1
|
Murphy PA, Butty VL, Boutz PL, Begum S, Kimble AL, Sharp PA, Burge CB, Hynes RO. Alternative RNA splicing in the endothelium mediated in part by Rbfox2 regulates the arterial response to low flow. eLife 2018; 7:29494. [PMID: 29293084 PMCID: PMC5771670 DOI: 10.7554/elife.29494] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 12/30/2017] [Indexed: 12/13/2022] Open
Abstract
Low and disturbed blood flow drives the progression of arterial diseases including atherosclerosis and aneurysms. The endothelial response to flow and its interactions with recruited platelets and leukocytes determine disease progression. Here, we report widespread changes in alternative splicing of pre-mRNA in the flow-activated murine arterial endothelium in vivo. Alternative splicing was suppressed by depletion of platelets and macrophages recruited to the arterial endothelium under low and disturbed flow. Binding motifs for the Rbfox-family are enriched adjacent to many of the regulated exons. Endothelial deletion of Rbfox2, the only family member expressed in arterial endothelium, suppresses a subset of the changes in transcription and RNA splicing induced by low flow. Our data reveal an alternative splicing program activated by Rbfox2 in the endothelium on recruitment of platelets and macrophages and demonstrate its relevance in transcriptional responses during flow-driven vascular inflammation.
Collapse
Affiliation(s)
- Patrick A Murphy
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, United States
| | | | - Paul L Boutz
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, United States
| | - Shahinoor Begum
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, United States.,Howard Hughes Medical Institute, United States
| | - Amy L Kimble
- Center for Vascular Biology, UCONN Health, Farmington, United States
| | - Phillip A Sharp
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, United States.,Department of Biology, MIT, Cambridge, United States
| | | | - Richard O Hynes
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, United States.,Department of Biology, MIT, Cambridge, United States.,Howard Hughes Medical Institute, United States
| |
Collapse
|
2
|
Wang Y, Ni H. Fibronectin maintains the balance between hemostasis and thrombosis. Cell Mol Life Sci 2016; 73:3265-77. [PMID: 27098513 PMCID: PMC11108312 DOI: 10.1007/s00018-016-2225-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2015] [Revised: 03/27/2016] [Accepted: 04/12/2016] [Indexed: 11/29/2022]
Abstract
Fibronectin is a dimeric protein widely distributed in solid tissues and blood. This major extracellular matrix protein is indispensable for embryogenesis and plays crucial roles in many physiological and pathological processes. Fibronectin pre-mRNA undergoes alternative splicing to generate over 20 splicing variants, which are categorized as either plasma fibronectin (pFn) or cellular fibronectin (cFn). All fibronectin variants contain integrin binding motifs, as well as N-terminus collagen and fibrin binding motifs. With motifs that can be recognized by platelet integrins and coagulation factors, fibronectin, especially pFn, has long been suspected to be involved in hemostasis and thrombosis, but the exact function of fibronectin in these processes is controversial. The advances made using intravital microscopy models and fibronectin deficient and mutant mice have greatly facilitated the direct investigation of fibronectin function in vivo. Recent studies revealed that pFn is a vital hemostatic factor that is especially crucial for hemostasis in both genetic and anticoagulant-induced deficiencies of fibrin formation. pFn may also be an important self-limiting regulator to prevent hemorrhage as well as excessive thrombus formation and vessel occlusion. In addition to pFn, cFn is found to be prothrombotic and may contribute to thrombotic complications in various diseases. Further investigations of the role of pFn and cFn in thrombotic and hemorrhagic diseases may provide insights into development of novel therapeutic strategies (e.g., pFn transfusion) for the maintenance of the fine balance between hemostasis and thrombosis.
Collapse
Affiliation(s)
- Yiming Wang
- Room 420, LKSKI-Keenan Research Centre for Biomedical Science, Department of Laboratory Medicine, St. Michael's Hospital, 209 Victoria Street, Toronto, ON, M5B 1W8, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Canadian Blood Services, Toronto, ON, Canada
- Toronto Platelet Immunobiology Group, Toronto, ON, Canada
| | - Heyu Ni
- Room 420, LKSKI-Keenan Research Centre for Biomedical Science, Department of Laboratory Medicine, St. Michael's Hospital, 209 Victoria Street, Toronto, ON, M5B 1W8, Canada.
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.
- Canadian Blood Services, Toronto, ON, Canada.
- Toronto Platelet Immunobiology Group, Toronto, ON, Canada.
- Department of Physiology, University of Toronto, Toronto, ON, Canada.
- Department of Medicine, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
3
|
Lambert N, Robertson A, Jangi M, McGeary S, Sharp PA, Burge CB. RNA Bind-n-Seq: quantitative assessment of the sequence and structural binding specificity of RNA binding proteins. Mol Cell 2014; 54:887-900. [PMID: 24837674 DOI: 10.1016/j.molcel.2014.04.016] [Citation(s) in RCA: 299] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Revised: 03/04/2014] [Accepted: 04/10/2014] [Indexed: 10/25/2022]
Abstract
Specific protein-RNA interactions guide posttranscriptional gene regulation. Here, we describe RNA Bind-n-Seq (RBNS), a method that comprehensively characterizes sequence and structural specificity of RNA binding proteins (RBPs), and its application to the developmental alternative splicing factors RBFOX2, CELF1/CUGBP1, and MBNL1. For each factor, we recovered both canonical motifs and additional near-optimal binding motifs. RNA secondary structure inhibits binding of RBFOX2 and CELF1, while MBNL1 favors unpaired Us but tolerates C/G pairing in motifs containing UGC and/or GCU. Dissociation constants calculated from RBNS data using a novel algorithm correlated highly with values measured by surface plasmon resonance. Motifs identified by RBNS were conserved, were bound and active in vivo, and distinguished the subset of motifs enriched by CLIP-Seq that had regulatory activity. Together, our data demonstrate that RBNS complements crosslinking-based methods and show that in vivo binding and activity of these splicing factors is driven largely by intrinsic RNA affinity.
