronheim
- Department of Molecular Genetics, the Rappaport Family Institute for
Research in the Medical Sciences, Technion-Israel Institute of Technology,
Haifa, Israel
- * E-mail:
| |
Collapse
|
21
|
Taka S, Gazouli M, Politis PK, Pappa KI, Anagnou NP. Transcription factor ATF-3 regulates allele variation phenotypes of the human SLC11A1 gene. Mol Biol Rep 2013; 40:2263-2271. [PMID: 23187734 DOI: 10.1007/s11033-012-2289-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Accepted: 11/19/2012] [Indexed: 10/27/2022]
Abstract
Genetic polymorphisms in the human solute carrier family 11 member 1 (SLC11A1) gene predispose to susceptibility to infectious/inflammatory diseases and cancer. Human susceptibility to these diseases exhibits allelic association with a polymorphic regulatory Z-DNA-forming microsatellite of a (GT/AC)n repeat. The carriage of different alleles may influence chromatin remodeling and accessibility by transcription factors. Of particular importance is the binding site for the Activating Protein 1 (AP-1) elements, (ATF-3 and c-Jun), adjacent to the 5' sequence of the Z-DNA-forming polymorphism. The aim of the study was to characterize the transcriptional mechanisms controlling different alleles of SLC11A1 expression by ATF-3 and c-Jun. Allele 2, [T(GT)5AC(GT)5AC(GT)10GGCAGA(G)6], and Allele 3, [T(GT)5AC(GT)5AC(GT)9GGCAGA(G)6], were subcloned into the PGL2Basic vector. Transient transfections of THP-1 cells with the constructs, in the presence or absence of pATF-3 were preformed. Luciferase expression was determined. To document the recruitment of ATF-3 and c-Jun, to the polymorphic promoter alleles in vivo, we performed ChIP assays with transient transfected THP-1 cells treated with or without lipopolyssacharides. Our data documented that ATF-3 suppresses the transcriptional activation of Allele-3, and this suppression is enhanced in the presence of lipopolyssacharides. Our findings suggest that ATF-3 and c-Jun may influence heritable variation in SLC11A1-dependent innate resistance to infection and inflammation both within and between populations.
Collapse
Affiliation(s)
- Styliani Taka
- Laboratory of Biology, University of Athens School of Medicine, 176 Michalakopoulou Street, 115 27, Athens, Greece
| | | | | | | | | |
Collapse
|
22
|
Plaza L, Carrillo-de-Albornoz J. Evaluating the use of different positional strategies for sentence selection in biomedical literature summarization. BMC Bioinformatics 2013; 14:71. [PMID: 23445074 PMCID: PMC3648362 DOI: 10.1186/1471-2105-14-71] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Accepted: 01/24/2013] [Indexed: 11/11/2022] Open
Abstract
Background The position of a sentence in a document has been traditionally considered an indicator of the relevance of the sentence, and therefore it is frequently used by automatic summarization systems as an attribute for sentence selection. Sentences close to the beginning of the document are supposed to deal with the main topic and thus are selected for the summary. This criterion has shown to be very effective when summarizing some types of documents, such as news items. However, this property is not likely to be found in other types of documents, such as scientific articles, where other positional criteria may be preferred. The purpose of the present work is to study the utility of different positional strategies for biomedical literature summarization. Results We have evaluated three different positional strategies: (1) awarding the sentences at the beginning of the document, (2) preferring those at the beginning and end of the document, and (3) weighting the sentences according to the section in which they appear. To this end, we have implemented two summarizers, one based on semantic graphs and the other based on concept frequencies, and evaluated the summaries they produce when combined with each of the positional strategies above using ROUGE metrics. Our results indicate that it is possible to improve the quality of the summaries by weighting the sentences according to the section in which they appear (≈17% improvement in ROUGE-2 for the graph-based summarizer and ≈20% for the frequency-based summarizer), and that the sections containing the more salient information are the Methods and Material and the Discussion and Results ones. Conclusions It has been found that the use of traditional positional criteria that award sentences at the beginning and/or the end of the document are not helpful when summarizing scientific literature. In contrast, a more appropriate strategy is that which weights sentences according to the section in which they appear.
Collapse
Affiliation(s)
- Laura Plaza
- Universidad Autónoma de Madrid, C/Francisco Tomás y Valiente 11, 28049 Madrid, Spain.
| | | |
Collapse
|
23
|
Corlu A, Loyer P. Regulation of the g1/s transition in hepatocytes: involvement of the cyclin-dependent kinase cdk1 in the DNA replication. Int J Hepatol 2012; 2012:689324. [PMID: 23091735 PMCID: PMC3471441 DOI: 10.1155/2012/689324] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Accepted: 08/29/2012] [Indexed: 12/16/2022] Open
Abstract
A singular feature of adult differentiated hepatocytes is their capacity to proliferate allowing liver regeneration. This review emphasizes the literature published over the last 20 years that established the most important pathways regulating the hepatocyte cell cycle. Our article also aimed at illustrating that many discoveries in this field benefited from the combined use of in vivo models of liver regeneration and in vitro models of primary cultures of human and rodent hepatocytes. Using these models, our laboratory has contributed to decipher the different steps of the progression into the G1 phase and the commitment to S phase of proliferating hepatocytes. We identified the mitogen dependent restriction point located at the two-thirds of the G1 phase and the concomitant expression and activation of both Cdk1 and Cdk2 at the G1/S transition. Furthermore, we demonstrated that these two Cdks contribute to the DNA replication. Finally, we provided strong evidences that Cdk1 expression and activation is correlated to extracellular matrix degradation upon stimulation by the pro-inflammatory cytokine TNFα leading to the identification of a new signaling pathway regulating Cdk1 expression at the G1/S transition. It also further confirms the well-orchestrated regulation of liver regeneration via multiple extracellular signals and pathways.
