1
|
Johal S, Elsayed R, Panfilio KA, Nelson AC. The molecular basis for functional divergence of duplicated SOX factors controlling endoderm formation and left-right patterning in zebrafish. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.06.579092. [PMID: 39605568 PMCID: PMC11601245 DOI: 10.1101/2024.02.06.579092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Endoderm, one of three primary germ layers of vertebrate embryos, makes major contributions to the respiratory and gastrointestinal tracts and associated organs, including liver and pancreas. In mammals, the transcription factor SOX17 is vital for endoderm organ formation and can induce endoderm progenitor identity. Duplication of ancestral sox17 in the teleost lineage produced the paralogues sox32 and sox17 in zebrafish. Sox32 is required for specification of endoderm and progenitors of the left-right organiser (Kupffer's Vesicle, KV), with Sox17 a downstream target of Sox32 that is implicated in further KV development. Phenotypic evidence therefore suggests functional similarities between zebrafish Sox32 and Sox17 and mammalian SOX17. Here, we directly compare these orthologues and paralogues, using the early zebrafish embryo as a biological platform for functional testing. Our results indicate that, unlike Sox32, human SOX17 cannot induce endoderm specification in zebrafish. Furthermore, using hybrid protein functional analyses, we show that Sox32 specificity for the endoderm gene regulatory network is linked to evolutionary divergence in its DNA-binding HMG domain from its paralogue Sox17. Additionally, changes in the C-terminal regions of Sox32 and Sox17 underpin their differing target specificities. Finally, we establish that specific conserved peptides in the C-terminal domain are essential for the role of Sox17 in establishing correct organ asymmetry. Overall, our results illuminate the molecular basis for functional divergence of Sox32 and Sox17 in vertebrate endoderm development and left-right patterning, and the evolution of SoxF transcription factor function.
Collapse
|
2
|
Liu Y, Chen T, Guo M, Li Y, Zhang Q, Tan G, Yu L, Tan Y. FOXA2-Interacting FOXP2 Prevents Epithelial-Mesenchymal Transition of Breast Cancer Cells by Stimulating E-Cadherin and PHF2 Transcription. Front Oncol 2021; 11:605025. [PMID: 33718155 PMCID: PMC7947682 DOI: 10.3389/fonc.2021.605025] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 01/19/2021] [Indexed: 12/24/2022] Open
Abstract
FOXP2, a member of forkhead box transcription factor family, was first identified as a language-related gene that played an important role in language learning and facial movement. In addition, FOXP2 was also suggested regulating the progression of cancer cells. In previous studies, we found that FOXA2 inhibited epithelial-mesenchymal transition (EMT) in breast cancer cells. In this study, by identifying FOXA2-interacting proteins from FOXA2-pull-down cell lysates with Mass Spectrometry Analysis, we found that FOXP2 interacted with FOXA2. After confirming the interaction between FOXP2 and FOXA2 through Co-IP and immunofluorescence assays, we showed a correlated expression of FOXP2 and FOXA2 existing in clinical breast cancer samples. The overexpression of FOXP2 attenuated the mesenchymal phenotype whereas the stable knockdown of FOXP2 promoted EMT in breast cancer cells. Even though FOXP2 was believed to act as a transcriptional repressor in most cases, we found that FOXP2 could activate the expression of tumor suppressor PHF2. Meanwhile, we also found that FOXP2 could endogenously bind to the promoter of E-cadherin and activate its transcription. This transcriptional activity of FOXP2 relied on its interaction with FOXA2. Furthermore, the stable knockdown of FOXP2 enhanced the metastatic capacity of breast cancer cells in vivo. Together, the results suggested that FOXP2 could inhibit EMT by activating the transcription of certain genes, such as E-cadherin and PHF2, in concert with FOXA2 in breast cancer cells.
Collapse
Affiliation(s)
- Yuxiang Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan Engineering Research Center for Anticancer Targeted Protein Pharmaceuticals, Hunan University, Changsha, China
| | - Taolin Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan Engineering Research Center for Anticancer Targeted Protein Pharmaceuticals, Hunan University, Changsha, China
| | - Mingyue Guo
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan Engineering Research Center for Anticancer Targeted Protein Pharmaceuticals, Hunan University, Changsha, China
| | - Yu Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan Engineering Research Center for Anticancer Targeted Protein Pharmaceuticals, Hunan University, Changsha, China
| | - Qian Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan Engineering Research Center for Anticancer Targeted Protein Pharmaceuticals, Hunan University, Changsha, China
| | - Guixiang Tan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan Engineering Research Center for Anticancer Targeted Protein Pharmaceuticals, Hunan University, Changsha, China
| | - Li Yu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan Engineering Research Center for Anticancer Targeted Protein Pharmaceuticals, Hunan University, Changsha, China
| | - Yongjun Tan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan Engineering Research Center for Anticancer Targeted Protein Pharmaceuticals, Hunan University, Changsha, China
| |
Collapse
|
3
|
Horisawa K, Udono M, Ueno K, Ohkawa Y, Nagasaki M, Sekiya S, Suzuki A. The Dynamics of Transcriptional Activation by Hepatic Reprogramming Factors. Mol Cell 2020; 79:660-676.e8. [PMID: 32755593 DOI: 10.1016/j.molcel.2020.07.012] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 06/18/2020] [Accepted: 07/09/2020] [Indexed: 02/07/2023]
Abstract
Specific combinations of two transcription factors (Hnf4α plus Foxa1, Foxa2, or Foxa3) can induce direct conversion of mouse fibroblasts into hepatocyte-like cells. However, the molecular mechanisms underlying hepatic reprogramming are largely unknown. Here, we show that the Foxa protein family members and Hnf4α sequentially and cooperatively bind to chromatin to activate liver-specific gene expression. Although all Foxa proteins bind to and open regions of closed chromatin as pioneer factors, Foxa3 has the unique potential of transferring from the distal to proximal regions of the transcription start site of target genes, binding RNA polymerase II, and co-traversing target genes. These distinctive characteristics of Foxa3 are essential for inducing the hepatic fate in fibroblasts. Similar functional coupling of transcription factors to RNA polymerase II may occur in other contexts whereby transcriptional activation can induce cell differentiation.
Collapse
Affiliation(s)
- Kenichi Horisawa
- Division of Organogenesis and Regeneration, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Miyako Udono
- Division of Organogenesis and Regeneration, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Kazuko Ueno
- Genome Medical Science Project, National Center for Global Health and Medicine, Tokyo 162-8655, Japan
| | - Yasuyuki Ohkawa
- Division of Transcriptomics, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Masao Nagasaki
- Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan; Human Biosciences Unit for the Top Global Course, Center for the Promotion of Interdisciplinary Education and Research, Kyoto University, Kyoto 606-8507, Japan
| | - Sayaka Sekiya
- Division of Organogenesis and Regeneration, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Atsushi Suzuki
- Division of Organogenesis and Regeneration, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan.
| |
Collapse
|
4
|
Li J, Dantas Machado AC, Guo M, Sagendorf JM, Zhou Z, Jiang L, Chen X, Wu D, Qu L, Chen Z, Chen L, Rohs R, Chen Y. Structure of the Forkhead Domain of FOXA2 Bound to a Complete DNA Consensus Site. Biochemistry 2017. [PMID: 28644006 DOI: 10.1021/acs.biochem.7b00211] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
FOXA2, a member of the forkhead family of transcription factors, plays essential roles in liver development and bile acid homeostasis. In this study, we report a 2.8 Å co-crystal structure of the FOXA2 DNA-binding domain (FOXA2-DBD) bound to a DNA duplex containing a forkhead consensus binding site (GTAAACA). The FOXA2-DBD adopts the canonical winged-helix fold, with helix H3 and wing 1 regions mainly mediating the DNA recognition. Although the wing 2 region was not defined in the structure, isothermal titration calorimetry assays suggested that this region was required for optimal DNA binding. Structure comparison with the FOXA3-DBD bound to DNA revealed more major groove contacts and fewer minor groove contacts in the FOXA2 structure than in the FOXA3 structure. Structure comparison with the FOXO1-DBD bound to DNA showed that different forkhead proteins could induce different DNA conformations upon binding to identical DNA sequences. Our findings provide the structural basis for FOXA2 protein binding to a consensus forkhead site and elucidate how members of the forkhead protein family bind different DNA sites.
