1
|
Das PK, Asha SY, Abe I, Islam F, Lam AK. Roles of Non-Coding RNAs on Anaplastic Thyroid Carcinomas. Cancers (Basel) 2020; 12:3159. [PMID: 33126409 PMCID: PMC7693255 DOI: 10.3390/cancers12113159] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/23/2020] [Accepted: 10/24/2020] [Indexed: 12/18/2022] Open
Abstract
Anaplastic thyroid cancer (ATC) remains as one of the most aggressive human carcinomas with poor survival rates in patients with the cancer despite therapeutic interventions. Novel targeted and personalized therapies could solve the puzzle of poor survival rates of patients with ATC. In this review, we discuss the role of non-coding RNAs in the regulation of gene expression in ATC as well as how the changes in their expression could potentially reshape the characteristics of ATCs. A broad range of miRNA, such as miR-205, miR-19a, miR-17-3p and miR-17-5p, miR-618, miR-20a, miR-155, etc., have abnormal expressions in ATC tissues and cells when compared to those of non-neoplastic thyroid tissues and cells. Moreover, lncRNAs, such as H19, Human leukocyte antigen (HLA) complex P5 (HCP5), Urothelial carcinoma-associated 1 (UCA1), Nuclear paraspeckle assembly transcript 1 (NEAT1), etc., participate in transcription and post-transcriptional regulation of gene expression in ATC cells. Dysregulations of these non-coding RNAs were associated with development and progression of ATC by modulating the functions of oncogenes during tumour progression. Thus, restoration of the abnormal expression of these miRNAs and lncRNAs may serve as promising ways to treat the patients with ATC. In addition, siRNA mediated inhibition of several oncogenes may act as a potential option against ATC. Thus, non-coding RNAs can be useful as prognostic biomarkers and potential therapeutic targets for the better management of patients with ATC.
Collapse
Affiliation(s)
- Plabon Kumar Das
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi 6205, Bangladesh; (P.K.D.); (S.Y.A.)
| | - Saharia Yeasmin Asha
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi 6205, Bangladesh; (P.K.D.); (S.Y.A.)
| | - Ichiro Abe
- School of Medicine, Griffith University, Gold Coast, QLD 4222, Australia;
- Department of Endocrinology and Diabetes Mellitus, Fukuoka University Chikushi Hospital, Chikushino, Fukuoka 818-8502, Japan
| | - Farhadul Islam
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi 6205, Bangladesh; (P.K.D.); (S.Y.A.)
- Institute for Glycomics, Griffith University, Gold Coast Campus, Gold Coast, QLD 4222, Australia
| | - Alfred K. Lam
- School of Medicine, Griffith University, Gold Coast, QLD 4222, Australia;
| |
Collapse
|
2
|
Minervini A, Coccaro N, Anelli L, Zagaria A, Specchia G, Albano F. HMGA Proteins in Hematological Malignancies. Cancers (Basel) 2020; 12:E1456. [PMID: 32503270 PMCID: PMC7353061 DOI: 10.3390/cancers12061456] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/25/2020] [Accepted: 06/01/2020] [Indexed: 02/07/2023] Open
Abstract
The high mobility group AT-Hook (HMGA) proteins are a family of nonhistone chromatin remodeling proteins known as "architectural transcriptional factors". By binding the minor groove of AT-rich DNA sequences, they interact with the transcription apparatus, altering the chromatin modeling and regulating gene expression by either enhancing or suppressing the binding of the more usual transcriptional activators and repressors, although they do not themselves have any transcriptional activity. Their involvement in both benign and malignant neoplasias is well-known and supported by a large volume of studies. In this review, we focus on the role of the HMGA proteins in hematological malignancies, exploring the mechanisms through which they enhance neoplastic transformation and how this knowledge could be exploited to devise tailored therapeutic strategies.
