1
|
Bortolin-Cavaillé ML, Cavaillé J. The SNORD115 (H/MBII-52) and SNORD116 (H/MBII-85) gene clusters at the imprinted Prader-Willi locus generate canonical box C/D snoRNAs. Nucleic Acids Res 2012; 40:6800-7. [PMID: 22495932 PMCID: PMC3413130 DOI: 10.1093/nar/gks321] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The imprinted Snurf–Snrpn chromosomal domain contains two large arrays of tandemly repeated, paternally expressed box C/D small-nucleolar RNA (snoRNA) genes: the SNORD115 (H/MBII-52) and SNORD116 (H/MBII-85) gene clusters believed to play key roles in the fine-tuning of serotonin receptor (5-HT2C) pre-mRNA processing and in the etiology of the Prader–Willi Syndrome (PWS), respectively. SNORD115 and SNORD116 were recently proposed to undergo significant conversion into shorter RNA species, the so-called psnoRNAs. Here, we provide evidence that argues against the existence of abundant psnoRNAs in human or mouse brain. Instead, we characterize a previously unsuspected low-abundance, fibrillarin-associated SNORD115-derived smaller RNA species. Based on these findings, we strongly recommend that PWS-encoded SNORD115 and SNORD116 be considered as bona fide box C/D snoRNAs.
Collapse
|
2
|
Zheng J, Orentas R, Yan X, Liu H. Humoral immune response induced by an engineered cell-based neuroblastoma vaccine with or without CD25 blockade. Acta Biochim Biophys Sin (Shanghai) 2011; 43:124-32. [PMID: 21266542 DOI: 10.1093/abbs/gmq123] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Neuroblastoma is the most common extracranial solid cancer in childhood and it can develop in the nerve tissue of the adrenal gland, neck, chest, or spinal cord. A number of tumor-associated antigens (TAAs), which can elicit humoral immunity, have been identified in cancer patients. To investigate the humoral immunity during neuroblastoma development, we treated A/J mice with an aggressive clone of neuroblastoma (AGN2a) cells, then vaccinated the mice with cells expressing AGN2a-CD80/CD137L under the conditions with or without regulatory T cell blockade. Strong humoral immunity was induced by AGN2a-CD80/CD137L immunization in the context of regulatory T cell blockade. Sera from treated mice were used to screen an AGN2a cDNA expression library for identifying TAAs by SEREX (serological analysis of recombinant cDNA expression libraries). Clones were identified by sequencing and comparative analysis of gene pools. Further investigation of these gene products revealed that most of them play a role in the neuronal differentiation, cell metabolism, and are highly expressed in other types of malignancy. Asz1 (ankyrin repeat, SAM, and basic leucine zipper domain-containing protein) was found in all tumor-bearing groups. These results implicated that these candidates identified from tumor-bearing mice may be neuroblastoma-associated antigens, which can be used as biomarkers in early diagnosis of neuroblastoma, whereas those identified from vaccinated mice may be the potential therapeutic targets.
Collapse
Affiliation(s)
- Jin Zheng
- First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an 710061, China
| | | | | | | |
Collapse
|
3
|
Storck S, Thiry M, Bouvet P. Conditional knockout of nucleolin in DT40 cells reveals the functional redundancy of its RNA-binding domains. Biol Cell 2009; 101:153-67. [PMID: 18637790 DOI: 10.1042/bc20080054] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
BACKGROUND INFORMATION Nucleolin is a major nucleolar protein which is highly expressed in rapidly dividing cells and cancer cell lines. This protein is claimed to be multifunctional and could play a role in rRNA (ribosomal RNA) synthesis, as well as in cell division or response to cellular stresses. Therefore, how nucleolin influences cell proliferation remained elusive so far. RESULTS We have generated conditional nucleolin-knockout cells using the chicken B lymphocyte cell line DT40. Our results indicate that nucleolin is absolutely required for the proliferation and for the survival of these cells. Depletion of nucleolin drastically inhibits rDNA (ribosomal DNA) transcription while only slightly affecting pre-rRNA processing. This inhibition is accompanied by modifications of the shape and the structure of the nucleolus. The analysis of mutants of nucleolin, which lack two or three RNA-binding domains, shows that these domains harbour redundant functions and that nucleolin's roles in transcription, rRNA maturation and nucleolar shape can be partially uncoupled. CONCLUSIONS The function of nucleolin in ribosomal synthesis could account for its effect on cell division and survival, but this vital role does not seem to be linked to sequence-specific RNA binding.
Collapse
|
4
|
SnoRNA Snord116 (Pwcr1/MBII-85) deletion causes growth deficiency and hyperphagia in mice. PLoS One 2008; 3:e1709. [PMID: 18320030 PMCID: PMC2248623 DOI: 10.1371/journal.pone.0001709] [Citation(s) in RCA: 204] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2007] [Accepted: 01/21/2008] [Indexed: 11/30/2022] Open
Abstract
Prader-Willi syndrome (PWS) is the leading genetic cause of obesity. After initial severe hypotonia, PWS children become hyperphagic and morbidly obese, if intake is not restricted. Short stature with abnormal growth hormone secretion, hypogonadism, cognitive impairment, anxiety and behavior problems are other features. PWS is caused by lack of expression of imprinted genes in a ∼4 mb region of chromosome band 15q11.2. Our previous translocation studies predicted a major role for the C/D box small nucleolar RNA cluster SNORD116 (PWCR1/HBII-85) in PWS. To test this hypothesis, we created a ∼150 kb deletion of the >40 copies of Snord116 (Pwcr1/MBII-85) in C57BL/6 mice. Snord116del mice with paternally derived deletion lack expression of this snoRNA. They have early-onset postnatal growth deficiency, but normal fertility and lifespan. While pituitary structure and somatotrophs are normal, liver Igf1 mRNA is decreased. In cognitive and behavior tests, Snord116del mice are deficient in motor learning and have increased anxiety. Around three months of age, they develop hyperphagia, but stay lean on regular and high-fat diet. On reduced caloric intake, Snord116del mice maintain their weight better than wild-type littermates, excluding increased energy requirement as a cause of hyperphagia. Normal compensatory feeding after fasting, and ability to maintain body temperature in the cold indicate normal energy homeostasis regulation. Metabolic chamber studies reveal that Snord116del mice maintain energy homeostasis by altered fuel usage. Prolonged mealtime and increased circulating ghrelin indicate a defect in meal termination mechanism. Snord116del mice, the first snoRNA deletion animal model, reveal a novel role for a non-coding RNA in growth and feeding regulation.