Collapse
Affiliation(s)
- Jun Li
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health and Laboratory of Structural Biology, Xiangya Hospital, Central South University , Changsha, Hunan 410008, China.,State Key Laboratory of Medical Genetics and College of Life Science, Central South University , Changsha, Hunan 410008, China
| | - Ana Carolina Dantas Machado
- Molecular and Computational Biology Program, Department of Biological Sciences and Department of Chemistry, University of Southern California , Los Angeles, California 90089, United States.,Department of Physics and Astronomy and Department of Computer Science, University of Southern California , Los Angeles, California 90089, United States
| | - Ming Guo
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health and Laboratory of Structural Biology, Xiangya Hospital, Central South University , Changsha, Hunan 410008, China
| | - Jared M Sagendorf
- Molecular and Computational Biology Program, Department of Biological Sciences and Department of Chemistry, University of Southern California , Los Angeles, California 90089, United States.,Department of Physics and Astronomy and Department of Computer Science, University of Southern California , Los Angeles, California 90089, United States
| | - Zhan Zhou
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health and Laboratory of Structural Biology, Xiangya Hospital, Central South University , Changsha, Hunan 410008, China
| | - Longying Jiang
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health and Laboratory of Structural Biology, Xiangya Hospital, Central South University , Changsha, Hunan 410008, China
| | - Xiaojuan Chen
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health and Laboratory of Structural Biology, Xiangya Hospital, Central South University , Changsha, Hunan 410008, China.,State Key Laboratory of Medical Genetics and College of Life Science, Central South University , Changsha, Hunan 410008, China
| | - Daichao Wu
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health and Laboratory of Structural Biology, Xiangya Hospital, Central South University , Changsha, Hunan 410008, China
| | - Lingzhi Qu
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health and Laboratory of Structural Biology, Xiangya Hospital, Central South University , Changsha, Hunan 410008, China
| | - Zhuchu Chen
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health and Laboratory of Structural Biology, Xiangya Hospital, Central South University , Changsha, Hunan 410008, China
| | - Lin Chen
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health and Laboratory of Structural Biology, Xiangya Hospital, Central South University , Changsha, Hunan 410008, China.,Molecular and Computational Biology Program, Department of Biological Sciences and Department of Chemistry, University of Southern California , Los Angeles, California 90089, United States
| | - Remo Rohs
- Molecular and Computational Biology Program, Department of Biological Sciences and Department of Chemistry, University of Southern California , Los Angeles, California 90089, United States.,Department of Physics and Astronomy and Department of Computer Science, University of Southern California , Los Angeles, California 90089, United States
| | - Yongheng Chen
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health and Laboratory of Structural Biology, Xiangya Hospital, Central South University , Changsha, Hunan 410008, China.,State Key Laboratory of Medical Genetics and College of Life Science, Central South University , Changsha, Hunan 410008, China.,Collaborative Innovation Center for Cancer Medicine , Guangzhou, Guangdong 510060, China
| |
Collapse
|
5
|
Yamaguchi N, Shibazaki M, Yamada C, Anzai E, Morii M, Nakayama Y, Kuga T, Hashimoto Y, Tomonaga T, Yamaguchi N. Tyrosine Phosphorylation of the Pioneer Transcription Factor FoxA1 Promotes Activation of Estrogen Signaling. J Cell Biochem 2016; 118:1453-1461. [DOI: 10.1002/jcb.25804] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 11/21/2016] [Indexed: 01/04/2023]
Affiliation(s)
- Noritaka Yamaguchi
- Laboratory of Molecular Cell BiologyGraduate School of Pharmaceutical SciencesChiba UniversityChiba260‐8675Japan
| | - Misato Shibazaki
- Laboratory of Molecular Cell BiologyGraduate School of Pharmaceutical SciencesChiba UniversityChiba260‐8675Japan
| | - Chiaki Yamada
- Laboratory of Molecular Cell BiologyGraduate School of Pharmaceutical SciencesChiba UniversityChiba260‐8675Japan
| | - Erina Anzai
- Laboratory of Molecular Cell BiologyGraduate School of Pharmaceutical SciencesChiba UniversityChiba260‐8675Japan
| | - Mariko Morii
- Laboratory of Molecular Cell BiologyGraduate School of Pharmaceutical SciencesChiba UniversityChiba260‐8675Japan
| | - Yuji Nakayama
- Department of Biochemistry and Molecular BiologyKyoto Pharmaceutical UniversityKyoto607‐8414Japan
| | - Takahisa Kuga
- Department of Biochemistry and Molecular BiologyKyoto Pharmaceutical UniversityKyoto607‐8414Japan
| | - Yuuki Hashimoto
- Laboratory of Proteome ResearchNational Institutes of Biomedical InnovationHealth and NutritionIbarakiOsaka567‐0085Japan
| | - Takeshi Tomonaga
- Laboratory of Proteome ResearchNational Institutes of Biomedical InnovationHealth and NutritionIbarakiOsaka567‐0085Japan
| | - Naoto Yamaguchi
- Laboratory of Molecular Cell BiologyGraduate School of Pharmaceutical SciencesChiba UniversityChiba260‐8675Japan
| |
Collapse
|
6
|
Vorvis C, Hatziapostolou M, Mahurkar-Joshi S, Koutsioumpa M, Williams J, Donahue TR, Poultsides GA, Eibl G, Iliopoulos D. Transcriptomic and CRISPR/Cas9 technologies reveal FOXA2 as a tumor suppressor gene in pancreatic cancer. Am J Physiol Gastrointest Liver Physiol 2016; 310:G1124-37. [PMID: 27151939 PMCID: PMC5005285 DOI: 10.1152/ajpgi.00035.2016] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 04/27/2016] [Indexed: 01/31/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive cancer with low survival rates and limited therapeutic options. Thus elucidation of signaling pathways involved in PDAC pathogenesis is essential for identifying novel potential therapeutic gene targets. Here, we used a systems approach to elucidate those pathways by integrating gene and microRNA profiling analyses together with CRISPR/Cas9 technology to identify novel transcription factors involved in PDAC pathogenesis. FOXA2 transcription factor was found to be significantly downregulated in PDAC relative to control pancreatic tissues. Functional experiments revealed that FOXA2 has a tumor suppressor function through inhibition of pancreatic cancer cell growth, migration, invasion, and colony formation. In situ hybridization analysis revealed miR-199a to be significantly upregulated in pancreatic cancer. Bioinformatics and luciferase analyses showed that miR-199a negatively but directly regulates FOXA2 expression through binding in its 3'-untranslated region (UTR). Evaluation of the functional importance of miR-199a on pancreatic cancer revealed that miR-199a acts as an inhibitor of FOXA2 expression, inducing an increase in pancreatic cancer cell proliferation, migration, and invasion. Additionally, gene ontology and network analyses in PANC-1 cells treated with a small interfering RNA (siRNA) against FOXA2 revealed an enrichment for cell invasion mechanisms through PLAUR and ERK activation. FOXA2 deletion (FOXA2Δ) by using two CRISPR/Cas9 vectors in PANC-1 cells induced tumor growth in vivo resulting in upregulation of PLAUR and ERK pathways in FOXA2Δ xenograft tumors. We have identified FOXA2 as a novel tumor suppressor in pancreatic cancer and it is regulated directly by miR-199a, thereby enhancing our understanding of how microRNAs interplay with the transcription factors to affect pancreatic oncogenesis.
Collapse
Affiliation(s)
- Christina Vorvis
- 1Center for Systems Biomedicine, Division of Digestive Diseases, David Geffen School of Medicine, University of California, Los Angeles, California;
| | - Maria Hatziapostolou
- 2Centre for Biological Sciences, University of Southampton, Southampton, United Kingdom;
| | - Swapna Mahurkar-Joshi
- 1Center for Systems Biomedicine, Division of Digestive Diseases, David Geffen School of Medicine, University of California, Los Angeles, California;
| | - Marina Koutsioumpa
- 1Center for Systems Biomedicine, Division of Digestive Diseases, David Geffen School of Medicine, University of California, Los Angeles, California;
| | - Jennifer Williams
- 3Department of Surgery, David Geffen School of Medicine, University of California, Los Angeles, California; and
| | - Timothy R. Donahue
- 3Department of Surgery, David Geffen School of Medicine, University of California, Los Angeles, California; and
| | - George A. Poultsides
- 4Department of Surgery, Stanford University School of Medicine, Stanford, California
| | - Guido Eibl
- 3Department of Surgery, David Geffen School of Medicine, University of California, Los Angeles, California; and
| | - Dimitrios Iliopoulos
- Center for Systems Biomedicine, Division of Digestive Diseases, David Geffen School of Medicine, University of California, Los Angeles, California;
| |
Collapse
|
7
|
Kanagaratham C, Marino R, Camateros P, Ren J, Houle D, Sladek R, Vidal SM, Radzioch D. Mapping of a chromosome 12 region associated with airway hyperresponsiveness in a recombinant congenic mouse strain and selection of potential candidate genes by expression and sequence variation analyses. PLoS One 2014; 9:e104234. [PMID: 25111050 PMCID: PMC4128649 DOI: 10.1371/journal.pone.0104234] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Accepted: 07/08/2014] [Indexed: 01/09/2023] Open
Abstract
In a previous study we determined that BcA86 mice, a strain belonging to a panel of AcB/BcA recombinant congenic strains, have an airway responsiveness phenotype resembling mice from the airway hyperresponsive A/J strain. The majority of the BcA86 genome is however from the hyporesponsive C57BL/6J strain. The aim of this study was to identify candidate regions and genes associated with airway hyperresponsiveness (AHR) by quantitative trait locus (QTL) analysis using the BcA86 strain. Airway responsiveness of 205 F2 mice generated from backcrossing BcA86 strain to C57BL/6J strain was measured and used for QTL analysis to identify genomic regions in linkage with AHR. Consomic mice for the QTL containing chromosomes were phenotyped to study the contribution of each chromosome to lung responsiveness. Candidate genes within the QTL were selected based on expression differences in mRNA from whole lungs, and the presence of coding non-synonymous mutations that were predicted to have a functional effect by amino acid substitution prediction tools. One QTL for AHR was identified on Chromosome 12 with its 95% confidence interval ranging from 54.6 to 82.6 Mbp and a maximum LOD score of 5.11 (p = 3.68×10−3). We confirmed that the genotype of mouse Chromosome 12 is an important determinant of lung responsiveness using a Chromosome 12 substitution strain. Mice with an A/J Chromosome 12 on a C57BL/6J background have an AHR phenotype similar to hyperresponsive strains A/J and BcA86. Within the QTL, genes with deleterious coding variants, such as Foxa1, and genes with expression differences, such as Mettl21d and Snapc1, were selected as possible candidates for the AHR phenotype. Overall, through QTL analysis of a recombinant congenic strain, microarray analysis and coding variant analysis we identified Chromosome 12 and three potential candidate genes to be in linkage with airway responsiveness.
Collapse
Affiliation(s)
- Cynthia Kanagaratham
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
- * E-mail:
| | - Rafael Marino
- Faculty of Medicine, Division of Experimental Medicine, McGill University, Montreal, Quebec, Canada
| | - Pierre Camateros
- Faculty of Medicine, Division of Experimental Medicine, McGill University, Montreal, Quebec, Canada
| | - John Ren
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada
| | - Daniel Houle
- Research Institute of the McGill University Health Center, Montreal, Quebec, Canada
| | - Robert Sladek
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
- Faculty of Medicine, Division of Experimental Medicine, McGill University, Montreal, Quebec, Canada
- McGill University and Genome Quebec Innovation Centre, Montreal, Quebec, Canada
| | - Silvia M. Vidal
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada
| | - Danuta Radzioch
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
- Faculty of Medicine, Division of Experimental Medicine, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
8
|
Cho G, Lim Y, Cho IT, Simonet JC, Golden JA. Arx together with FoxA2, regulates Shh floor plate expression. Dev Biol 2014; 393:137-48. [PMID: 24968361 DOI: 10.1016/j.ydbio.2014.06.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 06/11/2014] [Accepted: 06/12/2014] [Indexed: 11/16/2022]
Abstract
Mutations in the Aristaless related homeodomain transcription factor (ARX) are associated with a diverse set of X-linked mental retardation and epilepsy syndromes in humans. Although most studies have been focused on its function in the forebrain, ARX is also expressed in other regions of the developing nervous system including the floor plate (FP) of the spinal cord where its function is incompletely understood. To investigate the role of Arx in the FP, we performed gain-of-function studies in the chick using in ovo electroporation, and loss-of-function studies in Arx-deficient mice. We have found that Arx, in conjunction with FoxA2, directly induces Sonic hedgehog (Shh) expression through binding to a Shh floor plate enhancer (SFPE2). We also observed that FoxA2 induces Arx through its transcriptional activation domain whereas Nkx2.2, induced by Shh, abolishes this induction. Our data support a feedback loop model for Arx function; through interactions with FoxA2, Arx positively regulates Shh expression in the FP, and Shh signaling in turn activates Nkx2.2, which suppresses Arx expression. Furthermore, our data are evidence that Arx plays a role as a context dependent transcriptional activator, rather than a primary inducer of Shh expression, potentially explaining how mutations in ARX are associated with diverse, and often subtle, defects.
