1
|
Abarinov V, Levine JA, Churchill AJ, Hopwood B, Deiter CS, Guney MA, Wells KL, Schrunk JM, Guo Y, Hammelman J, Gifford DK, Magnuson MA, Wichterle H, Sussel L. Major β cell-specific functions of NKX2.2 are mediated via the NK2-specific domain. Genes Dev 2023; 37:490-504. [PMID: 37364986 PMCID: PMC10393193 DOI: 10.1101/gad.350569.123] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 06/06/2023] [Indexed: 06/28/2023]
Abstract
The consolidation of unambiguous cell fate commitment relies on the ability of transcription factors (TFs) to exert tissue-specific regulation of complex genetic networks. However, the mechanisms by which TFs establish such precise control over gene expression have remained elusive-especially in instances in which a single TF operates in two or more discrete cellular systems. In this study, we demonstrate that β cell-specific functions of NKX2.2 are driven by the highly conserved NK2-specific domain (SD). Mutation of the endogenous NKX2.2 SD prevents the developmental progression of β cell precursors into mature, insulin-expressing β cells, resulting in overt neonatal diabetes. Within the adult β cell, the SD stimulates β cell performance through the activation and repression of a subset of NKX2.2-regulated transcripts critical for β cell function. These irregularities in β cell gene expression may be mediated via SD-contingent interactions with components of chromatin remodelers and the nuclear pore complex. However, in stark contrast to these pancreatic phenotypes, the SD is entirely dispensable for the development of NKX2.2-dependent cell types within the CNS. Together, these results reveal a previously undetermined mechanism through which NKX2.2 directs disparate transcriptional programs in the pancreas versus neuroepithelium.
Collapse
Affiliation(s)
- Vladimir Abarinov
- Department of Genetics and Development, Columbia University, New York, New York 10032, USA
- Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA
| | - Joshua A Levine
- Department of Genetics and Development, Columbia University, New York, New York 10032, USA
| | - Angela J Churchill
- Department of Genetics and Development, Columbia University, New York, New York 10032, USA
| | - Bryce Hopwood
- Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA
| | - Cailin S Deiter
- Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA
| | - Michelle A Guney
- Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA
| | - Kristen L Wells
- Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA
| | - Jessica M Schrunk
- Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA
| | - Yuchun Guo
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Jennifer Hammelman
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - David K Gifford
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Mark A Magnuson
- Department of Molecular Physiology and Biophysics, Center for Stem Cell Biology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | - Hynek Wichterle
- Department of Pathology and Cell Biology, Columbia University, New York, New York 10032, USA
- Department of Neurology, Columbia University, New York, New York 10032, USA
- Department of Neuroscience, Columbia University, New York, New York 10032, USA
| | - Lori Sussel
- Department of Genetics and Development, Columbia University, New York, New York 10032, USA;
- Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA
| |
Collapse
|
2
|
Prasad S, Kumar V, Singh C, Singh A. Crosstalk between phytochemicals and inflammatory signaling pathways. Inflammopharmacology 2023; 31:1117-1147. [PMID: 37022574 DOI: 10.1007/s10787-023-01206-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 03/21/2023] [Indexed: 04/07/2023]
Abstract
Novel bioactive constituents from natural sources are actively being investigated. The phytochemicals in these phenolic compounds are believed to have a variety of beneficial effects on human health. Several phenolic compounds have been found in plants. The antioxidant potential of phenols has been discussed in numerous studies along with their anti-inflammatory effects on pro-inflammatory cytokine, inducible cyclooxygenase-2, and nitric oxide synthase. Through current study, an attempt is made to outline and highlight a wide variety of inflammation-associated signaling pathways that have been modified by several natural compounds. These signaling pathways include nuclear factor-kappa B (NF-кB), activator protein (AP)-1, protein tyrosine kinases (PTKs), mitogen-activated protein kinases (MAPKs), nuclear factor erythroid 2-related factor 2 (Nrf2) transcription factors, tyrosine phosphatidylinositol 3-kinase (PI3K)/AKT, and the ubiquitin-proteasome system. In light of the influence of natural substances on signaling pathways, their impact on the production of inflammatory mediator is highlighted in this review.
Collapse
Affiliation(s)
- Sonima Prasad
- Department of Pharmacology, ISF College of Pharmacy, Moga, 142001, Punjab, India
| | - Vishal Kumar
- Department of Pharmacology, ISF College of Pharmacy, Moga, 142001, Punjab, India
| | - Charan Singh
- Department of Pharmaceutical Sciences, School of Pharmacy, H.N.B. Garhwal University, Srinagar, Garhwal, 246174, Uttarakhand, India
| | - Arti Singh
- Department of Pharmacology, ISF College of Pharmacy, Moga, 142001, Punjab, India.
- Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab, 144603, India.
| |
Collapse
|
3
|
Hashimoto D, Colet JGR, Murashima A, Fujimoto K, Ueda Y, Suzuki K, Hyuga T, Hemmi H, Kaisho T, Takahashi S, Takahama Y, Yamada G. Radiation inducible MafB gene is required for thymic regeneration. Sci Rep 2021; 11:10439. [PMID: 34001954 PMCID: PMC8129107 DOI: 10.1038/s41598-021-89836-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 04/23/2021] [Indexed: 11/28/2022] Open
Abstract
The thymus facilitates mature T cell production by providing a suitable stromal microenvironment. This microenvironment is impaired by radiation and aging which lead to immune system disturbances known as thymic involution. Young adult thymus shows thymic recovery after such involution. Although various genes have been reported for thymocytes and thymic epithelial cells in such processes, the roles of stromal transcription factors in these remain incompletely understood. MafB (v-maf musculoaponeurotic fibrosarcoma oncogene homolog B) is a transcription factor expressed in thymic stroma and its expression was induced a day after radiation exposure. Hence, the roles of mesenchymal MafB in the process of thymic regeneration offers an intriguing research topic also for radiation biology. The current study investigated whether MafB plays roles in the adult thymus. MafB/green fluorescent protein knock-in mutant (MafB+/GFP) mice showed impaired thymic regeneration after the sublethal irradiation, judged by reduced thymus size, total thymocyte number and medullary complexity. Furthermore, IL4 was induced after irradiation and such induction was reduced in mutant mice. The mutants also displayed signs of accelerated age-related thymic involution. Altogether, these results suggest possible functions of MafB in the processes of thymic recovery after irradiation, and maintenance during aging.
Collapse
Affiliation(s)
- Daiki Hashimoto
- Department of Developmental Genetics, Institute of Advanced Medicine, Wakayama Medical University, Kimiidera 811-1, Wakayama City, Wakayama, 641-8509, Japan
| | - Jose Gabriel R Colet
- Department of Developmental Genetics, Institute of Advanced Medicine, Wakayama Medical University, Kimiidera 811-1, Wakayama City, Wakayama, 641-8509, Japan.,Experimental Therapeutics Laboratory, University of South Australia Cancer Research Institute, Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - Aki Murashima
- Department of Anatomy, Iwate Medical University, Yahaba, Iwate, Japan.
| | - Kota Fujimoto
- Department of Developmental Genetics, Institute of Advanced Medicine, Wakayama Medical University, Kimiidera 811-1, Wakayama City, Wakayama, 641-8509, Japan
| | - Yuko Ueda
- Department of Urology, Wakayama Medical University, Wakayama, Japan
| | - Kentaro Suzuki
- Department of Developmental Genetics, Institute of Advanced Medicine, Wakayama Medical University, Kimiidera 811-1, Wakayama City, Wakayama, 641-8509, Japan
| | - Taiju Hyuga
- Department of Developmental Genetics, Institute of Advanced Medicine, Wakayama Medical University, Kimiidera 811-1, Wakayama City, Wakayama, 641-8509, Japan
| | - Hiroaki Hemmi
- Laboratory of Immunology, Faculty of Veterinary Medicine, Okayama University of Science, Imabari, Ehime, Japan
| | - Tsuneyasu Kaisho
- Department of Immunology, Institute of Advanced Medicine, Wakayama Medical University, Kimiidera, Wakayama, Japan
| | - Satoru Takahashi
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tennodai, Japan
| | - Yousuke Takahama
- Experimental Immunology Branch, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Gen Yamada
- Department of Developmental Genetics, Institute of Advanced Medicine, Wakayama Medical University, Kimiidera 811-1, Wakayama City, Wakayama, 641-8509, Japan.
| |
Collapse
|
4
|
Robertson H, Dinkova-Kostova AT, Hayes JD. NRF2 and the Ambiguous Consequences of Its Activation during Initiation and the Subsequent Stages of Tumourigenesis. Cancers (Basel) 2020; 12:E3609. [PMID: 33276631 PMCID: PMC7761610 DOI: 10.3390/cancers12123609] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/19/2020] [Accepted: 11/27/2020] [Indexed: 02/06/2023] Open
Abstract
NF-E2 p45-related factor 2 (NRF2, encoded in the human by NFE2L2) mediates short-term adaptation to thiol-reactive stressors. In normal cells, activation of NRF2 by a thiol-reactive stressor helps prevent, for a limited period of time, the initiation of cancer by chemical carcinogens through induction of genes encoding drug-metabolising enzymes. However, in many tumour types, NRF2 is permanently upregulated. In such cases, its overexpressed target genes support the promotion and progression of cancer by suppressing oxidative stress, because they constitutively increase the capacity to scavenge reactive oxygen species (ROS), and they support cell proliferation by increasing ribonucleotide synthesis, serine biosynthesis and autophagy. Herein, we describe cancer chemoprevention and the discovery of the essential role played by NRF2 in orchestrating protection against chemical carcinogenesis. We similarly describe the discoveries of somatic mutations in NFE2L2 and the gene encoding the principal NRF2 repressor, Kelch-like ECH-associated protein 1 (KEAP1) along with that encoding a component of the E3 ubiquitin-ligase complex Cullin 3 (CUL3), which result in permanent activation of NRF2, and the recognition that such mutations occur frequently in many types of cancer. Notably, mutations in NFE2L2, KEAP1 and CUL3 that cause persistent upregulation of NRF2 often co-exist with mutations that activate KRAS and the PI3K-PKB/Akt pathway, suggesting NRF2 supports growth of tumours in which KRAS or PKB/Akt are hyperactive. Besides somatic mutations, NRF2 activation in human tumours can occur by other means, such as alternative splicing that results in a NRF2 protein which lacks the KEAP1-binding domain or overexpression of other KEAP1-binding partners that compete with NRF2. Lastly, as NRF2 upregulation is associated with resistance to cancer chemotherapy and radiotherapy, we describe strategies that might be employed to suppress growth and overcome drug resistance in tumours with overactive NRF2.
Collapse
Affiliation(s)
- Holly Robertson
- Jacqui Wood Cancer Centre, Division of Cellular Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, Scotland, UK; (H.R.); (A.T.D.-K.)