Collapse
|
5
|
Ding F, Li HH, Zhang S, Solomon NM, Camper SA, Cohen P, Francke U. SnoRNA Snord116 (Pwcr1/MBII-85) deletion causes growth deficiency and hyperphagia in mice. PLoS One 2008. [PMID: 18320030 DOI: 10.1371/journal.pone.001709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2023] Open
Abstract
Prader-Willi syndrome (PWS) is the leading genetic cause of obesity. After initial severe hypotonia, PWS children become hyperphagic and morbidly obese, if intake is not restricted. Short stature with abnormal growth hormone secretion, hypogonadism, cognitive impairment, anxiety and behavior problems are other features. PWS is caused by lack of expression of imprinted genes in a approximately 4 mb region of chromosome band 15q11.2. Our previous translocation studies predicted a major role for the C/D box small nucleolar RNA cluster SNORD116 (PWCR1/HBII-85) in PWS. To test this hypothesis, we created a approximately 150 kb deletion of the > 40 copies of Snord116 (Pwcr1/MBII-85) in C57BL/6 mice. Snord116del mice with paternally derived deletion lack expression of this snoRNA. They have early-onset postnatal growth deficiency, but normal fertility and lifespan. While pituitary structure and somatotrophs are normal, liver Igf1 mRNA is decreased. In cognitive and behavior tests, Snord116del mice are deficient in motor learning and have increased anxiety. Around three months of age, they develop hyperphagia, but stay lean on regular and high-fat diet. On reduced caloric intake, Snord116del mice maintain their weight better than wild-type littermates, excluding increased energy requirement as a cause of hyperphagia. Normal compensatory feeding after fasting, and ability to maintain body temperature in the cold indicate normal energy homeostasis regulation. Metabolic chamber studies reveal that Snord116del mice maintain energy homeostasis by altered fuel usage. Prolonged mealtime and increased circulating ghrelin indicate a defect in meal termination mechanism. Snord116del mice, the first snoRNA deletion animal model, reveal a novel role for a non-coding RNA in growth and feeding regulation.
Collapse
Affiliation(s)
- Feng Ding
- Department of Genetics, Stanford University, Stanford, California, USA
| | | | | | | | | | | | | |
Collapse
|
6
|
Laneve P, Altieri F, Fiori ME, Scaloni A, Bozzoni I, Caffarelli E. Purification, cloning, and characterization of XendoU, a novel endoribonuclease involved in processing of intron-encoded small nucleolar RNAs in Xenopus laevis. J Biol Chem 2003; 278:13026-32. [PMID: 12571235 DOI: 10.1074/jbc.m211937200] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Here we report the purification, from Xenopus laevis oocyte nuclear extracts, of a new endoribonuclease, XendoU, that is involved in the processing of the intron-encoded box C/D U16 small nucleolar RNA (snoRNA) from its host pre-mRNA. Such an activity has never been reported before and has several uncommon features that make it quite a novel enzyme: it is poly(U)-specific, it requires Mn(2+) ions, and it produces molecules with 2'-3'-cyclic phosphate termini. Even if XendoU cleaves U-stretches, it displays some preferential cleavage on snoRNA precursor molecules. XendoU also participates in the biosynthesis of another intron-encoded snoRNA, U86, which is contained in the NOP56 gene of Xenopus laevis. A common feature of these snoRNAs is that their production is alternative to that of the mRNA, suggesting an important regulatory role for all the factors involved in the processing reaction.
Collapse
Affiliation(s)
- Pietro Laneve
- Institute Pasteur Fondazione Cenci-Bolognetti, Department of Genetics and Molecular Biology, University La Sapienza Piazzale Aldo Moro 5, 00185 Rome, Italy
| | | | | | | | | | | |
Collapse
|
7
|
Abstract
In eukaryotes, the site-specific formation of the two prevalent types of rRNA modified nucleotides, 2'-O-methylated nucleotides and pseudouridines, is directed by two large families of snoRNAs. These are termed box C/D and H/ACA snoRNAs, respectively, and exert their function through the formation of a canonical guide RNA duplex at the modification site. In each family, one snoRNA acts as a guide for one, or at most two modifications, through a single, or a pair of appropriate antisense elements. The two guide families now appear much larger than anticipated and their role not restricted to ribosome synthesis only. This is reflected by the recent detection of guides that can target other cellular RNAs, including snRNAs, tRNAs and possibly even mRNAs, and by the identification of scores of tissue-specific specimens in mammals. Recent characterization of homologs of eukaryotic modification guide snoRNAs in Archaea reveals the ancient origin of these non-coding RNA families and offers new perspectives as to their range of function.
Collapse
Affiliation(s)
- Jean Pierre Bachellerie
- Laboratoire de Biologie Moléculaire Eucaryote du CNRS, Université Paul-Sabatier, 118, route de Narbonne, 31062 Toulouse cedex 4,France.
| | | | | |
Collapse
|
8
|
Lefèvre F, Garnotel R, Georges N, Gillery P. Modulation of collagen metabolism by the nucleolar protein fibrillarin. Exp Cell Res 2001; 271:84-93. [PMID: 11697885 DOI: 10.1006/excr.2001.5359] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Metabolic functions of fibroblasts are tightly regulated by the extracellular environment. When cultivated in tridimensional collagen lattices, fibroblasts exhibit a lowered activity of protein synthesis, especially concerning extracellular matrix proteins. We have previously shown that extracellular collagen impaired the processing of ribosomal RNA (rRNA) in nucleoli by generating changes in the expression of nucleolar proteins and a premature degradation of neosynthesized rRNA. In this study, we have investigated whether inhibiting the synthesis of fibrillarin, a major nucleolar protein with decreased expression in collagen lattices, could mimic the effects of extracellular matrix. Monolayer-cultured fibroblasts were transfected with anti-fibrillarin antisense oligodeoxynucleotides, which significantly decreased fibrillarin content. Downregulation of fibrillarin expression inhibited procollagen secretion into the extracellular medium, without altering total collagen production. No changes of pro1(I)collagen mRNA expression or proline hydroxylation were found. A concomitant intracellular retention of collagen and its chaperone protein HSP47 was found, but no effect on the production of other extracellular matrix macromolecules or remodelling enzymes was observed. These data show that collagen processing depends on unknown mechanisms, involving proteins primarily located in the nucleolar compartment with other demonstrated functions, and suggest specific links between nucleolar machinery and extracellular matrix.