Collapse
Affiliation(s)
- Ginam Cho
- Department of Pathology, Brigham and Women׳s Hospital, Harvard Medical School, USA; Department of Pathology and Laboratory Medicine, Children׳s Hospital of Philadelphia, USA
| | - Youngshin Lim
- Department of Pathology, Brigham and Women׳s Hospital, Harvard Medical School, USA
| | - Il-Taeg Cho
- Department of Pathology, Brigham and Women׳s Hospital, Harvard Medical School, USA
| | - Jacqueline C Simonet
- Cell and Molecular Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, USA
| | - Jeffrey A Golden
- Department of Pathology, Brigham and Women׳s Hospital, Harvard Medical School, USA; Department of Pathology and Laboratory Medicine, Children׳s Hospital of Philadelphia, USA.
| |
Collapse
|
9
|
Lalmansingh AS, Arora K, Demarco RA, Hager GL, Nagaich AK. High-throughput RNA FISH analysis by imaging flow cytometry reveals that pioneer factor Foxa1 reduces transcriptional stochasticity. PLoS One 2013; 8:e76043. [PMID: 24073287 PMCID: PMC3779185 DOI: 10.1371/journal.pone.0076043] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Accepted: 08/23/2013] [Indexed: 12/31/2022] Open
Abstract
Genes are regulated at the single-cell level. Here, we performed RNA FISH of thousands of cells by flow cytometry (flow-RNA FISH) to gain insight into transcriptional variability between individual cells. These experiments utilized the murine adenocarcinoma 3134 cell line with 200 copies of the MMTV-Ras reporter integrated at a single genomic locus. The MMTV array contains approximately 800-1200 binding sites for the glucocorticoid receptor (GR) and 600 binding sites for the pioneer factor Foxa1. Hormone activation of endogenous GR by dexamethasone treatment resulted in highly variable changes in the RNA FISH intensity (25-300 pixel intensity units) and size (1.25-15 µm), indicative of probabilistic or stochastic mechanisms governing GR and cofactor activation of the MMTV promoter. Exogenous expression of the pioneer factor Foxa1 increased the FISH signal intensity and size as expected for a chromatin remodeler that enhances transcriptional competence through increased chromatin accessibility. In addition, specific analysis of Foxa1-enriched cell sub-populations showed that low and high Foxa1 levels substantially lowered the cell-to-cell variability in the FISH intensity as determined by a noise calculation termed the % coefficient of variation. These results suggest that an additional function of the pioneer factor Foxa1 may be to decrease transcriptional noise.
Collapse
Affiliation(s)
- Avin S Lalmansingh
- Office of Biotechnology Products, Center for Drug Evaluation and Research, Food and Drug Administration, Bethesda, Maryland, United States of America
| | | | | | | | | |
Collapse
|
10
|
Bernard DJ, Tran S. Mechanisms of activin-stimulated FSH synthesis: the story of a pig and a FOX. Biol Reprod 2013; 88:78. [PMID: 23426431 DOI: 10.1095/biolreprod.113.107797] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Activins were discovered and, in fact, named more than a quarter century ago based on their abilities to stimulate pituitary follicle-stimulating hormone (FSH) synthesis and secretion. However, it is only in the last decade that we have finally come to understand their underlying mechanisms of action in gonadotroph cells. In this minireview, we chronicle the research that led to the recent discovery of forkhead box L2 (FOXL2) as an essential mediator of activin-regulated FSH beta subunit (Fshb) transcription in vitro and in vivo.
Collapse
Affiliation(s)
- Daniel J Bernard
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada.
| | | |
Collapse
|
11
|
Belaguli NS, Zhang M, Brunicardi FC, Berger DH. Forkhead box protein A2 (FOXA2) protein stability and activity are regulated by sumoylation. PLoS One 2012; 7:e48019. [PMID: 23118920 PMCID: PMC3485284 DOI: 10.1371/journal.pone.0048019] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Accepted: 09/19/2012] [Indexed: 12/29/2022] Open
Abstract
The forkhead box protein A2 (FOXA2) is an important regulator of glucose and lipid metabolism and organismal energy balance. Little is known about how FOXA2 protein expression and activity are regulated by post-translational modifications. We have identified that FOXA2 is post-translationally modified by covalent attachment of a small ubiquitin related modifier-1 (SUMO-1) and mapped the sumoylation site to the amino acid lysine 6 (K6). Preventing sumoylation by mutating the SUMO acceptor K6 to arginine resulted in downregulation of FOXA2 protein but not RNA expression in INS-1E insulinoma cells. K6R mutation also downregulated FOXA2 protein levels in HepG2 hepatocellular carcinoma cells, HCT116 colon cancer cells and LNCaP and DU145 prostate cancer cells. Further, interfering with FOXA2 sumoylation through siRNA mediated knockdown of UBC9, an essential SUMO E2 conjugase, resulted in downregulation of FOXA2 protein levels. Stability of sumoylation deficient FOXA2K6R mutant protein was restored when SUMO-1 was fused in-frame. FOXA2 sumoylation and FOXA2 protein levels were increased by PIAS1 SUMO ligase but not a SUMO ligase activity deficient PIAS1 mutant. Although expressed at lower levels, sumoylation deficient FOXA2K6R mutant protein was detectable in the nucleus indicating that FOXA2 nuclear localization is independent of sumoylation. Sumoylation increased the transcriptional activity of FOXA2 on Pdx-1 area I enhancer. Together, our results show that sumoylation regulates FOXA2 protein expression and activity.
Collapse
|
12
|
Faust D, Al-Butmeh F, Linz B, Dietrich C. Involvement of the transcription factor FoxM1 in contact inhibition. Biochem Biophys Res Commun 2012; 426:659-63. [PMID: 22982677 DOI: 10.1016/j.bbrc.2012.09.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Accepted: 09/01/2012] [Indexed: 11/24/2022]
Abstract
Contact inhibition is a crucial mechanism regulating proliferation in vitro and in vivo. Although it is generally accepted that contact inhibition plays a pivotal role in maintaining tissue homeostasis, the molecular mechanisms of contact inhibition are still not fully understood. FoxM1 is known as a proliferation-associated transcription factor and is upregulated in many cancer types. Vice versa, anti-proliferative signals, such as TGF-β and differentiation signals decrease FoxM1 expression. Here we investigated the role of FoxM1 in contact inhibition in fibroblasts. We show that protein expression of FoxM1 is severely and rapidly downregulated upon contact inhibition, probably by inhibition of ERK activity, which then leads to decreased expression of cyclin A and polo-like kinase 1. Vice versa, ectopic expression of FoxM1 prevents the decrease in cyclin A and polo-like kinase 1 and causes a two-fold increase in saturation density indicating loss of contact inhibition. Hence, we show that downregulation of FoxM1 is required for contact inhibition by regulating expression of cyclin A and polo-like kinase 1.
Collapse
Affiliation(s)
- Dagmar Faust
- Institute of Toxicology, Medical Center of the Johannes Gutenberg-University, Obere Zahlbacherstr. 67, 55131 Mainz, Germany
| | | | | | | |
Collapse
|
13
|
Bochkis IM, Schug J, Ye DZ, Kurinna S, Stratton SA, Barton MC, Kaestner KH. Genome-wide location analysis reveals distinct transcriptional circuitry by paralogous regulators Foxa1 and Foxa2. PLoS Genet 2012; 8:e1002770. [PMID: 22737085 PMCID: PMC3380847 DOI: 10.1371/journal.pgen.1002770] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Accepted: 05/02/2012] [Indexed: 01/04/2023] Open
Abstract
Gene duplication is a powerful driver of evolution. Newly duplicated genes acquire new roles that are relevant to fitness, or they will be lost over time. A potential path to functional relevance is mutation of the coding sequence leading to the acquisition of novel biochemical properties, as analyzed here for the highly homologous paralogs Foxa1 and Foxa2 transcriptional regulators. We determine by genome-wide location analysis (ChIP-Seq) that, although Foxa1 and Foxa2 share a large fraction of binding sites in the liver, each protein also occupies distinct regulatory elements in vivo. Foxa1-only sites are enriched for p53 binding sites and are frequently found near genes important to cell cycle regulation, while Foxa2-restricted sites show only a limited match to the forkhead consensus and are found in genes involved in steroid and lipid metabolism. Thus, Foxa1 and Foxa2, while redundant during development, have evolved divergent roles in the adult liver, ensuring the maintenance of both genes during evolution. The duplication of a gene from a common ancestor, resulting in two copies known as paralogs, plays an important role in evolution. Newly duplicated genes must acquire new functions in order to remain relevant, otherwise they are lost via mutation over time. We have performed genome-wide location analysis (ChIP–Seq) in adult liver to examine the differences between two paralogous DNA binding proteins, Foxa1 and Foxa2. While Foxa1 and Foxa2 bind a number of common genomic locations, each protein also localizes to distinct regulatory regions. Sites specific for Foxa1 also contain a DNA motif bound by tumor suppressor p53 and are found near genes important to cell cycle regulation, while Foxa2-only sites are found near genes essential to steroid and lipid metabolism. Hence, Foxa1 and Foxa2 have developed unique functions in adult liver, contributing to the maintenance of both genes during evolution.
Collapse
Affiliation(s)
- Irina M. Bochkis
- Department of Genetics and Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Jonathan Schug
- Department of Genetics and Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Diana Z. Ye
- Department of Genetics and Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Svitlana Kurinna
- Center for Stem Cell and Developmental Biology, Department of Biochemistry and Molecular Biology, University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Sabrina A. Stratton
- Center for Stem Cell and Developmental Biology, Department of Biochemistry and Molecular Biology, University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Michelle C. Barton
- Center for Stem Cell and Developmental Biology, Department of Biochemistry and Molecular Biology, University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Klaus H. Kaestner
- Department of Genetics and Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
14
|
He C, Yu H, Liu W, Su H, Shan Z, Bao X, Li Y, Fu L, Gao X. A goose-type lysozyme gene in Japanese scallop (Mizuhopecten yessoensis): cDNA cloning, mRNA expression and promoter sequence analysis. Comp Biochem Physiol B Biochem Mol Biol 2012; 162:34-43. [DOI: 10.1016/j.cbpb.2012.02.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Revised: 02/13/2012] [Accepted: 02/13/2012] [Indexed: 12/31/2022]
|
15
|
Zhang X, Jaramillo M, Singh S, Kumta P, Banerjee I. Analysis of regulatory network involved in mechanical induction of embryonic stem cell differentiation. PLoS One 2012; 7:e35700. [PMID: 22558203 PMCID: PMC3338716 DOI: 10.1371/journal.pone.0035700] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Accepted: 03/20/2012] [Indexed: 01/14/2023] Open
Abstract
Embryonic stem cells are conventionally differentiated by modulating specific growth factors in the cell culture media. Recently the effect of cellular mechanical microenvironment in inducing phenotype specific differentiation has attracted considerable attention. We have shown the possibility of inducing endoderm differentiation by culturing the stem cells on fibrin substrates of specific stiffness. Here, we analyze the regulatory network involved in such mechanically induced endoderm differentiation under two different experimental configurations of 2-dimensional and 3-dimensional culture, respectively. Mouse embryonic stem cells are differentiated on an array of substrates of varying mechanical properties and analyzed for relevant endoderm markers. The experimental data set is further analyzed for identification of co-regulated transcription factors across different substrate conditions using the technique of bi-clustering. Overlapped bi-clusters are identified following an optimization formulation, which is solved using an evolutionary algorithm. While typically such analysis is performed at the mean value of expression data across experimental repeats, the variability of stem cell systems reduces the confidence on such analysis of mean data. Bootstrapping technique is thus integrated with the bi-clustering algorithm to determine sets of robust bi-clusters, which is found to differ significantly from corresponding bi-clusters at the mean data value. Analysis of robust bi-clusters reveals an overall similar network interaction as has been reported for chemically induced endoderm or endodermal organs but with differences in patterning between 2-dimensional and 3-dimensional culture. Such analysis sheds light on the pathway of stem cell differentiation indicating the prospect of the two culture configurations for further maturation.