Collapse
Affiliation(s)
- Nicole Lambert
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Alex Robertson
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA; Program in Computational and Systems Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Mohini Jangi
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Sean McGeary
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA; Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Phillip A Sharp
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA; Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Christopher B Burge
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA; Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.
| |
Collapse
|
4
|
White ES, Baralle FE, Muro AF. New insights into form and function of fibronectin splice variants. J Pathol 2008; 216:1-14. [PMID: 18680111 PMCID: PMC4630009 DOI: 10.1002/path.2388] [Citation(s) in RCA: 248] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2008] [Indexed: 01/14/2023]
Abstract
The extracellular matrix (ECM) is a highly dynamic structure that not only provides a physical framework for cells within connective tissues, but also imparts instructive signals for development, tissue homeostasis and basic cell functions through its composition and ability to exert mechanical forces. The ECM of tissues is composed of, in addition to proteoglycans and hyaluronic acid, a number of proteins, most of which are generated after alternative splicing of their pre-mRNA. However, the precise function of these protein isoforms is still obscure in most cases. Fibronectin (FN), one of the main components of the ECM, is also one of the best-known examples of a family of proteins generated by alternative splicing, having at least 20 different isoforms in humans. Over the last few years, considerable progress on elucidating the functions of the alternatively spliced FN isoforms has been achieved with the essential development of key engineered mouse strains. Here we summarize the phenotypes of the mouse strains having targeted mutations in the FN gene, which may lead to novel insights linking function of alternatively spliced isoforms of fibronectin to human pathologies.
Collapse
Affiliation(s)
- Eric S. White
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan
| | | | - Andrés F. Muro
- International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| |
Collapse
|
5
|
|
6
|
Flanagan M, Liang H, Norton PA. Alternative splicing of fibronectin mRNAs in chondrosarcoma cells: role of far upstream intron sequences. J Cell Biochem 2004; 90:709-18. [PMID: 14587027 DOI: 10.1002/jcb.10687] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The fibronectin (FN) gene encodes multiple mRNAs through the process of alternative splicing, and production of certain isoforms is characteristic of a given cell type. Chondrocytes produce FNs that completely lack alternative exon EIIIA, and loss of inclusion of the exon is tightly linked to chondrogenic condensation of mesenchymal cells. The inclusion of a second exon, EIIIB, is high in embryonic cartilage, but declines with age. Multiple exons are omitted to produce the (V + C)-form that is highly specific for cartilage and chondrocytes. A rat chondrosarcoma cell line, RCS, was identified that preserves key features of the cartilage-specific splicing phenotype. RCS cells, which exclude exon EIIIA, and HeLa cells, which include exon EIIIA similar to mesenchymal cells, were used to assess the contribution of intron sequences flanking exon EIIIA to splicing regulation. Deletion of most of the intron downstream of the exon had little effect on splicing in either cell type. However, deletions within upstream intron 32-A reduced inclusion of the alternative exon in both cell types. The sequences involved lie more than 200 nucleotides away from the exon, but could not be localized to a single region by deletion mapping. These intronic sequences contribute to the efficiency of exon EIIIA recognition, but not to cell-type specific regulation. The normally inhibitory factor polypyrimidine tract binding protein promotes exon EIIIA inclusion in a manner that is partially dependent on the regulatory sequences within intron 32-A.
Collapse
Affiliation(s)
- Matthew Flanagan
- Jefferson Center for Biomedical Research and Department of Biochemistry and Molecular Pharmacology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | | | | |
Collapse
|
7
|
Wang J, Gao QS, Wang Y, Lafyatis R, Stamm S, Andreadis A. Tau exon 10, whose missplicing causes frontotemporal dementia, is regulated by an intricate interplay of cis elements and trans factors. J Neurochem 2004; 88:1078-90. [PMID: 15009664 DOI: 10.1046/j.1471-4159.2003.02232.x] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Tau is a microtubule-associated protein whose transcript undergoes complex regulated splicing in the mammalian nervous system. In humans, exon 10 of the gene is an alternatively spliced cassette which is adult-specific and which codes for a microtubule binding domain. Mutations that affect splicing of exon 10 have been shown to cause inherited frontotemporal dementia (FTDP). In this study, we reconstituted naturally occurring exon 10 FTDP mutants and classified their effects on its splicing. We also carried out a comprehensive survey of the influence of splicing regulators on exon 10 inclusion and tentatively identified the site of action for several of these factors. Lastly, we identified the domains of regulators SWAP and hnRNPG, which are required for regulation of exon 10 splicing.
Collapse
Affiliation(s)
- Junning Wang
- Shriver Center at UMMS, Waltham, Massachusetts 02452, USA
| | | | | | | | | | | |
Collapse
|
8
|
Chauhan AK, Iaconcig A, Baralle FE, Muro AF. Alternative splicing of fibronectin: a mouse model demonstrates the identity of in vitro and in vivo systems and the processing autonomy of regulated exons in adult mice. Gene 2004; 324:55-63. [PMID: 14693371 DOI: 10.1016/j.gene.2003.09.026] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We have designed a novel approach using genetically engineered mice to make a systematic study of the EDA exon regulation of the fibronectin gene during development and aging. The genome of the mice was modified either by optimization of the EDA natural splice sites or by deleting the EDA region. The previous in vitro observation that the optimization of the splicing sites leads to constitutive inclusion of the EDA exon was confirmed in our animal model. In fact, all the adult tissues of the genetically modified mice showed only EDA(+) FN mRNA, demonstrating the fidelity of in vitro models, despite of the development- and aging-regulated splicing regulation of the EDA exon, and regardless of the presence of exonic elements described within the exon. This result indicates that the splicing regulatory elements of the EDA exon are dispensable in the presence of consensus splicing sites. Moreover, we demonstrate the autonomy of both the EDB and the IIICS alternatively spliced regions in adult mice lacking regulation of the alternative splicing at the EDA exon. We also show here the tight splicing regulation of all three alternative spliced regions of the FN gene at different time-points during development and aging of mice.