Collapse
Affiliation(s)
| | | | | | | | | | - Francesco Albano
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology Section, University of Bari, 70124 Bari, Italy; (A.M.); (N.C.); (L.A.); (A.Z.); (G.S.)
| |
Collapse
|
3
|
The Mammalian High Mobility Group Protein AT-Hook 2 (HMGA2): Biochemical and Biophysical Properties, and Its Association with Adipogenesis. Int J Mol Sci 2020; 21:ijms21103710. [PMID: 32466162 PMCID: PMC7279267 DOI: 10.3390/ijms21103710] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 04/30/2020] [Accepted: 05/12/2020] [Indexed: 12/11/2022] Open
Abstract
The mammalian high-mobility-group protein AT-hook 2 (HMGA2) is a small DNA-binding protein and consists of three “AT-hook” DNA-binding motifs and a negatively charged C-terminal motif. It is a multifunctional nuclear protein directly linked to obesity, human height, stem cell youth, human intelligence, and tumorigenesis. Biochemical and biophysical studies showed that HMGA2 is an intrinsically disordered protein (IDP) and could form homodimers in aqueous buffer solution. The “AT-hook” DNA-binding motifs specifically bind to the minor groove of AT-rich DNA sequences and induce DNA-bending. HMGA2 plays an important role in adipogenesis most likely through stimulating the proliferative expansion of preadipocytes and also through regulating the expression of transcriptional factor Peroxisome proliferator-activated receptor γ (PPARγ) at the clonal expansion step from preadipocytes to adipocytes. Current evidence suggests that a main function of HMGA2 is to maintain stemness and renewal capacity of stem cells by which HMGA2 binds to chromosome and lock chromosome into a specific state, to allow the human embryonic stem cells to maintain their stem cell potency. Due to the importance of HMGA2 in adipogenesis and tumorigenesis, HMGA2 is considered a potential therapeutic target for anticancer and anti-obesity drugs. Efforts are taken to identify inhibitors targeting HMGA2.
Collapse
|
4
|
Zhang S, Mo Q, Wang X. Oncological role of HMGA2 (Review). Int J Oncol 2019; 55:775-788. [PMID: 31432151 DOI: 10.3892/ijo.2019.4856] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 05/17/2019] [Indexed: 11/06/2022] Open
Abstract
The high mobility group A2 (HMGA2) protein is a non‑histone architectural transcription factor that modulates the transcription of several genes by binding to AT‑rich sequences in the minor groove of B‑form DNA and alters the chromatin structure. As a result, HMGA2 influences a variety of biological processes, including the cell cycle process, DNA damage repair process, apoptosis, senescence, epithelial‑mesenchymal transition and telomere restoration. In addition, the overexpression of HMGA2 is a feature of malignancy, and its elevated expression in human cancer predicts the efficacy of certain chemotherapeutic agents. Accumulating evidence has suggested that the detection of HMGA2 can be used as a routine procedure in clinical tumour analysis.
Collapse
Affiliation(s)
- Shizhen Zhang
- Department of Breast Surgery, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| | - Qiuping Mo
- Department of Surgical Oncology and Cancer Institute, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Xiaochen Wang
- Department of Breast Surgery, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| |
Collapse
|
5
|
Puca F, Tosti N, Federico A, Kuzay Y, Pepe A, Morlando S, Savarese T, D’Alessio F, Colamaio M, Sarnataro D, Ziberi S, De Martino M, Fusco A, Battista S. HMGA1 negatively regulates NUMB expression at transcriptional and post transcriptional level in glioblastoma stem cells. Cell Cycle 2019; 18:1446-1457. [PMID: 31116627 PMCID: PMC6592240 DOI: 10.1080/15384101.2019.1618541] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 05/02/2019] [Accepted: 05/08/2019] [Indexed: 12/13/2022] Open
Abstract
Glioblastoma (GBM) is a lethal, fast-growing brain cancer, affecting 2-3 per 100,000 adults per year. It arises from multipotent neural stem cells which have reduced their ability to divide asymmetrically and hence divide symmetrically, generating increasing number of cancer stem cells, fostering tumor growth. We have previously demonstrated that the architectural transcription factor HMGA1 is highly expressed in brain tumor stem cells (BTSCs) and that its silencing increases stem cell quiescence, reduces self-renewal and sphere-forming efficiency in serial passages, suggesting a shift from symmetric to asymmetric division. Since NUMB expression is fundamental for the fulfillment of asymmetric division in stem cells, and is lost or reduced in many tumors, including GBM, we have investigated the ability of HMGA1 to regulate NUMB expression. Here, we show that HMGA1 negatively regulates NUMB expression at transcriptional level, by binding its promoter and counteracting c/EBP-β and at posttranscriptional level, by regulating the expression of MSI1 and of miR-146a. Finally, we report that HMGA1 knockdown-induced NUMB upregulation leads to the downregulation of the NOTCH1 pathway. Therefore, the data reported here indicate that HMGA1 negatively regulates NUMB expression in BTSCs, further supporting HMGA1 targeting as innovative and effective anti-cancer therapy.
