1
|
Mishra PK, Au WC, Castineira PG, Ali N, Stanton J, Boeckmann L, Takahashi Y, Costanzo M, Boone C, Bloom KS, Thorpe PH, Basrai MA. Misregulation of cell cycle-dependent methylation of budding yeast CENP-A contributes to chromosomal instability. Mol Biol Cell 2023; 34:ar99. [PMID: 37436802 PMCID: PMC10551700 DOI: 10.1091/mbc.e23-03-0108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/15/2023] [Accepted: 07/06/2023] [Indexed: 07/13/2023] Open
Abstract
Centromere (CEN) identity is specified epigenetically by specialized nucleosomes containing evolutionarily conserved CEN-specific histone H3 variant CENP-A (Cse4 in Saccharomyces cerevisiae, CENP-A in humans), which is essential for faithful chromosome segregation. However, the epigenetic mechanisms that regulate Cse4 function have not been fully defined. In this study, we show that cell cycle-dependent methylation of Cse4-R37 regulates kinetochore function and high-fidelity chromosome segregation. We generated a custom antibody that specifically recognizes methylated Cse4-R37 and showed that methylation of Cse4 is cell cycle regulated with maximum levels of methylated Cse4-R37 and its enrichment at the CEN chromatin occur in the mitotic cells. Methyl-mimic cse4-R37F mutant exhibits synthetic lethality with kinetochore mutants, reduced levels of CEN-associated kinetochore proteins and chromosome instability (CIN), suggesting that mimicking the methylation of Cse4-R37 throughout the cell cycle is detrimental to faithful chromosome segregation. Our results showed that SPOUT methyltransferase Upa1 contributes to methylation of Cse4-R37 and overexpression of UPA1 leads to CIN phenotype. In summary, our studies have defined a role for cell cycle-regulated methylation of Cse4 in high-fidelity chromosome segregation and highlight an important role of epigenetic modifications such as methylation of kinetochore proteins in preventing CIN, an important hallmark of human cancers.
Collapse
Affiliation(s)
- Prashant K. Mishra
- Genetics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Wei-Chun Au
- Genetics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Pedro G. Castineira
- Genetics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Nazrin Ali
- Queen Mary University of London, E1 4NS, UK
| | - John Stanton
- University of North Carolina, Chapel Hill, NC 27599
| | - Lars Boeckmann
- Genetics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Yoshimitsu Takahashi
- Genetics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Michael Costanzo
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, M5S 3E1, Canada
| | - Charles Boone
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, M5S 3E1, Canada
| | | | | | - Munira A. Basrai
- Genetics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
2
|
Garus A, Autexier C. Dyskerin: an essential pseudouridine synthase with multifaceted roles in ribosome biogenesis, splicing, and telomere maintenance. RNA (NEW YORK, N.Y.) 2021; 27:1441-1458. [PMID: 34556550 PMCID: PMC8594475 DOI: 10.1261/rna.078953.121] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Dyskerin and its homologs are ancient and conserved enzymes that catalyze the most common post-transcriptional modification found in cells, pseudouridylation. The resulting pseudouridines provide stability to RNA molecules and regulate ribosome biogenesis and splicing events. Dyskerin does not act independently-it is the core component of a protein heterotetramer, which associates with RNAs that contain the H/ACA motif. The variety of H/ACA RNAs that guide the function of this ribonucleoprotein (RNP) complex highlights the diversity of cellular processes in which dyskerin participates. When associated with small nucleolar (sno) RNAs, it regulates ribosomal (r) RNAs and ribosome biogenesis. By interacting with small Cajal body (sca) RNAs, it targets small nuclear (sn) RNAs to regulate pre-mRNA splicing. As a component of the telomerase holoenzyme, dyskerin binds to the telomerase RNA to modulate telomere maintenance. In a disease context, dyskerin malfunction can result in multiple detrimental phenotypes. Mutations in DKC1, the gene that encodes dyskerin, cause the premature aging syndrome X-linked dyskeratosis congenita (X-DC), a still incurable disorder that typically leads to bone marrow failure. In this review, we present the classical and most recent findings on this essential protein, discussing the evolutionary, structural, and functional aspects of dyskerin and the H/ACA RNP. The latest research underscores the role that dyskerin plays in the regulation of gene expression, translation efficiency, and telomere maintenance, along with the impacts that defective dyskerin has on aging, cell proliferation, haematopoietic potential, and cancer.
Collapse
Affiliation(s)
- Alexandre Garus
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, H3A 0C7, Canada
- Jewish General Hospital, Lady Davis Institute, Montreal, Quebec, H3T 1E2, Canada
| | - Chantal Autexier
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, H3A 0C7, Canada
- Jewish General Hospital, Lady Davis Institute, Montreal, Quebec, H3T 1E2, Canada
| |
Collapse
|
3
|
SUMOylation- and GAR1-Dependent Regulation of Dyskerin Nuclear and Subnuclear Localization. Mol Cell Biol 2021; 41:MCB.00464-20. [PMID: 33526451 DOI: 10.1128/mcb.00464-20] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 01/20/2021] [Indexed: 12/29/2022] Open
Abstract
The nuclear and subnuclear compartmentalization of the telomerase-associated protein and H/ACA ribonucleoprotein component dyskerin is an important although incompletely understood aspect of H/ACA ribonucleoprotein function. Four SUMOylation sites were previously identified in the C-terminal nuclear/nucleolar localization signal (N/NoLS) of dyskerin. We found that a cytoplasmic localized C-terminal truncation variant of dyskerin lacking most of the C-terminal N/NoLS represents an under-SUMOylated variant of dyskerin compared to wild-type dyskerin. We demonstrate that mimicking constitutive SUMOylation of dyskerin using a SUMO3 fusion construct can drive nuclear accumulation of this variant and that the SUMO site K467 in this N/NoLS is particularly important for the subnuclear localization of dyskerin to the nucleolus in a mature H/ACA complex assembly- and SUMO-dependent manner. We also characterize a novel SUMO-interacting motif in the mature H/ACA complex component GAR1 that mediates the interaction between dyskerin and GAR1. Mislocalization of dyskerin, either in the cytoplasm or excluded from the nucleolus, disrupts dyskerin function and leads to reduced interaction of dyskerin with the telomerase RNA. These data indicate a role for dyskerin C-terminal N/NoLS SUMOylation in regulating the nuclear and subnuclear localization of dyskerin, which is essential for dyskerin function as both a telomerase-associated protein and as an H/ACA ribonucleoprotein.
Collapse
|
4
|
Czekay DP, Kothe U. H/ACA Small Ribonucleoproteins: Structural and Functional Comparison Between Archaea and Eukaryotes. Front Microbiol 2021; 12:654370. [PMID: 33776984 PMCID: PMC7991803 DOI: 10.3389/fmicb.2021.654370] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 02/18/2021] [Indexed: 01/04/2023] Open
Abstract
During ribosome synthesis, ribosomal RNA is modified through the formation of many pseudouridines and methylations which contribute to ribosome function across all domains of life. In archaea and eukaryotes, pseudouridylation of rRNA is catalyzed by H/ACA small ribonucleoproteins (sRNPs) utilizing different H/ACA guide RNAs to identify target uridines for modification. H/ACA sRNPs are conserved in archaea and eukaryotes, as they share a common general architecture and function, but there are also several notable differences between archaeal and eukaryotic H/ACA sRNPs. Due to the higher protein stability in archaea, we have more information on the structure of archaeal H/ACA sRNPs compared to eukaryotic counterparts. However, based on the long history of yeast genetic and other cellular studies, the biological role of H/ACA sRNPs during ribosome biogenesis is better understood in eukaryotes than archaea. Therefore, this review provides an overview of the current knowledge on H/ACA sRNPs from archaea, in particular their structure and function, and relates it to our understanding of the roles of eukaryotic H/ACA sRNP during eukaryotic ribosome synthesis and beyond. Based on this comparison of our current insights into archaeal and eukaryotic H/ACA sRNPs, we discuss what role archaeal H/ACA sRNPs may play in the formation of ribosomes.
Collapse
Affiliation(s)
- Dominic P Czekay
- Department of Chemistry and Biochemistry, Alberta RNA Research and Training Institute, University of Lethbridge, Lethbridge, AB, Canada
| | - Ute Kothe
- Department of Chemistry and Biochemistry, Alberta RNA Research and Training Institute, University of Lethbridge, Lethbridge, AB, Canada
| |
Collapse
|
5
|
Ojha S, Malla S, Lyons SM. snoRNPs: Functions in Ribosome Biogenesis. Biomolecules 2020; 10:biom10050783. [PMID: 32443616 PMCID: PMC7277114 DOI: 10.3390/biom10050783] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/10/2020] [Accepted: 05/13/2020] [Indexed: 01/18/2023] Open
Abstract
Ribosomes are perhaps the most critical macromolecular machine as they are tasked with carrying out protein synthesis in cells. They are incredibly complex structures composed of protein components and heavily chemically modified RNAs. The task of assembling mature ribosomes from their component parts consumes a massive amount of energy and requires greater than 200 assembly factors. Among the most critical of these are small nucleolar ribonucleoproteins (snoRNPs). These are small RNAs complexed with diverse sets of proteins. As suggested by their name, they localize to the nucleolus, the site of ribosome biogenesis. There, they facilitate multiple roles in ribosomes biogenesis, such as pseudouridylation and 2′-O-methylation of ribosomal (r)RNA, guiding pre-rRNA processing, and acting as molecular chaperones. Here, we reviewed their activity in promoting the assembly of ribosomes in eukaryotes with regards to chemical modification and pre-rRNA processing.
Collapse
Affiliation(s)
- Sandeep Ojha
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02115, USA; (S.O.); (S.M.)
| | - Sulochan Malla
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02115, USA; (S.O.); (S.M.)
| | - Shawn M. Lyons
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02115, USA; (S.O.); (S.M.)
- The Genome Science Institute, Boston University School of Medicine, Boston, MA 02115, USA
- Correspondence: ; Tel.: +1-617-358-4280
| |
Collapse
|
6
|
Dyskerin Mutations Present in Dyskeratosis Congenita Patients Increase Oxidative Stress and DNA Damage Signalling in Dictyostelium Discoideum. Cells 2019; 8:cells8111406. [PMID: 31717312 PMCID: PMC6912284 DOI: 10.3390/cells8111406] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 11/04/2019] [Accepted: 11/05/2019] [Indexed: 12/17/2022] Open
Abstract
Dyskerin is a protein involved in the formation of small nucleolar and small Cajal body ribonucleoproteins. These complexes participate in RNA pseudouridylation and are also components of the telomerase complex required for telomere elongation. Dyskerin mutations cause a rare disease, X-linked dyskeratosis congenita, with no curative treatment. The social amoeba Dictyostelium discoideum contains a gene coding for a dyskerin homologous protein. In this article D. discoideum mutant strains that have mutations corresponding to mutations found in dyskeratosis congenita patients are described. The phenotype of the mutant strains has been studied and no alterations were observed in pseudouridylation activity and telomere structure. Mutant strains showed increased proliferation on liquid culture but reduced growth feeding on bacteria. The results obtained indicated the existence of increased DNA damage response and reactive oxygen species, as also reported in human Dyskeratosis congenita cells and some other disease models. These data, together with the haploid character of D. discoideum vegetative cells, that resemble the genomic structure of the human dyskerin gene, located in the X chromosome, support the conclusion that D. discoideum can be a good model system for the study of this disease.