Collapse
Affiliation(s)
- Anne Corlu
- Inserm UMR S 991, Foie Métabolismes et Cancer, Université de Rennes 1, Hôpital Pontchaillou, 35033 Rennes Cedex, France
| | - Pascal Loyer
- Inserm UMR S 991, Foie Métabolismes et Cancer, Université de Rennes 1, Hôpital Pontchaillou, 35033 Rennes Cedex, France
| |
Collapse
|
24
|
Darlyuk-Saadon I, Weidenfeld-Baranboim K, Yokoyama KK, Hai T, Aronheim A. The bZIP repressor proteins, c-Jun dimerization protein 2 and activating transcription factor 3, recruit multiple HDAC members to the ATF3 promoter. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012; 1819:1142-53. [PMID: 22989952 DOI: 10.1016/j.bbagrm.2012.09.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Revised: 09/05/2012] [Accepted: 09/10/2012] [Indexed: 12/16/2022]
Abstract
JDP2, is a basic leucine zipper (bZIP) protein displaying a high degree of homology with the stress inducible transcription factor, ATF3. Both proteins bind to cAMP and TPA response elements and repress transcription by multiple mechanisms. Histone deacetylases (HDACs) play a key role in gene inactivation by deacetylating lysine residues on histones. Here we describe the association of JDP2 and ATF3 with HDACs 1, 2-6 and 10. Association of HDAC3 and HDAC6 with JDP2 and ATF3 occurs via direct protein-protein interactions. Only part of the N-terminal bZIP motif of JDP2 and ATF3 basic domain is necessary and sufficient for the interaction with HDACs in a manner that is independent of coiled-coil dimerization. Class I HDACs associate with the bZIP repressors via the DAC conserved domain whereas the Class IIb HDAC6 associates through its C-terminal unique binder of ubiquitin Zn finger domain. Both JDP2 and ATF3 are known to bind and repress the ATF3 promoter. MEF cells treated with histone deacetylase inhibitor, trichostatin A (TSA) display enhanced ATF3 transcription. ATF3 enhanced transcription is significantly reduced in MEF cells lacking both ATF3 and JDP2. Collectively, we propose that the recruitment of multiple HDAC members to JDP2 and ATF3 is part of their transcription repression mechanism.
Collapse
Affiliation(s)
- Ilona Darlyuk-Saadon
- Department of Molecular Genetics, Technion-Israel Institute of Technology, Haifa, Israel.
| | | | | | | | | |
Collapse
|
25
|
Gervasi M, Bianchi-Smiraglia A, Cummings M, Zheng Q, Wang D, Liu S, Bakin AV. JunB contributes to Id2 repression and the epithelial-mesenchymal transition in response to transforming growth factor-β. ACTA ACUST UNITED AC 2012; 196:589-603. [PMID: 22391036 PMCID: PMC3307698 DOI: 10.1083/jcb.201109045] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
JunB helps set in motion the transcriptional program necessary for the epithelial–mesenchymal transition and tissue fibrosis in response to TGF-β. The process of epithelial–mesenchymal transition (EMT) in response to transforming growth factor–β (TGF-β) contributes to tissue fibrosis, wound healing, and cancer via a mechanism that is not fully understood. This study identifies a critical role of JunB in the EMT and profibrotic responses to TGF-β. Depletion of JunB by small interfering ribonucleic acid abrogates TGF-β–induced disruption of cell–cell junctions, formation of actin fibers, focal adhesions, and expression of fibrotic proteins. JunB contributes to Smad-mediated repression of inhibitor of differentiation 2 through interaction with transcription repressor activating transcription factor 3. Importantly, JunB mediates the TGF-β induction of profibrotic response factors, fibronectin, fibulin-2, tropomyosin (Tpm1), and integrin-β3, which play critical roles in matrix deposition, cell–matrix adhesion, and actin stress fibers. In summary, JunB provides important input in setting the transcriptional program of the EMT and profibrotic responses to TGF-β. Thus, JunB represents an important target in diseases associated with EMT, including cancer and fibrosis.
Collapse
Affiliation(s)
- Megan Gervasi
- Department of Cancer Genetics, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | | | | | | | | | | | | |
Collapse
|
26
|
Moore DL, Goldberg JL. Multiple transcription factor families regulate axon growth and regeneration. Dev Neurobiol 2012; 71:1186-211. [PMID: 21674813 DOI: 10.1002/dneu.20934] [Citation(s) in RCA: 134] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Understanding axon regenerative failure remains a major goal in neuroscience, and reversing this failure remains a major goal for clinical neurology. Although an inhibitory central nervous system environment clearly plays a role, focus on molecular pathways within neurons has begun to yield fruitful insights. Initial steps forward investigated the receptors and signaling pathways immediately downstream of environmental cues, but recent work has also shed light on transcriptional control mechanisms that regulate intrinsic axon growth ability, presumably through whole cassettes of gene target regulation. Here we will discuss transcription factors that regulate neurite growth in vitro and in vivo, including p53, SnoN, E47, cAMP-responsive element binding protein (CREB), signal transducer and activator of transcription 3 (STAT3), nuclear factor of activated T cell (NFAT), c-Jun activating transcription factor 3 (ATF3), sex determining region Ybox containing gene 11 (Sox11), nuclear factor κ-light chain enhancer of activated B cells (NFκB), and Krüppel-like factors (KLFs). Revealing the similarities and differences among the functions of these transcription factors may further our understanding of the mechanisms of transcriptional regulation in axon growth and regeneration.
Collapse
Affiliation(s)
- Darcie L Moore
- Bascom Palmer Eye Institute and the Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Florida, USA
| | | |
Collapse
|
27
|
Hong HJ, Hsu FL, Tsai SC, Lin CH, Liu JC, Chen JJ, Cheng TH, Chan P. Tanshinone IIA attenuates cyclic strain-induced endothelin-1 expression in human umbilical vein endothelial cells. Clin Exp Pharmacol Physiol 2012; 39:63-68. [PMID: 22032308 DOI: 10.1111/j.1440-1681.2011.05637.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
1. Tanshinone IIA, one of the active components of the Radix of Salvia miltiorrhiza, is used in traditional Chinese medicine to treat cardiovascular diseases. However, the intracellular mechanism of action of tanshinone IIA remain to be determined. The aims of the present study were to test the hypothesis that tanshinone IIA alters strain-induced endothelin (ET)-1 expression and nitric oxide (NO) production, as well as to identify the putative signalling pathways involved, in human umbilical vein endothelial cells (HUVEC). 2. Cultured HUVEC were exposed to cyclic strain in the presence of 1-10 μmol/L tanshinone IIA. Expression of ET-1 was examined by reverse transcription-polymerase chain reaction and ELISA. Phosphorylation of endothelial NO synthase (eNOS) and activating transcription factor (ATF) 3 was assessed by western blot analysis. 3. Tanshinone IIA (3 and 10 μmol/L) inhibited strain-induced ET-1 expression. In contrast, NO production, eNOS phosphorylation and ATF3 expression were enhanced by tanshinone IIA. The eNOS inhibitor N(G) -nitro-L-arginine methyl ester (l-NAME; 100 μmol/L), the phosphatidylinositol 3-kinase inhibitor LY294002 (5 μmol/L) and the soluble guanylyl cyclase inhibitor 1H-[1,2,4] oxadiazolo [4,3-a] quinoxalin-1-one (ODQ; 10 μmol/L) inhibited tanshinone IIA-induced increases in ATF3 expression. Moreover, treatment of HUVEC with either an NO donor (3,3-bis [aminoethyl]-1-hydroxy-2-oxo-1-triazene; 500 μmol/L) or an ATF3 activator (carbobenzoxy-L-leucyl-L-leucyl-L-leucinal; 5 μmol/L) resulted in the repression of strain-induced ET-1 expression. The inhibitory effect of tanshinone IIA on strain-induced ET-1 expression was significantly attenuated by l-NAME, ODQ and the transfection of small interfering RNA for ATF3. 4. In conclusion, tanshinone IIA inhibits strain-induced ET-1 expression by increasing NO and upregulating ATF3 in HUVEC. The present study provides important new insights into the molecular pathways that may contribute to the beneficial effects of tanshinone IIA in the cardiovascular system.