Collapse
Affiliation(s)
- Anil K Chauhan
- International Centre for Genetic Engineering and Biotechnology, Padriciano, 99, 34012-Trieste, Italy
| | | | | | | |
Collapse
|
9
|
Martínez-Contreras R, Galindo JM, Aguilar-Rojas A, Valdés J. Two exonic elements in the flanking constitutive exons control the alternative splicing of the alpha exon of the ZO-1 pre-mRNA. ACTA ACUST UNITED AC 2004; 1630:71-83. [PMID: 14654237 DOI: 10.1016/j.bbaexp.2003.09.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The 240-bp alpha exon of the tight junction (TJ) protein ZO-1 pre-mRNA is alternatively spliced. Expression of both ZO-1alpha+/ZO-1alpha- isoforms results in hermetic TJs, and these become leaky when ZO-1alpha- expression prevails. The alpha exon inclusion/skipping mechanism was studied by in vivo RT-PCR splicing assays in neural and epithelial cells, utilizing a canine minigene construct containing the alpha exon, and the flanking introns and exons. Inclusion of the alpha exon always occurs in wild-type MDCK cells and it is detectable in transfected HeLa cells. However, the alpha exon is skipped in transfected neural cells. Accordingly, both 5' and 3' splice sites surrounding the alpha exon appear to be suboptimal and no cis-acting splicing control elements were found in this exon. Deletion analysis revealed an 83-bp splicing enhancer in the downstream exon and a 35-bp splicing silencer at the beginning of the upstream exon. In epithelial cells all constructs rendered alpha exon inclusion. We conclude that, in neural cells, skipping of the alpha exon depends on two antagonistic exonic elements located in the flanking constitutive exons.
Collapse
Affiliation(s)
- Rebeca Martínez-Contreras
- Departmento de Fisiología, Biofísica y Neurociencias, CINVESTAV-México, Apartado Postal 14-740, DF 07000, México
| | | | | | | |
Collapse
|
10
|
Abstract
Alternative pre-mRNA splicing is a central mode of genetic regulation in higher eukaryotes. Variability in splicing patterns is a major source of protein diversity from the genome. In this review, I describe what is currently known of the molecular mechanisms that control changes in splice site choice. I start with the best-characterized systems from the Drosophila sex determination pathway, and then describe the regulators of other systems about whose mechanisms there is some data. How these regulators are combined into complex systems of tissue-specific splicing is discussed. In conclusion, very recent studies are presented that point to new directions for understanding alternative splicing and its mechanisms.
Collapse
Affiliation(s)
- Douglas L Black
- Department of Microbiology, Immunology, and Molecular Genetics, Howard Hughes Medical Institute, University of California-Los Angeles, Los Angeles, California 90095-1662, USA.
| |
Collapse
|
11
|
Hutchison S, LeBel C, Blanchette M, Chabot B. Distinct sets of adjacent heterogeneous nuclear ribonucleoprotein (hnRNP) A1/A2 binding sites control 5' splice site selection in the hnRNP A1 mRNA precursor. J Biol Chem 2002; 277:29745-52. [PMID: 12060656 DOI: 10.1074/jbc.m203633200] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In the heterogeneous nuclear ribonucleoprotein (hnRNP) A1 pre-mRNA, different regions in the introns flanking alternative exon 7B have been implicated in the production of the A1 and A1B mRNA splice isoforms. Among these, the CE1a and CE4 elements, located downstream of common exon 7 and alternative exon 7B, respectively, are bound by hnRNP A1 to promote skipping of exon 7B in vivo and distal 5' splice site selection in vitro. Here, we report that CE1a is flanked by an additional high affinity A1 binding site (CE1d). In a manner similar to CE1a, CE1d affects 5' splice site selection in vitro. Consistent with a role for hnRNP A1 in the activity of CE1d, a mutation that abrogates A1 binding abolishes distal 5' splice site activation. Moreover, the ability of CE1d to stimulate distal 5' splice site usage is lost in an HeLa extract depleted of hnRNP A/B proteins, and the addition of recombinant A1 restores the activity of CE1d. Notably, distal 5' splice site selection mediated by A1 binding sites is not compromised in an extract prepared from mouse cells that are severely deficient in hnRNP A1 proteins. In this case, we show that hnRNP A2 compensates for the A1 deficiency. Further studies with the CE4 element reveal that it also consists of two distinct portions (CE4m and CE4p), each one capable of promoting distal 5' splice site use in an hnRNP A1-dependent manner. The presence of multiple A1/A2 binding sites downstream of common exon 7 and alternative exon 7B probably plays an important role in maximizing the activity of hnRNP A1/A2 proteins.
Collapse
Affiliation(s)
- Stephen Hutchison
- Département de Microbiologie et d'Infectiologie, Faculté de Médecine, Université de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada
| | | | | | | |
Collapse
|
12
|
Arikan MC, Memmott J, Broderick JA, Lafyatis R, Screaton G, Stamm S, Andreadis A. Modulation of the membrane-binding projection domain of tau protein: splicing regulation of exon 3. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2002; 101:109-21. [PMID: 12007838 DOI: 10.1016/s0169-328x(02)00178-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Tau is a microtubule-associated protein whose transcript undergoes complex regulated splicing in the mammalian nervous system. The N-terminal domain of the protein interacts with the axonal membrane, and is modulated by differential inclusion of exons 2 and 3. These two tau exons are alternatively spliced cassettes, in which exon 3 never appears independently of exon 2. Previous work with tau minigene constructs indicated that exon 3 is intrinsically suboptimal and its primary regulator is a weak branch point. In this study, we confirm the role of the weak branch point in the regulation of exon 3 but also show that the exon is additionally regulated by a combination of exonic enhancers and silencers. Furthermore, we demonstrate that known splicing regulators affect the ratio of exon 3 isoforms, Lastly, we tentatively pinpoint the site of action of several splicing factors which regulate tau exon 3.