Collapse
Affiliation(s)
- Francesca Puca
- Istituto di Endocrinologia ed Oncologia Sperimentale - CNR c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli “Federico II”, Naples, Italy
| | - Nadia Tosti
- Istituto di Endocrinologia ed Oncologia Sperimentale - CNR c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli “Federico II”, Naples, Italy
| | - Antonella Federico
- Istituto di Endocrinologia ed Oncologia Sperimentale - CNR c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli “Federico II”, Naples, Italy
| | - Yalçın Kuzay
- Istituto di Endocrinologia ed Oncologia Sperimentale - CNR c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli “Federico II”, Naples, Italy
| | - Anna Pepe
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli “Federico II”, Naples, Italy
| | - Sonia Morlando
- Istituto di Endocrinologia ed Oncologia Sperimentale - CNR c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli “Federico II”, Naples, Italy
| | - Teresa Savarese
- Istituto di Endocrinologia ed Oncologia Sperimentale - CNR c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli “Federico II”, Naples, Italy
| | - Federica D’Alessio
- Istituto di Endocrinologia ed Oncologia Sperimentale - CNR c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli “Federico II”, Naples, Italy
| | - Marianna Colamaio
- Istituto di Endocrinologia ed Oncologia Sperimentale - CNR c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli “Federico II”, Naples, Italy
| | - Daniela Sarnataro
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli “Federico II”, Naples, Italy
- Dynamic Imaging and Microscopy Facility, CEINGE, Biotecnologie Avanzate, Naples, Italy
| | - Sihana Ziberi
- Dipartimento di Scienze Mediche, Orali e Biotecnologiche dell’Università “G. d’Annunzio” di Chieti, Chieti, Italy
| | - Marco De Martino
- Istituto di Endocrinologia ed Oncologia Sperimentale - CNR c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli “Federico II”, Naples, Italy
| | - Alfredo Fusco
- Istituto di Endocrinologia ed Oncologia Sperimentale - CNR c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli “Federico II”, Naples, Italy
| | - Sabrina Battista
- Istituto di Endocrinologia ed Oncologia Sperimentale - CNR c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli “Federico II”, Naples, Italy
| |
Collapse
|
6
|
Dobersch S, Rubio K, Barreto G. Pioneer Factors and Architectural Proteins Mediating Embryonic Expression Signatures in Cancer. Trends Mol Med 2019; 25:287-302. [PMID: 30795971 DOI: 10.1016/j.molmed.2019.01.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 01/25/2019] [Accepted: 01/25/2019] [Indexed: 12/18/2022]
Abstract
Accumulation of mutations causing aberrant changes in the genome promotes cancer. However, mutations do not occur in every cancer subtype, suggesting additional events that trigger cancer. Chromatin rearrangements initiated by pioneer factors and architectural proteins are key events occurring before cancer-related genes are expressed. Both protein groups are also master regulators of important processes during embryogenesis. Several publications demonstrated that embryonic gene expression signatures are reactivated during cancer. This review article highlights current knowledge on pioneer factors and architectural proteins mediating chromatin rearrangements, which are the backbone of embryonic expression signatures promoting malignant transformation. Understanding chromatin rearrangements inducing embryonic expression signatures in adult cells might be the key to novel therapeutic approaches against cancers subtypes that arise without genomic mutations.