Collapse
Affiliation(s)
- Hong-Jye Hong
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan, China
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Cheng CF, Lin H. Acute kidney injury and the potential for ATF3-regulated epigenetic therapy. Toxicol Mech Methods 2011; 21:362-6. [DOI: 10.3109/15376516.2011.557876] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
29
|
Activation of the canonical Wnt/β-catenin pathway in ATF3-induced mammary tumors. PLoS One 2011; 6:e16515. [PMID: 21304988 PMCID: PMC3031586 DOI: 10.1371/journal.pone.0016515] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Accepted: 01/04/2011] [Indexed: 12/29/2022] Open
Abstract
Female transgenic mice that constitutively overexpress the transcription factor ATF3 in the basal epithelium of the mammary gland develop mammary carcinomas with high frequency, but only if allowed to mate and raise pups early in life. This transgenic mouse model system reproduces some features of human breast cancer in that about 20% of human breast tumor specimens exhibit overexpression of ATF3 in the tumor cells. The ATF3-induced mouse tumors are phenotypically similar to mammary tumors induced by overexpression of activating Wnt/β-catenin pathway genes. We now show that the Wnt/β-catenin pathway is indeed activated in ATF3-induced tumors. β-catenin is transcriptionally up-regulated in the tumors, and high levels of nuclear β-catenin are seen in tumor cells. A reporter gene for Wnt/β-catenin pathway activity, TOPGAL, is up-regulated in the tumors and several downstream targets of Wnt signaling, including Ccnd1, Jun, Axin2 and Dkk4, are also expressed at higher levels in ATF3-induced tumors compared to mammary glands of transgenic females. Several positive-acting ligands for this pathway, including Wnt3, Wnt3a, Wnt7b, and Wnt5a, are significantly overexpressed in tumor tissue, and mRNA for Wnt3 is about 5-fold more abundant in transgenic mammary tissue than in non-transgenic mammary tissue. Two known transcriptional targets of ATF3, Snai1 and Snai2, are also overexpressed in the tumors, and Snail and Slug proteins are found to be located primarily in the nuclei of tumor cells. In vitro knockdown of Atf3 expression results in significant decreases in expression of Wnt7b, Tcf7, Snai2 and Jun, suggesting that these genes may be direct transcriptional targets of ATF3 protein. By chromatin immunoprecipitation analysis, both ATF3 and JUN proteins appear to bind to a particular subclass of AP-1 sites upstream of the transcriptional start sites of each of these genes.
Collapse
|
30
|
Best DH, Coleman WB. Activation and Regulation of Reserve Liver Progenitor Cells. STEM CELL REGULATORS 2011; 87:93-109. [DOI: 10.1016/b978-0-12-386015-6.00026-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
31
|
Li HF, Cheng CF, Liao WJ, Lin H, Yang RB. ATF3-mediated epigenetic regulation protects against acute kidney injury. J Am Soc Nephrol 2010; 21:1003-13. [PMID: 20360311 DOI: 10.1681/asn.2009070690] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
A variety of stress stimuli, including ischemia-reperfusion (I/R) injury, induce the transcriptional repressor ATF3 in the kidney. The functional consequences of this upregulation in ATF3 after renal I/R injury are not well understood. Here, we found that ATF3-deficient mice had higher renal I/R-induced mortality, kidney dysfunction, inflammation (number of infiltrating neutrophils, myeloperoxidase activity, and induction of IL-6 and P-selectin), and apoptosis compared with wild-type mice. Furthermore, gene transfer of ATF3 to the kidney rescued the renal I/R-induced injuries in the ATF3-deficient mice. Molecular and biochemical analysis revealed that ATF3 interacted directly with histone deacetylase 1 (HDAC1) and recruited HDAC1 into the ATF/NF-kappaB sites in the IL-6 and IL-12b gene promoters. The ATF3-associated HDAC1 deacetylated histones, which resulted in the condensation of chromatin structure, interference of NF-kappaB binding, and inhibition of inflammatory gene transcription after I/R injury. Taken together, these data demonstrate epigenetic regulation mediated by the stress-inducible gene ATF3 after renal I/R injury and suggest potential targeted approaches for acute kidney injury.
Collapse
Affiliation(s)
- Hsiao-Fen Li
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
| | | | | | | | | |
Collapse
|
32
|
Filén S, Ylikoski E, Tripathi S, West A, Björkman M, Nyström J, Ahlfors H, Coffey E, Rao KVS, Rasool O, Lahesmaa R. Activating transcription factor 3 is a positive regulator of human IFNG gene expression. THE JOURNAL OF IMMUNOLOGY 2010; 184:4990-9. [PMID: 20304822 DOI: 10.4049/jimmunol.0903106] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
IL-12 and IL-18 are essential for Th1 differentiation, whereas the role of IFN-alpha in Th1 development is less understood. In this microarray-based study, we searched for genes that are regulated by IFN-alpha, IL-12, or the combination of IL-12 plus IL-18 during the early differentiation of human umbilical cord blood CD4(+) Th cells. Twenty-six genes were similarly regulated in response to treatment with IL-12, IFN-alpha, or the combination of IL-12 plus IL-18. These genes could therefore play a role in Th1 lineage decision. Transcription factor activating transcription factor (ATF) 3 was upregulated by these cytokines and selected for further study. Ectopic expression of ATF3 in CD4(+) T cells enhanced the production of IFN-gamma, the hallmark cytokine of Th1 cells, whereas small interfering RNA knockdown of ATF3 reduced IFN-gamma production. Furthermore, ATF3 formed an endogenous complex with JUN in CD4(+) T cells induced to Th1. Chromatin immunoprecipitation and luciferase reporter assays showed that both ATF3 and JUN are recruited to and transactivate the IFNG promoter during early Th1 differentiation. Collectively, these data indicate that ATF3 promotes human Th1 differentiation.