Collapse
Affiliation(s)
- Meltem Cevik Arikan
- Department of Biomedical Sciences, E.K. Shriver Center for Mental Retardation, Waltham, MA 02454, USA
| | | | | | | | | | | | | |
Collapse
|
13
|
Hinz B, Mastrangelo D, Iselin CE, Chaponnier C, Gabbiani G. Mechanical tension controls granulation tissue contractile activity and myofibroblast differentiation. THE AMERICAN JOURNAL OF PATHOLOGY 2001; 159:1009-20. [PMID: 11549593 PMCID: PMC1850455 DOI: 10.1016/s0002-9440(10)61776-2] [Citation(s) in RCA: 458] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
We have examined the role of mechanical tension in myofibroblast differentiation using two in vivo rat models. In the first model, granulation tissue was subjected to an increase in mechanical tension by splinting a full-thickness wound with a plastic frame. Myofibroblast features, such as stress fiber formation, expression of ED-A fibronectin and alpha-smooth muscle actin (alpha-SMA) appeared earlier in splinted than in unsplinted wounds. Myofibroblast marker expression decreased in control wounds starting at 10 days after wounding as expected, but persisted in splinted wounds. In the second model, granuloma pouches were induced by subcutaneous croton oil injection; pouches were either left intact or released from tension by evacuation of the exudate at 14 days. The expression of myofibroblast markers was reduced after tension release in the following sequence: F-actin (2 days), alpha-SMA (3 days), and ED-A fibronectin (5 days); cell density was not affected. In both models, isometric contraction of tissue strips was measured after stimulation with smooth muscle agonists. Contractility correlated always with the level of alpha-SMA expression, being high when granulation tissue had been subjected to tension and low when it had been relaxed. Our results support the assumption that mechanical tension is crucial for myofibroblast modulation and for the maintenance of their contractile activity.
Collapse
Affiliation(s)
- B Hinz
- Department of Pathology, University of Geneva, Geneva, Switzerland
| | | | | | | | | |
Collapse
|
14
|
Genetta T, Morisaki H, Morisaki T, Holmes EW. A novel bipartite intronic splicing enhancer promotes the inclusion of a mini-exon in the AMP deaminase 1 gene. J Biol Chem 2001; 276:25589-97. [PMID: 11331279 DOI: 10.1074/jbc.m011637200] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Alternative splicing of the 12-base exon 2 of the adenosine monophosphate deaminase (AMPD) gene is subject to regulation by both cis- and trans-regulatory signals. The extent of exon 2 inclusion is stage- and cell type-specific and is subject to the physiological state of the cell. In adult skeletal muscle, a cell type that regulates the activity of this allosteric enzyme at several levels, the exon 2-plus form of AMPD, predominates. We have performed a systematic analysis of the cis-acting regulatory sequences that reside in the intron immediately downstream of this mini-exon. A complex element comprising sequences that enhance exon 2 inclusion and sequences that counteract this effect resides in the middle of this intron. We demonstrate that the enhancing component is bipartite, with more than a kilobase of sequence separating the two functional sites. The presence of even minimal levels the mini-exon in the fully processed AMPD mRNA requires both of these sites, neither of which appears in any other published splicing enhancer. An RNA binding activity derived from a muscle cell line requires both of the enhancing sites. Mutations in either of the sites that eliminate exon 2 inclusion abrogate this binding activity.
Collapse
Affiliation(s)
- T Genetta
- Joseph P. Stokes Research Institute, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | | | | | | |
Collapse
|
15
|
Monsalve M, Wu Z, Adelmant G, Puigserver P, Fan M, Spiegelman BM. Direct coupling of transcription and mRNA processing through the thermogenic coactivator PGC-1. Mol Cell 2000; 6:307-16. [PMID: 10983978 DOI: 10.1016/s1097-2765(00)00031-9] [Citation(s) in RCA: 311] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Transcription and mRNA processing are coupled events in vivo, but the mechanisms that coordinate these processes are largely unknown. PGC-1 is a transcriptional coactivator that plays a major role in the regulation of adaptive thermogenesis. PGC-1 also has certain motifs characteristic of splicing factors. We demonstrate here that mutations in the serine- and arginine-rich domain and RNA recognition motif of PGC-1 interfere with the ability of PGC-1 to induce mRNAs of target genes. These mutations also disrupt the ability of PGC-1 to co-localize and associate with RNA processing factors. PGC-1 can alter the processing of an mRNA, but only when it is loaded onto the promoter of the gene. These data demonstrate the coordinated regulation of RNA transcription and processing through PGC-1.
Collapse
Affiliation(s)
- M Monsalve
- Dana-Farber Cancer Institute and The Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | |
Collapse
|
16
|
Libri D, Lescure A, Rosbash M. Splicing enhancement in the yeast rp51b intron. RNA (NEW YORK, N.Y.) 2000; 6:352-68. [PMID: 10744020 PMCID: PMC1369918 DOI: 10.1017/s1355838200991222] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Splicing enhancement in higher eukaryotes has been linked to SR proteins, to U1 snRNP, and to communication between splice sites across introns or exons mediated by protein-protein interactions. It has been previously shown that, in yeast, communication mediated by RNA-RNA interactions between the two ends of introns is a basis for splicing enhancement. We designed experiments of randomization-selection to isolate splicing enhancers that would work independently from RNA secondary structures. Surprisingly, one of the two families of sequences selected was essentially composed of 5' splice site variants. We show that this sequence enhances splicing independently of secondary structure, is exportable to heterologous contexts, and works in multiple copies with additive effects. The data argue in favor of an early role for splicing enhancement, possibly coincident with commitment complex formation. Genetic compensation experiments with U1 snRNA mutants suggest that U1 snRNP binding to noncanonical locations is required for splicing enhancement.