Collapse
Affiliation(s)
- Stephanie Dobersch
- Lung Cancer Epigenetic, Max-Planck-Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Karla Rubio
- Lung Cancer Epigenetic, Max-Planck-Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Guillermo Barreto
- Lung Cancer Epigenetic, Max-Planck-Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany; Laboratoire Croissance, Réparation et Régénération Tissulaires (CRRET), CNRS ERL 9215, Université Paris Est Créteil, Université Paris Est, F-94000, Créteil, France; Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 420008 Kazan, Russian Federation; Member of the Excellence Cluster Cardio Pulmonary System (ECCPS), Universities of Giessen and Marburg Lung Center (UGMLC), 35932 Giessen, Germany; Member of the German Center of Lung Research (Deutsches Zentrum für Lungenforschung, DZL).
| |
Collapse
|
7
|
Hombach-Klonisch S, Kalantari F, Medapati MR, Natarajan S, Krishnan SN, Kumar-Kanojia A, Thanasupawat T, Begum F, Xu FY, Hatch GM, Los M, Klonisch T. HMGA2 as a functional antagonist of PARP1 inhibitors in tumor cells. Mol Oncol 2018; 13:153-170. [PMID: 30289618 PMCID: PMC6360374 DOI: 10.1002/1878-0261.12390] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 09/19/2018] [Accepted: 09/20/2018] [Indexed: 01/05/2023] Open
Abstract
Poly(ADP‐ribose) polymerase 1 inhibitors alone or in combination with DNA damaging agents are promising clinical drugs in the treatment of cancer. However, there is a need to understand the molecular mechanisms of resistance to PARP1 inhibitors. Expression of HMGA2 in cancer is associated with poor prognosis for patients. Here, we investigated the novel relationship between HMGA2 and PARP1 in DNA damage‐induced PARP1 activity. We used human triple‐negative breast cancer and fibrosarcoma cell lines to demonstrate that HMGA2 colocalizes and interacts with PARP1. High cellular HMGA2 levels correlated with increased DNA damage‐induced PARP1 activity, which was dependent on functional DNA‐binding AT‐hook domains of HMGA2. HMGA2 inhibited PARP1 trapping to DNA and counteracted the cytotoxic effect of PARP inhibitors. Consequently, HMGA2 decreased caspase 3/7 induction and increased cell survival upon treatment with the alkylating methyl methanesulfonate alone or in combination with the PARP inhibitor AZD2281 (olaparib). HMGA2 increased mitochondrial oxygen consumption rate and spare respiratory capacity and increased NAMPT levels, suggesting metabolic support for enhanced PARP1 activity upon DNA damage. Our data showed that expression of HMGA2 in cancer cells reduces sensitivity to PARP inhibitors and suggests that targeting HMGA2 in combination with PARP inhibition may be a promising new therapeutic approach.