Collapse
Affiliation(s)
- F Lefèvre
- Laboratory of Biochemistry and Molecular Biology, CNRS FRE 2260, Faculty of Medicine, IFR-53 Biomolécules, 51 rue Cognacq-Jay, Reims cedex, 51095, France
| | | | | | | |
Collapse
|
9
|
Mezquita B, Mezquita J, Durfort M, Mezquita C. Constitutive and heat-shock induced expression of Hsp70 mRNA during chicken testicular development and regression. J Cell Biochem 2001; 82:480-90. [PMID: 11500924 DOI: 10.1002/jcb.1183] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The constitutive and heat shock induced expression of Hsp70 mRNA was investigated in normal adult chicken testis and in adult testis after testicular regression induced by diethylstilbestrol (DES) treatment. In addition to the canonical form of Hsp70 mRNA, we have detected transcripts with an extended 5'UTR and transcripts containing, in the 5'UTR, sequences of the 18S ribosomal RNA. Hsp70 was expressed in unstressed male gonads in adult and regressed testis, being the expression much lower in regressed testis. Upon heat shock at 44 degrees C or 46 degrees C, Hsp70 was highly induced in both tissues. However, when testicular seminiferous tubules were incubated at the chicken internal temperature of 39 degrees C, no induction of Hsp70 was observed in mature testis, while the expression markedly increased in regressed testis. Induction at 39 degrees C was completely inhibited in the presence of 6 mM aspirin. Aspirin in the range 3-10 mM decreases the expression of Hsp70 in unstressed and stressed testicular cells, in striking contrast with the effect observed in other tissues as liver. These data suggest that the expression of Hsp70 is regulated in a specific manner in chicken testis and particularly in the male gonad undergoing regression.
Collapse
Affiliation(s)
- B Mezquita
- Laboratori de Genètica Molecular, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Facultat de Medicina, Universitat de Barcelona, 08036 Barcelona, Spain
| | | | | | | |
Collapse
|
10
|
Barneche F, Steinmetz F, Echeverrı́a M. Fibrillarin Genes Encode Both a Conserved Nucleolar Protein and a Novel Small Nucleolar RNA Involved in Ribosomal RNA Methylation inArabidopsis thaliana. J Biol Chem 2000. [DOI: 10.1016/s0021-9258(19)61499-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
11
|
Filippini D, Bozzoni I, Caffarelli E. p62, a novel Xenopus laevis component of box C/D snoRNPs. RNA (NEW YORK, N.Y.) 2000; 6:391-401. [PMID: 10744023 PMCID: PMC1369921 DOI: 10.1017/s135583820099174x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
U16 belongs to the family of box C/D small nucleolar RNAs (snoRNAs) whose members participate in ribosome biogenesis, mainly acting as guides for site-specific methylation of the pre-rRNA. Like all the other members of the family, U16 is associated with a set of protein factors forming a ribonucleoprotein particle, localized in the nucleolus. So far, only a few box C/D-specific proteins are known: in Xenopus laevis, fibrillarin and p68 have been identified by UV crosslinking and shown to require the conserved boxes C and D for snoRNA interaction. In this study, we have identified an additional protein factor (p62), common to box C/D snoRNPs, that crosslinks to the internal stem region, distinct from the conserved box C/D "core motif," of U16 snoRNA. We show here that, although the absence of the core motif and, as a consequence, of fibrillarin and p68 binding prevents processing and accumulation of the snoRNA, the lack of the internal stem does not interfere with the efficient release of U16 from its host intron and only slightly affects snoRNA stability. Because this region is likely to be the binding site for p62, we propose that this protein plays an accessory role in the formation of a mature and stable U16 snoRNP particle.
Collapse
Affiliation(s)
- D Filippini
- Dipartimento di Genetica e Biologia Molecolare, Istituto Pasteur Fondazione Cenci-Bolognetti, Universitá La Sapienza, Rome, Italy
| | | | | |
Collapse
|
12
|
Srivastava M, Pollard HB. Molecular dissection of nucleolin's role in growth and cell proliferation: new insights. FASEB J 1999. [DOI: 10.1096/fasebj.13.14.1911] [Citation(s) in RCA: 381] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Meera Srivastava
- Department of Anatomy and Cell BiologyUniformed Services University of Health Sciences Bethesda Maryland 20814 USA
| | - Harvey B. Pollard
- Department of Anatomy and Cell BiologyUniformed Services University of Health Sciences Bethesda Maryland 20814 USA
| |
Collapse
|
13
|
Rebane A, Metspalu A. U82, a novel snoRNA identified from the fifth intron of human and mouse nucleolin gene. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1446:426-30. [PMID: 10524220 DOI: 10.1016/s0167-4781(99)00093-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
A novel snoRNA, designated as U82, was found from the sequence analysis of the 5th intron of human and mouse nucleolin gene. The snoRNA U82 has characteristic boxes C, D and D' and 11 nucleotides (nt) antisense complementarity to the 18S rRNA. Presumably U82 functions as a guide in the methylation of residue A1678 in human 18S rRNA. Northern blot analysis with various oligodeoxynucleotide probes showed that human and mouse U82 is expressed as RNA variants with length of 70 (+/- 1) and 67 (+/- 1) nt in HeLa and mouse C127 cells. Most probably, the 70 nt variant of U82 is encoded by nucleolin gene 5th intron. The 67 nt variant of U82 could be a transcript of another gene, the genomic locus of which remains unknown.
Collapse
Affiliation(s)
- A Rebane
- Institute of Molecular and Cell Biology, Tartu University, Estonian Biocentre, Estonia
| | | |
Collapse
|
14
|
Shintani S, O'hUigin C, Toyosawa S, Michalová V, Klein J. Origin of gene overlap: the case of TCP1 and ACAT2. Genetics 1999; 152:743-54. [PMID: 10353914 PMCID: PMC1460620 DOI: 10.1093/genetics/152.2.743] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The human acetyl-CoA acetyltransferase 2 gene, ACAT2, codes for a thiolase, an enzyme involved in lipid metabolism. The human T-complex protein 1 gene, TCP1, encodes a molecular chaperone of the chaperonin family. The two genes overlap by their 3'-untranslated regions, their coding sequences being located on opposite DNA strands in a tail-to-tail orientation. To find out how the overlap might have arisen in evolution, the homologous genes of the zebrafish, the African toad, caiman, platypus, opossum, and wallaby were identified. In each species, standard or long polymerase chain reactions were used to determine whether the ACAT2 and TCP1 homologs are closely linked and, if so, whether they overlap. The results reveal that the overlap apparently arose during the transition from therapsid reptiles to mammals and has been retained for >200 million years. Part of the overlapping untranslated region shows remarkable sequence conservation. The overlap presumably arose during the chromosomal rearrangement that brought the two unrelated and previously separated genes together. One or both of the transposed genes found by chance signals that are necessary for the processing of their transcripts to be present on the noncoding strand of the partner gene.