Collapse
Affiliation(s)
- D Libri
- Centre National de la Recherche Scientifique, Centre de Génétique Moléculaire, Gif-sur-Yvette, France.
| | | | | |
Collapse
|
17
|
Uporova TM, Norton PA, Tuan RS, Bennett VD. Alternative splicing during chondrogenesis: cis and trans factors involved in splicing of fibronectin exon EIIIA. J Cell Biochem 2000. [DOI: 10.1002/(sici)1097-4644(20000201)76:2<341::aid-jcb17>3.0.co;2-t] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
18
|
Gao QS, Memmott J, Lafyatis R, Stamm S, Screaton G, Andreadis A. Complex regulation of tau exon 10, whose missplicing causes frontotemporal dementia. J Neurochem 2000; 74:490-500. [PMID: 10646499 DOI: 10.1046/j.1471-4159.2000.740490.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Tau is a microtubule-associated protein whose transcript undergoes complex regulated splicing in the mammalian nervous system. Exon 10 of the gene is an alternatively spliced cassette that is adult-specific and that codes for a microtubule binding domain. Recently, mutations that affect splicing of exon 10 have been shown to cause inherited frontotemporal dementia (FTDP). In this study, we establish the endogenous expression patterns of exon 10 in human tissue; by reconstituting naturally occurring FTDP mutants in the homologous context of exon 10, we show that the cis determinants of exon 10 splicing regulation include an exonic silencer within the exon, its 5' splice site, and the relative affinities of its flanking exons to it. By cotransfections in vivo, we demonstrate that several splicing regulators affect the ratio of tau isoforms by inhibiting exon 10 inclusion.
Collapse
Affiliation(s)
- Q S Gao
- Department of Biomedical Sciences, E. K. Shriver Center for Mental Retardation, Waltham, Massachusetts 02452, USA
| | | | | | | | | | | |
Collapse
|
19
|
Liao YF, Wieder KG, Classen JM, Van De Water L. Identification of two amino acids within the EIIIA (ED-A) segment of fibronectin constituting the epitope for two function-blocking monoclonal antibodies. J Biol Chem 1999; 274:17876-84. [PMID: 10364233 DOI: 10.1074/jbc.274.25.17876] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Alternative splicing of the fibronectin gene transcript gives rise to a group of adhesive glycoproteins showing restricted spatial and temporal expression during embryonic development, tumor growth, and tissue repair. Alternative splicing occurs in three segments termed EIIIB, EIIIA, and V. The EIIIA (or ED-A) segment of fibronectin is expressed prominently but transiently in healing wounds coincident with fibroblast expression of an activation marker, smooth muscle cell alpha-actin. A monoclonal antibody (IST-9) to the EIIIA segment blocks transforming growth factor-beta-mediated smooth muscle cell alpha-actin expression by fibroblasts in culture. A second monoclonal antibody (DH1) blocks chondrocyte condensation in chicken embryos. We find that IST-9 and DH1 react with human, rat, and chicken but not with mouse or frog EIIIA, suggesting that His44 may be important for antibody binding. A series of deletion mutants of rat EIIIA, constructed as glutathione S-transferase fusion proteins, do not react with either IST-9, DH1, or a third monoclonal antibody (3E2). Mutations of pairs of amino acids to alanine have little effect, except for either (Val34Thr35) or (Tyr36Ser37), which are located in a beta strand upstream from His44. For these double mutants, the binding to all three monoclonal antibodies is markedly reduced. By contrast, single mutants at Thr35, Tyr36, or Ser37 retain full activity, suggesting that the epitope for these antibodies is determined in part by conformation. Alanine-scanning mutagenesis of rat EIIIA demonstrates the importance of Ile43 and His44 for binding. Mutation of frog EIIIA (normally Val43Lys44) to rat (Ile43His44) is sufficient to restore fully IST-9 binding and much of the activity of DH1 and 3E2. Our findings demonstrate that the function-blocking antibodies, IST-9 and DH1, bind to the Ile43 and His44 residues in a conformationally dependent fashion, implicating the loop region encompassing both residues as critical for mediating EIIIA function.
Collapse
Affiliation(s)
- Y F Liao
- Center for Engineering in Medicine and Surgical Services, Massachusetts General Hospital and Harvard Medical School, the Shriners Burns Hospital, Boston, Massachusetts 02114, USA
| | | | | | | |
Collapse
|
20
|
Toyoshima K, Kimura S, Cheng J, Oda Y, Mori KJ, Saku T. High-molecular-weight fibronectin synthesized by adenoid cystic carcinoma cells of salivary gland origin. Jpn J Cancer Res 1999; 90:308-19. [PMID: 10359046 PMCID: PMC5926065 DOI: 10.1111/j.1349-7006.1999.tb00749.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
To understand the morphogenesis of characteristic cribriform structures and the frequent invasion of salivary adenoid cystic carcinomas (ACC) along such basement membrane-rich structures as peripheral nerves, we have isolated fibronectin (FN) from the culture media of ACC3 cells established from a parotid ACC and characterized its glycosylation and alternative splicing status. FN isolated from ACC3 cells (ACC-FN) showed a molecular mass of 315 kDa in SDS-PAGE and was less heterogeneous and larger than plasma FN (pFN) or FNs from other cell sources. Differential enzymatic treatments of immunoprecipitated ACC-FN with neuraminidase, peptide-N-glycosidase F and endo-alpha-N-acetylgalactosaminidase revealed that ACC-FN was composed of a polypeptide chain of 270 kDa, with 10 kDa each of N-linked and O-linked oligosaccharide chains. Reverse transcription polymerase chain reaction (RT-PCR), in-situ hybridization, and immunofluorescence studies showed that most ACC-FNs contained ED-A, ED-B and IIICS regions in the molecules. This alternative splicing status of ACC-FN seemed to contribute to its less heterogeneous and larger molecular form. Cell attachment assay demonstrated that ACC-FN was more potent than pFN in adhesion of ACC3 cells. The results indicated that ACC-FN may function as a substrate for attachment of ACC3 cells, or that ACC3 cells trap and retain ACC-FN in their pericellular space. This isoform of FN may play an important role in the mode of invasion of ACC and the formation of stromal pseudocysts in the characteristic cribriform structure of ACC.
