1
|
Kawakami K, Largaespada DA, Ivics Z. Transposons As Tools for Functional Genomics in Vertebrate Models. Trends Genet 2017; 33:784-801. [PMID: 28888423 DOI: 10.1016/j.tig.2017.07.006] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 07/14/2017] [Accepted: 07/18/2017] [Indexed: 02/06/2023]
Abstract
Genetic tools and mutagenesis strategies based on transposable elements are currently under development with a vision to link primary DNA sequence information to gene functions in vertebrate models. By virtue of their inherent capacity to insert into DNA, transposons can be developed into powerful tools for chromosomal manipulations. Transposon-based forward mutagenesis screens have numerous advantages including high throughput, easy identification of mutated alleles, and providing insight into genetic networks and pathways based on phenotypes. For example, the Sleeping Beauty transposon has become highly instrumental to induce tumors in experimental animals in a tissue-specific manner with the aim of uncovering the genetic basis of diverse cancers. Here, we describe a battery of mutagenic cassettes that can be applied in conjunction with transposon vectors to mutagenize genes, and highlight versatile experimental strategies for the generation of engineered chromosomes for loss-of-function as well as gain-of-function mutagenesis for functional gene annotation in vertebrate models, including zebrafish, mice, and rats.
Collapse
Affiliation(s)
- Koichi Kawakami
- Division of Molecular and Developmental Biology, National Institute of Genetics, Mishima, Japan; These authors contributed equally to this work
| | - David A Largaespada
- Department of Genetics, Cell Biology and Development, University of Minnesota, MN, USA; These authors contributed equally to this work
| | - Zoltán Ivics
- Division of Medical Biotechnology, Paul Ehrlich Institute, Langen, Germany; These authors contributed equally to this work..
| |
Collapse
|
2
|
Abstract
CRISPR-Cas is an efficient method for genome editing in organisms from bacteria to human cells. We describe a transgene-free method for CRISPR-Cas-mediated cleavage in nematodes, enabling RNA-homology-targeted deletions that cause loss of gene function; analysis of whole-genome sequencing indicates that the nuclease activity is highly specific.
Collapse
|
3
|
Boulin T, Hobert O. From genes to function: the C. elegans genetic toolbox. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2011; 1:114-37. [PMID: 23801671 DOI: 10.1002/wdev.1] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
This review aims to provide an overview of the technologies which make the nematode Caenorhabditis elegans an attractive genetic model system. We describe transgenesis techniques and forward and reverse genetic approaches to isolate mutants and clone genes. In addition, we discuss the new possibilities offered by genome engineering strategies and next-generation genome analysis tools.
Collapse
Affiliation(s)
- Thomas Boulin
- Department of Biology, Institut de Biologie de l'École Normale Supérieure, Paris, France.
| | | |
Collapse
|
4
|
Abstract
With unique genetic and cell biological strengths, C. elegans has emerged as a powerful model system for studying many biological processes. These processes are typically regulated by complex genetic networks consisting of genes. Identifying those genes and organizing them into genetic pathways are two major steps toward understanding the mechanisms that regulate biological events. Forward genetic screens with various designs are a traditional approach for identifying candidate genes. The completion of the genome sequencing in C. elegans and the advent of high-throughput experimental techniques have led to the development of two additional powerful approaches: functional genomics and systems biology. Genes that are discovered by these approaches can be ordered into interacting pathways through a variety of strategies, involving genetics, cell biology, biochemistry, and functional genomics, to gain a more complete understanding of how gene regulatory networks control a particular biological process. The aim of this review is to provide an overview of the approaches available to identify and construct the genetic pathways using C. elegans.
Collapse
Affiliation(s)
- Zheng Wang
- Dept. of Biology, Duke University, Durham NC
| | | |
Collapse
|
5
|
Sleeping Beauty transposon mutagenesis of the rat genome in spermatogonial stem cells. Methods 2010; 53:356-65. [PMID: 21193047 DOI: 10.1016/j.ymeth.2010.12.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2010] [Revised: 12/14/2010] [Accepted: 12/17/2010] [Indexed: 11/24/2022] Open
Abstract
Since several aspects of physiology in rats have evolved to be more similar to humans than that of mice, it is highly desirable to link the rat into the process of annotating the human genome with function. However, the lack of technology for generating defined mutants in the rat genome has hindered the identification of causative relationships between genes and disease phenotypes. As an important step towards this goal, an approach of establishing transposon-mediated insertional mutagenesis in rat spermatogonial stem cells was recently developed. Transposons can be viewed as natural DNA transfer vehicles that, similar to integrating viruses, are capable of efficient genomic insertion. The mobility of transposons can be controlled by conditionally providing the transposase component of the transposition reaction. Thus, a DNA of interest such as a mutagenic gene trap cassette cloned between the inverted repeat sequences of a transposon-based vector can be utilized for stable genomic insertion in a regulated and highly efficient manner. Gene-trap transposons integrate into the genome in a random fashion, and those mutagenic insertions that occurred in expressed genes can be selected in vitro based on activation of a reporter. Selected monoclonal as well as polyclonal libraries of gene trap clones are transplanted into the testes of recipient/founder male rats allowing passage of the mutation through the germline to F1 progeny after only a single cross with wild-type females. This paradigm enables a powerful methodological pipeline for forward genetic screens for functional gene annotation in the rat, as well as other vertebrate models. This article provides a detailed description on how to culture rat spermatogonial stem cell lines, their transfection with transposon plasmids, selection of gene-trap insertions with antibiotics, transplantation of genetically modified stem cells and genotyping of knockout animals.