Collapse
Affiliation(s)
- S Shintani
- Max-Planck-Institut für Biologie, D-72076 Tübingen, Germany
| | | | | | | | | |
Collapse
|
15
|
Abstract
Nucleolin is an abundant protein of the nucleolus. Nucleolar proteins structurally related to nucleolin are found in organisms ranging from yeast to plants and mammals. The association of several structural domains in nucleolin allows the interaction of nucleolin with different proteins and RNA sequences. Nucleolin has been implicated in chromatin structure, rDNA transcription, rRNA maturation, ribosome assembly and nucleo-cytoplasmic transport. Studies of nucleolin over the last 25 years have revealed a fascinating role for nucleolin in ribosome biogenesis. The involvement of nucleolin at multiple steps of this biosynthetic pathway suggests that it could play a key role in this highly integrated process.
Collapse
Affiliation(s)
- H Ginisty
- Laboratoire de Biologie Moléculaire Eucaryote, Institut de Biologie Cellulaire et de Génétique du CNRS, UPR 9006, 31062 Toulouse Cedex, France
| | | | | | | |
Collapse
|
16
|
Lefèvre F, Lorenzato M, Georges N, Clavel C, Birembaut P, Gillery P. Decreased number of nucleolar organizing regions in collagen lattice cultured fibroblasts. COMPTES RENDUS DE L'ACADEMIE DES SCIENCES. SERIE III, SCIENCES DE LA VIE 1998; 321:991-7. [PMID: 9929780 DOI: 10.1016/s0764-4469(99)80054-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Dermal fibroblasts cultivated in tridimensional matrices (lattices) of collagen exhibit a very low metabolic activity, and a low protein synthesis in particular. We have previously shown that ribosomal RNA content and half-life were decreased in collagen lattice cultured fibroblasts when compared to monolayer cultured fibroblasts. In this study, we seeded fibroblasts in collagen lattices and investigated the influence of matrix on the number of nucleolar organizing regions. We found that fibroblasts in fully retracted lattices exhibited a significant decrease of 45% (P < 0.001) in the number of nucleolar organizing regions when compared to monolayer cultured fibroblasts. This decrease was correlated to the decrease in ribosomal RNA content. These data suggest that extracellular matrix induces early alterations of synthesis and/or processing of ribosomal RNAs, explaining, at least partly, the resulting low metabolic activity.
Collapse
Affiliation(s)
- F Lefèvre
- Laboratoire de biochimie médicale et biologie moléculaire, CNRS Upresa 6021, IFR-53 biomolécules, faculté de médecine, université de Reims-Champagne-Ardenne, France
| | | | | | | | | | | |
Collapse
|
17
|
Abstract
The vertebrate spliceosomal snRNAs are highly modified by pseudouridylation and 2'-O-methylation. We have identified novel conserved small RNAs that can direct addition of two methyl groups in U6 snRNA, at A47 and C77. These guide RNAs, mgU6-47 (methylation guide for U6 snRNA residue 47) and mgU6-77 contain boxes C, C', D, and D' and associate with fibrillarin. Each RNA can form a duplex with U6 snRNA positioning A47 and C77 for 2'-O-methylation. The antisense element of mgU6-77 can also position C2970 of 28S rRNA for 2'-O-methylation. Depletion of mgU6-77 from Xenopus oocytes prevents 2'-O-methylation of both C77 in U6 and C2970 in 28S; methylation can be restored by injecting in vitro transcribed mgU6-77. Thus, mgU6-77 appears to function in the 2'-O-methylation of two distinct classes of cellular RNA, snRNA, and rRNA.
Collapse
Affiliation(s)
- K T Tycowski
- Department of Molecular Biophysics and Biochemistry, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut 06536, USA
| | | | | | | |
Collapse
|
18
|
Hyttel P, Laurinčik J, Terkelsen O, Viuff D, Fair T, Thomsen PD, Hay-Schmidt A, Vajta G, Callesen H, Greve T. Activation of the Ribosomal RNA Genes in Pre-implantation Bovine Embryos. Reprod Domest Anim 1998. [DOI: 10.1111/j.1439-0531.1998.tb01367.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
19
|
Rebane A, Tamme R, Laan M, Pata I, Metspalu A. A novel snoRNA (U73) is encoded within the introns of the human and mouse ribosomal protein S3a genes. Gene 1998; 210:255-63. [PMID: 9573378 DOI: 10.1016/s0378-1119(98)00070-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The mouse ribosomal protein S3a-encoding gene (mRPS3a) was cloned and sequenced in this study. mRPS3a shares identical exon/intron structure with its human counterpart. Both genes are split to six exons and exhibit remarkable conservation of the promoter region (68.8% identity in the 250 bp upstream of cap site) and coding region (the proteins differ in two amino acids). mRPS3a displays many features common to other r-protein genes, including the CpG-island at 5'-end of the gene, cap site within an oligopyrimidine tract and no consensus TATA or CAAT boxes. However, mRPS3a represents a rare subclass of r-protein genes that possess a long coding sequence in the first exon. Comparison of human and mouse S3a genes revealed sequence fragments with striking similarity within introns 3 and 4. Here we demonstrate that these sequences encode for a novel small nucleolar RNA (snoRNA) designated U73. U73 contains C, D and D' boxes and a 12-nucleotide antisense complementarity to the 28S ribosomal RNA. These features place U73 into the family of intron-encoded antisense snoRNAs that guide site-specific 2'-O-ribose methylation of pre-rRNA. We propose that U73 is involved in methylation of the G1739 residue of the human 28S rRNA. In addition, we present the mapping of human ribosomal protein S3a gene (hRPS3a) and internally nested U73 gene to the human chromosome 4q31.2-3.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Base Sequence
- Chromosome Mapping
- Chromosomes, Human, Pair 4
- DNA, Complementary
- Female
- HeLa Cells
- Humans
- Introns
- Methylation
- Mice
- Mice, Inbred C57BL
- Molecular Sequence Data
- Nucleic Acid Conformation
- Promoter Regions, Genetic
- RNA, Antisense
- RNA, Ribosomal, 28S
- RNA, Small Nuclear/genetics
- Ribose/metabolism
- Ribosomal Proteins/genetics
- Sequence Analysis, DNA
- Sequence Homology, Nucleic Acid
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- A Rebane
- Institute of Molecular and Cell Biology, Tartu University, Estonian Biocenter, Estonia
| | | | | | | | | |
Collapse
|
20
|
Intron-exon structures. ACTA ACUST UNITED AC 1998. [DOI: 10.1016/s1067-5701(98)80020-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
21
|
Abstract
Nucleolin is a major protein of exponentially growing eukaryotic cells where it is present in abundance at the heart of the nucleolus. It is highly conserved during evolution. Nucleolin contains a specific bipartite nuclear localization signal sequence and possesses a number of unusual structural features. It has unique tripartite structure and each domain performs a specific function by interacting with DNA or RNA or proteins. Nucleolin exhibits intrinsic self-cleaving, DNA helicase, RNA helicase and DNA-dependent ATPase activities. Nucleolin also acts as a sequence-specific RNA binding protein, an autoantigen, and as the component of a B cell specific transcription factor. Its phosphorylation by cdc2, CK2, and PKC-zeta modulate some of its activities. This multifunctional protein has been implicated to be involved directly or indirectly in many metabolic processes such as ribosome biogenesis (which includes rDNA transcription, pre-rRNA synthesis, rRNA processing, ribosomal assembly and maturation), cytokinesis, nucleogenesis, cell proliferation and growth, cytoplasmic-nucleolar transport of ribosomal components, transcriptional repression, replication, signal transduction, inducing chromatin decondensation and many more (see text). In plants it is developmentally, cell-cycle, and light regulated. The regulation of all these functions of a single protein seems to be a challenging puzzle.