Collapse
Affiliation(s)
- Xinan Zhang
- School of Mathematics and Statistics, Central China Normal University, Wuhan, China
- Department of Chemical Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Maria Jaramillo
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Satish Singh
- Department of Chemical Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Prashant Kumta
- Department of Chemical Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Center for Complex Engineered Multifunctional Materials, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Ipsita Banerjee
- Department of Chemical Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|
16
|
Lalmansingh AS, Karmakar S, Jin Y, Nagaich AK. Multiple modes of chromatin remodeling by Forkhead box proteins. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012; 1819:707-15. [PMID: 22406422 DOI: 10.1016/j.bbagrm.2012.02.018] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2011] [Revised: 02/08/2012] [Accepted: 02/14/2012] [Indexed: 10/28/2022]
Abstract
Forkhead box (FOX) proteins represent a large family of transcriptional regulators unified by their DNA binding domain (DBD) known as a 'forkhead' or 'winged helix' domain. Over 40 FOX genes have been identified in the mammalian genome. FOX proteins share significant sequence similarities in the DBD which allow them to bind to a consensus DNA response element. However, their modes of action are quite diverse as they regulate gene expression by acting as pioneer factors, transcription factors, or both. This review focuses on the mechanisms of chromatin remodeling with an emphasis on three sub-classes-FOXA, FOXO, and FOXP members. FOXA proteins serve as pioneer factors to open up local chromatin structure and thereby increase accessibility of chromatin to factors regulating transcription. FOXP proteins, in contrast, function as classic transcription factors to recruit a variety of chromatin modifying enzymes to regulate gene expression. FOXO proteins represent a hybrid subclass having dual roles as pioneering factors and transcription factors. A subset of FOX proteins interacts with condensed mitotic chromatin and may function as 'bookmarking' agents to maintain transcriptional competence at specific genomic sites. The overall diversity in chromatin remodeling function by FOX proteins is related to unique structural motifs present within the DBD flanking regions that govern selective interactions with core histones and/or chromatin coregulatory proteins. This article is part of a Special Issue entitled: Chromatin in time and space.
Collapse
Affiliation(s)
- Avin S Lalmansingh
- Division of Therapeutic Proteins, Office of Biotechnology Products, Office of Pharmaceutical Sciences, Center for Drug Evaluation and Research, Food and Drug administration, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
17
|
Belikov S, Holmqvist PH, Åstrand C, Wrange Ö. FoxA1 and glucocorticoid receptor crosstalk via histone H4K16 acetylation at a hormone regulated enhancer. Exp Cell Res 2012; 318:61-74. [DOI: 10.1016/j.yexcr.2011.09.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Revised: 09/02/2011] [Accepted: 09/29/2011] [Indexed: 12/17/2022]
|
18
|
A regulatory domain is required for Foxn4 activity during retinogenesis. J Mol Neurosci 2011; 46:315-23. [PMID: 21701787 DOI: 10.1007/s12031-011-9585-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2010] [Accepted: 06/14/2011] [Indexed: 01/24/2023]
Abstract
Foxn4, a member of the N-family forkhead transcription factors, controls fate decision in mouse retina and spinal cord as well as in zebrafish heart. Analysis of Foxn4 amino acid sequence revealed the presence of a region homologous to the activation domain of its close relative Foxn1 in between C-terminal amino acids 402 and 455 of Foxn4 protein. The requirement of Foxn4 putative activation domain remains to be elucidated. Using a gain-of function approach in rat and chick retinal explants, we report that deletion of Foxn4 putative activation domain results in a complete loss of its activity during retinogenesis. Target promoter transcription assay indicates that this domain is critical for Foxn4 transcriptional regulatory properties in vitro. Accordingly, in chick retinal explants, this domain is required for proper regulation of target retinogenic factors expression by Foxn4. Thus, our study demonstrates that the domain between amino acids 402 and 455 is necessary for Foxn4 transcriptional activity both in vitro and in the retina.
Collapse
|
19
|
Dal-Pra S, Thisse C, Thisse B. FoxA transcription factors are essential for the development of dorsal axial structures. Dev Biol 2011; 350:484-95. [DOI: 10.1016/j.ydbio.2010.12.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2010] [Revised: 12/09/2010] [Accepted: 12/10/2010] [Indexed: 01/04/2023]
|
20
|
Tang Y, Shu G, Yuan X, Jing N, Song J. FOXA2 functions as a suppressor of tumor metastasis by inhibition of epithelial-to-mesenchymal transition in human lung cancers. Cell Res 2010; 21:316-26. [PMID: 20820189 DOI: 10.1038/cr.2010.126] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The forkhead box transcription factor A2 (FOXA2) is an important regulator in animal development and body homeostasis. However, whether FOXA2 is involved in transforming growth factor β1 (TGF-β1)-mediated epithelial-to-mesenchymal transition (EMT) and tumor metastasis remains unknown. The present study showed that in human lung cancer cell lines, the abundance of FOXA2 positively correlates with epithelial phenotypes and negatively correlates with the mesenchymal phenotypes of cells, and TGF-β1 treatment decreased FOXA2 protein level. Consistently, knockdown of FOXA2 promoted EMT and invasion of lung cancer cells, whereas overexpression of FOXA2 reduced the invasion and suppressed TGF-β1-induced EMT. In addition, knockdown of FOXA2 induced slug expression, and ectopic expression of FOXA2 inhibited slug transcription. Furthermore, we identified that FOXA2 can bind to slug promoter through a conserved binding site, and that the DNA-binding region and transactivation region II of FOXA2 are required for repression of the slug promoter. These data demonstrate that FOXA2 functions as a suppressor of tumor metastasis by inhibition of EMT.
Collapse
Affiliation(s)
- Yunneng Tang
- Laboratory of Molecular Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | | | | | | | | |
Collapse
|
21
|
Hu M, Lok JB, Ranjit N, Massey HC, Sternberg PW, Gasser RB. Structural and functional characterisation of the fork head transcription factor-encoding gene, Hc-daf-16, from the parasitic nematode Haemonchus contortus (Strongylida). Int J Parasitol 2009; 40:405-15. [PMID: 19796644 DOI: 10.1016/j.ijpara.2009.09.005] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2009] [Revised: 09/20/2009] [Accepted: 09/21/2009] [Indexed: 11/16/2022]
Abstract
Despite their phylogenetic diversity, parasitic nematodes share attributes of longevity and developmental arrest (=hypobiosis) with free-living nematodes at key points in their life cycles, particularly in larval stages responsible for establishing infection in the host. Insulin-like signalling plays crucial roles in the regulation of life span and arrest (=dauer formation) in the free-living nematode, Caenorhabditis elegans. Insulin-like signalling in C. elegans negatively regulates the fork head boxO (FoxO) transcription factor encoded by daf-16, which is linked to initiating a dauer-specific pattern of gene expression. Orthologues of daf-16 have been identified in several species of parasitic nematode. Although function has been demonstrated for an orthologue from the parasitic nematode Strongyloides stercoralis (Rhabditida), the functional capabilities of homologues/orthologues in bursate nematodes (Strongylida) are unknown. In the present study, we used a genomic approach to determine the structures of two complete daf-16 orthologues (designated Hc-daf-16.1 and Hc-daf-16.2) and their transcripts in the parasitic nematode Haemonchus contortus, and assessed their function(s) using C. elegans as a genetic surrogate. Unlike the multiple isoforms of Ce-DAF-16 and Ss-DAF-16, which are encoded by a single gene and produced by alternative splicing, mRNAs encoding the proteins Hc-DAF-16.1 and Hc-DAF-16.2 are transcribed from separate and distinct loci. Both orthologues are transcribed in all developmental stages and both sexes of H. contortus, and the inferred proteins (603 and 556 amino acids) each contain a characteristic, highly conserved fork head domain. In spite of distinct differences in genomic organisation compared with orthologues in C. elegans and S. stercoralis, genetic complementation studies demonstrated here that Hc-daf-16.2, but not Hc-daf-16.1, could restore daf-16 function to a C. elegans strain carrying a null mutation at this locus. These findings are consistent with previous results for S. stercoralis and demonstrate functional conservation of the daf-16b orthologue between key parasitic nematodes from two different taxonomic orders and C. elegans. We conclude from these experiments that the fork head transcription factor DAF-16 and, by inference, other insulin-like signalling elements, are conserved in H. contortus, a parasitic nematode of paramount economic importance. We demonstrate that functionality is sufficiently conserved in Hc-DAF-16.2 that it can replace Ce-DAF-16 in promoting dauer arrest in C. elegans.
Collapse
Affiliation(s)
- Min Hu
- Department of Veterinary Science, The University of Melbourne, 250 Princes Highway, Werribee, Victoria 3030, Australia
| | | | | | | | | | | |
Collapse
|
22
|
Song L, Wei X, Zhang B, Luo X, liu J, Feng Y, Xiao X. Role of Foxa1 in regulation of bcl2 expression during oxidative-stress-induced apoptosis in A549 type II pneumocytes. Cell Stress Chaperones 2009; 14:417-25. [PMID: 19127412 PMCID: PMC2728276 DOI: 10.1007/s12192-008-0095-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2008] [Revised: 11/26/2008] [Accepted: 12/02/2008] [Indexed: 11/27/2022] Open
Abstract
Forkhead box protein A1 (Foxa1) is an evolutionarily conserved winged helix transcription factor that was traditionally considered to be involved in embryonic development and cell differentiation. However, little is known about the role of Foxa1 in oxidative-stress-induced apoptosis. In this study, hydrogen peroxide (H(2)O(2))-induced apoptosis, upregulation of Foxa1, and the role of Foxa1 in the regulation of bcl2 gene expression were studied in A549 type II pneumocytes. H(2)O(2) upregulated Foxa1 mRNA and protein in a time- and dose-dependent manner. Overexpression of Foxa1 promoted apoptosis, whereas Foxa1 deficiency, induced by antisense oligonucleotides, decreased A549 cell apoptosis induced by H(2)O(2), as shown by flow cytometry. Moreover, Foxa1 overexpression decreased the expression of bcl2, while Foxa1 depletion increased the expression of bcl2. Electrophoretic mobility shift assay and chromatin immunoprecipitation revealed that Foxa1 bound to bcl2 promoter, and H(2)O(2) promoted its DNA binding activity. Luciferase reporter showed that Foxa1 also decreased the transcription activity of bcl2 promoter under normal conditions and oxidative stress. These results indicate that Foxa1 plays a pro-apoptotic role by inhibiting the expression of anti-apoptotic gene bcl2.