Collapse
|
6
|
Ivics Z, Izsvák Z. The expanding universe of transposon technologies for gene and cell engineering. Mob DNA 2010; 1:25. [PMID: 21138556 PMCID: PMC3016246 DOI: 10.1186/1759-8753-1-25] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2010] [Accepted: 12/07/2010] [Indexed: 12/16/2022] Open
Abstract
Transposable elements can be viewed as natural DNA transfer vehicles that, similar to integrating viruses, are capable of efficient genomic insertion. The mobility of class II transposable elements (DNA transposons) can be controlled by conditionally providing the transposase component of the transposition reaction. Thus, a DNA of interest (be it a fluorescent marker, a small hairpin (sh)RNA expression cassette, a mutagenic gene trap or a therapeutic gene construct) cloned between the inverted repeat sequences of a transposon-based vector can be used for stable genomic insertion in a regulated and highly efficient manner. This methodological paradigm opened up a number of avenues for genome manipulations in vertebrates, including transgenesis for the generation of transgenic cells in tissue culture, the production of germline transgenic animals for basic and applied research, forward genetic screens for functional gene annotation in model species, and therapy of genetic disorders in humans. Sleeping Beauty (SB) was the first transposon shown to be capable of gene transfer in vertebrate cells, and recent results confirm that SB supports a full spectrum of genetic engineering including transgenesis, insertional mutagenesis, and therapeutic somatic gene transfer both ex vivo and in vivo. The first clinical application of the SB system will help to validate both the safety and efficacy of this approach. In this review, we describe the major transposon systems currently available (with special emphasis on SB), discuss the various parameters and considerations pertinent to their experimental use, and highlight the state of the art in transposon technology in diverse genetic applications.
Collapse
Affiliation(s)
- Zoltán Ivics
- Max Delbrück Center for Molecular Medicine, Berlin, Germany.
| | | |
Collapse
|
7
|
Abstract
Transposable elements are DNA segments with the unique ability to move about in the genome. This inherent feature can be exploited to harness these elements as gene vectors for genome manipulation. Transposon-based genetic strategies have been established in vertebrate species over the last decade, and current progress in this field suggests that transposable elements will serve as indispensable tools. In particular, transposons can be applied as vectors for somatic and germline transgenesis, and as insertional mutagens in both loss-of-function and gain-of-function forward mutagenesis screens. In addition, transposons will gain importance in future cell-based clinical applications, including nonviral gene transfer into stem cells and the rapidly developing field of induced pluripotent stem cells. Here we provide an overview of transposon-based methods used in vertebrate model organisms with an emphasis on the mouse system and highlight the most important considerations concerning genetic applications of the transposon systems.
Collapse
|
8
|
Manipulating the Caenorhabditis elegans genome using mariner transposons. Genetica 2009; 138:541-9. [PMID: 19347589 DOI: 10.1007/s10709-009-9362-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2009] [Accepted: 03/20/2009] [Indexed: 12/16/2022]
Abstract
Tc1, one of the founding members of the Tc1/mariner transposon superfamily, was identified in the nematode Caenorhabditis elegans more than 25 years ago. Over the years, Tc1 and other endogenous mariner transposons became valuable tools for mutagenesis and targeted gene inactivation in C. elegans. However, transposition is naturally repressed in the C. elegans germline by an RNAi-like mechanism, necessitating the use of mutant strains in which transposition was globally derepressed, which causes drawbacks such as uncontrolled proliferation of the transposons in the genome and accumulation of background mutations. The more recent mobilization of the Drosophila mariner transposon Mos1 in the C. elegans germline circumvented the problems inherent to endogenous transposons. Mos1 transposition strictly depends on the expression of the Mos transposase, which can be controlled in the germline using inducible promoters. First, Mos1 can be used for insertional mutagenesis. The mobilization of Mos1 copies present on an extrachromosomal array results in the generation of a small number of Mos1 genomic insertions that can be rapidly cloned by inverse PCR. Second, Mos1 insertions can be used for genome engineering. Triggering the excision of a genomic Mos1 insertion causes a chromosomal break, which can be repaired by transgene-instructed gene conversion. This process is used to introduce specific changes in a given gene, such as point mutations, deletions or insertions of a tag, and to create single-copy transgenes.