Collapse
Affiliation(s)
- R Tuteja
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
| | | |
Collapse
|
22
|
Abstract
Eukaryotic rRNAs contain a complex set of ribose-methylated nucleotides. Why are these nucleotides modified and how are they selected? A large family of small nucleolar RNAs (snoRNAs) with long complementarities to sites of rRNA methylation has been recently found to guide such modifications, opening up a direct approach to the study of their elusive function. Ribose methylation can also be targeted to non-rRNA sequences by tailored snoRNA guides, possibly providing a highly selective tool for altering gene expression at the post-transcriptional level.
Collapse
Affiliation(s)
- J P Bachellerie
- Laboratoire de Biologie Moléculaire Eucaryote du CNRS, Université Paul-Sabatier, Toulouse, France.
| | | |
Collapse
|
23
|
Xia L, Watkins NJ, Maxwell ES. Identification of specific nucleotide sequences and structural elements required for intronic U14 snoRNA processing. RNA (NEW YORK, N.Y.) 1997; 3:17-26. [PMID: 8990395 PMCID: PMC1369458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Vertebrate U14 snoRNAs are encoded within hsc70 pre-mRNA introns and U14 biosynthesis occurs via an intron-processing pathway. We have shown previously that essential processing signals are located in the termini of the mature U14 molecule and replacement of included boxes C or D with oligo C disrupts snoRNA synthesis. The experiments detailed here now define the specific nucleotide sequences and structures of the U14 termini that are essential for intronic snoRNA processing. Mutagenesis studies demonstrated that a 5', 3'-terminal stem of at least three contiguous base pairs is required. A specific helix sequence is not necessary and this stem may be extended to as many as 15 base pairs without affecting U14 processing. The spatial positioning of boxes C and D with respect to the terminal stem is also important. Detailed analysis of boxes C and D revealed that both consensus sequences possess essential nucleotides. Some, but not all, of these critical nucleotides correspond to those required for the stable accumulation of nonintronic yeast U14 snoRNA. The presence of box C and D consensus sequences flanking a terminal stem in many snoRNA species indicates the importance of this "terminal core motif" for snoRNA processing.
Collapse
Affiliation(s)
- L Xia
- Department of Biochemistry, North Carolina State University, Raleigh 27695-7622, USA
| | | | | |
Collapse
|
24
|
Cavaillé J, Hadjiolov AA, Bachellerie JP. Processing of mammalian rRNA precursors at the 3' end of 18S rRNA. Identification of cis-acting signals suggests the involvement of U13 small nucleolar RNA. EUROPEAN JOURNAL OF BIOCHEMISTRY 1996; 242:206-13. [PMID: 8973634 DOI: 10.1111/j.1432-1033.1996.0206r.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Molecular mechanisms involved in the nucleolytic cleavage at the 18S rRNA/internal transcribed spacer 1 (ITS 1) junction, a late step of small-subunit pre-rRNA processing in vertebrates, remain largely unknown, mostly due to the lack of faithful in vitro assays. To identify the minimal cis-acting signals required for this reaction, we studied the processing of truncated human rRNA gene transcripts transiently expressed upon transfection of rRNA minigenes into cultured mouse cells. We observed that processing at this site was faithfully reproduced with transcripts containing only 60 nucleotides of 18S rRNA and the adjacent 103 nucleotides of ITS 1, but was abolished or severely altered by further shortening of either sequence. Remarkably, this minimal transcript contains, within its 18S rRNA part, long sequences complementary to both U20 and U13 small nucleolar RNAs (snoRNAs). The cis-acting elements essential for the reaction were studied further by site-directed mutagenesis. The U20 snoRNA complementary region in 18S rRNA was not required for faithful processing at the 18S rRNA/ITS 1 junction. Also, processing at this site was not appreciably altered by random substitution of proximal ITS 1 sequences (including the 5' terminal nucleotide) or of the terminal nucleotide of mature 18S rRNA. Substitutions in the four-nucleotide loop of the 18S rRNA 3'-terminal stem-loop, including the two adenosine residues substrates of dimethylation, did not alter appreciably the formation of the 18S rRNA 3' end, showing that the (methyl)2A1850.(methyl)2A1851 doublet was not required for processing at this site. Two highly conserved 18S rRNA elements acted as major cis-acting signals for processing at the 3' end, the CAUU sequence immediately preceding the 3'-terminal nucleotide and the 3' strand of the 3'-terminal 18S rRNA helix, complementary to U13 snoRNA. Compensatory mutations, restoring the potential for helix formation, but not U13 snoRNA complementarity, did not restitute the cleavage at the 3' end of 18S rRNA. This suggests that U13 snoRNA may be a trans-acting factor in the nucleolytic cleavage at the 3' end of 18S rRNA.
