1
|
Bai J, Wei X. Identification of teleost tnnc1a enhancers for specific pan-cardiac transcription. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.26.582099. [PMID: 38464177 PMCID: PMC10925198 DOI: 10.1101/2024.02.26.582099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Troponin C regulates muscle contraction by forming the troponin complex with troponin I and troponin T. Different muscle types express different troponin C genes. The mechanisms of such differential transcription are not fully understood. The Zebrafish tnnc1a gene is restrictively expressed in cardiac muscles. We here identify the enhancers and promoters of the zebrafish and medaka tnnc1a genes, including intronic enhancers in zebrafish and medaka and an upstream enhancer in the medaka. The intronic and upstream enhancers are likely functionally redundant. The GFP transgenic reporter driven by these enhancers is expressed more strongly in the ventricle than in the atrium, recapitulating the expression pattern of the endogenous zebrafish tnnc1a gene. Our study identifies a new set of enhancers for cardiac-specific transgenic expression in zebrafish. These enhancers can serve as tools for future identification of transcription factor networks that drive cardiac-specific gene transcription.
Collapse
|
2
|
Chhatwal K, Smith JJ, Bola H, Zahid A, Venkatakrishnan A, Brand T. Uncovering the Genetic Basis of Congenital Heart Disease: Recent Advancements and Implications for Clinical Management. CJC PEDIATRIC AND CONGENITAL HEART DISEASE 2023; 2:464-480. [PMID: 38205435 PMCID: PMC10777202 DOI: 10.1016/j.cjcpc.2023.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 10/13/2023] [Indexed: 01/12/2024]
Abstract
Congenital heart disease (CHD) is the most prevalent hereditary disorder, affecting approximately 1% of all live births. A reduction in morbidity and mortality has been achieved with advancements in surgical intervention, yet challenges in managing complications, extracardiac abnormalities, and comorbidities still exist. To address these, a more comprehensive understanding of the genetic basis underlying CHD is required to establish how certain variants are associated with the clinical outcomes. This will enable clinicians to provide personalized treatments by predicting the risk and prognosis, which might improve the therapeutic results and the patient's quality of life. We review how advancements in genome sequencing are changing our understanding of the genetic basis of CHD, discuss experimental approaches to determine the significance of novel variants, and identify barriers to use this knowledge in the clinics. Next-generation sequencing technologies are unravelling the role of oligogenic inheritance, epigenetic modification, genetic mosaicism, and noncoding variants in controlling the expression of candidate CHD-associated genes. However, clinical risk prediction based on these factors remains challenging. Therefore, studies involving human-induced pluripotent stem cells and single-cell sequencing help create preclinical frameworks for determining the significance of novel genetic variants. Clinicians should be aware of the benefits and implications of the responsible use of genomics. To facilitate and accelerate the clinical integration of these novel technologies, clinicians should actively engage in the latest scientific and technical developments to provide better, more personalized management plans for patients.
Collapse
Affiliation(s)
- Karanjot Chhatwal
- Imperial College School of Medicine, Imperial College London, London, United Kingdom
- National Heart and Lung Institute, Imperial College London, Imperial Center of Clinical and Translational Medicine, London, United Kingdom
| | - Jacob J. Smith
- Imperial College School of Medicine, Imperial College London, London, United Kingdom
- National Heart and Lung Institute, Imperial College London, Imperial Center of Clinical and Translational Medicine, London, United Kingdom
| | - Harroop Bola
- Imperial College School of Medicine, Imperial College London, London, United Kingdom
- National Heart and Lung Institute, Imperial College London, Imperial Center of Clinical and Translational Medicine, London, United Kingdom
| | - Abeer Zahid
- Imperial College School of Medicine, Imperial College London, London, United Kingdom
- National Heart and Lung Institute, Imperial College London, Imperial Center of Clinical and Translational Medicine, London, United Kingdom
| | - Ashwin Venkatakrishnan
- Imperial College School of Medicine, Imperial College London, London, United Kingdom
- National Heart and Lung Institute, Imperial College London, Imperial Center of Clinical and Translational Medicine, London, United Kingdom
| | - Thomas Brand
- National Heart and Lung Institute, Imperial College London, Imperial Center of Clinical and Translational Medicine, London, United Kingdom
| |
Collapse
|
3
|
The transcriptional factor GATA-4 negatively regulates Hsp70 transcription in Crassostrea hongkongensis. Mol Biol Rep 2020; 47:7107-7114. [PMID: 32880831 DOI: 10.1007/s11033-020-05778-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 08/28/2020] [Indexed: 10/23/2022]
Abstract
To better explore the application potential of heat shock protein Hsp70s in diverse areas including biomonitoring, a further investigation of the details of the regulatory mechanism governing Hsp70 transcription is required. A transcriptional factor ChGATA-4 that displayed affinity to the ChHsp70 promoter of Crassostrea hongkongensis was isolated and identified by DNA affinity purification as well as mass spectrometry analysis. The ChGATA-4 cDNA is 2162 bp in length and the open reading frame encodes a polypeptide containing 482 amino acids with a conserved zinc finger domain. The over-expression of ChGATA-4 significantly inhibited the expression of ChHsp70 promoter in heterologous HEK293T cells. However, the depletion of ChGATA-4 mRNA by RNAi technique resulted in significant increase of ChHsp70 transcription in oyster hemocytes. The RT-PCR results demonstrated that the transcription of both ChHsp70 and ChGATA-4 were induced by heat, Cd, or NP (Nonyl phenol) stress. This suggested a potential correlation between ChHsp70 and ChGATA-4 in the stress-mediated genetic regulatory cascade. This study demonstrated that ChGATA-4 acts in a negative manner in controlling ChHsp70 transcription in C. hongkongensis and promotes to further understand the mechanisms leading Hsp70 transcription.
Collapse
|
4
|
Abstract
Various strategies have been applied to replace the loss of cardiomyocytes in order to restore reduced cardiac function and prevent the progression of heart disease. Intensive research efforts in the field of cellular reprogramming and cell transplantation may eventually lead to efficient in vivo applications for the treatment of cardiac injuries, representing a novel treatment strategy for regenerative medicine. Modulation of cardiac transcription factor (TF) networks by chemical entities represents another viable option for therapeutic interventions. Comprehensive screening projects have revealed a number of molecular entities acting on molecular pathways highly critical for cellular lineage commitment and differentiation, including compounds targeting Wnt- and transforming growth factor beta (TGFβ)-signaling. Furthermore, previous studies have demonstrated that GATA4 and NKX2-5 are essential TFs in gene regulation of cardiac development and hypertrophy. For example, both of these TFs are required to fully activate mechanical stretch-responsive genes such as atrial natriuretic peptide and brain natriuretic peptide (BNP). We have previously reported that the compound 3i-1000 efficiently inhibited the synergy of the GATA4-NKX2-5 interaction. Cellular effects of 3i-1000 have been further characterized in a number of confirmatory in vitro bioassays, including rat cardiac myocytes and animal models of ischemic injury and angiotensin II-induced pressure overload, suggesting the potential for small molecule-induced cardioprotection.
Collapse
Affiliation(s)
- Mika J. Välimäki
- Drug Research Program, Division of Pharmacology and Pharmacotherapy, Faculty of PharmacyUniversity of HelsinkiHelsinki, Finland
| | - Heikki J. Ruskoaho
- Drug Research Program, Division of Pharmacology and Pharmacotherapy, Faculty of PharmacyUniversity of HelsinkiHelsinki, Finland
| |
Collapse
|
5
|
Zlabinger K, Spannbauer A, Traxler D, Gugerell A, Lukovic D, Winkler J, Mester-Tonczar J, Podesser B, Gyöngyösi M. MiR-21, MiR-29a, GATA4, and MEF2c Expression Changes in Endothelin-1 and Angiotensin II Cardiac Hypertrophy Stimulated Isl-1 +Sca-1 +c-kit + Porcine Cardiac Progenitor Cells In Vitro. Cells 2019; 8:cells8111416. [PMID: 31717562 PMCID: PMC6912367 DOI: 10.3390/cells8111416] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 11/06/2019] [Accepted: 11/07/2019] [Indexed: 12/16/2022] Open
Abstract
Cost- and time-intensive porcine translational disease models offer great opportunities to test drugs and therapies for pathological cardiac hypertrophy and can be supported by porcine cell culture models that provide further insights into basic disease mechanisms. Cardiac progenitor cells (CPCs) residing in the adult heart have been shown to differentiate in vitro into cardiomyocytes and could contribute to cardiac regeneration. Therefore, it is important to evaluate their changes on the cellular level caused by disease. We successfully isolated Isl1+Sca1+cKit+ porcine CPCs (pCPCs) from pig hearts and stimulated them with endothelin-1 (ET-1) and angiotensin II (Ang II) in vitro. We also performed a cardiac reprogramming transfection and tested the same conditions. Our results show that undifferentiated Isl1+Sca1+cKit+ pCPCs were significantly upregulated in GATA4, MEF2c, and miR-29a gene expressions and in BNP and MCP-1 protein expressions with Ang II stimulation, but they showed no significant changes in miR-29a and MCP-1 when stimulated with ET-1. Differentiated Isl1+Sca1+cKit+ pCPCs exhibited significantly higher levels of MEF2c, GATA4, miR-29a, and miR-21 as well as Cx43 and BNP with Ang II stimulation. pMx-MGT-transfected Isl1+Sca1+cKit+ pCPCs showed significant elevations in MEF2c, GATA4, and BNP expressions when stimulated with ET-1. Our model demonstrates that in vitro stimulation leads to successful Isl1+Sca1+cKit+ pCPC hypertrophy with upregulation of cardiac remodeling associated genes and profibrotic miRNAs and offers great possibilities for further investigations of disease mechanisms and treatment.
Collapse
Affiliation(s)
- Katrin Zlabinger
- Medical University of Vienna, Department of Cardiology, 1090 Vienna, Austria; (A.S.); (D.T.); (A.G.); (D.L.); (J.W.); (J.M.-T.)
- Correspondence: (K.Z.); (M.G.); Tel.: +43(0)-140-400-48520 (K.Z.)
| | - Andreas Spannbauer
- Medical University of Vienna, Department of Cardiology, 1090 Vienna, Austria; (A.S.); (D.T.); (A.G.); (D.L.); (J.W.); (J.M.-T.)
| | - Denise Traxler
- Medical University of Vienna, Department of Cardiology, 1090 Vienna, Austria; (A.S.); (D.T.); (A.G.); (D.L.); (J.W.); (J.M.-T.)
| | - Alfred Gugerell
- Medical University of Vienna, Department of Cardiology, 1090 Vienna, Austria; (A.S.); (D.T.); (A.G.); (D.L.); (J.W.); (J.M.-T.)
| | - Dominika Lukovic
- Medical University of Vienna, Department of Cardiology, 1090 Vienna, Austria; (A.S.); (D.T.); (A.G.); (D.L.); (J.W.); (J.M.-T.)
| | - Johannes Winkler
- Medical University of Vienna, Department of Cardiology, 1090 Vienna, Austria; (A.S.); (D.T.); (A.G.); (D.L.); (J.W.); (J.M.-T.)
| | - Julia Mester-Tonczar
- Medical University of Vienna, Department of Cardiology, 1090 Vienna, Austria; (A.S.); (D.T.); (A.G.); (D.L.); (J.W.); (J.M.-T.)
| | - Bruno Podesser
- Medical University of Vienna, Department of Biomedical Research, 1090 Vienna, Austria;
| | - Mariann Gyöngyösi
- Medical University of Vienna, Department of Cardiology, 1090 Vienna, Austria; (A.S.); (D.T.); (A.G.); (D.L.); (J.W.); (J.M.-T.)
