1
|
Kmiecik SW, Le Breton L, Mayer MP. Feedback regulation of heat shock factor 1 (Hsf1) activity by Hsp70-mediated trimer unzipping and dissociation from DNA. EMBO J 2020; 39:e104096. [PMID: 32490574 PMCID: PMC7360973 DOI: 10.15252/embj.2019104096] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 04/19/2020] [Accepted: 04/24/2020] [Indexed: 12/23/2022] Open
Abstract
The heat shock response is a universal transcriptional response to proteotoxic stress orchestrated by heat shock transcription factor Hsf1 in all eukaryotic cells. Despite over 40 years of intense research, the mechanism of Hsf1 activity regulation remains poorly understood at the molecular level. In metazoa, Hsf1 trimerizes upon heat shock through a leucine‐zipper domain and binds to DNA. How Hsf1 is dislodged from DNA and monomerized remained enigmatic. Here, using purified proteins, we demonstrate that unmodified trimeric Hsf1 is dissociated from DNA in vitro by Hsc70 and DnaJB1. Hsc70 binds to multiple sites in Hsf1 with different affinities. Hsf1 trimers are monomerized by successive cycles of entropic pulling, unzipping the triple leucine‐zipper. Starting this unzipping at several protomers of the Hsf1 trimer results in faster monomerization. This process directly monitors the concentration of Hsc70 and DnaJB1. During heat shock adaptation, Hsc70 first binds to a high‐affinity site in the transactivation domain, leading to partial attenuation of the response, and subsequently, at higher concentrations, Hsc70 removes Hsf1 from DNA to restore the resting state.
Collapse
Affiliation(s)
- Szymon W Kmiecik
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH-Alliance, Heidelberg, Germany
| | - Laura Le Breton
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH-Alliance, Heidelberg, Germany
| | - Matthias P Mayer
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH-Alliance, Heidelberg, Germany
| |
Collapse
|
2
|
Carlson T, Christian N, Bonner JJ. A role for RNA metabolism in inducing the heat shock response. Gene Expr 2018; 7:283-91. [PMID: 10440229 PMCID: PMC6174669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Abstract
Yeast HSF is constitutively trimeric and DNA bound. Heat shock is thought to activate HSF by inducing a conformational change. We have developed an assay in which we can follow a conformational change of HSF that correlates with activity and thus appears to be the active conformation. This conformational change requires two HSF trimers bound cooperatively to DNA. The conformational change can be induced in whole cell extracts, and is thus amenable to biochemical analysis. We have purified a factor that triggers the conformational change. The factor is sensitive to dialysis, insensitive to NEM, and is not extractable by phenol. It is small, and apparently not a peptide. Mass spectroscopy identifies a novel guanine nucleotide that tracks with activity on columns. This novel nucleotide, purchased from Sigma, induces the conformational change (although this does not prove the identity of the activating factor unambiguously, because Sigma's preparation is contaminated with other compounds). What is the source of this nucleotide in cells? Activity can be generated by treating extracts with ribonuclease; this implicates RNA degradation as a source of HSF-activating activity. The heat shock response is primarily responsible for monitoring the levels of protein chaperones; how can RNA degradation be involved? Synthetic lethal interactions link HSF activity to ribosome biogenesis, suggesting a possible model. Ribosomal proteins are produced in large quantities, and in excess of rRNA; unassembled r-proteins are rapidly degraded (t1/2 approximately 3 min). Unassembled r-proteins aggregate readily. It is likely that unassembled r-proteins represent a major target of chaperones in vivo, and for proteasome-dependent degradation. Interference with rRNA processing (e.g., by heat shock) requires hsp70s to handle the aggregation-prone r-proteins, and proteasome proteins to help degrade the unassembled r-proteins before they aggregate. A nucleotide signal could be generated from the degradation products of the rRNA itself.
Collapse
Affiliation(s)
- Tage Carlson
- *Departments of Biology, Indiana University, Bloomington, IN 47405
| | - Noah Christian
- †Departments of Chemistry, Indiana University, Bloomington, IN 47405
| | - J. José Bonner
- *Departments of Biology, Indiana University, Bloomington, IN 47405
- Address correspondence to J. José Bonner, Department of Biology, Indiana University, 142 Jordan Hall, 1001 E. 3rd Street, Bloomington, IN 47405-3700. Tel: (812) 855-7074; Fax: (812) 855-6705; E-mail:
| |
Collapse
|
3
|
Morano KA, Thiele DJ. Heat shock factor function and regulation in response to cellular stress, growth, and differentiation signals. Gene Expr 2018; 7:271-82. [PMID: 10440228 PMCID: PMC6174667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Abstract
Heat shock factors (HSF) activate the transcription of genes encoding products required for protein folding, processing, targeting, degradation, and function. Although HSFs have been extensively studied with respect to their role in thermotolerance and the activation of gene expression in response to environmental stress, the involvement of HSFs in response to stresses associated with cell growth and differentiation, and in response to normal physiological processes is becoming increasingly clear. In this work, we review recent advances toward understanding how cells transmit growth control and developmental signals, and interdigitate cellular physiology, to regulate HSF function.
Collapse
Affiliation(s)
- Kevin A. Morano
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI 48109-0606
| | - Dennis J. Thiele
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI 48109-0606
- Address correspondence to Dennis J. Thiele. Tel: (734) 763-5717; Fax: (734) 763-4581; E-mail:
| |
Collapse
|
4
|
Bhardwaj M, Paul S, Jakhar R, Khan I, Kang JI, Kim HM, Yun JW, Lee SJ, Cho HJ, Lee HG, Kang SC. Vitexin confers HSF-1 mediated autophagic cell death by activating JNK and ApoL1 in colorectal carcinoma cells. Oncotarget 2017; 8:112426-112441. [PMID: 29348836 PMCID: PMC5762521 DOI: 10.18632/oncotarget.20113] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 07/25/2017] [Indexed: 11/25/2022] Open
Abstract
Heat shock transcription factor-1 (HSF-1) guards the cancerous cells proteome against the alterations in protein homeostasis generated by their hostile tumor microenvironment. Contrasting with the classical induction of heat shock proteins, the pro-oncogenic activities of HSF-1 remains to be explored. Therefore, cancer's fragile proteostatic pathway governed by HSF-1 could be a potential therapeutic target and novel biomarker by natural compounds. Vitexin, a natural flavonoid has been documented as a potent anti-tumor agent on various cell lines. However, in the present study, when human colorectal carcinoma HCT-116 cells were exposed to vitexin, the induction of HSF-1 downstream target proteins, such as heat shock proteins were suppressed. We identified HSF-1 as a potential molecular target of vitexin that interact with DNA-binding domain of HSF-1, which inhibited HSF-1 oligomerization and activation (in silico). Consequently, HSF-1 hyperphosphorylation mediated by JNK operation causes transcriptional inactivation of HSF-1, and supported ROS-mediated autophagy induction. Interestingly, in HSF-1 immunoprecipitated and silenced HCT-116 cells, co-expression of apolipoprotein 1 (ApoL1) and JNK was observed which promoted the caspase independent autophagic cell death accompanied by p62 downregulation and increased LC3-I to LC3-II conversion. Finally, in vivo findings confirmed that vitexin suppressed tumor growth through activation of autophagic cascade in HCT-116 xenograft model. Taken together, our study insights a probable novel association between HSF-1 and ApoL-1 was established in this study, which supports HSF-1 as a potential target of vitexin to improve treatment outcome in colorectal cancer.
Collapse
Affiliation(s)
- Monika Bhardwaj
- Department of Biotechnology, Daegu University, Kyoungsan, Kyoungbook, Republic of Korea
| | - Souren Paul
- Department of Biotechnology, Daegu University, Kyoungsan, Kyoungbook, Republic of Korea
| | - Rekha Jakhar
- Department of Biotechnology, Daegu University, Kyoungsan, Kyoungbook, Republic of Korea
| | - Imran Khan
- Department of Biotechnology, Daegu University, Kyoungsan, Kyoungbook, Republic of Korea
| | - Ji In Kang
- Disease Molecule Biochemistry Laboratory, Graduate School of Medical Science and Engineering (GSMSE), KAIST, Yuseong-gu, Daejeon, Republic of Korea
| | - Ho Min Kim
- Disease Molecule Biochemistry Laboratory, Graduate School of Medical Science and Engineering (GSMSE), KAIST, Yuseong-gu, Daejeon, Republic of Korea
| | - Jong Won Yun
- Department of Biotechnology, Daegu University, Kyoungsan, Kyoungbook, Republic of Korea
| | - Seon-Jin Lee
- Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea.,Department of Biomolecular Science, University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Hee Jun Cho
- Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Hee Gu Lee
- Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea.,Department of Biomolecular Science, University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Sun Chul Kang
- Department of Biotechnology, Daegu University, Kyoungsan, Kyoungbook, Republic of Korea
| |
Collapse
|
5
|
Bentley BP, Haas BJ, Tedeschi JN, Berry O. Loggerhead sea turtle embryos (Caretta caretta) regulate expression of stress response and developmental genes when exposed to a biologically realistic heat stress. Mol Ecol 2017; 26:2978-2992. [PMID: 28267875 DOI: 10.1111/mec.14087] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 02/15/2017] [Accepted: 02/21/2017] [Indexed: 12/30/2022]
Abstract
Oviparous reptile embryos are expected to breach their critical thermal maxima if temperatures reach those predicted under current climate change models due to the lack of the maternal buffering processes and parental care. Heat-shock proteins (HSPs) are integral in the molecular response to thermal stress, and their expression is heritable, but the roles of other candidate families such as the heat-shock factors (HSFs) have not been determined in reptiles. Here, we subject embryonic sea turtles (Caretta caretta) to a biologically realistic thermal stress and employ de novo transcriptomic profiling of brain tissue to investigate the underlying molecular response. From a reference transcriptome of 302 293 transcripts, 179 were identified as differentially expressed between treatments. As anticipated, genes enriched in the heat-shock treatment were primarily associated with the Hsp families, or were genes whose products play similar protein editing and chaperone functions (e.g. bag3, MYOC and serpinh1). Unexpectedly, genes encoding the HSFs were not significantly upregulated under thermal stress, indicating their presence in unstressed cells in an inactive state. Genes that were downregulated under thermal stress were less well functionally defined but were associated with stress response, development and cellular organization, suggesting that developmental processes may be compromised at realistically high temperatures. These results confirm that genes from the Hsp families play vital roles in the thermal tolerance of developing reptile embryos and, in addition with a number of other genes, should be targets for evaluating the capacity of oviparous reptiles to respond adaptively to the effects of climate change.