Collapse
|
7
|
Leighton LJ, Bredy TW. Functional Interplay between Small Non-Coding RNAs and RNA Modification in the Brain. Noncoding RNA 2018; 4:E15. [PMID: 29880782 PMCID: PMC6027130 DOI: 10.3390/ncrna4020015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 05/23/2018] [Accepted: 05/30/2018] [Indexed: 12/11/2022] Open
Abstract
Small non-coding RNAs are essential for transcription, translation and gene regulation in all cell types, but are particularly important in neurons, with known roles in neurodevelopment, neuroplasticity and neurological disease. Many small non-coding RNAs are directly involved in the post-transcriptional modification of other RNA species, while others are themselves substrates for modification, or are functionally modulated by modification of their target RNAs. In this review, we explore the known and potential functions of several distinct classes of small non-coding RNAs in the mammalian brain, focusing on the newly recognised interplay between the epitranscriptome and the activity of small RNAs. We discuss the potential for this relationship to influence the spatial and temporal dynamics of gene activation in the brain, and predict that further research in the field of epitranscriptomics will identify interactions between small RNAs and RNA modifications which are essential for higher order brain functions such as learning and memory.
Collapse
Affiliation(s)
- Laura J Leighton
- Cognitive Neuroepigenetics Laboratory, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia.
| | - Timothy W Bredy
- Cognitive Neuroepigenetics Laboratory, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
8
|
Evolution of Eukaryal and Archaeal Pseudouridine Synthase Pus10. J Mol Evol 2018; 86:77-89. [PMID: 29349599 DOI: 10.1007/s00239-018-9827-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 01/03/2018] [Indexed: 10/18/2022]
Abstract
In archaea, pseudouridine (Ψ) synthase Pus10 modifies uridine (U) to Ψ at positions 54 and 55 of tRNA. In contrast, Pus10 is not found in bacteria, where modifications at those two positions are carried out by TrmA (U54 to m5U54) and TruB (U55 to Ψ55). Many eukaryotes have an apparent redundancy; their genomes contain orthologs of archaeal Pus10 and bacterial TrmA and TruB. Although eukaryal Pus10 genes share a conserved catalytic domain with archaeal Pus10 genes, their biological roles are not clear for the two reasons. First, experimental evidence suggests that human Pus10 participates in apoptosis induced by the tumor necrosis factor-related apoptosis-inducing ligand. Whether the function of human Pus10 is in place or in addition to of Ψ synthesis in tRNA is unknown. Second, Pus10 is found in earlier evolutionary branches of fungi (such as chytrid Batrachochytrium) but is absent in all dikaryon fungi surveyed (Ascomycetes and Basidiomycetes). We did a comprehensive analysis of sequenced genomes and found that orthologs of Pus10, TrmA, and TruB were present in all the animals, plants, and protozoa surveyed. This indicates that the common eukaryotic ancestor possesses all the three genes. Next, we examined 116 archaeal and eukaryotic Pus10 protein sequences to find that Pus10 existed as a single copy gene in all the surveyed genomes despite ancestral whole genome duplications had occurred. This indicates a possible deleterious gene dosage effect. Our results suggest that functional redundancy result in gene loss or neofunctionalization in different evolutionary lineages.
Collapse
|
9
|
Di Maio N, Vicidomini R, Angrisani A, Belli V, Furia M, Turano M. A new role for human dyskerin in vesicular trafficking. FEBS Open Bio 2017; 7:1453-1468. [PMID: 28979836 PMCID: PMC5623704 DOI: 10.1002/2211-5463.12307] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 08/23/2017] [Accepted: 08/23/2017] [Indexed: 11/11/2022] Open
Abstract
Dyskerin is an essential, conserved, multifunctional protein found in the nucleolus, whose loss of function causes the rare genetic diseases X‐linked dyskeratosis congenita and Hoyeraal‐Hreidarsson syndrome. To further investigate the wide range of dyskerin's biological roles, we set up stable cell lines able to trigger inducible protein knockdown and allow a detailed analysis of the cascade of events occurring within a short time frame. We report that dyskerin depletion quickly induces cytoskeleton remodeling and significant alterations in endocytic Ras‐related protein Rab‐5A/Rab11 trafficking. These effects arise in different cell lines well before the onset of telomere shortening, which is widely considered the main cause of dyskerin‐related diseases. Given that vesicular trafficking affects many homeostatic and differentiative processes, these findings add novel insights into the molecular mechanisms underlining the pleiotropic manifestation of the dyskerin loss‐of‐function phenotype.
Collapse
Affiliation(s)
- Nunzia Di Maio
- Department of BiologyUniversity of Naples 'Federico II'NapoliItaly
| | - Rosario Vicidomini
- Department of BiologyUniversity of Naples 'Federico II'NapoliItaly.,Present address: NICHD (National Institute of Child Health and Human Development)- Section on Metabolic Regulation -NIH-35 Convent DRBethesdaMDUSA
| | | | - Valentina Belli
- Department of BiologyUniversity of Naples 'Federico II'NapoliItaly.,Present address: Medical OncologyDepartment of Clinical and Experimental Medicine "F. Magrassi"Universitá degli Studi della Campania "Luigi Vanvitelli"NaplesItaly
| | - Maria Furia
- Department of BiologyUniversity of Naples 'Federico II'NapoliItaly
| | - Mimmo Turano
- Department of BiologyUniversity of Naples 'Federico II'NapoliItaly
| |
Collapse
|
10
|
Abstract
Pseudouridine (Ψ) is the most abundant posttranscriptional modification in noncoding RNAs. Pseudouridines are often clustered in important regions of rRNAs (ribosomal RNAs), snRNAs (small nuclear RNAs), and tRNAs (transfer RNAs), contributing to RNA function. Pseudouridylation is governed by two independent mechanisms. The first involves single protein enzymes called pseudouridine synthases (PUSs) that alone recognize the substrate and catalyze the isomerization of uridine to pseudouridine (RNA-independent pseudouridylation). The second is an RNA-guided pseudouridylation by a family of box H/ACA RNPs (ribonucleoproteins), each of which consists of a unique RNA (box H/ACA RNA) and four common core proteins (Cbf5/NAP57/Dyskerin, Nhp2/L7Ae, Nop10, and Gar1). The RNA component serves as a guide that base pairs with the substrate RNA and directs the enzyme (Cbf5) to carry out the pseudouridylation reaction at a specific site. The crystal structures of many PUSs have been solved in numerous organisms including E. coli and human. Several partial and complete crystal structures of archaea and yeast box H/ACA RNPs are available, providing a rich source of information regarding the molecular interactions between protein components and box H/ACA RNA. Over the years, several experimental systems have been developed to study the mechanism and function of pseudouridylation. Apart from noncoding RNA pseudouridylation, recent experiments have provided evidence of mRNA pseudouridylation as well. Despite remarkable progress, there is a need to accelerate efforts in order to understand the detailed mechanisms and functions of RNA pseudouridylation.
Collapse
Affiliation(s)
- Meemanage D De Zoysa
- University of Rochester Medical Center, Center for RNA Biology, Rochester, NY, United States
| | - Yi-Tao Yu
- University of Rochester Medical Center, Center for RNA Biology, Rochester, NY, United States.
| |
Collapse
|
11
|
Chen K, Zhao BS, He C. Nucleic Acid Modifications in Regulation of Gene Expression. Cell Chem Biol 2016; 23:74-85. [PMID: 26933737 DOI: 10.1016/j.chembiol.2015.11.007] [Citation(s) in RCA: 207] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 11/13/2015] [Accepted: 11/13/2015] [Indexed: 10/22/2022]
Abstract
Nucleic acids carry a wide range of different chemical modifications. In contrast to previous views that these modifications are static and only play fine-tuning functions, recent research advances paint a much more dynamic picture. Nucleic acids carry diverse modifications and employ these chemical marks to exert essential or critical influences in a variety of cellular processes in eukaryotic organisms. This review covers several nucleic acid modifications that play important regulatory roles in biological systems, especially in regulation of gene expression: 5-methylcytosine (5mC) and its oxidative derivatives, and N(6)-methyladenine (6mA) in DNA; N(6)-methyladenosine (m(6)A), pseudouridine (Ψ), and 5-methylcytidine (m(5)C) in mRNA and long non-coding RNA. Modifications in other non-coding RNAs, such as tRNA, miRNA, and snRNA, are also briefly summarized. We provide brief historical perspective of the field, and highlight recent progress in identifying diverse nucleic acid modifications and exploring their functions in different organisms. Overall, we believe that work in this field will yield additional layers of both chemical and biological complexity as we continue to uncover functional consequences of known nucleic acid modifications and discover new ones.
Collapse
Affiliation(s)
- Kai Chen
- Department of Chemistry and Institute for Biophysical Dynamics, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA; Howard Hughes Medical Institute, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA
| | - Boxuan Simen Zhao
- Department of Chemistry and Institute for Biophysical Dynamics, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA; Howard Hughes Medical Institute, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA
| | - Chuan He
- Department of Chemistry and Institute for Biophysical Dynamics, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA; Howard Hughes Medical Institute, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA; Department of Biochemistry and Molecular Biology, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA.
| |
Collapse
|
12
|
Majumder M, Bosmeny MS, Gupta R. Structure-function relationships of archaeal Cbf5 during in vivo RNA-guided pseudouridylation. RNA (NEW YORK, N.Y.) 2016; 22:1604-1619. [PMID: 27539785 PMCID: PMC5029457 DOI: 10.1261/rna.057547.116] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 07/25/2016] [Indexed: 05/31/2023]
Abstract
In Eukarya and Archaea, in addition to protein-only pseudouridine (Ψ) synthases, complexes containing one guide RNA and four proteins can also produce Ψ. Cbf5 protein is the Ψ synthase in the complex. Previously, we showed that Ψ's at positions 1940, 1942, and 2605 of Haloferax volcanii 23S rRNA are absent in a cbf5-deleted strain, and a plasmid-borne copy of cbf5 can rescue the synthesis of these Ψ's. Based on published reports of the structure of archaeal Cbf5 complexed with other proteins and RNAs, we identified several potential residues and structures in H. volcanii Cbf5, which were expected to play important roles in pseudouridylation. We mutated these structures and determined their effects on Ψ production at the three rRNA positions under in vivo conditions. Mutations of several residues in the catalytic domain and certain residues in the thumb loop either abolished Ψ's or produced partial modification; the latter indicates a slower rate of Ψ formation. The universal catalytic aspartate of Ψ synthases could be replaced by glutamate in Cbf5. A conserved histidine, which is common to Cbf5 and TruB is not needed, but another conserved histidine of Cbf5 is required for the in vivo RNA-guided Ψ formation. We also identified a previously unreported novelty in the pseudouridylation activity of Cbf5 where a single stem-loop of a guide H/ACA RNA is used to produce two closely placed Ψ's and mutations of certain residues of Cbf5 abolished one of these two Ψ's. In summary, this first in vivo study identifies several structures of an archaeal Cbf5 protein that are important for its RNA-guided pseudouridylation activity.