Collapse
Affiliation(s)
- Sabine Hombach-Klonisch
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Canada
| | - Forouh Kalantari
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Canada
| | - Manoj Reddy Medapati
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Canada
| | - Suchitra Natarajan
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Canada
| | - Sai Nivedita Krishnan
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Canada
| | - Aditya Kumar-Kanojia
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Canada
| | - Thatchawan Thanasupawat
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Canada
| | - Farhana Begum
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Canada
| | - Fred Y Xu
- Department of Pharmacology & Therapeutics, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Canada
| | - Grant M Hatch
- Department of Pharmacology & Therapeutics, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Canada.,Department of Biochemistry and Medical Genetics, DREAM, Children's Hospital Research Institute of Manitoba, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Canada
| | - Marek Los
- Department of Małopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Thomas Klonisch
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Canada.,Department of Surgery, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Canada.,Department of Medical Microbiology & Infectious Diseases, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Canada
| |
Collapse
|
8
|
De Martino M, Palma G, Azzariti A, Arra C, Fusco A, Esposito F. The HMGA1 Pseudogene 7 Induces miR-483 and miR-675 Upregulation by Activating Egr1 through a ceRNA Mechanism. Genes (Basel) 2017; 8:genes8110330. [PMID: 29149041 PMCID: PMC5704243 DOI: 10.3390/genes8110330] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 11/08/2017] [Accepted: 11/09/2017] [Indexed: 02/06/2023] Open
Abstract
Several studies have established that pseudogene mRNAs can work as competing endogenous RNAs and, when deregulated, play a key role in the onset of human neoplasias. Recently, we have isolated two HMGA1 pseudogenes, HMGA1P6 and HMGA1P7. These pseudogenes have a critical role in cancer progression, acting as micro RNA (miRNA) sponges for HMGA1 and other cancer-related genes. HMGA1 pseudogenes were found overexpressed in several human carcinomas, and their expression levels positively correlate with an advanced cancer stage and a poor prognosis. In order to investigate the molecular alterations following HMGA1 pseudogene 7 overexpression, we carried out miRNA sequencing analysis on HMGA1P7 overexpressing mouse embryonic fibroblasts. Intriguingly, the most upregulated miRNAs were miR-483 and miR-675 that have been described as key regulators in cancer progression. Here, we report that HMGA1P7 upregulates miR-483 and miR-675 through a competing endogenous RNA mechanism with Egr1, a transcriptional factor that positively regulates miR-483 and miR-675 expression.
Collapse
Affiliation(s)
- Marco De Martino
- Istituto di Endocrinologia ed Oncologia Sperimentale del CNR c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Scuola di Medicina e Chirurgia di Napoli, Università degli Studi di Napoli "Federico II", via Pansini, 5, 80131 Naples, Italy.
| | - Giuseppe Palma
- Istituto Nazionale dei Tumori, Fondazione Pascale, via Mariano Semmola, 52, 80131 Naples, Italy.
| | - Amalia Azzariti
- IRCCS Istituto Tumori Giovanni Paolo II, Viale O. Flacco, 65, 70124 Bari, Italy.
| | - Claudio Arra
- Istituto Nazionale dei Tumori, Fondazione Pascale, via Mariano Semmola, 52, 80131 Naples, Italy.
| | - Alfredo Fusco
- Istituto di Endocrinologia ed Oncologia Sperimentale del CNR c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Scuola di Medicina e Chirurgia di Napoli, Università degli Studi di Napoli "Federico II", via Pansini, 5, 80131 Naples, Italy.
| | - Francesco Esposito
- Istituto di Endocrinologia ed Oncologia Sperimentale del CNR c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Scuola di Medicina e Chirurgia di Napoli, Università degli Studi di Napoli "Federico II", via Pansini, 5, 80131 Naples, Italy.
| |
Collapse
|
9
|
Critical role of HMGA proteins in cancer cell chemoresistance. JOURNAL OF MOLECULAR MEDICINE (BERLIN, GERMANY) 2017. [PMID: 28293697 DOI: 10.1007/s00109‐017‐1520‐x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The high-mobility group A (HMGA) proteins are frequently overexpressed in human malignancies and correlate with the presence of metastases and reduced patient survival. Here, we highlight the main studies evidencing a critical role of HMGA in chemoresistance, mainly by activating Akt signaling, impairing p53 activity, and regulating the expression of microRNAs that target genes involved in the susceptibility of cancer cells to antineoplastic agents. Therefore, these studies account for the association of HMGA overexpression with patient poor outcome, indicating the impairment of HMGA as a fascinating perspective for effectively improving cancer therapy.