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Cambridge CB10 1SA, UK
| | - Albena T. Dinkova-Kostova
- Jacqui Wood Cancer Centre, Division of Cellular Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, Scotland, UK; (H.R.); (A.T.D.-K.)
| | - John D. Hayes
- Jacqui Wood Cancer Centre, Division of Cellular Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, Scotland, UK; (H.R.); (A.T.D.-K.)
| |
Collapse
|
5
|
Usui T, Morito N, Shawki HH, Sato Y, Tsukaguchi H, Hamada M, Jeon H, Yadav MK, Kuno A, Tsunakawa Y, Okada R, Ojima T, Kanai M, Asano K, Imamura Y, Koshida R, Yoh K, Usui J, Yokoi H, Kasahara M, Yoshimura A, Muratani M, Kudo T, Oishi H, Yamagata K, Takahashi S. Transcription factor MafB in podocytes protects against the development of focal segmental glomerulosclerosis. Kidney Int 2020; 98:391-403. [DOI: 10.1016/j.kint.2020.02.038] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 02/21/2020] [Accepted: 02/28/2020] [Indexed: 12/31/2022]
|
6
|
Rondon-Galeano M, Skoczylas R, Bower NI, Simons C, Gordon E, Francois M, Koltowska K, Hogan BM. MAFB modulates the maturation of lymphatic vascular networks in mice. Dev Dyn 2020; 249:1201-1216. [PMID: 32525258 DOI: 10.1002/dvdy.209] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 05/18/2020] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Lymphatic vessels play key roles in tissue fluid homeostasis, immune cell trafficking and in diverse disease settings. Lymphangiogenesis requires lymphatic endothelial cell (LEC) differentiation, proliferation, migration, and co-ordinated network formation, yet the transcriptional regulators underpinning these processes remain to be fully understood. The transcription factor MAFB was recently identified as essential for lymphangiogenesis in zebrafish and in cultured human LECs. MAFB is activated in response to VEGFC-VEGFR3 signaling and acts as a downstream effector. However, it remains unclear if the role of MAFB in lymphatic development is conserved in the mammalian embryo. RESULTS We generated a Mafb loss-of-function mouse using CRISPR/Cas9 gene editing. Mafb mutant mice presented with perinatal lethality associated with cyanosis. We identify a role for MAFB in modifying lymphatic network morphogenesis in the developing dermis, as well as developing and postnatal diaphragm. Furthermore, mutant vessels displayed excessive smooth muscle cell coverage, suggestive of a defect in the maturation of lymphatic networks. CONCLUSIONS This work confirms a conserved role for MAFB in murine lymphatics that is subtle and modulatory and may suggest redundancy in MAF family transcription factors during lymphangiogenesis.
Collapse
Affiliation(s)
- Maria Rondon-Galeano
- Division of Genomics of Development and Disease, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland, Australia.,Organogenesis and Cancer Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Renae Skoczylas
- Division of Genomics of Development and Disease, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland, Australia.,Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Neil I Bower
- Division of Genomics of Development and Disease, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland, Australia
| | - Cas Simons
- Division of Genomics of Development and Disease, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland, Australia.,Murdoch Children's Research Institute, Parkville, Victoria, Australia
| | - Emma Gordon
- Division of Genomics of Development and Disease, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland, Australia
| | - Mathias Francois
- Division of Genomics of Development and Disease, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland, Australia.,Centenary Institute, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
| | - Katarzyna Koltowska
- Division of Genomics of Development and Disease, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland, Australia.,Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Benjamin M Hogan
- Division of Genomics of Development and Disease, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland, Australia.,Organogenesis and Cancer Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Department of Anatomy and Neuroscience and Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
7
|
Zheng H, Li X, Yang X, Yan F, Wang C, Liu J. miR-217/Mafb Axis Involve in High Glucose-Induced β-TC-tet Cell Damage Via Regulating NF-κB Signaling Pathway. Biochem Genet 2020; 58:901-913. [PMID: 32627107 DOI: 10.1007/s10528-020-09984-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 06/25/2020] [Indexed: 12/12/2022]
Abstract
We attempt to explore the role of miR-217 during the process of type 2 diabetes mellitus (T2DM). Mouse β-TC-tet was dealt with 16.7 mM glucose (HG) to imitate the cells in T2DM. Cell proliferation and apoptosis were determined by cell counting kit-8 and flow cytometry. The correlation between miR-217 and Mafb was predicted with biological software and confirmed by dual lucifierase assay. Western blot was applied to detect protein expression. The data from GEO database exhibited that miR-217 was upregulated in T2DM patients. HG treatment upregulated the expression of miR-217, inhibited the proliferation, and promoted the apoptosis and inflammation of β-TC-tet cell. Depletion of miR-217 alleviated the damage of β-TC-tet cell caused by HG. Mafb was affirmed as a target of miR-217 and was negatively modulated by miR-217. Knockdown of Mafb attenuated the alleviation of miR-217 inhibitor on β-TC-tet cell damage. The expression of key proteins in NF-κB signaling pathway was upregulated by HG, and this upregulation tendency was inhibited by miR-217 inhibitor. Moreover, silencing Mafb could alleviate the inhibition of miR-217 inhibitor on these proteins. Our findings insinuated that inhibition of miR-217 could relieve β-TC-tet damage induced by HG through regulating Mafb and NF-κB signaling.
Collapse
Affiliation(s)
- Huizhen Zheng
- Department of Endocrinology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, P.R. China.,Institute of Endocrine and Metabolic Diseases of Shandong University, Jinan, 250012, Shandong, P.R. China.,Key Laboratory of Endocrine and Metabolic Diseases, Shandong Province Medicine & Health, Jinan, 250012, Shandong, P.R. China.,Jinan Clinical Research Center for Endocrine and Metabolic Diseases, Jinan, 250012, Shandong, P.R. China
| | - Xinying Li
- Department of Emergency, Shandong Provincial Western Hospital, Shandong Provincial ENT Hospital, Jinan, Shandong, P.R. China
| | - Xinyu Yang
- Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, P.R. China
| | - Fei Yan
- Department of Endocrinology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, P.R. China.,Institute of Endocrine and Metabolic Diseases of Shandong University, Jinan, 250012, Shandong, P.R. China.,Key Laboratory of Endocrine and Metabolic Diseases, Shandong Province Medicine & Health, Jinan, 250012, Shandong, P.R. China.,Jinan Clinical Research Center for Endocrine and Metabolic Diseases, Jinan, 250012, Shandong, P.R. China
| | - Chuan Wang
- Department of Endocrinology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, P.R. China.,Institute of Endocrine and Metabolic Diseases of Shandong University, Jinan, 250012, Shandong, P.R. China.,Key Laboratory of Endocrine and Metabolic Diseases, Shandong Province Medicine & Health, Jinan, 250012, Shandong, P.R. China.,Jinan Clinical Research Center for Endocrine and Metabolic Diseases, Jinan, 250012, Shandong, P.R. China
| | - Jinbo Liu
- Department of Endocrinology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, P.R. China. .,Institute of Endocrine and Metabolic Diseases of Shandong University, Jinan, 250012, Shandong, P.R. China. .,Key Laboratory of Endocrine and Metabolic Diseases, Shandong Province Medicine & Health, Jinan, 250012, Shandong, P.R. China. .,Jinan Clinical Research Center for Endocrine and Metabolic Diseases, Jinan, 250012, Shandong, P.R. China.
| |
Collapse
|
8
|
Imbratta C, Hussein H, Andris F, Verdeil G. c-MAF, a Swiss Army Knife for Tolerance in Lymphocytes. Front Immunol 2020; 11:206. [PMID: 32117317 PMCID: PMC7033575 DOI: 10.3389/fimmu.2020.00206] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 01/27/2020] [Indexed: 12/11/2022] Open
Abstract
Beyond its well-admitted role in development and organogenesis, it is now clear that the transcription factor c-Maf has owned its place in the realm of immune-related transcription factors. Formerly introduced solely as a Th2 transcription factor, the role attributed to c-Maf has gradually broadened over the years and has extended to most, if not all, known immune cell types. The influence of c-Maf is particularly prominent among T cell subsets, where c-Maf regulates the differentiation as well as the function of multiple subsets of CD4 and CD8 T cells, lending it a crucial position in adaptive immunity and anti-tumoral responsiveness. Recent research has also revealed the role of c-Maf in controlling Th17 responses in the intestine, positioning it as an essential factor in intestinal homeostasis. This review aims to present and discuss the recent advances highlighting the particular role played by c-Maf in T lymphocyte differentiation, function, and homeostasis.
Collapse
Affiliation(s)
- Claire Imbratta
- Department of Oncology, University of Lausanne, Lausanne, Switzerland
| | - Hind Hussein
- Laboratoire d'Immunobiologie, Université Libre de Bruxelles, Brussels, Belgium
| | - Fabienne Andris
- Laboratoire d'Immunobiologie, Université Libre de Bruxelles, Brussels, Belgium
| | - Grégory Verdeil
- Department of Oncology, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
9
|
Regulatory roles of epithelial-mesenchymal interaction (EMI) during early and androgen dependent external genitalia development. Differentiation 2019; 110:29-35. [PMID: 31590136 DOI: 10.1016/j.diff.2019.08.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 08/23/2019] [Accepted: 08/26/2019] [Indexed: 02/07/2023]
Abstract
Development of external genitalia (ExG) has been a topic of long mystery in the field of organogenesis research. Early stage male and female of mouse embryos develop a common genital tubercle (GT) in the perineum whose outgrowth extends distally from the posterior cloacal regions. Concomitant with GT outgrowth, the cloaca is divided into urogenital sinus and anorectum by urorectal septum (URS) internally. The outgrowth of the GT is associated with the formation of endodermal epithelial urethral plate (UP) attached to the ventral epidermis of the GT. Such a common developmental phase is observed until around embryonic day 15.5 (E15.5) morphologically in mouse embryogenesis. Various growth factor genes, such as Fibroblast growth factor (Fgf) and Wnt genes are expressed and function during GT formation. Since the discovery of key growth factor signals and several regulatory molecules, elucidation of their functions has been achieved utilizing mouse developmental models, conditional gene knockout mouse and in vitro culture. Analyses on the phenotypes of such mouse models have revealed that several growth factor families play fundamental roles in ExG organogenesis based on the epithelial-mesenchymal interaction (EMI). More recently, EMI between developing urethral epithelia and its bilateral mesenchyme of later stages is also reported during subsequent stage of androgen-dependent male-type urethral formation in the mouse embryo. Mafb, belonging to AP-1 family and a key androgen-responsive mesenchymal gene, is identified and starts to be expressed around E14.5 when masculinization of the urethra is initiated. Mesenchymal cell condensation and migration, which are regulated by nonmuscle myosin, are shown to be essential process for masculinization. Hence, studies on EMI at various embryonic stages are important not only for early but also for subsequent masculinization of the urethra. In this review, a dynamic mode of EMI for both early and late phases of ExG development is discussed.
Collapse
|
10
|
He M, Wang J, Yin Z, Zhao Y, Hou H, Fan J, Li H, Wen Z, Tang J, Wang Y, Wang DW, Chen C. MiR-320a induces diabetic nephropathy via inhibiting MafB. Aging (Albany NY) 2019; 11:3055-3079. [PMID: 31102503 PMCID: PMC6555468 DOI: 10.18632/aging.101962] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 05/06/2019] [Indexed: 12/17/2022]
Abstract
Multiple studies indicate that microRNAs (miRNAs) are involved in diabetes. However, the roles of miRNA in the target organ damages in diabetes remain unclear. This study investigated the functions of miR-320a in diabetic nephropathy (DN). In this study, db/db mice were used to observe the changes in podocytes and their function in vivo, as well as in cultured mouse podocyte cells (MPC5) exposed to high glucose in vitro. To further explore the role of miR-320a in DN, recombinant adeno-associated viral particle was administered intravenously to manipulate the expression of miR-320a in db/db mice. Overexpression of miR-320a markedly promoted podocyte loss and dysfunction in DN, including mesangial expansion and increased levels of proteinuria, serum creatinine and urea nitrogen. Furthermore, MafB was identified as a direct target of miR-320a through AGO2 co-immunoprecipitation, luciferase reporter assay, and Western blotting. Moreover, re-expression of MafB rescued miR-320a-induced podocyte loss and dysfunction by upregulating the expressions of Nephrin and glutathione peroxidase 3 (Gpx3). Our data indicated that miR-320a aggravated renal disfunction in DN by targeting MafB and downregulating Nephrin and Gpx3 in podocytes, which suggested that miR-320a could be a potential therapeutic target of diabetic nephropathy.