Collapse
MESH Headings
- Animals
- Base Sequence
- L Cells
- Mice
- Molecular Sequence Data
- Mutagenesis, Site-Directed
- Nucleic Acid Conformation
- RNA Precursors/metabolism
- RNA Processing, Post-Transcriptional
- RNA, Ribosomal, 18S/biosynthesis
- RNA, Ribosomal, 18S/chemistry
- RNA, Ribosomal, 18S/metabolism
- RNA, Small Nuclear/metabolism
- Transcription, Genetic
- Transfection
Collapse
Affiliation(s)
- J Cavaillé
- Laboratoire de Biologie Moléculaire Eucaryote du Centre National de la Recherche Scientifique, Université Paul Sabatier, Toulouse, France
| | | | | |
Collapse
|
25
|
Crosio C, Cecconi F, Mariottini P, Cesareni G, Brenner S, Amaldi F. Fugu intron oversize reveals the presence of U15 snoRNA coding sequences in some introns of the ribosomal protein S3 gene. Genome Res 1996; 6:1227-31. [PMID: 8973918 DOI: 10.1101/gr.6.12.1227] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
We present here the analysis of the genomic organization of the Fugu gene coding for ribosomal protein S3 and its intron encoded U15 RNA, and compare it with the homologous human and Xenopus genes. Only two of the six Fugu S3 gene introns do not contain the U15 sequence and are in fact shorter than 100 nucleotides, as most Fugu introns. The other four introns are somewhat longer and contain sequences homologous to U15 RNA; two of these represent functional copies, as shown by microinjections of Fugu transcripts into Xenopus oocytes, whereas the other two appear to be nonfunctional pseudocopies. Thus Fugu turns out to be ideal for the study of intron encoded snoRNAs, partly because of the reduced cloning and sequencing workload, and partly because the intron length per se can be an indication of the presence of a snoRNA coding sequence.
Collapse
Affiliation(s)
- C Crosio
- Department of Biology, University of Rome, Tor Vergata, Italy
| | | | | | | | | | | |
Collapse
|
26
|
Cavaillé J, Nicoloso M, Bachellerie JP. Targeted ribose methylation of RNA in vivo directed by tailored antisense RNA guides. Nature 1996; 383:732-5. [PMID: 8878486 DOI: 10.1038/383732a0] [Citation(s) in RCA: 238] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Eukaryotic ribosomal RNAs are post-transcriptionally modified by methylation at the ribose sugar of specific nucleotides. This takes place in the nucleolus and involves a family of small nucleolar RNAs (snoRNAs) with long regions (10-21 nucleotides) complementary to rRNA sequences spanning the methylation site--a complementary snoRNA is required for methylation at a specific site. Here we show that altering the sequence of the snoRNA is sufficient to change the specificity of methylation. Mammalian cells transfected with a snoRNA engineered to be complementary to an arbitrary rRNA sequence direct the methylation of the predicted nucleotide in that sequence. We have further identified structural features, both of the guide and substrate RNA, required for methylation and have used these to design an exogenous transcript, devoid of rRNA sequence, that is site-specifically methylated when coexpressed with an appropriate guide snoRNA. Endogenous non-ribosomal RNA can thus be targeted, possibly providing a highly selective tool for the alteration of gene expression at the post-transcriptional level.
Collapse
Affiliation(s)
- J Cavaillé
- Laboratoire de Biologie Moléculaire Eucaryote du CNRS, Université Paul-Sabatier, Toulouse, France
| | | | | |
Collapse
|
27
|
Kiss-László Z, Henry Y, Bachellerie JP, Caizergues-Ferrer M, Kiss T. Site-specific ribose methylation of preribosomal RNA: a novel function for small nucleolar RNAs. Cell 1996; 85:1077-88. [PMID: 8674114 DOI: 10.1016/s0092-8674(00)81308-2] [Citation(s) in RCA: 637] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Eukaryotic cells contain many fibrillarin-associated small nucleolar RNAs (snoRNAs) that possess long complementarities to mature rRNAs. Characterization of 21 novel antisense snoRNAs from human cells followed by genetic depletion and reconstitution studies on yeast U24 snoRNA provides evidence that this class of snoRNAs is required for site-specific 2'-O-methylation of preribosomal RNA (pre-rRNA). Antisense sno-RNAs function through direct base-pairing interactions with pre-rRNA. The antisense element, together with the D or D' box of the snoRNA, provide the information necessary to select the target nucleotide for the methyltransfer reaction. The conclusion that sno-RNAs function in covalent modification of the sugar moieties of ribonucleotides demonstrates that eukaryotic small nuclear RNAs have a more versatile cellular function than earlier anticipated.
Collapse
Affiliation(s)
- Z Kiss-László
- Laboratorie de Biologie Moléculaire Eucaryote du CNRS, Toulouse, France
| | | | | | | | | |
Collapse
|
28
|
Caffarelli E, Fatica A, Prislei S, De Gregorio E, Fragapane P, Bozzoni I. Processing of the intron-encoded U16 and U18 snoRNAs: the conserved C and D boxes control both the processing reaction and the stability of the mature snoRNA. EMBO J 1996; 15:1121-31. [PMID: 8605882 PMCID: PMC450010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
A novel class of small nucleolar RNAs (snoRNAs), encoded in introns of protein coding genes and originating from processing of their precursor molecules, has recently been described. The L1 ribosomal protein (r-protein) gene of Xenopus laevis and its human homologue contain two snoRNAs, U16 and U18. It has been shown that these snoRNAs are excised from their intron precursors by endonucleolytic cleavage and that their processing is alternative to splicing. Two sequences, internal to the snoRNA coding region, have been identified as indispensable for processing the conserved boxes C and D. Competition experiments have shown that these sequences interact with diffusible factors which can bind both the pre-mRNA and the mature U16 snoRNA. Fibrillarin, which is known to associate with complexes formed on C and D boxes of other snoRNAs, is found in association with mature U16 RNA, as well as with its precursor molecules. This fact suggests that the complex formed on the pre-mRNA remains bound to U16 throughout all the processing steps. We also show that the complex formed on the C and D boxes is necessary to stabilize mature snoRNA.
Collapse
Affiliation(s)
- E Caffarelli
- Centro Acidi Nucleici, CNR, Universita La Sapienza, Roma, Italy
| | | | | | | | | | | |
Collapse
|
29
|
Renalier MH, Nicoloso M, Qu LH, Bachellerie JP. SnoRNA U21 is also intron-encoded in Drosophila melanogaster but in a different host-gene as compared to warm-blooded vertebrates. FEBS Lett 1996; 379:212-6. [PMID: 8603691 DOI: 10.1016/0014-5793(95)01511-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
U21 is an intron-encoded snoRNA in vertebrates which contains a 13-nt tract of complementarity to an invariant sequence in eukaryotic 28S rRNA. Here, we report the characterization of its Drosophila melanogaster homolog which is the first case of an intron-encoded snoRNA in an invertebrate metazoan. In D. melanogaster, U21 is encoded within the ARF-1 (ADP ribosylation factor 1) gene, whereas in chicken and mammals it is found in the ribosomal protein L5 gene. In D. melanogaster, like in vertebrates, U21 is devoid of a 5' trimethylguanosine cap, thus, likely resulting from processing of intronic RNA. The only portion of U21 sequence preserved between D. melanogaster and vertebrates, in addition to the hallmark box C and box D motifs, corresponds precisely to the 13-nt complementary to rRNA, pointing to an important role of the pairing of U21 to pre-rRNA.