Collapse
|
10
|
D’Angelo D, Mussnich P, Arra C, Battista S, Fusco A. Critical role of HMGA proteins in cancer cell chemoresistance. J Mol Med (Berl) 2017; 95:353-360. [DOI: 10.1007/s00109-017-1520-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 01/24/2017] [Accepted: 02/07/2017] [Indexed: 02/03/2023]
|
11
|
Li T, Yang XD, Ye CX, Shen ZL, Yang Y, Wang B, Guo P, Gao ZD, Ye YJ, Jiang KW, Wang S. Long noncoding RNA HIT000218960 promotes papillary thyroid cancer oncogenesis and tumor progression by upregulating the expression of high mobility group AT-hook 2 (HMGA2) gene. Cell Cycle 2016; 16:224-231. [PMID: 27929737 DOI: 10.1080/15384101.2016.1261768] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Accumulating evidence suggests that long noncoding RNAs (lncRNAs) play an important role in oncogenesis and tumor progression. However, our knowledge of lncRNAs in thyroid cancer is still limited. To explore the crucial lncRNAs involved in oncogenesis of papillary thyroid cancer (PTC), we acquired data of differentially expressed lncRNAs between PTC tissues and paired adjacent noncancerous thyroid tissues through lncRNA microarray. In the microarray data, we observed that a newly identified lncRNA, HIT000218960, was significantly upregulated in PTC tissues and associated with a well-known oncogene, high mobility group AT-hook 2 (HMGA2) gene. Both in normal thyroid tissues and PTC tissues, the expression of HIT000218960 was significantly positively correlated with that of HMGA2 mRNA. Knockdown of HIT000218960 in PTC cells resulted in downregulation of HMGA2. In addition, functional assays indicated that inhibition of HIT000218960 in PTC cells suppressed cell proliferation, colony formation, migration and invasion in vitro. Increased HIT000218960 expression in PTC tissues was obviously correlated with lymph node metastasis and multifocality, as well as TNM stage. Those findings suggest that HIT000218960 might acts as a tumor promoter through regulating the expression of HMGA2.
Collapse
Affiliation(s)
- Tao Li
- a Department of Gastroenterological Surgery, Surgical Oncology Laboratory , Peking University People's Hospital , Xicheng District, Beijing , China
| | - Xiao-Dong Yang
- a Department of Gastroenterological Surgery, Surgical Oncology Laboratory , Peking University People's Hospital , Xicheng District, Beijing , China
| | - Chun-Xiang Ye
- a Department of Gastroenterological Surgery, Surgical Oncology Laboratory , Peking University People's Hospital , Xicheng District, Beijing , China
| | - Zhan-Long Shen
- a Department of Gastroenterological Surgery, Surgical Oncology Laboratory , Peking University People's Hospital , Xicheng District, Beijing , China
| | - Yang Yang
- a Department of Gastroenterological Surgery, Surgical Oncology Laboratory , Peking University People's Hospital , Xicheng District, Beijing , China
| | - Bo Wang
- a Department of Gastroenterological Surgery, Surgical Oncology Laboratory , Peking University People's Hospital , Xicheng District, Beijing , China
| | - Peng Guo
- a Department of Gastroenterological Surgery, Surgical Oncology Laboratory , Peking University People's Hospital , Xicheng District, Beijing , China
| | - Zhi-Dong Gao
- a Department of Gastroenterological Surgery, Surgical Oncology Laboratory , Peking University People's Hospital , Xicheng District, Beijing , China
| | - Ying-Jiang Ye
- a Department of Gastroenterological Surgery, Surgical Oncology Laboratory , Peking University People's Hospital , Xicheng District, Beijing , China
| | - Ke-Wei Jiang
- a Department of Gastroenterological Surgery, Surgical Oncology Laboratory , Peking University People's Hospital , Xicheng District, Beijing , China
| | - Shan Wang
- a Department of Gastroenterological Surgery, Surgical Oncology Laboratory , Peking University People's Hospital , Xicheng District, Beijing , China
| |
Collapse
|
12
|