Collapse
Affiliation(s)
- Mengying He
- Division of Cardiology and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jin Wang
- Division of Cardiology and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhongwei Yin
- Division of Cardiology and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yanru Zhao
- Division of Cardiology and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Huiying Hou
- Division of Cardiology and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jiahui Fan
- Division of Cardiology and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Huaping Li
- Division of Cardiology and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zheng Wen
- Division of Cardiology and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jiarong Tang
- Division of Cardiology and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yan Wang
- Division of Cardiology and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Dao Wen Wang
- Division of Cardiology and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Chen Chen
- Division of Cardiology and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
11
|
Qiang YW, Ye S, Huang Y, Chen Y, Van Rhee F, Epstein J, Walker BA, Morgan GJ, Davies FE. MAFb protein confers intrinsic resistance to proteasome inhibitors in multiple myeloma. BMC Cancer 2018; 18:724. [PMID: 29980194 PMCID: PMC6035431 DOI: 10.1186/s12885-018-4602-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 06/18/2018] [Indexed: 11/29/2022] Open
Abstract
Background Multiple myeloma (MM) patients with t(14;20) have a poor prognosis and their outcome has not improved following the introduction of bortezomib (Bzb). The mechanism underlying the resistance to proteasome inhibitors (PIs) for this subset of patients is unknown. Methods IC50 of Bzb and carfilzomib (CFZ) in human myeloma cell lines (HMCLs) were established by MTT assay. Gene Expression profile (GEP) analysis was used to determine gene expression in primary myeloma cells. Immunoblotting analysis was performed for MAFb and caspase family proteins. Immunofluorescence staining was used to detect the location of MAFb protein in MM cells. Lentiviral infections were used to knock-down MAFb expression in two lines. Apoptosis detection by flow cytometry and western blot analysis was performed to determine the molecular mechanism MAFb confers resistance to proteasome inhibitors. Results We found high levels of MAFb protein in cell lines with t(14;20), in one line with t(6;20), in one with Igλ insertion into MAFb locus, and in primary plasma cells from MM patients with t(14;20). High MAFb protein levels correlated with higher IC50s of PIs in MM cells. Inhibition of GSK3β activity or treatment with Bzb or CFZ prevented MAFb protein degradation without affecting the corresponding mRNA level indicating a role for GSK3 and proteasome inhibitors in regulation of MAFb stability. Silencing MAFb restored sensitivity to Bzb and CFZ, and enhanced PIs-induced apoptosis and activation of caspase-3, − 8, − 9, PARP and lamin A/C suggesting that high expression of MAFb protein leads to insensitivity to proteasome inhibitors. Conclusion These results highlight the role of post-translational modification of MAFb in maintaining its protein level, and identify a mechanism by which proteasome inhibitors induced stabilization of MAFb confers resistance to proteasome inhibitors, and provide a rationale for the development of targeted therapeutic strategies for this subset of patients. Electronic supplementary material The online version of this article (10.1186/s12885-018-4602-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ya-Wei Qiang
- Myeloma Institute, University of Arkansas for Medical Sciences, Winthrop P. Rockefeller Cancer Institute, 4301 West Markham St., Slot 776, Rm 914, Little Rock, AR, 72205, USA.
| | - Shiqiao Ye
- Myeloma Institute, University of Arkansas for Medical Sciences, Winthrop P. Rockefeller Cancer Institute, 4301 West Markham St., Slot 776, Rm 914, Little Rock, AR, 72205, USA
| | - Yuhua Huang
- Myeloma Institute, University of Arkansas for Medical Sciences, Winthrop P. Rockefeller Cancer Institute, 4301 West Markham St., Slot 776, Rm 914, Little Rock, AR, 72205, USA
| | - Yu Chen
- Myeloma Institute, University of Arkansas for Medical Sciences, Winthrop P. Rockefeller Cancer Institute, 4301 West Markham St., Slot 776, Rm 914, Little Rock, AR, 72205, USA
| | - Frits Van Rhee
- Myeloma Institute, University of Arkansas for Medical Sciences, Winthrop P. Rockefeller Cancer Institute, 4301 West Markham St., Slot 776, Rm 914, Little Rock, AR, 72205, USA
| | - Joshua Epstein
- Myeloma Institute, University of Arkansas for Medical Sciences, Winthrop P. Rockefeller Cancer Institute, 4301 West Markham St., Slot 776, Rm 914, Little Rock, AR, 72205, USA
| | - Brian A Walker
- Myeloma Institute, University of Arkansas for Medical Sciences, Winthrop P. Rockefeller Cancer Institute, 4301 West Markham St., Slot 776, Rm 914, Little Rock, AR, 72205, USA
| | - Gareth J Morgan
- Myeloma Institute, University of Arkansas for Medical Sciences, Winthrop P. Rockefeller Cancer Institute, 4301 West Markham St., Slot 776, Rm 914, Little Rock, AR, 72205, USA
| | - Faith E Davies
- Myeloma Institute, University of Arkansas for Medical Sciences, Winthrop P. Rockefeller Cancer Institute, 4301 West Markham St., Slot 776, Rm 914, Little Rock, AR, 72205, USA
| |
Collapse
|
12
|
Regulation of masculinization: androgen signalling for external genitalia development. Nat Rev Urol 2018; 15:358-368. [DOI: 10.1038/s41585-018-0008-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
13
|
Nakatani T, Partridge NC. MEF2C Interacts With c-FOS in PTH-Stimulated Mmp13 Gene Expression in Osteoblastic Cells. Endocrinology 2017; 158:3778-3791. [PMID: 28973134 PMCID: PMC5695834 DOI: 10.1210/en.2017-00159] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 07/18/2017] [Indexed: 01/01/2023]
Abstract
Parathyroid hormone (PTH) regulates the transcription of many genes in the osteoblast. One of these genes is Mmp13, which is involved in bone remodeling and early stages of endochondral bone formation. Previously, we reported that PTH induces Mmp13 transcription by regulating the dissociation of histone deacetylase 4 (HDAC4) from runt-related transcription factor 2 (Runx2), and the association of the HATs, p300, and p300/CREB binding protein (CBP)-associated factor. It is known that, in addition to Runx2, HDAC4 binds to the transcription factor, myocyte-specific enhancer factor 2c (MEF2C), and represses its activity. In this work, we investigated whether MEF2C participates in PTH-stimulated Mmp13 gene expression in osteoblastic cells and how it does so. Knockdown of Mef2c in UMR 106-01 cells repressed Mmp13 messenger RNA expression and promoter activity with or without PTH treatment. Chromatin immunoprecipitation (ChIP) assays showed that MEF2C associated with the Mmp13 promoter; this increased after 4 hours of PTH treatment. ChIP-reChIP results indicate that endogenous MEF2C associates with HDAC4 on the Mmp13 promoter; after PTH treatment, this association decreased. From gel shift, ChIP, and promoter-reporter assays, MEF2C was found to associate with the activator protein-1 (AP-1) site without directly binding to DNA and had its stimulatory effect through interaction with c-FOS. In conclusion, MEF2C is necessary for Mmp13 gene expression at the transcriptional level and participates in PTH-stimulated Mmp13 gene expression by increased binding to c-FOS at the AP-1 site in the Mmp13 promoter. The observation of MEF2C interacting with a member of the AP-1 transcription factor family provides knowledge of the functions of HDAC4, c-FOS, and MEF2C.
Collapse
Affiliation(s)
- Teruyo Nakatani
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, New York 10010
| | - Nicola C. Partridge
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, New York 10010
| |
Collapse
|
14
|
Morito N, Yoh K, Usui T, Oishi H, Ojima M, Fujita A, Koshida R, Shawki HH, Hamada M, Muratani M, Yamagata K, Takahashi S. Transcription factor MafB may play an important role in secondary hyperparathyroidism. Kidney Int 2017; 93:54-68. [PMID: 28964572 DOI: 10.1016/j.kint.2017.06.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 06/02/2017] [Accepted: 06/28/2017] [Indexed: 10/18/2022]
Abstract
The transcription factor MafB is essential for development of the parathyroid glands, the expression of which persists after morphogenesis and in adult parathyroid glands. However, the function of MafB in adult parathyroid tissue is unclear. To investigate this, we induced chronic kidney disease (CKD) in wild-type and MafB heterozygote (MafB+/-) mice by feeding them an adenine-supplemented diet, leading to secondary hyperparathyroidism. The elevated serum creatinine and blood urea nitrogen levels in heterozygous and wild-type mice fed the adenine-supplemented diet were similar. Interestingly, secondary hyperparathyroidism, characterized by serum parathyroid hormone elevation and enlargement of parathyroid glands, was suppressed in MafB+/- mice fed the adenine-supplemented diet compared to similarly fed wild-type littermates. Quantitative RT-PCR and immunohistochemical analyses showed that the increased expression of parathyroid hormone and cyclin D2 in mice with CKD was suppressed in the parathyroid glands of heterozygous CKD mice. A reporter assay indicated that MafB directly regulated parathyroid hormone and cyclin D2 expression. To exclude an effect of a developmental anomaly in MafB+/- mice, we analyzed MafB tamoxifen-induced global knockout mice. Hypocalcemia-stimulated parathyroid hormone secretion was significantly impaired in MafB knockout mice. RNA-sequencing analysis indicated PTH, Gata3 and Gcm2 depletion in the parathyroid glands of MafB knockout mice. Thus, MafB appears to play an important role in secondary hyperparathyroidism by regulation of parathyroid hormone and cyclin D2 expression. Hence, MafB may represent a new therapeutic target in secondary hyperparathyroidism.
Collapse
Affiliation(s)
- Naoki Morito
- Department of Nephrology, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan.
| | - Keigyou Yoh
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Toshiaki Usui
- Department of Nephrology, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan; Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Hisashi Oishi
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan; Department of Comparative and Experimental Medicine (DCEM), Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Masami Ojima
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Akiko Fujita
- Department of Nephrology, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Ryusuke Koshida
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Hossam H Shawki
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Michito Hamada
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Masafumi Muratani
- Department of Genome Biology, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Kunihiro Yamagata
- Department of Nephrology, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Satoru Takahashi
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan; Laboratory Animal Resource Center (LARC), Faculty of Medicine, University of Tsukuba, Ibaraki, Japan; International Institute for Integrative Sleep Medicine (WPI-IIIS), Faculty of Medicine, University of Tsukuba, Ibaraki, Japan; Life Science Center of Tsukuba Advanced Research Alliance (TARA), Faculty of Medicine University of Tsukuba, Ibaraki, Japan
| |
Collapse
|
15
|
A Comprehensive Survey of the Roles of Highly Disordered Proteins in Type 2 Diabetes. Int J Mol Sci 2017; 18:ijms18102010. [PMID: 28934129 PMCID: PMC5666700 DOI: 10.3390/ijms18102010] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 09/04/2017] [Accepted: 09/12/2017] [Indexed: 01/03/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a chronic and progressive disease that is strongly associated with hyperglycemia (high blood sugar) related to either insulin resistance or insufficient insulin production. Among the various molecular events and players implicated in the manifestation and development of diabetes mellitus, proteins play several important roles. The Kyoto Encyclopedia of Genes and Genomes (KEGG) database has information on 34 human proteins experimentally shown to be related to the T2DM pathogenesis. It is known that many proteins associated with different human maladies are intrinsically disordered as a whole, or contain intrinsically disordered regions. The presented study shows that T2DM is not an exception to this rule, and many proteins known to be associated with pathogenesis of this malady are intrinsically disordered. The multiparametric bioinformatics analysis utilizing several computational tools for the intrinsic disorder characterization revealed that IRS1, IRS2, IRS4, MAFA, PDX1, ADIPO, PIK3R2, PIK3R5, SoCS1, and SoCS3 are expected to be highly disordered, whereas VDCC, SoCS2, SoCS4, JNK9, PRKCZ, PRKCE, insulin, GCK, JNK8, JNK10, PYK, INSR, TNF-α, MAPK3, and Kir6.2 are classified as moderately disordered proteins, and GLUT2, GLUT4, mTOR, SUR1, MAPK1, IKKA, PRKCD, PIK3CB, and PIK3CA are predicted as mostly ordered. More focused computational analyses and intensive literature mining were conducted for a set of highly disordered proteins related to T2DM. The resulting work represents a comprehensive survey describing the major biological functions of these proteins and functional roles of their intrinsically disordered regions, which are frequently engaged in protein–protein interactions, and contain sites of various posttranslational modifications (PTMs). It is also shown that intrinsic disorder-associated PTMs may play important roles in controlling the functions of these proteins. Consideration of the T2DM proteins from the perspective of intrinsic disorder provides useful information that can potentially lead to future experimental studies that may uncover latent and novel pathways associated with the disease.
