1
|
Schroer AB, Mohamed JS, Willard MD, Setola V, Oestreich E, Siderovski DP. A role for Regulator of G protein Signaling-12 (RGS12) in the balance between myoblast proliferation and differentiation. PLoS One 2019; 14:e0216167. [PMID: 31408461 PMCID: PMC6691989 DOI: 10.1371/journal.pone.0216167] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 04/15/2019] [Indexed: 12/28/2022] Open
Abstract
Regulators of G Protein Signaling (RGS proteins) inhibit G protein-coupled receptor (GPCR) signaling by accelerating the GTP hydrolysis rate of activated Gα subunits. Some RGS proteins exert additional signal modulatory functions, and RGS12 is one such protein, with five additional, functional domains: a PDZ domain, a phosphotyrosine-binding domain, two Ras-binding domains, and a Gα·GDP-binding GoLoco motif. RGS12 expression is temporospatially regulated in developing mouse embryos, with notable expression in somites and developing skeletal muscle. We therefore examined whether RGS12 is involved in the skeletal muscle myogenic program. In the adult mouse, RGS12 is expressed in the tibialis anterior (TA) muscle, and its expression is increased early after cardiotoxin-induced injury, suggesting a role in muscle regeneration. Consistent with a potential role in coordinating myogenic signals, RGS12 is also expressed in primary myoblasts; as these cells undergo differentiation and fusion into myotubes, RGS12 protein abundance is reduced. Myoblasts isolated from mice lacking Rgs12 expression have an impaired ability to differentiate into myotubes ex vivo, suggesting that RGS12 may play a role as a modulator/switch for differentiation. We also assessed the muscle regenerative capacity of mice conditionally deficient in skeletal muscle Rgs12 expression (via Pax7-driven Cre recombinase expression), following cardiotoxin-induced damage to the TA muscle. Eight days post-damage, mice lacking RGS12 in skeletal muscle had attenuated repair of muscle fibers. However, when mice lacking skeletal muscle expression of Rgs12 were cross-bred with mdx mice (a model of human Duchenne muscular dystrophy), no increase in muscle degeneration was observed over time. These data support the hypothesis that RGS12 plays a role in coordinating signals during the myogenic program in select circumstances, but loss of the protein may be compensated for within model syndromes of prolonged bouts of muscle damage and repair.
Collapse
Affiliation(s)
- Adam B. Schroer
- Department of Physiology & Pharmacology, WVU School of Medicine, West Virginia University, Morgantown, WV, United States of America
| | - Junaith S. Mohamed
- Division of Exercise Physiology, West Virginia University, Morgantown, WV, United States of America
| | - Melinda D. Willard
- Department of Pharmacology, The University of North Carolina, Chapel Hill, NC, United States of America
| | - Vincent Setola
- Department of Neuroscience, West Virginia University, Morgantown, WV, United States of America
| | - Emily Oestreich
- Department of Pharmacology, The University of North Carolina, Chapel Hill, NC, United States of America
- * E-mail: (EO); (DPS)
| | - David P. Siderovski
- Department of Physiology & Pharmacology, WVU School of Medicine, West Virginia University, Morgantown, WV, United States of America
- * E-mail: (EO); (DPS)
| |
Collapse
|
2
|
Xiang J, Zhao Y, Chen J, Zhou J. Expression of basic fibroblast growth factor, protein kinase C and members of the apoptotic pathway in skeletal muscle of streptozotocin-induced diabetic rats. Tissue Cell 2013; 46:1-8. [PMID: 24008114 DOI: 10.1016/j.tice.2013.07.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 07/22/2013] [Accepted: 07/22/2013] [Indexed: 01/11/2023]
Abstract
This study investigated the potential mechanisms that may underlie diabetes induced amyoatrophy. Sprague-Dawley rats were either injected intraperiotneally with STZ (test group; N=8) to induce diabetic-like symptoms (blood glucose level ≥16.65mmol/L) or with buffer (control group; N=8). Differences in muscle structure between the STZ-induced diabetic and control groups were evaluated by histochemistry. Protein and mRNA levels of basic FGF (bFGF), bax, bcl-2, and caspase 3 in skeletal muscle were compared between the 2 groups using immunohistochemistry and quantitative PCR, respectively. Serum level of insulin and protein kinase C (PKC) were measured by competitive RIA and ELISA, respectively. Unlike control animals, the skeletal muscle fibers from STZ-induced diabetic animals were broken and pyknotic, the sarcomeric structure disrupted, and mild hyperplasia of interstitial adipose tissues was detected. The serum level of PKC was higher (P=0.003) and the protein and mRNA levels of bFGF in skeletal muscle were lower (P=0.001) in STZ-induced diabetic versus control animals. Protein and mRNA levels of the apoptosis promoting genes caspase-3 and bax were higher in skeletal muscle from STZ-induced diabetic rats as compared to control animals (P<0.001 and P=0.037, respectively), while mRNA and protein levels of bcl-2, an inhibitor of apoptosis, was lower in STZ-induced diabetic rats versus control animals (P=0.026). Increasing apoptosis in skeletal muscle from STZ-induced diabetic rats was further demonstrated by TNNEL assay. Our findings suggest that enhanced PKC levels, reduction of bFGF expression, and increased in apoptosis might be associated with the development of diabetes-induced myoatrophy.
Collapse
Affiliation(s)
- Jingyan Xiang
- Department of Neurology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Yuwu Zhao
- Department of Neurology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China.
| | - Jingjiong Chen
- Department of Neurology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Jian Zhou
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| |
Collapse
|
3
|
Ciemerych MA, Archacka K, Grabowska I, Przewoźniak M. Cell cycle regulation during proliferation and differentiation of mammalian muscle precursor cells. Results Probl Cell Differ 2011; 53:473-527. [PMID: 21630157 DOI: 10.1007/978-3-642-19065-0_20] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Proliferation and differentiation of muscle precursor cells are intensively studied not only in the developing mouse embryo but also using models of skeletal muscle regeneration or analyzing in vitro cultured cells. These analyses allowed to show the universality of the cell cycle regulation and also uncovered tissue-specific interplay between major cell cycle regulators and factors crucial for the myogenic differentiation. Examination of the events accompanying proliferation and differentiation leading to the formation of functional skeletal muscle fibers allows understanding the molecular basis not only of myogenesis but also of skeletal muscle regeneration. This chapter presents the basis of the cell cycle regulation in proliferating and differentiating muscle precursor cells during development and after muscle injury. It focuses at major cell cycle regulators, myogenic factors, and extracellular environment impacting on the skeletal muscle.
Collapse
Affiliation(s)
- Maria A Ciemerych
- Department of Cytology, Institute of Zoology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland.
| | | | | | | |
Collapse
|
4
|
Sordillo LM, Streicher KL, Mullarky IK, Gandy JC, Trigona W, Corl CM. Selenium inhibits 15-hydroperoxyoctadecadienoic acid-induced intracellular adhesion molecule expression in aortic endothelial cells. Free Radic Biol Med 2008; 44:34-43. [PMID: 18045545 DOI: 10.1016/j.freeradbiomed.2007.09.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2007] [Revised: 08/11/2007] [Accepted: 09/05/2007] [Indexed: 02/07/2023]
Abstract
Increased intracellular adhesion molecule 1 (ICAM-1) expression and enhanced monocyte recruitment to the endothelium are critical steps in the early development of atherosclerosis. The 15-lipoxygenase 1 (15-LOX1) pathway can generate several proinflammatory eicosanoids that are known to enhance ICAM-1 expression within the vascular endothelium. Oxidative stress can exacerbate endothelial cell inflammatory responses by modifying arachidonic acid metabolism through the 15-LOX1 pathway. Because selenium (Se) influences the oxidant status of cells and can modify the expression of eicosanoids, we investigated the role of this micronutrient in modifying ICAM-1 expression as a consequence of enhanced 15-LOX1 activity. Se supplementation reduced ICAM-1 expression in bovine aortic endothelial cells, an effect that was reversed with 15-LOX1 overexpression or treatment with exogenous 15-hydroperoxyoctadecadienoic acid (15-HPETE). ICAM-1 expression increased proportionately when intracellular15-HPETE levels were allowed to accumulate. However, changes in intracellular 15-HETE levels did not seem to affect ICAM-1 expression regardless of Se status. Our results indicate that Se supplementation can reduce 15-HPETE-induced expression of ICAM-1 by controlling the intracellular accumulation of this fatty acid hydroperoxide in endothelial cells.
Collapse
Affiliation(s)
- Lorraine M Sordillo
- Large Animal Clinical Sciences, Michigan State University, East Lansing, MI 48824, USA.
| | | | | | | | | | | |
Collapse
|
5
|
van der Burgt I, Kupsky W, Stassou S, Nadroo A, Barroso C, Diem A, Kratz CP, Dvorsky R, Ahmadian MR, Zenker M. Myopathy caused by HRAS germline mutations: implications for disturbed myogenic differentiation in the presence of constitutive HRas activation. J Med Genet 2007; 44:459-62. [PMID: 17412879 PMCID: PMC2598013 DOI: 10.1136/jmg.2007.049270] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
BACKGROUND Rare reports on patients with congenital myopathy with excess of muscle spindles (CMEMS), hypertrophic cardiomyopathy and variable features resembling Noonan syndrome have been published, but the genetic basis of this condition is so far unknown. METHODS AND RESULTS We analysed PTPN11 and RAS genes in five unrelated patients with this phenotype, and found HRAS mutations in four of them. Two disease-associated mutations, G12V and G12S, have previously been observed in patients with Costello syndrome (CS), and two other mutations, E63K and Q22K, are novel. All four mutations are predicted to enhance downstream HRas signalling, suggesting that CMEMS is a developmental consequence of sustained HRas activation in skeletal muscle. CONCLUSION This type of myopathy may represent a previously unrecognized manifestation of CS. However, some patients carrying HRAS mutations may exhibit prominent congenital muscular dysfunction, although features of CS may be less obvious, suggesting that germline HRAS mutations may underlie some cases of otherwise unclassified neonatal neuromuscular disorders.