Collapse
|
9
|
Leung MCK, Williams PL, Benedetto A, Au C, Helmcke KJ, Aschner M, Meyer JN. Caenorhabditis elegans: an emerging model in biomedical and environmental toxicology. Toxicol Sci 2008; 106:5-28. [PMID: 18566021 PMCID: PMC2563142 DOI: 10.1093/toxsci/kfn121] [Citation(s) in RCA: 704] [Impact Index Per Article: 41.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2008] [Accepted: 06/10/2008] [Indexed: 12/21/2022] Open
Abstract
The nematode Caenorhabditis elegans has emerged as an important animal model in various fields including neurobiology, developmental biology, and genetics. Characteristics of this animal model that have contributed to its success include its genetic manipulability, invariant and fully described developmental program, well-characterized genome, ease of maintenance, short and prolific life cycle, and small body size. These same features have led to an increasing use of C. elegans in toxicology, both for mechanistic studies and high-throughput screening approaches. We describe some of the research that has been carried out in the areas of neurotoxicology, genetic toxicology, and environmental toxicology, as well as high-throughput experiments with C. elegans including genome-wide screening for molecular targets of toxicity and rapid toxicity assessment for new chemicals. We argue for an increased role for C. elegans in complementing other model systems in toxicological research.
Collapse
Affiliation(s)
- Maxwell C. K. Leung
- Nicholas School of the Environment, Duke University, Durham, North Carolina 27750
| | - Phillip L. Williams
- Department of Environmental Health Science, College of Public University of Georgia, Athens, Georgia 30602
| | - Alexandre Benedetto
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee 37240
| | - Catherine Au
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee 37240
| | - Kirsten J. Helmcke
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee 37240
| | - Michael Aschner
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee 37240
| | - Joel N. Meyer
- Nicholas School of the Environment, Duke University, Durham, North Carolina 27750
| |
Collapse
|
10
|
Mátés L, Izsvák Z, Ivics Z. Technology transfer from worms and flies to vertebrates: transposition-based genome manipulations and their future perspectives. Genome Biol 2007; 8 Suppl 1:S1. [PMID: 18047686 PMCID: PMC2106849 DOI: 10.1186/gb-2007-8-s1-s1] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
To meet the increasing demand of linking sequence information to gene function in vertebrate models, genetic modifications must be introduced and their effects analyzed in an easy, controlled, and scalable manner. In the mouse, only about 10% (estimate) of all genes have been knocked out, despite continuous methodologic improvement and extensive effort. Moreover, a large proportion of inactivated genes exhibit no obvious phenotypic alterations. Thus, in order to facilitate analysis of gene function, new genetic tools and strategies are currently under development in these model organisms. Loss of function and gain of function mutagenesis screens based on transposable elements have numerous advantages because they can be applied in vivo and are therefore phenotype driven, and molecular analysis of the mutations is straightforward. At present, laboratory harnessing of transposable elements is more extensive in invertebrate models, mostly because of their earlier discovery in these organisms. Transposons have already been found to facilitate functional genetics research greatly in lower metazoan models, and have been applied most comprehensively in Drosophila. However, transposon based genetic strategies were recently established in vertebrates, and current progress in this field indicates that transposable elements will indeed serve as indispensable tools in the genetic toolkit for vertebrate models. In this review we provide an overview of transposon based genetic modification techniques used in higher and lower metazoan model organisms, and we highlight some of the important general considerations concerning genetic applications of transposon systems.
Collapse
Affiliation(s)
- Lajos Mátés
- Max Delbrück Center for Molecular Medicine, Robert-Rössle-Str, 13092 Berlin, Germany
| | | | | |
Collapse
|
11
|
Cuppen E, Gort E, Hazendonk E, Mudde J, van de Belt J, Nijman IJ, Guryev V, Plasterk RHA. Efficient target-selected mutagenesis in Caenorhabditis elegans: toward a knockout for every gene. Genome Res 2007; 17:649-58. [PMID: 17416746 PMCID: PMC1855173 DOI: 10.1101/gr.6080607] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Reverse genetic or gene-driven knockout approaches have contributed significantly to the success of model organisms for fundamental and biomedical research. Although various technologies are available for C. elegans, none of them scale very well for genome-wide application. To address this, we implemented a target-selected knockout approach that is based on random chemical mutagenesis and detection of single nucleotide mutations in genes of interest using high-throughput resequencing. A clonal library of 6144 EMS-mutagenized worms was established and screened, resulting in the identification of 1044 induced mutations in 109 Mbp, which translates into an average spacing between exonic mutations in the library of only 17 bp. We covered 25% of the open reading frames of 32 genes and identified one or more inactivating mutations (nonsense or splice site) in 84% of them. Extrapolation of our results indicates that nonsense mutations for >90% of all C. elegans genes are present in the library. To identify all of these mutations, one only needs to inspect those positions that--given the known specificity of the mutagen--can result in the introduction of a stop codon. We define these positions as nonsense introducing mutations (NIMs). The genome-wide collection of possible NIMs can be calculated for any organism with a sequenced genome and reduces the screening complexity by 200- to 2000-fold, depending on the organism and mutagen. For EMS-mutagenized C. elegans, there are only approximately 500,000 NIMs. We show that a NIM genotyping approach employing high-density microarrays can, in principle, be used for the genome-wide identification of C. elegans knockouts.