Collapse
Affiliation(s)
- Mrinmoyee Majumder
- Department of Biochemistry and Molecular Biology, Southern Illinois University, Carbondale, Illinois 62901-4413, USA
| | - Michael S Bosmeny
- Department of Biochemistry and Molecular Biology, Southern Illinois University, Carbondale, Illinois 62901-4413, USA
| | - Ramesh Gupta
- Department of Biochemistry and Molecular Biology, Southern Illinois University, Carbondale, Illinois 62901-4413, USA
| |
Collapse
|
13
|
Li YH, Zhang G, Cui Q. PPUS: a web server to predict PUS-specific pseudouridine sites. Bioinformatics 2015; 31:3362-4. [PMID: 26076723 DOI: 10.1093/bioinformatics/btv366] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2015] [Accepted: 06/05/2015] [Indexed: 01/28/2023] Open
Abstract
MOTIVATION Pseudouridine (Ψ), catalyzed by pseudouridine synthase (PUS), is the most abundant RNA modification and has important cellular functions. Developing an algorithm to identify Ψ sites is an important work. And it is better if the algorithm could assign which PUS modifies the Ψ sites. Here, we developed PPUS (http://lyh.pkmu.cn/ppus/), the first web server to predict PUS-specific Ψ sites. PPUS: employed support vector machine as the classifier and used nucleotides around Ψ sites as the features. Currently, PPUS: could accurately predict new Ψ sites for PUS1, PUS4 and PUS7 in yeast and PUS4 in human. PPUS: is well designed and friendly to user. AVAILABILITY AND IMPLEMENTATION Our web server is available freely for non-commercial purposes at: http://lyh.pkmu.cn/ppus/ CONTACT liyanhui@bjmu.edu.cn or cuiqinghua@hsc.pku.edu.cn.
Collapse
Affiliation(s)
- Yan-Hui Li
- Institute of Cardiovascular Sciences, Peking University Health Science Center
| | - Gaigai Zhang
- Department of Geriatrics and Gerontology, Beijing Huaxin Hospital, the First Affiliated Hospital of Tsinghua University and
| | - Qinghua Cui
- Department of Biomedical Informatics, Peking University Health Science Center, Beijing, China
| |
Collapse
|
14
|
Abstract
The first centromere was isolated 35 years ago by Louise Clarke and John Carbon from budding yeast. They embarked on their journey with rudimentary molecular tools (by today's standards) and little knowledge of the structure of a chromosome, much less the nature of a centromere. Their discovery opened up a new field, as centromeres have now been isolated from fungi and numerous plants and animals, including mammals. Budding yeast and several other fungi have small centromeres with short, well-defined sequences, known as point centromeres, whereas regional centromeres span several kilobases up to megabases and do not seem to have DNA sequence specificity. Centromeres are at the heart of artificial chromosomes, and we have seen the birth of synthetic centromeres in budding and fission yeast and mammals. The diversity in centromeres throughout phylogeny belie conserved functions that are only beginning to be understood.
Collapse
Affiliation(s)
- Kerry Bloom
- Biology Department, University of North Carolina, Chapel Hill, NC 27599
| |
Collapse
|
15
|
Armistead J, Patel N, Wu X, Hemming R, Chowdhury B, Basra GS, Del Bigio MR, Ding H, Triggs-Raine B. Growth arrest in the ribosomopathy, Bowen-Conradi syndrome, is due to dramatically reduced cell proliferation and a defect in mitotic progression. Biochim Biophys Acta Mol Basis Dis 2015; 1852:1029-37. [PMID: 25708872 DOI: 10.1016/j.bbadis.2015.02.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 02/10/2015] [Accepted: 02/14/2015] [Indexed: 02/05/2023]
Abstract
Bowen-Conradi syndrome (BCS) is a ribosomopathy characterized by severe developmental delay and growth failure that typically leads to death by one year of age. It is caused by a c.257A>G, p.D86G substitution in the ribosomal biogenesis protein, Essential for Mitotic Growth 1 (EMG1). We generated a knock-in of the D86G substitution in mice to characterize the effects of EMG1 deficiency, particularly in the brain, where EMG1 expression is high. Embryos homozygous for the mutation in Emg1 were small for gestational age with neural tube defects, and died between embryonic days 8.5 and 12.5. These embryos exhibited dramatically reduced cell proliferation, which we also detected in autopsy brain tissue and bone marrow of BCS patients, consistent with a requirement for high levels of EMG1 in tissues with rapid cell proliferation. In fibroblasts derived from the BCS mouse embryos, we detected a high proportion of binucleated cells, indicating that a mitotic defect underlies the growth arrest in BCS. These studies add to growing evidence of a link between ribosome biogenesis, mitotic progression, and brain development that is currently unexplored.
Collapse
Affiliation(s)
- Joy Armistead
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, MB, Canada; Manitoba Institute of Child Health, Winnipeg, MB, Canada; Institute of Developmental Biology, University of Cologne, Cologne, Germany.
| | - Nehal Patel
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, MB, Canada.
| | - Xiaoli Wu
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, MB, Canada.
| | - Richard Hemming
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, MB, Canada.
| | - Biswajit Chowdhury
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, MB, Canada; Manitoba Institute of Child Health, Winnipeg, MB, Canada.
| | - Gagandeep Singh Basra
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, MB, Canada.
| | - Marc R Del Bigio
- Department of Pathology, University of Manitoba, Winnipeg, MB, Canada; Department of Pediatrics and Child Health, University of Manitoba, Winnipeg, MB, Canada; Manitoba Institute of Child Health, Winnipeg, MB, Canada.
| | - Hao Ding
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, MB, Canada.
| | - Barbara Triggs-Raine
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, MB, Canada; Department of Pediatrics and Child Health, University of Manitoba, Winnipeg, MB, Canada; Manitoba Institute of Child Health, Winnipeg, MB, Canada.
| |
Collapse
|
16
|
Angrisani A, Vicidomini R, Turano M, Furia M. Human dyskerin: beyond telomeres. Biol Chem 2014; 395:593-610. [PMID: 24468621 DOI: 10.1515/hsz-2013-0287] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Accepted: 01/24/2014] [Indexed: 12/15/2022]
Abstract
Human dyskerin is an evolutively conserved protein that participates in diverse nuclear complexes: the H/ACA snoRNPs, that control ribosome biogenesis, RNA pseudouridylation, and stability of H/ACA snoRNAs; the scaRNPs, that control pseudouridylation of snRNAs; and the telomerase active holoenzyme, which safeguards telomere integrity. The biological importance of dyskerin is further outlined by the fact that its deficiency causes the X-linked dyskeratosis congenita disease, while its over-expression characterizes several types of cancers and has been proposed as prognostic marker. The role of dyskerin in telomere maintenance has widely been discussed, while its functions as H/ACA sno/scaRNP component has been so far mostly overlooked and represent the main goal of this review. Here we summarize how increasing evidence indicates that the snoRNA/microRNA pathways can be interlaced, and that dyskerin-dependent RNA pseudouridylation represents a flexible mechanism able to modulate RNA function in different ways, including modulation of splicing, change of mRNA coding properties, and selective regulation of IRES-dependent translation. We also propose a speculative model that suggests that the dynamics of pre-assembly and nuclear import of H/ACA RNPs are crucial regulatory steps that can be finely controlled in the cytoplasm in response to developmental, differentiative and stress stimuli.
Collapse
|
17
|
McMahon M, Contreras A, Ruggero D. Small RNAs with big implications: new insights into H/ACA snoRNA function and their role in human disease. WILEY INTERDISCIPLINARY REVIEWS-RNA 2014; 6:173-89. [PMID: 25363811 DOI: 10.1002/wrna.1266] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 07/25/2014] [Accepted: 08/07/2014] [Indexed: 12/26/2022]
Abstract
A myriad of structurally and functionally diverse noncoding RNAs (ncRNAs) have recently been implicated in numerous human diseases including cancer. Small nucleolar RNAs (snoRNAs), the most abundant group of intron-encoded ncRNAs, are classified into two families (box C/D snoRNAs and box H/ACA snoRNAs) and are required for post-transcriptional modifications on ribosomal RNA (rRNA). There is now a growing appreciation that nucleotide modifications on rRNA may impart regulatory potential to the ribosome; however, the functional consequence of site-specific snoRNA-guided modifications remains poorly defined. Discovered almost 20 years ago, H/ACA snoRNAs are required for the conversion of specific uridine residues to pseudouridine on rRNA. Interestingly, recent reports indicate that the levels of subsets of H/ACA snoRNAs required for pseudouridine modifications at specific sites on rRNA are altered in several diseases, particularly cancer. In this review, we describe recent advances in understanding the downstream consequences of H/ACA snoRNA-guided modifications on ribosome function, discuss the possible mechanism by which H/ACA snoRNAs may be regulated, and explore prospective expanding functions of H/ACA snoRNAs. Furthermore, we discuss the potential biological implications of alterations in H/ACA snoRNA expression in several human diseases.
Collapse
Affiliation(s)
- Mary McMahon
- School of Medicine and Department of Urology, Helen Diller Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | | | | |
Collapse
|
18
|
Snider CE, Stephens AD, Kirkland JG, Hamdani O, Kamakaka RT, Bloom K. Dyskerin, tRNA genes, and condensin tether pericentric chromatin to the spindle axis in mitosis. ACTA ACUST UNITED AC 2014; 207:189-99. [PMID: 25332162 PMCID: PMC4210444 DOI: 10.1083/jcb.201405028] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Pericentric enrichment of condensin on budding yeast chromosomes, which contributes to chromatin compaction and mitotic spindle structure and integrity, is mediated by condensin interaction with tRNA genes and the tRNA-interacting protein dyskerin. Condensin is enriched in the pericentromere of budding yeast chromosomes where it is constrained to the spindle axis in metaphase. Pericentric condensin contributes to chromatin compaction, resistance to microtubule-based spindle forces, and spindle length and variance regulation. Condensin is clustered along the spindle axis in a heterogeneous fashion. We demonstrate that pericentric enrichment of condensin is mediated by interactions with transfer ribonucleic acid (tRNA) genes and their regulatory factors. This recruitment is important for generating axial tension on the pericentromere and coordinating movement between pericentromeres from different chromosomes. The interaction between condensin and tRNA genes in the pericentromere reveals a feature of yeast centromeres that has profound implications for the function and evolution of mitotic segregation mechanisms.