Collapse
|
6
|
Salem M, Kenney PB, Rexroad CE, Yao J. Microarray gene expression analysis in atrophying rainbow trout muscle: a unique nonmammalian muscle degradation model. Physiol Genomics 2006; 28:33-45. [PMID: 16882886 DOI: 10.1152/physiolgenomics.00114.2006] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Muscle atrophy is a physiological response to diverse physiological and pathological conditions that trigger muscle deterioration through specific cellular mechanisms. Despite different signals, the biochemical changes in atrophying muscle share many common cascades. Muscle deterioration as a physiological response to the energetic demands of fish vitellogenesis represents a unique model for studying the mechanisms of muscle degradation in non-mammalian animals. A salmonid microarray, containing 16,006 cDNAs, was used to study the transcriptome response to atrophy of fast-switch muscles from gravid rainbow trout compared with sterile fish. Eighty-two unique transcripts were upregulated and 120 transcripts were downregulated in atrophying muscles. Transcripts having gene ontology identifiers were grouped according to their functions. Muscle deterioration was associated with elevated expression of genes involved in the catheptic and collagenase proteolytic pathways; the aerobic production, buffering, and utilization of ATP; and growth arrest; whereas atrophying muscle showed downregulation of genes encoding a serine proteinase inhibitor, enzymes of anaerobic respiration, muscle proteins as well as genes required for RNA and protein biosynthesis/processing. Therefore, gene transcription of the trout muscle atrophy changed in a manner similar to mammalian muscle atrophy. These changes result in an arrest of normal cell growth, protein degradation, and decreased glycolytic cellular respiration that is characteristic of the fast-switch muscle. For the first time, other changes/mechanisms unique to fish were discussed including genes associated with muscle atrophy.
Collapse
Affiliation(s)
- Mohamed Salem
- Division of Animal and Veterinary Sciences, West Virginia University, Morgantown, WV 26506-6108, USA
| | | | | | | |
Collapse
|
7
|
Dogra C, Changotra H, Mohan S, Kumar A. Tumor Necrosis Factor-like Weak Inducer of Apoptosis Inhibits Skeletal Myogenesis through Sustained Activation of Nuclear Factor-κB and Degradation of MyoD Protein. J Biol Chem 2006; 281:10327-36. [PMID: 16461349 DOI: 10.1074/jbc.m511131200] [Citation(s) in RCA: 127] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In this study we have investigated the effect and the mechanisms by which tumor necrosis factor-like weak inducer of apoptosis (TWEAK) modulates myogenic differentiation. Treatment of C2C12 myoblasts with TWEAK inhibited their differentiation evident by a decrease in the expression of creatine kinase, myosin heavy chain-fast twitch, myogenin, and the formation of multinucleated myotubes. TWEAK also inhibited the differentiation of mouse primary myoblasts. Conversely, the proliferation of C2C12 myoblasts and the expression of a cell-cycle regulator cyclin D1 were increased in response to TWEAK treatment. Inhibition of cellular proliferation using hydroxyurea only partially reversed the inhibitory effect of TWEAK on myogenic differentiation. Treatment of C2C12 myoblasts with TWEAK resulted in the activation of nuclear factor-kappaB (NF-kappaB), the (IkappaB) IkappaB kinase (IKK) complex, and the phosphorylation and degradation of IkappaBalpha protein. Inhibition of NF-kappaB activity by overexpression of a dominant negative mutant of IkappaBalpha (IkappaBalphaDeltaN) significantly increased the myogenic differentiation in TWEAK-treated C2C12 cultures. Furthermore, overexpression of a dominant negative mutant of IKKbeta (IKKbetaK44A) but not IKKalpha (IKKalphaK44M) reversed the inhibitory effect of TWEAK on myogenesis. TWEAK inhibited the expression of myogenic regulatory factors MyoD and myogenin and also induced the degradation of MyoD protein. Finally, inhibition of NF-kappaB activation through overexpression of IKKbetaK44A prevented the degradation of MyoD protein. Overall, our data suggest that TWEAK inhibits myogenesis through the activation of NF-kappaB signaling pathway and degradation of MyoD protein.
Collapse
Affiliation(s)
- Charu Dogra
- Molecular Genetics Division, Musculoskeletal Disease Center, Jerry L. Pettis Veterans Administration Medical Center, 11201 Benton Street (151), Loma Linda, CA 92357, USA
| | | | | | | |
Collapse
|
8
|
Trigona W, Mullarky I, Cao Y, Sordillo L. Thioredoxin reductase regulates the induction of haem oxygenase-1 expression in aortic endothelial cells. Biochem J 2006; 394:207-16. [PMID: 16209660 PMCID: PMC1386018 DOI: 10.1042/bj20050712] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Certain selenoproteins such as GPX-1 (glutathione peroxidase-1) and TrxR1 (thioredoxin reductase-1) possess important antioxidant defence functions in vascular endothelial cells. Reduced selenoprotein activity during dietary selenium (Se) deficiency can result in a compensatory increase of other non-Se-dependent antioxidants, such as HO-1 (haem oxygenase-1) that may help to counteract the damaging effects of oxidant stress. However, the role of individual selenoproteins in regulating vascular-derived protective gene responses such as HO-1 is less understood. Using an oxidant stress model based on Se deficiency in BAECs (bovine aortic endothelial cells), we sought to determine whether TrxR1 activity may contribute to the differential regulation of HO-1 expression as a function of altered redox environment. Se-sufficient BAECs up-regulated HO-1 expression following stimulation with the pro-oxidant, 15-HPETE (15-hydroperoxyeicosatetraenoic acid), and levels of this antioxidant inversely correlated with EC apoptosis. While Se-deficient BAECs exhibited higher basal levels of HO-1, it was not up-regulated upon 15-HPETE treatment, which resulted in significantly higher levels of pro-apoptotic markers. Subsequent results showed that HO-1 induction depended on the activity of TrxR1, as proved with chemical inhibitor studies and direct inhibition with TrxR1 siRNA. Finally, restoring intracellular levels of the reduced substrate Trx (thioredoxin) in Sedeficient BAECs was sufficient to increase HO-1 activation following 15-HPETE stimulation. These data provide evidence for the involvement of the Trx/TrxR system, in the regulation of HO-1 expression in BAECs during pro-oxidant challenge.
Collapse
Affiliation(s)
- Wendy L. Trigona
- *Department of Veterinary Science, 115 Henning Building, Pennsylvania State University, University Park, PA 16802, U.S.A
| | - Isis K. Mullarky
- *Department of Veterinary Science, 115 Henning Building, Pennsylvania State University, University Park, PA 16802, U.S.A
| | - Yuzhang Cao
- *Department of Veterinary Science, 115 Henning Building, Pennsylvania State University, University Park, PA 16802, U.S.A
| | - Lorraine M. Sordillo
- †College of Veterinary Medicine, 202D Veterinary Medical Center, Michigan State University, East Lansing, MI 48824, U.S.A
- To whom correspondence should be addressed (email )
| |
Collapse
|
9
|
Johnson SE, Winner DG, Wang X. Ran binding protein 9 interacts with Raf kinase but does not contribute to downstream ERK1/2 activation in skeletal myoblasts. Biochem Biophys Res Commun 2006; 340:409-16. [PMID: 16364241 DOI: 10.1016/j.bbrc.2005.12.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2005] [Accepted: 12/06/2005] [Indexed: 10/25/2022]
Abstract
Raf kinase is the upstream activator of MEK1/2 leading to phosphorylation and activation of ERK1/2. Sustained activation of Raf represses skeletal muscle-specific reporter gene transcription and formation of multinucleated myofibers. Inhibition of myogenesis by activated Raf involves downstream ERK1/2 as well as undefined mediators. To identify Raf-interacting proteins that may influence repression of muscle formation, a yeast two-hybrid screen was performed using a MEK1-binding defective Raf (RafBXB-T481A) as bait. Twenty cDNAs coding for Raf-interacting proteins were identified including Ran binding protein 9 (RanBP9), a protein previously reported to interact with receptor tyrosine kinases. Forced expression of RanBP9 in myogenic cells did not alter myogenesis. Co-expression of RanBP9 with constitutively active RafBXB, but not RafBXB-T481A, synergistically inhibited MyoD-directed muscle reporter gene transcription. Knockdown of RanBP9 expression did not restore the differentiation program to Raf-expressing myoblasts. Thus, RanBP9 physically associates with Raf but does not substantially contribute to the inhibitory actions of the kinase.
Collapse
|
10
|
Forcales SV, Puri PL. Signaling to the chromatin during skeletal myogenesis: Novel targets for pharmacological modulation of gene expression. Semin Cell Dev Biol 2005; 16:596-611. [PMID: 16129633 DOI: 10.1016/j.semcdb.2005.07.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Cellular differentiation entails an extensive reprogramming of the genome toward the expression of discrete subsets of genes, which establish the tissue-specific phenotype. This program is achieved by epigenetic marks of the chromatin at particular loci, and is regulated by environmental cues, such as soluble factors and cell-to-cell interactions. How the intracellular cascades convert the myriad of external stimuli into the nuclear information necessary to reprogram the genome toward specific responses is a question of biological and medical interest. The elucidation of the signaling converting cues from outside the cells into chromatin modifications at individual promoters holds the promise to unveil the targets for selective pharmacological interventions to modulate gene expression for therapeutic purposes. Enhancing muscle regeneration and preventing muscle breakdown are important goals in the therapy of muscular diseases, cancer-associated cachexia and aging-associated sarcopenia. We will summarize the recent progress of our knowledge of the regulation of gene expression by intracellular cascades elicited by external cues during skeletal myogenesis. And will illustrate the potential importance of targeting the chromatin signaling in regenerative medicine--e.g. to boost muscle regeneration.
Collapse
Affiliation(s)
- Sonia Vanina Forcales
- Laboratory of Gene Expression, Dulbecco Telethon Institute (DTI) at Fondazione A. Cesalpino, ICBTE, San Raffaele Biomedical Science Park of Rome, Rome, Italy
| | | |
Collapse
|
11
|
Abstract
Mice likely represent the most-studied mammalian organism, except for humans. Genetic engineering in embryonic stem cells has allowed derivation of mouse strains lacking particular cell cycle proteins. Analyses of these mutant mice, and cells derived from them, facilitated the studies of the functions of cell cycle apparatus at the organismal and cellular levels. In this review, we give some background about the cell cycle progression during mouse development. We next discuss some insights about in vivo functions of the cell cycle proteins, gleaned from mouse knockout experiments. Our text is meant to provide examples of the recent experiments, rather than to supply an extensive and complete list.
Collapse
Affiliation(s)
- Maria A Ciemerych
- Department of Embryology, Institute of Zoology, Faculty of Biology, Warsaw University, Miecznikowa 1, 02-096 Warsaw, Poland
| | | |
Collapse
|
12
|
Zhu L, Tran T, Rukstalis JM, Sun P, Damsz B, Konieczny SF. Inhibition of Mist1 homodimer formation induces pancreatic acinar-to-ductal metaplasia. Mol Cell Biol 2004; 24:2673-81. [PMID: 15024058 PMCID: PMC371125 DOI: 10.1128/mcb.24.7.2673-2681.2004] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2003] [Revised: 12/19/2003] [Accepted: 01/06/2004] [Indexed: 12/27/2022] Open
Abstract
The pancreas consists of three main cell lineages (endocrine, exocrine, and duct) that develop from common primitive foregut precursors. The transcriptional network responsible for endocrine cell development has been studied extensively, but much less is known about the transcription factors that maintain the exocrine and duct cell lineages. One transcription factor that may be important to exocrine cell function is Mist1, a basic helix-loop-helix (bHLH) factor that is expressed in acinar cells. In order to perform a molecular characterization of this protein, we employed coimmunoprecipitation and bimolecular fluorescence complementation assays, coupled with electrophoretic mobility shift assay studies, to show that Mist1 exists in vivo as a homodimer complex. Analysis of transgenic mice expressing a dominant-negative Mist1 transgene (Mist1(mutant basic) [Mist1(MB)]) revealed the cell autonomous effect of inhibiting endogenous Mist1. Mist1(MB) cells become disorganized, exhibit a severe depletion of intercellular gap junctions, and express high levels of the glycoprotein clusterin, which has been shown to demarcate immature acinar cells. Inhibition of Mist1 transcriptional activity also leads to activation of duct-specific genes, such as cytokeratin 19 and cytokeratin 20, suggesting that alterations in the bHLH network produce a direct acinar-to-ductal phenotypic switch in mature cells. We propose that Mist1 is a key transcriptional regulator of exocrine pancreatic cells and that in the absence of functional Mist1, acinar cells do not maintain their normal identity.