- Correspondence: (K.Z.); (M.G.); Tel.: +43(0)-140-400-48520 (K.Z.)
| |
Collapse
|
6
|
Liu J, Cheng H, Xiang M, Zhou L, Wu B, Moskowitz IP, Zhang K, Xie L. Gata4 regulates hedgehog signaling and Gata6 expression for outflow tract development. PLoS Genet 2019; 15:e1007711. [PMID: 31120883 PMCID: PMC6550424 DOI: 10.1371/journal.pgen.1007711] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 06/05/2019] [Accepted: 05/07/2019] [Indexed: 01/09/2023] Open
Abstract
Dominant mutations of Gata4, an essential cardiogenic transcription factor (TF), were known to cause outflow tract (OFT) defects in both human and mouse, but the underlying molecular mechanism was not clear. In this study, Gata4 haploinsufficiency in mice was found to result in OFT defects including double outlet right ventricle (DORV) and ventricular septum defects (VSDs). Gata4 was shown to be required for Hedgehog (Hh)-receiving progenitors within the second heart field (SHF) for normal OFT alignment. Restored cell proliferation in the SHF by knocking-down Pten failed to rescue OFT defects, suggesting that additional cell events under Gata4 regulation is important. SHF Hh-receiving cells failed to migrate properly into the proximal OFT cushion, which is associated with abnormal EMT and cell proliferation in Gata4 haploinsufficiency. The genetic interaction of Hh signaling and Gata4 is further demonstrated to be important for OFT development. Gata4 and Smo double heterozygotes displayed more severe OFT abnormalities including persistent truncus arteriosus (PTA). Restoration of Hedgehog signaling renormalized SHF cell proliferation and migration, and rescued OFT defects in Gata4 haploinsufficiency. In addition, there was enhanced Gata6 expression in the SHF of the Gata4 heterozygotes. The Gata4-responsive repressive sites were identified within 1kbp upstream of the transcription start site of Gata6 by both ChIP-qPCR and luciferase reporter assay. These results suggested a SHF regulatory network comprising of Gata4, Gata6 and Hh-signaling for OFT development. Gata4 is an important transcription factor that regulates the development of the heart. Human possessing a single copy of Gata4 mutation display congenital heart defects (CHD), including double outlet right ventricle (DORV). DORV is an alignment problem in which both the Aorta and Pulmonary Artery originate from the right ventricle, instead of originating from the left and the right ventricles, respectively. In this study, a Gata4 mutant mouse model was used to study how Gata4 mutations cause DORV. We showed that Gata4 is required in the cardiac precursor cells for the normal alignment of the great arteries. Although Gata4 mutations inhibit the rapid increase in the cardiac precursor cell numbers, resolving this problem does not recover the normal alignment of the great arteries. It indicates that there is a migratory issue of the cardiac precursor cells as they navigate to the great arteries during development. The study further showed that a specific molecular signaling, Hh-signaling and Gata6 are responsible to the Gata4 action in the cardiac precursor cells. Importantly, over-activation of the Hh-signaling pathways rescues the DORV in the Gata4 mutant embryos. This study provides a molecular model to explain the ontogeny of a subtype of CHD.
Collapse
Affiliation(s)
- Jielin Liu
- Department of Nutrition and Food Sciences, Texas A&M University, College Station, Texas, United States of America
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, North Dakota, United States of America
| | - Henghui Cheng
- Department of Nutrition and Food Sciences, Texas A&M University, College Station, Texas, United States of America
- Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Menglan Xiang
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, North Dakota, United States of America
| | - Lun Zhou
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, North Dakota, United States of America
- Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Bingruo Wu
- Departments of Genetics, Pediatrics, and Medicine (Cardiology), Albert Einstein College of Medicine of Yeshiva University, Bronx, NY, United States of America
| | - Ivan P. Moskowitz
- Departments of Pathology and Pediatrics, The University of Chicago, Chicago, Illinois, United States of America
| | - Ke Zhang
- Department of Nutrition and Food Sciences, Texas A&M University, College Station, Texas, United States of America
- Center for Epigenetics & Disease Prevention, Institute of Biosciences & Technology, College of Medicine, Texas A&M University, Houston, Texas, United States of America
| | - Linglin Xie
- Department of Nutrition and Food Sciences, Texas A&M University, College Station, Texas, United States of America
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, North Dakota, United States of America
- * E-mail:
| |
Collapse
|
7
|
Mogensen SL, Rasmussen MK, Oksbjerg N, Young JF, Larsen JR. In vitro differentiation of progenitor cells isolated from juvenile pig hearts - expression of relevant gene and protein markers. SCAND CARDIOVASC J 2017; 52:34-42. [PMID: 29179587 DOI: 10.1080/14017431.2017.1409432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
OBJECTIVES Heart failure is a significant cause of mortality worldwide, and most current therapies treat only its symptoms. The results of cardiac stem cell research suggest a promising treatment option for heart failure, but there is currently an unmet demand for better research models. We have therefore, for the first time, isolated, expanded and differentiated progenitor cells obtained from juvenile pig hearts to use as a platform for cardiac stem cell research. DESIGN Progenitor cells were isolated from the left ventricles of porcine hearts using collagenase enzymatic digestion and Percoll®-gradient centrifugation. Cells were proliferated in Matrigel®-coated wells. Cell differentiation was initiated by applying 5-azacytidine and subsequently controlled by modifying the serum concentration. Western blotting and qPCR were used to determine protein and gene expression, respectively. RESULTS Cardiac-specific genes, from the following proteins: troponin I-3, and myosin-heavy-chain 7 were stably expressed during proliferation and differentiation. Connexin-43 was upregulated and Actinin alfa 2 was downregulated during differentiation. The immature-cardiomyocyte marker GATA binding protein 4 was stably expressed but with a decrease in expression at day 4 of differentiation. Smooth muscle actin decreased in expression and Von Willebrand factor were stably expressed during differentiation. Smooth muscle protein expression was documented but no expression of cardiac-specific proteins after differentiation was found. CONCLUSION The isolated progenitor cells had key cardiac-lineage gene expression characteristics but they did not express cardiac-specific proteins. Smooth muscle protein was expressed confirming commitment to the smooth muscle lineage.
Collapse
Affiliation(s)
| | | | - Niels Oksbjerg
- b Department of Food Science , Aarhus University , Tjele , Denmark
| | | | | |
Collapse
|
8
|
Reduced dosage of β-catenin provides significant rescue of cardiac outflow tract anomalies in a Tbx1 conditional null mouse model of 22q11.2 deletion syndrome. PLoS Genet 2017; 13:e1006687. [PMID: 28346476 PMCID: PMC5386301 DOI: 10.1371/journal.pgen.1006687] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 04/10/2017] [Accepted: 03/13/2017] [Indexed: 11/19/2022] Open
Abstract
The 22q11.2 deletion syndrome (22q11.2DS; velo-cardio-facial syndrome; DiGeorge syndrome) is a congenital anomaly disorder in which haploinsufficiency of TBX1, encoding a T-box transcription factor, is the major candidate for cardiac outflow tract (OFT) malformations. Inactivation of Tbx1 in the anterior heart field (AHF) mesoderm in the mouse results in premature expression of pro-differentiation genes and a persistent truncus arteriosus (PTA) in which septation does not form between the aorta and pulmonary trunk. Canonical Wnt/β-catenin has major roles in cardiac OFT development that may act upstream of Tbx1. Consistent with an antagonistic relationship, we found the opposite gene expression changes occurred in the AHF in β-catenin loss of function embryos compared to Tbx1 loss of function embryos, providing an opportunity to test for genetic rescue. When both alleles of Tbx1 and one allele of β-catenin were inactivated in the Mef2c-AHF-Cre domain, 61% of them (n = 34) showed partial or complete rescue of the PTA defect. Upregulated genes that were oppositely changed in expression in individual mutant embryos were normalized in significantly rescued embryos. Further, β-catenin was increased in expression when Tbx1 was inactivated, suggesting that there may be a negative feedback loop between canonical Wnt and Tbx1 in the AHF to allow the formation of the OFT. We suggest that alteration of this balance may contribute to variable expressivity in 22q11.2DS.
Collapse
|
9
|
Yamaoka T, Hirata M, Dan T, Yamashita A, Otaka A, Nakaoki T, Miskon A, Kakinoki S, Mahara A. Individual evaluation of cardiac marker expression and self-beating during cardiac differentiation of P19CL6 cells on different culture substrates. J Biomed Mater Res A 2017; 105:1166-1174. [DOI: 10.1002/jbm.a.35977] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 10/13/2016] [Accepted: 12/06/2016] [Indexed: 12/18/2022]
Affiliation(s)
- Tetsuji Yamaoka
- Department of Biomedical Engineering; National Cerebral and Cardiovascular Center Research Institute; 5-7-1 Fujishirodai Suita Osaka 565-8565 Japan
- JST-CREST; 5 Sanbancho Chiyoda-ku Tokyo 102-0075 Japan
| | - Mitsuhi Hirata
- Department of Biomedical Engineering; National Cerebral and Cardiovascular Center Research Institute; 5-7-1 Fujishirodai Suita Osaka 565-8565 Japan
- JST-CREST; 5 Sanbancho Chiyoda-ku Tokyo 102-0075 Japan
| | - Takaaki Dan
- Department of Biomedical Engineering; National Cerebral and Cardiovascular Center Research Institute; 5-7-1 Fujishirodai Suita Osaka 565-8565 Japan
- Department of Materials Chemistry; Ryukoku University; 1-5 Seta Otsu Shiga 520-2194 Japan
| | - Atsushi Yamashita
- Department of Biomedical Engineering; National Cerebral and Cardiovascular Center Research Institute; 5-7-1 Fujishirodai Suita Osaka 565-8565 Japan
- JST-CREST; 5 Sanbancho Chiyoda-ku Tokyo 102-0075 Japan
| | - Akihisa Otaka
- Department of Biomedical Engineering; National Cerebral and Cardiovascular Center Research Institute; 5-7-1 Fujishirodai Suita Osaka 565-8565 Japan
| | - Takahiko Nakaoki
- Department of Materials Chemistry; Ryukoku University; 1-5 Seta Otsu Shiga 520-2194 Japan
| | - Azizi Miskon
- Department of Biomedical Engineering; National Cerebral and Cardiovascular Center Research Institute; 5-7-1 Fujishirodai Suita Osaka 565-8565 Japan
| | - Sachiro Kakinoki
- Department of Biomedical Engineering; National Cerebral and Cardiovascular Center Research Institute; 5-7-1 Fujishirodai Suita Osaka 565-8565 Japan
- JST-CREST; 5 Sanbancho Chiyoda-ku Tokyo 102-0075 Japan
| | - Atsushi Mahara
- Department of Biomedical Engineering; National Cerebral and Cardiovascular Center Research Institute; 5-7-1 Fujishirodai Suita Osaka 565-8565 Japan
| |
Collapse
|
10
|
Wystrychowski W, Patlolla B, Zhuge Y, Neofytou E, Robbins RC, Beygui RE. Multipotency and cardiomyogenic potential of human adipose-derived stem cells from epicardium, pericardium, and omentum. Stem Cell Res Ther 2016; 7:84. [PMID: 27296220 PMCID: PMC4907285 DOI: 10.1186/s13287-016-0343-y] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Revised: 04/30/2016] [Accepted: 05/17/2016] [Indexed: 12/24/2022] Open
Abstract
Background Acute myocardial infarction (MI) leads to an irreversible loss of proper cardiac function. Application of stem cell therapy is an attractive option for MI treatment. Adipose tissue has proven to serve as a rich source of stem cells (ADSCs). Taking into account the different morphogenesis, anatomy, and physiology of adipose tissue, we hypothesized that ADSCs from different adipose tissue depots may exert a diverse multipotency and cardiogenic potential. Methods The omental, pericardial, and epicardial adipose tissue samples were obtained from organ donors and patients undergoing heart transplantation at our institution. Human foreskin fibroblasts were used as the control group. Isolated ADSCs were analyzed for adipogenic and osteogenic differentiation capacity and proliferation potential. The immunophenotype and constitutive gene expression of alkaline phosphatase (ALP), GATA4, Nanog, and OCT4 were analyzed. DNA methylation inhibitor 5-azacytidine was exposed to the cells to stimulate the cardiogenesis. Finally, reprogramming towards cardiomyocytes was initiated with exogenous overexpression of seven transcription factors (ESRRG, GATA4, MEF2C, MESP1, MYOCD, TBX5, ZFPM2) previously applied successfully for fibroblast transdifferentiation toward cardiomyocytes. Expression of cardiac troponin T (cTNT) and alpha-actinin (Actn2) was analyzed 3 weeks after initiation of the cardiac differentiation. Results The multipotent properties of isolated plastic adherent cells were confirmed with expression of CD29, CD44, CD90, and CD105, as well as successful differentiation toward adipocytes and osteocytes; with the highest osteogenic and adipogenic potential for the epicardial and omental ADSCs, respectively. Epicardial ADSCs demonstrated a lower doubling time as compared with the pericardium and omentum-derived cells. Furthermore, epicardial ADSCs revealed higher constitutive expression of ALP and GATA4. Increased Actn2 and cTNT expression was observed after the transduction of seven reprogramming factors, with the highest expression in the epicardial ADSCs, as compared with the other ADSC subtypes and fibroblasts. Conclusions Human epicardial ADSCs revealed a higher cardiomyogenic potential as compared with the pericardial and omental ADSC subtypes as well as the fibroblast counterparts. Epicardial ADSCs may thus serve as the valuable subject for further studies on more effective methods of adult stem cell differentiation toward cardiomyocytes.