Collapse
MESH Headings
- Animals
- Base Sequence
- Chickens/genetics
- DNA, Complementary
- Drosophila melanogaster/genetics
- Humans
- Introns
- Molecular Sequence Data
- RNA Processing, Post-Transcriptional
- RNA, Messenger
- RNA, Ribosomal, 28S/chemistry
- RNA, Ribosomal, 28S/genetics
- RNA, Small Nuclear/chemistry
- RNA, Small Nuclear/genetics
- Sequence Homology, Nucleic Acid
Collapse
Affiliation(s)
- M H Renalier
- Laboratoire de Biologie Moléculaire Eucaryote du CNRS, Université Paul-Sabatier, Toulouse, France
| | | | | | | |
Collapse
|
30
|
Cavaillé J, Bachellerie JP. Processing of fibrillarin-associated snoRNAs from pre-mRNA introns: an exonucleolytic process exclusively directed by the common stem-box terminal structure. Biochimie 1996; 78:443-56. [PMID: 8915534 DOI: 10.1016/0300-9084(96)84751-1] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Nucleoli contain complex populations of small nucleolar RNAs (snoRNAs) likely to be involved in pre-rRNA processing and ribosome biogenesis. A growing family of snoRNAs which interacts with nucleolar protein fibrillarin is structurally related by the presence of long complementarities to rRNA (12 to 21 nucleotides) and of a pair of common sequence motifs, termed boxes C and D. All are encoded in introns and produced by processing of intronic RNA. We have analysed the mechanism of processing of one of these snoRNAs, U20, by transfection in mouse cells. We show here that the cis-acting signals for its processing are restricted to a minor portion of the mature snoRNA sequence. A terminal structure in which the two box motifs are brought in close vicinity by the pairing of the 5' and 3' terminal nucleotides is sufficient to direct faithful processing. Particularly, the key role of the terminal stem shared by most snoRNAs of this family is demonstrated by the effect of compensatory mutations. Our results also indicate that faithful processing at both ends of the snoRNA can be uncoupled and that it is not strictly dependent on pre-mRNA splicing. Finally, our data point to the exclusive involvement of 5'-->3' and 3'-->5' exonucleolytic activities in the processing of intronic snoRNAs of this family.
Collapse
Affiliation(s)
- J Cavaillé
- Laboratoire de Biologie Moléculaire Eucaryote du CNRS, Université Paul-Sabatier, Toulouse, France
| | | |
Collapse
|
31
|
Bachellerie JP, Nicoloso M, Qu LH, Michot B, Caizergues-Ferrer M, Cavaille J, Renalier MH. Novel intron-encoded small nucleolar RNAs with long sequence complementarities to mature rRNAs involved in ribosome biogenesis. Biochem Cell Biol 1995; 73:835-43. [PMID: 8721999 DOI: 10.1139/o95-091] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Recently, several new snoRNAs encoded in introns of genes coding for ribosomal, ribosome-associated, or nucleolar proteins have been discovered. We are presently studying four of these intronic snoRNAs. Three of them, U20, U21, and U24, are closely related to each other on a structural basis. They are included in genes encoding nucleolin and ribosomal proteins L5 and L7a, respectively, in warm-blooded vertebrates. These three metabolically stable snoRNAs interact with nucleolar protein fibrillarin. In addition, they display common features that make them strikingly related to snoRNA U14. U14 contains two tracts of complementarity to 18S rRNA, which are required for the production of 18S rRNA. U20 displays a 21 nucleotide (nt) long complementarity to 18S rRNA. U21 contains a 13 nt complementarity to an invariant sequence in eukaryotic 28S rRNA. U24 has two separate 12 nt long complementarities to a highly conserved tract of 28S rRNA. Phylogenetic evidences support the fundamental importance of the pairings of these three snoRNAs to pre-rRNA, which could be involved in a control of pre-rRNA folding during preribosome assembly. By transfection of mouse cells, we have also analyzed the processing of U20 and found that the -cis acting signals for its processing from intronic RNA are restricted to the mature snoRNA sequence. Finally, we have documented changes of host genes for these three intronic snoRNAs during the evolution of eukaryotes.
Collapse
Affiliation(s)
- J P Bachellerie
- Laboratoire de Biologic Moléculaire Eucaryote du C.N.R.S., Université Paul-Sahatier, France
| | | | | | | | | | | | | |
Collapse
|
32
|
Lafontaine D, Tollervey D. Trans-acting factors in yeast pre-rRNA and pre-snoRNA processing. Biochem Cell Biol 1995; 73:803-12. [PMID: 8721996 DOI: 10.1139/o95-088] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The major intermediates in the pathway of pre-rRNA processing in yeast and other eukaryotes were originally identified by biochemical analyses. However, as a result of the analysis of the effects of mutations in trans-acting factors, the yeast pre-rRNA processing pathway is now characterized in far more detail than that of other eukaryotes. These analyses have led to the identification of processing sites and intermediates that were either too close in size or too short lived to detected by biochemical analyses alone. In addition, it was generally unclear whether pre-rRNA processing steps were endonucleolytic or exonucleolytic; analyses of trans-acting factors is now revealing a complex mixture of endonucleolytic and exonucleolytic processing steps. Many of the small nucleolar RNAs (snoRNAs) are excised from larger precursors. Analyses of trans-acting factors are also revealing details of pre-snoRNA processing in yeast. Interestingly, factors involved in pre-snoRNA processing turn out to be components that also function in pre-rRNA processing, suggesting a potential mechanism for the coregulation of rRNA and snoRNA synthesis. In general, very little is known about the regulation of pre-rRNA processing steps. The best candidate for a system regulating specific pre-rRNA processing reactions has recently been revealed by the analysis of a yeast pre-RNA methylase. Here we will review recent data on the trans-acting factors involved in yeast ribosome synthesis and discuss how these analyses have contributed to our current view of this complex process.