Collapse
Affiliation(s)
- Lan Song
- Laboratory of Shock, Department of Pathophysiology, Xiangya School of Medicine, Central South University, 110 Xiangya Road, Changsha, Hunan 410078 People’s Republic of China
| | - Xing Wei
- Laboratory of Shock, Department of Pathophysiology, Xiangya School of Medicine, Central South University, 110 Xiangya Road, Changsha, Hunan 410078 People’s Republic of China
| | - Bin Zhang
- Laboratory of Shock, Department of Pathophysiology, Xiangya School of Medicine, Central South University, 110 Xiangya Road, Changsha, Hunan 410078 People’s Republic of China
| | - Xinjing Luo
- Laboratory of Shock, Department of Pathophysiology, Xiangya School of Medicine, Central South University, 110 Xiangya Road, Changsha, Hunan 410078 People’s Republic of China
| | - Junwen liu
- Laboratory of Shock, Department of Pathophysiology, Xiangya School of Medicine, Central South University, 110 Xiangya Road, Changsha, Hunan 410078 People’s Republic of China
| | - Yansheng Feng
- Laboratory of Shock, Department of Pathophysiology, Xiangya School of Medicine, Central South University, 110 Xiangya Road, Changsha, Hunan 410078 People’s Republic of China
| | - Xianzhong Xiao
- Laboratory of Shock, Department of Pathophysiology, Xiangya School of Medicine, Central South University, 110 Xiangya Road, Changsha, Hunan 410078 People’s Republic of China
| |
Collapse
|
23
|
Functional mode of FoxD1/CBF2 for the establishment of temporal retinal specificity in the developing chick retina. Dev Biol 2009; 331:300-10. [PMID: 19450575 DOI: 10.1016/j.ydbio.2009.05.549] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2009] [Revised: 05/12/2009] [Accepted: 05/12/2009] [Indexed: 12/13/2022]
Abstract
Two winged-helix transcription factors, FoxG1 (previously called chick brain factor1, CBF1) and FoxD1 (chick brain factor2, CBF2), are expressed specifically in the nasal and temporal regions of the developing chick retina, respectively. We previously demonstrated that FoxG1 controls the expression of topographic molecules including FoxD1, and determines the regional specificity of the nasal retina. FoxD1 is known to prescribe temporal specificity, however, molecular mechanisms and downstream targets have not been elucidated. Here we addressed the genetic mechanisms for establishing temporal specificity in the developing retina using an in ovo electroporation technique. Fibroblast growth factor (Fgf) and Wnt first play pivotal roles in inducing the region-specific expression of FoxG1 and FoxD1 in the optic vesicle. Misexpression of FoxD1 represses the expression of FoxG1, GH6, SOHo1, and ephrin-A5, and induces that of EphA3 in the retina. GH6 and SOHo1 repress the expression of FoxD1. In contrast to the inhibitory effect of FoxG1 on bone morphogenic protein (BMP) signaling, FoxD1 does not alter the expression of BMP4 or BMP2. Studies with chimeric mutants of FoxD1 showed that FoxD1 acts as a transcription repressor in controlling its downstream targets in the retina. Taken together with previous findings, our data suggest that FoxG1 and FoxD1 are located at the top of the gene cascade for regional specification along the nasotemporal (anteroposterior) axis in the retina, and FoxD1 determines temporal specificity.
Collapse
|
24
|
Abstract
To know the precise mechanisms underlying the life or death and the regeneration or differentiation of cells would be relevant and useful for the development of a regenerative therapy for organ failure. Liver-specific gene expression is controlled primarily at a transcriptional level. Studies on the transcriptional regulatory elements of genes expressed in hepatocytes have identified several liver-enriched transcriptional factors, including hepatocyte nuclear factor (HNF)-1, HNF-3, HNF-4, HNF-6 and CCAAT/enhancer binding protein families, which are key components of the differentiation process for the fully functional liver. The transcriptional regulation by these HNFs, which form a hierarchical and cooperative network, is both essential for hepatocyte differentiation during mammalian liver development and also crucial for metabolic regulation and liver function. Among these liver-enriched transcription factors, HNF-4 is likely to act the furthest upstream as a master gene in transcriptional cascade and interacts with other liver-enriched transcriptional factors to stimulate hepatocyte-specific gene transcription. A link between the extracellular matrix, changes in cytoskeletal filament assembly and hepatocyte differentiation via HNF-4 has been shown to be involved in the transcriptional regulation of liver-specific gene expression. This review provides an overview of the roles of liver-enriched transcription factors in liver function.
Collapse
Affiliation(s)
- Masahito Nagaki
- Department of Gastroenterology, Gifu University Graduate School of Medicine, Yanagido, Gifu, Japan
| | | |
Collapse
|
25
|
Matusik RJ, Jin RJ, Sun Q, Wang Y, Yu X, Gupta A, Nandana S, Case TC, Paul M, Mirosevich J, Oottamasathien S, Thomas J. Prostate epithelial cell fate. Differentiation 2008; 76:682-98. [PMID: 18462434 DOI: 10.1111/j.1432-0436.2008.00276.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Androgen receptor (AR) within prostatic mesenchymal cells, with the absence of AR in the epithelium, is still sufficient to induce prostate development. AR in the luminal epithelium is required to express the secretory markers associated with differentiation. Nkx3.1 is expressed in the epithelium in early prostatic embryonic development and expression is maintained in the adult. Induction of the mouse prostate gland by the embryonic mesenchymal cells results in the organization of a sparse basal layer below the luminal epithelium with rare neuroendocrine cells that are interdispersed within this basal layer. The human prostate shows similar glandular organization; however, the basal layer is continuous. The strong inductive nature of embryonic prostatic and bladder mesenchymal cells is demonstrated in grafts where embryonic stem (ES) cells are induced to differentiate and organize as a prostate and bladder, respectively. Further, the ES cells can be driven by the correct embryonic mesenchymal cells to form epithelium that differentiates into secretory prostate glands and differentiated bladders that produce uroplakin. This requires the ES cells to mature into endoderm that gives rise to differentiated epithelium. This process is control by transcription factors in both the inductive mesenchymal cells (AR) and the responding epithelium (FoxA1 and Nkx3.1) that allows for organ development and differentiation. In this review, we explore a molecular mechanism where the pattern of transcription factor expression controls cell determination, where the cell is assigned a developmental fate and subsequently cell differentiation, and where the assigned cell now emerges with it's own unique character.
Collapse
Affiliation(s)
- Robert J Matusik
- Department of Urologic Surgery, Vanderbilt University Medical Center, A-1302 Medical Center North, 1161 21st Ave South, Nashville, TN 37232 2765, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
FoxA1 as a lineage-specific oncogene in luminal type breast cancer. Biochem Biophys Res Commun 2007; 365:711-7. [PMID: 18039470 DOI: 10.1016/j.bbrc.2007.11.064] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2007] [Accepted: 11/10/2007] [Indexed: 11/23/2022]
Abstract
The forkhead transcription factor FoxA1 is thought to be involved in mammary tumorigenesis. However, the precise role of FoxA1 in breast cancer development is controversial. We examined expression of FoxA1 in 35 human breast cancer cell lines and compared it with that of ErbB2, a marker of poor prognosis in breast cancer. We found that FoxA1 is expressed at high levels in all ErbB2-positive cell lines and a subset of ErbB2-negative cell lines. Down-regulation of FoxA1 by RNA interference significantly suppressed proliferation of ErbB2-negative and FoxA1-positive breast cancer cell lines. Down-regulation of FoxA1 also enhanced the toxic effect of Herceptin on ErbB2-positive cell lines through induction of apoptosis. Taken together with previous data that FoxA1 is a marker of luminal cells in mammary gland, our present results suggest that FoxA1 plays an important role as a lineage-specific oncogene in proliferation of cancer cells derived from mammary luminal cells.
Collapse
|
27
|
Wang S, Tang H. Regulation of hepatitis B virus transcription and replication by liver-enriched transcriptional factors. Shijie Huaren Xiaohua Zazhi 2007; 15:1237-1240. [DOI: 10.11569/wcjd.v15.i11.1237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Hepatotropism is a prominent feature of hepatitis B virus (HBV). Cell lines of nonhepatic origin do not independently support HBV replication. In this review, we show that the nuclear hormone receptors, hepatocyte nuclear factor 4 and retinoid X receptor plus peroxisome proliferator-activated receptor, support HBV replication in nonhepatic cells by controlling pregenomic RNA synthesis, indicating that these liver-enriched transcription factors control a unique molecular switch restricting viral tropism. In contrast, hepatocyte nuclear factor 3 antagonizes nuclear hormone receptor-mediated viral replication, demonstrating distinct regulatory roles for these liver-enriched transcription factors.
Collapse
|
28
|
Wolf I, Bose S, Williamson EA, Miller CW, Karlan BY, Koeffler HP. FOXA1: Growth inhibitor and a favorable prognostic factor in human breast cancer. Int J Cancer 2006; 120:1013-22. [PMID: 17163418 DOI: 10.1002/ijc.22389] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The transcription factor Forkhead-box A1 (Foxa1), a member of the FOX class of transcription factors, has been implicated in the pathogenesis of lung, esophageal and prostate cancers. We have recently identified transcriptional activation of p27 by FOXA1. In this study, we analyzed the activities and expression pattern of FOXA1 in breast cancer. Forced expression of FOXA1 inhibited clonal growth of breast cancer cell lines, and FOXA1 levels inversely correlated with growth stimuli. In the estrogen receptor (ER)-positive MCF-7 cells, FOXA1 increased p27 promoter activity and inhibited the ER pathway activity. Analysis of FOXA1 expression in breast tissue arrays revealed significantly higher expression in pure ductal carcinomas in situ compared to invasive ductal carcinomas (IDC); and in IDC, high expression of FOXA1 was associated with favorable prognostic factors. Yet, FOXA1 expression was noted in a subset of the ER-negative tumors. Taken together, our findings suggest a growth inhibitory role for FOXA1, and identify it as a novel, potential prognostic factor in breast cancer.
Collapse
Affiliation(s)
- Ido Wolf
- Division of Hematology/Oncology, Cedars-Sinai Medical Center, UCLA School of Medicine, Los Angeles, CA, USA.
| | | | | | | | | | | |
Collapse
|
29
|
Kaltenbach LS, Updike DL, Mango SE. Contribution of the amino and carboxyl termini for PHA-4/FoxA function in Caenorhabditis elegans. Dev Dyn 2006; 234:346-54. [PMID: 16127716 DOI: 10.1002/dvdy.20550] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
FoxA transcription factors are central regulators of gut development in all animals that have been studied. Here we examine the sole Caenorhabditis elegans FoxA protein, which is called pha-4. We describe the molecular characterization of five pha-4 mutations and characterize their associated phenotypes. Two nonsense mutations are predicted to truncate PHA-4 after the DNA binding domain and remove the conserved carboxyl terminus. Surprisingly, animals harboring these mutations are viable, provided the mutant mRNAs are stabilized by inactivating the nonsense-mediated decay pathway. Two additional nonsense mutations reveal that the DNA binding domain is critical for activity. A missense mutation predicted to alter the PHA-4 amino terminus leads to a dramatic reduction in pha-4 activity even though the protein is expressed appropriately. We suggest that the PHA-4 amino terminus is essential for PHA-4 function in vivo, possibly as a transactivation domain, and can compensate for loss of the carboxyl terminus. We also provide evidence for autoregulation by PHA-4.
Collapse
Affiliation(s)
- Linda S Kaltenbach
- Huntsman Cancer Institute and Department of Oncological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | | | | |
Collapse
|
30
|
Stewart RA, Arduini BL, Berghmans S, George RE, Kanki JP, Henion PD, Look AT. Zebrafish foxd3 is selectively required for neural crest specification, migration and survival. Dev Biol 2006; 292:174-88. [PMID: 16499899 DOI: 10.1016/j.ydbio.2005.12.035] [Citation(s) in RCA: 144] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2005] [Revised: 11/23/2005] [Accepted: 12/19/2005] [Indexed: 01/16/2023]
Abstract
The vertebrate neural crest is a pluripotent cell population that generates a large variety of cell types, including peripheral neurons, cartilage and pigment cells. Mechanisms that control the patterning of the neural crest toward specific cell fates remain only partially understood. Zebrafish homozygous for the sympathetic mutation 1 (sym1) have defects in a subset of neural crest derivatives, such as peripheral neurons, glia and cartilage, but retain normal numbers of melanocytes. The sym1 mutation is a nucleotide deletion that disrupts the forkhead DNA-binding domain of the foxd3 gene, which encodes a conserved winged-helix transcription factor. We show that sym1 mutants have normal numbers of premigratory neural crest cells, but these cells express reduced levels of snai1b and sox10, implicating foxd3 as an essential regulator of these transcription factors in the premigratory neural crest. The onset of neural crest migration is also delayed in sym1 mutants, and there is a reduction in the number of migratory trunk neural crest cells, particularly along the medial migration pathway. TUNEL analysis revealed aberrant apoptosis localized to the hindbrain neural crest at the 15-somite stage, indicating a critical role for foxd3 in the survival of a subpopulation of neural crest cells. These results show that foxd3 selectively specifies premigratory neural crest cells for a neuronal, glial or cartilage fate, by inducing the expression of lineage-associated transcription factors in these cells and regulating their subsequent migration.