Collapse
Affiliation(s)
- Liqin Zhu
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907-1392, USA
| | | | | | | | | | | |
Collapse
|
13
|
Li Y, Foster W, Deasy BM, Chan Y, Prisk V, Tang Y, Cummins J, Huard J. Transforming growth factor-beta1 induces the differentiation of myogenic cells into fibrotic cells in injured skeletal muscle: a key event in muscle fibrogenesis. THE AMERICAN JOURNAL OF PATHOLOGY 2004; 164:1007-19. [PMID: 14982854 PMCID: PMC1614716 DOI: 10.1016/s0002-9440(10)63188-4] [Citation(s) in RCA: 348] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/25/2003] [Indexed: 02/07/2023]
Abstract
Transforming growth factor-beta1 (TGF-beta1) is thought to play a crucial role in fibrotic diseases. This study demonstrates for the first time that TGF-beta1 stimulation can induce myoblasts (C2C12 cells) to express TGF-beta1 in an autocrine manner, down-regulate the expression of myogenic proteins, and initiate the production of fibrosis-related proteins in vitro. Direct injection of human recombinant TGF-beta1 into skeletal muscle in vivo stimulated myogenic cells, including myofibers, to express TGF-beta1 and induced scar tissue formation within the injected area. We also observed the local expression of this growth factor by myogenic cells, including regenerating myofibers, in injured skeletal muscle. Finally, we demonstrated that TGF-beta1 gene-transfected myoblasts (CT cells) can differentiate into myofibroblastic cells after intramuscular transplantation, but that decorin, an anti-fibrosis agent, prevents this differentiation process by blocking TGF-beta1. In summary, these findings indicate that TGF-beta1 is a major stimulator that plays a significant role in both the initiation of fibrotic cascades in skeletal muscle and the induction of myogenic cells to differentiate into myofibroblastic cells in injured muscle.
Collapse
Affiliation(s)
- Yong Li
- Growth and Development Laboratory, Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania 15213-2583, USA. jhuard+@pitt.edu
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Falcone G, Ciuffini L, Gauzzi MC, Provenzano C, Strano S, Gallo R, Castellani L, Alemà S. v-Src inhibits myogenic differentiation by interfering with the regulatory network of muscle-specific transcriptional activators at multiple levels. Oncogene 2004; 22:8302-15. [PMID: 14614454 DOI: 10.1038/sj.onc.1206915] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The conversion of skeletal myoblasts to terminally differentiated myocytes is negatively controlled by several growth factors and oncoproteins. In this study, we have investigated the molecular mechanisms by which v-Src, a prototypic tyrosine kinase, perturbs myogenesis in primary avian myoblasts and in established murine C2C12 satellite cells. We determined the expression levels of the cell cycle regulators pRb, cyclin D1 and D3 and cyclin-dependent kinase inhibitors p21 and p27 in v-Src-transformed myoblasts and found that, in contrast to myogenin, they are normally modulated by differentiative cues, implying that v-Src affects myogenesis independent of cell proliferation. We then examined the levels of expression, DNA-binding ability and transcription-activation potentials of myogenic regulatory factors in transformed myoblasts and in myotubes after reactivation of a temperature-sensitive allele of v-Src. Our results reveal two distinct potential modes of repression targeted to myogenic factors. On the one hand, we show that v-Src reversibly inhibits the expression of MyoD and myogenin in C2C12 cells and of myogenin in quail myoblasts. Remarkably, these loci become resistant to activation of the kinase in the postmitotic compartment. On the other hand, we demonstrate that v-Src efficiently inhibits muscle gene expression by repressing the transcriptional activity of myogenic factors without affecting MyoD DNA-binding activity. Indeed, forced expression of MyoD and myogenin allows terminal differentiation of transformed myoblasts. Finally, we found that ectopic expression of the coactivator p300 restores transcription from extrachromosomal muscle-specific promoters.
Collapse
Affiliation(s)
- Germana Falcone
- Istituto di Biologia Cellulare, Consiglio Nazionale delle Ricerche, Monterotondo 00016, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Wang X, Thomson SR, Starkey JD, Page JL, Ealy AD, Johnson SE. Transforming growth factor beta1 is up-regulated by activated Raf in skeletal myoblasts but does not contribute to the differentiation-defective phenotype. J Biol Chem 2003; 279:2528-34. [PMID: 14594948 DOI: 10.1074/jbc.m306489200] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Raf/MEK/MAPK signaling module elicits a strong negative impact on skeletal myogenesis that is reflected by a complete loss of muscle gene transcription and differentiation in multinucleated myocytes. Recent evidence indicates that Raf signaling also may contribute to myoblast cell cycle exit and cytoprotection. To further define the mechanisms by which Raf participates in cellular responses, a stable line of myoblasts expressing an estrogen receptor-Raf chimeric protein was created. The cells (23A2RafER(DD)) demonstrate a strict concentration-dependent increase in chimeric Raf protein synthesis and downstream phosphoMAPK activation. Initiation of low-level Raf activity in these cells augments contractile protein expression and myocyte fusion. By contrast, induction of high level Raf activity in 23A2RafER(DD) myoblasts inhibits the formation of myocytes and muscle reporter gene expression. Interestingly, treatment of myoblasts with conditioned medium isolated from Raf-repressive cells inhibits all of the aspects of myogenesis. Closer examination indicates that the transforming growth factor-beta(1) (TGF-beta(1)) gene is up-regulated in Raf-repressive myoblasts. The cells also direct elevated levels of Smad transcriptional activity, suggesting the existence of a TGF-beta(1) autocrine loop. However, extinguishing the biological activity of TGF-beta(1) does not restore the myogenic program. Our results provide evidence for the involvement of Raf signal transmission during myocyte formation as well as during inhibition of myogenesis.
Collapse
Affiliation(s)
- Xu Wang
- Department of Poultry Science, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | | | | | | | | | |
Collapse
|
16
|
Takahashi C, Bronson RT, Socolovsky M, Contreras B, Lee KY, Jacks T, Noda M, Kucherlapati R, Ewen ME. Rb and N-ras function together to control differentiation in the mouse. Mol Cell Biol 2003; 23:5256-68. [PMID: 12861012 PMCID: PMC165732 DOI: 10.1128/mcb.23.15.5256-5268.2003] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The product of the retinoblastoma tumor suppressor gene (Rb) can control cell proliferation and promote differentiation. Murine embryos nullizygous for Rb die midgestation with defects in cell cycle regulation, control of apoptosis, and terminal differentiation of several tissues, including skeletal muscle, nervous system, and lens. Previous cell culture-based experiments have suggested that the retinoblastoma protein (pRb) and Ras operate in a common pathway to control cellular differentiation. Here we have tested the hypothesis that the proto-oncogene N-ras participates in Rb-dependent regulation of differentiation by generating and characterizing murine embryos deficient in both N-ras and Rb. We show that deletion of N-ras rescues a unique subset of the developmental defects associated with nullizygosity of Rb, resulting in a significant extension of life span. Rb(-/-); N-ras(-/-) skeletal muscle has normal fiber density, myotube length and thickness, in contrast to Rb-deficient embryos. Additionally, Rb(-/-); N-ras(-/-) muscle shows a restoration in the expression of the late muscle-specific gene MCK, and this correlates with a significant potentiation of MyoD transcriptional activity in Rb(-/-); N-ras(-/-), compared to Rb(-/-) myoblasts in culture. The improved differentiation of skeletal muscle in Rb(-/-); N-ras(-/-) embryos occurs despite evidence of deregulated proliferation and apoptosis, as seen in Rb-deficient animals. Our findings suggest that the control of differentiation and proliferation by Rb are genetically separable.
Collapse
Affiliation(s)
- Chiaki Takahashi
- Department of Medical Oncology and Medicine, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Wegorzewska M, Krauss RS, Kang JS. Overexpression of the immunoglobulin superfamily members CDO and BOC enhances differentiation of the human rhabdomyosarcoma cell line RD. Mol Carcinog 2003; 37:1-4. [PMID: 12720294 DOI: 10.1002/mc.10121] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Rhabdomyosarcoma is a childhood tumor of the skeletal muscle lineage in which cells display defects in both biochemical and morphological aspects of differentiation. The immunoglobulin superfamily members CDO and BOC are components of a cell surface receptor that positively regulates myogenesis in vitro. Expression of Cdo and Boc in myoblast cell lines is downregulated by the ras oncogene, and forced re-expression of either Cdo or Boc can override ras-induced inhibition of myogenic differentiation [Kang et al., J Cell Biol 1998; 143:403-413; Kang et al., EMBO J 2002; 21:114-124]. The current study sought to test whether the promyogenic properties of CDO and BOC could be extended to a human rhabdomyosarcoma cell line, RD. Stable overexpression of CDO or BOC in RD cells led to enhanced expression of two markers of muscle cell differentiation, troponin T and myosin heavy chain, and to increased formation of elongated, myosin heavy chain-positive myotubes. These observations are consistent with the notion that CDO and BOC play a role in the inverse relationship between differentiation and transformation of cells in the skeletal muscle lineage.