Collapse
Affiliation(s)
- Wojciech Wystrychowski
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, Falk Cardiovascular Research Center, 300 Pasteur Dr, Stanford, CA, 94305, USA.
| | - Bhagat Patlolla
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, Falk Cardiovascular Research Center, 300 Pasteur Dr, Stanford, CA, 94305, USA.
| | - Yan Zhuge
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, Falk Cardiovascular Research Center, 300 Pasteur Dr, Stanford, CA, 94305, USA
| | - Evgenios Neofytou
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, Falk Cardiovascular Research Center, 300 Pasteur Dr, Stanford, CA, 94305, USA
| | - Robert C Robbins
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, Falk Cardiovascular Research Center, 300 Pasteur Dr, Stanford, CA, 94305, USA
| | - Ramin E Beygui
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, Falk Cardiovascular Research Center, 300 Pasteur Dr, Stanford, CA, 94305, USA.
| |
Collapse
|
11
|
Constanzo JD, Deng M, Rindhe S, Tang KJ, Zhang CC, Scaglioni PP. Pias1 is essential for erythroid and vascular development in the mouse embryo. Dev Biol 2016; 415:98-110. [PMID: 27155222 DOI: 10.1016/j.ydbio.2016.04.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 03/24/2016] [Accepted: 04/18/2016] [Indexed: 01/26/2023]
Abstract
The protein inhibitor of activated STAT-1 (PIAS1) is one of the few known SUMO E3 ligases. PIAS1 has been implicated in several biological processes including repression of innate immunity and DNA repair. However, PIAS1 function during development and tissue differentiation has not been studied. Here, we report that Pias1 is required for proper embryonic development. Approximately 90% of Pias1 null embryos die in utero between E10.5 and E12.5. We found significant apoptosis within the yolk sac (YS) blood vessels and concomitant loss of red blood cells (RBCs) resulting in profound anemia. In addition, Pias1 loss impairs YS angiogenesis and results in defective capillary plexus formation and blood vessel occlusions. Moreover, heart development is impaired as a result of loss of myocardium muscle mass. Accordingly, we found that Pias1 expression in primary myoblasts enhances the induction of cardiac muscle genes MyoD, Myogenin and Myomaker. PIAS1 protein regulation of cardiac gene transcription is dependent on transcription factors Myocardin and Gata-4. Finally, endothelial cell specific inactivation of Pias1 in vivo impairs YS erythrogenesis, angiogenesis and recapitulates loss of myocardium muscle mass. However, these defects are not sufficient to recapitulate the lethal phenotype of Pias1 null embryos. These findings highlight Pias1 as an essential gene for YS erythropoiesis and vasculogenesis in vivo.
Collapse
Affiliation(s)
- Jerfiz D Constanzo
- Department of Internal Medicine and Simmons Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Mi Deng
- Departments of Physiology, and Developmental Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Smita Rindhe
- Department of Internal Medicine and Simmons Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ke-Jing Tang
- Department of Internal Medicine and Simmons Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Pulmonary Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Cheng-Cheng Zhang
- Departments of Physiology, and Developmental Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Pier Paolo Scaglioni
- Department of Internal Medicine and Simmons Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
12
|
Miyagi H, Nag K, Sultana N, Munakata K, Hirose S, Nakamura N. Characterization of the zebrafish cx36.7 gene promoter: Its regulation of cardiac-specific expression and skeletal muscle-specific repression. Gene 2016; 577:265-74. [PMID: 26692140 DOI: 10.1016/j.gene.2015.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 10/28/2015] [Accepted: 12/03/2015] [Indexed: 11/25/2022]
Abstract
Zebrafish connexin 36.7 (cx36.7/ecx) has been identified as a key molecule in the early stages of heart development in this species. A defect in cx36.7 causes severe heart malformation due to the downregulation of nkx2.5 expression, a result which resembles congenital heart disease in humans. It has been shown that cx36.7 is expressed specifically in early developing heart cardiomyocytes. However, the regulatory mechanism for the cardiac-restricted expression of cx36.7 remains to be elucidated. In this study we isolated the 5'-flanking promoter region of the cx36.7 gene and characterized its promoter activity in zebrafish embryos. Deletion analysis showed that a 316-bp upstream region is essential for cardiac-restricted expression. This region contains four GATA elements, the proximal two of which are responsible for promoter activation in the embryonic heart and serve as binding sites for gata4. When gata4, gata5 and gata6 were simultaneously knocked down, the promoter activity was significantly decreased. Moreover, the deletion of the region between -316 and -133bp led to EGFP expression in the embryonic trunk muscle. The distal two GATA and A/T-rich elements in this region act as repressors of promoter activity in skeletal muscle. These results suggest that cx36.7 expression is directed by cardiac promoter activation via the two proximal GATA elements as well as by skeletal muscle-specific promoter repression via the two distal GATA elements.
Collapse
Affiliation(s)
- Hisako Miyagi
- Department of Biological Sciences, Tokyo Institute of Technology, 4259-B13 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan.
| | - Kakon Nag
- Department of Biological Sciences, Tokyo Institute of Technology, 4259-B13 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan.
| | - Naznin Sultana
- Department of Biological Sciences, Tokyo Institute of Technology, 4259-B13 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan.
| | - Keijiro Munakata
- Department of Biological Sciences, Tokyo Institute of Technology, 4259-B13 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan.
| | - Shigehisa Hirose
- Department of Biological Sciences, Tokyo Institute of Technology, 4259-B13 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan.
| | - Nobuhiro Nakamura
- Department of Biological Sciences, Tokyo Institute of Technology, 4259-B13 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan.
| |
Collapse
|
13
|
Arsenic trioxide alters the differentiation of mouse embryonic stem cell into cardiomyocytes. Sci Rep 2015; 5:14993. [PMID: 26447599 PMCID: PMC4597215 DOI: 10.1038/srep14993] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 09/11/2015] [Indexed: 12/28/2022] Open
Abstract
Chronic arsenic exposure is associated with increased morbidity and mortality for cardiovascular diseases. Arsenic increases myocardial infarction mortality in young adulthood, suggesting that exposure during foetal life correlates with cardiac alterations emerging later. Here, we investigated the mechanisms of arsenic trioxide (ATO) cardiomyocytes disruption during their differentiation from mouse embryonic stem cells. Throughout 15 days of differentiation in the presence of ATO (0.1, 0.5, 1.0 μM) we analysed: the expression of i) marker genes of mesoderm (day 4), myofibrillogenic commitment (day 7) and post-natal-like cardiomyocytes (day 15); ii) sarcomeric proteins and their organisation; iii) Connexin 43 and iv) the kinematics contractile properties of syncytia. The higher the dose used, the earlier the stage of differentiation affected (mesoderm commitment, 1.0 μM). At 0.5 or 1.0 μM the expression of cardiomyocyte marker genes is altered. Even at 0.1 μM, ATO leads to reduction and skewed ratio of sarcomeric proteins and to a rarefied distribution of Connexin 43 cardiac junctions. These alterations contribute to the dysruption of the sarcomere and syncytium organisation and to the impairment of kinematic parameters of cardiomyocyte function. This study contributes insights into the mechanistic comprehension of cardiac diseases caused by in utero arsenic exposure.
Collapse
|
14
|
Han H, Chen Y, Liu G, Han Z, Zhao Z, Tang Y. GATA4 transgenic mice as an in vivo model of congenital heart disease. Int J Mol Med 2015; 35:1545-53. [PMID: 25873328 PMCID: PMC4432925 DOI: 10.3892/ijmm.2015.2178] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 03/18/2015] [Indexed: 11/29/2022] Open
Abstract
Our previous study indicated that 8 patients from a family with a history of congenital heart disease had simple atrial septal defect (ASD) and carried the same mutation at codon 310 in the GATA4 gene. In the present study, to identify the functional defects caused by this mutation in an in vivo model, the transgene DNA constructs were microinjected into mice to generate a transgenic mouse model. The mice were genotyped using PCR and DNA sequencing. Protein expression was measured by western blot analysis. qPCR was used to determine the copy number of the transgenes. The heart tissue was fixed and sectioned by conventional procedures. The Vevo 2000 system was used to perform echocardiography on the mice. The expression of GATA4 target genes was measured using the real-time PCR system. The incidence of ASD in the heterozygous transgenic mice was found to be greater than that in the wild-type control mice (P<0.05). In addition, the expression of α-myosin heavy chain (α-MHC) in the heart tissues from the homozygous mice was lower than that in the heart tissues from their wild-type littermates (P<0.05). In conclusion, these results suggest that the introduction of GATA4 M310V negatively affects the normal expression of α-MHC. In accordance with previous findings on GATA4 mutation screening and in vitro experiments, this study confirms that GATA4 M310V mutation may lead to the development of the congenital heart defect, ASD.
Collapse
Affiliation(s)
- Hua Han
- Department of Cardiovascular Surgery, Peking University People's Hospital, Beijing 100044, P.R. China
| | - Yu Chen
- Department of Cardiovascular Surgery, Peking University People's Hospital, Beijing 100044, P.R. China
| | - Gang Liu
- Department of Cardiovascular Surgery, Peking University People's Hospital, Beijing 100044, P.R. China
| | - Zengqiang Han
- Department of Cardiovascular Surgery, Peking University People's Hospital, Beijing 100044, P.R. China
| | - Zhou Zhao
- Department of Cardiovascular Surgery, Peking University People's Hospital, Beijing 100044, P.R. China
| | - Yin Tang
- Department of Cardiovascular Surgery, Peking University People's Hospital, Beijing 100044, P.R. China
| |
Collapse
|
15
|
Del Olmo-Turrubiarte A, Calzada-Torres A, Díaz-Rosas G, Palma-Lara I, Sánchez-Urbina R, Balderrábano-Saucedo NA, González-Márquez H, Garcia-Alonso P, Contreras-Ramos A. Mouse models for the study of postnatal cardiac hypertrophy. IJC HEART & VASCULATURE 2015; 7:131-140. [PMID: 28785661 PMCID: PMC5497247 DOI: 10.1016/j.ijcha.2015.02.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 01/19/2015] [Accepted: 02/01/2015] [Indexed: 12/16/2022]
Abstract
The main objective of this study was to create a postnatal model for cardiac hypertrophy (CH), in order to explain the mechanisms that are present in childhood cardiac hypertrophy. Five days after implantation, intraperitoneal (IP) isoproterenol (ISO) was injected for 7 days to pregnant female mice. The fetuses were obtained at 15, 17 and 19 dpc from both groups, also newborns (NB), neonates (7-15 days) and young adults (6 weeks of age). Histopathological exams were done on the hearts. Immunohistochemistry and western blot demonstrated GATA4 and PCNA protein expression, qPCR real time the mRNA of adrenergic receptors (α-AR and β-AR), alpha and beta myosins (α-MHC, β-MHC) and GATA4. After the administration of ISO, there was no change in the number of offsprings. We observed significant structural changes in the size of the offspring hearts. Morphometric analysis revealed an increase in the size of the left ventricular wall and interventricular septum (IVS). Histopathological analysis demonstrated loss of cellular compaction and presence of left ventricular small fibrous foci after birth. Adrenergic receptors might be responsible for changing a physiological into a pathological hypertrophy. However GATA4 seemed to be the determining factor in the pathology. A new animal model was established for the study of pathologic CH in early postnatal stages.