Collapse
Affiliation(s)
- Sanna Filén
- Turku Centre for Biotechnology, University of Turku and Abo Akademi University, P.O. Box 123, FI-20521 Turku, Finland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Sekyrova P, Bohmann D, Jindra M, Uhlirova M. Interaction between Drosophila bZIP proteins Atf3 and Jun prevents replacement of epithelial cells during metamorphosis. Development 2010; 137:141-50. [PMID: 20023169 DOI: 10.1242/dev.037861] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Epithelial sheet spreading and fusion underlie important developmental processes. Well-characterized examples of such epithelial morphogenetic events have been provided by studies in Drosophila, and include embryonic dorsal closure, formation of the adult thorax and wound healing. All of these processes require the basic region-leucine zipper (bZIP) transcription factors Jun and Fos. Much less is known about morphogenesis of the fly abdomen, which involves replacement of larval epidermal cells (LECs) with adult histoblasts that divide, migrate and finally fuse to form the adult epidermis during metamorphosis. Here, we implicate Drosophila Activating transcription factor 3 (Atf3), the single ortholog of human ATF3 and JDP2 bZIP proteins, in abdominal morphogenesis. During the process of the epithelial cell replacement, transcription of the atf3 gene declines. When this downregulation is experimentally prevented, the affected LECs accumulate cell-adhesion proteins and their extrusion and replacement with histoblasts are blocked. The abnormally adhering LECs consequently obstruct the closure of the adult abdominal epithelium. This closure defect can be either mimicked and further enhanced by knockdown of the small GTPase Rho1 or, conversely, alleviated by stimulating ecdysone steroid hormone signaling. Both Rho and ecdysone pathways have been previously identified as effectors of the LEC replacement. To elicit the gain-of-function effect, Atf3 specifically requires its binding partner Jun. Our data thus identify Atf3 as a new functional partner of Drosophila Jun during development.
Collapse
Affiliation(s)
- Petra Sekyrova
- Biology Center, Czech Academy of Sciences and Department of Molecular Biology, University of South Bohemia, Ceske Budejovice 37005, Czech Republic
| | | | | | | |
Collapse
|
34
|
Kwok S, Rittling SR, Partridge NC, Benson CS, Thiyagaraj M, Srinivasan N, Selvamurugan N. Transforming growth factor-beta1 regulation of ATF-3 and identification of ATF-3 target genes in breast cancer cells. J Cell Biochem 2009; 108:408-14. [PMID: 19582787 DOI: 10.1002/jcb.22267] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Transforming growth factor-beta1 (TGF-beta1) is a crucial molecule for stimulation of breast cancer invasion and formation of bone metastases. The molecular mechanisms of how TGF-beta1 mediates these effects have yet to be completely determined. We have found that activating transcription factor-3 (ATF-3) is strongly stimulated and its level is sustained by TGF-beta1 in highly invasive and metastatic human breast cancer (MDA-MB231) and in mouse mammary pad tumor cells (r3T). ATF-3 is also overexpressed in human primary breast cancer tissue. Overexpression of ATF-3 increased normal human mammary epithelial cell number and DNA synthesis suggesting a role for ATF-3 in cell proliferation. The functional role of ATF-3 in breast cancer progression was determined by the RNA interference technique. Knockdown of ATF-3 by ATF-3 shRNA in MDA-MB231 cells decreased expression of cell cycle gene, cyclin A1 in MDA-MB231 cells. ATF-3 shRNA also decreased expression of an invasive and metastatic gene, matrix metalloproteinase-13 (MMP-13; collagenase-3) in these cells. Chromatin immunoprecipitation experiments identified the direct physical interaction of ATF-3 protein on the human MMP-13 promoter. Thus, the dysregulation of ATF-3 by TGF-beta1 is likely to activate cyclin A1 and MMP-13 genes in breast cancer cells and that would be key to the subsequent cancer cell invasion and metastasis.
Collapse
Affiliation(s)
- Sukyee Kwok
- Department of Physiology and Biophysics, UMDNJ-Robert Wood Johnson Medical School, Piscataway, New Jersey 08854, USA
| | | | | | | | | | | | | |
Collapse
|
35
|
Littlejohn MD, Walker CG, Ward HE, Lehnert KB, Snell RG, Verkerk GA, Spelman RJ, Clark DA, Davis SR. Effects of reduced frequency of milk removal on gene expression in the bovine mammary gland. Physiol Genomics 2009; 41:21-32. [PMID: 19996161 DOI: 10.1152/physiolgenomics.00108.2009] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Regulation of milk synthesis and secretion is controlled mostly through local (intramammary) mechanisms. To gain insight into the molecular pathways comprising this response, an analysis of mammary gene expression was conducted in 12 lactating cows shifted from twice daily to once daily milking. Tissues were sampled by biopsy from adjacent mammary quarters of these animals during the two milking frequencies, allowing changes in gene expression to be assessed within each animal. Using bovine-specific, oligonucleotide arrays representing 21,495 unique transcripts, a range of differentially expressed genes were found as a result of less frequent milk removal, constituting transcripts and pathways related to apoptotic signaling (NF-kappaB, JUN, ATF3, IGFBP5, TNFSF12A) mechanical stress and epithelial tight junction synthesis (CYR61, CTGF, THBS1, CLDN4, CLDN8), and downregulated milk synthesis (LALBA, B4GALT1, UGP2, CSN2, GPAM, LPL). Quantitative real-time PCR was used to assess the expression of 13 genes in the study, and all 13 of these were correlated (P < 0.05) with values derived from array analysis. It can be concluded that the physiological changes that occur in the bovine mammary gland as a result of reduced milk removal frequency likely comprise the earliest stages of the involution response and that mechano-signal transduction cascades associated with udder distension may play a role in triggering these events.