Collapse
Affiliation(s)
- Marta Wegorzewska
- Brookdale Department of Molecular, Cell and Developmental Biology, Mount Sinai School of Medicine, New York, New York 10029, USA
| | | | | |
Collapse
|
18
|
Mauro A, Ciccarelli C, De Cesaris P, Scoglio A, Bouché M, Molinaro M, Aquino A, Zani BM. PKCalpha-mediated ERK, JNK and p38 activation regulates the myogenic program in human rhabdomyosarcoma cells. J Cell Sci 2002; 115:3587-99. [PMID: 12186945 DOI: 10.1242/jcs.00037] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have previously suggested that PKCalpha has a role in 12-O-Tetradecanoylphorbol-13-acetate (TPA)-mediated growth arrest and myogenic differentiation in human embryonal rhabdomyosarcoma cells (RD). Here, by monitoring the signalling pathways triggered by TPA, we demonstrate that PKCalpha mediates these effects by inducing transient activation of c-Jun N-terminal protein kinases (JNKs) and sustained activation of both p38 kinase and extracellular signal-regulated kinases (ERKs) (all referred to as MAPKs). Activation of MAPKs following ectopic expression of constitutively active PKCalpha, but not its dominant-negative form, is also demonstrated. We investigated the selective contribution of MAPKs to growth arrest and myogenic differentiation by monitoring the activation of MAPK pathways, as well as by dissecting MAPK pathways using MEK1/2 inhibitor (UO126), p38 inhibitor (SB203580) and JNK and p38 agonist (anisomycin) treatments. Growth-arresting signals are triggered either by transient and sustained JNK activation (by TPA and anisomycin, respectively) or by preventing both ERK and JNK activation (UO126) and are maintained, rather than induced, by p38. We therefore suggest a key role for JNK in controlling ERK-mediated mitogenic activity. Notably, sarcomeric myosin expression is induced by both TPA and UO126 but is abrogated by the p38 inhibitor. This finding indicates a pivotal role for p38 in controlling the myogenic program. Anisomycin persistently activates p38 and JNKs but prevents myosin expression induced by TPA. In accordance with this negative role, reactivation of JNKs by anisomycin, in UO126-pre-treated cells, also prevents myosin expression. This indicates that, unlike the transient JNK activation that occurs in the TPA-mediated myogenic process, long-lasting JNK activation supports the growth-arrest state but antagonises p38-mediated myosin expression. Lastly, our results with the MEK inhibitor suggest a key role of the ERK pathway in regulating myogenic-related morphology in differentiated RD cells.
Collapse
Affiliation(s)
- Annunziata Mauro
- Department of Experimental Medicine, University of L'Aquila, Via Vetoio, Coppito II, 67100 L'Aquila, Italy
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Wyzykowski JC, Winata TI, Mitin N, Taparowsky EJ, Konieczny SF. Identification of novel MyoD gene targets in proliferating myogenic stem cells. Mol Cell Biol 2002; 22:6199-208. [PMID: 12167713 PMCID: PMC133998 DOI: 10.1128/mcb.22.17.6199-6208.2002] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A major control point for skeletal myogenesis revolves around the muscle basic helix-loop-helix gene family that includes MyoD, Myf-5, myogenin, and MRF4. Myogenin and MRF4 are thought to be essential to terminal differentiation events, whereas MyoD and Myf-5 are critical to establishing the myogenic cell lineage and producing committed, undifferentiated myogenic stem cells (myoblasts). Although mouse genetic studies have revealed the importance of MyoD and Myf-5 for myoblast development, the genetic targets of MyoD and Myf-5 activity in undifferentiated myoblasts remain unknown. In this study, we investigated the function of MyoD as a transcriptional activator in undifferentiated myoblasts. By using conditional expression of MyoD, in conjunction with suppression subtractive hybridizations, we show that the Id3 and NP1 (neuronal pentraxin 1) genes become transcriptionally active following MyoD induction in undifferentiated myoblasts. Activation of Id3 and NP1 represents a stable, heritable event that does not rely on continued MyoD activity and is not subject to negative regulation by an activated H-Ras G12V protein. These results are the first to demonstrate that MyoD functions as a transcriptional activator in myogenic stem cells and that this key myogenic regulatory factor exhibits different gene target specificities, depending upon the cellular environment.
Collapse
Affiliation(s)
- Jeffrey C Wyzykowski
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907-1392, USA
| | | | | | | | | |
Collapse
|
20
|
Johnson SE, Dorman CM, Bolanowski SA. Inhibition of myogenin expression by activated Raf is not responsible for the block to avian myogenesis. J Biol Chem 2002; 277:28742-8. [PMID: 12042315 DOI: 10.1074/jbc.m203680200] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Activated Raf is a potent inhibitor of skeletal muscle gene transcription and myocyte formation through stimulation of downstream MAPK. However, the molecular targets of elevated MAPK with regard to myogenic repression remain elusive. We examined the effects of activated Raf on myogenin gene expression in avian myoblasts. Overexpression of activated Raf in embryonic chick myoblasts prevented myogenin gene transcription and myocyte differentiation. Treatment with PD98059, an inhibitor of MAPK kinase (MEK), restored myogenin expression but did not reinstate the myogenic program. Using a panel of myogenin promoter deletion mutants, we were unable to identify a region within the proximal 829-bp promoter that confers responsiveness to MEK. Interestingly, our experiments identified MEF2A as a target of Raf-mediated inhibition in mouse myoblasts but not in avian myogenic cells. Embryonic myoblasts overexpressing activated Raf were unable to drive transcription from a minimal myogenin promoter reporter, containing a single E-box and MEF2 site, to levels comparable with controls. Unlike mouse myoblasts, forced expression of MEF2A did not synergistically enhance transcription from the myogenin promoter in chick myoblasts, indicating that additional molecular determinants of the block to myogenesis exist. Results of these experiments further exemplify specie differences in the mode of Raf-mediated inhibition of muscle differentiation.
Collapse
Affiliation(s)
- Sally E Johnson
- Department of Poultry Science, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | | | |
Collapse
|
21
|
Liu D, Black BL, Derynck R. TGF-beta inhibits muscle differentiation through functional repression of myogenic transcription factors by Smad3. Genes Dev 2001; 15:2950-66. [PMID: 11711431 PMCID: PMC312830 DOI: 10.1101/gad.925901] [Citation(s) in RCA: 299] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Transforming growth factor-beta (TGF-beta) is a potent inhibitor of skeletal muscle differentiation, but the molecular mechanism and signaling events that lead to this inhibition are poorly characterized. Here we show that the TGF-beta intracellular effector Smad3, but not Smad2, mediates the inhibition of myogenic differentiation in MyoD-expressing C3H10T1/2 cells and C2C12 myoblasts by repressing the activity of the MyoD family of transcriptional factors. The Smad3-mediated repression was directed at the E-box sequence motif within muscle gene enhancers and the bHLH region of MyoD, the domain required for its association with E-protein partners such as E12 and E47. The repression could be overcome by supplying an excess of E12, and covalent tethering of E47 to MyoD rendered the E-box-dependent transcriptional activity refractory to the effects of Smad3 and TGF-beta. Smad3 physically interacted with the HLH domain of MyoD, and this interaction correlated with the ability of Smad3 to interfere with MyoD/E protein heterodimerization and binding of MyoD complexes to oligomerized E-box sites. Together, these results reveal a model for how TGF-beta, through Smad3-mediated transcriptional repression, inhibits myogenic differentiation.
Collapse
Affiliation(s)
- D Liu
- Department of Growth and Development, University of California at San Francisco, 94143, USA
| | | | | |
Collapse
|
22
|
Beattie GM, Hayek A, Levine F. Growth and genetic modification of human beta-cells and beta-cell precursors. GENETIC ENGINEERING 2001; 22:99-120. [PMID: 11501383 DOI: 10.1007/978-1-4615-4199-8_7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- G M Beattie
- Department of Pediatrics, Whittier Institute and Center for Molecular Genetics, UCSD School of Medicine, La Jolla, CA 92093, USA
| | | | | |
Collapse
|
23
|
Mitin N, Ramocki MB, Konieczny SF, Taparowsky EJ. Ras regulation of skeletal muscle differentiation and gene expression. Methods Enzymol 2001; 333:232-47. [PMID: 11400339 DOI: 10.1016/s0076-6879(01)33059-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
Affiliation(s)
- N Mitin
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907-1392, USA
| | | | | | | |
Collapse
|
24
|
Becker JR, Dorman CM, McClafferty TM, Johnson SE. Characterization of a dominant inhibitory E47 protein that suppresses C2C12 myogenesis. Exp Cell Res 2001; 267:135-43. [PMID: 11412046 DOI: 10.1006/excr.2001.5249] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Skeletal muscle formation is controlled through the coordinated actions of the muscle regulatory factors (MRFs). The activities of these basic helix-loop-helix proteins is mediated in part through heterodimer formation with a family of ubiquitous bHLH proteins, referred to as E-proteins. The primary E-protein in skeletal muscle is the E2A splice variant, E47. To further address the role of E47 during skeletal myogenesis, we created a chimeric E47 repressor protein by replacing the transcriptional activation domain with the Drosophila Engrailed transcriptional repressor domain. The dominant inhibitory E-protein (EnDeltaE47) formed homodimers capable of binding DNA and abolished E47-directed gene transcription. Stable expression of EnDeltaE47 in mouse C2C12 myoblasts effectively blocked the cells' ability to differentiate into mature myofibers. Closer examination of the molecular basis for the inhibition of myogenesis revealed that EnDeltaE47 preferentially forms heterodimers with myogenin. Interestingly, the chimeric repressor did not form DNA-binding heterodimers with MyoD in C2C12 myocytes. The failure to detect MyoD:EnDeltaE47 heterodimers in myoblasts was not due to protein conformational defects as both wild-type E47 and EnDeltaE47 readily formed DNA binding complexes with MyoD in vitro. These results indicate that E47 plays a crucial role in C2C12 myogenesis by serving as the preferred heterodimer partner of the myogenin protein.
Collapse
Affiliation(s)
- J R Becker
- Department of Poultry Science, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | | | | | |
Collapse
|
25
|
Oldham JM, Martyn JA, Sharma M, Jeanplong F, Kambadur R, Bass JJ. Molecular expression of myostatin and MyoD is greater in double-muscled than normal-muscled cattle fetuses. Am J Physiol Regul Integr Comp Physiol 2001; 280:R1488-93. [PMID: 11294773 DOI: 10.1152/ajpregu.2001.280.5.r1488] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Excessive muscling in double-muscled cattle arises from mutations in the myostatin gene, but the role of myostatin in normal muscle development is unclear. The aim of this study was to measure the temporal relationship of myostatin and myogenic regulatory factors during muscle development in normal (NM)- and double-muscled (DM) cattle to determine the timing and possible targets of myostatin action in vivo. Myostatin mRNA peaked at the onset of secondary fiber formation (P < 0.001) and was greater in DM (P < 0.001) than in NM. MyoD expression was also elevated throughout primary and secondary fiber formation (P < 0.001) and greater in DM (P < 0.05). Expression of myogenin peaked later than MyoD (P < 0.05); however, it did not differ between NM and DM. These data show that myostatin and MyoD increase coincidentally during formation of muscle fibers, indicating a coordinated role in the terminal differentiation and/or fusion of myoblasts. Myostatin mRNA is also consistently higher in DM than NM, suggesting that a feedback loop of regulation is also disrupted in the myostatin-deficient condition.