Collapse
Affiliation(s)
- A Del Olmo-Turrubiarte
- Laboratorio de Investigación de Biología del Desarrollo y Teratogénesis Experimental, Hospital Infantil de México Federico Gómez (HIMFG), Mexico.,Posgrado en Biología Experimental, Universidad Autónoma Metropolitana, Mexico
| | - A Calzada-Torres
- Laboratorio de Investigación de Biología del Desarrollo y Teratogénesis Experimental, Hospital Infantil de México Federico Gómez (HIMFG), Mexico
| | - G Díaz-Rosas
- Laboratorio de Investigación de Biología del Desarrollo y Teratogénesis Experimental, Hospital Infantil de México Federico Gómez (HIMFG), Mexico
| | | | - R Sánchez-Urbina
- Laboratorio de Investigación de Biología del Desarrollo y Teratogénesis Experimental, Hospital Infantil de México Federico Gómez (HIMFG), Mexico
| | | | - H González-Márquez
- Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana, Mexico
| | | | - A Contreras-Ramos
- Laboratorio de Investigación de Biología del Desarrollo y Teratogénesis Experimental, Hospital Infantil de México Federico Gómez (HIMFG), Mexico
| |
Collapse
|
16
|
The regulation of troponins I, C and ANP by GATA4 and Nkx2-5 in heart of hibernating thirteen-lined ground squirrels, Ictidomys tridecemlineatus. PLoS One 2015; 10:e0117747. [PMID: 25679215 PMCID: PMC4334527 DOI: 10.1371/journal.pone.0117747] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 01/02/2015] [Indexed: 02/06/2023] Open
Abstract
Hibernation is an adaptive strategy used by various mammals to survive the winter under situations of low ambient temperatures and limited or no food availability. The heart of hibernating thirteen-lined ground squirrels (Ictidomys tridecemlineatus) has the remarkable ability to descend to low, near 0°C temperatures without falling into cardiac arrest. We hypothesized that the transcription factors GATA4 and Nkx2-5 may play a role in cardioprotection by facilitating the expression of key downstream targets such as troponin I, troponin C, and ANP (atrial natriuretic peptide). This study measured relative changes in transcript levels, protein levels, protein post-translational modifications, and transcription factor binding over six stages: euthermic control (EC), entrance into torpor (EN), early torpor (ET), late torpor (LT), early arousal (EA), and interbout arousal (IA). We found differential regulation of GATA4 whereby transcript/protein expression, post-translational modification (phosphorylation of serine 261), and DNA binding were enhanced during the transitory phases (entrance and arousal) of hibernation. Activation of GATA4 was paired with increases in cardiac troponin I, troponin C and ANP protein levels during entrance, while increases in p-GATA4 DNA binding during early arousal was paired with decreases in troponin I and no changes in troponin C and ANP protein levels. Unlike its binding partner, the relative mRNA/protein expression and DNA binding of Nkx2-5 did not change during hibernation. This suggests that either Nkx2-5 does not play a substantial role or other regulatory mechanisms not presently studied (e.g. posttranslational modifications) are important during hibernation. The data suggest a significant role for GATA4-mediated gene transcription in the differential regulation of genes which aid cardiac-specific challenges associated with torpor-arousal.
Collapse
|
17
|
Brody MJ, Cho E, Mysliwiec MR, Kim TG, Carlson CD, Lee KH, Lee Y. Lrrc10 is a novel cardiac-specific target gene of Nkx2-5 and GATA4. J Mol Cell Cardiol 2013; 62:237-46. [PMID: 23751912 PMCID: PMC3940241 DOI: 10.1016/j.yjmcc.2013.05.020] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 05/11/2013] [Accepted: 05/30/2013] [Indexed: 10/26/2022]
Abstract
Cardiac gene expression is precisely regulated and its perturbation causes developmental defects and heart disease. Leucine-rich repeat containing 10 (Lrrc10) is a cardiac-specific factor that is crucial for proper cardiac development and deletion of Lrrc10 in mice results in dilated cardiomyopathy. However, the mechanisms regulating Lrrc10 expression in cardiomyocytes remain unknown. Therefore, we set out to determine trans-acting factors and cis-elements critical for mediating Lrrc10 expression. We identify Lrrc10 as a transcriptional target of Nkx2-5 and GATA4. The Lrrc10 promoter region contains two highly conserved cardiac regulatory elements, which are functional in cardiomyocytes but not in fibroblasts. In vivo, Nkx2-5 and GATA4 endogenously occupy the proximal and distal cardiac regulatory elements of Lrrc10 in the heart. Moreover, embryonic hearts of Nkx2-5 knockout mice have dramatically reduced expression of Lrrc10. These data demonstrate the importance of Nkx2-5 and GATA4 in regulation of Lrrc10 expression in vivo. The proximal cardiac regulatory element located at around -200bp is synergistically activated by Nkx2-5 and GATA4 while the distal cardiac regulatory element present around -3kb requires SRF in addition to Nkx2-5 and GATA4 for synergistic activation. Mutational analyses identify a pair of adjacent Nkx2-5 and GATA binding sites within the proximal cardiac regulatory element that are necessary to induce expression of Lrrc10. In contrast, only the GATA site is functional in the distal regulatory element. Taken together, our data demonstrate that the transcription factors Nkx2-5 and GATA4 cooperatively regulate cardiac-specific expression of Lrrc10.
Collapse
Affiliation(s)
- Matthew J. Brody
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, WI 53706, USA
- Molecular and Environmental Toxicology Center, University of Wisconsin-Madison, WI 53706, USA
| | - Eunjin Cho
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, WI 53706, USA
- Molecular and Cellular Pharmacology, University of Wisconsin-Madison, WI 53706, USA
| | - Matthew R. Mysliwiec
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, WI 53706, USA
| | - Tae-gyun Kim
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, WI 53706, USA
| | - Clayton D. Carlson
- Department of Biochemistry and the Genome Center of Wisconsin, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Kyu-Ho Lee
- Department of Pediatrics, Division of Pediatric Cardiology, Children’s Hospital, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Youngsook Lee
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, WI 53706, USA
- Molecular and Environmental Toxicology Center, University of Wisconsin-Madison, WI 53706, USA
- Molecular and Cellular Pharmacology, University of Wisconsin-Madison, WI 53706, USA
| |
Collapse
|
18
|
Viger RS, Taniguchi H, Robert NM, Tremblay JJ. The 25th Volume: Role of the GATA Family of Transcription Factors in Andrology. ACTA ACUST UNITED AC 2013; 25:441-52. [PMID: 15223831 DOI: 10.1002/j.1939-4640.2004.tb02813.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Robert S Viger
- Ontogeny-Reproduction Research Unit, CHUL Research Centre, and Centre de Recherche en Biologie de la Reproduction, Department of Obstetrics and Gynecology, Faculty of Medicine, Université Laval, Ste-Foy, Québec, Canada.
| | | | | | | |
Collapse
|
19
|
Huang J, Elicker J, Bowens N, Liu X, Cheng L, Cappola TP, Zhu X, Parmacek MS. Myocardin regulates BMP10 expression and is required for heart development. J Clin Invest 2012; 122:3678-91. [PMID: 22996691 DOI: 10.1172/jci63635] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Accepted: 07/26/2012] [Indexed: 01/12/2023] Open
Abstract
Myocardin is a muscle lineage-restricted transcriptional coactivator that has been shown to transduce extracellular signals to the nucleus required for SMC differentiation. We now report the discovery of a myocardin/BMP10 (where BMP10 indicates bone morphogenetic protein 10) signaling pathway required for cardiac growth, chamber maturation, and embryonic survival. Myocardin-null (Myocd) embryos and embryos harboring a cardiomyocyte-restricted mutation in the Myocd gene exhibited myocardial hypoplasia, defective atrial and ventricular chamber maturation, heart failure, and embryonic lethality. Cardiac hypoplasia was caused by decreased cardiomyocyte proliferation accompanied by a dramatic increase in programmed cell death. Defective chamber maturation and the block in cardiomyocyte proliferation were caused in part by a block in BMP10 signaling. Myocardin transactivated the Bmp10 gene via binding of a serum response factor-myocardin protein complex to a nonconsensus CArG element in the Bmp10 promoter. Expression of p57kip2, a BMP10-regulated cyclin-dependent kinase inhibitor, was induced in Myocd-/- hearts, while BMP10-activated cardiogenic transcription factors, including NKX2.5 and MEF2c, were repressed. Remarkably, when embryonic Myocd-/- hearts were cultured ex vivo in BMP10-conditioned medium, the defects in cardiomyocyte proliferation and p57kip2 expression were rescued. Taken together, these data identify a heretofore undescribed myocardin/BMP10 signaling pathway that regulates cardiomyocyte proliferation and apoptosis in the embryonic heart.
Collapse
Affiliation(s)
- Jianhe Huang
- University of Pennsylvania, Cardiovascular Institute, Department of Medicine, Philadelphia, PA 19104-5159, USA
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Wu G, Shan J, Pang S, Wei X, Zhang H, Yan B. Genetic analysis of the promoter region of the GATA4 gene in patients with ventricular septal defects. Transl Res 2012; 159:376-82. [PMID: 22500510 DOI: 10.1016/j.trsl.2011.10.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Revised: 10/21/2011] [Accepted: 10/27/2011] [Indexed: 01/06/2023]
Abstract
Ventricular septal defects (VSDs) are the most common type of congenital heart diseases (CHDs). To date, the genetic causes for sporadic VSDs remain largely unknown. GATA transcription factor 4 (GATA4) is a zinc-finger transcription factor that is expressed in developing heart and adult cardiomyocytes. Mutations in the coding region of the GATA4 gene have been identified in CHD patients, including VSD. As the GATA4 factor is a dosage-sensitive regulator, we hypothesized that the promoter region variants of the GATA4 gene may be genetic causes of VSD. In this study, we analyzed the promoter region of the GATA4 gene by bidirectional sequencing in 172 VSD patients and 171 healthy controls. The results showed that 5 heterozygous sequence variants (NG_008177:g.4071T>C, NG_008177:g.4148C>A, NG_008177:g.4566C>T, NG_008177:g.4653G>T, and NG_008177:g.4690G>deletion) within the promoter region of the GATA gene were identified in 5 VSD patients, but in none of controls. One heterozygous sequence variant (g.4762C>A) was found only in one control, which may have no functional significance. A functional analysis revealed that the transcriptional activity of variant NG_008177:g.4566C>T was reduced significantly, whereas the transcriptional activities of the variants (NG_008177:g.4071T>C, NG_008177:g.4148C>A, NG_008177:g.4653G>T, and NG_008177:g.4690G>deletion) were increased significantly compared with the wild-type GATA4 gene promoter. As GATA4 is a dosage-sensitive regulator during development, our data suggest that these sequence variants within the promoter region of the GATA4 gene may contribute to the VSD etiology by altering its gene expression. Additional studies in experimental animals will deepen our understanding of the genetic basis of VSD and shed light on designing novel molecular therapies for adult VSD patients carrying these variants.
Collapse
Affiliation(s)
- Guanghua Wu
- Shandong Provincial Key Laboratory of Cardiac Disease Diagnosis and Treatment, Jining Medical College Affiliated Hospital, Jining Medical College, Jining, Shandong 272029, China
| | | | | | | | | | | |
Collapse
|
21
|
Takagaki Y, Yamagishi H, Matsuoka R. Factors Involved in Signal Transduction During Vertebrate Myogenesis. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2012; 296:187-272. [DOI: 10.1016/b978-0-12-394307-1.00004-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
22
|
Suzuki YJ. Cell signaling pathways for the regulation of GATA4 transcription factor: Implications for cell growth and apoptosis. Cell Signal 2011; 23:1094-9. [PMID: 21376121 PMCID: PMC3078531 DOI: 10.1016/j.cellsig.2011.02.007] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2011] [Revised: 02/12/2011] [Accepted: 02/22/2011] [Indexed: 01/28/2023]
Abstract
GATA4 is a member of the GATA family of zinc finger transcription factor, which regulates gene transcription by binding to GATA elements. GATA4 was originally discovered as a regulator of cardiac development and subsequently identified as a major regulator of adult cardiac hypertrophy. GATA4 regulates gene expression of various genes, which are involved in cardiac development and cardiac hypertrophy and heart failure. In addition to the heart, GATA4 plays important roles in the reproductive system, gastrointestinal system, respiratory system and cancer. Positive and negative regulations of GATA4 therefore are important components of biologic functions. The activation of GATA4 occurs via various cell signaling events. Earlier studies have identified protein-protein interactions of GATA4 with other factors. The discovery of interactions of GATA4 with nuclear factor for activated T cells (NFAT) revealed the importance of calcium signaling in the activation of GATA4. GATA4 can also be phosphorylated by mitogen activated protein kinases and protein kinase A. Lysine modifications also occur on the GATA4 molecule including acetylation and sumoylation. Both reactive oxygen-dependent and -independent antioxidant-sensitive pathways for GATA4 activation have also been demonstrated. The GATA4 activity is also regulated by modulating the level of GATA4 expression via transcriptional as well as translational mechanisms. This work summarizes the current understanding of regulatory mechanisms for modulating GATA4 activity.