Collapse
|
16
|
Cuevas VD, Anta L, Samaniego R, Orta-Zavalza E, Vladimir de la Rosa J, Baujat G, Domínguez-Soto Á, Sánchez-Mateos P, Escribese MM, Castrillo A, Cormier-Daire V, Vega MA, Corbí ÁL. MAFB Determines Human Macrophage Anti-Inflammatory Polarization: Relevance for the Pathogenic Mechanisms Operating in Multicentric Carpotarsal Osteolysis. THE JOURNAL OF IMMUNOLOGY 2017; 198:2070-2081. [PMID: 28093525 DOI: 10.4049/jimmunol.1601667] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 12/16/2016] [Indexed: 12/13/2022]
Abstract
Macrophage phenotypic and functional heterogeneity derives from tissue-specific transcriptional signatures shaped by the local microenvironment. Most studies addressing the molecular basis for macrophage heterogeneity have focused on murine cells, whereas the factors controlling the functional specialization of human macrophages are less known. M-CSF drives the generation of human monocyte-derived macrophages with a potent anti-inflammatory activity upon stimulation. We now report that knockdown of MAFB impairs the acquisition of the anti-inflammatory profile of human macrophages, identify the MAFB-dependent gene signature in human macrophages and illustrate the coexpression of MAFB and MAFB-target genes in CD163+ tissue-resident and tumor-associated macrophages. The contribution of MAFB to the homeostatic/anti-inflammatory macrophage profile is further supported by the skewed polarization of monocyte-derived macrophages from multicentric carpotarsal osteolysis (Online Mendelian Inheritance in Man #166300), a pathology caused by mutations in the MAFB gene. Our results demonstrate that MAFB critically determines the acquisition of the anti-inflammatory transcriptional and functional profiles of human macrophages.
Collapse
Affiliation(s)
- Víctor D Cuevas
- Laboratorio de Células Mieloides, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, 28040 Madrid, Spain
| | - Laura Anta
- Servicio de Cirugía Ortopédica y Traumatología, Complejo Hospitalario de Santiago de Compostela, 15706 Santiago de Compostela, Spain
| | - Rafael Samaniego
- Laboratorio de Inmuno-Oncología, Unidad de Microscopía Confocal, Instituto de Investigación Sanitaria Gregorio Marañón, 28007 Madrid, Spain
| | - Emmanuel Orta-Zavalza
- Laboratorio de Células Mieloides, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, 28040 Madrid, Spain
| | - Juan Vladimir de la Rosa
- Instituto de Investigaciones Biomedicas Alberto Sols, Consejo Superior de Investigaciones Científicas, 28029 Madrid, Spain
| | - Geneviève Baujat
- Unidad de Biomedicina, Instituto de Investigaciones Biomédicas-Universidad de Las Palmas de Gran Canaria (ULPGC), Instituto Universitario de Investigaciones Biomedicas y Sanitarias de la ULPGC, 35001 Las Palmas, Spain.,Département de Génétique, INSERM U781, Université Paris Descartes-Sorbonne Paris Cité, Institut Imagine, Hôpital Necker Enfants Malades, 75015 Paris, France; and
| | - Ángeles Domínguez-Soto
- Laboratorio de Células Mieloides, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, 28040 Madrid, Spain
| | - Paloma Sánchez-Mateos
- Laboratorio de Inmuno-Oncología, Unidad de Microscopía Confocal, Instituto de Investigación Sanitaria Gregorio Marañón, 28007 Madrid, Spain
| | - María M Escribese
- Institute for Applied Molecular Medicine, School of Medicine, University CEU San Pablo, Madrid, Spain
| | - Antonio Castrillo
- Instituto de Investigaciones Biomedicas Alberto Sols, Consejo Superior de Investigaciones Científicas, 28029 Madrid, Spain
| | - Valérie Cormier-Daire
- Unidad de Biomedicina, Instituto de Investigaciones Biomédicas-Universidad de Las Palmas de Gran Canaria (ULPGC), Instituto Universitario de Investigaciones Biomedicas y Sanitarias de la ULPGC, 35001 Las Palmas, Spain.,Département de Génétique, INSERM U781, Université Paris Descartes-Sorbonne Paris Cité, Institut Imagine, Hôpital Necker Enfants Malades, 75015 Paris, France; and
| | - Miguel A Vega
- Laboratorio de Células Mieloides, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, 28040 Madrid, Spain;
| | - Ángel L Corbí
- Laboratorio de Células Mieloides, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, 28040 Madrid, Spain;
| |
Collapse
|
17
|
Nemoto T, Shibata Y, Inoue S, Igarashi A, Tokairin Y, Yamauchi K, Kimura T, Sato M, Sato K, Nakano H, Abe S, Nishiwaki M, Kubota I. MafB enhances the phagocytic activity of RAW264.7 macrophages by promoting Fcgr3 expression. Biochem Biophys Res Commun 2017; 482:375-381. [DOI: 10.1016/j.bbrc.2016.11.070] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 11/12/2016] [Indexed: 11/16/2022]
|
18
|
Yang H, He J, Wei W, Chu W, Yu S, Tian Y, Peng F, Liu H, Zhang Z, Chen J. The c.-360 T>C mutation affects PGAM2 transcription activity and is linked with the water holding capacity of the longissimus lumborum muscle in pigs. Meat Sci 2016; 122:139-144. [PMID: 27538264 DOI: 10.1016/j.meatsci.2016.07.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 07/26/2016] [Accepted: 07/28/2016] [Indexed: 11/18/2022]
Abstract
The phosphoglycerate mutase 2 (PGAM2) gene encodes a key enzyme in the glycolytic process. This study examined a functional mutation in the PGAM2 gene and evaluated its relationship with water holding capacity (WHC). RT-qPCR analysis showed the PGAM2 mRNA level was significantly higher in the low-WHC group than in the high-WHC group (P<0.05). The c.-360 T>C mutation was identified through sequencing and found to have opposite allele distributions in the two groups. The allele was further genotyped in 170 Duroc×Large White×Yorkshire crossbred pigs using allele-specific PCR. The CC genotype was associated with lower WHC and higher PGAM2 mRNA levels, whereas the TT genotype corresponded to a higher WHC and lower PGAM2 mRNA levels (P<0.05). A luciferase activity assay also showed that the CC-genotype promoter had higher activity than the TT-genotype promoter (P<0.05). In conclusion, we discovered the c.-360 T>C mutation in the PGAM2 gene, which is a promising marker for improving pork WHC.
Collapse
Affiliation(s)
- Haoxin Yang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Jiawen He
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Wei Wei
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Weiwei Chu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Shigang Yu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Ye Tian
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Fengyi Peng
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Hongcheng Liu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Zengkai Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Jie Chen
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China.
| |
Collapse
|
19
|
Park JG, Tischfield MA, Nugent AA, Cheng L, Di Gioia SA, Chan WM, Maconachie G, Bosley TM, Summers CG, Hunter DG, Robson CD, Gottlob I, Engle EC. Loss of MAFB Function in Humans and Mice Causes Duane Syndrome, Aberrant Extraocular Muscle Innervation, and Inner-Ear Defects. Am J Hum Genet 2016; 98:1220-1227. [PMID: 27181683 DOI: 10.1016/j.ajhg.2016.03.023] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 03/21/2016] [Indexed: 11/16/2022] Open
Abstract
Duane retraction syndrome (DRS) is a congenital eye-movement disorder defined by limited outward gaze and retraction of the eye on attempted inward gaze. Here, we report on three heterozygous loss-of-function MAFB mutations causing DRS and a dominant-negative MAFB mutation causing DRS and deafness. Using genotype-phenotype correlations in humans and Mafb-knockout mice, we propose a threshold model for variable loss of MAFB function. Postmortem studies of DRS have reported abducens nerve hypoplasia and aberrant innervation of the lateral rectus muscle by the oculomotor nerve. Our studies in mice now confirm this human DRS pathology. Moreover, we demonstrate that selectively disrupting abducens nerve development is sufficient to cause secondary innervation of the lateral rectus muscle by aberrant oculomotor nerve branches, which form at developmental decision regions close to target extraocular muscles. Thus, we present evidence that the primary cause of DRS is failure of the abducens nerve to fully innervate the lateral rectus muscle in early development.
Collapse
Affiliation(s)
- Jong G Park
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA; Department of Neurology, Boston Children's Hospital, Boston, MA 02115, USA; F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA; Department of Neurology, Harvard Medical School, Boston, MA 02115, USA; Duke University School of Medicine, Durham, NC 27710, USA
| | - Max A Tischfield
- Department of Neurology, Boston Children's Hospital, Boston, MA 02115, USA; F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA
| | - Alicia A Nugent
- Department of Neurology, Boston Children's Hospital, Boston, MA 02115, USA; F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA; Program in Neuroscience, Harvard Medical School, Boston, MA 02115, USA
| | - Long Cheng
- Department of Neurology, Boston Children's Hospital, Boston, MA 02115, USA; F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA; Department of Neurology, Harvard Medical School, Boston, MA 02115, USA
| | - Silvio Alessandro Di Gioia
- Department of Neurology, Boston Children's Hospital, Boston, MA 02115, USA; F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA
| | - Wai-Man Chan
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA; Department of Neurology, Boston Children's Hospital, Boston, MA 02115, USA; F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA; Department of Neurology, Harvard Medical School, Boston, MA 02115, USA
| | - Gail Maconachie
- Ulverscroft Eye Unit, University of Leicester, Leicester LE2 7LX, UK; Department of Neuroscience, Psychology, and Behavior, University of Leicester, Leicester LE2 7LX, UK
| | - Thomas M Bosley
- Wilmer Eye Institute, Johns Hopkins University, Baltimore, MD 21287, USA
| | - C Gail Summers
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, MN 55455, USA; Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA
| | - David G Hunter
- Department of Ophthalmology, Boston Children's Hospital, Boston, MA 02115, USA; Department of Ophthalmology, Harvard Medical School, Boston, MA 02115, USA
| | - Caroline D Robson
- Department of Radiology, Boston Children's Hospital, Boston, MA 02115, USA; Department of Radiology, Harvard Medical School, Boston, MA 02115, USA
| | - Irene Gottlob
- Ulverscroft Eye Unit, University of Leicester, Leicester LE2 7LX, UK; Department of Neuroscience, Psychology, and Behavior, University of Leicester, Leicester LE2 7LX, UK
| | - Elizabeth C Engle
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA; Department of Neurology, Boston Children's Hospital, Boston, MA 02115, USA; F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA; Department of Neurology, Harvard Medical School, Boston, MA 02115, USA; Program in Neuroscience, Harvard Medical School, Boston, MA 02115, USA; Department of Ophthalmology, Boston Children's Hospital, Boston, MA 02115, USA; Department of Ophthalmology, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA.
| |
Collapse
|
20
|
Hasegawa H, Watanabe T, Kato S, Toshima T, Yokoyama M, Aida Y, Nishiwaki M, Kadowaki S, Narumi T, Honda Y, Otaki Y, Honda S, Shunsuke N, Funayama A, Nishiyama S, Takahashi H, Arimoto T, Shishido T, Miyamoto T, Abe S, Shibata Y, Kubota I. The role of macrophage transcription factor MafB in atherosclerotic plaque stability. Atherosclerosis 2016; 250:133-43. [PMID: 27214395 DOI: 10.1016/j.atherosclerosis.2016.05.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 04/16/2016] [Accepted: 05/11/2016] [Indexed: 11/15/2022]
Abstract
BACKGROUND AND AIMS Macrophage differentiation is associated with the development of atherosclerosis and plaque vulnerability and is regulated by transcription factor MafB. We previously reported that MafB attenuates macrophage apoptosis, which is associated with atherosclerotic plaque instability. The aim of this study was to elucidate the role of MafB in the progression of atherosclerotic plaque. METHODS We generated macrophage-specific dominant-negative (DN) MafB transgenic mice and intercrossed DN-MafB mice with apolipoprotein E (ApoE) knockout (KO) mice. RESULTS There was no significant difference in advanced atherosclerotic lesion area between DN-MafB/ApoE KO mice and littermate control ApoE KO mice 9 weeks after high-cholesterol diet. However, DN-MafB/ApoE KO mice showed significantly larger necrotic cores and lower collagen content in atherosclerotic plaques than ApoE KO mice. Although there was no difference in intraplaque macrophage infiltration and efferocytosis, DN-MafB/ApoE KO mice showed significantly more apoptotic macrophages at the plaque edges than did ApoE KO mice. Real-time PCR analysis revealed that peritoneal macrophages of DN-MafB/ApoE KO mice had a greater increase in matrix metalloproteinase-9 and mRNA expression of inflammatory/M1 macrophage markers (tissue necrosis factor-α, interleukin-6, CD11c, and p47phox) after lipopolysaccharide stimulation than those of ApoE KO mice. CONCLUSION Macrophage-specific inhibition of MafB may destabilize atherosclerotic plaques in advanced lesions.