Collapse
Affiliation(s)
- K Toyoshima
- Department of Pathology, Niigata University School of Dentistry
| | | | | | | | | | | |
Collapse
|
21
|
Chen CD, Helfman DM. Donor site competition is involved in the regulation of alternative splicing of the rat beta-tropomyosin pre-mRNA. RNA (NEW YORK, N.Y.) 1999; 5:290-301. [PMID: 10024180 PMCID: PMC1369760 DOI: 10.1017/s1355838299980743] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The rat beta-tropomyosin (beta-TM) gene encodes both skeletal muscle beta-TM mRNA and nonmuscle TM-1 mRNA via alternative RNA splicing. This gene contains eleven exons: exons 1-5, 8, and 9 are common to both mRNAs; exons 6 and 11 are used in fibroblasts as well as in smooth muscle, whereas exons 7 and 10 are used in skeletal muscle. Previously we demonstrated that utilization of the 3' splice site of exon 7 is blocked in nonmuscle cells. In this study, we use both in vitro and in vivo methods to investigate the regulation of the 5' splice site of exon 7 in nonmuscle cells. The 5' splice site of exon 7 is used efficiently in the absence of flanking sequences, but its utilization is suppressed almost completely when the upstream exon 6 and intron 6 are present. The suppression of the 5' splice site of exon 7 does not result from the sequences at the 3' end of intron 6 that block the use of the 3' splice site of exon 7. However, mutating two conserved nucleotides GU at the 5' splice site of exon 6 results in the efficient use of the 5' splice site of exon 7. In addition, a mutation that changes the 5' splice site of exon 7 to the consensus U1 snRNA binding site strongly stimulates the splicing of exon 7 to the downstream common exon 8. Collectively, these studies demonstrate that 5' splice site competition is responsible, in part, for the suppression of exon 7 usage in nonmuscle cells.
Collapse
Affiliation(s)
- C D Chen
- Cold Spring Harbor Laboratory, New York 11724, USA
| | | |
Collapse
|
22
|
McCullough AJ, Schuler MA. Intronic and exonic sequences modulate 5' splice site selection in plant nuclei. Nucleic Acids Res 1997; 25:1071-7. [PMID: 9023120 PMCID: PMC146543 DOI: 10.1093/nar/25.5.1071] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Pre-mRNA transcripts in a variety of organisms, including plants, Drosophila and Caenorhabditis elegans, contain introns which are significantly richer in adenosine and uridine residues than their flanking exons. Previous analyses using exonic and intronic replacements between two nonequivalent 5'splice sites in the 469 nt long rbcS3A intron 1 provided the first evidence indicating that, in both tobacco and Drosophila nuclei, 5'splice site selection is strongly influenced by the position of that site relative to the AU transition point between exon and intron. To differentiate between two potential models for 5'splice site recognition, we have expressed a completely different set of intronic and exonic replacement constructs containing identical 5'splice sites upstream of beta-conglycinin intron 4 (115 nt). Mutagenesis and deletion of the upstream 5'splice site demonstrate that intronic AU-rich sequences function by promoting recognition of the most upstream 5'splice site rather than by masking the downstream 5'splice site. Sequence insertions define a role for AG-rich exonic sequences in plant pre-mRNA splicing by demonstrating that an AG-rich element is capable of promoting downstream 5'splice site recognition. We conclude that AU-rich intronic sequences, AG-rich exonic sequences and the 5'splice site itself collectively define 5'intron boundaries in dicot nuclei.
Collapse
Affiliation(s)
- A J McCullough
- Verna and Marrs McClean Department of Biochemistry, Baylor College of Medicine, Houston, TX 77030, USA
| | | |
Collapse
|
23
|
Abstract
Three independent mutations were made by homologous recombination in two different regions of the fibronectin (FN) gene; all three appeared to be functional null mutations. The embryonic lethal phenotypes of these mutations were indistinguishable; all three FN mutant strains show mesodermal defects and fail to develop notochord or somites. Nevertheless analysis with lineage markers (Brachyury, sonic hedgehog, Notch-1, and mox-1) showed that both the notochord and the somite lineages were induced at the correct times and places. Furthermore, notochord precursor cells showed extensive cell migration in the absence of FN. However, neither notochord nor somites condensed properly in the absence of FN. These results show that specification of notochordal and somitic mesodermal lineages and significant cell migration are independent of fibronectin but that correct morphogenesis of these structures is FN-dependent.
Collapse
Affiliation(s)
- E N Georges-Labouesse
- Howard Hughes Medical Institute, Center for Cancer Research, Massachusetts Institute of Technology, Cambridge 02139, USA
| | | | | | | |
Collapse
|
24
|
Gehris AL, Brandli DW, Lewis SD, Bennett VD. The exon encoding the fibronectin type III-9 repeat is constitutively included in the mRNA from chick limb mesenchyme and cartilage. BIOCHIMICA ET BIOPHYSICA ACTA 1996; 1311:5-12. [PMID: 8603103 DOI: 10.1016/0167-4889(95)00183-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The fibronectin monomer is comprised of three types of homologous repeating units, the types I, II, and III elements. Each type III repeat is encoded by two exons except for the two type III repeats involved in alternative splicing (IIIB and IIIA) and the type III-9 repeat which are all encoded by one exon. The fact that the type III-9 repeat is the only other type III repeat encoded by one exon has led to speculation that this exon may also be alternatively spliced. However, no evidence exists for alternative splicing of this exon in any tissues examined to date. The recent localization of a cell adhesion synergy site within the type III-9 repeat increases the likelihood of functional ramifications if the exon encoding this repeat is alternatively spliced in specific cells or tissues. We have shown previously that chick cartilage contains an unusual fibronectin mRNA splicing pattern and that the pattern changes during chondrogenesis from B+A+V+ to B+A-V+. In order to completely characterize the fibronectin mRNA in cartilage and other mesenchymal tissues for all possible alternative splicing events, we have determined whether or not the exon encoding the type III-9 repeat is alternatively spliced in these tissues. RNase protection and RT/PCR assays indicate that the fibronectin mRNA in all of these tissues, including cartilage, contains the type III-9 repeat as a constitutively included exon. Thus the exon encoding the type III-9 repeat will serve as a useful control exon for examining the regulation of tissue-specific alternative splicing during chondrogenesis.