Collapse
Affiliation(s)
- Blair P Bentley
- Centre for Evolutionary Biology, School of Animal Biology (M092), University of Western Australia, Perth, 6009, Australia.,Oceans and Atmosphere, Commonwealth Scientific and Industrial Research Organization (CSIRO), Floreat, 6014, Australia
| | - Brian J Haas
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
| | - Jamie N Tedeschi
- Centre for Evolutionary Biology, School of Animal Biology (M092), University of Western Australia, Perth, 6009, Australia
| | - Oliver Berry
- Oceans and Atmosphere, Commonwealth Scientific and Industrial Research Organization (CSIRO), Floreat, 6014, Australia
| |
Collapse
|
6
|
Abstract
The heat shock response in yeast is regulated by the interaction between a chaperone protein and a heat shock transcription factor, and fine-tuned by phosphorylation.
Collapse
Affiliation(s)
- Laura Le Breton
- Center for Molecular Biology Heidelberg University, DKFZ-ZMBH-Alliance, Heidelberg, Germany
| | - Matthias P Mayer
- Center for Molecular Biology Heidelberg University, DKFZ-ZMBH-Alliance, Heidelberg, Germany
| |
Collapse
|
7
|
Doxorubicin attenuates CHIP-guarded HSF1 nuclear translocation and protein stability to trigger IGF-IIR-dependent cardiomyocyte death. Cell Death Dis 2016; 7:e2455. [PMID: 27809308 PMCID: PMC5260882 DOI: 10.1038/cddis.2016.356] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 09/17/2016] [Accepted: 10/03/2016] [Indexed: 12/11/2022]
Abstract
Doxorubicin (DOX) is one of the most effective antitumor drugs, but its cardiotoxicity has been a major concern for its use in cancer therapy for decades. Although DOX-induced cardiotoxicity has been investigated, the underlying mechanisms responsible for this cardiotoxicity have not been completely elucidated. Here, we found that the insulin-like growth factor receptor II (IGF-IIR) apoptotic signaling pathway was responsible for DOX-induced cardiotoxicity via proteasome-mediated heat shock transcription factor 1 (HSF1) degradation. The carboxyl-terminus of Hsp70 interacting protein (CHIP) mediated HSF1 stability and nuclear translocation through direct interactions via its tetratricopeptide repeat domain to suppress IGF-IIR expression and membrane translocation under physiological conditions. However, DOX attenuated the HSF1 inhibition of IGF-IIR expression by diminishing the CHIP–HSF1 interaction, removing active nuclear HSF1 and triggering HSF1 proteasomal degradation. Overexpression of CHIP redistributed HSF1 into the nucleus, inhibiting IGF-IIR expression and preventing DOX-induced cardiomyocyte apoptosis. Moreover, HSF1A, a small molecular drug that enhances HSF1 activity, stabilized HSF1 expression and minimized DOX-induced cardiac damage in vitro and in vivo. Our results suggest that the cardiotoxic effects of DOX result from the prevention of CHIP-mediated HSF1 nuclear translocation and activation, which leads to an upregulation of the IGF-IIR apoptotic signaling pathway. We believe that the administration of an HSF1 activator or agonist may further protect against the DOX-induced cell death of cardiomyocytes.
Collapse
|
8
|
Xu D, Sun L, Liu S, Zhang L, Yang H. Molecular cloning of hsf1 and hsbp1 cDNAs, and the expression of hsf1, hsbp1 and hsp70 under heat stress in the sea cucumber Apostichopus japonicus. Comp Biochem Physiol B Biochem Mol Biol 2016; 198:1-9. [PMID: 26952354 DOI: 10.1016/j.cbpb.2016.03.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 03/02/2016] [Accepted: 03/02/2016] [Indexed: 02/07/2023]
Abstract
The heat shock response (HSR) is known for the elevated synthesis of heat shock proteins (HSPs) under heat stress, which is mediated primarily by heat shock factor 1 (HSF1). Heat shock factor binding protein 1 (HSBP1) and feedback control of heat shock protein 70 (HSP70) are major regulators of the activity of HSF1. We obtained full-length cDNA of genes hsf1 and hsbp1 in the sea cucumber Apostichopus japonicus, which are the second available for echinoderm (after Strongylocentrotus purpuratus), and the first available for holothurian. The full-length cDNA of hsf1 was 2208bp, containing a 1326bp open reading frame encoding 441 amino acids. The full-length cDNA of hsbp1 was 2850bp, containing a 225bp open reading frame encoding 74 amino acids. The similarities of A. japonicus HSF1 with other species are low, and much higher similarity identities of A. japonicus HSBP1 were shared. Phylogenetic trees showed that A. japonicus HSF1 and HSBP1 were clustered with sequences from S. purpuratus, and fell into distinct clades with sequences from mollusca, arthropoda and vertebrata. Analysis by real-time PCR showed hsf1 and hsbp1 mRNA was expressed constitutively in all tissues examined. The expression of hsf1, hsbp1 and hsp70 in the intestine at 26°C was time-dependent. The results of this study might provide new insights into the regulation of heat shock response in this species.
Collapse
Affiliation(s)
- Dongxue Xu
- Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, PR China; University of Chinese Academy of Sciences, Beijing, PR China
| | - Lina Sun
- Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, PR China.
| | - Shilin Liu
- Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, PR China
| | - Libin Zhang
- Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, PR China
| | - Hongsheng Yang
- Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, PR China.
| |
Collapse
|
9
|
Abstract
The heat shock response (HSR) is an ancient and highly conserved process that is essential for coping with environmental stresses, including extremes of temperature. Fever is a more recently evolved response, during which organisms temporarily subject themselves to thermal stress in the face of infections. We review the phylogenetically conserved mechanisms that regulate fever and discuss the effects that febrile-range temperatures have on multiple biological processes involved in host defense and cell death and survival, including the HSR and its implications for patients with severe sepsis, trauma, and other acute systemic inflammatory states. Heat shock factor-1, a heat-induced transcriptional enhancer is not only the central regulator of the HSR but also regulates expression of pivotal cytokines and early response genes. Febrile-range temperatures exert additional immunomodulatory effects by activating mitogen-activated protein kinase cascades and accelerating apoptosis in some cell types. This results in accelerated pathogen clearance, but increased collateral tissue injury, thus the net effect of exposure to febrile range temperature depends in part on the site and nature of the pathologic process and the specific treatment provided.
Collapse
Affiliation(s)
- Jeffrey D Hasday
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Maryland School of Medicine and the Baltimore V.A. Medical Center, Baltimore, Maryland
| | | | | |
Collapse
|
10
|
Mattoo RUH, Goloubinoff P. Molecular chaperones are nanomachines that catalytically unfold misfolded and alternatively folded proteins. Cell Mol Life Sci 2014; 71:3311-25. [PMID: 24760129 PMCID: PMC4131146 DOI: 10.1007/s00018-014-1627-y] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 04/04/2014] [Accepted: 04/07/2014] [Indexed: 01/01/2023]
Abstract
By virtue of their general ability to bind (hold) translocating or unfolding polypeptides otherwise doomed to aggregate, molecular chaperones are commonly dubbed “holdases”. Yet, chaperones also carry physiological functions that do not necessitate prevention of aggregation, such as altering the native states of proteins, as in the disassembly of SNARE complexes and clathrin coats. To carry such physiological functions, major members of the Hsp70, Hsp110, Hsp100, and Hsp60/CCT chaperone families act as catalytic unfolding enzymes or unfoldases that drive iterative cycles of protein binding, unfolding/pulling, and release. One unfoldase chaperone may thus successively convert many misfolded or alternatively folded polypeptide substrates into transiently unfolded intermediates, which, once released, can spontaneously refold into low-affinity native products. Whereas during stress, a large excess of non-catalytic chaperones in holding mode may optimally prevent protein aggregation, after the stress, catalytic disaggregases and unfoldases may act as nanomachines that use the energy of ATP hydrolysis to repair proteins with compromised conformations. Thus, holding and catalytic unfolding chaperones can act as primary cellular defenses against the formation of early misfolded and aggregated proteotoxic conformers in order to avert or retard the onset of degenerative protein conformational diseases.
Collapse
Affiliation(s)
- Rayees U H Mattoo
- Department of Plant Molecular Biology, Faculty of Biology and Medicine, University of Lausanne, Biophore Building, 1015, Lausanne, Switzerland
| | | |
Collapse
|
11
|
Exercise training and work task induced metabolic and stress-related mRNA and protein responses in myalgic muscles. BIOMED RESEARCH INTERNATIONAL 2012; 2013:984523. [PMID: 23509827 PMCID: PMC3591204 DOI: 10.1155/2013/984523] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Accepted: 08/20/2012] [Indexed: 11/17/2022]
Abstract
The aim was to assess mRNA and/or protein levels of heat shock proteins, cytokines, growth regulating, and metabolic proteins in myalgic muscle at rest and in response to work tasks and prolonged exercise training. A randomized controlled trial included 28 females with trapezius myalgia and 16 healthy controls. Those with myalgia performed ~7 hrs repetitive stressful work and were subsequently randomized to 10 weeks of specific strength training, general fitness training, or reference intervention. Muscles biopsies were taken from the trapezius muscle at baseline, after work and after 10 weeks intervention. The main findings are that the capacity of carbohydrate oxidation was reduced in myalgic compared with healthy muscle. Repetitive stressful work increased mRNA content for heat shock proteins and decreased levels of key regulators for growth and oxidative metabolism. In contrast, prolonged general fitness as well as specific strength training decreased mRNA content of heat shock protein while the capacity of carbohydrate oxidation was increased only after specific strength training.
Collapse
|
12
|
Reina CP, Nabet BY, Young PD, Pittman RN. Basal and stress-induced Hsp70 are modulated by ataxin-3. Cell Stress Chaperones 2012; 17:729-42. [PMID: 22777893 PMCID: PMC3468683 DOI: 10.1007/s12192-012-0346-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Revised: 05/11/2012] [Accepted: 06/07/2012] [Indexed: 12/24/2022] Open
Abstract
Regulation of basal and induced levels of hsp70 is critical for cellular homeostasis. Ataxin-3 is a deubiquitinase with several cellular functions including transcriptional regulation and maintenance of protein homeostasis. While investigating potential roles of ataxin-3 in response to cellular stress, it appeared that ataxin-3 regulated hsp70. Basal levels of hsp70 were lower in ataxin-3 knockout (KO) mouse brain from 2 to 63 weeks of age and hsp70 was also lower in fibroblasts from ataxin-3 KO mice. Transfecting KO cells with ataxin-3 rescued basal levels of hsp70 protein. Western blots of representative chaperones including hsp110, hsp90, hsp70, hsc70, hsp60, hsp40/hdj2, and hsp25 indicated that only hsp70 was appreciably altered in KO fibroblasts and KO mouse brain. Turnover of hsp70 protein was similar in wild-type (WT) and KO cells; however, basal hsp70 promoter reporter activity was decreased in ataxin-3 KO cells. Transfecting ataxin-3 restored hsp70 basal promoter activity in KO fibroblasts to levels of promoter activity in WT cells; however, mutations that inactivated deubiquitinase activity or the ubiquitin interacting motifs did not restore full activity to hsp70 basal promoter activity. Hsp70 protein and promoter activity were higher in WT compared to KO cells exposed to heat shock and azetidine-2-carboxylic acid, but WT and KO cells had similar levels in response to cadmium. Heat shock factor-1 had decreased levels and increased turnover in ataxin-3 KO fibroblasts. Data in this study are consistent with ataxin-3 regulating basal level of hsp70 as well as modulating hsp70 in response to a subset of cellular stresses.