Collapse
Affiliation(s)
- Hiromasa Hasegawa
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, Japan
| | - Tetsu Watanabe
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, Japan.
| | - Shigehiko Kato
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, Japan
| | - Taku Toshima
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, Japan
| | - Miyuki Yokoyama
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, Japan
| | - Yasuko Aida
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, Japan
| | - Michiko Nishiwaki
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, Japan
| | - Shinpei Kadowaki
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, Japan
| | - Taro Narumi
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, Japan
| | - Yuki Honda
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, Japan
| | - Yoichiro Otaki
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, Japan
| | - Shintaro Honda
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, Japan
| | - Netsu Shunsuke
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, Japan
| | - Akira Funayama
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, Japan
| | - Satoshi Nishiyama
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, Japan
| | - Hiroki Takahashi
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, Japan
| | - Takanori Arimoto
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, Japan
| | - Tetsuro Shishido
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, Japan
| | - Takuya Miyamoto
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, Japan
| | - Shuichi Abe
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, Japan
| | - Yoko Shibata
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, Japan
| | - Isao Kubota
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, Japan
| |
Collapse
|
21
|
Otsuki A, Suzuki M, Katsuoka F, Tsuchida K, Suda H, Morita M, Shimizu R, Yamamoto M. Unique cistrome defined as CsMBE is strictly required for Nrf2-sMaf heterodimer function in cytoprotection. Free Radic Biol Med 2016; 91:45-57. [PMID: 26677805 DOI: 10.1016/j.freeradbiomed.2015.12.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2015] [Revised: 12/01/2015] [Accepted: 12/06/2015] [Indexed: 12/30/2022]
Abstract
Nrf2-small Maf (sMaf) heterodimer is essential for the inducible expression of cytoprotective genes upon exposure to oxidative and xenobiotic stresses. While the Nrf2-sMaf heterodimer recognizes DNA sequences referred to as the antioxidant/electrophile responsive element (ARE/EpRE), we here define these DNA sequences collectively as CNC-sMaf binding element (CsMBE). In contrast, large and small Maf proteins are able to form homodimers that recognize the Maf recognition element (MARE). CsMBE and MARE share a conserved core sequence but they differ in the 5'-adjacent nucleotide neighboring the core. Because of the high similarity between the CsMBE and MARE sequences, it has been unclear how many target binding sites and target genes are shared by the Nrf2-sMaf heterodimers and Maf homodimers. To address this issue, we introduced a substitution mutation of alanine to tyrosine at position 502 in Nrf2, which rendered the DNA-binding domain structure of Nrf2 similar to Maf, and generated knock-in mice expressing the Nrf2(A502Y) mutant. Our chromatin immunoprecipitation-sequencing analyses showed that binding sites of Nrf2(A502Y)-sMaf were dramatically changed from CsMBE to MARE in vivo. Intriguingly, however, one-quarter of the Nrf2(A502Y)-sMaf binding sites also bound Nrf2-sMaf commonly and vice versa. RNA-sequencing analyses revealed that Nrf2(A502Y)-sMaf failed to induce expression of major cytoprotective genes upon stress stimulation, which increased the sensitivity of Nrf2(A502Y) mutant mice to acute acetaminophen toxicity. These results demonstrate that the unique cistrome defined as CsMBE is strictly required for the Nrf2-sMaf heterodimer function in cytoprotection and that the roles played by CsMBE differ sharply from those of MARE.
Collapse
Affiliation(s)
- Akihito Otsuki
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Mikiko Suzuki
- Center for Radioisotope Sciences, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan.
| | - Fumiki Katsuoka
- Tohoku Medical Megabank Organization, Tohoku University, Sendai 980-8573, Japan
| | - Kouhei Tsuchida
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Hiromi Suda
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Masanobu Morita
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Ritsuko Shimizu
- Department of Molecular Hematology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Masayuki Yamamoto
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan; Tohoku Medical Megabank Organization, Tohoku University, Sendai 980-8573, Japan.
| |
Collapse
|
22
|
Zhang C, Guo Z. Multiple functions of Maf in the regulation of cellular development and differentiation. Diabetes Metab Res Rev 2015; 31:773-8. [PMID: 26122665 PMCID: PMC5042042 DOI: 10.1002/dmrr.2676] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 05/29/2015] [Accepted: 06/24/2015] [Indexed: 11/08/2022]
Abstract
Cellular muscular aponeurotic fibrosarcoma (c-Maf) is a member of the large macrophage-activating factor family. C-Maf plays important roles in the morphogenetic processes and cellular differentiation of the lens, kidneys, liver, T cells and nervous system, and it is particularly important in pancreatic islet and erythroblastic island formation. However, the exact role of c-Maf remains to be elucidated. In this review, we summarize the research to clarify the functions of c-Maf in the cellular development and differentiation. The expression of c-Maf is higher in pancreatic duct cells than in pancreatic islet cells. Therefore, we suggest that pancreatic duct cells may be converted to the functional insulin-secreting cells by regulating c-Maf.
Collapse
Affiliation(s)
- Chuan Zhang
- Department of Endocrinology and MetabolismThe Second Hospital of Jilin UniversityChangchunChina
| | - Zhi‐Min Guo
- Department of Experimental MicrobiologyThe First Hospital of Jilin UniversityChangchunChina
| |
Collapse
|
23
|
Pettersson AML, Acosta JR, Björk C, Krätzel J, Stenson B, Blomqvist L, Viguerie N, Langin D, Arner P, Laurencikiene J. MAFB as a novel regulator of human adipose tissue inflammation. Diabetologia 2015; 58:2115-23. [PMID: 26115698 DOI: 10.1007/s00125-015-3673-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 06/04/2015] [Indexed: 01/08/2023]
Abstract
AIMS/HYPOTHESIS Dysregulated expression of metabolic and inflammatory genes is a prominent consequence of obesity causing insulin resistance and type 2 diabetes. Finding causative factors is essential to understanding progression of these pathologies and discovering new therapeutic targets. The transcription factor V-maf musculoaponeurotic fibrosarcoma oncogene homologue B (MAFB) is highly expressed in human white adipose tissue (WAT). However, its role in the regulation of WAT function is elusive. We aimed to characterise MAFB expression and function in human WAT in the context of obesity and insulin resistance. METHODS MAFB mRNA expression was evaluated in human WAT from seven cohorts with large inter-individual variation in BMI and metabolic features. Insulin-induced adipocyte lipogenesis and lipolysis were measured and correlated with MAFB expression. MAFB regulation during adipogenesis and the effects of MAFB suppression in human adipocytes was investigated. MAFB regulation by TNF-α was examined in human primary adipocytes and THP-1 monocytes/macrophages. RESULTS MAFB expression in human adipocytes is upregulated during adipogenesis, increases with BMI in WAT, correlates with adverse metabolic features and is decreased after weight loss. MAFB downregulation decreases proinflammatory gene expression in adipocytes and interferes with TNF-α effects. Interestingly, MAFB is differentially regulated by TNF-α in adipocytes (suppressed) and THP-1 cells (upregulated). Further, MAFB is primarily expressed in WAT macrophages/monocytes and its expression correlates with macrophage and inflammatory markers. CONCLUSIONS/INTERPRETATION Our findings indicate that MAFB is a regulator and a marker of adipose tissue inflammation, a process that subsequently causes insulin resistance.
Collapse
Affiliation(s)
- Annie M L Pettersson
- Department of Medicine Huddinge, Lipid laboratory, Karolinska Institutet, Novum, NVS D4, Hälsovägen 7, 14186, Stockholm, Sweden
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Moon EJ, Giaccia A. Dual roles of NRF2 in tumor prevention and progression: possible implications in cancer treatment. Free Radic Biol Med 2015; 79:292-9. [PMID: 25458917 PMCID: PMC4339613 DOI: 10.1016/j.freeradbiomed.2014.11.009] [Citation(s) in RCA: 137] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Revised: 11/13/2014] [Accepted: 11/13/2014] [Indexed: 12/16/2022]
Abstract
The cap'n'collar (CNC) family serves as cellular sensors of oxidative and electrophilic stresses and shares structural similarities including basic leucine zipper (bZIP) and CNC domains. They form heterodimers with small MAF proteins to regulate antioxidant and phase II enzymes through antioxidant response element (ARE)-mediated transactivation. Among the CNC family members, NRF2 is required for systemic protection against redox-mediated injury and carcinogenesis. On the other hand, NRF2 is activated by oncogenic pathways, metabolism, and hypoxia. Constitutive NRF2 activation is observed in a variety of human cancers and it is highly correlated with tumor progression and aggressiveness. In this review, we will discuss how NRF2 plays dual roles in cancer prevention and progression depending on the cellular context and environment. Therefore, a better understanding of NRF2 will be necessary to exploit this complex network of balancing antioxidant pathways to inhibit tumor progression.
Collapse
Affiliation(s)
- Eui Jung Moon
- Division of Radiation Biology & Oncology, Department of Radiation Oncology, Stanford University, Stanford, CA 94305, USA
| | - Amato Giaccia
- Division of Radiation Biology & Oncology, Department of Radiation Oncology, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
25
|
Ubiquitination of the transcription factor c-MAF is mediated by multiple lysine residues. Int J Biochem Cell Biol 2014; 57:157-66. [PMID: 25448412 DOI: 10.1016/j.biocel.2014.10.024] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 10/20/2014] [Accepted: 10/22/2014] [Indexed: 11/22/2022]
Abstract
The transcription factor c-MAF could be polyubiquitinated and subsequently degraded in the proteasomes. Theoretically, any lysine residues in c-MAF could be ubiquitinated. In the present study, we tried to find out the specific lysine residue(s) mediating c-MAF ubiquitination. Through a series of mutational screens from lysine (K) to arginine (R), we found that any single lysine mutation (K to R) failed to prevent c-MAF ubiquitination, and any single lysine residue alone could not mediate c-MAF ubiquitination, which indicated that multiple lysine residues were required for c-MAF ubiquitination. Bioinformatics and computing analyses revealed that K85 and K350 could mediate c-MAF ubiquitination, which was confirmed by the cell-based assays. However, this duo was not the only pair because the K85R/K350R mutant could also be ubiquitinated. Functionally, both M12 (K85/K350) and W12 (K85R/K350R) mutants increased cyclin D2 promoter-driven luciferase activity, but they were less potent than the lysine-free counterpart (M14). In addition, M14 induced a higher level of expression of cyclin D2 at both mRNA and protein levels. Therefore, we demonstrated that c-MAF ubiquitination is mediated by multiple lysine residues, of which K85 and K350 were sufficient but not the only residues in mediating c-MAF ubiquitination. Moreover, c-MAF was found to be degraded by lysosomes. This study added a novel insight for c-MAF ubiquitination and degradation, suggesting that c-MAF stability is strictly regulated.