Collapse
Affiliation(s)
- Edwin Cuppen
- Hubrecht Laboratory, 3584 CT Utrecht, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Berezikov E, Bargmann CI, Plasterk RHA. Homologous gene targeting in Caenorhabditis elegans by biolistic transformation. Nucleic Acids Res 2004; 32:e40. [PMID: 14982959 PMCID: PMC390312 DOI: 10.1093/nar/gnh033] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Targeted homologous recombination is a powerful approach for genome manipulation that is widely used for gene alteration and knockouts in mouse and yeast. In Caenorhabditis elegans, several methods of target-selected mutagenesis have been implemented but none of them provides the opportunity of introducing exact predefined changes into the genome. Although anecdotal cases of homologous gene targeting in C.elegans have been reported, no practical technique of gene targeting has been developed so far. In this work we demonstrate that transformation of C.elegans by microparticle bombardment (biolistic transformation) can result in homologous recombination between introduced DNA and the chromosomal locus. We describe a scaled up version of biolistic transformation that can be used as a method for homologous gene targeting in the worm.
Collapse
Affiliation(s)
- Eugene Berezikov
- Hubrecht Laboratory, Netherlands Institute for Developmental Biology, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
| | | | | |
Collapse
|
13
|
Wei A, Yuan A, Fawcett G, Butler A, Davis T, Xu SY, Salkoff L. Efficient isolation of targeted Caenorhabditis elegans deletion strains using highly thermostable restriction endonucleases and PCR. Nucleic Acids Res 2002; 30:e110. [PMID: 12384612 PMCID: PMC137154 DOI: 10.1093/nar/gnf109] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Reverse genetic approaches to understanding gene function would be greatly facilitated by increasing the efficiency of methods for isolating mutants without the reliance on a predicted phenotype. Established PCR-based methods of isolating deletion mutants are widely used for this purpose in Caenorhabditis elegans. However, these methods are inefficient at isolating small deletions. We report here a novel modification of PCR-based methods, employing thermostable restriction enzymes to block the synthesis of wild-type PCR product, so that only the deletion PCR product is amplified. This modification greatly increases the efficiency of isolating small targeted deletions in C.elegans. Using this method six new deletion strains were isolated from a small screen of approximately 400 000 haploid genomes, most with deletions <1.0 kb. Greater PCR detection sensitivity by this modification permitted approximately 10-fold greater pooling of DNA samples, reducing the effort and reagents required for screens. In addition, effective suppression of non-specific amplification allowed multiplexing with several independent primer pairs. The increased efficiency of this technique makes it more practical for small laboratories to undertake gene knock-out screens.
Collapse
Affiliation(s)
- Aguan Wei
- Department of Anatomy and Neurobiology, Washington University School of Medicine, 660 South Euclid Avenue, Saint Louis, MO 63110, USA.
| | | | | | | | | | | | | |
Collapse
|
14
|
Edgley M, D'Souza A, Moulder G, McKay S, Shen B, Gilchrist E, Moerman D, Barstead R. Improved detection of small deletions in complex pools of DNA. Nucleic Acids Res 2002; 30:e52. [PMID: 12060690 PMCID: PMC117294 DOI: 10.1093/nar/gnf051] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
About 40% of the genes in the nematode Caenorhabditis elegans have homologs in humans. Based on the history of this model system, it is clear that the application of genetic methods to the study of this set of genes would provide important clues to their function in humans. To facilitate such genetic studies, we are engaged in a project to derive deletion alleles in every gene in this set. Our standard methods make use of nested PCR to hunt for animals in mutagenized populations that carry deletions at a given locus. The deletion bearing animals exist initially in mixed populations where the majority of the animals are wild type at the target. Therefore, the production of the PCR fragment representing the deletion allele competes with the production of the wild type fragment. The size of the deletion fragment relative to wild type determines whether it can compete to a level where it can be detected above the background. Using our standard conditions, we have found that when the deletion is <600 bp, the deletion fragment does not compete effectively with the production of the wild type fragment in PCR. Therefore, although our standard methods work well to detect mutants with deletions >600 bp, they do not work well to detect mutants with smaller deletions. Here we report a new strategy to detect small deletion alleles in complex DNA pools. Our new strategy is a modification of our standard PCR based screens. In the first round of the nested PCR, we include a third PCR primer between the two external primers. The presence of this third primer leads to the production of three fragments from wild type DNA. We configure the system so that two of these three fragments cannot serve as a template in the second round of the nested PCR. The addition of this third primer, therefore, handicaps the amplification from wild type template. On the other hand, the amplification of mutant fragments where the binding site for the third primer is deleted is unabated. Overall, we see at least a 500-fold increase in the sensitivity for small deletion fragments using our new method. Using this new method, we report the recovery of new deletion alleles within 12 C.elegans genes.
Collapse
Affiliation(s)
- Mark Edgley
- Biotechnology Laboratory and Department of Zoology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Degtyareva NP, Greenwell P, Hofmann ER, Hengartner MO, Zhang L, Culotti JG, Petes TD. Caenorhabditis elegans DNA mismatch repair gene msh-2 is required for microsatellite stability and maintenance of genome integrity. Proc Natl Acad Sci U S A 2002; 99:2158-63. [PMID: 11830642 PMCID: PMC122335 DOI: 10.1073/pnas.032671599] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/14/2001] [Indexed: 01/23/2023] Open
Abstract
Mismatch repair genes are important in maintaining the fidelity of DNA replication. To determine the function of the Caenorhabditis elegans homologue of the MSH2 mismatch repair gene (msh-2), we isolated a strain of C. elegans with an insertion of the transposable element Tc1 within msh-2. Early-passage msh-2 mutants were similar to wild-type worms with regard to lifespan and meiotic chromosome segregation but had slightly reduced fertility. The mutant worms had reduced DNA damage-induced germ-line apoptosis after genotoxic stress. The msh-2 mutants also had elevated levels of microsatellite instability and increased rates of reversion of the dominant unc-58(e665) mutation. In addition, serially passaged cultures of msh-2 worms died out much more quickly than those of wild-type worms. These results demonstrate that msh-2 function in C. elegans is important in regulating both short- and long-term genomic stability.