Collapse
Affiliation(s)
- A L Gehris
- Department of Orthopaedic Surgery, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | | | | | |
Collapse
|
25
|
Bergijk EC, de Heer E, Hoedemaeker PJ, Bruijn JA. A reappraisal of immune-mediated glomerulosclerosis. Kidney Int 1996; 49:605-11. [PMID: 8648899 DOI: 10.1038/ki.1996.87] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- E C Bergijk
- University of Leiden, Department of Pathology, The Netherlands
| | | | | | | |
Collapse
|
26
|
Pujuguet P, Hammann A, Moutet M, Samuel JL, Martin F, Martin M. Expression of fibronectin ED-A+ and ED-B+ isoforms by human and experimental colorectal cancer. Contribution of cancer cells and tumor-associated myofibroblasts. THE AMERICAN JOURNAL OF PATHOLOGY 1996; 148:579-92. [PMID: 8579120 PMCID: PMC1861682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Alternative splicing of primary fibronectin (FN) mRNA results in the synthesis of different isoforms. ED-A+ and ED-B+ FN isoforms are absent from plasma FN and are representative of cellular FN. Their expression was studied in human and rat normal colon, in human colorectal carcinomas, and in transplanted tumors derived from a chemically-induced rat colon cancer. In normal colon, only the ED-A+ FN isoform was expressed as a thin deposit between crypt colonocytes and pericryptal myofibroblasts. Conversely, heavy ED-A+ FN deposits and lighter ED-B+ FN expression were found in the stroma of colorectal tumors in association with myofibroblasts surrounding tumor glands. Some colonic cancer cells also contained intracellular FN isoform granules and expressed FN mRNA. Tumor-associated myofibroblasts and some cancer cell lines were able to synthesize and deposit extracellular ED-A+ and ED-B+ FN in vitro. FN isoform deposition by tumor-associated myofibroblasts was not modulated by colon cancer cell-conditioned medium, but was strongly enhanced when myofibroblasts were cultured on colon cancer cell extracellular matrix or on laminin. These results show that the ED-A+ and ED-B+ FN isoforms were overexpressed in colorectal cancer. Cancer cells can deposit these FN isoforms directly and also stimulate their deposition by tumor-associated myofibroblasts.
Collapse
Affiliation(s)
- P Pujuguet
- Research Group on Gastrointestinal Tumors, INSERM, Faculty of Medicine, Dijon, France
| | | | | | | | | | | |
Collapse
|
27
|
Viedt C, Bürger A, Hänsch GM. Fibronectin synthesis in tubular epithelial cells: up-regulation of the EDA splice variant by transforming growth factor beta. Kidney Int 1995; 48:1810-7. [PMID: 8587240 DOI: 10.1038/ki.1995.479] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The influence of transforming growth factor beta 1 (TGF-beta 1) and of dexamethasone on fibronectin (FN) synthesis of human renal tubular epithelial cells in culture (TEC) was studied. Cocultivation with TGF-beta 1 increased the steady state level of FN RNA within 24 to 48 hours. By PCR and Northern blotting it was found that the EDA splice variant of FN was preferentially up-regulated. To quantitate FN protein synthesis, cells were cultivated in the presence of [35S]-methionine and FN was isolated from the cell supernatants, and the cell lysates by adsorption to gelatin-sepharose. In TGF-beta 1 treated cells, a small increase of FN in the cell supernatants was seen (1.7-fold), and a more prominent increase in the cell lysates (4.5-fold). The FN content of the extracellular matrix was also increased in TGF-beta 1 treated cells. Most of the de novo synthesized FN was identified as the EDA-variant of FN. As a further stimulus, dexamethasone was used. Again, an increase of FN-specific mRNA was seen as well as an increased FN protein synthesis. The ratio between FN and EDA-FN, however, was not altered when compared to untreated cells. Thus, an increase in EDA-FN synthesis is obviously stimulus dependent.
Collapse
Affiliation(s)
- C Viedt
- Institut für Immunologie, Universität Heidelberg, Germany
| | | | | |
Collapse
|
28
|
Dubin D, Peters JH, Brown LF, Logan B, Kent KC, Berse B, Berven S, Cercek B, Sharifi BG, Pratt RE. Balloon catheterization induced arterial expression of embryonic fibronectins. Arterioscler Thromb Vasc Biol 1995; 15:1958-67. [PMID: 7583577 DOI: 10.1161/01.atv.15.11.1958] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Fibronectins (FNs) comprise a family of adhesive extracellular matrix proteins that arise by alternative splicing in three regions: V (IIICS), EIIIA (ED-A), and EIIIB (ED-B). FNs bearing the EIIIA and EIIIB segments are prevalent during embryogenesis, expressed to lesser degrees in normal adult tissues, and may be locally reexpressed at adult tissue injury. RNase mapping shows that normal rat arteries express low levels of FNs that are predominantly EIIIA- and EIIIB-. Following balloon injury, arterial walls produce increased total levels of FN transcripts that preferentially include both the EIIIA and EIIIB segments. However, despite inducing increased total FN mRNA, balloon injury does not alter the relative composition of V120+, V95+, AND V0 spliced forms. In situ hybridization reveals that as early as 4 days after injury medial cells express increased total FN mRNA, and by 7 days substantial neointimal and focal medial synthesis of EIIIA+, EIIIB+, and V120+ FNs occurs; macrophages do not significantly contribute to this observed vascular FN synthesis. Consistent with the mRNA data, immunofluorescence microscopic analysis reveals increased deposition of EIIIB+ and V+ FN protein forms in injured arterial walls, particularly within the neointima. Our results suggest that local synthesis of specific FN isoforms is important to the neointimal formation that ensues after balloon injury.