Collapse
|
36
|
Thompson MR, Xu D, Williams BRG. ATF3 transcription factor and its emerging roles in immunity and cancer. J Mol Med (Berl) 2009; 87:1053-60. [PMID: 19705082 DOI: 10.1007/s00109-009-0520-x] [Citation(s) in RCA: 286] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2009] [Revised: 08/10/2009] [Accepted: 08/13/2009] [Indexed: 02/06/2023]
Abstract
Activating transcription factor 3 (ATF3) is a member of the ATF/cyclic AMP response element-binding (ATF/CREB) family of transcription factors. It is an adaptive-response gene that participates in cellular processes to adapt to extra- and/or intracellular changes, where it transduces signals from various receptors to activate or repress gene expression. Advances made in understanding the immunobiology of Toll-like receptors have recently generated new momentum for the study of ATF3 in immunity. Moreover, the role of ATF3 in the regulation of the cell cycle and apoptosis has important implications for understanding susceptibility to and progression of several cancers.
Collapse
Affiliation(s)
- Matthew R Thompson
- Monash Institute of Medical Research, Monash University, Melbourne, Australia
| | | | | |
Collapse
|
37
|
Apoptosis-related genes change their expression with age and hearing loss in the mouse cochlea. Apoptosis 2008; 13:1303-21. [PMID: 18839313 DOI: 10.1007/s10495-008-0266-x] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
To understand possible causative roles of apoptosis gene regulation in age-related hearing loss (presbycusis), apoptotic gene expression patterns in the CBA mouse cochlea of four different age and hearing loss groups were compared, using GeneChip and real-time (qPCR) microarrays. GeneChip transcriptional expression patterns of 318 apoptosis-related genes were analyzed. Thirty eight probes (35 genes) showed significant differences in expression. The significant gene families include Caspases, B-cell leukemia/lymphoma2 family, P53, Calpains, Mitogen activated protein kinase family, Jun oncogene, Nuclear factor of kappa light chain gene enhancer in B-cells inhibitor-related and tumor necrosis factor-related genes. The GeneChip results of 31 genes were validated using the new TaqMan Low Density Array (TLDA). Eight genes showed highly correlated results with the GeneChip data. These genes are: activating transcription factor3, B-cell leukemia/lymphoma2, Bcl2-like1, caspase4 apoptosis-related cysteine protease 4, Calpain2, dual specificity phosphatase9, tumor necrosis factor receptor superfamily member12a, and Tumor necrosis factor superfamily member13b, suggesting they may play critical roles in inner ear aging.
Collapse
|
38
|
Wang A, Arantes S, Yan L, Kiguchi K, McArthur MJ, Sahin A, Thames HD, Aldaz CM, Macleod MC. The transcription factor ATF3 acts as an oncogene in mouse mammary tumorigenesis. BMC Cancer 2008; 8:268. [PMID: 18808719 PMCID: PMC2564979 DOI: 10.1186/1471-2407-8-268] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2008] [Accepted: 09/22/2008] [Indexed: 12/19/2022] Open
Abstract
Background Overexpression of the bZip transcription factor, ATF3, in basal epithelial cells of transgenic mice under the control of the bovine cytokeratin-5 (CK5) promoter has previously been shown to induce epidermal hyperplasia, hair follicle anomalies and neoplastic lesions of the oral mucosa including squamous cell carcinomas. CK5 is known to be expressed in myoepithelial cells of the mammary gland, suggesting the possibility that transgenic BK5.ATF3 mice may exhibit mammary gland phenotypes. Methods Mammary glands from nulliparous mice in our BK5.ATF3 colony, both non-transgenic and transgenic, were examined for anomalies by histopathology and immunohistochemistry. Nulliparous and biparous female mice were observed for possible mammary tumor development, and suspicious masses were analyzed by histopathology and immunohistochemistry. Human breast tumor samples, as well as normal breast tissue, were similarly analyzed for ATF3 expression. Results Transgenic BK5.ATF3 mice expressed nuclear ATF3 in the basal layer of the mammary ductal epithelium, and often developed squamous metaplastic lesions in one or more mammary glands by 25 weeks of age. No progression to malignancy was seen in nulliparous BK5.ATF3 or non-transgenic mice held for 16 months. However, biparous BK5.ATF3 mice developed mammary carcinomas with squamous metaplasia between 6 months and one year of age, reaching an incidence of 67%. Cytokeratin expression in the tumors was profoundly disturbed, including expression of CK5 and CK8 (characteristic of basal and luminal cells, respectively) throughout the epithelial component of the tumors, CK6 (potentially a stem cell marker), CK10 (a marker of interfollicular epidermal differentiation), and mIRSa2 and mIRSa3.1 (markers of the inner root sheath of hair follicles). Immunohistochemical studies indicated that a subset of human breast tumors exhibit high levels of nuclear ATF3 expression. Conclusion Overexpression of ATF3 in CK5-expressing cells of the murine mammary gland results in the development of squamous metaplastic lesions in nulliparous females, and in mammary tumors in biparous mice, suggesting that ATF3 acts as a mammary oncogene. A subset of human breast tumors expresses high levels of ATF3, suggesting that ATF3 may play an oncogenic role in human breast tumorigenesis, and therefore may be useful as either a biomarker or therapeutic target.
Collapse
Affiliation(s)
- Aijin Wang
- Department of Carcinogenesis, The University of Texas M D Anderson Cancer Center, Smithville, TX, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Mei Y, Yuan Z, Song B, Li D, Ma C, Hu C, Ching YP, Li M. Activating transcription factor 3 up-regulated by c-Jun NH(2)-terminal kinase/c-Jun contributes to apoptosis induced by potassium deprivation in cerebellar granule neurons. Neuroscience 2007; 151:771-9. [PMID: 18178318 DOI: 10.1016/j.neuroscience.2007.10.057] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2007] [Revised: 10/04/2007] [Accepted: 11/28/2007] [Indexed: 11/30/2022]
Abstract
Cerebellar granule neurons (CGNs) depend on potassium depolarization for survival and undergo apoptosis when deprived of depolarizing concentration of potassium. Activating transcription factor 3 (ATF3), a stress-inducible protein, belongs to the ATF/CREB family of transcription factors family and is involved in cell growth and apoptosis. However, the role of ATF3 in neuronal apoptosis remains unknown. Here, we showed that ATF3 was up-regulated under potassium deprivation in CGNs, and this induction was preceded by a rapid and sustained activation of c-Jun NH(2)-terminal kinase/c-Jun signaling pathway, which plays a fundamental role in neuronal apoptosis. Furthermore, ATF3 up-regulation was abolished by inhibition of JNK or knockdown of c-Jun. Finally, knockdown of ATF3 by RNA interference protected CGNs from potassium deprivation-induced apoptosis. Taken together, our results indicate that ATF3 is a downstream target of JNK/c-Jun pathway and contributes to apoptosis induced by potassium deprivation in rat CGNs.