Collapse
Affiliation(s)
- Natasha P Degtyareva
- Department of Biology and Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC 27599-3280, USA
| | | | | | | | | | | | | |
Collapse
|
16
|
Rabphilin potentiates soluble N-ethylmaleimide sensitive factor attachment protein receptor function independently of rab3. J Neurosci 2002. [PMID: 11717359 DOI: 10.1523/jneurosci.21-23-09255.2001] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Rabphilin, a putative rab effector, interacts specifically with the GTP-bound form of the synaptic vesicle-associated protein rab3a. In this study, we define in vivo functions for rabphilin through the characterization of mutants that disrupt the Caenorhabditis elegans rabphilin homolog. The mutants do not display the general synaptic defects associated with rab3 lesions, as assayed at the pharmacological, physiological, and ultrastructural level. However, rabphilin mutants exhibit severe lethargy in the absence of mechanical stimulation. Furthermore, rabphilin mutations display strong synergistic interactions with hypomorphic lesions in the syntaxin, synaptosomal-associated protein of 25 kDa, and synaptobrevin soluble N-ethylmaleimide sensitive factor attachment protein receptor (SNARE) genes; double mutants were nonresponsive to mechanical stimulation. These synergistic interactions were independent of rab3 function and were not observed in rab3-SNARE double mutants. Our data reveal rab3-independent functions for rabphilin in the potentiation of SNARE function.
Collapse
|
17
|
Miller KG, Emerson MD, McManus JR, Rand JB. RIC-8 (Synembryn): a novel conserved protein that is required for G(q)alpha signaling in the C. elegans nervous system. Neuron 2000; 27:289-99. [PMID: 10985349 PMCID: PMC4704990 DOI: 10.1016/s0896-6273(00)00037-4] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Recent studies describe a network of signaling proteins centered around G(o)alpha and G(q)alpha that regulates neurotransmitter secretion in C. elegans by controlling the production and consumption of diacylglycerol (DAG). We sought other components of the Goalpha-G(q)alpha signaling network by screening for aldicarb-resistant mutants with phenotypes similar to egl-30 (G(q)alpha) mutants. In so doing, we identified ric-8, which encodes a novel protein named RIC-8 (synembryn). Through cDNA analysis, we show that RIC-8 is conserved in vertebrates. Through immunostaining, we show that RIC-8 is concentrated in the cytoplasm of neurons. Exogenous application of phorbol esters or loss of DGK-1 (diacylglycerol kinase) rescues ric-8 mutant phenotypes. A genetic analysis suggests that RIC-8 functions upstream of, or in conjunction with, EGL-30 (G(q)alpha).
Collapse
|
18
|
Korswagen HC, van der Linden AM, Plasterk RH. G protein hyperactivation of the Caenorhabditis elegans adenylyl cyclase SGS-1 induces neuronal degeneration. EMBO J 1998; 17:5059-65. [PMID: 9724641 PMCID: PMC1170833 DOI: 10.1093/emboj/17.17.5059] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Expression of a constitutively activated version of the heterotrimeric G protein alpha-subunit Galphas results in the swelling and vacuolization of a specific subset of ventral nerve cord motoneurons of Caenorhabditis elegans. A second site modifier (sgs-1) that completely suppresses this neuronal degeneration has been isolated. sgs-1 was cloned and was shown to encode an adenylyl cyclase which is most similar to mammalian adenylyl cyclase type IX. Mutations in sgs-1 change residues that are conserved among different adenylyl cyclases. These mutations are located in the two catalytic domains and in the first multiple transmembrane spanning region of the predicted protein. An sgs-1 reporter construct shows a general neuronal expression pattern, demonstrating that sgs-1 is expressed in the neurons that are susceptible to activated Galphas-induced cell death. A second C.elegans adenylyl cyclase gene (acy-2) was analyzed as well. In contrast to sgs-1, acy-2 shows a restricted expression pattern and loss of acy-2 function results in early larval lethality. These results suggest that SGS-1 is a target of Galphas signaling in motoneurons, whereas an interaction of Galphas with ACY-2, probably in the canal-associated neurons, is required for viability.