Collapse
Affiliation(s)
- Yuichiro J Suzuki
- Department of Pharmacology, Georgetown University Medical Center, 3900 Reservoir Road NW, Washington, DC 20057, USA.
| |
Collapse
|
23
|
Koninckx R, Daniëls A, Windmolders S, Carlotti F, Mees U, Steels P, Rummens JL, Hendrikx M, Hensen K. Mesenchymal stem cells or cardiac progenitors for cardiac repair? A comparative study. Cell Mol Life Sci 2011; 68:2141-56. [PMID: 20972814 PMCID: PMC11115043 DOI: 10.1007/s00018-010-0560-y] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2010] [Revised: 09/04/2010] [Accepted: 10/05/2010] [Indexed: 01/11/2023]
Abstract
In the past, clinical trials transplanting bone marrow-derived mononuclear cells reported a limited improvement in cardiac function. Therefore, the search for stem cells leading to more successful stem cell therapies continues. Good candidates are the so-called cardiac stem cells (CSCs). To date, there is no clear evidence to show if these cells are intrinsic stem cells from the heart or mobilized cells from bone marrow. In this study we performed a comparative study between human mesenchymal stem cells (hMSCs), purified c-kit(+) CSCs, and cardiosphere-derived cells (CDCs). Our results showed that hMSCs can be discriminated from CSCs by their differentiation capacity towards adipocytes and osteocytes and the expression of CD140b. On the other hand, cardiac progenitors display a greater cardiomyogenic differentiation capacity. Despite a different isolation protocol, no distinction could be made between c-kit(+) CSCs and CDCs, indicating that they probably derive from the same precursor or even are the same cells.
Collapse
Affiliation(s)
- Remco Koninckx
- Laboratory of Experimental Hematology, Jessa Hospital, Campus Virga Jesse, Stadsomvaart 11, 3500 Hasselt, Belgium
- Laboratory of Physiology, Faculty of Medicine, and School of Life Sciences, Hasselt University, Biomedical Research Institute and Transnational University Limburg, 3590 Diepenbeek, Belgium
| | - Annick Daniëls
- Laboratory of Experimental Hematology, Jessa Hospital, Campus Virga Jesse, Stadsomvaart 11, 3500 Hasselt, Belgium
| | - Severina Windmolders
- Laboratory of Experimental Hematology, Jessa Hospital, Campus Virga Jesse, Stadsomvaart 11, 3500 Hasselt, Belgium
- Laboratory of Physiology, Faculty of Medicine, and School of Life Sciences, Hasselt University, Biomedical Research Institute and Transnational University Limburg, 3590 Diepenbeek, Belgium
| | - Françoise Carlotti
- Department of Molecular Cell Biology, Leiden University Medical Center, 2300 RC, Leiden, The Netherlands
| | - Urbain Mees
- Department of Cardiothoracic Surgery, Jessa Hospital, Campus Virga Jesse, Stadsomvaart 11, 3500 Hasselt, Belgium
| | - Paul Steels
- Laboratory of Physiology, Faculty of Medicine, and School of Life Sciences, Hasselt University, Biomedical Research Institute and Transnational University Limburg, 3590 Diepenbeek, Belgium
| | - Jean-Luc Rummens
- Laboratory of Experimental Hematology, Jessa Hospital, Campus Virga Jesse, Stadsomvaart 11, 3500 Hasselt, Belgium
- Laboratory of Physiology, Faculty of Medicine, and School of Life Sciences, Hasselt University, Biomedical Research Institute and Transnational University Limburg, 3590 Diepenbeek, Belgium
| | - Marc Hendrikx
- Laboratory of Physiology, Faculty of Medicine, and School of Life Sciences, Hasselt University, Biomedical Research Institute and Transnational University Limburg, 3590 Diepenbeek, Belgium
- Department of Cardiothoracic Surgery, Jessa Hospital, Campus Virga Jesse, Stadsomvaart 11, 3500 Hasselt, Belgium
| | - Karen Hensen
- Laboratory of Experimental Hematology, Jessa Hospital, Campus Virga Jesse, Stadsomvaart 11, 3500 Hasselt, Belgium
| |
Collapse
|
24
|
Tang W, Wei Y, Le K, Li Z, Bao Y, Gao J, Zhang F, Cheng S, Liu P. Mitogen-activated protein kinases ERK 1/2- and p38-GATA4 pathways mediate the Ang II-induced activation of FGF2 gene in neonatal rat cardiomyocytes. Biochem Pharmacol 2010; 81:518-25. [PMID: 21108934 DOI: 10.1016/j.bcp.2010.11.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2010] [Revised: 11/14/2010] [Accepted: 11/15/2010] [Indexed: 10/18/2022]
Abstract
Several genes, including fibroblast growth factor 2 (FGF2), are up-regulated in the hypertrophic heart. However, the molecular mechanisms responsible for the angiotensin II (Ang II)-induced activation of FGF2 in cardiomyocyte hypertrophy are largely unknown. The purpose of this study was to determine the signaling cascades underlying the Ang II-induced transcriptional activation of FGF2 in neonatal rat cardiomyocytes. Real-time quantitative RT-PCR and Western blot showed that Ang II upregulates FGF2 expression and that these effects were attenuated by U0126 or SB203580, but not by SP600125. Deletion analyses revealed that the region between -845 and -666 is essential for Ang II-induced FGF2 promoter activity. The existence of an atypical GATA4-binding motif, located at position -752, was identified using electrophoretic mobility shift assay (EMSA). Using both EMSA and chromatin immunoprecipitation (ChIP) analyses, we also showed that Ang II increases binding of GATA4 to DNA, and that this effect is attenuated in the presence of U0126 or SB203580, but not in the presence of SP600125. GATA4 siRNA significantly reduced Ang II-induced FGF2 mRNA levels. Together, these results indicate that binding of GATA4 to DNA is increased by Ang II via extracellular signal-regulated protein kinase 1/2 (ERK 1/2) and p38 kinase, which increases FGF2 gene expression in neonatal rat cardiomyocytes.
Collapse
Affiliation(s)
- Wenjie Tang
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Yoshida Y, Morimoto T, Takaya T, Kawamura T, Sunagawa Y, Wada H, Fujita M, Shimatsu A, Kita T, Hasegawa K. Aldosterone Signaling Associates With p300/GATA4 Transcriptional Pathway During the Hypertrophic Response of Cardiomyocytes. Circ J 2010; 74:156-62. [DOI: 10.1253/circj.cj-09-0050] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yoshinori Yoshida
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University
| | - Tatsuya Morimoto
- Division of Translational Research, Kyoto Medical Center, National Hospital Organization
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka
| | - Tomohide Takaya
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University
- Division of Translational Research, Kyoto Medical Center, National Hospital Organization
| | - Teruhisa Kawamura
- Division of Translational Research, Kyoto Medical Center, National Hospital Organization
| | - Yoichi Sunagawa
- Division of Translational Research, Kyoto Medical Center, National Hospital Organization
| | - Hiromichi Wada
- Division of Translational Research, Kyoto Medical Center, National Hospital Organization
| | - Masatoshi Fujita
- Human Health Sciences, Graduate School of Medicine, Kyoto University
| | - Akira Shimatsu
- Clinical Research Institute, Kyoto Medical Center, National Hospital Organization
| | - Toru Kita
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University
| | - Koji Hasegawa
- Division of Translational Research, Kyoto Medical Center, National Hospital Organization
| |
Collapse
|
26
|
Andersen DC, Andersen P, Schneider M, Jensen HB, Sheikh SP. Murine “Cardiospheres” Are Not a Source of Stem Cells with Cardiomyogenic Potential. Stem Cells 2009; 27:1571-81. [DOI: 10.1002/stem.72] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
27
|
CHEN JIANFU, WANG SHUSHENG, WU QIULIAN, CAO DONGSUN, NGUYEN THIHA, CHEN YIPING, WANG DAZHI. Myocardin marks the earliest cardiac gene expression and plays an important role in heart development. Anat Rec (Hoboken) 2008; 291:1200-11. [PMID: 18780304 PMCID: PMC2694184 DOI: 10.1002/ar.20756] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Myocardin belongs to the SAP domain family of transcription factors and is expressed specifically in cardiac and smooth muscle during embryogenesis and in adulthood. Myocardin functions as a transcriptional coactivator of SRF and is sufficient and necessary for smooth muscle gene expression. However, the in vivo function of myocardin during cardiogenesis is not completely understood. Here we clone myocardin from chick embryonic hearts and show that myocardin protein sequences are highly conserved cross species. Detailed studies of chick myocardin expression reveal that myocardin is expressed in cardiac and smooth muscle lineage during early embryogenesis, similar to that found in mouse. Interestingly, the expression of myocardin in the heart was found enriched in the outflow tract and the sinoatrial segments shortly after the formation of linear heart tube. Such expression pattern is also maintained in later developing embryos, suggesting that myocardin may play a unique role in the formation of those cardiac modules. Similar to its mouse counterpart, chick myocardin is able to activate cardiac and smooth muscle promoter reporter genes and induce smooth muscle gene expression in nonmuscle cells. Ectopic overexpression of myocardin enlarged the embryonic chick heart. Conversely, repression of the endogenous chick myocardin using antisense oligonucleotides or a dominant negative mutant form of myocardin inhibited cardiogenesis. Together, our data place myocardin as one of the earliest cardiac marker genes for cardiogenesis and support the idea that myocardin plays an essential role in cardiac gene expression and cardiogenesis.
Collapse
Affiliation(s)
- JIAN-FU CHEN
- Carolina Cardiovascular Biology Center, Department of Cell and Developmental Biology, University of North Carolina, Chapel Hill, North Carolina
| | - SHUSHENG WANG
- Department of Cell and Molecular Biology, Tulane University, New Orleans, Louisiana
| | - QIULIAN WU
- Carolina Cardiovascular Biology Center, Department of Cell and Developmental Biology, University of North Carolina, Chapel Hill, North Carolina
| | - DONGSUN CAO
- Carolina Cardiovascular Biology Center, Department of Cell and Developmental Biology, University of North Carolina, Chapel Hill, North Carolina
| | - THIHA NGUYEN
- Carolina Cardiovascular Biology Center, Department of Cell and Developmental Biology, University of North Carolina, Chapel Hill, North Carolina
| | - YIPING CHEN
- Department of Cell and Molecular Biology, Tulane University, New Orleans, Louisiana
| | - DA-ZHI WANG
- Carolina Cardiovascular Biology Center, Department of Cell and Developmental Biology, University of North Carolina, Chapel Hill, North Carolina
| |
Collapse
|
28
|
Pacak CA, Sakai Y, Thattaliyath BD, Mah CS, Byrne BJ. Tissue specific promoters improve specificity of AAV9 mediated transgene expression following intra-vascular gene delivery in neonatal mice. GENETIC VACCINES AND THERAPY 2008; 6:13. [PMID: 18811960 PMCID: PMC2557000 DOI: 10.1186/1479-0556-6-13] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2008] [Accepted: 09/23/2008] [Indexed: 01/11/2023]
Abstract
The AAV9 capsid displays a high natural affinity for the heart following a single intravenous (IV) administration in both newborn and adult mice. It also results in substantial albeit relatively lower expression levels in many other tissues. To increase the overall safety of this gene delivery method we sought to identify which one of a group of promoters is able to confer the highest level of cardiac specific expression and concurrently, which is able to provide a broad biodistribution of expression across both cardiac and skeletal muscle. The in vivo behavior of five different promoters was compared: CMV, desmin (Des), alpha-myosin heavy chain (α-MHC), myosin light chain 2 (MLC-2) and cardiac troponin C (cTnC). Following IV administration to newborn mice, LacZ expression was measured by enzyme activity assays. Results showed that rAAV2/9-mediated gene delivery using the α-MHC promoter is effective for focal transgene expression in the heart and the Des promoter is highly suitable for achieving gene expression in cardiac and skeletal muscle following systemic vector administration. Importantly, these promoters provide an added layer of control over transgene activity following systemic gene delivery.