De Martino M, Forzati F, Marfella M, Pellecchia S, Arra C, Terracciano L, Fusco A, Esposito F. HMGA1P7-pseudogene regulates H19 and Igf2 expression by a competitive endogenous RNA mechanism. Sci Rep 2016; 6:37622. [PMID: 27874091 PMCID: PMC5118720 DOI: 10.1038/srep37622] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 11/01/2016] [Indexed: 12/18/2022] Open
Abstract
Recent studies have revealed that pseudogene transcripts can function as competing endogenous RNAs, and thereby can also contribute to cancer when dysregulated. We have recently identified two pseudogenes, HMGA1P6 and HMGA1P7 for the HMGA1 gene whose overexpression has a critical role in cancer progression. These pseudogenes work as competitive endogenous RNA decoys for HMGA1 and other cancer related genes suggesting their role in carcinogenesis. Looking for new HMGA1 pseudogene ceRNAs, we performed RNA sequencing technology on mouse embryonic fibroblasts deriving from transgenic mice overexpressing HMGA1P7. Here, we report that HMGA1P7 mRNA sustains the H19 and Igf2 overexpression by acting as miRNA decoy. Lastly, the expression of HMGA1P7 was significantly correlated with H19 and IGF2 levels in human breast cancer thereby suggesting a role for HMGA1P7 deregulation in this neoplasia.
Collapse
Affiliation(s)
- Marco De Martino
- Istituto di Endocrinologia ed Oncologia Sperimentale del CNR c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Scuola di Medicina e Chirurgia di Napoli, Università degli Studi di Napoli "Federico II", via Pansini 5, 80131 Naples, Italy
| | - Floriana Forzati
- Istituto di Endocrinologia ed Oncologia Sperimentale del CNR c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Scuola di Medicina e Chirurgia di Napoli, Università degli Studi di Napoli "Federico II", via Pansini 5, 80131 Naples, Italy
| | - Marianna Marfella
- Istituto di Endocrinologia ed Oncologia Sperimentale del CNR c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Scuola di Medicina e Chirurgia di Napoli, Università degli Studi di Napoli "Federico II", via Pansini 5, 80131 Naples, Italy
| | - Simona Pellecchia
- Istituto di Endocrinologia ed Oncologia Sperimentale del CNR c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Scuola di Medicina e Chirurgia di Napoli, Università degli Studi di Napoli "Federico II", via Pansini 5, 80131 Naples, Italy
| | - Claudio Arra
- Istituto Nazionale dei Tumori, Fondazione Pascale, via Mariano Semmola, 80131 Naples, Italy
| | - Luigi Terracciano
- Institute of Pathology, Molecular Pathology Division, University of Basel, Schonbeinstrasse 40, 4003 Basel, Switzerland
| | - Alfredo Fusco
- Istituto di Endocrinologia ed Oncologia Sperimentale del CNR c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Scuola di Medicina e Chirurgia di Napoli, Università degli Studi di Napoli "Federico II", via Pansini 5, 80131 Naples, Italy
| | - Francesco Esposito
- Istituto di Endocrinologia ed Oncologia Sperimentale del CNR c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Scuola di Medicina e Chirurgia di Napoli, Università degli Studi di Napoli "Federico II", via Pansini 5, 80131 Naples, Italy
| |
Collapse
|
13
|
Palumbo Júnior A, Da Costa NM, Esposito F, Fusco A, Pinto LFR. High Mobility Group A proteins in esophageal carcinomas. Cell Cycle 2016; 15:2410-3. [PMID: 27484584 PMCID: PMC5026802 DOI: 10.1080/15384101.2016.1215388] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 07/15/2016] [Indexed: 10/21/2022] Open
Abstract
We have recently shown that HMGA2 is overexpressed in esophageal squamous cell carcinoma (ESCC) and its detection allows to discriminate between cancer and normal surrounding tissue proposing HMGA2 as a novel diagnostic marker. Interestingly, esophageal adenocarcinoma shows an opposite behavior with the overexpression of HMGA1 but not HMGA2. Moreover, we show that the suppression of HMGA2 in 2 ESCC cell lines reduces the malignant phenotype. Then, this paper highlights a differential induction of the HMGA proteins, depending on the cancer histological type, and reinforces the perspective of an innovative esophageal cancer therapy based on the suppression of the HMGA protein function and/or expression.