Collapse
Affiliation(s)
- H C Korswagen
- Division of Molecular Biology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | | | | |
Collapse
|
19
|
Ingram GC, Doyle S, Carpenter R, Schultz EA, Simon R, Coen ES. Dual role for fimbriata in regulating floral homeotic genes and cell division in Antirrhinum. EMBO J 1997; 16:6521-34. [PMID: 9351833 PMCID: PMC1170257 DOI: 10.1093/emboj/16.21.6521] [Citation(s) in RCA: 140] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The fimbriata (fim) gene of Antirrhinum affects both the identity and arrangement of organs within the flower, and encodes a protein with an F-box motif. We show that FIM associates with a family of proteins, termed FAPs (FIM-associated proteins), that are closely related to human and yeast Skp1 proteins. These proteins form complexes with F-box-containing partners to promote protein degradation and cell cycle progression. The fap genes are expressed in inflorescence and floral meristems in a pattern that incorporates the domain of fim expression, supporting an in vivo role for a FIM-FAP complex. Analysis of a series of novel fim alleles shows that fim plays a key role in the activation of organ identity genes. In addition, fim acts in the regions between floral organs to specify the correct positioning and maintenance of morphological boundaries. Taking these results together, we propose that FIM-FAP complexes affect both gene expression and cell division, perhaps by promoting selective degradation of regulatory proteins. This may provide a mechanism by which morphological boundaries can be aligned with domains of gene expression during floral development.
Collapse
|
20
|
Maryon EB, Coronado R, Anderson P. unc-68 encodes a ryanodine receptor involved in regulating C. elegans body-wall muscle contraction. J Cell Biol 1996; 134:885-93. [PMID: 8769414 PMCID: PMC2120954 DOI: 10.1083/jcb.134.4.885] [Citation(s) in RCA: 110] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Striated muscle contraction is elicited by the release of stored calcium ions through ryanodine receptor channels in the sarcoplasmic reticulum. ryr-1 is a C. elegans ryanodine receptor homologue that is expressed in body-wall muscle cells used for locomotion. Using genetic methods, we show that ryr-1 is the previously identified locus unc-68. First, transposon-induced deletions within ryr-1 are alleles of unc-68. Second, transformation of unc-68 mutants with ryr-1 genomic DNA results in rescue of the Unc phenotype. unc-68 mutants move poorly, exhibiting an incomplete flaccid paralysis, yet have normal muscle ultrastructure. The mutants are insensitive to the paralytic effects of ryanodine, and lack detectable ryanodine-binding activity. The Unc-68 phenotype suggests that ryanodine receptors are not essential for excitation-contraction coupling in nematodes, but act to amplify a (calcium) signal that is sufficient for contraction.
Collapse
Affiliation(s)
- E B Maryon
- Department of Genetics, University of Wisconsin, Madison 53706, USA
| | | | | |
Collapse
|
21
|
Creutz CE, Snyder SL, Daigle SN, Redick J. Identification, localization, and functional implications of an abundant nematode annexin. J Biophys Biochem Cytol 1996; 132:1079-92. [PMID: 8601586 PMCID: PMC2120750 DOI: 10.1083/jcb.132.6.1079] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Cultures of the nematode C. elegans were examined for the presence of calcium-dependent, phospholipid-binding proteins of the annexin class. A single protein of apparent mass on SDS-polyacrylamide gels of 32 kD was isolated from soluble extracts of nematode cultures on the basis of its ability to bind to phospholipids in a calcium-dependent manner. After verification of the protein as an annexin by peptide sequencing, an antiserum to the protein was prepared and used to isolate a corresponding cDNA from an expression library in phage lambda gt11. The encoded protein, herein referred to as the nex-1 annexin, has a mass of 35 kD and is 36-42% identical in sequence to 10 known mammalian annexins. Several unique modifications were found in the portions of the sequence corresponding to calcium-binding sites. Possible phosphorylation sites in the NH2-terminal domain of the nematode annexin correspond to those of mammalian annexins. The gene for this annexin (nex-1) was physically mapped to chromosome III in the vicinity of the dpy-17 genetic marker. Two other annexin genes (nex-2 and nex-3) were also identified in chromosome III sequences reported by the nematode genomic sequencing project (Sulston, J., Z. Du, K. Thomas, R. Wilson, L. Hillier, R. Staden, N. Halloran, P. Green, J. Thierry-Mieg, L. Qiu, et al. 1992. Nature (Lond.). 356:37-41). The nex-1 annexin was localized in the nematode by immunofluorescence and by electron microscopy using immunogold labeling. The protein is associated with membrane systems of the secretory gland cells of the pharynx, with sites of cuticle formation in the grinder in the pharynx, with yolk granules in oocytes, with the uterine wall and vulva, and with membrane systems in the spermathecal valve. The presence of the annexin in association with the membranes of the spermathecal valve suggests a novel function of the protein in the folding and unfolding of these membranes as eggs pass through the valve. The localizations also indicate roles for the annexin corresponding to those proposed in mammalian systems in membrane trafficking, collagen deposition, and extracellular matrix formation.