Collapse
Affiliation(s)
- Rodney A Stewart
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, 44 Binney Street, Boston, MA 02115, USA
| | | | | | | | | | | | | |
Collapse
|
31
|
Liu YN, Lee WW, Wang CY, Chao TH, Chen Y, Chen JH. Regulatory mechanisms controlling human E-cadherin gene expression. Oncogene 2006; 24:8277-90. [PMID: 16116478 DOI: 10.1038/sj.onc.1208991] [Citation(s) in RCA: 156] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In cancer cells, loss of E-cadherin gene expression caused dysfunction of the cell-cell junction system, triggering cancer invasion and metastasis. Therefore, E-cadherin is an important tumor-suppressor gene. To understand how E-cadherin gene expression is regulated in cancer cells, we have used E-cadherin-positive and -negative expressing cells to find out the possible up- or down regulating transcription factors in human E-cadherin regulatory sequences. Functional analysis of human E-cadherin regulatory sequences constructs indicated that AML1, Sp1, and p300 may play important roles in promoting E-cadherin expression. In addition, we found there are four HNF3-binding sites in human E-cadherin regulatory sequences. The exogenous HNF3 can enhance the E-cadherin promoter activity in metastatic breast cancer cells and the metastatic breast cancer cells stably transfected with HNF3 showed re-expression of E-cadherin. The HNF3 stable transfectants changed from mesenchymal-like into epithelial morphology. The transwell assays showed the re-expressed E-cadherin reduced cell motility of metastatic breast cancer cells. These results suggested HNF3 may play important roles in the upregulation of the E-cadherin promoter, with the consequent re-expression of E-cadherin, thus reducing the metastatic potential of breast cancer cells. These findings suggested HNF3 plays important roles in the upregulation of the E-cadherin gene and may be able to reduce the motility of metastatic breast cancer cells.
Collapse
Affiliation(s)
- Yan-Nan Liu
- Graduate Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan
| | | | | | | | | | | |
Collapse
|
32
|
Fritzenwanker JH, Saina M, Technau U. Analysis of forkhead and snail expression reveals epithelial-mesenchymal transitions during embryonic and larval development of Nematostella vectensis. Dev Biol 2005; 275:389-402. [PMID: 15501226 DOI: 10.1016/j.ydbio.2004.08.014] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2004] [Revised: 08/10/2004] [Accepted: 08/12/2004] [Indexed: 01/15/2023]
Abstract
The winged helix transcription factor Forkhead and the zinc finger transcription factor Snail are crucially involved in germ layer formation in Bilateria. Here, we isolated and characterized a homolog of forkhead/HNF3 (FoxA/group 1) and of snail from a diploblast, the sea anemone Nematostella vectensis. We show that Nematostella forkhead expression starts during late Blastula stage in a ring of cells that demarcate the blastopore margin during early gastrulation, thereby marking the boundary between ectodermal and endodermal tissue. snail, by contrast, is expressed in a complementary pattern in the center of forkhead-expressing cells marking the presumptive endodermal cells fated to ingress during gastrulation. In a significant portion of early gastrulating embryos, forkhead is expressed asymmetrically around the blastopore. While snail-expressing cells form the endodermal cell mass, forkhead marks the pharynx anlage throughout embryonic and larval development. In the primary polyp, forkhead remains expressed in the pharynx. The detailed analysis of forkhead and snail expression during Nematostella embryonic and larval development further suggests that endoderm formation results from epithelial invagination, mesenchymal immigration, and reorganization of the endodermal epithelial layer, that is, by epithelial-mesenchymal transitions (EMT) in combination with extensive morphogenetic movements. snail also governs EMT at different processes during embryonic development in Bilateria. Our data indicate that the function of snail in Diploblasts is to regulate motility and cell adhesion, supporting that the triggering of changes in cell behavior is the ancestral role of snail in Metazoa.
Collapse
Affiliation(s)
- Jens H Fritzenwanker
- Molecular Cell Biology, Institute for Zoology, Darmstadt University of Technology, 64287 Darmstadt, Germany
| | | | | |
Collapse
|
33
|
Schön C, Köster M, Knöchel W. A downstream enhancer is essential for Xenopus FoxD5 transcription. Biochem Biophys Res Commun 2004; 325:1360-6. [PMID: 15555577 DOI: 10.1016/j.bbrc.2004.10.177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2004] [Indexed: 11/23/2022]
Abstract
We have isolated and sequenced the pseudo-allelic versions of FoxD5 genes in Xenopus laevis, xlFoxD5a and xlFoxD5b, and the xtFoxD5 gene of Xenopus tropicalis. These genes show a highly conserved structure, they are composed of only one exon, and they exhibit a high degree of sequence conservation within their flanking sequences. The X. tropicalis gene is expressed like its X. laevis orthologues in progenitor cells of the neural floor plate. Serial deletions of the 5'- and 3'-flanking region in combination with reporter gene assays demonstrate that a distal and a proximal upstream element as well as a downstream-located enhancer do mainly contribute to transcriptional activity. The downstream enhancer cooperates with the proximal upstream element and also contributes to the spatial expression. Transgenic animals express enhanced green fluorescent protein in a spatial pattern like xlFoxD5b, when the 5'- and 3'-flanking regions of the xlFoxD5b gene are used to direct transgene expression.
Collapse
Affiliation(s)
- Christian Schön
- Abteilung Biochemie, Universität Ulm, Albert-Einstein-Allee 11, D-89081 Ulm, Germany
| | | | | |
Collapse
|
34
|
Rausa FM, Hughes DE, Costa RH. Stability of the Hepatocyte Nuclear Factor 6 Transcription Factor Requires Acetylation by the CREB-binding Protein Coactivator. J Biol Chem 2004; 279:43070-6. [PMID: 15304484 DOI: 10.1074/jbc.m407472200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
We previously demonstrated that the formation of complexes between the DNA binding domains of the hepatocyte nuclear factor 6 (HNF6) and Forkhead Box a2 (Foxa2) transcription factors resulted in synergistic transcriptional activation of a Foxa2 target promoter. This Foxa2.HNF6 transcriptional synergy was mediated by the recruitment of CREB-binding protein (CBP) coactivator through the HNF6 Cut-Homeodomain sequences. Although the HNF6 DNA binding domain sequences are sufficient to recruit CBP coactivator for HNF6.Foxa2 transcriptional synergy, paradoxically these HNF6 Cut-Homeodomain sequences were unable to stimulate the transcription of an HNF6-dependent reporter gene. Here, we investigated whether the CBP coactivator protein played a different role in regulating HNF6 transcriptional activity. We showed that acetylation of the HNF6 protein by CBP increased both HNF6 protein stability and its ability to stimulate transcription of the glucose transporter 2 promoter. Mutation of the HNF6 Cut domain lysine 339 residue to an arginine residue abrogated CBP acetylation, which is required for HNF6 protein stability. Furthermore, the HNF6 K339R mutant protein, which failed to accumulate detected protein levels, was transcriptionally inactive and could not be stabilized by inhibiting the ubiquitin proteasome pathway. Finally, increased HNF6 protein levels stabilized the Foxa2 protein, presumably through the formation of the Foxa2.HNF6 complex. These studies show for the first time that HNF6 protein stability is controlled by CBP acetylation and provides a novel mechanism by which the activity of the CBP coactivator may regulate steady levels of two distinct liver-enriched transcription factors.
Collapse
Affiliation(s)
- Francisco M Rausa
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, College of Medicine, Chicago, Illinois 60607, USA
| | | | | |
Collapse
|
35
|
Viney TJ, Schmidt TW, Gierasch W, Sattar AW, Yaggie RE, Kuburas A, Quinn JP, Coulson JM, Russo AF. Regulation of the cell-specific calcitonin/calcitonin gene-related peptide enhancer by USF and the Foxa2 forkhead protein. J Biol Chem 2004; 279:49948-55. [PMID: 15385550 DOI: 10.1074/jbc.m406659200] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
An 18-bp enhancer controls cell-specific expression of the calcitonin/calcitonin gene-related peptide gene. The enhancer is bound by a heterodimer of the bHLH-Zip protein USF-1 and -2 and a cell-specific factor from thyroid C cell lines. In this report we have identified the cell-specific factor as the forkhead protein Foxa2 (previously HNF-3beta). Binding of Foxa2 to the 18-bp enhancer was demonstrated using electrophoretic mobility shift assays. The cell-specific DNA-protein complex was selectively competed by a series of Foxa2 DNA binding sites, and the addition of Foxa2 antiserum supershifted the complex. Likewise, a complex similar to that seen with extracts from thyroid C cell lines was generated using an extract from heterologous cells expressing recombinant Foxa2. Interestingly, overexpression of Foxa2 activated the 18-bp enhancer in heterologous cells but only in the presence of the adjacent helix-loop-helix motif. Likewise, coexpression of USF proteins with Foxa2 yielded greater activation than by Foxa2 alone. Unexpectedly, Foxa2 overexpression repressed activity in the CA77 thyroid C cell line, suggesting that Foxa2 may interact with additional cofactors. The stimulatory role of Foxa2 at the calcitonin/calcitonin gene-related peptide gene enhancer was confirmed by short interfering RNA-mediated knockdown of Foxa2. As seen with Foxa2 overexpression, the effect of Foxa2 knockdown also required the adjacent helix-loop-helix motif. These results provide the first evidence for combinatorial control of gene expression by bHLH-Zip and forkhead proteins.
Collapse
Affiliation(s)
- Tim J Viney
- Department of Physiology and Biophysics, University of Iowa, Iowa City, Iowa 52242, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Martindale MQ, Pang K, Finnerty JR. Investigating the origins of triploblasty: `mesodermal' gene expression in a diploblastic animal, the sea anemone Nematostella vectensis(phylum, Cnidaria; class, Anthozoa). Development 2004; 131:2463-74. [PMID: 15128674 DOI: 10.1242/dev.01119] [Citation(s) in RCA: 241] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Mesoderm played a crucial role in the radiation of the triploblastic Bilateria, permitting the evolution of larger and more complex body plans than in the diploblastic, non-bilaterian animals. The sea anemone Nematostella is a non-bilaterian animal, a member of the phylum Cnidaria. The phylum Cnidaria (sea anemones, corals, hydras and jellyfish) is the likely sister group of the triploblastic Bilateria. Cnidarians are generally regarded as diploblastic animals, possessing endoderm and ectoderm,but lacking mesoderm. To investigate the origin of triploblasty, we studied the developmental expression of seven genes from Nematostella whose bilaterian homologs are implicated in mesodermal specification and the differentiation of mesodermal cell types (twist, snailA, snailB, forkhead,mef2, a GATA transcription factor and a LIMtranscription factor). Except for mef2, the expression of these genes is largely restricted to the endodermal layer, the gastrodermis. mef2is restricted to the ectoderm. The temporal and spatial expression of these`mesoderm' genes suggests that they may play a role in germ layer specification. Furthermore, the predominantly endodermal expression of these genes reinforces the hypothesis that the mesoderm and endoderm of triploblastic animals could be derived from the endoderm of a diploblastic ancestor. Alternatively, we consider the possibility that the diploblastic condition of cnidarians is a secondary simplification, derived from an ancestral condition of triploblasty.