Collapse
Affiliation(s)
- Chloe E Snider
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Andrew D Stephens
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Jacob G Kirkland
- Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064
| | - Omar Hamdani
- Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064
| | - Rohinton T Kamakaka
- Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064
| | - Kerry Bloom
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| |
Collapse
|
19
|
Schwartz S, Bernstein DA, Mumbach MR, Jovanovic M, Herbst RH, León-Ricardo BX, Engreitz JM, Guttman M, Satija R, Lander ES, Fink G, Regev A. Transcriptome-wide mapping reveals widespread dynamic-regulated pseudouridylation of ncRNA and mRNA. Cell 2014; 159:148-162. [PMID: 25219674 DOI: 10.1016/j.cell.2014.08.028] [Citation(s) in RCA: 757] [Impact Index Per Article: 68.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 08/21/2014] [Accepted: 08/22/2014] [Indexed: 01/14/2023]
Abstract
Pseudouridine is the most abundant RNA modification, yet except for a few well-studied cases, little is known about the modified positions and their function(s). Here, we develop Ψ-seq for transcriptome-wide quantitative mapping of pseudouridine. We validate Ψ-seq with spike-ins and de novo identification of previously reported positions and discover hundreds of unique sites in human and yeast mRNAs and snoRNAs. Perturbing pseudouridine synthases (PUS) uncovers which pseudouridine synthase modifies each site and their target sequence features. mRNA pseudouridinylation depends on both site-specific and snoRNA-guided pseudouridine synthases. Upon heat shock in yeast, Pus7p-mediated pseudouridylation is induced at >200 sites, and PUS7 deletion decreases the levels of otherwise pseudouridylated mRNA, suggesting a role in enhancing transcript stability. rRNA pseudouridine stoichiometries are conserved but reduced in cells from dyskeratosis congenita patients, where the PUS DKC1 is mutated. Our work identifies an enhanced, transcriptome-wide scope for pseudouridine and methods to dissect its underlying mechanisms and function.
Collapse
Affiliation(s)
| | | | | | - Marko Jovanovic
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Rebecca H Herbst
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Systems Biology, Harvard Medical School, Boston, MA 02114, USA
| | - Brian X León-Ricardo
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Biology, University of Puerto Rico, Rio Piedras Campus, San Juan 00931, Puerto Rico
| | - Jesse M Engreitz
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Division of Health Sciences and Technology, MIT, Cambridge, MA 02139, USA
| | - Mitchell Guttman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Rahul Satija
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Eric S Lander
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Systems Biology, Harvard Medical School, Boston, MA 02114, USA; Department of Biology, MIT, Cambridge, MA 02139, USA
| | - Gerald Fink
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, MIT, Cambridge, MA 02139, USA.
| | - Aviv Regev
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Biology, MIT, Cambridge, MA 02139, USA; Howard Hughes Medical Institute, 4000 Jones Bridge Road, Chevy Chase, MD 20815, USA.
| |
Collapse
|
20
|
Armistead J, Triggs-Raine B. Diverse diseases from a ubiquitous process: the ribosomopathy paradox. FEBS Lett 2014; 588:1491-500. [PMID: 24657617 DOI: 10.1016/j.febslet.2014.03.024] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 03/08/2014] [Accepted: 03/12/2014] [Indexed: 01/03/2023]
Abstract
Collectively, the ribosomopathies are caused by defects in ribosome biogenesis. Although these disorders encompass deficiencies in a ubiquitous and fundamental process, the clinical manifestations are extremely variable and typically display tissue specificity. Research into this paradox has offered fascinating new insights into the role of the ribosome in the regulation of mRNA translation, cell cycle control, and signaling pathways involving TP53, MYC and mTOR. Several common features of ribosomopathies such as small stature, cancer predisposition, and hematological defects, point to how these diverse diseases may be related at a molecular level.
Collapse
Affiliation(s)
- Joy Armistead
- Department of Biochemistry and Medical Genetics, The University of Manitoba, 745 Bannatyne Ave., Winnipeg, MB R3E 0J9, Canada
| | - Barbara Triggs-Raine
- Department of Biochemistry and Medical Genetics, The University of Manitoba, 745 Bannatyne Ave., Winnipeg, MB R3E 0J9, Canada; The Manitoba Institute of Child Health, 715 McDermot Ave., Winnipeg, MB R3E 3P4, Canada.
| |
Collapse
|
21
|
Marrone A, Dokal I. Dyskeratosis congenita: a disorder of telomerase deficiency and its relationship to other diseases. ACTA ACUST UNITED AC 2014. [DOI: 10.1586/17469872.1.3.463] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
22
|
Yu YT, Meier UT. RNA-guided isomerization of uridine to pseudouridine--pseudouridylation. RNA Biol 2014; 11:1483-94. [PMID: 25590339 PMCID: PMC4615163 DOI: 10.4161/15476286.2014.972855] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2014] [Accepted: 09/12/2014] [Indexed: 01/13/2023] Open
Abstract
Box H/ACA ribonucleoproteins (RNPs), each consisting of one unique guide RNA and 4 common core proteins, constitute a family of complex enzymes that catalyze, in an RNA-guided manner, the isomerization of uridines to pseudouridines (Ψs) in RNAs, a reaction known as pseudouridylation. Over the years, box H/ACA RNPs have been extensively studied revealing many important aspects of these RNA modifying machines. In this review, we focus on the composition, structure, and biogenesis of H/ACA RNPs. We explain the mechanism of how this enzyme family recognizes and specifies its target uridine in a substrate RNA. We discuss the substrates of box H/ACA RNPs, focusing on rRNA (rRNA) and spliceosomal small nuclear RNA (snRNA). We describe the modification product Ψ and its contribution to RNA function. Finally, we consider possible mechanisms of the bone marrow failure syndrome dyskeratosis congenita and of prostate and other cancers linked to mutations in H/ACA RNPs.
Collapse
Key Words
- DC, dyskeratosis congenita
- H/ACA
- HH, hoyeraal-hreidarsson syndrome
- PIKK, phosphatidylinositol 3-kinase-related kinase
- PUA, pseudouridylase and archaeosine transglycosylase
- RNA modification
- RNA-guided
- RNP, ribonucleoprotein
- SMN, survival of motor neuron protein
- SSD, SHQ1 specific domain
- U, uridine
- X-DC, X-linked dyskeratosis congenita
- dyskeratosis congenita
- prostate cancer
- pseudouridine
- rRNA
- rRNA, ribosomal RNA
- ribonucleoproteins
- sca, small Cajal body
- snRNA, small nuclear RNA
- sno, small nucleolar
- snoRNA
- snoRNA, small nucleolar RNA
- spliceosomal small nuclear RNA
- tRNA, transfer RNA
- ψ, pseudouridine, 5-ribosyluracil
Collapse
MESH Headings
- Dyskeratosis Congenita/genetics
- Dyskeratosis Congenita/metabolism
- Dyskeratosis Congenita/pathology
- Humans
- Isomerism
- Male
- Mutation
- Nucleic Acid Conformation
- Prostatic Neoplasms/genetics
- Prostatic Neoplasms/metabolism
- Prostatic Neoplasms/pathology
- Pseudouridine/metabolism
- RNA Processing, Post-Transcriptional
- RNA, Ribosomal/genetics
- RNA, Ribosomal/metabolism
- RNA, Small Nuclear/genetics
- RNA, Small Nuclear/metabolism
- RNA, Transfer, Amino Acid-Specific/genetics
- RNA, Transfer, Amino Acid-Specific/metabolism
- Ribonucleoproteins, Small Nuclear/genetics
- Ribonucleoproteins, Small Nuclear/metabolism
- Uridine/metabolism
- RNA, Guide, CRISPR-Cas Systems
Collapse
Affiliation(s)
- Yi-Tao Yu
- University of Rochester Medical Center; Department of Biochemistry and Biophysics; Center for RNA Biology; Rochester, NY USA
| | - U Thomas Meier
- Albert Einstein College of Medicine; Department of Anatomy and Structural Biology; Bronx, NY USA
| |
Collapse
|
23
|
Alawi F, Lin P. Dyskerin localizes to the mitotic apparatus and is required for orderly mitosis in human cells. PLoS One 2013; 8:e80805. [PMID: 24303026 PMCID: PMC3841160 DOI: 10.1371/journal.pone.0080805] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Accepted: 10/15/2013] [Indexed: 11/18/2022] Open
Abstract
Dyskerin is a highly conserved, nucleolar RNA-binding protein with established roles in small nuclear ribonucleoprotein biogenesis, telomerase and telomere maintenance and precursor rRNA processing. Telomerase is functional during S phase and the bulk of rRNA maturation occurs during G1 and S phases; both processes are inactivated during mitosis. Yet, we show that during the course of cell cycle progression, human dyskerin expression peaks during G2/M in parallel with the upregulation of pro-mitotic factors. Dyskerin redistributed from the nucleolus in interphase cells to the perichromosomal region during prometaphase, metaphase and anaphase. With continued anaphase progression, dyskerin also localized to the cytoplasm within the mid-pole region. Loss of dyskerin function via siRNA-mediated depletion promoted G2/M accumulation and this was accompanied by an increased mitotic index and activation of the spindle assembly checkpoint. Live cell imaging further revealed an array of mitotic defects including delayed prometaphase progression, a significantly increased incidence of multi-polar spindles, and anaphase bridges culminating in micronucleus formation. Together, these findings suggest that dyskerin is a highly dynamic protein throughout the cell cycle and increases the repertoire of fundamental cellular processes that are disrupted by absence of its normal function.
Collapse
Affiliation(s)
- Faizan Alawi
- Department of Pathology, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| | - Ping Lin
- Department of Pathology, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
24
|
Gu BW, Ge J, Fan JM, Bessler M, Mason PJ. Slow growth and unstable ribosomal RNA lacking pseudouridine in mouse embryonic fibroblast cells expressing catalytically inactive dyskerin. FEBS Lett 2013; 587:2112-7. [PMID: 23726835 DOI: 10.1016/j.febslet.2013.05.028] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Revised: 04/24/2013] [Accepted: 05/02/2013] [Indexed: 12/15/2022]
Abstract
Pseudouridine is the most abundant modified nucleotide in ribosomal RNA throughout eukaryotes and archaea but its role is not known. Here we produced mouse embryonic fibroblast cells expressing only catalytically inactive dyskerin, the pseudouridine synthase that converts uridine to pseudouridine in ribosomal RNA. The mutant dyskerin protein, D125A, was extremely unstable but cells were able to divide and grow very slowly. Abnormalities in ribosome RNA synthesis were apparent but mature cytoplasmic RNAs lacking pseudouridine were produced and were very unstable. We conclude that pseudouridine is required to stabilize the secondary structure of ribosomal RNA that is essential for its function.
Collapse
Affiliation(s)
- Bai-Wei Gu
- Department of Pediatrics and Division of Hematology, The Children's Hospital of Philadelphia, 3615 Civic Center Boulevard, PA 19104-4318, USA
| | | | | | | | | |
Collapse
|
25
|
Machado-Pinilla R, Liger D, Leulliot N, Meier UT. Mechanism of the AAA+ ATPases pontin and reptin in the biogenesis of H/ACA RNPs. RNA (NEW YORK, N.Y.) 2012; 18:1833-45. [PMID: 22923768 PMCID: PMC3446707 DOI: 10.1261/rna.034942.112] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The AAA+ ATPases pontin and reptin function in a staggering array of cellular processes including chromatin remodeling, transcriptional regulation, DNA damage repair, and assembly of macromolecular complexes, such as RNA polymerase II and small nucleolar (sno) RNPs. However, the molecular mechanism for all of these AAA+ ATPase associated activities is unknown. Here we document that, during the biogenesis of H/ACA RNPs (including telomerase), the assembly factor SHQ1 holds the pseudouridine synthase NAP57/dyskerin in a viselike grip, and that pontin and reptin (as components of the R2TP complex) are required to pry NAP57 from SHQ1. Significantly, the NAP57 domain captured by SHQ1 harbors most mutations underlying X-linked dyskeratosis congenita (X-DC) implicating the interface between the two proteins as a target of this bone marrow failure syndrome. Homing in on the essential first steps of H/ACA RNP biogenesis, our findings provide the first insight into the mechanism of action of pontin and reptin in the assembly of macromolecular complexes.