Collapse
Affiliation(s)
- Christopher P. Reina
- Department of Pharmacology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104 USA
- Present Address: Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ 08854 USA
| | - Barzin Y. Nabet
- Department of Pharmacology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104 USA
- Present Address: Department of Cancer Biology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104 USA
| | - Peter D. Young
- Department of Pharmacology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104 USA
| | - Randall N. Pittman
- Department of Pharmacology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104 USA
| |
Collapse
|
13
|
Leach MD, Tyc KM, Brown AJP, Klipp E. Modelling the regulation of thermal adaptation in Candida albicans, a major fungal pathogen of humans. PLoS One 2012; 7:e32467. [PMID: 22448221 PMCID: PMC3308945 DOI: 10.1371/journal.pone.0032467] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Accepted: 01/31/2012] [Indexed: 11/20/2022] Open
Abstract
Eukaryotic cells have evolved mechanisms to sense and adapt to dynamic environmental changes. Adaptation to thermal insults, in particular, is essential for their survival. The major fungal pathogen of humans, Candida albicans, is obligately associated with warm-blooded animals and hence occupies thermally buffered niches. Yet during its evolution in the host it has retained a bona fide heat shock response whilst other stress responses have diverged significantly. Furthermore the heat shock response is essential for the virulence of C. albicans. With a view to understanding the relevance of this response to infection we have explored the dynamic regulation of thermal adaptation using an integrative systems biology approach. Our mathematical model of thermal regulation, which has been validated experimentally in C. albicans, describes the dynamic autoregulation of the heat shock transcription factor Hsf1 and the essential chaperone protein Hsp90. We have used this model to show that the thermal adaptation system displays perfect adaptation, that it retains a transient molecular memory, and that Hsf1 is activated during thermal transitions that mimic fever. In addition to providing explanations for the evolutionary conservation of the heat shock response in this pathogen and the relevant of this response to infection, our model provides a platform for the analysis of thermal adaptation in other eukaryotic cells.
Collapse
Affiliation(s)
- Michelle D. Leach
- School of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | | | - Alistair J. P. Brown
- School of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
- * E-mail: (AJPB); (EK)
| | - Edda Klipp
- Theoretische Biophysik, Humboldt-Universität, Berlin, Germany
- * E-mail: (AJPB); (EK)
| |
Collapse
|
14
|
Anckar J, Sistonen L. Regulation of HSF1 function in the heat stress response: implications in aging and disease. Annu Rev Biochem 2011; 80:1089-115. [PMID: 21417720 DOI: 10.1146/annurev-biochem-060809-095203] [Citation(s) in RCA: 564] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
To dampen proteotoxic stresses and maintain protein homeostasis, organisms possess a stress-responsive molecular machinery that detects and neutralizes protein damage. A prominent feature of stressed cells is the increased synthesis of heat shock proteins (Hsps) that aid in the refolding of misfolded peptides and restrain protein aggregation. Transcriptional activation of the heat shock response is orchestrated by heat shock factor 1 (HSF1), which rapidly translocates to hsp genes and induces their expression. Although the role of HSF1 in protecting cells and organisms against severe stress insults is well established, many aspects of how HSF1 senses qualitatively and quantitatively different forms of stresses have remained poorly understood. Moreover, recent discoveries that HSF1 controls life span have prompted new ways of thinking about an old transcription factor. Here, we review the established role of HSF1 in counteracting cell stress and prospect the role of HSF1 as a regulator of disease states and aging.
Collapse
Affiliation(s)
- Julius Anckar
- Department of Biosciences, Åbo Akademi University, BioCity, 20520 Turku, Finland.
| | | |
Collapse
|
15
|
Tamaru T, Hattori M, Honda K, Benjamin I, Ozawa T, Takamatsu K. Synchronization of circadian Per2 rhythms and HSF1-BMAL1:CLOCK interaction in mouse fibroblasts after short-term heat shock pulse. PLoS One 2011; 6:e24521. [PMID: 21915348 PMCID: PMC3168500 DOI: 10.1371/journal.pone.0024521] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2011] [Accepted: 08/12/2011] [Indexed: 12/17/2022] Open
Abstract
Circadian rhythms are the general physiological processes of adaptation to daily environmental changes, such as the temperature cycle. A change in temperature is a resetting cue for mammalian circadian oscillators, which are possibly regulated by the heat shock (HS) pathway. The HS response (HSR) is a universal process that provides protection against stressful conditions, which promote protein-denaturation. Heat shock factor 1 (HSF1) is essential for HSR. In the study presented here, we investigated whether a short-term HS pulse can reset circadian rhythms. Circadian Per2 rhythm and HSF1-mediated gene expression were monitored by a real-time bioluminescence assay for mPer2 promoter-driven luciferase and HS element (HSE; HSF1-binding site)-driven luciferase activity, respectively. By an optimal duration HS pulse (43°C for approximately 30 minutes), circadian Per2 rhythm was observed in the whole mouse fibroblast culture, probably indicating the synchronization of the phases of each cell. This rhythm was preceded by an acute elevation in mPer2 and HSF1-mediated gene expression. Mutations in the two predicted HSE sites adjacent (one of them proximally) to the E-box in the mPer2 promoter dramatically abolished circadian mPer2 rhythm. Circadian Per2 gene/protein expression was not observed in HSF1-deficient cells. These findings demonstrate that HSF1 is essential to the synchronization of circadian rhythms by the HS pulse. Importantly, the interaction between HSF1 and BMAL1:CLOCK heterodimer, a central circadian transcription factor, was observed after the HS pulse. These findings reveal that even a short-term HS pulse can reset circadian rhythms and cause the HSF1-BMAL1:CLOCK interaction, suggesting the pivotal role of crosstalk between the mammalian circadian and HSR systems.
Collapse
Affiliation(s)
- Teruya Tamaru
- Department of Physiology and Advanced Research Center for Medical Science, Toho University School of Medicine, Tokyo, Japan.
| | | | | | | | | | | |
Collapse
|
16
|
Ting YK, Morikawa K, Kurata Y, Li P, Bahrudin U, Mizuta E, Kato M, Miake J, Yamamoto Y, Yoshida A, Murata M, Inoue T, Nakai A, Shiota G, Higaki K, Nanba E, Ninomiya H, Shirayoshi Y, Hisatome I. Transcriptional activation of the anchoring protein SAP97 by heat shock factor (HSF)-1 stabilizes K(v) 1.5 channels in HL-1 cells. Br J Pharmacol 2011; 162:1832-42. [PMID: 21232033 PMCID: PMC3081125 DOI: 10.1111/j.1476-5381.2011.01204.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND AND PURPOSE The expression of voltage-dependent K+ channels (Kv) 1.5 is regulated by members of the heat shock protein (Hsp) family. We examined whether the heat shock transcription factor 1 (HSF-1) and its inducer geranylgeranylacetone (GGA) could affect the expression of Kv1.5 channels and its anchoring protein, synapse associated protein 97 (SAP97). EXPERIMENTAL APPROACH Transfected mouse atrial cardiomyocytes (HL-1 cells) and COS7 cells were subjected to luciferase reporter gene assay and whole-cell patch clamp. Protein and mRNA extracts were subjected to Western blot and quantitative real-time polymerase chain reaction. KEY RESULTS Heat shock of HL-1 cells induced expression of Hsp70, HSF-1, SAP97 and Kv1.5 proteins. These effects were reproduced by wild-type HSF-1. Both heat shock and expression of HSF-1, but not the R71G mutant, increased the SAP97 mRNA level. Small interfering RNA (siRNA) against SAP97 abolished HSF-1-induced increase of Kv1.5 and SAP97 proteins. A luciferase reporter gene assay revealed that the SAP97 promoter region (from −919 to −740) that contains heat shock elements (HSEs) was required for this induction. Suppression of SIRT1 function either by nicotinamide or siRNA decreased the level of SAP97 mRNA. SIRT1 activation by resveratrol had opposing effects. A treatment of the cells with GGA increased the level of SAP97 mRNA, Kv1.5 proteins and IKur current, which could be modified with either resveratrol or nicotinamide. CONCLUSIONS AND IMPLICATIONS HSF-1 induced transcription of SAP97 through SIRT1-dependent interaction with HSEs; the increase in SAP97 resulted in stabilization of Kv1.5 channels. These effects were mimicked by GGA.
Collapse
Affiliation(s)
- Y K Ting
- Division of Regenerative Medicine and Therapeutics, Institute of Regenerative Medicine and Biofunction, Tottori University Graduate School of Medical Science, Yonago, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Carmel J, Rashkovetsky E, Nevo E, Korol A. Differential Expression of Small Heat Shock Protein Genes Hsp23 and Hsp40, and heat shock gene Hsr-omega in Fruit Flies (Drosophila melanogaster) along a Microclimatic Gradient. J Hered 2011; 102:593-603. [DOI: 10.1093/jhered/esr027] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
18
|
Hahn A, Bublak D, Schleiff E, Scharf KD. Crosstalk between Hsp90 and Hsp70 chaperones and heat stress transcription factors in tomato. THE PLANT CELL 2011; 23:741-55. [PMID: 21307284 PMCID: PMC3077788 DOI: 10.1105/tpc.110.076018] [Citation(s) in RCA: 239] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2010] [Revised: 01/07/2011] [Accepted: 01/22/2011] [Indexed: 05/17/2023]
Abstract
Heat stress transcription factors (Hsfs) regulate gene expression in response to environmental stress. The Hsf network in plants is controlled at the transcriptional level by cooperation of distinct Hsf members and by interaction with chaperones. We found two general mechanisms of Hsf regulation by chaperones while analyzing the three major Hsfs, A1, A2, and B1, in tomato (Solanum lycopersicum). First, Hsp70 and Hsp90 regulate Hsf function by direct interactions. Hsp70 represses the activity of HsfA1, including its DNA binding, and the coactivator function of HsfB1 in the complex with HsfA2, while the DNA binding activity of HsfB1 is stimulated by Hsp90. Second, Hsp90 affects the abundance of HsfA2 and HsfB1 by modulating hsfA2 transcript degradation involved in regulation of the timing of HsfA2 synthesis. By contrast, HsfB1 binding to Hsp90 and to DNA are prerequisites for targeting this Hsf for proteasomal degradation, which also depends on a sequence element in its carboxyl-terminal domain. Thus, HsfB1 represents an Hsp90 client protein that, by interacting with the chaperone, is targeted for, rather than protected from, degradation. Based on these findings, we propose a versatile regulatory regime involving Hsp90, Hsp70, and the three Hsfs in the control of heat stress response.