Collapse
Affiliation(s)
- C E Creutz
- Department of Pharmacology, University of Virginia, Charlottesville 22908, USA
| | | | | | | |
Collapse
|
22
|
Rushforth AM, Anderson P. Splicing removes the Caenorhabditis elegans transposon Tc1 from most mutant pre-mRNAs. Mol Cell Biol 1996; 16:422-9. [PMID: 8524324 PMCID: PMC231018 DOI: 10.1128/mcb.16.1.422] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The transposable element Tc1 is responsible for most spontaneous mutations that occur in many Caenorhabditis elegans strains. We analyzed the abundance and sequence of mRNAs expressed from five different Tc1 insertions within either hlh-1 (a MyoD homolog) or unc-54 (a myosin heavy chain gene). Each of the mutants expresses substantial quantities of mature mRNA in which most or all of Tc1 has been removed by splicing. Such mRNAs contain small insertions of Tc1 sequences and/or deletions of target gene sequences at the resulting spliced junctions. Most of these mutant mRNAs do not contain premature stop codons, and many are translated in frame to produce proteins that are functional in vivo. The number and variety of splice sites used to remove Tc1 from these mutant pre-mRNAs are remarkable. Two-thirds of the Tc1-containing introns removed from hlh-1 and unc-54 lack either the 5'-GU or AG-3' dinucleotides typically found at the termini of eukaryotic introns. We conclude that splicing to remove Tc1 from mutant pre-mRNAs allows many Tc1 insertions to be phenotypically silent. Such mRNA processing may help Tc1 escape negative selection.
Collapse
Affiliation(s)
- A M Rushforth
- Department of Genetics, University of Wisconsin, Madison 53706, USA
| | | |
Collapse
|
23
|
Koes R, Souer E, van Houwelingen A, Mur L, Spelt C, Quattrocchio F, Wing J, Oppedijk B, Ahmed S, Maes T. Targeted gene inactivation in petunia by PCR-based selection of transposon insertion mutants. Proc Natl Acad Sci U S A 1995; 92:8149-53. [PMID: 7667260 PMCID: PMC41113 DOI: 10.1073/pnas.92.18.8149] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Establishment of loss-of-function phenotypes is often a key step in determining the biological function of a gene. We describe a procedure to obtain mutant petunia plants in which a specific gene with known sequence is inactivated by the transposable element dTph1. Leaves are collected from batches of 1000 plants with highly active dTph1 elements, pooled according to a three-dimensional matrix, and screened by PCR using a transposon- and a gene-specific primer. In this way individual plants with a dTph1 insertion can be identified by analysis of about 30 PCRs. We found insertion alleles for various genes at a frequency of about 1 in 1000 plants. The plant population can be preserved by selfing all the plants, so that it can be screened for insertions in many genes over a prolonged period.
Collapse
Affiliation(s)
- R Koes
- Department of Genetics, Vrije Universiteit, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Goetinck S, Waterston RH. The Caenorhabditis elegans muscle-affecting gene unc-87 encodes a novel thin filament-associated protein. J Cell Biol 1994; 127:79-93. [PMID: 7929573 PMCID: PMC2120179 DOI: 10.1083/jcb.127.1.79] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Mutations in the unc-87 gene of Caenorhabditis elegans affect the structure and function of bodywall muscle, resulting in variable paralysis. We cloned the unc-87 gene by taking advantage of a transposon-induced allele of unc-87 and the correspondence of the genetic and physical maps in C. elegans. A genomic clone was isolated that alleviates the mutant phenotype when introduced into unc-87 mutants. Sequence analysis of a corresponding cDNA clone predicts a 357-amino acid, 40-kD protein that is similar to portions of the vertebrate smooth muscle proteins calponin and SM22 alpha, the Drosophila muscle protein mp20, the deduced product of the C. elegans cDNA cm7g3, and the rat neuronal protein np25. Analysis of the genomic sequence and of various transcripts represented in a cDNA library suggest that unc-87 mRNAs are subject to alternative splicing. Immunohistochemistry of wildtype and mutant animals with antibodies to an unc-87 fusion protein indicates that the gene product is localized to the I-band of bodywall muscle. Studies of the UNC-87 protein in other muscle mutants suggest that the unc-87 gene product associates with thin filaments, in a manner that does not depend on the presence of the thin filament protein tropomyosin.
Collapse
Affiliation(s)
- S Goetinck
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri 63110
| | | |
Collapse
|
25
|
Radice AD, Bugaj B, Fitch DH, Emmons SW. Widespread occurrence of the Tc1 transposon family: Tc1-like transposons from teleost fish. MOLECULAR & GENERAL GENETICS : MGG 1994; 244:606-12. [PMID: 7969029 DOI: 10.1007/bf00282750] [Citation(s) in RCA: 103] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
We characterized five transposable elements from fish: one from zebrafish (Brachydanio rerio), one from rainbow trout (Salmo gairdneri), and three from Atlantic salmon (Salmo salar). All are closely similar in structure to the Tc1 transposon of the nematode Caenorhabditis elegans. A comparison of 17 Tc1-like transposons from species representing three phyla (nematodes, arthropods, and chordates) showed that these elements make up a highly conserved transposon family. Most are close to 1.7 kb in length, have inverted terminal repeats, have conserved terminal nucleotides, and each contains a single gene encoding similar polypeptides. The phylogenetic relationships of the transposons were reconstructed from the amino acid sequences of the conceptual proteins and from DNA sequences. The elements are highly diverged and have evidently inhibited the genomes of these diverse species for a long time. To account for the data, it is not necessary to invoke recent horizontal transmission.