Collapse
Affiliation(s)
- Y Mei
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan Road II, Guangzhou 510080, China
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Pan Q, Zhang ZB, Zhang X, Shi J, Chen YX, Han ZG, Xie WF. Gene expression profile analysis of the spontaneous reversal of rat hepatic fibrosis by cDNA microarray. Dig Dis Sci 2007; 52:2591-600. [PMID: 17805973 DOI: 10.1007/s10620-006-9676-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2006] [Accepted: 11/07/2006] [Indexed: 01/28/2023]
Abstract
Our aim was to gain insight into the gene expression profile during hepatic fibrosis autoreversal. Spontaneous recovery from hepatic fibrosis was created in SD rats by CCl(4) exposure for 8 weeks and then withdrawal for 6 weeks. Then differentially expressed genes during regression of fibrosis were analyzed using cDNA microarray. Results obtained were further subjected to hierarchical clustering and validated by semiquantitative RT-PCR. Expression of Mapk1 and Rps6ka1, which are critical members of the mitogen-activated protein kinase (MAPK) signaling pathway, was also investigated by Northern blot and immunohistochemistry. Microarray hybridization identified 254 genes differentially expressed throughout resolution of fibrosis. Being verified by RT-PCR, up- or down-regulated genes were classified into various groups according to clustering and function: (1) metabolic enzymes, (2) facilitated diffusion proteins/transporters/symporters, (3) gastrointestinal hormones/receptors, (4) lipoproteins/fatty acid binding proteins, (5) transcription factors/nuclear factors, and (6) the MAPK signaling pathway. The mRNA level of Mapk1 increased greatly as hepatic fibrosis reversed. Meanwhile Mapk1 and Rps6ka1 were proven to be expressed in hepatocytes and absent from mesenchymal cells. Six groups of genes exhibit a close relation to the recovery of CCl(4)-induced hepatic fibrosis. The MAPK signaling-dependent pathway, representing one of the gene groups, may contribute to the reversal of hepatic fibrosis.
Collapse
Affiliation(s)
- Qin Pan
- Department of Gastroenterology, Changzheng Hospital, Second Military Medical University, 415 Fengyang Road, Shanghai 200003, PRC
| | | | | | | | | | | | | |
Collapse
|
41
|
Allen JW, Khetani SR, Johnson RS, Bhatia SN. In vitro liver tissue model established from transgenic mice: role of HIF-1alpha on hypoxic gene expression. ACTA ACUST UNITED AC 2007; 12:3135-47. [PMID: 17518628 DOI: 10.1089/ten.2006.12.3135] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The instability of the hepatocyte phenotype in vitro has limited the ability to quantitatively investigate regulation of stress responses of the liver. Here, we adopt a tissue-engineering approach to form stable liver tissue in vitro by forming collagen "sandwich" cultures of transgenic murine hepatocytes harboring a regulatory gene of interest flanked by loxP sites. The floxed gene is excised in a subset of cultures by transfection with adenovirus carrying the gene for Cre-recombinase, thereby generating wild-type and null liver tissues from a single animal. In this study, we specifically investigated the role of hypoxia inducible factor 1 alpha (HIF-1alpha) in the hepatocellular response to hypoxia. Using high-density oligonucleotide arrays, we examined genome-wide gene expression after 8 h of hypoxia in wild-type and HIF- 1alpha null hepatocyte cultures. We identified more than 130 genes differentially expressed under hypoxia involved in metabolic adaptation, angiogenic signaling, immediate early response, and cell cycle regulation. Real-time polymerase chain reaction analysis verified that known hypoxia-responsive genes such as glucose transporter-1 and vascular endothelial growth factor were induced in a HIF-1alpha-dependent manner under hypoxia. Our results demonstrate the potential to integrate in vitro tissue models with transgenic and microarray technologies for the study of physiologic stress responses.
Collapse
Affiliation(s)
- Jared W Allen
- Department of Bioengineering, University of California at San Diego, La Jolla, California, USA
| | | | | | | |
Collapse
|
42
|
Kehat I, Hasin T, Aronheim A. The role of basic leucine zipper protein-mediated transcription in physiological and pathological myocardial hypertrophy. Ann N Y Acad Sci 2007; 1080:97-109. [PMID: 17132778 DOI: 10.1196/annals.1380.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Accumulating evidence suggests that nuclear transcription factors from the basic leucine zipper (bZIP) family play an important role in cardiac development and function. This class includes the CREB/ATF family of transcription factors, namely CREB, cAMP response element modulator (CREM), ATF, and the related AP-1 and C/EBP families. An effort has been made to elucidate the role of specific bZIP members in the heart. Unfortunately, little insight could be gained from knockout experiments, either due to embryonic lethal phenotypes or functional compensation by other bZIP family members. Surprisingly, cardiac overexpression of several inhibitory transcription factors from the bZIP family, such as a nonphosphorylatable form of CREB (CREB(ser133)), a nonfunctional isoform of CREM, or ATF3 resulted in massive atrial dilatation. In order to try and characterize this pathway we have expressed the potent bZIP inhibitory protein, Jun dimerization protein 2 (JDP2), specifically in the mouse heart in a temporally controlled manner. Expression of JDP2 resulted in massive biatrial dilatation; loss of connexin 40 (Cx40), connexin43 (Cx43), and myosin light chain 2 (MLC2a) expression; atrioventricular defects in conduction; and a lethal phenotype. All these effects were independent of any developmental events acquired during adulthood, and were totally reversible upon abolishing the bZIP inhibition. The results of this article suggest that bZIP inhibition is sufficient to cause atrial dilation, that this dilatation is acquired postnatally, and that it is reversible upon the relief of inhibition. Thus, bZIP repressors may serve as novel drug targets for the prevention of atrial dilatation a major risk of atrial fibrillation (AF).