Collapse
|
19
|
Sreedharan R, Riordan M, Thullin G, Van Why S, Siegel NJ, Kashgarian M. The maximal cytoprotective function of the heat shock protein 27 is dependent on heat shock protein 70. BIOCHIMICA ET BIOPHYSICA ACTA 2011; 1813:129-35. [PMID: 20934464 PMCID: PMC3014454 DOI: 10.1016/j.bbamcr.2010.08.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/22/2010] [Revised: 08/12/2010] [Accepted: 08/26/2010] [Indexed: 12/31/2022]
Abstract
Endogenous heat shock proteins (HSPs) 70 and 25/27 are induced in renal cells by injury from energy depletion. Transfected over-expression of HSPs 70 or 27 (human analogue of HSP25), provide protection against renal cell injury from ATP deprivation. This study examines whether over-expressed HSP27 depends on induction of endogenous HSPs, in particular HSP70, to afford protection against cell injury. LLC-PK1 cells transfected with HSP27 (27OE cells) were injured by ATP depletion for 2h and recovered for 4h in the presence of HSF decoy, HSP70 specific siRNA (siRNA-70) and their respective controls. Injury in the presence of HSF decoy, a synthetic oligonucleotide identical to the heat shock element, the nuclear binding site of HSF, decreased HSP70 induction by 80% without affecting the over-expression of transfected HSP27. The HSP70 stress response was completely ablated in the presence of siRNA-70. Protection against injury, provided by over-expression of HSP27, was reduced by treatment with HSF decoy and abolished by treatment with siRNA-70. Immunoprecipitation studies demonstrated association of HSP27 with actin that was not affected by either treatment with HSF decoy or siRNA. Therefore, HSP27 is dependent on HSP70 to provide its maximal cytoprotective effect, but not for its interaction with actin. This study suggests that, while it has specific action on the cytoskeleton, HSP 25/27 must have coordinated activity with other HSP classes, especially HSP70, to provide the full extent of resistance to injury from energy depletion.
Collapse
Affiliation(s)
- R Sreedharan
- Medical College of Wisconsin, Wauwatosa, WI, USA.
| | | | | | | | | | | |
Collapse
|
20
|
Björk JK, Sistonen L. Regulation of the members of the mammalian heat shock factor family. FEBS J 2010; 277:4126-39. [PMID: 20945529 DOI: 10.1111/j.1742-4658.2010.07828.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Regulation of gene expression is fundamental in all living organisms and is facilitated by transcription factors, the single largest group of proteins in humans. For cell- and stimulus-specific gene regulation, strict control of the transcription factors themselves is crucial. Heat shock factors are a family of transcription factors best known as master regulators of induced gene expression during the heat shock response. This evolutionary conserved cellular stress response is characterized by massive production of heat shock proteins, which function as cytoprotective molecular chaperones against various proteotoxic stresses. In addition to promoting cell survival under stressful conditions, heat shock factors are involved in the regulation of life span and progression of cancer and they are also important for developmental processes such as gametogenesis, neurogenesis and maintenance of sensory organs. Here, we review the regulatory mechanisms steering the activities of the mammalian heat shock factors 1–4.
Collapse
Affiliation(s)
- Johanna K Björk
- Department of Biosciences, Åbo Akademi University, Turku, Finland
| | | |
Collapse
|
21
|
Abstract
BACKGROUND The 90-kDa heat-shock proteins (Hsp90) have rapidly evolved into promising therapeutic targets for the treatment of several diseases, including cancer and neurodegenerative diseases. Hsp90 is a molecular chaperone that aids in the conformational maturation of nascent polypeptides, as well as the rematuration of denatured proteins. DISCUSSION Many of the Hsp90-dependent client proteins are associated with cellular growth and survival and, consequently, inhibition of Hsp90 represents a promising approach for the treatment of cancer. Conversely, stimulation of heat-shock protein levels has potential therapeutic applications for the treatment of neurodegenerative diseases that result from misfolded and aggregated proteins. CONCLUSION Hsp90 modulation exhibits the potential to treat unrelated disease states, from cancer to neurodegenerative diseases, and, thus, to fold or not to fold, becomes a question of great value.
Collapse
Affiliation(s)
- Laura B Peterson
- Department of Medicinal Chemistry, The University of Kansas, 1251 Wescoe Hall Drive, Malott 4070, Lawrence, KA 66045-7563, USA.
| | | |
Collapse
|
22
|
Singh IS, Shah NG, Almutairy E, Hasday JD. Role of HSF1 in Infectious Disease. HEAT SHOCK PROTEINS 2009. [DOI: 10.1007/978-90-481-2976-8_1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
23
|
Yang J, Bridges K, Chen KY, Liu AYC. Riluzole increases the amount of latent HSF1 for an amplified heat shock response and cytoprotection. PLoS One 2008; 3:e2864. [PMID: 18682744 PMCID: PMC2481402 DOI: 10.1371/journal.pone.0002864] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2008] [Accepted: 07/04/2008] [Indexed: 11/19/2022] Open
Abstract
Background Induction of the heat shock response (HSR) and increased expression of the heat shock proteins (HSPs) provide mechanisms to ensure proper protein folding, trafficking, and disposition. The importance of HSPs is underscored by the understanding that protein mis-folding and aggregation contribute centrally to the pathogenesis of neurodegenerative diseases. Methodology/Principal Findings We used a cell-based hsp70-luciferease reporter gene assay system to identify agents that modulate the HSR and show here that clinically relevant concentrations of the FDA-approved ALS drug riluzole significantly increased the heat shock induction of hsp70-luciferse reporter gene. Immuno-Western and -cytochemical analysis of HSF1 show that riluzole increased the amount of cytosolic HSF1 to afford a greater activation of HSF1 upon heat shock. The increased HSF1 contributed centrally to the cytoprotective activity of riluzole as hsf1 gene knockout negated the synergistic activity of riluzole and conditioning heat shock to confer cell survival under oxidative stress. Evidence of a post-transcriptional mechanism for the increase in HSF1 include: quantitation of mRNAhsf1 by RT-PCR showed no effect of either heat shock or riluzole treatment; riluzole also increased the expression of HSF1 from a CMV-promoter; analysis of the turnover of HSF1 by pulse chase and immunoprecipitation show that riluzole slowed the decay of [35S]labeled-HSF1. The effect of riluzole on HSF1 was qualitatively different from that of MG132 and chloroquine, inhibitors of the proteasome and lysosome, respectively, and appeared to involve the chaperone-mediated autophagy pathway as RNAi-mediated knockdown of CMA negated its effect. Conclusion/Significance We show that riluzole increased the amount of HSF1 to amplify the HSR for cytoprotection. Our study provides novel insight into the mechanism that regulates HSF1 turnover, and identifies the degradation of HSF1 as a target for therapeutics intervention.
Collapse
Affiliation(s)
- Jingxian Yang
- Department of Cell Biology and Neuroscience, Rutgers State University of New Jersey, Piscataway, New Jersey, United States of America
| | - Kristen Bridges
- Department of Cell Biology and Neuroscience, Rutgers State University of New Jersey, Piscataway, New Jersey, United States of America
| | - Kuang Yu Chen
- Department of Chemistry and Chemical Biology, Rutgers State University of New Jersey, Piscataway, New Jersey, United States of America
| | - Alice Y.-C. Liu
- Department of Cell Biology and Neuroscience, Rutgers State University of New Jersey, Piscataway, New Jersey, United States of America
- * E-mail:
| |
Collapse
|
24
|
Bettencourt BR, Hogan CC, Nimali M, Drohan BW. Inducible and constitutive heat shock gene expression responds to modification of Hsp70 copy number in Drosophila melanogaster but does not compensate for loss of thermotolerance in Hsp70 null flies. BMC Biol 2008; 6:5. [PMID: 18211703 PMCID: PMC2257928 DOI: 10.1186/1741-7007-6-5] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2007] [Accepted: 01/22/2008] [Indexed: 06/12/2024] Open
Abstract
Background The heat shock protein Hsp70 promotes inducible thermotolerance in nearly every organism examined to date. Hsp70 interacts with a network of other stress-response proteins, and dissecting the relative roles of these interactions in causing thermotolerance remains difficult. Here we examine the effect of Hsp70 gene copy number modification on thermotolerance and the expression of multiple stress-response genes in Drosophila melanogaster, to determine which genes may represent mechanisms of stress tolerance independent of Hsp70. Results Hsp70 copy number in four strains is positively associated with Hsp70 expression and inducible thermotolerance of severe heat shock. When assayed at carefully chosen temperatures, Hsp70 null flies are almost entirely deficient in thermotolerance. In contrast to expectations, increasing Hsp70 expression levels induced by thermal pretreatment are associated with increasing levels of seven other inducible Hsps across strains. In addition, complete Hsp70 loss causes upregulation of the inducible Hsps and six constitutive stress-response genes following severe heat shocks. Conclusion Modification of Hsp70 copy number quantitatively and qualitatively affects the expression of multiple other stress-response genes. A positive association between absolute expression levels of Hsp70 and other Hsps after thermal pretreatment suggests novel regulatory mechanisms. Severe heat shocks induce both novel gene expression patterns and almost total mortality in the Hsp70 null strain: alteration of gene expression in this strain does not compensate for Hsp70 loss but suggests candidates for overexpression studies.
Collapse
Affiliation(s)
- Brian R Bettencourt
- Department of Biological Sciences, University of Massachusetts Lowell, 1 University Avenue, Lowell, MA 01854, USA.
| | | | | | | |
Collapse
|
25
|
Voellmy R, Boellmann F. Chaperone regulation of the heat shock protein response. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007; 594:89-99. [PMID: 17205678 DOI: 10.1007/978-0-387-39975-1_9] [Citation(s) in RCA: 166] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
The heat shock protein response appears to be triggered primarily by nonnative proteins accumulating in a stressed cell and results in increased expression of heat shock proteins (HSPs). Many heat shock proteins prevent protein aggregation and participate in refolding or elimination of misfolded proteins in their capacity as chaperones. Even though several mechanisms exist to regulate the abundance of cytosolic and nuclear chaperones, activation of heat shock transcription factor 1 (HSF1) is an essential aspect of the heat shock protein response. HSPs and co-chaperones that are assembled into multichaperone complexes regulate HSF1 activity at different levels. HSP90-containing multichaperone complexes appear to be the most relevant repressors of HSF1 activity. Because HSP90-containing multichaperone complexes interact not only specifically with client proteins including HSF1 but also generically with nonnative proteins, the concentration of nonnative proteins influences assembly on HSF1 of HSP90-containing complexes that repress activation, and may play a role in inactivation, of the transcription factor. Proteins that are unable to achieve stable tertiary structures and remain chaperone substrates are targeted for proteasomal degradation through polyubiquitination by co-chaperone CHIP. CHIP can activate HSF1 to regulate the protein quality control system that balances protection and degradation of chaperone substrates.