Collapse
Affiliation(s)
- A D Radice
- Department of Molecular Genetics, Albert Einstein College of Medicine, Bronx, NY 10461
| | | | | | | |
Collapse
|
26
|
Sentry JW, Kaiser K. Application of inverse PCR to site-selected mutagenesis of Drosophila. Nucleic Acids Res 1994; 22:3429-30. [PMID: 8078781 PMCID: PMC523742 DOI: 10.1093/nar/22.16.3429] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Affiliation(s)
- J W Sentry
- Department of Genetics, University of Glasgow, UK
| | | |
Collapse
|
27
|
Imprecise excision of the Caenorhabditis elegans transposon Tc1 creates functional 5' splice sites. Mol Cell Biol 1994. [PMID: 7513051 DOI: 10.1128/mcb.14.5.3426] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Imprecise excision of the Caenorhabditis elegans transposon Tc1 from a specific site of insertion within the unc-54 myosin heavy chain gene generates either wild-type or partial phenotypic revertants. Wild-type revertants and one class of partial revertants contain insertions of four nucleotides in the unc-54 third exon (Tc1 "footprints"). Such revertants express large amounts of functional unc-54 myosin despite having what would appear to be frameshifting insertions in the unc-54 third exon. We demonstrate that these Tc1 footprints act as efficient 5' splice sites for removal of the unc-54 third intron. Splicing of these new 5' splice sites to the normal third intron splice acceptor removes the Tc1 footprint from the mature mRNA and restores the normal translational reading frame. Partial revertant unc-54(r661), which contains a single nucleotide substitution relative to the wild-type gene, is spliced similarly, except that the use of its new 5' splice site creates a frameshift in the mature mRNA rather than removing one. In all of these revertants, two alternative 5' splice sites are available to remove intron 3. We determined the relative efficiency with which each alternative 5' splice site is used by stabilizing frameshifted mRNAs with smg(-) genetic backgrounds. In all cases, the upstream member of the two alternative sites is used preferentially (> 75% utilization). This may reflect an inherent preference of the splicing machinery for the upstream member of two closely spaced 5' splice sites. Creation of new 5' splice sites may be a general characteristic of Tc1 insertion and excision events.
Collapse
|
28
|
Carr B, Anderson P. Imprecise excision of the Caenorhabditis elegans transposon Tc1 creates functional 5' splice sites. Mol Cell Biol 1994; 14:3426-33. [PMID: 7513051 PMCID: PMC358707 DOI: 10.1128/mcb.14.5.3426-3433.1994] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Imprecise excision of the Caenorhabditis elegans transposon Tc1 from a specific site of insertion within the unc-54 myosin heavy chain gene generates either wild-type or partial phenotypic revertants. Wild-type revertants and one class of partial revertants contain insertions of four nucleotides in the unc-54 third exon (Tc1 "footprints"). Such revertants express large amounts of functional unc-54 myosin despite having what would appear to be frameshifting insertions in the unc-54 third exon. We demonstrate that these Tc1 footprints act as efficient 5' splice sites for removal of the unc-54 third intron. Splicing of these new 5' splice sites to the normal third intron splice acceptor removes the Tc1 footprint from the mature mRNA and restores the normal translational reading frame. Partial revertant unc-54(r661), which contains a single nucleotide substitution relative to the wild-type gene, is spliced similarly, except that the use of its new 5' splice site creates a frameshift in the mature mRNA rather than removing one. In all of these revertants, two alternative 5' splice sites are available to remove intron 3. We determined the relative efficiency with which each alternative 5' splice site is used by stabilizing frameshifted mRNAs with smg(-) genetic backgrounds. In all cases, the upstream member of the two alternative sites is used preferentially (> 75% utilization). This may reflect an inherent preference of the splicing machinery for the upstream member of two closely spaced 5' splice sites. Creation of new 5' splice sites may be a general characteristic of Tc1 insertion and excision events.
Collapse
Affiliation(s)
- B Carr
- Program in Cell and Molecular Biology, University of Wisconsin, Madison 53706
| | | |
Collapse
|
29
|
Zwaal RR, Broeks A, van Meurs J, Groenen JT, Plasterk RH. Target-selected gene inactivation in Caenorhabditis elegans by using a frozen transposon insertion mutant bank. Proc Natl Acad Sci U S A 1993; 90:7431-5. [PMID: 8395047 PMCID: PMC47155 DOI: 10.1073/pnas.90.16.7431] [Citation(s) in RCA: 218] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
To understand how genotype determines the phenotype of the animal Caenorhabditis elegans, one ideally needs to know the complete sequence of the genome and the contribution of genes to phenotype, which requires an efficient strategy for reverse genetics. We here report that the Tc1 transposon induces frequent deletions of flanking DNA, apparently resulting from Tc1 excision followed by imprecise DNA repair. We use this to inactivate genes in two steps. (i) We established a frozen library of 5000 nematode lines mutagenized by Tc1 insertion, from which insertion mutants of genes of interest can be recovered. Their address within the library is determined by PCR. (ii) Animals are then screened, again by PCR, to detect derivatives in which Tc1 and 1000-2000 base pairs of flanking DNA are deleted, and thus a gene of interest is inactivated. We have thus far isolated Tc1 insertions in 16 different genes and obtained deletion derivatives of 6 of those.
Collapse
Affiliation(s)
- R R Zwaal
- Division of Molecular Biology, The Netherlands Cancer Institute, Amsterdam
| | | | | | | | | |
Collapse
|