Collapse
Affiliation(s)
- Mark Q Martindale
- Kewalo Marine Laboratory, Pacific Biomedical Research Center, University of Hawaii, 41 Ahui Street, Honolulu, HI 96813, USA.
| | | | | |
Collapse
|
37
|
Abstract
The winged-helix transcription factor HNF3beta/FoxA2 is expressed in embryonic organizing centers of the gastrulating mouse, frog, fish, and chick. In the mouse, HNF3beta is required for the formation of the mammalian node and notochord, and can induce ectopic floor plate formation when misexpressed in the developing neural tube; HNF3beta expression in the extraembryonic endoderm is also necessary for the proper morphogenesis of the mammalian primitive streak. In the frog Xenopus laevis, several lines of evidence suggest that the related winged-helix factor Pintallavis functions as the ortholog of mammalian HNF3beta in both axial mesoderm and neurectoderm; the role of Xenopus HNF3beta itself, however, has not been clearly defined, and is the subject of this study. HNF3beta is widely expressed in the vegetal pole but, as previously suggested, is excluded from the gastrula-stage mesoderm. We find that expression of an HNF3beta-Engrailed repressor fusion protein induces ectopic axes and inhibits head formation in Xenopus embryos, while ectopic HNF3beta inhibits mesoderm and anterior endoderm formation in explant assays and in vivo. Our studies suggest that HNF3beta target genes function to limit the extent of mesoderm formation in the Xenopus gastrula, and point to related roles for Xenopus HNF3beta and the extraembryonic component of mammalian HNF3beta during vertebrate gastrulation.
Collapse
|
38
|
Vavricka SR, Jung D, Fried M, Grützner U, Meier PJ, Kullak-Ublick GA. The human organic anion transporting polypeptide 8 (SLCO1B3) gene is transcriptionally repressed by hepatocyte nuclear factor 3beta in hepatocellular carcinoma. J Hepatol 2004; 40:212-8. [PMID: 14739090 DOI: 10.1016/j.jhep.2003.10.008] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND/AIMS The organic anion transporting polypeptides (OATPs) mediate the uptake of numerous amphipathic compounds into hepatocytes. Our aim was to study the expression and regulation of OATP8 (OATP1B3, SLC21A8/SLCO1B3) and OATP-C (OATP1B1, SLC21A6/SLCO1B1) in hepatocellular carcinomas (HCC). METHODS RNA and protein levels in 13 paired HCC and adjacent non-tumor liver samples were quantified by real-time polymerase chain reaction or Western blot, respectively. The OATP8 and OATP-C gene promoters were characterized by luciferase reporter assays and electrophoretic mobility shift assays (EMSA). RESULTS The expression of OATP8 was decreased in 60% of HCC compared to surrounding non-tumor liver tissue, on both the mRNA and protein levels. Expression of the liver-enriched transcription factor hepatocyte nuclear factor 3beta (HNF3beta) was increased in 70% of HCC and correlated inversely with OATP8 mRNA (r=-0.75, P<0.05) and protein. In contrast to OATP8, expression of OATP-C was not significantly decreased in HCC. In transfected Huh7 cells, OATP8 promoter activity was inhibited by 70% when HNF3beta was cotransfected. An HNF3beta binding site was located at nt -39/-23 by EMSA. The OATP-C promoter was not inhibited by HNF3beta. CONCLUSIONS HNF3beta represses transcription of the OATP8 but not the OATP-C gene, providing a mechanism for reduced expression of OATP8 in HCC.
Collapse
Affiliation(s)
- Stephan R Vavricka
- Laboratory of Molecular Gastroenterology and Hepatology, Division of Gastroenterology and Hepatology, University Hospital, CH-8091 Zurich, Switzerland
| | | | | | | | | | | |
Collapse
|
39
|
Costa RH, Kalinichenko VV, Holterman AXL, Wang X. Transcription factors in liver development, differentiation, and regeneration. Hepatology 2003; 38:1331-47. [PMID: 14647040 DOI: 10.1016/j.hep.2003.09.034] [Citation(s) in RCA: 293] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Robert H Costa
- Department of Biochemistry and Molecular Genetics University of Illinois at Chicago, College of Medicine, Chicago, IL 60607-7170, USA.
| | | | | | | |
Collapse
|
40
|
Gao N, Zhang J, Rao MA, Case TC, Mirosevich J, Wang Y, Jin R, Gupta A, Rennie PS, Matusik RJ. The role of hepatocyte nuclear factor-3 alpha (Forkhead Box A1) and androgen receptor in transcriptional regulation of prostatic genes. Mol Endocrinol 2003; 17:1484-507. [PMID: 12750453 DOI: 10.1210/me.2003-0020] [Citation(s) in RCA: 210] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Androgens and mesenchymal factors are essential extracellular signals for the development as well as the functional activity of the prostate epithelium. Little is known of the intraepithelial determinants that are involved in prostatic differentiation. Here we found that hepatocyte nuclear factor-3 alpha (HNF-3 alpha), an endoderm developmental factor, is essential for androgen receptor (AR)-mediated prostatic gene activation. Two HNF-3 cis-regulatory elements were identified in the rat probasin (PB) gene promoter, each immediately adjacent to an androgen response element. Remarkably, similar organization of HNF-3 and AR binding sites was observed in the prostate-specific antigen (PSA) gene core enhancer, suggesting a common functional mechanism. Mutations that disrupt these HNF-3 motifs significantly abolished the maximal androgen induction of PB and PSA activities. Overexpressing a mutant HNF-3 alpha deleted in the C-terminal region inhibited the androgen-induced promoter activity in LNCaP cells where endogenous HNF-3 alpha is expressed. Chromatin immunoprecipitation revealed in vivo that the occupancy of HNF-3 alpha on PSA enhancer can occur in an androgen-depleted condition, and before the recruitment of ligand-bound AR. A physical interaction of HNF-3 alpha and AR was detected through immunoprecipitation and confirmed by glutathione-S-transferase pull-down. This interaction is directly mediated through the DNA-binding domain/hinge region of AR and the forkhead domain of HNF-3 alpha. In addition, strong HNF-3 alpha expression, but not HNF-3 beta or HNF-3 gamma, is detected in both human and mouse prostatic epithelial cells where markers (PSA and PB) of differentiation are expressed. Taken together, these data support a model in which regulatory cues from the cell lineage and the extracellular environment coordinately establish the prostatic differentiated response.
Collapse
Affiliation(s)
- Nan Gao
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Her GM, Yeh YH, Wu JL. 435-bp liver regulatory sequence in the liver fatty acid binding protein (L-FABP) gene is sufficient to modulate liver regional expression in transgenic zebrafish. Dev Dyn 2003; 227:347-56. [PMID: 12815620 DOI: 10.1002/dvdy.10324] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Liver fatty acid binding protein (L-FABP) is a small protein that is thought to play an important role in the intracellular binding and trafficking of long chain fatty acids in the liver. Expression of the gene encoding the zebrafish liver fatty acid binding protein is regulated by a 435-bp distal region (-1944 to -1510) of the L-FABP promoter. The 435-bp sequence is sufficient for gene activation in the liver primordia (or bud) and continues to be active in the adult liver when positioned adjacent to the SV40 basal promoter and linked directly to green fluorescent protein. The 435-bp sequence region has two distinct liver regulatory elements, A (-1944 to -1623) and B (-1622 to -1510), and contains multiple putative consensus binding sites. The element A sequence includes two consensus HFH and one HNF-1alpha site and the element B sequence includes one consensus HNF-3beta site. Deletion of an internal 435-bp fragment (-1944 to -1510) including the A and B elements totally ablated the liver-specific activity of the zebrafish L-FABP gene promoter. Deletion of either of the two elements reduces the liver activity. Mutation of the HNF-1alpha site or either of the two HFH sites in the A element or the HNF-3beta site in the B element significantly altered specificity in the liver primordia of transient expression embryos. The importance of the HNF-1alpha consensus binding site in the A element and the HNF-3beta consensus binding site in the B element within the 435-bp distal region of the L-FABP promoter region suggests that combinatorial interactions between multiple regulatory factors are responsible for the gene expression of L-FABP in the liver.
Collapse
Affiliation(s)
- Guor Mour Her
- Laboratory of Marine Molecular Biology and Biotechnology, Institute of Zoology, Academia Sinica, Taipei, Taiwan, Republic of China
| | | | | |
Collapse
|
42
|
Divine JK, McCaul SP, Simon TC. HNF-1alpha and endodermal transcription factors cooperatively activate Fabpl: MODY3 mutations abrogate cooperativity. Am J Physiol Gastrointest Liver Physiol 2003; 285:G62-72. [PMID: 12646418 DOI: 10.1152/ajpgi.00074.2003] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Hepatocyte nuclear factor (HNF)-1alpha plays a central role in intestinal and hepatic gene regulation and is required for hepatic expression of the liver fatty acid binding protein gene (Fabpl). An Fabpl transgene was directly activated through cognate sites by HNF-1alpha and HNF-1beta, as well as five other endodermal factors: CDX-1, C/EBPbeta, GATA-4, FoxA2, and HNF-4alpha. HNF-1alpha activated the Fabpl transgene by as much as 60-fold greater in the presence of the other five endodermal factors than in their absence, accounting for up to one-half the total transgene activation by the group of six factors. This degree of synergistic interaction suggests that multifactor cooperativity is a critical determinant of endodermal gene activation by HNF-1alpha. Mutations in HNF-1alpha that result in maturity onset diabetes of the young (MODY3) provide evidence for the in vivo significance of these synergistic interactions. An R131Q HNF-1alpha MODY3 mutant exhibits complete loss of synergistic activation in concert with the other endodermal transcription factors despite wild-type transactivation ability in their absence. Furthermore, whereas wild-type HNF-1alpha exhibited pairwise cooperative synergy with each of the other five factors, the R131Q mutant could synergize only with GATA-4 and C/EBPbeta. Selective loss of synergy with other endodermal transcription factors accompanied by retention of native transactivation ability in an HNF-1alpha MODY mutant suggests in vivo significance for cooperative synergy.
Collapse
Affiliation(s)
- Joyce K Divine
- Division of Biology and Biomedical Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | |
Collapse
|
43
|
Watada H, Scheel DW, Leung J, German MS. Distinct gene expression programs function in progenitor and mature islet cells. J Biol Chem 2003; 278:17130-40. [PMID: 12604598 DOI: 10.1074/jbc.m213196200] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Homeodomain transcription factor Nkx2.2 is required for the final differentiation of the beta-cells in the pancreas and for the production of insulin. Nkx2.2 is expressed in islet cell precursors during pancreatic development and persists in a subset of mature islet cells including all beta-cells. To understand the mechanisms regulating the expression of Nkx2.2 in these different cell populations, we outlined the structure of the mouse nkx2.2 gene and identified regions that direct cell type-specific expression. The nkx2.2 gene has two noncoding alternative first exons (exons 1a and 1b). In transgenic mice, sequences upstream from exon 1a directed expression predominantly in mature islet cells. Within this exon 1a promoter, cooperative interactions between HNF3 and basic helix-loop-helix factors neurogenin-3 or NeuroD1 binding to adjacent sites played key roles in its islet cell-specific expression. In contrast, sequences upstream from exon 1b restricted expression specifically to islet cell precursors. These studies reveal distinct mechanisms for directing the expression of a key differentiation factor in precursors versus mature islet cells.