Collapse
Affiliation(s)
- J M Oldham
- Animal Genomics, New Zealand Pastoral Agriculture Research Institute, Ruakura Research Center, Private Bag 3123, Hamilton 2020, New Zealand.
| | | | | | | | | | | |
Collapse
|
26
|
Mitin N, Kudla AJ, Konieczny SF, Taparowsky EJ. Differential effects of Ras signaling through NFkappaB on skeletal myogenesis. Oncogene 2001; 20:1276-86. [PMID: 11313872 DOI: 10.1038/sj.onc.1204223] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2000] [Revised: 12/21/2000] [Accepted: 01/04/2001] [Indexed: 01/12/2023]
Abstract
Oncogenic Ras (H-Ras G12V) inhibits skeletal myogenesis through multiple signaling pathways. Previously, we demonstrated that the major downstream effectors of Ras (i.e., MEK/MAPK, RalGDS and Rac/Rho) play a minor, if any, role in the differentiation-defective phenotype of Ras myoblasts. Recently, NFkappaB, another Ras signaling target, has been shown to inhibit myogenesis presumably by stimulating cyclin D1 accumulation and cell cycle progression. In this study, we address the involvement of NFkappaB activation in the Ras-induced inhibition of myogenesis. Using H-Ras G12V and three G12V effector-loop variants, we detect high levels of NFkappaB transcriptional activity in C3H10T1/2-MyoD cells treated with differentiation medium. Myogenesis is blocked by all Ras proteins tested, yet only in the case of H-Ras G12V are cyclin D1 levels increased and cell cycle progression maintained. Expression of IkappaBalpha SR, an inhibitor of NFkappaB, does not reverse the differentiation-defective phenotype of Ras expressing cultures, but does induce differentiation in cultures treated with tumor necrosis factor (TNFalpha) or in cultures expressing the RelA/p65 subunit of NFkappaB. These data confirm that NFkappaB is a target of Ras and suggest that the cellular actions of NFkappaB require additional signals that are discriminated by the Ras effector-loop variants. Results with IkappaBalpha SR convincingly demonstrate that H-Ras G12V does not rely on NFkappaB activity to block myogenesis, an observation that continues to implicate another unidentified signaling pathway(s) in the inhibition of skeletal myogenesis by Ras.
Collapse
Affiliation(s)
- N Mitin
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, IN 47907-1392, USA
| | | | | | | |
Collapse
|
27
|
Abstract
Proliferating myoblasts express MyoD, yet no phenotypic markers are activated as long as mitogen levels are sufficient to keep the cells dividing. Depending upon mitogen levels, a decision is made in G1 that commits the myoblast to either continue to divide or to exit from the cell cycle and activate terminal differentiation. Ectopic expression of MyoD under the control of the RSV or CMV promoters causes 10T1/2 cells to rapidly exit the cell cycle and differentiate as single myocytes, even in growth medium, whereas expression of MyoD under the weaker SV40 promoter is compatible with proliferation. Co-expression of MyoD and cyclin D1, but not cyclins A, B, E or D3, blocks transactivation of a MyoD responsive reporter. Similarly, transfection of myoblasts with the cyclin-dependent kinase (cdk) inhibitors p16 and p21 supports some muscle-specific gene expression even in growth medium. Taken altogether, these results suggest cell cycle progression negatively regulates myocyte differentiation, possibly through a mechanism involving the D1 responsive cdks. We review evidence coupling growth status, the cell cycle and myogenesis. We describe a novel mitogen-sensitive mechanism that involves the cyclin D1-dependent direct interaction between the G1 cdks and MyoD in the dividing myoblast, which regulates MyoD function in a mitogen-sensitive manner.
Collapse
Affiliation(s)
- Q Wei
- Laboratory of Biochemistry, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-4255, USA
| | | |
Collapse
|
28
|
Winter B, Arnold HH. Activated raf kinase inhibits muscle cell differentiation through a MEF2-dependent mechanism. J Cell Sci 2000; 113 Pt 23:4211-20. [PMID: 11069766 DOI: 10.1242/jcs.113.23.4211] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Muscle cell development is dependent on the activity of cell type-specific basic-helix-loop-helix transcription factors, MyoD, Myf-5, myogenin, and MRF4 which collaborate with myocyte enhancer factor 2 proteins to activate muscle-specific gene expression. Growth factors and activated Ras prevent differentiation of myoblasts in culture but the downstream signalling pathways are not well understood. Here, we demonstrate that active Raf kinase (Raf-BxB) completely inhibits myogenic conversion of 10T1/2 cells mediated by Myf-5 and differentiation of L6 myoblasts as indicated by the absence of myotubes, lack of myogenin expression, and markedly reduced expression of myosin heavy chain. However, activated Raf inhibits transcriptional activation by Myf-5 only partially suggesting that other potential targets of Ras/Raf signalling may be involved. Significantly, we observed that elevated Raf kinase activity in L6 muscle cells suppresses the accumulation of MEF2 protein in nuclei, while MEF2 transcription appears unaffected. Moreover, forced expression of MEF2A in 10T1/2 cells rescues MyoD dependent myogenic conversion in the presence of constitutively active Raf kinase and partially restores transactivation of a myogenin promoter-dependent reporter gene in L6 muscle cells containing activated Raf kinase. From these observations we conclude that persistent activation of Raf signalling affects nuclear MEF2 functions which may explain why myogenin expression and myoblast differentiation are inhibited.
Collapse
Affiliation(s)
- B Winter
- Department of Cell and Molecular Biology, University of Braunschweig, Spielmannstr. 7, D-38106 Braunschweig, Germany.
| | | |
Collapse
|
29
|
Dorman CM, Johnson SE. Activated Raf Inhibits Myogenesis through a Mechanism Independent of Activator Protein 1-mediated Myoblast Transformation. J Biol Chem 2000. [DOI: 10.1016/s0021-9258(19)61533-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
30
|
Peña TL, Chen SH, Konieczny SF, Rane SG. Ras/MEK/ERK Up-regulation of the fibroblast KCa channel FIK is a common mechanism for basic fibroblast growth factor and transforming growth factor-beta suppression of myogenesis. J Biol Chem 2000; 275:13677-82. [PMID: 10788486 DOI: 10.1074/jbc.275.18.13677] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The 10T1/2-MRF4 fibroblast/myogenic cell system was used to address the following interrelated questions: whether distinct signaling pathways underlie myogenic inhibition by basic fibroblast growth factor (bFGF) and transforming growth factor (TGF)-beta; which of these pathways also up-regulates the fibroblast intermediate conductance calcium-activated potassium channel, FIK, a positive regulator of cell proliferation; and whether FIK up-regulation underlies some or all myogenic inhibitory signaling events. The results show that myogenic inhibition in 10T1/2-MRF4 cells, by both bFGF and TGF-beta, requires activation of the Ras/mitogen-activated protein (MAP) kinase/MAP kinase-ERK kinase (MEK)/extracellular signal-regulated kinase (ERK) pathway, and resultant FIK up-regulation. We show that FIK is instrumental in MEK-dependent suppression of acetylcholine receptor channel expression but that MEK activation and FIK up-regulation are not essential to suppression of myosin heavy chain and myotube formation. These data indicate that Ras/MEK/ERK induction of FIK is pivotal to regulation of certain myogenic events by both receptor tyrosine kinases and TGF-beta receptor, and this is also the first demonstration of chronic FIK up-regulation by the TGF-beta receptor family. Furthermore, the results define the physiologic signaling requirements for growth factor-stimulated FIK up-regulation, whereas previous work has concentrated on constitutive FIK up-regulation in cells stably transfected with oncoprotein signaling molecules. This study, together with earlier work showing that FIK positively regulates cell proliferation, establishes this member of the IK channel family as a multifunctional, growth factor-regulated signaling molecule.
Collapse
Affiliation(s)
- T L Peña
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | | | | | | |
Collapse
|
31
|
Missero C, Pirro MT, Di Lauro R. Multiple ras downstream pathways mediate functional repression of the homeobox gene product TTF-1. Mol Cell Biol 2000; 20:2783-93. [PMID: 10733581 PMCID: PMC85494 DOI: 10.1128/mcb.20.8.2783-2793.2000] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Expression of oncogenic Ras in thyroid cells results in loss of expression of several thyroid-specific genes and inactivation of TTF-1, a homeodomain-containing transcription factor required for normal development of the thyroid gland. In an effort to understand how signal transduction pathways downstream of Ras may be involved in suppression of the differentiated phenotype, we have tested mutants of the Ras effector region for their ability to affect TTF-1 transcriptional activity in a transient-transfection assay. We find that V12S35 Ras, a mutant known to interact specifically with Raf but not with RalGDS or phosphatidylinositol 3-kinase (PI3 kinase) inhibits TTF-1 activity. Expression of an activated form of Raf (Raf-BXB) also inhibits TTF-1 function to a similar extent, while the MEK inhibitors U0126 and PD98059 partially relieve Ras-mediated inactivation of TTF-1, suggesting that the extracellular signal-regulated kinase (ERK) pathway is involved in this process. Indeed, ERK directly phosphorylates TTF-1 at three serine residues, and concomitant mutation of these serines to alanines completely abolishes ERK-mediated phosphorylation both in vitro and in vivo. Since activation of the Raf/MEK/ERK pathway accounts for only part of the activity elicited by oncogenic Ras on TTF-1, other downstream pathways are likely to be involved in this process. We find that activation of PI3 kinase, Rho, Rac, and RalGDS has no effect on TTF-1 transcriptional activity. However, a poorly characterized Ras mutant, V12N38 Ras, can partially repress TTF-1 transcriptional activity through an ERK-independent pathway. Importantly, concomitant expression of constitutive activated Raf and V12N38 Ras results in almost complete loss of TTF-1 activity. Our data indicate that the Raf/MEK/ERK cascade may act in concert with an as-yet-uncharacterized signaling pathway activated by V12N38 Ras to repress TTF-1 function and ultimately to inhibit thyroid cell differentiation.
Collapse
Affiliation(s)
- C Missero
- Stazione Zoologica "A. Dohrn" Villa Comunale, 80121 Naples, Italy
| | | | | |
Collapse
|
32
|
Rochard P, Rodier A, Casas F, Cassar-Malek I, Marchal-Victorion S, Daury L, Wrutniak C, Cabello G. Mitochondrial activity is involved in the regulation of myoblast differentiation through myogenin expression and activity of myogenic factors. J Biol Chem 2000; 275:2733-44. [PMID: 10644737 DOI: 10.1074/jbc.275.4.2733] [Citation(s) in RCA: 160] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
To characterize the regulatory pathways involved in the inhibition of cell differentiation induced by the impairment of mitochondrial activity, we investigated the relationships occurring between organelle activity and myogenesis using an avian myoblast cell line (QM7). The inhibition of mitochondrial translation by chloramphenicol led to a potent block of myoblast differentiation. Carbonyl cyanide p-(trifluoromethoxy) phenylhydrazone and oligomycin, which affect the organelle at different levels, exerted a similar influence. In addition, we provided evidence that this phenomenon was not the result of an alteration in cell viability. Conversely, overexpression of the mitochondrial T3 receptor (p43) stimulated organelle activity and strongly potentiated myoblast differentiation. The involvement of mitochondrial activity in an actual regulation of myogenesis is further supported by results demonstrating that the muscle regulatory gene myogenin, in contrast to CMD1 (chicken MyoD) and myf5, is a specific transcriptional target of mitochondrial activity. Whereas myogenin mRNA and protein levels were down-regulated by chloramphenicol treatment, they were up-regulated by p43 overexpression, in a positive relationship with the expression level of the transgene. We also found that myogenin or CMD1 overexpression in chloramphenicol-treated myoblasts did not restore differentiation, thus indicating that an alteration in mitochondrial activity interferes with the ability of myogenic factors to induce terminal differentiation.