Collapse
Affiliation(s)
- Christina A Pacak
- Powell Gene Therapy Center, College of Medicine, University of Florida, 1600 SW Archer Road, Gainesville, FL 32610-0266, USA
| | - Yoshihisa Sakai
- Powell Gene Therapy Center, College of Medicine, University of Florida, 1600 SW Archer Road, Gainesville, FL 32610-0266, USA
| | - Bijoy D Thattaliyath
- Powell Gene Therapy Center, College of Medicine, University of Florida, 1600 SW Archer Road, Gainesville, FL 32610-0266, USA
| | - Cathryn S Mah
- Powell Gene Therapy Center, College of Medicine, University of Florida, 1600 SW Archer Road, Gainesville, FL 32610-0266, USA
| | - Barry J Byrne
- Powell Gene Therapy Center, College of Medicine, University of Florida, 1600 SW Archer Road, Gainesville, FL 32610-0266, USA
| |
Collapse
|
29
|
Shimko VF, Claycomb WC. Effect of mechanical loading on three-dimensional cultures of embryonic stem cell-derived cardiomyocytes. Tissue Eng Part A 2008. [PMID: 18333804 DOI: 10.1089/ten.2007.0092] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Cardiomyocytes selected from murine embryonic stem cells (ESCs) using the cardiac-specific promoter alpha-myosin heavy chain were embedded into collagen and fibronectin scaffolds. A custom-built device was used to expose these constructs to mechanical loading (10% stretch at 1, 2, or 3 Hz) or no loading. Constructs were evaluated using reverse transcriptase polymerase chain reaction, histology, and immunohistochemistry. Mechanical loading significantly affected gene expression, and these changes were dependent on the frequency of stretch. A 1 Hz cyclical stretch resulted in significantly lower gene expression, whereas a 3 Hz cyclical stretch resulted in significantly greater gene expression than in unstretched controls. These constructs also developed cardiac-specific cell structures similar to those found in vivo. This study describes a 3-dimensional model to examine the direct effect of mechanical loading on the differentiation of ESC-derived cardiomyocytes embedded in a defined extracellular matrix scaffold. A technique was also developed to isolate the areas within the constructs undergoing the most homogeneous strain so that the effect of mechanical loading on gene expression could be directly evaluated. These experiments emphasize that ESC-derived cardiomyocytes are actively responding to cues from their environment and that those cues can drive phenotypic control and cardiomyocyte differentiation.
Collapse
Affiliation(s)
- Valerie F Shimko
- Department of Biomedical Engineering, Tulane University, New Orleans, Louisiana, USA
| | | |
Collapse
|
30
|
Liao J, Aggarwal VS, Nowotschin S, Bondarev A, Lipner S, Morrow BE. Identification of downstream genetic pathways of Tbx1 in the second heart field. Dev Biol 2008; 316:524-37. [PMID: 18328475 PMCID: PMC2494702 DOI: 10.1016/j.ydbio.2008.01.037] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2007] [Revised: 01/09/2008] [Accepted: 01/19/2008] [Indexed: 11/26/2022]
Abstract
Tbx1, a T-box transcription factor, and an important gene for velo-cardio-facial syndrome/DiGeorge syndrome (VCFS/DGS) in humans, causes outflow tract (OFT) heart defects when inactivated in the mouse. Tbx1 is expressed in the second heart field (SHF) and is required in this tissue for OFT development. To identify Tbx1 regulated genetic pathways in the SHF, we performed gene expression profiling of the caudal pharyngeal region in Tbx1(-/-) and wild type embryos. Isl1, a key marker for the SHF, as well as Hod and Nkx2-6, were downregulated in Tbx1(-/-) mutants, while genes required for cardiac morphogenesis, such as Raldh2, Gata4, and Tbx5, as well as a subset of muscle contractile genes, signifying myocardial differentiation, were ectopically expressed. Pan-mesodermal ablation of Tbx1 resulted in similar gene expression changes, suggesting cell-autonomous roles of Tbx1 in regulating these genes. Opposite expression changes concomitant with SHF-derived cardiac defects occurred in TBX1 gain-of-function mutants, indicating that appropriate levels of Tbx1 are required for heart development. When taken together, our studies show that Tbx1 acts upstream in a genetic network that positively regulates SHF cell proliferation and negatively regulates differentiation, cell-autonomously in the caudal pharyngeal region.
Collapse
Affiliation(s)
- Jun Liao
- Department of Molecular Genetics, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY 10461, USA
| | - Vimla S. Aggarwal
- Department of Molecular Genetics, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY 10461, USA
| | - Sonja Nowotschin
- Department of Molecular Genetics, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY 10461, USA
| | - Alexei Bondarev
- Department of Molecular Genetics, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY 10461, USA
| | - Shari Lipner
- Department of Cell Biology, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY 10461, USA
| | - Bernice E. Morrow
- Department of Molecular Genetics, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY 10461, USA
| |
Collapse
|
31
|
Lim JY, Kim WH, Kim J, Park SI. Induction of Id2 expression by cardiac transcription factors GATA4 and Nkx2.5. J Cell Biochem 2008; 103:182-94. [PMID: 17559079 DOI: 10.1002/jcb.21396] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Inhibitor of differentiation/DNA binding (Id) proteins function as a regulator of helix-loop-helix proteins participating in cell lineage commitment and differentiation. Here, we observed a marked induction of Id2 during cardiomyocyte differentiation from P19CL6 murine embryonic teratocarcinoma stem cells, prompting us to investigate the upstream regulatory mechanism of Id2 induction. Computer analysis of Id2 promoter and subsequent electrophoretic mobility shift assay revealed several binding sites for GATA4 and Nkx2.5 within the Id2 promoter. By further deletion and mutation analysis of the respective binding site, we identified that two motifs located at -497/-502 and -264/-270 were functionally important for Id2 promoter activation by GATA4 and Nkx2.5, respectively. Overexpression of GATA4 and/or Nkx2.5 induced not only Id2 promoter activity but also Id2 protein expression. Additionally, Id proteins significantly inhibit the GATA4 and Nkx2.5-dependent transcription, suggesting Id proteins may play a regulatory role in cardiogenesis. Collectively, our results demonstrate that GATA4 and Nkx2.5 could be one of the upstream regulators of Id2.
Collapse
Affiliation(s)
- Joong-Yeon Lim
- Division of Intractable Diseases, Center for Biomedical Sciences, National Institute of Health, 194, Tongillo, Eunpyeong-gu, Seoul 122-701, Korea
| | | | | | | |
Collapse
|
32
|
Takaya T, Kawamura T, Morimoto T, Ono K, Kita T, Shimatsu A, Hasegawa K. Identification of p300-targeted acetylated residues in GATA4 during hypertrophic responses in cardiac myocytes. J Biol Chem 2008; 283:9828-35. [PMID: 18252717 DOI: 10.1074/jbc.m707391200] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
A zinc finger protein, GATA4, is one of the hypertrophy-responsive transcription factors and increases its DNA binding and transcriptional activities in response to hypertrophic stimuli in cardiac myocytes. Activation of GATA4 during this process is mediated, in part, through acetylation by intrinsic histone acetyltransferases such as a transcriptional coactivator p300. However, p300-targeted acetylated sites of GATA4 during myocardial cell hypertrophy have not been identified. By mutational analysis, we showed that 4 lysine residues located between amino acids 311 and 322 are required for synergistic activation of atrial natriuretic factor and endothelin-1 promoters by GATA4 and p300. A tetra-mutant GATA4, in which these 4 lysine residues were simultaneously mutated, retained the ability to localize in nuclei and to interact with cofactors including FOG-2, GATA6, and p300 but lacked p300-induced acetylation, DNA binding, and transcriptional activities. Furthermore, coexpression of the tetra-mutant GATA4 with wild-type GATA4 impaired the p300-induced acetylation, DNA binding, and transcriptional activities of the wild type. When we expressed the tetra-mutant GATA4 in neonatal rat cardiac myocytes using a lentivirus vector, this mutant suppressed phenylephrine-induced increases in cell size, protein synthesis, and expression of hypertrophy-responsive genes. However, its expression did not affect the basal state. Thus, we have identified the most critical lysine residues acting as p300-mediated acetylation targets in GATA4 during hypertrophic responses in cardiac myocytes. The results also demonstrate that GATA4 with simultaneous mutation of these sites specifically suppresses hypertrophic responses as a dominant-negative form, providing further evidence for the acetylation of GATA4 as one of critical nuclear events in myocardial cell hypertrophy.
Collapse
Affiliation(s)
- Tomohide Takaya
- Division of Translational Research and Clinical Research Institute, Kyoto Medical Center, National Hospital Organization, 1-1 Mukaihata-cho, Fukakusa, Fushimi-ku, Kyoto, Japan
| | | | | | | | | | | | | |
Collapse
|
33
|
Shimko VF, Claycomb WC. Effect of mechanical loading on three-dimensional cultures of embryonic stem cell-derived cardiomyocytes. Tissue Eng Part A 2008; 14:49-58. [PMID: 18333804 PMCID: PMC2562769 DOI: 10.1089/ten.a.2007.0092] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Cardiomyocytes selected from murine embryonic stem cells (ESCs) using the cardiac-specific promoter alpha-myosin heavy chain were embedded into collagen and fibronectin scaffolds. A custom-built device was used to expose these constructs to mechanical loading (10% stretch at 1, 2, or 3 Hz) or no loading. Constructs were evaluated using reverse transcriptase polymerase chain reaction, histology, and immunohistochemistry. Mechanical loading significantly affected gene expression, and these changes were dependent on the frequency of stretch. A 1 Hz cyclical stretch resulted in significantly lower gene expression, whereas a 3 Hz cyclical stretch resulted in significantly greater gene expression than in unstretched controls. These constructs also developed cardiac-specific cell structures similar to those found in vivo. This study describes a 3-dimensional model to examine the direct effect of mechanical loading on the differentiation of ESC-derived cardiomyocytes embedded in a defined extracellular matrix scaffold. A technique was also developed to isolate the areas within the constructs undergoing the most homogeneous strain so that the effect of mechanical loading on gene expression could be directly evaluated. These experiments emphasize that ESC-derived cardiomyocytes are actively responding to cues from their environment and that those cues can drive phenotypic control and cardiomyocyte differentiation.
Collapse
Affiliation(s)
- Valerie F Shimko
- Department of Biomedical Engineering, Tulane University, New Orleans, Louisiana, USA
| | | |
Collapse
|
34
|
Dale RM, Remo BF, Svensson EC. An alternative transcript of the FOG-2 gene encodes a FOG-2 isoform lacking the FOG repression motif. Biochem Biophys Res Commun 2007; 357:683-7. [PMID: 17445768 PMCID: PMC1971242 DOI: 10.1016/j.bbrc.2007.04.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2007] [Accepted: 04/02/2007] [Indexed: 11/29/2022]
Abstract
The FOG family of transcriptional co-factors is composed of two members in mammals: FOG-1 and FOG-2. Both have been shown to bind to GATA factors and function as transcriptional co-repressors in specific cell and promoter contexts. We have previously defined a novel repression domain localized to the N-terminus of each FOG family member, the FOG repression motif, which is necessary for FOG-mediated transcriptional repression. In this report, we describe the identification and characterization of a novel isoform of FOG-2 lacking the FOG repression motif. In contrast to full-length FOG-2, this isoform is expressed predominately in the embryonic and adult heart. It can bind GATA4 avidly, but is unable to repress GATA4-mediated activation of cardiac-restricted gene promoters. Together, these results suggest that FOG-2 repressive activity may be modulated by the generation of isoforms of FOG-2 lacking the FOG repression motif.
Collapse
Affiliation(s)
- Rodney M Dale
- Department of Medicine, University of Chicago, 5841 S. Maryland Avenue, MC6088, Chicago, IL 60637, USA
| | | | | |
Collapse
|
35
|
Cardiac Development: Toward a Molecular Basis for Congenital Heart Disease. CARDIOVASCULAR MEDICINE 2007. [DOI: 10.1007/978-1-84628-715-2_52] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
36
|
Miyamoto S, Kawamura T, Morimoto T, Ono K, Wada H, Kawase Y, Matsumori A, Nishio R, Kita T, Hasegawa K. Histone acetyltransferase activity of p300 is required for the promotion of left ventricular remodeling after myocardial infarction in adult mice in vivo. Circulation 2006; 113:679-90. [PMID: 16461841 DOI: 10.1161/circulationaha.105.585182] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
BACKGROUND Left ventricular (LV) remodeling after myocardial infarction is associated with hypertrophy of surviving myocytes and represents a major process that leads to heart failure. One of the intrinsic histone acetyltransferases, p300, serves as a coactivator of hypertrophy-responsive transcriptional factors such as a cardiac zinc finger protein GATA-4 and is involved in its hypertrophic stimulus-induced acetylation and DNA binding. However, the role of p300-histone acetyltransferase activity in LV remodeling after myocardial infarction in vivo is unknown. METHODS AND RESULTS To solve this problem, we have generated transgenic mice overexpressing intact p300 or mutant p300 in the heart. As the result of its 2-amino acid substitution in the p300-histone acetyltransferase domain, this mutant lost its histone acetyltransferase activity and was unable to activate GATA-4-dependent transcription. The two kinds of transgenic mice and the wild-type mice were subjected to myocardial infarction or sham operation at the age of 12 weeks. Intact p300 transgenic mice showed significantly more progressive LV dilation and diminished systolic function after myocardial infarction than wild-type mice, whereas mutant p300 transgenic mice did not show this. CONCLUSIONS These findings demonstrate that cardiac overexpression of p300 promotes LV remodeling after myocardial infarction in adult mice in vivo and that histone acetyltransferase activity of p300 is required for these processes.