Collapse
Affiliation(s)
- Rosario Machado-Pinilla
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | - Dominique Liger
- Institut de Biochimie et de Biophysique Moléculaire et Cellulaire, Université de Paris-Sud, CNRS-UMR8619, IFR115, 91405 Orsay Cedex, France
| | - Nicolas Leulliot
- Laboratoire de Cristallographie et RMN Biologiques, UMR CNRS 8015, Université Paris Descartes, Sorbonne Paris Cité, Faculté des Sciences Pharmaceutiques et Biologiques, 75006 Paris, France
| | - U. Thomas Meier
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
- Corresponding authorE-mail
| |
Collapse
|
26
|
Jack K, Bellodi C, Landry DM, Niederer RO, Meskauskas A, Musalgaonkar S, Kopmar N, Krasnykh O, Dean AM, Thompson SR, Ruggero D, Dinman JD. rRNA pseudouridylation defects affect ribosomal ligand binding and translational fidelity from yeast to human cells. Mol Cell 2012; 44:660-6. [PMID: 22099312 DOI: 10.1016/j.molcel.2011.09.017] [Citation(s) in RCA: 257] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2010] [Revised: 05/17/2011] [Accepted: 09/01/2011] [Indexed: 01/04/2023]
Abstract
How pseudouridylation (Ψ), the most common and evolutionarily conserved modification of rRNA, regulates ribosome activity is poorly understood. Medically, Ψ is important because the rRNA Ψ synthase, DKC1, is mutated in X-linked dyskeratosis congenita (X-DC) and Hoyeraal-Hreidarsson (HH) syndrome. Here, we characterize ribosomes isolated from a yeast strain in which Cbf5p, the yeast homolog of DKC1, is catalytically impaired through a D95A mutation (cbf5-D95A). Ribosomes from cbf5-D95A cells display decreased affinities for tRNA binding to the A and P sites as well as the cricket paralysis virus internal ribosome entry site (IRES), which interacts with both the P and the E sites of the ribosome. This biochemical impairment in ribosome activity manifests as decreased translational fidelity and IRES-dependent translational initiation, which are also evident in mouse and human cells deficient for DKC1 activity. These findings uncover specific roles for Ψ modification in ribosome-ligand interactions that are conserved in yeast, mouse, and humans.
Collapse
Affiliation(s)
- Karen Jack
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Zhu JY, Ye Q, Zhao QP, Ming ZP, Grevelding CG, Jiang MS, Dong HF. Effects of protein extract from head-foot tissue of Oncomelania hupensis on the growth and gene expression of mother sporocysts of Schistosoma japonicum. Parasitol Res 2011; 110:721-31. [PMID: 21800125 DOI: 10.1007/s00436-011-2548-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Accepted: 07/01/2011] [Indexed: 10/17/2022]
Abstract
Oncomelania hupensis is the intermediate host of Schistosoma japonicum. In the present study, we investigated the effects of protein extracts from head-foot or gland tissue of O. hupensis on mother sporocysts of S. japonicum cultured in vitro. In the presence of head-foot protein extract of snails from the native province Hunan, in-vitro-transformed mother sporocysts presented not only a longer survival time and stronger motility, but also a bigger size than parasites cultured with protein extracts of glands of the same snail or head-foot tissue of a non-native snail from the Hubei province. Using suppression subtractive hybridization, two subtractive libraries were constructed on the basis of RNA of sporocysts cultured with or without native snail head-foot protein extract. A number of 31 transcripts were found to be up-regulated. Sequence analyses revealed that they represented genes involved among others in metabolic process, electron transport chain, response to chemical stimulus, and oxidation-reduction processes. Opposite to that 20 down-regulated transcripts were among others related to pseudouridine synthesis, RNA processing, and ribosome biogenesis. The differential expression of three of these transcripts, encoding cytochrome c oxidase subunit 2 (Cox2), NADH-ubiquinone oxidoreductase (ND1), and dyskeratosis congenita 1 protein (DKC1), were confirmed by real-time PCR. The promoted development and the differential gene expression of cultured sporocysts under the influence of head-foot protein extract of native O. hupensis implied not only its ability to improve in vitro culture conditions for intramolluscan stages, it may also represent a priming result with respect to the identification and characterization of factors involved in the parasite-host interplay between S. japonicum and O. hupensis.
Collapse
Affiliation(s)
- Jun Yong Zhu
- Department of Parasitology, School of Basic Medical Science, Wuhan University, Wuhan, Hubei Province, China
| | | | | | | | | | | | | |
Collapse
|
28
|
Blaby IK, Majumder M, Chatterjee K, Jana S, Grosjean H, de Crécy-Lagard V, Gupta R. Pseudouridine formation in archaeal RNAs: The case of Haloferax volcanii. RNA (NEW YORK, N.Y.) 2011; 17:1367-80. [PMID: 21628430 PMCID: PMC3138572 DOI: 10.1261/rna.2712811] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Pseudouridine (Ψ), the isomer of uridine, is commonly found at various positions of noncoding RNAs of all organisms. Ψ residues are formed by a number of single- or multisite specific Ψ synthases, which generally act as stand-alone proteins. In addition, in Eukarya and Archaea, specific ribonucleoprotein complexes, each containing a distinct box H/ACA guide RNA and four core proteins, can produce Ψ at many sites of different cellular RNAs. Cbf5 is the core Ψ synthase in these complexes. Using Haloferax volcanii as an archaeal model organism, we show that, contrary to eukaryotes, the Cbf5 homolog (HVO_2493) is not essential in this archaeon. The Cbf5-deleted strain of H. volcanii completely lacks Ψ at positions 1940, 1942, 2605, and 2591 (Escherichia coli positions 1915, 1917, 2572, and 2586) of its 23S rRNA, and contains reduced steady-state levels of some box H/ACA RNAs. Archaeal Cbf5 is known to have tRNA Ψ55 synthase activity in vitro but we could not confirm this activity in vivo in H. volcanii. Conversely, the Pus10 (previously PsuX) homolog (HVO_1979), which can produce tRNA Ψ55, as well as Ψ54 in vitro, is shown here to be essential in H. volcanii, whereas the corresponding tRNA Ψ55 synthases, Pus4 and TruB, are not essential in yeast and E. coli, respectively. Finally, we demonstrate that HVO_1852, the TruA/Pus3 homolog, is responsible for the pseudouridylation of position 39 in H. volcanii tRNAs and that the corresponding gene is not essential.
Collapse
Affiliation(s)
- Ian K. Blaby
- Department of Microbiology & Cell Science, University of Florida, Gainesville, Florida 32611-0700, USA
| | - Mrinmoyee Majumder
- Department of Biochemistry and Molecular Biology, Southern Illinois University, Carbondale, Illinois 62901-4413, USA
| | - Kunal Chatterjee
- Department of Biochemistry and Molecular Biology, Southern Illinois University, Carbondale, Illinois 62901-4413, USA
| | - Sujata Jana
- Department of Biochemistry and Molecular Biology, Southern Illinois University, Carbondale, Illinois 62901-4413, USA
| | - Henri Grosjean
- Université Paris 11, IGM, CNRS, UMR 8621, Orsay, F 91405, France
| | - Valérie de Crécy-Lagard
- Department of Microbiology & Cell Science, University of Florida, Gainesville, Florida 32611-0700, USA
- Corresponding authors.E-mail .E-mail .
| | - Ramesh Gupta
- Department of Biochemistry and Molecular Biology, Southern Illinois University, Carbondale, Illinois 62901-4413, USA
- Corresponding authors.E-mail .E-mail .
| |
Collapse
|
29
|
Alawi F, Lin P. Dyskerin is required for tumor cell growth through mechanisms that are independent of its role in telomerase and only partially related to its function in precursor rRNA processing. Mol Carcinog 2011; 50:334-45. [PMID: 21480387 PMCID: PMC3117972 DOI: 10.1002/mc.20715] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2010] [Revised: 10/28/2010] [Accepted: 10/29/2010] [Indexed: 12/18/2022]
Abstract
Dyskerin is an essential nucleolar protein required for the biogenesis of ribonucleoproteins that incorporate H/ACA RNAs. Through binding to specific H/ACA RNAs, dyskerin exerts most of its influence in the cell. To that end, dyskerin is a core component of the telomerase complex and is required for normal telomere maintenance. Dyskerin is also required for post-transcriptional processing of precursor rRNA. Germline dyskerin mutations increase cancer susceptibility. Conversely, wild-type dyskerin is usually over-expressed and not mutated in sporadic cancers. However, the contributions of dyskerin to sporadic tumorigenesis are unknown. Described herein, we demonstrate that acute loss of dyskerin function by RNA interference significantly reduced steady-state levels of H/ACA RNAs, disrupted the morphology and inhibited anchorage-independent growth of telomerase-positive and telomerase-negative human cell lines. Unexpectedly, dyskerin depletion only transiently delayed rRNA maturation but with no appreciable effect on the levels of total 18S or 28S rRNA. Instead, while rRNA processing defects typically trigger p53-dependent G1 arrest, dyskerin-depleted cells accumulated in G2/M by a p53-independent mechanism, and this was associated with an accumulation of aberrant mitotic figures that were characterized by multi-polar spindles. Telomerase activity and the rate of rRNA processing are typically increased during neoplasia. However, our cumulative findings indicate that dyskerin contributes to tumor cell growth through mechanisms which do not require the presence of cellular telomerase activity, and which may be only partially dependent upon the protein's role in rRNA processing. These data also reinforce the notion that loss and gain of dyskerin function may play important roles in tumorigenesis.
Collapse
Affiliation(s)
- Faizan Alawi
- Department of Pathology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ping Lin
- Department of Pathology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
30
|
Wang T, Hou G, Wang Y, Xue L. Characterization and heterologous expression of a new matrix attachment region binding protein from the unicellular green alga Dunaliella salina. J Biochem 2010; 148:651-8. [PMID: 20926505 DOI: 10.1093/jb/mvq100] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Although interactions between the nuclear matrix and special regions of chromosomal DNA called matrix attachment regions (MARs) are implicated in various nuclear functions, the understanding of the regulatory mechanism of MARs is still poor. A few MAR-binding proteins (MARBP) have been isolated from some plants and animals, but not from the unicellular algae. Here, we identify a novel MAR-binding protein, namely DMBP-1, from the halotolerant alga Dunaliella salina. The cDNA of DMBP-1 is 2322-bp long and contains a 1626 bp of an open reading frame encoding a polypeptide of 542 amino acids (59 kDa). The DMBP-1 expressed in Escherichia coli specifically binds A/T-rich MAR DNA. The DMBP-1 fused to green fluorescent protein appears only inside the nuclei of Chinese hamster ovarian cells transfected with the pEGFP-MBP, indicating that the protein is located in the nuclei. The findings mentioned above may contribute to better understanding of the nuclear matrix-MAR interactions.