Collapse
Affiliation(s)
- Izhak Kehat
- Technion, Israel Institute of Technology, Rappaport Family Institute in the Medical Sciences, the B. Rappaport Faculty of Medicine, Haifa, Israel 31096.
| | | | | |
Collapse
|
43
|
Abstract
The metalloproteinases degrade extracellular matrix (ECM) components and activate growth factors, thereby contributing to physiological events (tissue remodeling in pregnancy, wound healing, angiogenesis) and pathological conditions (cancer, arthritis, periodontitis). The intent of this review is to bring together various studies on transcriptional and post-transcriptional control of metalloproteinase expression. Certainly, much information is known as to the cis-elements and corresponding trans-activators regulating expression of these genes. We discuss the fact that a number of the metalloproteinase promoters share common structural features and, therefore, not surprisingly are co-regulated in their expression to some extent. More recently, much effort has been devoted to understanding the role of chromatin in regulating gene expression. While this area has been understudied with respect to matrix metalloproteinase (MMP) regulation, the literature indicates a convincing role for both histone modifications and chromatin-remodeling motors in controlling expression of multiple metalloproteinases. In addition to transcriptional control, mRNA stability and protein translation also contribute to the metalloproteinase product amount. We discuss such studies and how various biological cues, including TGF-beta, regulate the levels of certain collagenases either solely through mRNA stabilization or by jointly targeting transcriptional and post-transcriptional mechanisms. We also discuss the current deficits in our knowledge, concerning tissue-specific expression and why despite elevated amounts/activity of trans-activators targeting MMP promoters in tumor cells, nevertheless, MMP expression is largely restricted to the stromal compartment. Finally, we argue for potential technologies to regulate MMP expression of utility in pathological conditions where these enzymes are aberrantly expressed.
Collapse
Affiliation(s)
- Chunhong Yan
- MD Anderson Cancer Center, University of Texas, Houston, Texas 77030, USA
| | | |
Collapse
|
44
|
Nordlie MA, Wold LE, Simkhovich BZ, Sesti C, Kloner RA. Molecular aspects of ischemic heart disease: ischemia/reperfusion-induced genetic changes and potential applications of gene and RNA interference therapy. J Cardiovasc Pharmacol Ther 2006; 11:17-30. [PMID: 16703217 DOI: 10.1177/107424840601100102] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Molecular biologic techniques have a variety of applications in the study of ischemic heart disease, including roles in elucidating cardiac genetic changes resulting from ischemia as well as in developing therapeutic interventions to treat ischemic heart disease. This review describes recent studies documenting genetic changes associated with myocardial ischemia and infarction as well as those investigating the safety and effectiveness of gene therapy for stimulating angiogenesis, protecting the heart against reperfusion injury, and treating heart failure. Also discussed are future research directions, including the potential use of RNA interference and combined stem cell therapy and gene therapy for the treatment of cardiovascular disease.
Collapse
Affiliation(s)
- Margaret A Nordlie
- Division of Mathematics and Natural Sciences, University of Mary, Bismarck, ND, USA
| | | | | | | | | |
Collapse
|
45
|
Seijffers R, Allchorne AJ, Woolf CJ. The transcription factor ATF-3 promotes neurite outgrowth. Mol Cell Neurosci 2006; 32:143-54. [PMID: 16713293 DOI: 10.1016/j.mcn.2006.03.005] [Citation(s) in RCA: 176] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2005] [Revised: 03/10/2006] [Accepted: 03/23/2006] [Indexed: 12/17/2022] Open
Abstract
Dorsal root ganglion (DRG) neurons regenerate after a peripheral nerve injury but not after injury to their axons in the spinal cord. A key question is which transcription factors drive the changes in gene expression that increase the intrinsic growth state of peripherally injured sensory neurons? A prime candidate is activating transcription factor-3 (ATF-3), a transcription factor that we find is induced in all DRG neurons after peripheral, but not central axonal injury. Moreover, we show in adult DRG neurons that a preconditioning peripheral, but not central axonal injury, increases their growth, correlating closely with the pattern of ATF-3 induction. Using viral vectors, we delivered ATF-3 to cultured adult DRG neurons and find that ATF-3 enhances neurite outgrowth. Furthermore, ATF-3 promotes long sparsely branched neurites. ATF-3 overexpression did not increase c-Jun expression. ATF-3 may contribute, therefore, to neurite outgrowth by orchestrating the gene expression responses in injured neurons.
Collapse
Affiliation(s)
- Rhona Seijffers
- Neural Plasticity Research Group, Department of Anesthesia and Critical Care, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | | | | |
Collapse
|
46
|
Kim HB, Kong M, Kim TM, Suh YH, Kim WH, Lim JH, Song JH, Jung MH. NFATc4 and ATF3 negatively regulate adiponectin gene expression in 3T3-L1 adipocytes. Diabetes 2006; 55:1342-52. [PMID: 16644691 DOI: 10.2337/db05-1507] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Expression of adiponectin decreases with obesity and insulin resistance. At present, the mechanisms responsible for negatively regulating adiponectin expression in adipocytes are poorly understood. In this investigation, we analyzed the effects of 5' serial deletion constructs on the murine adiponectin promoter. Here, we identified the repressor region located between -472 and -313 bp of the promoter. Removal of the putative nuclear factor of activated T-cells (NFATs) binding site increased the promoter activity, and overexpression of NFATc4 reduced the promoter activity. Treatment with the calcium ionophore A23187, an activator of NFAT, reduced mRNA as well as promoter activity. The binding of NFATc4 to the promoter was associated with increased recruitment of histone deacetylase 1 and reduced acetylation of histone H3 at the promoter site. In addition, binding of activating transcription factor 3 (ATF3) to the putative activator protein-1 site located adjacent to the NFAT binding site also repressed the promoter activity. Treatment with thapsigargin, an inducer of ATF3, reduced both mRNA and promoter activity. Importantly, the binding activities of NFATc4 and ATF3, increased significantly in white adipose tissues of ob/ob and db/db mice compared with controls. Taken together, this study demonstrates for the first time that NFATc4 and ATF3 function as negative regulators of adiponectin gene expression, which may play critical roles in downregulating adiponectin expression in obesity and type 2 diabetes.