Collapse
Affiliation(s)
- Richard Voellmy
- HSF Pharmaceuticals SA, Avenue des Cerisiers 39B, 1009 Pully, Switzerland.
| | | |
Collapse
|
26
|
Ansar S, Burlison JA, Hadden MK, Yu XM, Desino KE, Bean J, Neckers L, Audus KL, Michaelis ML, Blagg BSJ. A non-toxic Hsp90 inhibitor protects neurons from Abeta-induced toxicity. Bioorg Med Chem Lett 2007; 17:1984-90. [PMID: 17276679 DOI: 10.1016/j.bmcl.2007.01.017] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2007] [Accepted: 01/08/2007] [Indexed: 12/12/2022]
Abstract
The molecular chaperones have been implicated in numerous neurodegenerative disorders in which the defining pathology is misfolded proteins and the accumulation of protein aggregates. In Alzheimer's disease, hyperphosphorylation of tau protein results in its dissociation from microtubules and the formation of pathogenic aggregates. An inverse relationship was demonstrated between Hsp90/Hsp70 levels and aggregated tau, suggesting that Hsp90 inhibitors that upregulate these chaperones could provide neuroprotection. We recently identified a small molecule novobiocin analogue, A4 that induces Hsp90 overexpression at low nanomolar concentrations and sought to test its neuroprotective properties. A4 protected neurons against Abeta-induced toxicity at low nanomolar concentrations that paralleled its ability to upregulate Hsp70 expression. A4 exhibited no cytotoxicity in neuronal cells at the highest concentration tested, 10 microM, thus providing a large therapeutic window for neuroprotection. In addition, A4 was transported across BMECs in vitro, suggesting the compound may permeate the blood-brain barrier in vivo. Taken together, these data establish A4, a C-terminal inhibitor of Hsp90, as a potent lead for the development of a novel class of compounds to treat Alzheimer's disease.
Collapse
Affiliation(s)
- Sabah Ansar
- Department of Pharmacology and Toxicology, The University of Kansas, Malott 5064, 1251 Wescoe Hall Drive, Lawrence, KS 66045-7563, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Gong Z, Yang J, Yang M, Wang F, Wei Q, Tanguay RM, Wu T. Benzo(a)pyrene inhibits expression of inducible heat shock protein 70 in vascular endothelial cells. Toxicol Lett 2006; 166:229-36. [PMID: 16962263 DOI: 10.1016/j.toxlet.2006.07.307] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2006] [Revised: 07/15/2006] [Accepted: 07/17/2006] [Indexed: 11/28/2022]
Abstract
Benzo(a)pyrene (BaP), a ubiquitous environmental pollutant known to cause many diseases including atherosclerosis, induces a dose-dependent reduction in the levels of the inducible Hsp70. To explore the mechanism underlying the reduction of Hsp70, we measured the levels of Hsp70, cytoplasmic and nuclear heat shock factor 1 (HSF1) in porcine aortic endothelial cells using Western blot, and then further characterized the binding ability of HSF1 and heat shock element (HSE) by electrophoretic mobility shift assay. We found that when porcine aortic endothelial cells were treated by 0.1-10 microM of BaP for 24 h, there was a significant reduction of Hsp70, cytoplasmic and nuclear HSF1 and the binding rate of HSF1 and HSE at 5, 10 microM of BaP but less effective at lower concentrations. The effect of BaP on the Hsp70 expression level was markedly attenuated by co-treatment with phorbol 12-myristate 13-acetate (PMA), an activator of protein kinase C (PKC). Staurosporine (STP), an inhibitor of PKC, blocked the effect of PMA treatment in combination with BaP. These results suggest that BaP might inhibit Hsp70 levels by reducing the expression of HSF1 and decreasing binding of HSF1 and HSE via PKC-dependent signaling pathways that might be involved in the regulation of Hsp70 gene expression under BaP.
Collapse
Affiliation(s)
- Z Gong
- Department of Occupational and Environmental Health and Ministry of Education Key Lab for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | | | | | | | | | | | | |
Collapse
|
28
|
Lund SG, Ruberté MR, Hofmann GE. Turning up the heat: The effects of thermal acclimation on the kinetics of hsp70 gene expression in the eurythermal goby, Gillichthys mirabilis. Comp Biochem Physiol A Mol Integr Physiol 2006; 143:435-46. [PMID: 16466955 DOI: 10.1016/j.cbpa.2005.12.026] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2005] [Revised: 12/16/2005] [Accepted: 12/18/2005] [Indexed: 11/30/2022]
Abstract
Most organisms respond to temperature fluctuations by altering the expression of an evolutionarily conserved family of proteins known as heat shock proteins (Hsps). Studies have shown Hsp expression and the activation of HSF1, one of the primary regulators of Hsp transcription, are highly malleable, varying with the recent thermal history of the organism; however, the mechanisms that confer plasticity to the regulation of this ubiquitous response are not well-understood. This study furthers our knowledge in this area by characterizing the activation kinetics of HSF1 and the corresponding transcription of hsp70 in the liver of the eurythermal goby, Gillichthys mirabilis, following a month-long acclimation at 13, 21 or 28 degrees C. Our data revealed HSF1 DNA-binding kinetics varied as a function of acclimation temperature and magnitude/duration of exposure, with gobies acclimated at 21 degrees C exhibiting the most robust response. Hsp70 mRNA followed a similar pattern with induction first occurring in the 13 and 21 degrees C fish, and then most robustly in the 28 degrees C group at 36 degrees C. The hsp70 mRNA induction pattern was corroborated by levels of HSF1 DNA-binding activity in each group and may have been lowest in the 28 degrees C group due to the 2-fold greater levels of hsp70 protein prior to thermal exposure. This study illustrates the integral role of HSF1 as a key regulator of Hsp induction and helps explain the plasticity of this response in ectothermic organisms.
Collapse
Affiliation(s)
- Susan G Lund
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, Santa Barbara, CA 93106-9610, USA.
| | | | | |
Collapse
|
29
|
Mizrak SC, Bogerd J, Lopez-Casas PP, Párraga M, Del Mazo J, de Rooij DG. Expression of stress inducible protein 1 (Stip1) in the mouse testis. Mol Reprod Dev 2006; 73:1361-6. [PMID: 16894550 DOI: 10.1002/mrd.20548] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Phthalate esters are considered endocrine disruptors that interfere with the endocrine balance and development of the mammalian testis. Mono-2-ethylhexyl phthalate (MEHP), the active metabolite of the ubiquitously used plasticizer di-2-ethylhexyl phthalate (DEHP), acts upon Sertoli cells as initial target. By subtractive cDNA libraries we identified genes deregulated as response to MEHP in primary cultures of mouse Sertoli cells. The expression of mouse stress inducible protein 1 (Stip1) was detected as upregulated as a result of MEHP exposure. Stip1 is a cochaperone protein that is homologous to the human heat shock cognate protein 70 (hsc70)/heat shock protein 90 (hsp90)-organizing protein (Hop). To assess the presence and localization of Stip1 in mouse testis and its potential role in stress defense, we studied the expression pattern of the Stip1 protein by immunohistochemistry and of the mRNA by in situ hybridization. Both the protein and the mRNA of Stip1 were mainly found in the cytoplasm of all types of spermatogonia and spermatocytes up till zygotene, the expression decreased during late pachytene and was very weak in diplotene spermatocytes and round spermatids. Interestingly, this expression pattern resembled the pattern of stress sensitivity of spermatogenic cells in that the most sensitive cell types show the weakest expression of Stip1. This suggests an important role for Stip1 in the ability of germ cells to survive in stress conditions including high temperatures.
Collapse
Affiliation(s)
- S C Mizrak
- Department of Endocrinology, Faculty of Biology, Utrecht University, Utrecht, The Netherlands.
| | | | | | | | | | | |
Collapse
|
30
|
Jurivich DA, Choo M, Welk J, Qiu L, Han K, Zhou X. Human aging alters the first phase of the molecular response to stress in T-cells. Exp Gerontol 2005; 40:948-58. [PMID: 16168601 DOI: 10.1016/j.exger.2005.08.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2005] [Revised: 08/01/2005] [Accepted: 08/05/2005] [Indexed: 10/25/2022]
Abstract
This study examines how age affects the first phase of the heat shock response in human T-cells. To understand how age alters transcriptional regulation of the heat shock genes, a cross-sectional study was conducted utilizing human T-cells enriched from peripheral blood lymphocytes of healthy young (20-40 years old) and old (>70 years old) donors. Nuclear run-on analysis revealed a 66% reduction in hsp70 transcription rates in old compared to young nuclei harvested from T-cells exposed to a brief 42 degrees C heat shock. To determine if one or more protein transactivators of the proximal and distal promoter regions of the hsp70 gene were affected by age, gel shift analysis was performed. Both HSF1 and SP1 DNA-binding were reduced with age but no reduction was noted in CCAAT-DNA binding. Western blot analysis indicated that HSF1 but not HSF2 protein levels were reduced in aged donor samples. These data suggest that human T-cell senescence involves a multi-factorial mechanism that diminishes an important transcriptional response to thermal stress. The results are discussed relative to recent studies that support a multi-factorial mechanism for age-dependent attenuation of the heat shock transcription factor.
Collapse
Affiliation(s)
- Donald A Jurivich
- Department of Medicine, Section of Geriatric Medicine (m/c 717), University of Illinois at Chicago & Jesse Brown VA Medical Center, 840 S. Wood St Chicago, IL 60612, USA.
| | | | | | | | | | | |
Collapse
|
31
|
Gjøvaag TF, Vikne H, Dahl HA. Effect of concentric or eccentric weight training on the expression of heat shock proteins in m. biceps brachii of very well trained males. Eur J Appl Physiol 2005; 96:355-62. [PMID: 16284787 DOI: 10.1007/s00421-005-0084-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/04/2005] [Indexed: 10/25/2022]
Abstract
Increased HSP expression in response to acute exercise is well documented in animal studies, and there is growing evidence that similar responses occur in man. In general, many human exercise studies have investigated the HSP response to low force continuous activity, while the knowledge about the HSP response to high force intermittent type of activity, like weight training, is so far sparse. In addition, most studies have used untrained subjects, and a common observation is that acute low force continuous activity in untrained individuals increases the HSP expression in these individuals. The main scope of this study was to investigate the HSP response in very well trained males subjected to longitudinal high intensity exercise, and if this response was dependent on exercise modality [i.e. eccentric (ECC) or concentric (CON) contractions]. Very well trained males performed progressive strength training consisting of either high force ECC or high force CON elbow flexions 2-3 times a week for 12 weeks. Compared with pre-exercise levels, HSP72 expression decreased by 46.1% (P<0.05) after CON contractions. GRP75 expression was unchanged after ECC or CON contractions, while ubiquitin expression decreased by 19.9% (P<0.02) after ECC contractions. These findings imply that chronic, intensive exercise may attenuate the HSP response in well-trained males.