Collapse
|
26
|
Suda N, Itoh T, Nakato R, Shirakawa D, Bando M, Katou Y, Kataoka K, Shirahige K, Tickle C, Tanaka M. Dimeric combinations of MafB, cFos and cJun control the apoptosis-survival balance in limb morphogenesis. Development 2014; 141:2885-94. [DOI: 10.1242/dev.099150] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Apoptosis is an important mechanism for sculpting morphology. However, the molecular cascades that control apoptosis in developing limb buds remain largely unclear. Here, we show that MafB was specifically expressed in apoptotic regions of chick limb buds, and MafB/cFos heterodimers repressed apoptosis, whereas MafB/cJun heterodimers promoted apoptosis for sculpting the shape of the limbs. Chromatin immunoprecipitation sequencing in chick limb buds identified potential target genes and regulatory elements controlled by Maf and Jun. Functional analyses revealed that expression of p63 and p73, key components known to arrest the cell cycle, was directly activated by MafB and cJun. Our data suggest that dimeric combinations of MafB, cFos and cJun in developing chick limb buds control the number of apoptotic cells, and that MafB/cJun heterodimers lead to apoptosis via activation of p63 and p73.
Collapse
Affiliation(s)
- Natsuno Suda
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, B-17, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan
| | - Takehiko Itoh
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, B-34, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan
| | - Ryuichiro Nakato
- Institute of Molecular and Cellular Biosciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Daisuke Shirakawa
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, B-17, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan
| | - Masashige Bando
- Institute of Molecular and Cellular Biosciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Yuki Katou
- Institute of Molecular and Cellular Biosciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Kohsuke Kataoka
- Graduate School of Medical Life Sciences, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Katsuhiko Shirahige
- Institute of Molecular and Cellular Biosciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Cheryll Tickle
- Department of Biology and Biochemistry, University of Bath, Claverton Down Road, Bath BA2 7AY, UK
| | - Mikiko Tanaka
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, B-17, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan
| |
Collapse
|
27
|
Morito N, Yoh K, Ojima M, Okamura M, Nakamura M, Hamada M, Shimohata H, Moriguchi T, Yamagata K, Takahashi S. Overexpression of Mafb in podocytes protects against diabetic nephropathy. J Am Soc Nephrol 2014; 25:2546-57. [PMID: 24722438 DOI: 10.1681/asn.2013090993] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
We previously showed that the transcription factor Mafb is essential for podocyte differentiation and foot process formation. Podocytes are susceptible to injury in diabetes, and this injury leads to progression of diabetic nephropathy. In this study, we generated transgenic mice that overexpress Mafb in podocytes using the nephrin promoter/enhancer. To examine a potential pathogenetic role for Mafb in diabetic nephropathy, Mafb transgenic mice were treated with either streptozotocin or saline solution. Diabetic nephropathy was assessed by renal histology and biochemical analyses of urine and serum. Podocyte-specific overexpression of Mafb had no effect on body weight or blood glucose levels in either diabetic or control mice. Notably, albuminuria and changes in BUN levels and renal histology observed in diabetic wild-type animals were ameliorated in diabetic Mafb transgenic mice. Moreover, hyperglycemia-induced downregulation of Nephrin was mitigated in diabetic Mafb transgenic mice, and reporter assay results suggested that Mafb regulates Nephrin directly. Mafb transgenic glomeruli also overexpressed glutathione peroxidase, an antioxidative stress enzyme, and levels of the oxidative stress marker 8-hydroxydeoxyguanosine decreased in the urine of diabetic Mafb transgenic mice. Finally, Notch2 expression increased in diabetic glomeruli, and this effect was enhanced in diabetic Mafb transgenic glomeruli. These data indicate Mafb has a protective role in diabetic nephropathy through regulation of slit diaphragm proteins, antioxidative enzymes, and Notch pathways in podocytes and suggest that Mafb could be a therapeutic target.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Homare Shimohata
- Department of Nephrology, Tokyo Medical University Ibaraki Medical Center, Inashiki, Ibaraki, Japan; and
| | - Takashi Moriguchi
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | | | - Satoru Takahashi
- Anatomy and Embryology, Faculty of Medicine, International Institute for Integrative Sleep Medicine (WPI-IIIS), and Life Science Center of Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Ibaraki, Japan
| |
Collapse
|
28
|
Pogenberg V, Consani Textor L, Vanhille L, Holton SJ, Sieweke MH, Wilmanns M. Design of a bZip transcription factor with homo/heterodimer-induced DNA-binding preference. Structure 2014; 22:466-77. [PMID: 24530283 DOI: 10.1016/j.str.2013.12.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Revised: 11/30/2013] [Accepted: 12/30/2013] [Indexed: 10/25/2022]
Abstract
The ability of basic leucine zipper transcription factors for homo- or heterodimerization provides a paradigm for combinatorial control of eukaryotic gene expression. It has been unclear, however, how facultative dimerization results in alternative DNA-binding repertoires on distinct regulatory elements. To unravel the molecular basis of such coupled preferences, we determined two high-resolution structures of the transcription factor MafB as a homodimer and as a heterodimer with c-Fos bound to variants of the Maf-recognition element. The structures revealed several unexpected and dimer-specific coiled-coil-heptad interactions. Based on these findings, we have engineered two MafB mutants with opposite dimerization preferences. One of them showed a strong preference for MafB/c-Fos heterodimerization and enabled selection of heterodimer-favoring over homodimer-specific Maf-recognition element variants. Our data provide a concept for transcription factor design to selectively activate dimer-specific pathways and binding repertoires.
Collapse
Affiliation(s)
| | | | - Laurent Vanhille
- Centre d'Immunologie de Marseille-Luminy (CIML), Aix-Marseille Université, UM2, Campus de Luminy, Case 906, 13288 Marseille Cedex 09, France; Institut National de la Santé et de la Recherche Médicale (INSERM), U1104, Marseille, France; Centre National de la Recherche Scientifique (CNRS), UMR7280, Marseille, France
| | - Simon J Holton
- EMBL Hamburg c/o DESY, Notkestraße 85, 22603 Hamburg, Germany
| | - Michael H Sieweke
- Centre d'Immunologie de Marseille-Luminy (CIML), Aix-Marseille Université, UM2, Campus de Luminy, Case 906, 13288 Marseille Cedex 09, France; Institut National de la Santé et de la Recherche Médicale (INSERM), U1104, Marseille, France; Centre National de la Recherche Scientifique (CNRS), UMR7280, Marseille, France; Max-Delbrück-Centrum für Molekulare Medizin (MDC), Robert-Rössle-Straße 10, 13125 Berlin, Germany
| | | |
Collapse
|
29
|
Sato-Nishiwaki M, Aida Y, Abe S, Shibata Y, Kimura T, Yamauchi K, Kishi H, Igarashi A, Inoue S, Sato M, Nakajima O, Kubota I. Reduced number and morphofunctional change of alveolar macrophages in MafB gene-targeted mice. PLoS One 2013; 8:e73963. [PMID: 24040127 PMCID: PMC3765310 DOI: 10.1371/journal.pone.0073963] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Accepted: 07/25/2013] [Indexed: 01/19/2023] Open
Abstract
Alveolar macrophages (AMs) play an important role in the pathogenesis of chronic obstructive pulmonary disease (COPD). We previously demonstrated that the transcription factor, MafB, increased in the AMs of mice exposed to cigarette smoke, and in those of human patients with COPD. The aim of this study was to evaluate the role of MafB in AMs using newly established transgenic (TG) mice that specifically express dominant negative (DN) MafB in macrophages under the control of macrophage scavenger receptor (MSR) enhancer-promoter. We performed cell differential analyses in bronchoalveolar lavage cells, morphological analyses with electron microscopy, and flow cytometry-based analyses of surface markers and a phagocytic capacity assay in macrophages. AM number in the TG mice was significantly decreased compared with wild-type (WT) mice. Morphologically, the high electron density area in the nucleus increased, the shape of pseudopods on the AMs was altered, and actin filament was less localized in the pseudopods of AMs of TG mice, compared with WT mice. The expression of surface markers, F4/80 and CD11b, on peritoneal macrophages in TG mice was reduced compared with WT mice, while those on AMs remained unchanged. Phagocytic capacity was decreased in AMs from TG mice, compared with WT mice. In conclusion, MafB regulates the phenotype of macrophages with respect to the number of alveolar macrophages, the nuclear compartment, cellular shape, surface marker expression, and phagocytic function. MSR-DN MafB TG mice may present a useful model to clarify the precise role of MafB in macrophages.
Collapse
MESH Headings
- Animals
- Antigens, Surface/metabolism
- Apoptosis
- Bronchoalveolar Lavage Fluid/cytology
- Gene Expression Regulation
- Genes, Dominant
- Humans
- Immunophenotyping
- Macrophages, Alveolar/immunology
- Macrophages, Alveolar/metabolism
- Macrophages, Alveolar/ultrastructure
- Macrophages, Peritoneal/immunology
- Macrophages, Peritoneal/metabolism
- MafB Transcription Factor/genetics
- MafB Transcription Factor/metabolism
- Mice
- Mice, Transgenic
- Phagocytosis/immunology
- Promoter Regions, Genetic
- Receptors, Fc/metabolism
- Receptors, Scavenger/genetics
- Spleen/immunology
- Spleen/metabolism
Collapse
Affiliation(s)
- Michiko Sato-Nishiwaki
- Department of Cardiology, Pulmonology and Nephrology, School of Medicine, Yamagata University, Yamagata City, Yamagata, Japan
| | - Yasuko Aida
- Department of Cardiology, Pulmonology and Nephrology, School of Medicine, Yamagata University, Yamagata City, Yamagata, Japan
| | - Shuichi Abe
- Department of Cardiology, Pulmonology and Nephrology, School of Medicine, Yamagata University, Yamagata City, Yamagata, Japan
| | - Yoko Shibata
- Department of Cardiology, Pulmonology and Nephrology, School of Medicine, Yamagata University, Yamagata City, Yamagata, Japan
- * E-mail:
| | - Tomomi Kimura
- Department of Cardiology, Pulmonology and Nephrology, School of Medicine, Yamagata University, Yamagata City, Yamagata, Japan
| | - Keiko Yamauchi
- Department of Cardiology, Pulmonology and Nephrology, School of Medicine, Yamagata University, Yamagata City, Yamagata, Japan
| | - Hiroyuki Kishi
- Department of Cardiology, Pulmonology and Nephrology, School of Medicine, Yamagata University, Yamagata City, Yamagata, Japan
| | - Akira Igarashi
- Department of Cardiology, Pulmonology and Nephrology, School of Medicine, Yamagata University, Yamagata City, Yamagata, Japan
| | - Sumito Inoue
- Department of Cardiology, Pulmonology and Nephrology, School of Medicine, Yamagata University, Yamagata City, Yamagata, Japan
| | - Masamichi Sato
- Department of Cardiology, Pulmonology and Nephrology, School of Medicine, Yamagata University, Yamagata City, Yamagata, Japan
| | - Osamu Nakajima
- Research Laboratory for Molecular Genetics, School of Medicine, Yamagata University, Yamagata City, Yamagata, Japan
| | - Isao Kubota
- Department of Cardiology, Pulmonology and Nephrology, School of Medicine, Yamagata University, Yamagata City, Yamagata, Japan
| |
Collapse
|
30
|
Abstract
Macrophages not only are prominent effector cells of the immune system that are critical in inflammation and innate immune responses but also fulfill important functions in tissue homeostasis. Transcription factors can define macrophage identity and control their numbers and functions through the induction and maintenance of specific transcriptional programs. Here, we review the mechanisms employed by lineage-specific transcription factors to shape macrophage identity during the development from hematopoietic stem and progenitor cells. We also present current insight into how specific transcription factors control macrophage numbers, by regulating coordinated proliferation and differentiation of myeloid progenitor cells and self-renewal of mature macrophages. We finally discuss how functional specialization of mature macrophages in response to environmental stimuli can be induced through synergistic activity of lineage- and stimulus-specific transcription factors that plug into preexisting transcriptional programs. Understanding the mechanisms that define macrophage identity, numbers, and functions will provide important insights into the differential properties of macrophage populations under various physiological and pathological conditions.