Collapse
Affiliation(s)
- Shoichi Miyamoto
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Ohara Y, Atarashi T, Ishibashi T, Ohashi-Kobayashi A, Maeda M. GATA-4 Gene Organization and Analysis of Its Promoter. Biol Pharm Bull 2006; 29:410-9. [PMID: 16508137 DOI: 10.1248/bpb.29.410] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The mouse GATA-4 gene is separated by six introns, and this gene organization is conserved in rodents and man. The transcriptional start site of the GATA-4 gene is essentially the same in rat heart, stomach and testis, and in cultured cells expressing GATA-4 such as TM3, TM4, I-10 and P19.CL6 cells. The 5'-upstream of the GATA-4 gene is also conserved in rodents and man. We examined its promoter activity by means of luciferase reporter gene assay using testis-derived TM3 and TM4 cells. The GC-boxes and E-box located in the several tens of base pairs upstream of the transcriptional start sites of the GATA-4 gene were found to be critical for its promoter activity in these cells, consistent with the mode of transcription characteristics of the TATA-less promoter. P19.CL6 cells differentiate into beating cardiomyocytes upon induction by DMSO, accompanied by stimulation of the transcription of heart-specific genes including GATA-4. Interestingly, they exhibit increased luciferase reporter gene activity upon induction by DMSO. Both proximal tandem GC-boxes and the E-box are also contributed to the reporter gene activity in P19.CL6 cells.
Collapse
Affiliation(s)
- Yasunori Ohara
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan
| | | | | | | | | |
Collapse
|
38
|
Kim TG, Jung J, Mysliwiec MR, Kang S, Lee Y. Jumonji represses α-cardiac myosin heavy chain expression via inhibiting MEF2 activity. Biochem Biophys Res Commun 2005; 329:544-53. [PMID: 15737621 DOI: 10.1016/j.bbrc.2005.01.154] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2005] [Indexed: 11/24/2022]
Abstract
Expression of alpha-cardiac myosin heavy chain gene (alphaMHC) is developmentally regulated in normal embryonic hearts and down-regulated in cardiac myopathy and failing hearts. Jumonji (JMJ) has been shown to be critical for normal cardiovascular development and functions as a transcriptional repressor. Here, we demonstrate that JMJ represses alphaMHC expression through inhibition of myocyte enhancer factor 2 (MEF2) activity. In primary cardiomyocytes, overexpression of JMJ leads to marked reduction of endogenous alphaMHC expression. JMJ represses the synergistic activation of alphaMHC by MEF2 and thyroid hormone receptor (TR). Interestingly, JMJ inhibits transcriptional activities of all MEF2 isoforms, but not the TR-dependent activation. The transcriptional repression domain of JMJ interacts with the N-terminal part of MEF2A, resulting in the repression of MEF2A activities. These results suggest that JMJ represses alphaMHC expression via protein-protein interaction with MEF2A.
Collapse
Affiliation(s)
- Tae-gyun Kim
- Department of Anatomy and Cardiovascular Research Center, University of Wisconsin Medical School, Madison, WI 53706, USA
| | | | | | | | | |
Collapse
|
39
|
Abstract
Troponin is the regulatory complex of the myofibrillar thin filament that plays a critical role in regulating excitation-contraction coupling in the heart. Troponin is composed of three distinct gene products: troponin C (cTnC), the 18-kD Ca(2+)-binding subunit; troponin I (cTnI), the approximately 23-kD inhibitory subunit that prevents contraction in the absence of Ca2+ binding to cTnC; and troponin T (cTnT), the approximately 35-kD subunit that attaches troponin to tropomyosin (Tm) and to the myofibrillar thin filament. Over the past 45 years, extensive biochemical, biophysical, and structural studies have helped to elucidate the molecular basis of troponin function and thin filament activation in the heart. At the onset of systole, Ca2+ binds to the N-terminal Ca2+ binding site of cTnC initiating a conformational change in cTnC, which catalyzes protein-protein associations activating the myofibrillar thin filament. Thin filament activation in turn facilitates crossbridge cycling, myofibrillar activation, and contraction of the heart. The intrinsic length-tension properties of cardiac myocytes as well as the Frank-Starling properties of the intact heart are mediated primarily through Ca(2+)-responsive thin filament activation. cTnC, cTnI, and cTnT are encoded by distinct single-copy genes in the human genome, each of which is expressed in a unique cardiac-restricted developmentally regulated fashion. Elucidation of the transcriptional programs that regulate troponin transcription and gene expression has provided insights into the molecular mechanisms that regulate and coordinate cardiac myocyte differentiation and provided unanticipated insights into the pathogenesis of cardiac hypertrophy. Autosomal dominant mutations in cTnI and cTnT have been identified and are associated with familial hypertrophic and restrictive cardiomyopathies.
Collapse
Affiliation(s)
- Michael S Parmacek
- Department of Medicine, University of Pennsylvania School of Medicine, 3400 Spruce St., 9123 Founders Pavilion, Philadelphia, PA 19104, USA.
| | | |
Collapse
|
40
|
Baroukh N, Lopez CE, Saleh MC, Recalde D, Vergnes L, Ostos MA, Fiette L, Fruchart JC, Castro G, Zakin MM, Ochoa A. Expression and secretion of human apolipoprotein A-I in the heart. FEBS Lett 2004; 557:39-44. [PMID: 14741338 DOI: 10.1016/s0014-5793(03)01429-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Various studies have correlated apolipoprotein (apo) A-I, the major component high-density lipoprotein, with protection against development of cardiovascular disease. Although apoA-I expression has been previously detected in the liver and intestine, we have discovered that the human apoA-I gene is also expressed in the heart. Using transgenic (Tg) mice generated with the human apoA-I/C-III/A-IV gene cluster and Tg mice produced with just the 2.2 kb human apoA-I gene, we have detected significant levels of apoA-I expression in the heart. Furthermore, the detection of apoA-I expression in the hearts of human apoA-I Tg mice indicates that the minimal regulatory elements necessary for cardiac expression of the gene are located near its coding sequence. To determine if the apoA-I gene is also expressed in the human heart, similar analyses were performed, where apoA-I expression was found in both adult and fetal hearts. Furthermore in-depth investigation of the various regions of human and Tg mouse hearts revealed that the apoA-I mRNA was present in the ventricles and atria, but not in the aorta. In situ hybridization of Tg mouse hearts revealed that apoA-I expression was restricted to the cardiac myocyte cells. Finally, heart explants and cardiac primary culture experiments with Tg mice showed secretion of particles containing the human apoA-I protein, and metabolic labeling experiments have also detected a 28 kDa human apoA-I protein secreted from the heart. From these novel findings, new insights into the role and function of apoA-I can be extrapolated.
Collapse
Affiliation(s)
- Nadine Baroukh
- Unité d'Expression des Gènes Eucaryotes, Institut Pasteur, Paris, France.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Latinkic BV, Cooper B, Smith S, Kotecha S, Towers N, Sparrow D, Mohun TJ. Transcriptional regulation of the cardiac-specificMLC2gene duringXenopusembryonic development. Development 2004; 131:669-79. [PMID: 14711876 DOI: 10.1242/dev.00953] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The mechanisms by which transcription factors, which are not themselves tissue restricted, establish cardiomyocyte-specific patterns of transcription in vivo are unknown. Nor do we understand how positional cues are integrated to provide regionally distinct domains of gene expression within the developing heart. We describe regulation of the Xenopus XMLC2 gene,which encodes a regulatory myosin light chain of the contractile apparatus in cardiac muscle. This gene is expressed from the onset of cardiac differentiation in the frog embryo and is expressed throughout all the myocardium, both before and after heart chamber formation. Using transgenesis in frog embryos, we have identified an 82 bp enhancer within the proximal promoter region of the gene that is necessary and sufficient for heart-specific expression of an XMLC2 transgene. This enhancer is composed of two GATA sites and a composite YY1/CArG-like site. We show that the low-affinity SRF site is essential for transgene expression and that cardiac-specific expression also requires the presence of at least one adjacent GATA site. The overlapping YY1 site within the enhancer appears to act primarily as a repressor of ectopic expression, although it may also have a positive role. Finally, we show that the frog MLC2 promoter drives pan myocardial expression of a transgene in mice, despite the more restricted patterns of expression of murine MLC2 genes. We speculate that a common regulatory mechanism may be responsible for pan-myocardial expression of XMLC2 in both the frog and mouse, modulation of which could have given rise to more restricted patterns of expression within the heart of higher vertebrates.
Collapse
Affiliation(s)
- Branko V Latinkic
- Division of Developmental Biology, National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK
| | | | | | | | | | | | | |
Collapse
|
42
|
Ji A, Dao D, Chen J, MacLellan WR. EID-2, a novel member of the EID family of p300-binding proteins inhibits transactivation by MyoD. Gene 2004; 318:35-43. [PMID: 14585496 DOI: 10.1016/j.gene.2003.06.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Skeletal muscle differentiation has been shown to be dependent on the expression of Rb and p300. We recently cloned a novel inhibitor of muscle differentiation called EID-1, which interacted with both of these factors. In a database search for related molecules, we have cloned and characterized a new EID-1 family member, EID-2. This 28-kDa protein encodes a 236-amino-acid protein with significant similarity to EID-1 in its C-terminus. EID-2 displays developmentally regulated expression with high levels in adult heart and brain. Overexpression of EID-2 inhibits muscle-specific gene expression through inhibition of MyoD-dependent transcription. This inhibitory effect on gene expression can be explained by EID-2's ability to associate with and inhibit the acetyltransferase activity of p300. These data suggest that EID-1 and -2 represent a novel family of proteins that negatively regulate differentiation through a p300-dependent mechanism.
Collapse
MESH Headings
- Acetyltransferases/metabolism
- Actins/genetics
- Actins/metabolism
- Adult
- Amino Acid Sequence
- Animals
- Base Sequence
- Carrier Proteins/chemistry
- Carrier Proteins/genetics
- Carrier Proteins/metabolism
- Cell Line
- Cell Line, Tumor
- Cells, Cultured
- Cloning, Molecular
- DNA, Complementary/chemistry
- DNA, Complementary/genetics
- Female
- Gene Expression
- Histone Acetyltransferases
- Humans
- Inhibitor of Differentiation Protein 2
- Intracellular Signaling Peptides and Proteins
- Molecular Sequence Data
- Molecular Weight
- Muscle, Skeletal/cytology
- Muscle, Skeletal/metabolism
- MyoD Protein/genetics
- MyoD Protein/metabolism
- Myosin Heavy Chains/genetics
- Myosin Heavy Chains/metabolism
- Nuclear Proteins/genetics
- Nuclear Proteins/metabolism
- Protein Binding
- Sequence Alignment
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- Trans-Activators/genetics
- Trans-Activators/metabolism
- Transcription, Genetic
- Transcriptional Activation
Collapse
Affiliation(s)
- Aimin Ji
- Cardiovascular Research Laboratories, Department of Medicine, David Geffen School of Medicine at UCLA, MRL 3-645, 675 C.E. Young Dr, Los Angeles, CA 90095-1760, USA
| | | | | | | |
Collapse
|
43
|
Klinedinst SL, Bodmer R. Gata factor Pannier is required to establish competence for heart progenitor formation. Development 2003; 130:3027-38. [PMID: 12756184 DOI: 10.1242/dev.00517] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Inductive signaling is of pivotal importance for developmental patterns to form. In Drosophila, the transfer of TGFbeta (Dpp) and Wnt (Wg) signaling information from the ectoderm to the underlying mesoderm induces cardiac-specific differentiation in the presence of Tinman, a mesoderm-specific homeobox transcription factor. We present evidence that the Gata transcription factor, Pannier, and its binding partner U-shaped, also a zinc-finger protein, cooperate in the process of heart development. Loss-of-function and germ layer-specific rescue experiments suggest that pannier provides an essential function in the mesoderm for initiation of cardiac-specific expression of tinman and for specification of the heart primordium. u-shaped also promotes heart development, but unlike pannier, only by maintaining tinman expression in the cardiogenic region. By contrast, pan-mesodermal overexpression of pannier ectopically expands tinman expression, whereas overexpression of u-shaped inhibits cardiogenesis. Both factors are also required for maintaining dpp expression after germ band retraction in the dorsal ectoderm. Thus, we propose that Pannier mediates as well as maintains the cardiogenic Dpp signal. In support, we find that manipulation of pannier activity in either germ layer affects cardiac specification, suggesting that its function is required in both the mesoderm and the ectoderm.