Collapse
Affiliation(s)
- Tianyun Wang
- Laboratory for Cell Biology, The First Affiliated Hospital, Zhengzhou University, 40 Daxue Road, Henan, China
| | | | | | | |
Collapse
|
31
|
Ohta S, Bukowski-Wills JC, Sanchez-Pulido L, Alves FDL, Wood L, Chen ZA, Platani M, Fischer L, Hudson DF, Ponting CP, Fukagawa T, Earnshaw WC, Rappsilber J. The protein composition of mitotic chromosomes determined using multiclassifier combinatorial proteomics. Cell 2010; 142:810-21. [PMID: 20813266 PMCID: PMC2982257 DOI: 10.1016/j.cell.2010.07.047] [Citation(s) in RCA: 249] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2009] [Revised: 05/20/2010] [Accepted: 07/14/2010] [Indexed: 12/12/2022]
Abstract
Despite many decades of study, mitotic chromosome structure and composition remain poorly characterized. Here, we have integrated quantitative proteomics with bioinformatic analysis to generate a series of independent classifiers that describe the approximately 4,000 proteins identified in isolated mitotic chromosomes. Integrating these classifiers by machine learning uncovers functional relationships between protein complexes in the context of intact chromosomes and reveals which of the approximately 560 uncharacterized proteins identified here merits further study. Indeed, of 34 GFP-tagged predicted chromosomal proteins, 30 were chromosomal, including 13 with centromere-association. Of 16 GFP-tagged predicted nonchromosomal proteins, 14 were confirmed to be nonchromosomal. An unbiased analysis of the whole chromosome proteome from genetic knockouts of kinetochore protein Ska3/Rama1 revealed that the APC/C and RanBP2/RanGAP1 complexes depend on the Ska complex for stable association with chromosomes. Our integrated analysis predicts that up to 97 new centromere-associated proteins remain to be discovered in our data set.
Collapse
Affiliation(s)
- Shinya Ohta
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh EH9 3JR, UK
| | - Jimi-Carlo Bukowski-Wills
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh EH9 3JR, UK
- Centre for Systems Biology at Edinburgh, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JR, UK
| | - Luis Sanchez-Pulido
- MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3QX, UK
| | - Flavia de Lima Alves
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh EH9 3JR, UK
| | - Laura Wood
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh EH9 3JR, UK
| | - Zhuo A. Chen
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh EH9 3JR, UK
| | - Melpi Platani
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh EH9 3JR, UK
| | - Lutz Fischer
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh EH9 3JR, UK
| | - Damien F. Hudson
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh EH9 3JR, UK
| | - Chris P. Ponting
- MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3QX, UK
| | - Tatsuo Fukagawa
- Department of Molecular Genetics, National Institute of Genetics and The Graduate University for Advanced Studies, Mishima, Shizuoka 411-8540, Japan
| | - William C. Earnshaw
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh EH9 3JR, UK
| | - Juri Rappsilber
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh EH9 3JR, UK
| |
Collapse
|
32
|
Baran I, Nalcaci R, Kocak M. Dyskeratosis congenita: clinical report and review of the literature. Int J Dent Hyg 2010; 8:68-74. [PMID: 20096085 DOI: 10.1111/j.1601-5037.2009.00364.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Dyskeratosis congenita (DKC) is an inherited disorder that usually presents in males, consisting of the triad of leukoplakia of the mucous membranes, nails dystrophy and skin pigmentation. Oral and dental abnormalities may also be present. Most cases are X-linked autosomal dominant, but recessive forms have also been reported. This study describes herein a case in which the classic triad of signs was present, along with the development of leukoplakia in the buccal mucosa. Our patient, a 25-year-old man, presented with several characteristic systemic features of this condition, together with the following oral features: hypodontia, delayed dental eruption, short blunt roots, extensive caries, gingival inflammation and bleeding, loss of alveolar bone and buccal mucosa with leukoplakia and irregular ulcers. The patient was given full preventive care. The primary teeth were extracted under local anaesthesia. After establishing optimal oral health, oral hygiene instructions were given to the patient and he was rehabilitated with fixed and removable partial denture. Prosthetic treatments were carried out after establishing optimal oral health. This treatment option appears beneficial in this patient, resulting in rehabilitation of occlusion and less mechanical irritation to the oral mucosa.
Collapse
Affiliation(s)
- I Baran
- Department of Prosthetic Dentistry, Faculty of Dentistry, Kirikkale University, Kirikkale, Turkey.
| | | | | |
Collapse
|
33
|
Siaud N, Dubois E, Massot S, Richaud A, Dray E, Collier J, Doutriaux MP. The SOS screen in Arabidopsis: a search for functions involved in DNA metabolism. DNA Repair (Amst) 2010; 9:567-78. [PMID: 20227352 DOI: 10.1016/j.dnarep.2010.02.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2009] [Revised: 02/08/2010] [Accepted: 02/10/2010] [Indexed: 11/19/2022]
Abstract
The SOS screen, as originally described by Perkins et al. (1999) [7], was setup with the aim of identifying Arabidopsis functions that might potentially be involved in the DNA metabolism. Such functions, when expressed in bacteria, are prone to disturb replication and thus trigger the SOS response. Consistently, expression of AtRAD51 and AtDMC1 induced the SOS response in bacteria, even affecting E. coli viability. 100 SOS-inducing cDNAs were isolated from a cDNA library constructed from an Arabidopsis cell suspension that was found to highly express meiotic genes. A large proportion of these SOS(+) candidates are clearly related to the DNA metabolism, others could be involved in the RNA metabolism, while the remaining cDNAs encode either totally unknown proteins or proteins that were considered as irrelevant. Seven SOS(+) candidate genes are induced following gamma irradiation. The in planta function of several of the SOS-inducing clones was investigated using T-DNA insertional mutants or RNA interference. Only one SOS(+) candidate, among those examined, exhibited a defined phenotype: silenced plants for DUT1 were sensitive to 5-fluoro-uracil (5FU), as is the case of the leaky dut-1 mutant in E. coli that are affected in dUTPase activity. dUTPase is essential to prevent uracil incorporation in the course of DNA replication.
Collapse
Affiliation(s)
- Nicolas Siaud
- Institut de Biologie des Plantes, CNRS UMR8618, Bâtiment 630, Université Paris Sud 11, 91405 Orsay Cedex, France.
| | | | | | | | | | | | | |
Collapse
|
34
|
Grozdanov PN, Roy S, Kittur N, Meier UT. SHQ1 is required prior to NAF1 for assembly of H/ACA small nucleolar and telomerase RNPs. RNA (NEW YORK, N.Y.) 2009; 15:1188-97. [PMID: 19383767 PMCID: PMC2685518 DOI: 10.1261/rna.1532109] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Assembly of H/ACA RNPs in yeast is aided by at least two accessory factors, Naf1p and Shq1p. Although the function of Naf1p and its human ortholog NAF1 has been delineated in detail, that of Shq1p and its putative human ortholog SHQ1 remains obscure. We demonstrate that SHQ1 indeed functions in the biogenesis of human H/ACA RNPs and we dissect its mechanism of action. Like NAF1, SHQ1 binds the major H/ACA core protein and pseudouridine synthase NAP57 (aka dyskerin) but precedes the assembly role of NAF1 at nascent H/ACA RNAs because the interaction of SHQ1 with NAP57 in vivo and in vitro precludes that of NAF1 and of the other H/ACA core proteins that are present at the sites of H/ACA RNA transcription. The N-terminal heat shock protein 20-like CS domain of SHQ1 is dispensable for NAP57 binding. Consistent with its role as an assembly factor, SHQ1 localizes to the nucleoplasm and is excluded from nucleoli and Cajal bodies, the sites of mature H/ACA RNPs. In an in vitro assembly system of functional H/ACA RNPs that is dependent on NAF1, excess recombinant SHQ1 interferes with assembly. Importantly, knockdown of cellular SHQ1 prevents accumulation of a newly synthesized H/ACA reporter RNA and generally reduces the levels of endogenous H/ACA RNAs including telomerase RNA. In summary, the sequential action of SHQ1 and NAF1 is required for functional assembly of H/ACA RNPs in vivo and in vitro. This step-wise process could serve as an efficient means of quality control during H/ACA RNP assembly.
Collapse
Affiliation(s)
- Petar N Grozdanov
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine of Yeshiva University, Bronx, New York 10461, USA
| | | | | | | |
Collapse
|
35
|
Kirwan M, Dokal I. Dyskeratosis congenita, stem cells and telomeres. Biochim Biophys Acta Mol Basis Dis 2009; 1792:371-9. [PMID: 19419704 PMCID: PMC2686081 DOI: 10.1016/j.bbadis.2009.01.010] [Citation(s) in RCA: 123] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2008] [Revised: 01/15/2009] [Accepted: 01/15/2009] [Indexed: 12/26/2022]
Abstract
Dyskeratosis congenita (DC) is a multi-system disorder which in its classical form is characterised by abnormalities of the skin, nails and mucous membranes. In approximately 80% of cases, it is associated with bone marrow dysfunction. A variety of other abnormalities (including bone, brain, cancer, dental, eye, gastrointestinal, immunological and lung) have also been reported. Although first described almost a century ago it is the last 10 years, following the identification of the first DC gene (DKC1) in 1998, in which there has been rapid progress in its understanding. Six genes have been identified, defects in which cause different genetic subtypes (X-linked recessive, autosomal dominant, autosomal recessive) of DC. The products of these genes encode components that are critical for telomere maintenance; either because they are core constituents of telomerase (dyskerin, TERC, TERT, NOP10 and NHP2) or are part of the shelterin complex that protects the telomeric end (TIN2). These advances have also highlighted the connection between the more “cryptic/atypical” forms of the disease including aplastic anaemia and idiopathic pulmonary fibrosis. Equally, studies on this disease have demonstrated the critical importance of telomeres in human cells (including stem cells) and the severe consequences of their dysfunction. In this context DC and related diseases can now be regarded as disorders of “telomere and stem cell dysfunction”.