Collapse
Affiliation(s)
- Terje F Gjøvaag
- Oslo University College, St Olavs Plass, PO Box 4, 0130, Oslo, Norway.
| | | | | |
Collapse
|
32
|
Shamovsky I, Gershon D. Novel regulatory factors of HSF-1 activation: facts and perspectives regarding their involvement in the age-associated attenuation of the heat shock response. Mech Ageing Dev 2005; 125:767-75. [PMID: 15541771 DOI: 10.1016/j.mad.2004.07.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
An attenuated response to stress is characteristic of senescence. Heat shock (HS), a significant form of stress, is delayed and reduced in aging organisms. In the response to heat shock, heat shock factor 1 (HSF-1) is activated by trimerization of its monomeric subunits. This then initiates the transcription of a series of heat shock genes (hsp genes) that encode chaperone proteins protective against heat stress. Using a promoter binding electromobility shift assay (EMSA), we have found no activation of this transcription factor in the brains of old (36 months) rats in response to exposure to 41 degrees C for 1h while strong activation is elicited in young (6 months) animals. Since brains of young and old rats had approximately the same amount of HSF-1 subunits, we anticipated the presence of auxiliary regulatory factors essential for the activation of HSF-1 and the initiation of heat shock gene transcription. We describe three novel auxiliary factors--the proteins I-HSF [HSF inhibitor] and elongation factor-1 alpha (EF-1alpha) and a large non-coding RNA (HSR)--that participate in regulation and activation of HSF-1 in early stages of heat shock gene transcription. I-HSF inhibits trimerization of HSF-1 at normal temperatures. HSR and EF-1alpha form a complex with HSF-1 and facilitate its trimerization and binding to heat shock element (HSE) in the promoters of hsps. It is proposed that structural changes in any one or a combination of these factors in response to heat shock may contribute to the age-associated attenuation in the response to stress.
Collapse
Affiliation(s)
- Ilya Shamovsky
- Department of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | | |
Collapse
|
33
|
Buckley BA, Hofmann GE. Magnitude and Duration of Thermal Stress Determine Kinetics ofhspGene Regulation in the GobyGillichthys mirabilis. Physiol Biochem Zool 2004; 77:570-81. [PMID: 15449228 DOI: 10.1086/420944] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/17/2003] [Indexed: 11/03/2022]
Abstract
The stress-induced transcription of heat shock genes is controlled by heat shock transcription factor 1 (HSF1), which becomes activated in response to heat and other protein denaturants. In previous research on the eurythermal goby Gillichthys mirabilis, thermal activation of HSF1 was shown to vary as a function of acclimation temperature, suggesting the mechanistic importance of HSF1 activation to the plasticity of heat shock protein (Hsp) induction temperature. We examined the effect of season on the thermal activation of HSF1 in G. mirabilis, as well as the relative kinetics of HSF1 activation and Hsp70 mRNA production at ecologically relevant temperatures. There was no predictable seasonality in the thermal activation of HSF1, perhaps due to the existence of stressors, in addition to heat, acting in the field. Concentrations of Hsp70, a negative regulator of HSF1, as well as those of HSF1, varied with collection date. The rapidity of HSF1 activation and of Hsp70 mRNA synthesis increased with laboratory exposure temperature. Furthermore, Hsp70 mRNA production was more sustained at 35 degrees C than at 30 degrees C. Therefore, both the magnitude and the duration of a heat shock are important in determining the intensity of heat shock gene induction.
Collapse
Affiliation(s)
- Bradley A Buckley
- Hopkins Marine Station of Stanford University, Pacific Grove, CA 93950, USA.
| | | |
Collapse
|
34
|
Voellmy R. On mechanisms that control heat shock transcription factor activity in metazoan cells. Cell Stress Chaperones 2004; 9:122-33. [PMID: 15497499 PMCID: PMC1065292 DOI: 10.1379/csc-14r.1] [Citation(s) in RCA: 220] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2003] [Accepted: 03/29/2004] [Indexed: 12/31/2022] Open
Abstract
Heat shock factor Hsf in nonvertebrate animals and homologous heat shock factor Hsf1 in vertebrate animals are key transcriptional regulators of the stress protein response. Hsf/Hsf1 is constitutively present in cells but is, typically, only active during periods during which cells are experiencing a physical or chemical proteotoxic stress. It has become increasingly clear that regulation of Hsf/Hsf1 activity occurs at multiple levels: the oligomeric status of Hsf/Hsf1, its DNA-binding ability, posttranslational modification, transcriptional competence, nuclear/ subnuclear localization, as well as its interactions with regulatory cofactors or other transcription factors all appear to be carefully controlled. This review emphasizes work reported over the past several years suggesting that regulation at several of these levels is mediated by repressive interactions of Hsp90-containing multichaperone complexes and/or individual chaperones and Hsf/Hsf1.
Collapse
Affiliation(s)
- Richard Voellmy
- Department of Biochemistry and Molecular Biology, University of Miami, Gautier Building, Room 403, 1011 NW 15th Street, Miami, FL 33136, USA.
| |
Collapse
|
35
|
Voellmy R. Transcriptional Regulation of the Metazoan Stress Protein Response. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2004; 78:143-85. [PMID: 15210330 DOI: 10.1016/s0079-6603(04)78004-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Abstract
This review provides an updated account of the regulation of the metazoan stress protein response. Where indicated, observations made with yeasts are also included. However, a discussion of the plant stress protein response is intentionally omitted (for a review, see 1). The stress protein response, as discussed hereafter, is understood to relate to the response by virtually all cells to heat and other stressors that results in the induced expression of so-called heat shock or stress genes. The protein products of these genes localize largely to the cytoplasm, nucleus, or organelles. An analogous response controls the expression of related genes, whose products reside in the endoplasmic reticulum. The response, termed ER stress response or unfolded protein response, is mediated by a separate regulation system that is not discussed in this review. Note, however, that recent work suggests the existence of commonalities between the regulatory systems controlling the stress protein and ER stress responses (2).
Collapse
Affiliation(s)
- Richard Voellmy
- Department of Biochemistry and Molecular Biology, University of Miami, Miami, FL 33136, USA
| |
Collapse
|
36
|
Nonaka T, Akimoto T, Mitsuhashi N, Tamaki Y, Nakano T. Changes in the number of HSF1 positive granules in the nucleus reflects heat shock semiquantitatively. Cancer Lett 2003; 202:89-100. [PMID: 14643030 DOI: 10.1016/s0304-3835(03)00481-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
PURPOSE The purpose of this study is to examine the changes in the number of HSF1 granules in the nucleus caused by different degree of heat stress. MATERIALS AND METHODS A human esophageal cancer cell line, TE-2, was used. HSF1 granules were examined in an immunofluorescence study, and the changes in the average number of HSF1 granules after heat alone or heat in combination with KNK437, Hsp inhibitor, were evaluated. A band shift of HSF1 was also determined by western blot. RESULTS HSF1 granules appeared soon after the start of heating at 43 degrees C and reached a peak at 60 min and gradually disappeared after discontinuation of heat. In the fractionated heat treatment, preheating (43 degrees C, 30 min) suppressed the increase in the number of the granules during the second heating, but suppression of Hsp72 by KNK437 resulted in increase in the number of granules. Continued heating at 43 degrees C with or without KNK437 maintained the number of the granules at the peak level during heat treatment. The band shift of HSF1 examined by western blot correlated with the changes in the number of granules. The number of granules also reflected the degree of stress according to different temperature. CONCLUSION The number of HSF1 granules in the nucleus well reflected heat stress, and was almost consistent with phosphorylation of HSF1. The number of HSF1 granules would be a useful tool for evaluating different degrees of heat stress semiquantitatively.
Collapse
Affiliation(s)
- Tetsuo Nonaka
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan
| | | | | | | | | |
Collapse
|
37
|
Chan SHH, Wang LL, Chang KF, Ou CC, Chan JYH. Altered temporal profile of heat shock factor 1 phosphorylation and heat shock protein 70 expression induced by heat shock in nucleus tractus solitarii of spontaneously hypertensive rats. Circulation 2003; 107:339-45. [PMID: 12538438 DOI: 10.1161/01.cir.0000044942.94957.87] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND We demonstrated recently that heat shock (HS)-induced heat shock protein 70 (HSP70) expression in bilateral nucleus tractus solitarii (NTS), the terminal site in the brain stem for primary baroreceptor afferents, confers cardiovascular protection against heatstroke by potentiating baroreceptor reflex (BRR) response. This study evaluated the hypothesis that altered regulation of HSP70 expression may be associated with the heightened susceptibility to heatstroke during hypertension. METHODS AND RESULTS Spontaneously hypertensive rats (SHR) and normotensive Wistar-Kyoto (WKY) rats anesthetized with propofol were used. Compared with WKY rats, significant induction in HSP70 or phosphorylation of heat shock factor 1 (HSF1), but not HSF2, in the NTS and potentiation of BRR response in SHR occurred earlier (4 versus 8 hours), reaching peak magnitude sooner (16 versus 24 hours), and declined more rapidly after a brief hyperthermic HS (42+/-0.5 degrees C for 15 minutes). The protection conferred by HS against hypotension and bradycardia during the onset of heatstroke (45 degrees C for 60 minutes), although effective, was less effective in SHR. Microinjection bilaterally into the NTS of the selective protein kinase A (PKA) inhibitor H-89 (100 pmol) or the selective PKC inhibitor calphostin C (100 pmol) significantly attenuated all of the above events induced in SHR by HS. However, only H-89 was effective in WKY rats. CONCLUSIONS An altered temporal profile of HS-induced HSP70 expression or potentiation of BRR response by concurrent activation via both PKA and PKC pathways of phosphorylation of HSF1 in the NTS may be associated with greater susceptibility to heatstroke during hypertension.