Collapse
Affiliation(s)
- Susan L Klinedinst
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | | |
Collapse
|
44
|
Abstract
Development of the heart is a complex process involving primary and secondary heart fields that are set aside to generate myocardial and endocardial cell lineages. The molecular inductions that occur in the primary heart field appear to be recapitulated in induction and myocardial differentiation of the secondary heart field, which adds the conotruncal segments to the primary heart tube. While much is now known about the initial steps and factors involved in induction of myocardial differentiation, little is known about induction of endocardial development. Many of the genes expressed by nascent myocardial cells, which then become committed to a specific heart segment, have been identified and studied. In addition to the heart fields, several other "extracardiac" cell populations contribute to the fully functional mature heart. Less is known about the genetic programs of extracardiac cells as they enter the heart and take part in cardiogenesis. The molecular/genetic basis of many congenital cardiac defects has been elucidated in recent years as a result of new insights into the molecular control of developmental events.
Collapse
Affiliation(s)
- Margaret L Kirby
- Department of Pediatrics, Division of Neonatology, Duke University Medical Center, Box 3179, Durham, NC 27710, USA.
| |
Collapse
|
45
|
Dai YS, Cserjesi P, Markham BE, Molkentin JD. The transcription factors GATA4 and dHAND physically interact to synergistically activate cardiac gene expression through a p300-dependent mechanism. J Biol Chem 2002; 277:24390-8. [PMID: 11994297 DOI: 10.1074/jbc.m202490200] [Citation(s) in RCA: 142] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
An intricate array of heterogeneous transcription factors participate in programming tissue-specific gene expression through combinatorial interactions that are unique to a given cell-type. The zinc finger-containing transcription factor GATA4, which is widely expressed in mesodermal and endodermal derived tissues, is thought to regulate cardiac myocyte-specific gene expression through combinatorial interactions with other semi-restricted transcription factors such as myocyte enhancer factor 2, nuclear factor of activated T-cells, serum response factor, and Nkx2.5. Here we determined that GATA4 also interacts with the cardiac-expressed basic helix-loop-helix transcription factor dHAND (also known as HAND2). GATA4 and dHAND synergistically activated expression of cardiac-specific promoters from the atrial natriuretic factor gene, the b-type natriuretic peptide gene, and the alpha-myosin heavy chain gene. Using artificial reporter constructs this functional synergy was shown to be GATA site-dependent, but E-box site-independent. A mechanism for the transcriptional synergy was suggested by the observation that the bHLH domain of dHAND physically interacted with the C-terminal zinc finger domain of GATA4 forming a higher order complex. This transcriptional synergy observed between GATA4 and dHAND was associated with p300 recruitment, but not with alterations in DNA binding activity of either factor. Moreover, the bHLH domain of dHAND directly interacted with the CH3 domain of p300 suggesting the existence of a higher order complex between GATA4, dHAND, and p300. Taken together with previous observations, these results suggest the existence of an enhanceosome complex comprised of p300 and multiple semi-restricted transcription factors that together specify tissue-specific gene expression in the heart.
Collapse
Affiliation(s)
- Yan-Shan Dai
- Department of Pediatrics, University of Cincinnati, Children's Hospital Medical Center, Cincinnati, Ohio 45229-3039, USA
| | | | | | | |
Collapse
|
46
|
Weidenfeld J, Shu W, Zhang L, Millar SE, Morrisey EE. The WNT7b promoter is regulated by TTF-1, GATA6, and Foxa2 in lung epithelium. J Biol Chem 2002; 277:21061-70. [PMID: 11914369 DOI: 10.1074/jbc.m111702200] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In this study, we find that WNT7b is the only member of the WNT family of autocrine/paracrine signaling molecules whose expression in the lung is restricted to the airway epithelium during embryonic development. To study the transcriptional mechanisms that underlie this restricted pattern of WNT7b expression, we isolated the proximal 1.0-kb mouse WNT7b promoter and mapped the transcriptional start sites. Transfection of the lung epithelial cell line MLE-15, which expresses WNT7b, shows that the 1.0-kb mouse WNT7b promoter is highly active in lung epithelial cells. This region of the WNT7b promoter contains several DNA binding sites for the important lung-restricted transcription factors TTF-1, GATA6, and Foxa2. Electrophoretic mobility shift assays showed that TTF-1, GATA6, and Foxa2 can bind to a specific subset of their consensus DNA binding sites within the WNT7b promoter. Using cotransfection assays, we demonstrate that TTF-1, GATA6, and Foxa2 can trans-activate the WNT7b promoter in NIH-3T3 cells. Truncation of GATA6 or Foxa2 binding sites reduced the ability of these transcriptional regulators to trans-activate the WNT7b promoter. Finally, the minimal 118-bp region of the mouse WNT7b promoter containing only TTF-1 binding sites was synergistically activated by TTF-1 and GATA6, and we show that TTF-1 and GATA6 physically interact in vivo. Together, these results suggest that WNT7b gene expression in the lung epithelium is regulated in a combinatorial fashion by TTF-1, GATA6, and Foxa2.
Collapse
Affiliation(s)
- Joel Weidenfeld
- Department of Medicine, Molecular Cardiology Research Center, and the Department of Dermatology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | |
Collapse
|
47
|
Kerkelä R, Pikkarainen S, Majalahti-Palviainen T, Tokola H, Ruskoaho H. Distinct roles of mitogen-activated protein kinase pathways in GATA-4 transcription factor-mediated regulation of B-type natriuretic peptide gene. J Biol Chem 2002; 277:13752-60. [PMID: 11827958 DOI: 10.1074/jbc.m105736200] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The expression of cardiac hormones, atrial natriuretic peptide and B-type natriuretic peptide, is induced by cardiac wall stretch and responds to various hypertrophic agonists such as endothelin-1. In cardiac myocytes, endothelin-1 induces GATA-4 binding to the B-type natriuretic peptide gene, but the signaling pathways involved in endothelin-1-induced GATA-4 activation are unknown. Mitogen-activated protein kinase pathways are stimulated in response to various extracellular stimuli, and they modulate the function of several transcription activators. Here we show that inhibition of p38 kinase with SB203580 inhibited endothelin-1-induced GATA-4 binding to B-type natriuretic peptide gene and serine phosphorylation of GATA-4. Inhibition of extracellular signal-regulated protein kinase with MEK1 inhibitor PD98059 reduced basal and p38-induced GATA-4 binding activity, but it had no significant effect on endothelin-1-induced GATA-4 binding activity. Overexpression of p38 kinase pathway, but not extracellular signal-regulated kinase or c-Jun N-terminal protein kinase, activated GATA-4 binding to B-type natriuretic peptide gene and induced rat B-type natriuretic peptide promoter activity via proximal GATA binding sites. In conclusion, these findings demonstrate that activation of p38 kinase is necessary for hypertrophic agonist-induced GATA-4 binding to B-type natriuretic peptide gene and sufficient for GATA-dependent B-type natriuretic peptide gene expression.
Collapse
Affiliation(s)
- Risto Kerkelä
- Department of Pharmacology, Biocenter Oulu, P. O. Box 5000, University of Oulu, 90014 Oulu, Finland
| | | | | | | | | |
Collapse
|
48
|
Jacobsen CM, Narita N, Bielinska M, Syder AJ, Gordon JI, Wilson DB. Genetic mosaic analysis reveals that GATA-4 is required for proper differentiation of mouse gastric epithelium. Dev Biol 2002; 241:34-46. [PMID: 11784093 DOI: 10.1006/dbio.2001.0424] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
During mouse embryogenesis GATA-4 is expressed first in primitive endoderm and then in definitive endoderm derivatives, including glandular stomach and intestine. To explore the role of GATA-4 in specification of definitive gastric endoderm, we generated chimeric mice by introducing Gata4(-/-) ES cells into ROSA26 morulae or blastocysts. In E14.5 chimeras, Gata4(-/-) cells were represented in endoderm lining the proximal and distal stomach. These cells expressed early cytodifferentiation markers, including GATA-6 and ApoJ. However, by E18.5, only rare patches of Gata4(-/-) epithelium were evident in the distal stomach. This heterotypic epithelium had a squamous morphology and did not express markers associated with differentiation of gastric epithelial cell lineages. Sonic Hedgehog, an endoderm-derived signaling molecule normally down-regulated in the distal stomach, was overexpressed in Gata4(-/-) cells. We conclude that GATA-4-deficient cells have an intrinsic defect in their ability to differentiate. Similarities in the phenotypes of Gata4(-/-) chimeras and mice with other genetically engineered mutations that affect gut development suggest that GATA-4 may be involved in the gastric epithelial response to members of the TGF-beta superfamily.
Collapse
Affiliation(s)
- Christina M Jacobsen
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | | | | | |
Collapse
|
49
|
Marttila M, Hautala N, Paradis P, Toth M, Vuolteenaho O, Nemer M, Ruskoaho H. GATA4 mediates activation of the B-type natriuretic peptide gene expression in response to hemodynamic stress. Endocrinology 2001; 142:4693-700. [PMID: 11606434 DOI: 10.1210/endo.142.11.8468] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
To identify the mechanisms that couple hemodynamic stress to alterations in cardiac gene expression, DNA constructs containing the rat B-type natriuretic peptide (BNP) promoter were injected into the myocardium of rats, which underwent bilateral nephrectomy or were sham-operated. Ventricular BNP mRNA levels were induced about 4-fold; and the BNP reporter construct containing the proximal 2200 bp, 5-fold, in response to 1-d nephrectomy. Deletion of sequences between bp -2200 and -114 did not affect basal or inducible activity of the BNP promoter. An activator protein-1-like site and two tandem GATA elements are located within this 114-bp sequence. Both deletion and mutation of the AP-1-like motif decreased basal activity but did not abolish the response to nephrectomy. In contrast, mutation or deletion of -90 bp GATA-sites abrogated the response to hemodynamic stress. The importance of these GATA elements to BNP promoter activation was further confirmed by the corresponding 38-bp oligonucleotide conferring hemodynamic stress responsiveness to a minimal BNP promoter. In gel mobility shift assays, nephrectomy increased left ventricular BNP GATA4 binding activity significantly. In conclusion, GATA elements are necessary and sufficient to confer transcriptional activation of BNP gene in response to hemodynamic stress.
Collapse
Affiliation(s)
- M Marttila
- Department of Pharmacology and Toxicology, Biocenter Oulu, University of Oulu, FIN-90014 University of Oulu, Finland
| | | | | | | | | | | | | |
Collapse
|
50
|
Morimoto T, Hasegawa K, Wada H, Kakita T, Kaburagi S, Yanazume T, Sasayama S. Calcineurin-GATA4 pathway is involved in beta-adrenergic agonist-responsive endothelin-1 transcription in cardiac myocytes. J Biol Chem 2001; 276:34983-9. [PMID: 11435416 DOI: 10.1074/jbc.m005498200] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Increases in the expression of endothelin-1 (ET-1) in cardiac myocytes play a critical role in the development of heart failure in vivo. Whereas norepinephrine (NE) is a potent inducer of ET-1 expression in cardiac myocytes, the signaling pathways that link NE to inducible cardiac ET-1 expression are unknown. Adrenergic stimulation results in an increase in intracellular calcium levels, which in turn activates calcineurin. Here, we have shown that stimulation with NE markedly increased the expression of the ET-1 gene in primary cardiac myocytes from neonatal rats. This increase was severely attenuated by a beta-adrenergic antagonist, metoprolol, but not by an alpha-adrenergic antagonist, prazosin. Consistent with these data, the beta-adrenergic agonist isoproterenol (ISO) activated the rat ET-1 promoter activity to an extent that was similar to NE. The ISO-stimulated increase in promoter activity was significantly inhibited by a Ca(2+)-antagonist, nifedipine, and an immunosuppressant, cyclosporin A, which blocks calcineurin. Mutation analysis indicated that the GATA4 binding site is required for ISO-responsive ET-1 transcription. Stimulation with ISO enhanced the interaction between NFATc and GATA4 in cardiac myocytes. Consistent with this interaction, overexpression of GATA4 and NFATc synergistically activated the ET-1 promoter. These findings demonstrate that NE-stimulated ET-1 expression in cardiac myocytes is mediated predominantly via a beta-adrenergic pathway, and that calcium-activated calcineurin-GATA4 plays a role in this process.
Collapse
Affiliation(s)
- T Morimoto
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507 Japan
| | | | | | | | | | | | | |
Collapse
|