Collapse
Affiliation(s)
- Michael Kirwan
- Barts and the London School of Medicine and Dentistry, Queen Mary University of London, UK.
| | | |
Collapse
|
36
|
Jwa M, Kim JH, Chan CSM. Regulation of Sli15/INCENP, kinetochore, and Cdc14 phosphatase functions by the ribosome biogenesis protein Utp7. ACTA ACUST UNITED AC 2008; 182:1099-111. [PMID: 18794331 PMCID: PMC2542472 DOI: 10.1083/jcb.200802085] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The Sli15–Ipl1–Bir1 chromosomal passenger complex is essential for proper kinetochore–microtubule attachment and spindle stability in the budding yeast Saccharomyces cerevisiae. During early anaphase, release of the Cdc14 protein phosphatase from the nucleolus leads to the dephosphorylation of Sli15 and redistribution of this complex from kinetochores to the spindle. We show here that the predominantly nucleolar ribosome biogenesis protein Utp7 is also present at kinetochores and is required for normal organization of kinetochore proteins and proper chromosome segregation. Utp7 associates with and regulates the localization of Sli15 and Cdc14. Before anaphase onset, it prevents the premature nucleolar release of Cdc14 and the premature concentration of Sli15 on the spindle. Furthermore, Utp7 can regulate the localization and phosphorylation status of Sli15 independent of its effect on Cdc14 function. Thus, Utp7 is a multifunctional protein that plays essential roles in the vital cellular processes of ribosome biogenesis, chromosome segregation, and cell cycle control.
Collapse
Affiliation(s)
- Miri Jwa
- Institute for Cellular and Molecular Biology, The University of Texas, Austin, TX 78712, USA
| | | | | |
Collapse
|
37
|
Bachellier-Bassi S, Gadal O, Bourout G, Nehrbass U. Cell cycle-dependent kinetochore localization of condensin complex in Saccharomyces cerevisiae. J Struct Biol 2008; 162:248-59. [PMID: 18296067 DOI: 10.1016/j.jsb.2008.01.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2007] [Revised: 12/20/2007] [Accepted: 01/04/2008] [Indexed: 01/01/2023]
Abstract
In budding yeast mitosis is endonuclear and associated with a very limited condensation of the chromosomes. Despite this partial chromosomal condensation, condensin is conserved and essential for the Saccharomyces cerevisiae mitotic cycle. Here, we investigate the localization of condensin during the mitotic cycle. In addition to a constitutive association with rDNA, we have discovered that condensin is localized to the kinetochore in a cell cycle-dependent manner. Shortly after duplication of the spindle pole body, the yeast equivalent of the centrosome, we observed a local enrichment of condensin colocalizing with kinetochore components. This specific association is consistent with mutant phenotypes of chromosome loss and defective sister chromatid separation at anaphase. During a short period of the cell cycle, we observed, at the single cell level, a spatial proximity of condensin and a cohesin rosette, without colocalization. Furthermore, using a genetic screen we demonstrated that condensin localization at kinetochores is specifically impaired in a mutant for ulp2/smt4, an abundant SUMO protease. In conclusion, during chromosome segregation, we established a SUMO-dependent cell cycle-specific condensin concentration colocalizing with kinetochores.
Collapse
Affiliation(s)
- Sophie Bachellier-Bassi
- Unité de Biologie Cellulaire du Noyau, CNRS URA 2582, Institut Pasteur, 25 rue du Dr Roux, 75724 Paris cedex 15, France.
| | | | | | | |
Collapse
|
38
|
Dyskeratosis congenita: The diverse clinical presentation of mutations in the telomerase complex. Biochimie 2008; 90:122-30. [DOI: 10.1016/j.biochi.2007.07.017] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2007] [Accepted: 07/22/2007] [Indexed: 12/23/2022]
|
39
|
Marrone A, Walne A, Tamary H, Masunari Y, Kirwan M, Beswick R, Vulliamy T, Dokal I. Telomerase reverse-transcriptase homozygous mutations in autosomal recessive dyskeratosis congenita and Hoyeraal-Hreidarsson syndrome. Blood 2007; 110:4198-205. [PMID: 17785587 PMCID: PMC2882230 DOI: 10.1182/blood-2006-12-062851] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Dyskeratosis congenita (DC) is a multisystem bone marrow failure syndrome characterized by a triad of mucocutaneous abnormalities and an increased predisposition to malignancy. X-linked DC is due to mutations in DKC1, while heterozygous mutations in TERC (telomerase RNA component) and TERT (telomerase reverse transcriptase) have been found in autosomal dominant DC. Many patients with DC remain uncharacterized, particularly families displaying autosomal recessive (AR) inheritance. We have now identified novel homozygous TERT mutations in 2 unrelated consanguineous families, where the index cases presented with classical DC or the more severe variant, Hoyeraal-Hreidarsson (HH) syndrome. These TERT mutations resulted in reduced telomerase activity and extremely short telomeres. As these mutations are homozygous, these patients are predicted to have significantly reduced telomerase activity in vivo. Interestingly, in contrast to patients with heterozygous TERT mutations or hemizygous DKC1 mutations, these 2 homozygous TERT patients were observed to have higher-than-expected TERC levels compared with controls. Collectively, the findings from this study demonstrate that homozygous TERT mutations, resulting in a pure but severe telomerase deficiency, produce a phenotype of classical AR-DC and its severe variant, the HH syndrome.
Collapse
Affiliation(s)
- Anna Marrone
- Academic Unit of Paediatrics, Institute of Cell and Molecular Science, Barts and The London, Queen Mary’s School of Medicine and Dentistry, London, United Kingdom
| | - Amanda Walne
- Academic Unit of Paediatrics, Institute of Cell and Molecular Science, Barts and The London, Queen Mary’s School of Medicine and Dentistry, London, United Kingdom
| | - Hannah Tamary
- Department of Paediatric Haematology, Schneider Children’s Medical Center of Israel, Sackler School of Medicine, Tel Aviv University, Petah-Tikva, Israel
| | - Yuka Masunari
- Academic Unit of Paediatrics, Institute of Cell and Molecular Science, Barts and The London, Queen Mary’s School of Medicine and Dentistry, London, United Kingdom
| | - Michael Kirwan
- Academic Unit of Paediatrics, Institute of Cell and Molecular Science, Barts and The London, Queen Mary’s School of Medicine and Dentistry, London, United Kingdom
| | - Richard Beswick
- Academic Unit of Paediatrics, Institute of Cell and Molecular Science, Barts and The London, Queen Mary’s School of Medicine and Dentistry, London, United Kingdom
| | - Tom Vulliamy
- Academic Unit of Paediatrics, Institute of Cell and Molecular Science, Barts and The London, Queen Mary’s School of Medicine and Dentistry, London, United Kingdom
| | - Inderjeet Dokal
- Academic Unit of Paediatrics, Institute of Cell and Molecular Science, Barts and The London, Queen Mary’s School of Medicine and Dentistry, London, United Kingdom
| |
Collapse
|
40
|
Abstract
Dyskeratosis congenita (DC) is an inherited syndrome exhibiting marked clinical and genetic heterogeneity. It is characterized by multiple features including mucocutaneous abnormalities, bone marrow failure and an increased predisposition to cancer. Three genetic subtypes are recognized: X-linked recessive DC bears mutations in DKC1, the gene encoding dyskerin, a component of H/ACA small nucleolar ribonucleoprotein particles; autosomal dominant (AD) DC has heterozygous mutations in either TERC or TERT, the RNA and enzymatic components of telomerase, respectively, and autosomal recessive DC in which the genes involved remain largely elusive. Disease pathology is believed to be a consequence of chromosome instability because of telomerase deficiency due to mutations in DKC1, TERC and TERT; in patients with DKC1 mutations, defects in ribosomal RNA modification, ribosome biogenesis, translation control or mRNA splicing may also contribute to disease pathogenesis. The involvement of telomerase complex components in X-linked and AD forms and the presence of short telomeres in DC patients suggest that DC is primarily a disease of defective telomere maintenance. Treatment is variable and complicated by the development of secondary cancers but, being a monogenic disorder, it could potentially be treated by gene therapy. DC overlaps both clinically and genetically with several other diseases including Hoyeraal-Hreidarsson syndrome, aplastic anaemia and myelodysplasia, among others and its underlying telomeric defect has implications for a broader range of biological processes including ageing and many forms of cancer.
Collapse
Affiliation(s)
- M Kirwan
- Academic Unit of Paediatrics, Institute for Cell and Molecular Science, Barts and The London, Queen Mary's School of Medicine and Dentistry, University of London, UK.
| | | |
Collapse
|
41
|
Lermontova I, Schubert V, Börnke F, Macas J, Schubert I. Arabidopsis CBF5 interacts with the H/ACA snoRNP assembly factor NAF1. PLANT MOLECULAR BIOLOGY 2007; 65:615-26. [PMID: 17712600 DOI: 10.1007/s11103-007-9226-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2007] [Accepted: 08/09/2007] [Indexed: 05/11/2023]
Abstract
The conserved protein CBF5, initially regarded as a centromere binding protein in yeast and higher plants, was later found within nucleoli and in Cajal bodies of yeast and metazoa. There, it is assumed to be involved in posttranscriptional pseudouridinylation of various RNA species that might be important for RNA processing. We found EYFP-labeled CBF5 of A. thaliana to be located within nucleoli and Cajal bodies, but neither at centromeres nor somewhere else on chromosomes. Arabidopsis mutants carrying a homozygous T-DNA insertion at the CBF5 locus were lethal. Yeast two-hybrid and mRNA expression analyses demonstrated that AtCBF5 is co-expressed and interacts with a previously uncharacterized protein containing a conserved NAF1 domain, presumably involved in H/ACA box snoRNP biogenesis. The homologous yeast protein has been shown to contribute to RNA pseudouridinylation. Thus, AtCBF5 might have an essential function in RNA processing rather than being a kinetochore protein.
Collapse
Affiliation(s)
- Inna Lermontova
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466 Gatersleben, Germany.
| | | | | | | | | |
Collapse
|
42
|
Riccardo S, Tortoriello G, Giordano E, Turano M, Furia M. The coding/non-coding overlapping architecture of the gene encoding the Drosophila pseudouridine synthase. BMC Mol Biol 2007; 8:15. [PMID: 17328797 PMCID: PMC1821038 DOI: 10.1186/1471-2199-8-15] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2006] [Accepted: 02/28/2007] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In eukaryotic cells, each molecule of H/ACA small nucleolar RNA (snoRNA) assembles with four evolutionarily conserved core proteins to compose a specific ribonucleoprotein particle. One of the four core components has pseudouridine synthase activity and catalyzes the conversion of a selected uridine to pseudouridine. Members of the pseudouridine synthase family are highly conserved. In addition to catalyzing pseudouridylation of target RNAs, they carry out a variety of essential functions related to ribosome biogenesis and, in mammals, to telomere maintenance. To investigate further the molecular mechanisms underlying the expression of pseudouridine synthase genes, we analyzed the transcriptional activity of the Drosophila member of this family in great detail. RESULTS The Drosophila gene for pseudouridine synthase, minifly/Nop60b (mfl), encodes two novel mRNAs ending at a downstream poly(A) site. One species is characterized only by an extended 3'-untranslated region (3'UTR), while a minor mRNA encodes a variant protein that represents the first example of an alternative subform described for any member of the family to date. The rare spliced variant is detected mainly in females and is predicted to have distinct functional properties. We also report that a cluster comprising four isoforms of a C/D box snoRNA and two highly related copies of a small ncRNA gene of unknown function is intron-encoded at the gene-variable 3'UTRs. Because this arrangement, the alternative 3' ends allow mfl not only to produce two distinct protein subforms, but also to release different ncRNAs. Intriguingly, accumulation of all these intron-encoded RNAs was found to be sex-biased and quantitatively modulated throughout development and, within the ovaries, the ncRNAs of unknown function were found not ubiquitously expressed. CONCLUSION Our results expand the repertoire of coding/non-coding transcripts derived from the gene encoding Drosophila pseudouridine synthase. This gene exhibits a complex and interlaced organization, and its genetic information may be expressed as different protein subforms and/or ncRNAs that may potentially contribute to its biological functions.