Collapse
Affiliation(s)
- Samuel H H Chan
- Center for Neuroscience, National Sun Yat-sen University, Taiwan, Republic of China
| | | | | | | | | |
Collapse
|
38
|
Buckley BA, Hofmann GE. Thermal acclimation changes DNA-binding activity of heat shock factor 1(HSF1) in the gobyGillichthys mirabilis: implications for plasticity in the heat-shock response in natural populations. J Exp Biol 2002; 205:3231-40. [PMID: 12235201 DOI: 10.1242/jeb.205.20.3231] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARYThe intracellular build-up of thermally damaged proteins following exposure to heat stress results in the synthesis of a family of evolutionarily conserved proteins called heat shock proteins (Hsps) that act as molecular chaperones, protecting the cell against the aggregation of denatured proteins. The transcriptional regulation of heat shock genes by heat shock factor 1(HSF1) has been extensively studied in model systems, but little research has focused on the role HSF1 plays in Hsp gene expression in eurythermal organisms from broadly fluctuating thermal environments. The threshold temperature for Hsp induction in these organisms shifts with the recent thermal history of the individual but the mechanism by which this plasticity in Hsp induction temperature is achieved is unknown. We examined the effect of thermal acclimation on the heat-activation of HSF1 in the eurythermal teleost Gillichthys mirabilis. After a 5-week acclimation period (at 13, 21 or 28°C) the temperature of HSF1 activation was positively correlated with acclimation temperature. HSF1 activation peaked at 27°C in fish acclimated to 13°C, at 33°C in the 21°C group, and at 36°C in the 28°C group. Concentrations of both HSF1 and Hsp70 in the 28°C group were significantly higher than in the colder acclimated fish. Plasticity in HSF1 activation may be important to the adjustable nature of the heat shock response in eurythermal organisms and the environmental control of Hsp gene expression.
Collapse
Affiliation(s)
- Bradley A Buckley
- Department of Biology, Arizona State University, Tempe 85287-1501, USA
| | | |
Collapse
|
39
|
Zhao C, Hashiguchi A, Kondoh K, Du W, Hata JI, Yamada T. Exogenous expression of heat shock protein 90kDa retards the cell cycle and impairs the heat shock response. Exp Cell Res 2002; 275:200-14. [PMID: 11969290 DOI: 10.1006/excr.2002.5501] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The 90-kDa heat shock protein, HSP90, is an abundant molecular chaperone which functions in cellular homeostasis in prokaryotes and eukaryotes. It is well known that HSP90 plays a critical and indispensable role in regulating cell growth through modulations of various signal transduction pathways, but its roles in cell cycle control are not so well known. We transferred human HSP90 (wild-type or mutated types) expression vectors into NIH-3T3 cells in order to study certain functions of HSP90 in the cell cycle and cell growth under physiological conditions. We found that the exogenous expression of HSP90 (wild-type) induced a decrease in cell growth via retardation of the G1/S transition. The inhibition of cell growth was caused by reduced expressions of cyclin D3 and cyclin A mRNA and protein. On the other hand, no stable transfectants with the three types of mutated HSP90 were obtained. Unexpectedly, exogenous HSP90 expression impaired the heat shock response by inhibiting both heat shock transcription factor 1(HSF1) activation and transportation of HSF1 into the nucleus. The HSF1 function was disrupted by the direct association between HSF1 and exogenous HSP90, which was present as a monomer. These results reveal important roles of HSP90 in cell cycle control and in the stress response of nontransformed cells.
Collapse
Affiliation(s)
- Chen Zhao
- Department of Pathology, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | | | | | | | | | | |
Collapse
|
40
|
Tomanek L, Somero GN. Interspecific- and acclimation-induced variation in levels of heat-shock proteins 70 (hsp70) and 90 (hsp90) and heat-shock transcription factor-1 (HSF1) in congeneric marine snails (genusTegula): implications for regulation ofhspgene expression. J Exp Biol 2002; 205:677-85. [PMID: 11907057 DOI: 10.1242/jeb.205.5.677] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARYIn our previous studies of heat-shock protein (hsp) expression in congeneric marine gastropods of the genus Tegula, we observed interspecific and acclimation-induced variation in the temperatures at which heat-shock gene expression is induced (Ton). To investigate the factors responsible for these inter- and intraspecific differences in Ton, we tested the predictions of the ‘cellular thermometer’ model for the transcriptional regulation of hsp expression. According to this model, hsps not active in chaperoning unfolded proteins bind to a transcription factor, heat-shock factor-1 (HSF1), thereby reducing the levels of free HSF1 that are available to bind to the heat-shock element, a regulatory element upstream of hsp genes. Under stress, hsps bind to denatured proteins, releasing HSF1, which can now activate hsp gene transcription. Thus, elevated levels of heat-shock proteins of the 40, 70 and 90 kDa families (hsp 40, hsp70 and hsp90, respectively) would be predicted to elevate Ton. Conversely, elevated levels of HSF1 would be predicted to decrease Ton. Following laboratory acclimation to 13, 18 and 23°C, we used solid-phase immunochemistry (western analysis) to quantify endogenous levels of two hsp70 isoforms (hsp74 and hsp72), hsp90 and HSF1 in the low- to mid-intertidal species Tegula funebralis and in two subtidal to low-intertidal congeners, T. brunnea and T. montereyi. We found higher endogenous levels of hsp72 (a strongly heat-induced isoform) at 13 and 18°C in T. funebralis in comparison with T. brunnea and T. montereyi. However, T. funebralis also had higher levels of HSF1 than its congeners. The higher levels of HSF1 in T. funebralis cannot, within the framework of the cellular thermometer model, account for the higher Ton observed for this species, although they may explain why T. funebralis is able to induce the heat-shock response more rapidly than T. brunnea. However, the cellular thermometer model does appear to explain the cause of the increases in Ton that occurred during warm acclimation of the two subtidal species, in which warm acclimation was accompanied by increased levels of hsp72, hsp74 and hsp90, whereas levels of HSF1 remained stable. T. funebralis, which experiences greater heat stress than its subtidal congeners, consistently had higher ratios of hsp72 to hsp74 than its congeners, although the sum of levels of the two isoforms was similar for all three species except at the highest acclimation temperature (23°C). The ratio of hsp72 to hsp74 may provide a more accurate estimate of environmental heat stress than the total concentrations of both hsp70 isoforms.
Collapse
Affiliation(s)
- Lars Tomanek
- Hopkins Marine Station, Stanford University, Pacific Grove, CA 93950-3094, USA.
| | | |
Collapse
|
41
|
Kim BH, Schöffl F. Interaction between Arabidopsis heat shock transcription factor 1 and 70 kDa heat shock proteins. JOURNAL OF EXPERIMENTAL BOTANY 2002; 53:371-375. [PMID: 11807141 DOI: 10.1093/jexbot/53.367.371] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The activity of the Arabidopsis heat shock transcription factor (HSF) is repressed at normal conditions but activated by cellular stresses. Circumstantial evidence suggests that HSP70 may function as a negative feedback regulator of HSF activity. Here the interaction between HSF and HSP70 is reported using electrophoretic mobility shift and yeast two-hybrid assays. Subdomain mapping indicates an interaction of the activation domain and DNA-binding domain of HSF1 with HSP70.
Collapse
Affiliation(s)
- Byung-Hoon Kim
- Universität Tübingen, ZMBP-Zentrum für Molekularbiologie der Pflanzen, Allgemeine Genetik, Auf der Morgenstelle 28, D-72076 Tübingen, Germany
| | | |
Collapse
|
42
|
Snoeckx LH, Cornelussen RN, Van Nieuwenhoven FA, Reneman RS, Van Der Vusse GJ. Heat shock proteins and cardiovascular pathophysiology. Physiol Rev 2001; 81:1461-97. [PMID: 11581494 DOI: 10.1152/physrev.2001.81.4.1461] [Citation(s) in RCA: 247] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
In the eukaryotic cell an intrinsic mechanism is present providing the ability to defend itself against external stressors from various sources. This defense mechanism probably evolved from the presence of a group of chaperones, playing a crucial role in governing proper protein assembly, folding, and transport. Upregulation of the synthesis of a number of these proteins upon environmental stress establishes a unique defense system to maintain cellular protein homeostasis and to ensure survival of the cell. In the cardiovascular system this enhanced protein synthesis leads to a transient but powerful increase in tolerance to such endangering situations as ischemia, hypoxia, oxidative injury, and endotoxemia. These so-called heat shock proteins interfere with several physiological processes within several cell organelles and, for proper functioning, are translocated to different compartments following stress-induced synthesis. In this review we describe the physiological role of heat shock proteins and discuss their protective potential against various stress agents in the cardiovascular system.
Collapse
Affiliation(s)
- L H Snoeckx
- Department of Physiology, Faculty of Medicine, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands.
| | | | | | | | | |
Collapse
|
43
|
Rimoldi M, Servadio A, Zimarino V. Analysis of heat shock transcription factor for suppression of polyglutamine toxicity. Brain Res Bull 2001; 56:353-62. [PMID: 11719272 DOI: 10.1016/s0361-9230(01)00602-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Individually over-expressed chaperones can interfere with cytotoxicity and aggregation of polyglutamine proteins in disease models. As chaperones cooperate, the analysis of suppression or reversal of polyglutamine pathology may require ways to up-regulate multiple chaperone coding genes. This condition might be achieved by exogenous expression of de-repressed forms of heat shock transcription factor 1 (HSF1), which mediates induction of several genes coding cytosolic and nuclear chaperones. Here we present the rationale behind this possible approach and the caveats, and employ a non-neuronal cell system to test whether Ataxin-1 aggregation can be modulated by de-repressed HSF1 mutants through augmented expression of chaperone coding genes. In our experiments, HSF1 mutants have induced heat shock protein 70 and Human DnaJ (HDJ)-1 to intermediate levels. Cells expressing such mutants also showed partial reduction of Ataxin-1 [31Q] aggregation. A consolidated positive outcome of these tests in cellular models would encourage experiments in transgenic mice and prospects for pharmacological modulation of HSF1 activity or delivery.
Collapse
Affiliation(s)
- M Rimoldi
- Dibit, San Raffaele Scientific Institute, Milano, Italy
| | | | | |
Collapse
|
44
|
Pirkkala L, Nykänen P, Sistonen L. Roles of the heat shock transcription factors in regulation of the heat shock response and beyond. FASEB J 2001; 15:1118-31. [PMID: 11344080 DOI: 10.1096/fj00-0294rev] [Citation(s) in RCA: 721] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The heat shock response, characterized by increased expression of heat shock proteins (Hsps) is induced by exposure of cells and tissues to extreme conditions that cause acute or chronic stress. Hsps function as molecular chaperones in regulating cellular homeostasis and promoting survival. If the stress is too severe, a signal that leads to programmed cell death, apoptosis, is activated, thereby providing a finely tuned balance between survival and death. In addition to extracellular stimuli, several nonstressful conditions induce Hsps during normal cellular growth and development. The enhanced heat shock gene expression in response to various stimuli is regulated by heat shock transcription factors (HSFs). After the discovery of the family of HSFs (i.e., murine and human HSF1, 2, and 4 and a unique avian HSF3), the functional relevance of distinct HSFs is now emerging. HSF1, an HSF prototype, and HSF3 are responsible for heat-induced Hsp expression, whereas HSF2 is refractory to classical stressors. HSF4 is expressed in a tissue-specific manner; similar to HSF1 and HSF2, alternatively spliced isoforms add further complexity to its regulation. Recently developed powerful genetic models have provided evidence for both cooperative and specific functions of HSFs that expand beyond the heat shock response. Certain specialized functions of HSFs may even include regulation of novel target genes in response to distinct stimuli.