Collapse
Affiliation(s)
- D Dubin
- Department of Pathology, Beth Israel Hospital, Boston, MA 02215, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Caputi M, Baralle FE, Melo CA. Analysis of the linkage between fibronectin alternative spliced sites during ageing in rat tissues. BIOCHIMICA ET BIOPHYSICA ACTA 1995; 1263:53-9. [PMID: 7632733 DOI: 10.1016/0167-4781(95)00067-q] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The modulation of fibronectin (FN) functions in cell-cell and cell-substrate interactions in a variety of physiological situations is achieved by the selective expression of different isoforms, which in the rat are generated by alternatively splicing of at least three regions of the molecule: EIIIA, EIIIB and V. Extensive information has been collected on the regulation of the differential processing of the single alternatively spliced regions but up to now there was scant knowledge about a possible coordinated expression of the three regions in the same transcript. Using a long range RT-PCR system we have shown that most of the splicing regulation is autonomous for each individual region but we have also observed a preferential expression of the EIIIA+ form linked to the EIIIB- variant that is age independent. Furthermore the analysis of the single regions showed interesting variations occurring in brain during the ageing. There is a decrease in the V120 form between the 6- and the 24-month-old rat brain (from 57% to 39%), whereas despite a constant prevalence of the EIIIA- form in the young rats (65%) there is a random individual variation of this form in the old animals. Noteworthy no variations have been detected in the EIIIB region (90% EIIIB-). These data suggest a role for the V and EIIIA regions, but not for the EIIIB, during the ageing process at least in brain, since no variations were detected in kidney between the 6- and 24-month-old animals.
Collapse
Affiliation(s)
- M Caputi
- International Centre for Genetic Engineering and Biotechnology-UNIDO, Trieste, Italy
| | | | | |
Collapse
|
30
|
Zhang DW, Burton-Wurster N, Lust G. Alternative splicing of ED-A and ED-B sequences of fibronectin pre-mRNA differs in chondrocytes from different cartilaginous tissues and can be modulated by biological factors. J Biol Chem 1995; 270:1817-22. [PMID: 7829518 DOI: 10.1074/jbc.270.4.1817] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The alternative splicing of the ED-A and ED-B segments of fibronectin pre-mRNA was examined in epiphyseal, costal, and meniscal cartilage from 3-week-old beagles and in nasal, tracheal, articular, and meniscal cartilage from 1- and 2-year-old Labrador retrievers. In contrast to the 100% expression of ED-B(+) mRNA that has been reported for embryonic chick cartilage (Bennett, V.D., Pallante, K.M., and Adams, S.K. (1991) J. Biol. Chem. 266, 5918-5924), all cartilages studied expressed both the ED-B(+) and ED-B(-) forms of fibronectin mRNA with the exception of the trachea, in which expression was 100% ED-B(-). Of all cartilages studied, only the meniscus had detectable levels of ED-A(+) mRNA. Placing articular cartilage chondrocytes in primary monolayer culture dramatically up-regulated the expression of ED-A(+) mRNA to 25% of the total, and this expression was further increased by the addition of transforming growth factor beta 1 or fucoidan to the culture medium. The expression of ED-B(+) mRNA remained at about 18% in the cultured chondrocytes and was not further affected by either transforming growth factor beta 1 or fucoidan. In contrast, dibutyryl cyclic adenosine monophosphate decreased the relative expression of both the ED-A(+) and ED-B(+) forms of fibronectin pre-mRNA. We concluded that the expression of ED-B(+) fibronectin remains relatively high in chondrocytes from cartilaginous canine tissues (15-35%) with the exception of the trachea, in contrast to the less than 10% expression of ED-B(+) fibronectin reported for other non-fetal tissues.
Collapse
Affiliation(s)
- D W Zhang
- James A. Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, New York 14853
| | | | | |
Collapse
|
31
|
Zandberg H, Moen TC, Baas PD. Cooperation of 5' and 3' processing sites as well as intron and exon sequences in calcitonin exon recognition. Nucleic Acids Res 1995; 23:248-55. [PMID: 7862529 PMCID: PMC306662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
We have previously shown that the calcitonin (CT)-encoding exon 4 of the human calcitonin/calcitonin gene-related peptide I (CGRP-I) gene (CALC-I gene) is surrounded by suboptimal processing sites. At the 5' end of exon 4 a weak 3' splice site is present because of an unusual branch acceptor nucleotide (U) and a weak poly(A) site is present at the 3' end of exon 4. For CT-specific RNA processing two different exon enhancer elements, A and B, located within exon 4 are required. In this study we have investigated the cooperation of these elements in CT exon recognition and inclusion by transient transfection into 293 cells of CALC-I minigene constructs. Improvement of the strength of the 3' splice site in front of exon 4 by the branchpoint mutation U-->A reduces the requirement for the presence of exon enhancer elements within exon 4 for CT-specific RNA processing, irrespective of the length of exon 4. Replacement of the exon 4 poly(A) site with a 5' splice site does not result in CT exon recognition, unless also one or more exon enhancer elements and/or the branchpoint mutation U-->A in front of exon 4 are present. This indicates that terminal and internal exons are recognised in a similar fashion. The number of additional enhancing elements that are required for CT exon recognition depends on the strength of the 5' splice site. Deletion of a large part of intron 4 also leads to partial exon 4 skipping. All these different elements contribute to CT exon recognition and inclusion. The CT exon is recognised as a whole entity and the sum of the strengths of the different elements determines recognition as an exon. Curiously, in one of our constructs a 5' splice site at the end of exon 4 is either ignored by the splicing machinery of the cell or recognised as a splice donor or as a splice acceptor site.
Collapse
Affiliation(s)
- H Zandberg
- Laboratory for Physiological Chemistry, Utrecht University, Netherlands
| | | | | |
Collapse
|
32
|
Norton PA. Alternative pre-mRNA splicing: factors involved in splice site selection. J Cell Sci 1994; 107 ( Pt 1):1-7. [PMID: 8175901 DOI: 10.1242/jcs.107.1.1] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- P A Norton
- Department of Medicine, Roger Williams Hospital and Brown University, Providence, RI 02908
| |
Collapse
|