Collapse
Affiliation(s)
- Kaaweh Molawi
- Centre d'Immunologie de Marseille-Luminy, UM2 Aix-Marseille Université, Marseille cedex 9; INSERM, Marseille, France; CNRS, Marseille, France; Max-Delbrück-Centrum für Molekulare Medizin, Berlin, Germany
| | | |
Collapse
|
31
|
A novel molecular mechanism involved in multiple myeloma development revealed by targeting MafB to haematopoietic progenitors. EMBO J 2012; 31:3704-17. [PMID: 22903061 PMCID: PMC3442275 DOI: 10.1038/emboj.2012.227] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Accepted: 07/20/2012] [Indexed: 12/21/2022] Open
Abstract
Transgenic expression of the MafB oncogene in haematopoietic stem/progenitor cells induces plasma cell neoplasia reminiscent of human multiple myeloma and suggests DNA methylation as cause of malignant transformation. Understanding the cellular origin of cancer can help to improve disease prevention and therapeutics. Human plasma cell neoplasias are thought to develop from either differentiated B cells or plasma cells. However, when the expression of Maf oncogenes (associated to human plasma cell neoplasias) is targeted to mouse B cells, the resulting animals fail to reproduce the human disease. Here, to explore early cellular changes that might take place in the development of plasma cell neoplasias, we engineered transgenic mice to express MafB in haematopoietic stem/progenitor cells (HS/PCs). Unexpectedly, we show that plasma cell neoplasias arise in the MafB-transgenic mice. Beyond their clinical resemblance to human disease, these neoplasias highly express genes that are known to be upregulated in human multiple myeloma. Moreover, gene expression profiling revealed that MafB-expressing HS/PCs were more similar to B cells and tumour plasma cells than to any other subset, including wild-type HS/PCs. Consistent with this, genome-scale DNA methylation profiling revealed that MafB imposes an epigenetic program in HS/PCs, and that this program is preserved in mature B cells of MafB-transgenic mice, demonstrating a novel molecular mechanism involved in tumour initiation. Our findings suggest that, mechanistically, the haematopoietic progenitor population can be the target for transformation in MafB-associated plasma cell neoplasias.
Collapse
|
32
|
Abstract
miR-155 acts as an oncogenic miR in B-cell lymphoproliferative disorders, including Waldenstrom macroglobulinemia (WM) and chronic lymphocytic leukemia, and is therefore a potential target for therapeutic intervention. However, efficient targeting of miRs in tumor cells in vivo remains a significant challenge for the development of miR-155-based therapeutics for the treatment of B-cell malignancies. In the present study, we show that an 8-mer locked nucleic acid anti-miR-155 oligonucleotide targeting the seed region of miR-155 inhibits WM and chronic lymphocytic leukemia cell proliferation in vitro. Moreover, anti-miR-155 delivered systemically showed uptake in the BM CD19(+) cells of WM-engrafted mice, resulting in the up-regulation of several miR-155 target mRNAs in these cells, and decreased tumor growth significantly in vivo. We also found miR-155 levels to be elevated in stromal cells from WM patients compared with control samples. Interestingly, stromal cells from miR-155-knockout mice led to significant inhibition of WM tumor growth, indicating that miR-155 may also contribute to WM proliferation through BM microenvironmental cells. The results of the present study highlight the therapeutic potential of anti-miR-155-mediated inhibition of miR-155 in the treatment of WM.
Collapse
|
33
|
The small MAF transcription factors MAFF, MAFG and MAFK: current knowledge and perspectives. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1823:1841-6. [PMID: 22721719 DOI: 10.1016/j.bbamcr.2012.06.012] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Revised: 06/11/2012] [Accepted: 06/12/2012] [Indexed: 12/13/2022]
Abstract
The small MAFs, MAFF, MAFG and MAFK have emerged as crucial regulators of mammalian gene expression. Previous studies have linked small MAF function, by virtue of their heterodimerization with the Cap 'n' Collar (CNC) family of transcription factors, to the stress response and detoxification pathways. Recent analyses have revealed a complex regulatory network involving small MAF transcription factors and other cellular proteins. The expression and activity of small MAFs are tightly regulated at multiple levels. With regard to their clinical importance, small MAFs have been linked to various diseases, such as diabetes, neuronal disorders, thrombocytopenia and carcinogenesis. A better understanding of the molecular mechanisms governing the activity of small MAFs will provide novel insights into the control of mammalian transcription and may lead to the development of novel therapeutic strategies to treat common human disorders.
Collapse
|
34
|
Sato M, Shibata Y, Kimura T, Yamauchi K, Abe S, Inoue S, Kishi H, Oizumi H, Kubota I. Immunohistochemical staining for transcription factor MafB in alveolar macrophages is correlated with spirometric measures of airflow limitation in smokers. Respirology 2011; 16:124-30. [PMID: 20969674 DOI: 10.1111/j.1440-1843.2010.01886.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND AND OBJECTIVE Alveolar macrophages (AM) play an important role in the pathogenesis of COPD, and their numbers are significantly increased in patients with COPD. We previously demonstrated that expression of the transcription factor, MafB, was upregulated in AM of mice exposed to cigarette smoke. The aim of this study was to investigate whether the expression of MafB is associated with the degree of airflow limitation (AFL) in smokers. METHODS Lung tissue specimens were obtained from male patients undergoing resection of small peripheral lung tumours. The patients were classified into three groups according to smoking index and FEV1 /FVC: (i) non-smokers or non-heavy ex-smokers without AFL (FEV1 /FVC ≥ 0.7, smoking index ≤ 400) (n=8); (ii) heavy current smokers without AFL (FEV1 /FVC ≥ 0.7, smoking index ≥ 800) (n=8); and (iii) heavy current smokers with AFL (FEV1 /FVC < 0.6, smoking index ≥ 800) (n=8). The intensity of immunostaining for MafB in AM was quantified by image analysis. RESULTS Immunostaining for MafB was significantly enhanced in AM of smokers with AFL compared with AM of subjects without AFL. Smoking index, FEV1/FVC and FEF(25-75%) (% predicted) were significantly correlated with the intensity of MafB immunostaining. Multiple linear regression analysis revealed that FEV1 % was also an independent negative predictor of the intensity of MafB immunostaining. CONCLUSIONS The degree of immunostaining for MafB in AM was correlated with the degree of AFL in smokers. MafB may be involved in the pathophysiology of COPD.
Collapse
Affiliation(s)
- Michiko Sato
- Department of Cardiology, Pulmonology and Nephrology Cardiovascular, Thoracic and Pediatric Surgery, Yamagata University School of Medicine, Yamagata, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
c-Maf plays a crucial role for the definitive erythropoiesis that accompanies erythroblastic island formation in the fetal liver. Blood 2011; 118:1374-85. [PMID: 21628412 DOI: 10.1182/blood-2010-08-300400] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
c-Maf is one of the large Maf (musculoaponeurotic fibrosarcoma) transcription factors that belong to the activated protein-1 super family of basic leucine zipper proteins. Despite its overexpression in hematologic malignancies, the physiologic roles c-Maf plays in normal hematopoiesis have been largely unexplored. On a C57BL/6J background, c-Maf(-/-) embryos succumbed from severe erythropenia between embryonic day (E) 15 and E18. Flow cytometric analysis of fetal liver cells showed that the mature erythroid compartments were significantly reduced in c-Maf(-/-) embryos compared with c-Maf(+/+) littermates. Interestingly, the CFU assay indicated there was no significant difference between c-Maf(+/+) and c-Maf(-/-) fetal liver cells in erythroid colony counts. This result indicated that impaired definitive erythropoiesis in c-Maf(-/-) embryos is because of a non-cell-autonomous effect, suggesting a defective erythropoietic microenvironment in the fetal liver. As expected, the number of erythroblasts surrounding the macrophages in erythroblastic islands was significantly reduced in c-Maf(-/-) embryos. Moreover, decreased expression of VCAM-1 was observed in c-Maf(-/-) fetal liver macrophages. In conclusion, these results strongly suggest that c-Maf is crucial for definitive erythropoiesis in fetal liver, playing an important role in macrophages that constitute erythroblastic islands.
Collapse
|
36
|
Ohshima T, Mukai R, Nakahara N, Matsumoto J, Isono O, Kobayashi Y, Takahashi S, Shimotohno K. HTLV-1 basic leucine-zipper factor, HBZ, interacts with MafB and suppresses transcription through a Maf recognition element. J Cell Biochem 2011; 111:187-94. [PMID: 20506502 DOI: 10.1002/jcb.22687] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
HTLV-1 infection causes adult T-cell leukemia (ATL). The development of ATL is thought to be associated with disruption of transcriptional control of cellular genes. HTLV-1 basic leucine-zipper (bZIP) factor, HBZ, is encoded by the complementary strand of the provirus. We previously reported that HBZ interacts with c-Jun and suppresses its transcriptional activity. To identify the cellular factor(s) that interact with HBZ, we conducted a yeast two-hybrid screen using full-length HBZ as bait and identified MafB. HBZ heterodimerizes with MafB via each bZIP domain. Luciferase analysis revealed a significant decrease in transcription through Maf recognition element (MARE) in a manner dependent on the bZIP domain of HBZ. Indeed, production of full-length HBZ in cells decreased the MARE-bound MafB protein, indicating that HBZ abrogates the DNA-binding activity of MafB. In addition, HBZ reduced the steady-state levels of MafB, and the levels were restored by treatment with a proteasome inhibitor. These results suggest a suppressive effect of HBZ on Maf function, which may have a significant role in HTLV-1 related pathogenesis.
Collapse
Affiliation(s)
- Takayuki Ohshima
- Faculty of Pharmaceutical Science at Kagawa Campus, Tokushima Bunri University, Kagawa, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Krispin S, Nitzan E, Kalcheim C. The dorsal neural tube: a dynamic setting for cell fate decisions. Dev Neurobiol 2011; 70:796-812. [PMID: 20683859 DOI: 10.1002/dneu.20826] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The dorsal neural tube first generates neural crest cells that exit the neural primordium following an epithelial-to-mesenchymal conversion to become sympathetic ganglia, Schwann cells, dorsal root sensory ganglia, and melanocytes of the skin. Following the end of crest emigration, the dorsal midline of the neural tube becomes the roof plate, a signaling center for the organization of dorsal neuronal cell types. Recent lineage analysis performed before the onset of crest delamination revealed that the dorsal tube is a highly dynamic region sequentially traversed by fate-restricted crest progenitors. Furthermore, prospective roof plate cells were shown to originate ventral to presumptive crest and to progressively relocate dorsalward to occupy their definitive midline position following crest delamination. These data raise important questions regarding the mechanisms of cell emigration in relation to fate acquisition, and suggest the possibility that spatial and/or temporal information in the dorsal neural tube determines initial segregation of neural crest cells into their derivatives. In addition, they emphasize the need to address what controls the end of neural crest production and consequent roof plate formation, a fundamental issue for understanding the separation between central and peripheral lineages during development of the nervous system.