Collapse
Affiliation(s)
- L Pirkkala
- Turku Centre for Biotechnology, University of Turku and Abo Akademi University, Finland
| | | | | |
Collapse
|
45
|
Powers SK, LOCKE And M, Demirel HA. Exercise, heat shock proteins, and myocardial protection from I-R injury. Med Sci Sports Exerc 2001; 33:386-92. [PMID: 11252064 DOI: 10.1097/00005768-200103000-00009] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Heat shock proteins (HSPs) play a critical role in maintaining cellular homeostasis and protecting cells during episodes of acute stress. Specifically, HSPs of the 70 kDa family (i.e., HSP72) are important in preventing ischemia-reperfusion induced apoptosis, necrosis, and oxidative injury in a variety of cell types including the cardiac myocyte. Evidence indicates that HSP72 may contribute to cellular protection against a variety of stresses by preventing protein aggregation, assisting in the refolding of damaged proteins, and chaperoning nascent polypeptides along ribosomes. Endurance exercise is a physiological stress that can be used to elevate myocardial levels of HSP72. It is now clear that endurance exercise training can elevate myocardial HSP72 by 400-500% in young adult animals. Importantly, an exercise-induced elevation in myocardial HSPs is associated with a reduction in ischemia-reperfusion (I-R) injury in the heart. Although it seems likely that exercise-induced elevations in myocardial levels of HSPs play an important role in this protection against an I-R insult, new evidence suggests that other factors may also be involved. This is an important area for future research.
Collapse
Affiliation(s)
- S K Powers
- Department of Exercise and Sport Sciences and Physiology, Center for Exercise Science, University of Florida, Gainesville, FL 32611, USA.
| | | | | |
Collapse
|
46
|
Hjorth-Sørensen B, Hoffmann ER, Lissin NM, Sewell AK, Jakobsen BK. Activation of heat shock transcription factor in yeast is not influenced by the levels of expression of heat shock proteins. Mol Microbiol 2001; 39:914-23. [PMID: 11251812 DOI: 10.1046/j.1365-2958.2001.02279.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Heat shock transcription factor (HSF) transiently induces the expression of a universally conserved set of proteins, the heat shock proteins (Hsps), when cells are exposed to elevated temperatures as well as to a wide range of other environmental stresses. The tight control of heat shock gene expression has prompted a model, according to which HSF activity and 'free' heat shock protein levels are tied up in a regulatory loop. Other data have indicated that HSF senses stress directly. Here, we report that yeast cells in which the basal expression levels of Hsps have been significantly increased exhibit improved thermotolerance but display no detectable difference in the temperature required for transient activation of HSF. In a separate experiment, overexpression of SSA2, a member of the Hsp70 family and a prominent candidate for the feedback regulation of HSF, did not inhibit the heat shock response. Our findings challenge the dogma that relief of the suppression of HSF activity by Hsps can account for the acute heat shock response.
Collapse
Affiliation(s)
- B Hjorth-Sørensen
- University of Oxford, Institute of Molecular Medicine, John Radcliffe Hospital, Headington, Oxford, OX3 9DS, UK
| | | | | | | | | |
Collapse
|
47
|
Gosslau A, Ruoff P, Mohsenzadeh S, Hobohm U, Rensing L. Heat shock and oxidative stress-induced exposure of hydrophobic protein domains as common signal in the induction of hsp68. J Biol Chem 2001; 276:1814-21. [PMID: 11042186 DOI: 10.1074/jbc.m008280200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The hypothesis of a common signal for heat shock (HS) and oxidative stress (OS) was analyzed in C6 cells with regard to the induction of heat shock proteins (Hsps). The synthesis rate and level of the strictly inducible Hsp68 was significantly higher after HS (44 degrees C) compared with OS (2 mm H2O2). This difference corresponded to higher and lower activation of the heat shock factor (HSF) by HS and OS, respectively. OS, on the other hand, showed stronger cytotoxicity compared with HS as indicated by drastic lipid peroxidation and inhibition of protein synthesis as well as of mitochondrial and endocytotic activity. Lactic dehydrogenase also revealed stronger inhibition of enzyme activity by OS than by HS as shown in cells and in vitro experiments. Conformational analysis of lactic dehydrogenase by the fluorophore 1-anilinonaphtalene-8-sulfonic acid, however, showed stronger exposure of hydrophobic domains after HS than after OS which correlates positively with the Hsp68 response. Treatment of cells with deoxyspergualin, which exhibits high affinity to Hsps, the putative inhibitors of HSF, strongly increased only OS-induced hsp68 expression. In conclusion, the results suggest that exposure of hydrophobic domains of cytosolic proteins represents the common first signal in the multistep activation pathway of HSF.
Collapse
Affiliation(s)
- A Gosslau
- Institute of Cell Biology, Biochemistry and Biotechnology, University of Bremen, D-28334 Bremen, Germany and the School of Technology and Science, Stavanger University College, P. O. Box 2557 Ullandhaug, N-4091 Stavanger, Norway
| | | | | | | | | |
Collapse
|
48
|
Tanabe M, Sasai N, Nagata K, Liu XD, Liu PC, Thiele DJ, Nakai A. The mammalian HSF4 gene generates both an activator and a repressor of heat shock genes by alternative splicing. J Biol Chem 1999; 274:27845-56. [PMID: 10488131 DOI: 10.1074/jbc.274.39.27845] [Citation(s) in RCA: 115] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The expression of heat shock genes is controlled at the level of transcription by members of the heat shock transcription factor family in vertebrates. HSF4 is a mammalian factor characterized by its lack of a suppression domain that modulates formation of DNA-binding homotrimer. Here, we have determined the exon structure of the human HSF4 gene and identified a major new isoform, HSF4b, derived by alternative RNA splicing events, in addition to a previously reported HSF4a isoform. In mouse tissues HSF4b mRNA was more abundant than HSF4a as examined by reverse transcription-polymerase chain reaction, and its protein was detected in the brain and lung. Although both mouse HSF4a and HSF4b form trimers in the absence of stress, these two isoforms exhibit different transcriptional activity; HSF4a acts as an inhibitor of the constitutive expression of heat shock genes, and hHSF4b acts as a transcriptional activator. Furthermore HSF4b but not HSF4a complements the viability defect of yeast cells lacking HSF. Moreover, heat shock and other stresses stimulate transcription of target genes by HSF4b in both yeast and mammalian cells. These results suggest that differential splicing of HSF4 mRNA gives rise to both an inhibitor and activator of tissue-specific heat shock gene expression.
Collapse
Affiliation(s)
- M Tanabe
- Department of Molecular and Cell Biology, Institute for Frontier Medical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8397, Japan
| | | | | | | | | | | | | |
Collapse
|
49
|
Mercier PA, Winegarden NA, Westwood JT. Human heat shock factor 1 is predominantly a nuclear protein before and after heat stress. J Cell Sci 1999; 112 ( Pt 16):2765-74. [PMID: 10413683 DOI: 10.1242/jcs.112.16.2765] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The induction of the heat shock genes in eukaryotes by heat and other forms of stress is mediated by a transcription factor known as heat shock factor 1 (HSF1). HSF1 is present in unstressed metazoan cells as a monomer with low affinity for DNA, and upon exposure to stress it is converted to an ‘active’ homotrimer that binds the promoters of heat shock genes with high affinity and induces their transcription. The conversion of HSF1 to its active form is hypothesized to be a multistep process involving physical changes in the HSF1 molecule and the possible translocation of HSF1 from the cytoplasm to the nucleus. While all studies to date have found active HSF1 to be a nuclear protein, there have been conflicting reports on whether the inactive form of HSF is predominantly a cytoplasmic or nuclear protein. In this study, we have made antibodies against human HSF1 and have reexamined its localization in unstressed and heat-shocked human HeLa and A549 cells, and in green monkey Vero cells. Biochemical fractionation of heat-shocked HeLa cells followed by western blot analysis showed that HSF1 was mostly found in the nuclear fraction. In extracts made from unshocked cells, HSF1 was predominantly found in the cytoplasmic fraction using one fractionation procedure, but was distributed approximately equally between the cytoplasmic and nuclear fractions when a different procedure was used. Immunofluorescence microscopy revealed that HSF1 was predominantly a nuclear protein in both heat shocked and unstressed cells. Quantification of HSF1 staining showed that approximately 80% of HSF1 was present in the nucleus both before and after heat stress. These results suggest that HSF1 is predominantly a nuclear protein prior to being exposed to stress, but has low affinity for the nucleus and is easily extracted using most biochemical fractionation procedures. These results also imply that HSF1 translocation is probably not part of the multistep process in HSF1 activation for many cell types.
Collapse
Affiliation(s)
- P A Mercier
- Department of Zoology, University of Toronto, Mississauga, Ontario, Canada L5L 1C6
| | | | | |
Collapse
|
50
|
Zhong M, Kim SJ, Wu C. Sensitivity of Drosophila heat shock transcription factor to low pH. J Biol Chem 1999; 274:3135-40. [PMID: 9915852 DOI: 10.1074/jbc.274.5.3135] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The heat shock transcription factor (HSF) mediates the induction of heat shock gene expression. The activation of HSF involves heat shock-induced trimerization, binding to its cognate DNA sites, and the acquisition of transcriptional competence. In this study, the oligomeric properties of Drosophila HSF were analyzed by equilibrium analytical ultracentrifugation and gel filtration chromatography. Previous findings showed that trimerization of purified Drosophila HSF was directly sensitive to heat and oxidation (1). Here we report that low pH, in the physiological range, also directly induces HSF trimerization and DNA binding in vitro. Furthermore, the induction of HSF trimerization by low pH is synergistic with the actions of heat and oxidation. Since heat or chemical stress leads to a moderate decrease of intracellular pH, we suggest that intracellular acidification may contribute to activating the heat shock response in vivo.
Collapse
Affiliation(s)
- M Zhong
- Laboratory of Molecular Cell Biology, NCI, National Institutes of Health, Bethesda, Maryland 20892-4255, USA
| | | | | |
Collapse
|