Collapse
Affiliation(s)
- P Rochard
- Laboratoire de Différenciation Cellulaire et Croissance, Unité d'Endocrinologie Cellulaire, Institut National de la Recherche Agronomique, place Viala, 34 060 Montpellier Cedex 1, France
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
Over the past years, several studies have unraveled important mechanisms by which the four myogenic regulatory factors (MRFs: MyoD, Myf-5, myogenin, and MRF4) control the specification and the differentiation of the muscle lineage. Early experiments led to the hypothesis that these factors were redundant and could functionally replace one another. However, recent experiments using in vivo and in vitro models have demonstrated that in fact different aspects of the myogenic program are controlled by different factors in vivo, suggesting that these factors play distinct roles during myogenesis. The activity of the MRFs during proliferation and differentiation of muscle precursor cells has clearly been demonstrated to be dependent on specific cell-cycle control mechanisms as well as distinct interactions with other regulatory molecules, such as the ubiquitously expressed E proteins and several other transcription factors. Furthermore, the observation that the MRFs can recruit chromatin remodeling proteins has shed some light on the mechanisms by which the MRFs activate gene expression. Recently, a functional role for MyoD during satellite cell activation and muscle repair has been identified in vivo, which cannot be substituted for by the other MRFs. This has put forward the hypothesis that these factors also play specific biological roles following muscle injury and repair.
Collapse
Affiliation(s)
- L A Sabourin
- Institute for Molecular Biology and Biotechnology, MOBIX, McMaster University, Hamilton, Ontario, Canada
| | | |
Collapse
|
34
|
Adams GR, Haddad F, Baldwin KM. Time course of changes in markers of myogenesis in overloaded rat skeletal muscles. J Appl Physiol (1985) 1999; 87:1705-12. [PMID: 10562612 DOI: 10.1152/jappl.1999.87.5.1705] [Citation(s) in RCA: 168] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
During the process of compensatory muscle hypertrophy, satellite cells are thought to proliferate, differentiate, and then fuse with existing myofibers. We hypothesized that early in this process changes occur in the expression of cellular markers indicative of the onset of myogenic processes. The plantaris muscles of rats were overloaded via the unilateral ablation of synergists. Groups of rats were killed at time points from 6 h to 12 days. Changes in muscle gene expression (mRNA) of cyclin D1, p21, myogenin, MyoD, and insulin-like growth factor I (IGF-I, mRNA and peptide) were measured. Cyclin D1 (a cell cycle marker) was increased after 24 h of overloading and corresponded with changes in muscle DNA content. In contrast, p21 and myogenin, markers of cellular differentiation, were increased after just 12 h. Muscle IGF-I peptide levels were also increased at early time points. The results of this study indicate that myogenic processes are activated in response to increased loading at very early time points (e.g., 12 h) and that IGF-I may be modulating this response. Furthermore, these findings suggest that some cells may have been differentiating very early in the adaptation process before events leading to cellular proliferation have been initiated.
Collapse
Affiliation(s)
- G R Adams
- Department of Physiology and Biophysics, University of California, Irvine, California 92697, USA
| | | | | |
Collapse
|
35
|
Lee KY, Ladha MH, McMahon C, Ewen ME. The retinoblastoma protein is linked to the activation of Ras. Mol Cell Biol 1999; 19:7724-32. [PMID: 10523661 PMCID: PMC84819 DOI: 10.1128/mcb.19.11.7724] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The inner membrane-bound protein Ras integrates various extracellular signals that are subsequently communicated from the cytoplasm to the nucleus via the Raf/MEK/MAPK cascade. Here we show that the retinoblastoma protein pRb, previously reported to be a nuclear target of this pathway, can in turn influence the activation state of Ras. Rb-deficient fibroblasts display elevated levels (up to 30-fold) of activated Ras during G(1). Expression of wild-type pRb or a number of pRb mutants defective in E2F regulation reverses this effect. We provide evidence that the mid-G(1) activation of Ras in Rb-deficient cells, which occurs at the level of guanine nucleotide binding, differs from that of epidermal growth factor-induced stimulation of Ras, being dependent on protein synthesis. The aberrant levels of Ras activity associated with loss of pRb may be responsible for the differentiation defects in Rb-deficient cells, because suppression of Ras activity in Rb(-/-) fibroblasts restores the transactivation function of MyoD and the expression of a late marker of skeletal muscle differentiation. These data suggest that nuclear-cytoplasmic communication between pRb and Ras is bidirectional.
Collapse
Affiliation(s)
- K Y Lee
- The Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | |
Collapse
|
36
|
Gallo R, Serafini M, Castellani L, Falcone G, Alemà S. Distinct effects of Rac1 on differentiation of primary avian myoblasts. Mol Biol Cell 1999; 10:3137-50. [PMID: 10512856 PMCID: PMC25569 DOI: 10.1091/mbc.10.10.3137] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/1999] [Accepted: 08/02/1999] [Indexed: 11/11/2022] Open
Abstract
Rho family GTPases have been implicated in the regulation of the actin cytoskeleton in response to extracellular cues and in the transduction of signals from the membrane to the nucleus. Their role in development and cell differentiation, however, is little understood. Here we show that the transient expression of constitutively active Rac1 and Cdc42 in unestablished avian myoblasts is sufficient to cause inhibition of myogenin expression and block of the transition to the myocyte compartment, whereas activated RhoA affects myogenic differentiation only marginally. Activation of c-Jun N-terminal kinase (JNK) appears not to be essential for block of differentiation because, although Rac1 and Cdc42 GTPases modestly activate JNK in quail myoblasts, a Rac1 mutant defective for JNK activation can still inhibit myogenic differentiation. Stable expression of active Rac1, attained by infection with a recombinant retrovirus, is permissive for terminal differentiation, but the resulting myotubes accumulate severely reduced levels of muscle-specific proteins. This inhibition is the consequence of posttranscriptional events and suggests the presence of a novel level of regulation of myogenesis. We also show that myotubes expressing constitutively active Rac1 fail to assemble ordered sarcomeres. Conversely, a dominant-negative Rac1 variant accelerates sarcomere maturation and inhibits v-Src-induced selective disassembly of I-Z-I complexes. Collectively, our findings provide a role for Rac1 during skeletal muscle differentiation and strongly suggest that Rac1 is required downstream of v-Src in the signaling pathways responsible for the dismantling of tissue-specific supramolecular structures.
Collapse
Affiliation(s)
- R Gallo
- Istituto di Biologia Cellulare, Consiglio Nazionale delle Richerche, 00137 Rome, Italy
| | | | | | | | | |
Collapse
|
37
|
Dorman CM, Johnson SE. Activated Raf inhibits avian myogenesis through a MAPK-dependent mechanism. Oncogene 1999; 18:5167-76. [PMID: 10498866 DOI: 10.1038/sj.onc.1202907] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Chronic overexpression of the oncogenic form of Ras is a potent inhibitor of skeletal myogenesis. However, the intracellular signaling pathways that mediate the repressive actions of Ras on myogenic differentiation have yet to be identified. We examined the role of Raf-mediated signaling as a modulator of avian myogenesis. Raf overexpression elicited pronounced effects on both myoblasts and mature myocytes. Most notably, the embryonic chick myoblasts overexpressing a constitutively active form of Raf (RCAS-Raf CAAX or RCAS-Raf BXB) fail to form the large multinucleated myofibers characteristic of myogenic cultures. While residual myofibers were apparent in the RCAS-Raf BXB and RCAS-Raf CAAX infected cultures, these fibers had an atrophic phenotype. The altered morphology is not a result of reinitiation of the myonuclei cell cycle nor is it due to apoptosis. Furthermore, the mononucleated myoblasts misexpressing Raf BXB are differentiation-defective due to overt MAPK activity. Supplementation of the culture media with the MAPK kinase (MEK) inhibitor, PD98059, caused a reversal of the phenotype and allowed the formation of multinucleated myofibers at levels comparable to controls. Our results indicate that the Raf/MEK/MAPK axis is intact in chick myoblasts and that persistent activation of this signaling cascade is inhibitory to myogenesis.
Collapse
Affiliation(s)
- C M Dorman
- Department of Poultry Science, the Pennsylvania State University, University Park, Pennsylvania, PA 16802, USA
| | | |
Collapse
|
38
|
Kaliman P, Canicio J, Testar X, Palacín M, Zorzano A. Insulin-like growth factor-II, phosphatidylinositol 3-kinase, nuclear factor-kappaB and inducible nitric-oxide synthase define a common myogenic signaling pathway. J Biol Chem 1999; 274:17437-44. [PMID: 10364173 DOI: 10.1074/jbc.274.25.17437] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Insulin-like growth factors (IGFs) are potent inducers of skeletal muscle differentiation and phosphatidylinositol (PI) 3-kinase activity is essential for this process. Here we show that IGF-II induces nuclear factor-kappaB (NF-kappaB) and nitric-oxide synthase (NOS) activities downstream from PI 3-kinase and that these events are critical for myogenesis. Differentiation of rat L6E9 myoblasts with IGF-II transiently induced NF-kappaB DNA binding activity, inducible nitric-oxide synthase (iNOS) expression, and nitric oxide (NO) production. IGF-II-induced iNOS expression and NO production were blocked by NF-kappaB inhibition. Both NF-kappaB and NOS activities were essential for IGF-II-induced terminal differentiation (myotube formation and expression of skeletal muscle proteins: myosin heavy chain, GLUT 4, and caveolin 3), which was totally blocked by NF-kappaB or NOS inhibitors in rat and human myoblasts. Moreover, the NOS substrate L-Arg induced myogenesis in the absence of IGFs in both rat and human myoblasts, and this effect was blocked by NOS inhibition. Regarding the mechanisms involved in IGF-II activation of NF-kappaB, PI 3-kinase inhibition prevented NF-kappaB activation, iNOS expression, and NO production. Moreover, IGF-II induced, through a PI 3-kinase-dependent pathway, a decrease in IkappaB-alpha protein content that correlated with a decrease in the amount of IkappaB-alpha associated with p65 NF-kappaB.