Collapse
Affiliation(s)
- D Lafontaine
- European Molecular Biology Laboratory (EMBL), Postfach 10 22 09, Meyerhofstrasse 1, D-69117 Heidelberg, Germany
| | | |
Collapse
|
33
|
Abstract
A growing list of small nucleolar RNAs (snoRNAs) has been characterized in eukaryotes. They are transcribed by RNA polymerase II or III; some snoRNAs are encoded in the introns of other genes. The nonintronic polymerase II transcribed snoRNAs receive a trimethylguanosine cap, probably in the nucleus, and move to the nucleolus. snoRNAs are complexed with proteins, sometimes including fibrillarin. Localization and maintenance in the nucleolus of some snoRNAs requires the presence of initial precursor rRNA (pre-rRNA). Many snoRNAs have conserved sequence boxes C and D and a 3' terminal stem; the role of these features are discussed. Functional assays done for a few snoRNAs indicate their roles in rRNA processing for cleavage of the external and internal transcribed spacers (ETS and ITS). U3 is the most abundant snoRNA and is needed for cleavage of ETS1 and ITS1; experimental results on U3 binding sites in pre-rRNA are reviewed. 18S rRNA production also needs U14, U22, and snR30 snoRNAs, whereas U8 snoRNA is needed for 5.8S and 28S rRNA production. Other snoRNAs that are complementary to 18S or 28S rRNA might act as chaperones to mediate RNA folding. Whether snoRNAs join together in a large rRNA processing complex (the "processome") is not yet clear. It has been hypothesized that such complexes could anchor the ends of loops in pre-rRNA containing 18S or 28S rRNA, thereby replacing base-paired stems found in pre-rRNA of prokaryotes.
Collapse
|
34
|
Tuteja N, Huang NW, Skopac D, Tuteja R, Hrvatic S, Zhang J, Pongor S, Joseph G, Faucher C, Amalric F. Human DNA helicase IV is nucleolin, an RNA helicase modulated by phosphorylation. Gene 1995; 160:143-8. [PMID: 7642087 DOI: 10.1016/0378-1119(95)00207-m] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The cDNA encoding human DNA helicase IV (HDH IV), a 100-kDa protein which unwinds DNA in the 5' to 3' direction with respect to the bound strand, was cloned and sequenced. It was found to be identical to the human cDNA encoding nucleolin, a ubiquitous eukaryotic protein essential for pre-ribosome assembly. HDH IV/nucleolin can unwind RNA-RNA duplexes, as well as DNA-DNA and DNA-RNA duplexes. Phosphorylation of HDH IV/nucleolin by cdc2 kinase and casein kinase II enhanced its unwinding activity in an additive way. The Gly-rich C-terminal domain possesses a limited ATP-dependent duplex-unwinding activity which contributes to the helicase activity of HDH IV/nucleolin.
Collapse
Affiliation(s)
- N Tuteja
- International Centre for Genetic Engineering and Biotechnology, Area Science Park, Trieste, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Bachellerie JP, Michot B, Nicoloso M, Balakin A, Ni J, Fournier MJ. Antisense snoRNAs: a family of nucleolar RNAs with long complementarities to rRNA. Trends Biochem Sci 1995; 20:261-4. [PMID: 7667877 DOI: 10.1016/s0968-0004(00)89039-8] [Citation(s) in RCA: 123] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
A growing subset of small nucleolar RNAs (snoRNAs) contains long stretches of sequence complementarity to conserved sequences in mature ribosomal RNA (rRNA). This article reviews current knowledge about these complementarities and proposes that these antisense snoRNAs might function in pre-rRNA folding, base modification and ribosomal ribonucleoprotein assembly, in some cases acting as RNA chaperones.
Collapse
Affiliation(s)
- J P Bachellerie
- Centre National de la Recherche Scientifique, Laboratoire de Biologie Moléculaire Eucaryote, Toulouse, France
| | | | | | | | | | | |
Collapse
|
36
|
Abstract
Many small nucleolar RNAs (snoRNAs) in vertebrates are encoded within introns of protein genes. We have reported previously that two isoforms of human U17 snoRNA are encoded in introns of the cell-cycle regulatory gene, RCC1. We have now investigated the mechanism of processing of U17 RNAs and of another intron-encoded snoRNA, U19. Experiments in which the processing of intronic RNA substrates was tested in HeLa cell extracts suggest that exonucleases rather than endonucleases are involved in the excision of U17 and U19 RNAs: (1) Cutoff products that would be expected from endonucleolytic cleavages were not detected; (2) capping or circularization of substrates inhibited formation of snoRNAs; and (3) U17 RNA was faithfully processed from a substrate carrying unrelated flanking sequences. To study in vivo processing the coding regions of snoRNAs were inserted into intron 2 of the human beta-globin gene. Expression of resulting pre-mRNAs in simian COS cells resulted in formation of correctly processed snoRNAs and of the spliced globin mRNA, demonstrating that snoRNAs can be excised from a nonhost intron and that their sequences contain all the signals essential for accurate processing. When the U17 sequence was placed in a beta-globin exon, no formation of U17 RNA took place, and when two U17 RNA-coding regions were placed in a single intron, doublet U17 RNA molecules accumulated. The results support a model according to which 5'-->3' and 3'-->5' exonucleases are involved in maturation of U17 and U19 RNAs and that excised and debranched introns are the substrates of the processing reaction.
Collapse
Affiliation(s)
- T Kiss
- Friedrich Miescher-Institut, Basel, Switzerland
| | | |
Collapse
|
37
|
Abstract
The debate continues on the issue of whether nuclear introns were present in eukaryotic protein-coding genes from the beginning (introns-early) or invaded them later in evolution (introns-late). Recent studies concerning the location of introns with respect to gene and protein structure have been interpreted as providing strong support for both positions, but the weight of argument is clearly moving in favour of the latter. Consistent with this, there is now good evidence that introns can function as transposable elements, and that nuclear introns derived from self-splicing group II introns, which then evolved in partnership with the spliceosome. This was only made possible by the separation of transcription and translation. If introns did colonize eukaryotic genes after their divergence from prokaryotes, the original question as to the evolutionary forces that have seen these sequences flourish in the higher organisms, and their significance in eukaryotic biology, is again thrown open. I suggest that introns, once established in eukaryotic genomes, might have explored new genetic space and acquired functions which provided a positive pressure for their expansion. I further suggest that there are now two types of information produced by eukaryotic genes--mRNA and iRNA--and that this was a critical step in the development of multicellular organisms.
Collapse
Affiliation(s)
- J S Mattick
- Centre for Molecular and Cellular Biology, University of Queensland, Brisbane, Australia
| |
Collapse
|