Collapse
Affiliation(s)
- Hyun Bae Kim
- Division of Metabolic Diseases, Center for Biomedical Science, National Institute of Health, 5 Nokbun-dong, Eunpyung-gu, Seoul 122-701, Korea
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Ito K, Kiyosawa N, Kumagai K, Manabe S, Matsunuma N, Yamoto T. Molecular mechanism investigation of cycloheximide-induced hepatocyte apoptosis in rat livers by morphological and microarray analysis. Toxicology 2006; 219:175-86. [PMID: 16368179 DOI: 10.1016/j.tox.2005.11.017] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2005] [Revised: 11/15/2005] [Accepted: 11/15/2005] [Indexed: 12/31/2022]
Abstract
Male F344 rats were intravenously treated with 6 mg/kg cycloheximide (CHX), and microarray analysis was conducted on their livers 1, 2 and 6h after the CHX treatment. The histopathological examination and serum chemistry results indicated a mild hepatic cell death 2 and 6h after the CHX treatment, respectively. Multi-focal hepatocellular necrosis with slight neutrophil infiltration was observed 6h after the CHX treatment. The TUNEL staining results showed that the number of apoptotic hepatocytes was the highest 2h after the CHX treatment. Dramatic increases in the mRNA levels of ATF3 and CHOP genes, both of which were reported to play roles in the ER stress-mediated apoptosis pathway, were observed from 1h after the CHX treatment. In addition, increase of GADD45, p21 and p53 mRNA levels also suggested a time course-related stimulation of hepatocellular apoptotic signals. These results suggest that the hepatocyte apoptosis induced by the CHX treatment is triggered by ER stress. The hepatic mRNA levels of proinflammatory genes, such as TNFalpha, IL-1alpha and beta, were also increased 1 and 2h after the CHX treatment, supposedly mediated by the activated Kupffer cells engulfing the apoptotic hepatocytes.
Collapse
Affiliation(s)
- Kazumi Ito
- Medicinal Safety Research Laboratories, Sankyo Co., Ltd., 717 Horikoshi, Fukuroi, Shizuoka 437-0065, Japan. ,jp
| | | | | | | | | | | |
Collapse
|
48
|
Davis-Taber RA, Scott VE. Transcriptional profiling of dorsal root ganglia in a neuropathic pain model using microarray and laser capture microdissection. Drug Dev Res 2006. [DOI: 10.1002/ddr.20096] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
49
|
Yan C, Lu D, Hai T, Boyd DD. Activating transcription factor 3, a stress sensor, activates p53 by blocking its ubiquitination. EMBO J 2005; 24:2425-35. [PMID: 15933712 PMCID: PMC1173153 DOI: 10.1038/sj.emboj.7600712] [Citation(s) in RCA: 166] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2004] [Accepted: 05/18/2005] [Indexed: 01/10/2023] Open
Abstract
Activating transcription factor 3 (ATF3) is rapidly induced by diverse environmental insults including genotoxic stress. We report herein that its interaction with p53, enhanced by genotoxic stress, stabilizes the tumor suppressor thereby augmenting functions of the latter. Overexpression of ATF3 (but not a mutated ATF3 protein (Delta102-139) devoid of its p53-binding region) prevents p53 from MDM2-mediated degradation and leads to increased transcription from p53-regulated promoters. ATF3, but not the Delta102-139 protein, binds the p53 carboxy-terminus and diminishes its ubiquitination and nuclear export. Genotoxic-stressed ATF3-null mouse embryonic fibroblasts, or cells in which ATF3 was reduced by small interference RNA, show inefficient p53 induction and impaired apoptosis compared with wild-type cells. ATF3-null cells (but not wild-type cells), which poorly accumulate p53, are transformed by oncogenic Ras. Thus, ATF3 is a novel stress-activated regulator of p53 protein stability/function providing the cell with a means of responding to a wide range of environmental insult, thus maintaining DNA integrity and protecting against cell transformation.
Collapse
Affiliation(s)
- Chunhong Yan
- Department of Cancer Biology, MD Anderson Cancer Center, Houston, TX, USA
| | - Dan Lu
- Department of Molecular and Cellular Biochemistry, Ohio State University, Columbus, OH, USA
| | - Tsonwin Hai
- Department of Molecular and Cellular Biochemistry, Ohio State University, Columbus, OH, USA
| | - Douglas D Boyd
- Department of Cancer Biology, MD Anderson Cancer Center, Houston, TX, USA
- Department of Cancer Biology, The University of Texas, MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA. Tel.: +1 713 563 4918; E-mail:
| |
Collapse
|
50
|
Campbell G, Hutchins K, Winterbottom J, Grenningloh G, Lieberman AR, Anderson PN. Upregulation of activating transcription factor 3 (ATF3) by intrinsic CNS neurons regenerating axons into peripheral nerve grafts. Exp Neurol 2005; 192:340-7. [PMID: 15755551 DOI: 10.1016/j.expneurol.2004.11.026] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2003] [Revised: 08/24/2004] [Accepted: 11/08/2004] [Indexed: 10/25/2022]
Abstract
The expression of the transcription factor ATF3 in the brain was examined by immunohistochemistry during axonal regeneration induced by the implantation of pieces of peripheral nerve into the thalamus of adult rats. After 3 days, ATF3 immunoreactivity was present in many cells within approximately 500 mum of the graft. In addition, ATF3-positive cell nuclei were found in the thalamic reticular nucleus (TRN) and medial geniculate nuclear complex (MGN), from which most regenerating axons originate. CNS cells with ATF3-positive nuclei were predominantly neurons and did not show signs of apoptosis. The number of ATF3-positive cells had declined by 7 days and further by 1 month after grafting when most ATF3-positive cells were found in the TRN and MGN. 14 days or more after grafting, some ATF3-positive nuclei were distorted and may have been apoptotic. In some experiments of 1 month duration, neurons which had regenerated axons to the distal ends of grafts were retrogradely labeled with DiAsp. ATF3-positive neurons in these animals were located in regions of the TRN and MGN containing retrogradely labeled neurons and the great majority were also labeled with DiAsp. SCG10 and c-Jun were found in neurons in the same regions as retrogradely labeled and ATF3-positive cells. Thus, ATF3 is transiently upregulated by injured CNS neurons, but prolonged expression is part of the pattern of gene expression associated with axonal regeneration. The co-expression of ATF3 with c-jun suggests that interactions between these transcription factors may be important for controlling the program of gene expression necessary for regeneration.
Collapse
Affiliation(s)
- G Campbell
- Department of Anatomy and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK.
| | | | | | | | | | | |
Collapse
|