Collapse
Affiliation(s)
- Shlomo Krispin
- Department of Medical Neurobiology, Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | | | | |
Collapse
|
38
|
Abstract
Chondrocyte differentiation in the growth plate is an important process for the longitudinal growth of endochondral bones. Sox9 and Runx2 are the most often-studied transcriptional regulators of the chondrocyte differentiation process, but the importance of additional factors is also becoming apparent. Mafs are a subfamily of the basic ZIP (bZIP) transcription factor superfamily, which act as key regulators of tissue-specific gene expression and terminal differentiation in many tissues. There is increasing evidence that c-Maf and its splicing variant Lc-Maf play a role in chondrocyte differentiation in a temporal-spatial manner. This review summarizes the functions of c-Maf in chondrocyte differentiation and discusses the possible role of c-Maf in osteoarthritis progression.
Collapse
Affiliation(s)
| | | | - Dominik R. Haudenschild
- Dominik R. Haudenschild, Department of Orthopaedic Surgery, Division of Orthopaedic Research, University of California Davis Medical Center, 4635 Second Street, Sacramento, CA 95817, USA
| |
Collapse
|
39
|
|
40
|
The Sos-recruitment system as a tool to analyze cellular localization of plant proteins: membrane localization of Arabidopsis thaliana PEPINO/PASTICCINO2. Mol Genet Genomics 2010; 283:439-49. [DOI: 10.1007/s00438-010-0528-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2009] [Accepted: 02/22/2010] [Indexed: 01/26/2023]
|
41
|
Bourane S, Garces A, Venteo S, Pattyn A, Hubert T, Fichard A, Puech S, Boukhaddaoui H, Baudet C, Takahashi S, Valmier J, Carroll P. Low-threshold mechanoreceptor subtypes selectively express MafA and are specified by Ret signaling. Neuron 2010; 64:857-70. [PMID: 20064392 DOI: 10.1016/j.neuron.2009.12.004] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/17/2009] [Indexed: 02/01/2023]
Abstract
Low-threshold mechanoreceptor neurons (LTMs) of the dorsal root ganglia (DRG) are essential for touch sensation. They form highly specialized terminations in the skin and display stereotyped projections in the spinal cord. Functionally defined LTMs depend on neurotrophin signaling for their postnatal survival and functioning, but how these neurons arise during development is unknown. Here, we show that specific types of LTMs can be identified shortly after DRG genesis by unique expression of the MafA transcription factor, the Ret receptor and coreceptor GFRalpha2, and find that their specification is Ngn2 dependent. In mice lacking Ret, these LTMs display early differentiation defects, as revealed by reduced MafA expression, and at later stages their central and peripheral projections are compromised. Moreover, in MafA mutants, a discrete subset of LTMs display altered expression of neurotrophic factor receptors. Our results provide evidence that genetic interactions involving Ret and MafA progressively promote the differentiation and diversification of LTMs.
Collapse
|
42
|
Tanahashi H, Kito K, Ito T, Yoshioka K. MafB protein stability is regulated by the JNK and ubiquitin-proteasome pathways. Arch Biochem Biophys 2009; 494:94-100. [PMID: 19932079 DOI: 10.1016/j.abb.2009.11.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2009] [Revised: 11/14/2009] [Accepted: 11/16/2009] [Indexed: 11/19/2022]
Abstract
MafB is a basic leucine zipper transcription factor that plays important roles in development and differentiation processes. During osteoclastogenesis, its expression is downregulated at the transcriptional level via the JNK and p38 MAP kinase pathways. In the present study, we demonstrated that MafB protein stability is regulated by JNK and identified a phosphorylation site, Thr62. The expression of a constitutively active form of JNK (a fusion protein MKK7alpha1-JNK1beta1) promoted the degradation of MafB in COS7 cells, and a T62A substitution significantly reduced the instability of MafB. The introduction of a fourfold (T58A/T62A/S70A/S74A) substitution in an acidic transcription-activating domain almost protected the instability resulting from the activation of JNK. Furthermore, treatment with proteasome inhibitors increased the MafB level, and a high-molecular-weight smear, characteristic of polyubiquitination, was observed in lysates from cells in which MafB, ubiquitin, and MKK7alpha1-JNK1beta1 were co-expressed. These results suggest that phosphorylation of MafB by JNK confers susceptibility to proteasomal degradation.
Collapse
Affiliation(s)
- Hiroshi Tanahashi
- Department of Neuroplasticity, Research Institute on Aging and Adaptation, Shinshu University Graduate School of Medicine, 3-1-1 Asahi, Matsumoto, Japan.
| | | | | | | |
Collapse
|
43
|
Nakamura M, Hamada M, Hasegawa K, Kusakabe M, Suzuki H, Greaves DR, Moriguchi T, Kudo T, Takahashi S. c-Maf is essential for the F4/80 expression in macrophages in vivo. Gene 2009; 445:66-72. [DOI: 10.1016/j.gene.2009.06.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2009] [Accepted: 06/11/2009] [Indexed: 10/20/2022]
|
44
|
Takeuchi T, Kudo T, Ogata K, Hamada M, Nakamura M, Kito K, Abe Y, Ueda N, Yamamoto M, Engel JD, Takahashi S. Neither MafA/L-Maf nor MafB is essential for lens development in mice. Genes Cells 2009; 14:941-7. [PMID: 19624757 DOI: 10.1111/j.1365-2443.2009.01321.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The importance of the large Maf transcription factor family has been investigated in lens development in the chick, Xenopus and mammals. Previously we reported that c-maf-deficient mice exhibit severe defects in lens fibre cells. Here, we report the roles of other large Mafs, MafA/L-Maf and MafB, during mouse lens development. MafA/L-Maf and MafB were expressed in lens epithelial cells and fibre cells at E12.5 but had largely disappeared from the lens at E18.5. The lens of mafA-, mafB-deficient and mafA::mafB double-deficient mice developed normally. In c-maf-deficient mice, the pattern of expression of MafA and MafB differed from their expression in wild-type mice. Moreover, the expression of crystallin genes was unchanged in mafA-, mafB- and mafA::mafB double-deficient lens. These results indicate that c-Maf alone is essential for lens development, and that MafA/L-Maf and MafB are dispensable in mice.
Collapse
Affiliation(s)
- Takashi Takeuchi
- Department of Anatomy and Embryology, Doctoral Program in Life System Medical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Verdelli D, Nobili L, Todoerti K, Intini D, Cosenza M, Civallero M, Bertacchini J, Deliliers GL, Sacchi S, Lombardi L, Neri A. Molecular targeting of the PKC-βinhibitor enzastaurin (LY317615) in multiple myeloma involves a coordinated downregulation of MYC and IRF4 expression. Hematol Oncol 2009; 27:23-30. [DOI: 10.1002/hon.875] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
46
|
Gene expression profile of the third pharyngeal pouch reveals role of mesenchymal MafB in embryonic thymus development. Blood 2009; 113:2976-87. [PMID: 19164599 DOI: 10.1182/blood-2008-06-164921] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The thymus provides a microenvironment that induces the differentiation of T-progenitor cells into functional T cells and that establishes a diverse yet self-tolerant T-cell repertoire. However, the mechanisms that lead to the development of the thymus are incompletely understood. We report herein the results of screening for genes that are expressed in the third pharyngeal pouch, which contains thymic primordium. Polymerase chain reaction (PCR)-based cDNA subtraction screening for genes expressed in microdissected tissues of the third pharyngeal pouch rather than the second pharyngeal arch yielded one transcription factor, MafB, which was predominantly expressed in CD45(-)IA(-)PDGFRalpha(+) mesenchymal cells and was detectable even in the third pharyngeal pouch of FoxN1-deficient nude mice. Interestingly, the number of CD45(+) cells that initially accumulated in the embryonic thymus was significantly decreased in MafB-deficient mice. Alterations of gene expression in the embryonic thymi of MafB-deficient mice included the reduced expression of Wnt3 and BMP4 in mesenchymal cells and of CCL21 and CCL25 in epithelial cells. These results suggest that MafB expressed in third pharyngeal pouch mesenchymal cells critically regulates lymphocyte accumulation in the embryonic thymus.
Collapse
|
47
|
Identification of primary MAFB target genes in multiple myeloma. Exp Hematol 2008; 37:78-86. [PMID: 19013005 DOI: 10.1016/j.exphem.2008.08.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2008] [Revised: 08/25/2008] [Accepted: 08/25/2008] [Indexed: 11/22/2022]
Abstract
OBJECTIVE In multiple myeloma (MM), seven primary recurrent translocations involving the immunoglobulin heavy chain locus have been identified. One of the partner loci maps to 20q12 and involves the MAFB gene resulting in its ectopic expression. We attempt here to identify MAFB target genes in MM. MATERIALS AND METHODS We used an inducible system to upregulate MAFB in MM cell lines not carrying the t(14;20). Microarray expression analysis was used to detect gene expression changes upon MAFB expression. These genes were further evaluated comparatively with gene expression profiles obtained from MM or plasma cell leukemia tumors carrying an activated MAFB gene. Functional implications of these upregulated genes were studied by testing their promoter activity in reporter assays. C-MAF was included comparatively as well. RESULTS The inducible cell lines identified a total of 284 modulated transcripts. After further evaluation using ex vivo data 14 common upregulated genes were found, common to the C-MAF pathway as well. The promoter activity of some of these secondary genes proved a functional relationship with MAFB. In connection with one of these secondary genes (NOTCH2), even tertiary upregulated genes were found. Functional studies indicated that inducible MAFB expression conferred antiapoptotic effects. CONCLUSION We identified 14 upregulated genes, and their downstream consequences in the combined MAFB/C-MAF pathway. Eleven of these genes are novel in the C-MAF pathway as well. These direct target genes may be responsible for the oncogenic transformation of MAF expressing myeloma cells.
Collapse
|
48
|
Hayes JD, Pulford DJ. The Glut athione S-Transferase Supergene Family: Regulation of GST and the Contribution of the lsoenzymes to Cancer Chemoprotection and Drug Resistance Part II. Crit Rev Biochem Mol Biol 2008. [DOI: 10.3109/10409239509083492] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
49
|
Abstract
Like JUN and FOS, the Maf transcription factors belong to the AP1 family. Besides their established role in human cancer--overexpression of the large Maf genes promotes the development of multiple myeloma--they can display tumour suppressor-like activity in specific cellular contexts, which is compatible with their physiological role in terminal differentiation. However, their oncogenic activity relies mostly on the acquisition of new biological functions relevant to cell transformation, the most striking characteristic of Maf oncoproteins being their ability to enhance pathological interactions between tumour cells and the stroma.
Collapse
Affiliation(s)
- Alain Eychène
- Institut Curie, Centre de Recherche, Orsay F-91405, France
| | | | | |
Collapse
|
50
|
Biologic and genetic characterization of the novel amyloidogenic lambda light chain-secreting human cell lines, ALMC-1 and ALMC-2. Blood 2008; 112:1931-41. [PMID: 18567838 DOI: 10.1182/blood-2008-03-143040] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Primary systemic amyloidosis (AL) is a rare monoclonal plasma cell (PC) disorder characterized by the deposition of misfolded immunoglobulin (Ig) light chains (LC) in vital organs throughout the body. To our knowledge, no cell lines have ever been established from AL patients. Here we describe the establishment of the ALMC-1 and ALMC-2 cell lines from an AL patient. Both cell lines exhibit a PC phenotype and display cytokine-dependent growth. Using a comprehensive genetic approach, we established the genetic relationship between the cell lines and the primary patient cells, and we were also able to identify new genetic changes accompanying tumor progression that may explain the natural history of this patient's disease. Importantly, we demonstrate that free lambda LC secreted by both cell lines contained a beta structure and formed amyloid fibrils. Despite absolute Ig LC variable gene sequence identity, the proteins show differences in amyloid formation kinetics that are abolished by the presence of Na(2)SO(4). The formation of amyloid fibrils from these naturally secreting human LC cell lines is unprecedented. Moreover, these cell lines will provide an invaluable tool to better understand AL, from the combined perspectives of amyloidogenic protein structure and amyloid formation, genetics, and cell biology.
Collapse
|