Collapse
Affiliation(s)
- Hirotaka Watada
- Hormone Research Institute, University of California San Francisco, San Francisco, California 94143-0534, USA
| | | | | | | |
Collapse
|
44
|
Foucher I, Montesinos ML, Volovitch M, Prochiantz A, Trembleau A. Joint regulation of the MAP1B promoter by HNF3beta/Foxa2 and Engrailed is the result of a highly conserved mechanism for direct interaction of homeoproteins and Fox transcription factors. Development 2003; 130:1867-76. [PMID: 12642491 DOI: 10.1242/dev.00414] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The MAP1B (Mtap1b) promoter presents two evolutionary conserved overlapping homeoproteins and Hepatocyte nuclear factor 3beta (HNF3beta/Foxa2) cognate binding sites (defining putative homeoprotein/Fox sites, HF1 and HF2). Accordingly, the promoter domain containing HF1 and HF2 is recognized by cerebellum nuclear extracts containing Engrailed and Foxa2 and has regulatory functions in primary cultures of embryonic mesmetencephalic nerve cells. Transfection experiments further demonstrate that Engrailed and Foxa2 interact physiologically in a dose-dependent manner: Foxa2 antagonizes the Engrailed-driven regulation of the MAP1B promoter, and vice versa. This led us to investigate if Engrailed and Foxa2 interact directly. Direct interaction was confirmed by pull-down experiments, and the regions participating in this interaction were identified. In Foxa2 the interacting domain is the Forkhead box DNA-binding domain. In Engrailed, two independent interacting domains exist: the homeodomain and a region that includes the Pbx-binding domain. Finally, Foxa2 not only binds Engrailed but also Lim1, Gsc and Hoxa5 homeoproteins and in the four cases Foxa2 binds at least the homeodomain. Based on the involvement of conserved domains in both classes of proteins, it is proposed that the interaction between Forkhead box transcription factors and homeoproteins is a general phenomenon.
Collapse
Affiliation(s)
- Isabelle Foucher
- CNRS UMR 8542, Ecole Normale Supérieure, 46 rue d'Ulm, 75230 Paris Cedex 05, France
| | | | | | | | | |
Collapse
|
45
|
Carlsson P, Mahlapuu M. Forkhead transcription factors: key players in development and metabolism. Dev Biol 2002; 250:1-23. [PMID: 12297093 DOI: 10.1006/dbio.2002.0780] [Citation(s) in RCA: 669] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Peter Carlsson
- Department of Molecular Biology, Göteborg University, Box 462, SE-405 30 Göteborg, Sweden.
| | | |
Collapse
|
46
|
Ishizaka S, Shiroi A, Kanda S, Yoshikawa M, Tsujinoue H, Kuriyama S, Hasuma T, Nakatani K, Takahashi K. Development of hepatocytes from ES cells after transfection with the HNF-3beta gene. FASEB J 2002; 16:1444-6. [PMID: 12205042 DOI: 10.1096/fj.01-0806fje] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
We have attempted to generate embryonic stem (ES) cell-derived hepatocytes expressing liver-specific functional properties by use of ES cell technology. It was found that ES cells are allowed to differentiate into hepatocytes possessing high metabolic activities when hepatocyte nuclear factor (HNF)-3beta-transfected ES cells are cultured in alpha-MEM medium supplemented with 10% fetal bovine serum (FBS) and fibroblast growth factor (FGF)-2 in the three-dimensional cell culture system at 5% CO2. The differentiated cells induced albumin, triacylglycerol, urea, and glycogen synthesis as well as further expression of metabolic proteins and serum factors as markers of hepatocytic differentiation for at least 4 months. The cells differentiated from HNF-3beta-transfected ES cells also had hepatocyte-like ultrastructural characteristics, including several endoplasmic reticula, mitochondrion, and glycogen. Our findings indicate that generation of hepatocytes maintaining high metabolic functions developed from mouse ES cells will facilitate the study of the basic mechanism for hepatogenesis and will certainly provide new opportunities for tissue transplantation.
Collapse
Affiliation(s)
- Shigeaki Ishizaka
- Program in Tissue Engineering and Department of Parasitology, Nara Medical University, Kashihara, Nara, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Huang MC, Li KK, Spear BT. The mouse alpha-fetoprotein promoter is repressed in HepG2 hepatoma cells by hepatocyte nuclear factor-3 (FOXA). DNA Cell Biol 2002; 21:561-9. [PMID: 12215259 PMCID: PMC1563500 DOI: 10.1089/104454902320308933] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
The mouse alpha-fetoprotein gene is expressed at high levels in the fetal liver and is transcriptionally silenced at birth. The repression is governed, at least in part, by the 250 base pair (bp) AFP promoter. We show here that the AFP promoter is dramatically repressed by HNF3 in HepG2 hepatoma cells. This repression is governed by the region between -205 and -150. Furthermore, this fragment can confer HNF3-mediated repression on a heterologous promoter. The repression is abolished by a mutation that is centered at -165. EMSA analyses using in vivo and in vitro synthesized proteins indicate that HNF3 proteins do not bind DNA from the -205 to -150 region. We propose that HNF3 represses AFP promoter activity through indirect mechanisms that modulate the binding or activity of a liver-enriched factor that interacts with the -165 region of the AFP promoter.
Collapse
Affiliation(s)
- Mei-Chuan Huang
- Department of Microbiology, University of Kentucky, Lexington, Kentucky 40536-0298, USA
| | | | | |
Collapse
|
48
|
Tan Y, Adami G, Costa RH. Maintaining HNF6 expression prevents AdHNF3beta-mediated decrease in hepatic levels of Glut-2 and glycogen. Hepatology 2002; 35:790-8. [PMID: 11915024 DOI: 10.1053/jhep.2002.32482] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The hepatocyte nuclear factor 3 (HNF-3) proteins are members of the Forkhead Box (Fox) family of transcription factors that play important roles in regulating expression of genes involved in cellular proliferation, differentiation, and metabolic homeostasis. In previous studies we increased liver expression of HNF-3beta by using either transgenic mice (transthyretin HNF-3beta) or recombinant adenovirus infection (AdHNF3beta), and observed diminished hepatic levels of glycogen, and glucose transporter 2 (Glut-2), as well as the HNF-6, HNF-3, HNF-1alpha, HNF-4alpha, and C/EBPalpha transcription factors. We conducted the present study to determine whether maintaining HNF-6 protein expression during AdHNF3beta infection prevents reduction of hepatic levels of glycogen and the earlier-mentioned genes. Here, we show that AdHNF3beta- and AdHNF6-infected mouse liver displayed increased hepatic levels of glycogen, Glut-2, HNF-3gamma, HNF-1alpha, and HNF-4alpha at 2 and 3 days postinfection (PI). Furthermore, restoration of hepatic glycogen levels after AdHNF3beta and AdHNF6 coinfection was associated with increased Glut-2 expression. AdHNF6 infection alone caused a 2-fold increase in hepatic Glut-2 levels, suggesting that HNF 6 stimulates in vivo transcription of the Glut-2 gene. DNA binding assays showed that only recombinant HNF-6 protein, but not the HNF-3 proteins, binds to the mouse -185 to -144 bp Glut-2 promoter sequences. Cotransfection assays in human hepatoma (HepG2) cells with either HNF-3 or HNF-6 expression vectors show that only HNF-6 provided significant transcriptional activation of the Glut-2 promoter. In conclusion, these studies show that the hepatic Glut-2 promoter is a direct target for HNF-6 transcriptional activation.
Collapse
Affiliation(s)
- Yongjun Tan
- Department of Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, IL 60607-7170, USA
| | | | | |
Collapse
|
49
|
Berry FB, Saleem RA, Walter MA. FOXC1 transcriptional regulation is mediated by N- and C-terminal activation domains and contains a phosphorylated transcriptional inhibitory domain. J Biol Chem 2002; 277:10292-7. [PMID: 11782474 DOI: 10.1074/jbc.m110266200] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Mutations in the FOXC1 gene result in Axenfeld-Rieger malformations of the anterior segment of the eye and lead to an increased susceptibility of glaucoma. To understand how the FOXC1 protein may function in contributing to these malformations, we identified functional regions in FOXC1 required for nuclear localization and transcriptional regulation. Two regions in the FOXC1 forkhead domain, one rich in basic amino acid residues, and a second, highly conserved among all FOX proteins, were necessary for nuclear localization of the FOXC1 protein. However, only the basic region was sufficient for nuclear localization. Two transcriptional activation domains were identified in the extreme N- and C-terminal regions of FOXC1. A transcription inhibitory domain was located at the central region of the protein. This region was able to reduce the trans-activation potential of the C-terminal activation domain, as well as the GAL4 activation domain. Lastly, we demonstrate that FOXC1 is a phosphoprotein, and a number of residues predicted to be phosphorylated were localized to the FOXC1 inhibitory domain. Removal of residues 215-366 resulted in a transcriptionally hyperactive FOXC1 protein, which displayed a reduced level of phosphorylation. These results indicate that FOXC1 is under complex regulatory control with multiple functional domains modulating FOXC1 transcriptional regulation.
Collapse
Affiliation(s)
- Fred B Berry
- Department of Ophthalmology, University of Alberta, Edmonton, Alberta T6G 2H7, Canada.
| | | | | |
Collapse
|
50
|
Yang Z, Whelan J, Babb R, Bowen BR. An mRNA splice variant of the AFX gene with altered transcriptional activity. J Biol Chem 2002; 277:8068-75. [PMID: 11779849 DOI: 10.1074/jbc.m106091200] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Several studies indicate that FKHR and AFX, mammalian homologues of the Caenorhabditis elegans forkhead transcription factor DAF-16, function in the insulin signaling pathway. Here we describe the discovery of a novel AFX isoform, which we designated AFX zeta, in which the first 16 amino acids of the forkhead domain are not present. PCR analysis showed that this isoform is most abundant in the liver, kidney, and pancreas. In HepG2 cells, overexpressed AFX zeta induced reporter gene activity through the insulin-responsive sequences of the phosphoenolpyruvate carboxykinase (PEPCK), IGFBP-1, and G6Pase promoters. AFX zeta-mediated stimulation was repressed by insulin treatment, by bisperoxovanadate treatment, and by overexpression of constitutively active protein kinase B (PKB). Insulin treatment and PKB overexpression resulted in phosphorylation of AFX zeta. Furthermore, 5-aminoimidazole-4-carboxamide-1-beta-d-ribofuranoside (AICAR), an AMP-activated protein kinase activator, repressed AFX zeta-dependent reporter activation. Taken together, these findings suggest that AFX zeta is a downstream target of both the phosphatidylinositol 3-kinase/PKB insulin signaling pathway and an AMP-activated protein kinase-dependent pathway.
Collapse
Affiliation(s)
- Zhenyu Yang
- Novartis Institute for Biomedical Research, Summit, New Jersey 07901, USA
| | | | | | | |
Collapse
|