Collapse
Affiliation(s)
- P Kaliman
- Departament de Bioquímica i Biologia Molecular, Facultat de Biologia, Universitat de Barcelona, Avinguda Diagonal 645, 08028 Barcelona, Spain.
| | | | | | | | | |
Collapse
|
39
|
Graham SM, Oldham SM, Martin CB, Drugan JK, Zohn IE, Campbell S, Der CJ. TC21 and Ras share indistinguishable transforming and differentiating activities. Oncogene 1999; 18:2107-16. [PMID: 10321735 DOI: 10.1038/sj.onc.1202517] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Constitutively activated mutants of the Ras-related protein TC21/R-Ras2 cause tumorigenic transformation of NIH3T3 cells. However, unlike Ras, TC21 fails to bind to and activate the Raf-1 serine-threonine kinase. Thus, whereas Ras transformation is critically dependent on Raf-1 TC21 activity is promoted by activation of Raf-independent signaling pathways. In the present study, we have further compared the functions of Ras and TC21. First we determined the basis for the inability of TC21 to activate Raf-1. Whereas Ras can interact with the two distinct Ras-binding sequences in NH2-terminus of Raf-1, designated RBS1 and Raf-Cys, TC21 could only bind Raf-Cys. Thus, the inability of TC21 to bind to RBS1 may prevent it from promoting the translocation of Raf-1 to the plasma membrane. Second, we found that TC21 is an activator of the JNK and p38, but not ERK, mitogen-activated protein kinase cascades and that TC21 transforming activity was dependent on Rac function. Thus, like Ras, TC21 may activate a Rac/JNK pathway. Third, we determined if TC21 could cause the same biological consequences as Ras in three distinct cell types. Like Ras, activated TC21 caused transformation of RIE-1 rat intestinal epithelial cells and terminal differentiation of PC12 pheochromocytoma cells. Finally, activated TC21 blocked serum starvation-induced differentiation of C2 myoblasts, whereas dominant negative TC21 greatly accelerated this differentiation process. Therefore, TC21 and Ras share indistinguishable biological activities in all cell types that we have evaluated. These results support the importance of Raf-independent pathways in mediating the actions of Ras and TC21.
Collapse
Affiliation(s)
- S M Graham
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, 27599, USA
| | | | | | | | | | | | | |
Collapse
|
40
|
Wang X, Peters MA, Utama FE, Wang Y, Taparowsky EJ. The Adrenomedullin gene is a target for negative regulation by the Myc transcription complex. Mol Endocrinol 1999; 13:254-67. [PMID: 9973255 DOI: 10.1210/mend.13.2.0240] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The Myc family of transcription factors plays a central role in vertebrate growth and development although relatively few genetic targets of the Myc transcription complex have been identified. In this study, we used mRNA differential display to investigate gene expression changes induced by the overexpression of the MC29 v-Myc oncoprotein in C3H10T1/2 mouse fibroblasts. We identified the transcript of the adrenomedullin gene (AM) as an mRNA that is specifically down-regulated in v-Myc overexpressing C3H10T1/2 cell lines as well as in a Rat 1a cell line inducible for c-Myc. Nucleotide sequence analysis of the mouse AM promoter reveals the presence of consensus CAAT and TATA boxes as well as an initiator element (INR) with significant sequence similarity to the INR responsible for Myc-mediated repression of the adenovirus major late promoter (AdMLP). Reporter gene assays confirm that the region of the AM promoter containing the INR is the target of Myc-mediated repression. Exogenous application of AM peptide to quiescent C3H10T1/2 cultures does not stimulate growth, and constitutive expression of AM mRNA in C3H10T1/2 cells correlates with a reduced potential of the cells to be cotransformed by v-Myc and oncogenic Ras p21. Additional studies showing that AM mRNA is underrepresented in C3H10T1/2 cell lines stably transformed by Ras p21 or adenovirus E1A suggest that AM gene expression is incompatible with deregulated growth in this cell line. We propose a model in which the repression of AM gene expression by Myc is important to the role of this oncoprotein as a potentiator of cellular transformation in C3H10T1/2 and perhaps other cell lines.
Collapse
Affiliation(s)
- X Wang
- Department of Biological Sciences, Purdue University West Lafayette, Indiana 47907-1392, USA
| | | | | | | | | |
Collapse
|
41
|
Kang JS, Mulieri PJ, Miller C, Sassoon DA, Krauss RS. CDO, a robo-related cell surface protein that mediates myogenic differentiation. J Cell Biol 1998; 143:403-13. [PMID: 9786951 PMCID: PMC2132836 DOI: 10.1083/jcb.143.2.403] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/1998] [Revised: 09/10/1998] [Indexed: 12/26/2022] Open
Abstract
CDO, a member of the Ig/fibronectin type III repeat subfamily of transmembrane proteins that includes the axon guidance receptor Robo, was identified by virtue of its down-regulation by the ras oncogene. We report here that one prominent site of cdo mRNA expression during murine embryogenesis is the early myogenic compartment (newly formed somites, dermomyotome and myotome). CDO is expressed in proliferating and differentiating C2C12 myoblasts and in myoblast lines derived by treating 10T1/2 fibroblasts with 5-azacytidine, but not in parental 10T1/2 cells. Overexpression of CDO in C2C12 cells accelerates differentiation, while expression of secreted soluble extracellular regions of CDO inhibits this process. Oncogenic Ras is known to block differentiation of C2C12 cells via downregulation of MyoD. Reexpression of CDO in C2C12/Ras cells induces MyoD; conversely, MyoD induces CDO. Reexpression of either CDO or MyoD rescues differentiation of C2C12/Ras cells without altering anchorage-independent growth or morphological transformation. CDO and MyoD are therefore involved in a positive feedback loop that is central to the inverse relationship between cell differentiation and transformation. It is proposed that CDO mediates, at least in part, the effects of cell-cell interactions between muscle precursors that are critical in myogenesis.
Collapse
Affiliation(s)
- J S Kang
- Department of Biochemistry, Mount Sinai School of Medicine, New York, New York 10029, USA
| | | | | | | | | |
Collapse
|
42
|
Ramocki MB, White MA, Konieczny SF, Taparowsky EJ. A role for RalGDS and a novel Ras effector in the Ras-mediated inhibition of skeletal myogenesis. J Biol Chem 1998; 273:17696-701. [PMID: 9651367 DOI: 10.1074/jbc.273.28.17696] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Oncogenic Ras inhibits the differentiation of skeletal muscle cells through the activation of multiple downstream signaling pathways, including a Raf-dependent, mitogen-activated or extracellular signal-regulated kinase kinase/mitogen-activated protein kinase (MEK/MAPK)-independent pathway. Here we report that a non-Raf binding Ras effector-loop variant (H-Ras G12V,E37G), which retains interaction with the Ral guanine nucleotide dissociation stimulator (RalGDS), inhibits the conversion of MyoD-expressing C3H10T1/2 mouse fibroblasts to skeletal muscle. We show that H-Ras G12V,E37G, RalGDS, and the membrane-localized RalGDS CAAX protein inhibit the activity of alpha-actin-Luc, a muscle-specific reporter gene containing a necessary E-box and serum response factor (SRF) binding site, while a RalGDS protein defective for Ras interaction has no effect on alpha-actin-Luc transcription. H-Ras G12V,E37G does not activate endogenous MAPK, but does increase SRF-dependent transcription. Interestingly, RalGDS, RalGDS CAAX, and RalA G23V inhibit H-Ras G12V, E37G-induced expression of an SRF-regulated reporter gene, demonstrating that signaling through RalGDS does not duplicate the action of H-Ras G12V,E37G in this system. As additional evidence for this, we show that H-Ras G12V,E37G inhibits the expression of troponin I-Luc, an SRF-independent muscle-specific reporter gene, whereas RalGDS and RalGDS CAAX do not. Although our studies show that signaling through RalGDS can interfere with the expression of reporter genes dependent on SRF activity (including alpha-actin-Luc), our studies also provide strong evidence that an additional signaling molecule(s) activated by H-Ras G12V,E37G is required to achieve the complete inhibition of the myogenic differentiation program.
Collapse
Affiliation(s)
- M B Ramocki
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907-1392, USA
| | | | | | | |
Collapse
|
43
|
Yamane A, Takahashi K, Mayo M, Vo H, Shum L, Zeichner-David M, Slavkin HC. Induced expression of myoD, myogenin and desmin during myoblast differentiation in embryonic mouse tongue development. Arch Oral Biol 1998; 43:407-16. [PMID: 9681116 DOI: 10.1016/s0003-9969(98)00018-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Significant progress has been made in defining mechanisms governing myogenesis at the transcriptional levels, but the extracellular signal-transduction pathways involved in myogenesis are not as yet defined. The developing mouse tongue provides a model for the regulation of myogenesis during precise time periods in embryogenesis. The molecular cues that regulate the close-range autocrine and/or paracrine signalling processes required for the fast-twitch complex tongue musculature are not known. This study was designed to test the hypothesis that transforming growth factor-alpha (TGF alpha) controls myogenesis in embryonic mouse tongue through the induction of myogenic regulatory factors such as myoD, myf5, myogenin and MRF4/myf6/herculin. To test this hypothesis, the effects of exogenous TGF alpha on the transcription of myoD, myf5, myogenin, MRF4 and desmin were examined in tongue samples from embryonic day-10.5 mandibular explants cultured in serum-free, chemically defined medium and then processed for competitive, reverse transcription-polymerase chain reaction. TGF alpha induced myoD, myogenin and desmin expression. Treatment with 20 and 40 ng/ml TGF alpha decreased or downregulated myf5 mRNA. MRF4 was not detected in the explants. TGF alpha apparently induces the early developmental stages of myogenesis through sequential upregulation of myoD and myogenin, downregulation of myf5 and corresponding significant increases in muscle-specific gene expression such as desmin transcription.
Collapse
Affiliation(s)
- A Yamane
- Department of Pharmacology, School of Dental Medicine, Tsurumi University, Yokohama, Japan
| | | | | | | | | | | | | |
Collapse
|
44
|
Ordentlich P, Lin A, Shen CP, Blaumueller C, Matsuno K, Artavanis-Tsakonas S, Kadesch T. Notch inhibition of E47 supports the existence of a novel signaling pathway. Mol Cell Biol 1998; 18:2230-9. [PMID: 9528794 PMCID: PMC121468 DOI: 10.1128/mcb.18.4.2230] [Citation(s) in RCA: 208] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/1997] [Accepted: 01/03/1998] [Indexed: 02/07/2023] Open
Abstract
E47 is a widely expressed transcription factor that activates B-cell-specific immunoglobulin gene transcription and is required for early B-cell development. In an effort to identify processes that regulate E47, and potentially B-cell development, we found that activated Notch1 and Notch2 effectively inhibit E47 activity. Only the intact E47 protein was inhibited by Notch-fusion proteins containing isolated DNA binding and activation domains were unaffected-suggesting that Notch targets an atypical E47 cofactor. Although overexpression of the coactivator p300 partially reversed E47 inhibition, results of several assays indicated that p300/CBP is not a general target of Notch. Notch inhibition of E47 did not correlate with its ability to activate CBF1/RBP-Jkappa, the mammalian homolog of Suppressor of Hairless, a protein that associates physically with Notch and defines the only known Notch signaling pathway in drosophila. Importantly, E47 was inhibited independently of CBF1/RPB-Jkappa by Deltex, a second Notch-interacting protein. We provide evidence that Notch and Deltex may act on E47 by inhibiting signaling through Ras because (i) full E47 activity was found to be dependent on Ras and (ii) both Notch and Deltex inhibited GAL4-Jun, a hybrid transcription factor whose activity is dependent on signaling from Ras to SAPK/JNK.