Collapse
Affiliation(s)
- Sara Riccardo
- Department of Structural and Functional Biology, University of Naples "Federico II", Complesso Universitario Monte Santangelo via Cinthia, 80126 Napoli, Italy
| | - Giuseppe Tortoriello
- Department of Structural and Functional Biology, University of Naples "Federico II", Complesso Universitario Monte Santangelo via Cinthia, 80126 Napoli, Italy
| | - Ennio Giordano
- Department of Structural and Functional Biology, University of Naples "Federico II", Complesso Universitario Monte Santangelo via Cinthia, 80126 Napoli, Italy
| | - Mimmo Turano
- Department of Structural and Functional Biology, University of Naples "Federico II", Complesso Universitario Monte Santangelo via Cinthia, 80126 Napoli, Italy
| | - Maria Furia
- Department of Structural and Functional Biology, University of Naples "Federico II", Complesso Universitario Monte Santangelo via Cinthia, 80126 Napoli, Italy
| |
Collapse
|
43
|
Abstract
Dyskeratosis congenita (DC) is a rare inherited multi-system disorder. Although DC is classically characterized by mucocutaneous features, the vast majority of patients develop hematologic abnormalities, and in its occult form the disease can present as aplastic anemia. The gene responsible for the X-linked form of the disease encodes a protein involved in ribosome biogenesis and in stabilizing the telomerase complex, while the autosomal dominant form is caused by mutations in the core RNA component of telomerase. It has been suggested that DC is primarily a disease of defective telomere maintenance. Premature shortening of telomeres resulting in a limited proliferative potential of stem cells would explain the pathology observed in DC, as the affected tissues are those that require constant renewal.
Collapse
Affiliation(s)
- Tom Vulliamy
- Department of Haematology, Division of Investigative Science, Faculty of Medicine, Imperial College, Hammersmith Hospital, London, UK.
| | | |
Collapse
|
44
|
Abstract
Dyskeratosis congenita is an inherited disorder that usually presents in males, consisting of the triad of leukoplakia of the mucous membranes, nail dystrophy and skin pigmentation. Whilst most cases are X-linked, autosomal dominant and recessive forms have been reported. The significance of the condition lies in premature mortality arising from either bone marrow failure or malignant change within the areas of leukoplakia. Various mucocutaneous and non-mucocutaneous manifestations have been reported. The syndrome arises from an inherited defect within the DKC1 gene that codes for the protein dyskerin in the X-linked recessive form of the disorder, whereas mutations in the RNA component of telomerase (TERC) result in the autosomal dominant form of the condition. The identification of a white patch within the mouth of a child in the absence of any other obvious cause should arouse suspicion of this rare condition. Greater understanding of the molecular biology surrounding this syndrome should lead to improvements in diagnosis, monitoring of disease progression and therapy.
Collapse
Affiliation(s)
- T P B Handley
- Unit of Oral Surgery and Medicine, University of Dundee, Park Place, Dundee DD1 4HR, and Department of Oral and Maxillofacial Surgery, Monklands Hospital, Airdre, UK
| | | | | |
Collapse
|
45
|
Marrone A, Walne A, Dokal I. Dyskeratosis congenita: telomerase, telomeres and anticipation. Curr Opin Genet Dev 2005; 15:249-57. [PMID: 15917199 DOI: 10.1016/j.gde.2005.04.004] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2004] [Accepted: 04/06/2005] [Indexed: 01/07/2023]
Abstract
Dyskeratosis congenita (DC) is a rare bone marrow failure syndrome that displays marked clinical and genetic heterogeneity. The identification of dyskeratosis congenita gene 1 (DKC1) mutations in X-linked recessive patients initially suggested that DC is a defective pseudouridylation disorder. The subsequent identification of mutations in the telomerase RNA component (TERC) of autosomal dominant DC patients together with the discovery that both TERC and the DKC1-encoded protein, dyskerin, are closely associated in the telomerase complex have suggested that the pathophysiology of DC predominantly relates to defective telomere maintenance. Recent discoveries have shown that autosomal dominant DC exhibits disease anticipation and that this is associated with progressive telomere shortening owing to the haplo-insufficiency of TERC.
Collapse
Affiliation(s)
- Anna Marrone
- Department of Haematology, Imperial College London, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK.
| | | | | |
Collapse
|
46
|
Meier UT. The many facets of H/ACA ribonucleoproteins. Chromosoma 2005; 114:1-14. [PMID: 15770508 PMCID: PMC4313906 DOI: 10.1007/s00412-005-0333-9] [Citation(s) in RCA: 219] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2004] [Revised: 01/31/2005] [Accepted: 02/01/2005] [Indexed: 10/25/2022]
Abstract
The H/ACA ribonucleoproteins (RNPs) are known as one of the two major classes of small nucleolar RNPs. They predominantly guide the site-directed pseudouridylation of target RNAs, such as ribosomal and spliceosomal small nuclear RNAs. In addition, they process ribosomal RNA and stabilize vertebrate telomerase RNA. Taken together, the function of H/ACA RNPs is essential for ribosome biogenesis, pre-mRNA splicing, and telomere maintenance. Every cell contains 100-200 different species of H/ACA RNPs, each consisting of the same four core proteins and one function-specifying H/ACA RNA. Most of these RNPs reside in nucleoli and Cajal bodies and mediate the isomerization of specific uridines to pseudouridines. Catalysis of the reaction is mediated by the putative pseudouridylase NAP57 (dyskerin, Cbf5p). Unexpectedly, mutations in this housekeeping enzyme are the major determinants of the inherited bone marrow failure syndrome dyskeratosis congenita. This review details the many diverse functions of H/ACA RNPs, some yet to be uncovered, with an emphasis on the role of the RNP proteins. The multiple functions of H/ACA RNPs appear to be reflected in the complex phenotype of dyskeratosis congenita.
Collapse
Affiliation(s)
- U Thomas Meier
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA.
| |
Collapse
|
47
|
Enukashvily N, Donev R, Sheer D, Podgornaya O. Satellite DNA binding and cellular localisation of RNA helicase P68. J Cell Sci 2005; 118:611-22. [PMID: 15657085 DOI: 10.1242/jcs.01605] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
We purified a 68-kDa protein from the mouse nuclear matrix using ion exchange and affinity chromatography. Column fractions were tested for specific binding to mouse minor satellite DNA using a gel mobility shift assay. The protein was identified by mass spectrometry as RNA helicase P68. In fixed cells, P68 was found to shuttle in and out of SC35 domains, forming fibres and granules in a cell-cycle dependent manner. Analysis of the P68 sequence revealed a short potential coiled-coil domain that might be involved in the formation of P68 fibres. Contacts between centromeres and P68 granules were observed during all phases of the cycle but they were most prominent in mitosis. At this stage, P68 was found in both the centromeric regions and the connections between chromosomes. Direct interaction of P68/DEAD box RNA helicase with satellite DNAs in vitro has not been demonstrated for any other members of the RNA helicase family.
Collapse
Affiliation(s)
- Natella Enukashvily
- Cell Cultures Department, Institute of Cytology, Tikhoretsky, 4, St Petersburg, 194064, Russia.
| | | | | | | |
Collapse
|
48
|
Ionescu CN, Origanti S, McAlear MA. The yeast rRNA biosynthesis factor Ebp2p is also required for efficient nuclear division. Yeast 2005; 21:1219-32. [PMID: 15515129 DOI: 10.1002/yea.1177] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Molecular genetic analysis of the yeast Ebp2 protein has revealed that it is an essential, nucleolar protein that functions in the rRNA biosynthesis pathway. Temperature-sensitive ebp2-1 mutants are defective in the processing of the 27 SA precursor rRNA, and the point substitutions that disrupt this activity cluster towards the central, more highly conserved region of the Ebp2 protein. We report here that other ebp2 mutants exhibit deficiencies associated with defects in chromosome segregation. Yeast cells bearing a 50 amino acid C-terminal truncation allele (ebp2 delta C50) display a slow-growth phenotype and exhibit an increased percentage of cells with the nucleus positioned at the bud neck. The ebp2-1 and ebp2 delta C50 alleles genetically complement each other, and ebp2 delta C50 mutants exhibit nuclear division defects that are distinct from the rRNA biosynthesis-related phenotypes of ebp2-1 mutants. Cytological and FACS analysis of the ebp2 delta C50 deletion mutants indicate that the chromosome segregation related activities of the Ebp2 protein are monitored by Mad2p, a mitotic checkpoint protein. The finding that yeast Ebp2p functions in nuclear division is consistent with the growing body of evidence that supports the role that human EBP2 plays in chromosome segregation.
Collapse
Affiliation(s)
- Costin N Ionescu
- Molecular Biology and Biochemistry Department, Wesleyan University, Middletown, CT 06459-0175, USA
| | | | | |
Collapse
|
49
|
|
50
|
Wang C, Meier UT. Architecture and assembly of mammalian H/ACA small nucleolar and telomerase ribonucleoproteins. EMBO J 2004; 23:1857-67. [PMID: 15044956 PMCID: PMC394235 DOI: 10.1038/sj.emboj.7600181] [Citation(s) in RCA: 161] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2004] [Accepted: 03/03/2004] [Indexed: 11/08/2022] Open
Abstract
Mammalian H/ACA small nucleolar RNAs and telomerase RNA share common sequence and secondary structure motifs that form ribonucleoprotein particles (RNPs) with the same four core proteins, NAP57 (also dyskerin or in yeast Cbf5p), GAR1, NHP2, and NOP10. The assembly and molecular interactions of the components of H/ACA RNPs are unknown. Using in vitro transcription/translation in combination with immunoprecipitation of core proteins, UV-crosslinking, and electrophoretic mobility shift assays, we demonstrate the following. NOP10 associates with NAP57 as a prerequisite for NHP2 binding. Although NHP2 on its own binds RNA nonspecifically, this NAP57-NOP10-NHP2 core trimer specifically recognizes H/ACA RNAs. GAR1 associates independently with NAP57 near the pseudouridylase core of mature H/ACA RNPs. In contrast to other RNPs whose assembly is initiated by protein-RNA interactions, the four H/ACA core proteins form a protein-only particle that associates with H/ACA RNAs. Nonetheless, functional H/ACA snoRNPs assembled in cytosolic extracts are stable and do not exchange their RNA components, suggesting that new particle formation requires de novo synthesis.
Collapse
Affiliation(s)
- Chen Wang
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, NY, USA
| | - U Thomas Meier
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, NY, USA
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA. Tel.: +1 718 430 3294; Fax: +1 718 430 8996; E-mail:
| |
Collapse
|