Collapse
Affiliation(s)
- P Ordentlich
- Howard Hughes Medical Institute and Department of Genetics, University of Pennsylvania School of Medicine, Philadelphia 19104-6145, USA
| | | | | | | | | | | | | |
Collapse
|
45
|
Weyman CM, Wolfman A. Mitogen-activated protein kinase kinase (MEK) activity is required for inhibition of skeletal muscle differentiation by insulin-like growth factor 1 or fibroblast growth factor 2. Endocrinology 1998; 139:1794-800. [PMID: 9528964 DOI: 10.1210/endo.139.4.5950] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Both insulin-like growth factor 1 (IGF-1) and fibroblast growth factor 2 (FGF-2) are key modulators of skeletal myoblast differentiation. The critical signaling pathways used by either IGF-1 or FGF-2 to inhibit differentiation have not been determined. In this study, we show that both IGF-1 and FGF-2 inhibit the differentiation of 23A2 myoblasts and that both stimulate signaling through mitogen-activated protein kinase (MAPK) kinase (MEK) to MAPK roughly 8-fold in 23A2 myoblasts. We used the selective chemical inhibitor of MEK, PD 098059, to determine if signaling by MEK is required by IGF-1 or FGF-2 to inhibit differentiation. PD 098059 did not affect the ability of 23A2 myoblasts to differentiate. Addition of PD 098059 to the culture medium 10 min before the addition of IGF-1 or FGF-2 completely blocked the signal from MEK to MAPK and restored the ability of the 23A2 myoblasts to differentiate in the presence of either IGF-1 or FGF-2. The peak of signaling through MEK to MAPK in response to either IGF-1 or FGF-2 occurred within the first hour with maximal activation observed after 10 min. This signal remained elevated (at roughly 70% above basal) for at least 48 h. PD 098059 was added to the culture 60 min after IGF-1 or FGF-2 to test whether this initial peak of signaling was sufficient for the inhibition of differentiation. The restoration of myogenic potential seen when cells were preincubated with PD 098059 was essentially identical to that seen when PD 098059 was added to cultures after the initial peak of signaling from MEK to MAPK, suggesting that persistent signaling through MEK is required for the inhibition of differentiation by either IGF-1 or FGF-2.
Collapse
Affiliation(s)
- C M Weyman
- Department of Cell Biology, Cleveland Clinic Foundation, Ohio 44195, USA.
| | | |
Collapse
|
46
|
Lemercier C, To RQ, Carrasco RA, Konieczny SF. The basic helix-loop-helix transcription factor Mist1 functions as a transcriptional repressor of myoD. EMBO J 1998; 17:1412-22. [PMID: 9482738 PMCID: PMC1170489 DOI: 10.1093/emboj/17.5.1412] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
A good model system to examine aspects of positive and negative transcriptional regulation is the muscle-specific regulatory factor, MyoD, which is a basic helix-loop-helix (bHLH) transcription factor. Although MyoD has the ability to induce skeletal muscle terminal differentiation in a variety of non-muscle cell types, MyoD activity itself is highly regulated through protein-protein interactions involving several different co-factors. Here we describe the characterization of a novel bHLH protein, Mist1, and how it influences MyoD function. We show that Mist1 accumulates in myogenic stem cells (myoblasts) and then decreases as myoblasts differentiate into myotubes. Mist1 functions as a negative regulator of MyoD activity, preventing muscle differentiation and the concomitant expression of muscle-specific genes. Mist1-induced inhibition occurs through a combination of mechanisms, including the formation of inactive MyoD-Mist1 heterodimers and occupancy of specific E-box target sites by Mist1 homodimers. Mist1 lacks a classic transcription activation domain and instead possesses an N-terminal repressor region capable of inhibiting heterologous activators. Thus, Mist1 may represent a new class of repressor molecules that play a role in controlling the transcriptional activity of MyoD, ensuring that expanding myoblast populations remain undifferentiated during early embryonic muscle formation.
Collapse
Affiliation(s)
- C Lemercier
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907-1392, USA
| | | | | | | |
Collapse
|
47
|
Takano H, Komuro I, Oka T, Shiojima I, Hiroi Y, Mizuno T, Yazaki Y. The Rho family G proteins play a critical role in muscle differentiation. Mol Cell Biol 1998; 18:1580-9. [PMID: 9488475 PMCID: PMC108873 DOI: 10.1128/mcb.18.3.1580] [Citation(s) in RCA: 123] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The Rho family GTP-binding proteins play a critical role in a variety of cytoskeleton-dependent cell functions. In this study, we examined the role of Rho family G proteins in muscle differentiation. Dominant negative forms of Rho family proteins and RhoGDI, a GDP dissociation inhibitor, suppressed transcription of muscle-specific genes, while mutationally activated forms of Rho family proteins strongly activated their transcription. C2C12 cells overexpressing RhoGDI (C2C12RhoGDI cells) did not differentiate into myotubes, and expression levels of myogenin, MRF4, and contractile protein genes but not MyoD and myf5 genes were markedly reduced in C2C12RhoGDI cells. The promoter activity of the myogenin gene was suppressed by dominant negative mutants of Rho family proteins and was reduced in C2C12RhoGDI cells. Expression of myocyte enhancer binding factor 2 (MEF2), which has been reported to be required for the expression of the myogenin gene, was reduced at the mRNA and protein levels in C2C12RhoGDI cells. These results suggest that the Rho family proteins play a critical role in muscle differentiation, possibly by regulating the expression of the myogenin and MEF2 genes.
Collapse
Affiliation(s)
- H Takano
- Department of Medicine III, University of Tokyo School of Medicine, Japan
| | | | | | | | | | | | | |
Collapse
|
48
|
Chalaux E, López-Rovira T, Rosa JL, Bartrons R, Ventura F. JunB is involved in the inhibition of myogenic differentiation by bone morphogenetic protein-2. J Biol Chem 1998; 273:537-43. [PMID: 9417113 DOI: 10.1074/jbc.273.1.537] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Bone morphogenetic proteins (BMPs) constitute a family of multifunctional growth and differentiation factors structurally related to transforming growth factor-beta. BMPs were first identified by their osteoinductive effects, inducing ectopic bone formation when implanted in skeletal muscle, and have an important role as regulators of skeletal development in vivo. In vitro, BMP-2 is able to transdifferentiate myogenic C2C12 cells into the osteoblastic phenotype. In this report, we show that the osteoinductive effects of BMP-2 in C2C12 cells are mediated by bone morphogenetic protein receptor type-IA in combination with both activin receptor type II and bone morphogenetic protein receptor type II. We also analyzed the expression levels of nuclear protooncogenes to understand early transcriptional events induced by BMP-2. We show that junB is an immediate early gene induced by BMP-2 and transforming growth factor-beta. BMP-2 induces transcriptional activation of JunB expression as early as 30 min after ligand addition, reaching maximal levels after 90 min. Increase of JunB mRNA correlates with a higher AP-1 binding activity. Furthermore, ectopic overexpression of JunB is sufficient to inhibit expression of myoblast differentiation markers in C2C12 cells. These data, taken together, show the involvement of JunB in the early steps of inhibition of myogenic differentiation induced by transforming growth factor-beta family members.
Collapse
Affiliation(s)
- E Chalaux
- Unitat de Bioquímica, Campus de Bellvitge, Universitat de Barcelona, Feixa Llarga s/n, 08907 Hospitalet de Llobregat, Spain
| | | | | | | | | |
Collapse
|
49
|
Winter B, Kautzner I, Issinger OG, Arnold HH. Two putative protein kinase CK2 phosphorylation sites are important for Myf-5 activity. Biol Chem 1997; 378:1445-56. [PMID: 9461343 DOI: 10.1515/bchm.1997.378.12.1445] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Myf-5, a member of a family of muscle-specific transcription factors, is important for myogenic cell determination and differentiation. Here, we report that Myf-5 protein constitutes a substrate for phosphorylation in vitro by protein kinase CK2. We identified two potential phosphorylation sites at serine49 and serine133, both of which seem to be necessary for Myf-5 activity. Mutants which can no longer be phosphorylated fail to transactivate E-box-dependent reporter genes and act as trans-dominant repressors of wild-type Myf-5. Normal activity can be restored by replacing the serine residues with glutamate suggesting that a negative charge at these sites is obligatory for Myf-5 activity. Although serine133 is part of helix 2 which mediates dimerization, we find no evidence for impaired DNA-binding or heterodimerization of the Ser-Ala133 mutant. Some serine49 mutations exhibit reduced nuclear localization and/or protein stability. Our data suggest that CK2-mediated phosphorylation of Myf-5 is required for Myf-5 activity.
Collapse
Affiliation(s)
- B Winter
- Department of Cell and Molecular Biology, University of Braunschweig, Germany
| | | | | | | |
Collapse
|
50
|
Bennett AM, Tonks NK. Regulation of distinct stages of skeletal muscle differentiation by mitogen-activated protein kinases. Science 1997; 278:1288-91. [PMID: 9360925 DOI: 10.1126/science.278.5341.1288] [Citation(s) in RCA: 291] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The signal transduction pathway or pathways linking extracellular signals to myogenesis are poorly defined. Upon mitogen withdrawal from C2C12 myoblasts, the mitogen-activated protein kinase (MAPK) p42Erk2 is inactivated concomitant with up-regulation of muscle-specific genes. Overexpression of MAPK phosphatase-1 (MKP-1) inhibited p42Erk2 activity and was sufficient to relieve the inhibitory effects of mitogens on muscle-specific gene expression. Later during myogenesis, endogenous expression of MKP-1 decreased. MKP-1 overexpression during differentiation prevented myotube formation despite appropriate expression of myosin heavy chain. This indicates that muscle-specific gene expression is necessary but not sufficient to commit differentiated myocytes to myotubes and suggests a function for the MAPKs during the early and late stages of skeletal muscle differentiation.
Collapse
Affiliation(s)
- A M Bennett
- Cold Spring Harbor Laboratory, Demerec Building, 1 Bungtown Road, Post Office Box 100, Cold Spring Harbor, NY 11724, USA
| | | |
Collapse
|