Collapse
Affiliation(s)
- Antonio Palumbo Júnior
- Programa de Carcinogênese Molecular, Instituto Nacional de Câncer - INCA, Rua André Cavalcanti, Rio de Janeiro, RJ, Brazil
- Laboratório de Interações Celulares, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro Prédio de Ciências da Saúde - Cidade Universitária, Ilha do Fundão, A. Carlos Chagas, Rio de Janeiro, RJ, Brasil
| | - Nathalia Meireles Da Costa
- Programa de Carcinogênese Molecular, Instituto Nacional de Câncer - INCA, Rua André Cavalcanti, Rio de Janeiro, RJ, Brazil
| | - Francesco Esposito
- Istituto di Endocrinologia e Oncologia Sperimentale - CNR c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli “Federico II” - Naples, Italy
| | - Alfredo Fusco
- Istituto di Endocrinologia e Oncologia Sperimentale - CNR c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli “Federico II” - Naples, Italy
| | - Luis Felipe Ribeiro Pinto
- Programa de Carcinogênese Molecular, Instituto Nacional de Câncer - INCA, Rua André Cavalcanti, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
14
|
Esposito F, De Martino M, Forzati F, Fusco A. HMGA1-pseudogene overexpression contributes to cancer progression. Cell Cycle 2015; 13:3636-9. [PMID: 25483074 DOI: 10.4161/15384101.2014.974440] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Two pseudogenes for HMGA1, whose overexpression has a critical role in cancer progression, have been identified. They act as decoy for miRNAs that are able to target the HMGA1 gene then enhancing cell proliferation and migration. Moreover, these pseudogenes contain sequences that are potential target sites for cancer-related miRNAs. Interestingly, HMGA1 pseudogenes are highly expressed in human anaplastic thyroid carcinomas, that is one of the most aggressive tumor in mankind, but almost undetectable in well differentiated thyroid carcinomas.
Collapse
Affiliation(s)
- Francesco Esposito
- a Istituto di Endocrinologia ed Oncologia Sperimentale del CNR c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Scuola di Medicina e Chirurgia di Napoli ; Università degli Studi di Napoli "Federico II," ; Naples , Italy
| | | | | | | |
Collapse
|
15
|
A comprehensive safety evaluation of trabectedin and drug-drug interactions of trabectedin-based combinations. BioDrugs 2015; 28:499-511. [PMID: 25209722 DOI: 10.1007/s40259-014-0100-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Trabectedin (Yondelis(®)) is a potent marine-derived antineoplastic drug with high activity against various soft tissue sarcoma (STS) subtypes as monotherapy, and in combination with pegylated liposomal doxorubicin (PLD) for the treatment of patients with relapsed platinum-sensitive ovarian cancer. This article reviews the safety and pharmacokinetic profiles of trabectedin. Records were identified using predefined search criteria using electronic databases (e.g. PubMed, Cochrane Library Database of Systematic Reviews). Primary peer-reviewed articles published between 1 January 2006 and 1 April 2014 were included. The current safety and tolerability profile of trabectedin, based on the evaluation in clinical trials of patients treated with the recommended treatment regimens for STS and recurrent ovarian cancer, was reviewed. Trabectedin as monotherapy or in combination with PLD, was not associated with cumulative and/or irreversible toxicities, such as cardiac, pulmonary, renal, or oto-toxicities, often observed with other common chemotherapeutic agents. The most common adverse drug reactions (ADRs) were myelosuppression and transient hepatic transaminase increases that were usually not clinically relevant. However, trabectedin administration should be avoided in patients with severe hepatic impairment. Serious and fatal ADRs were likely to be related to pre-existing conditions. Doxorubicin or PLD, carboplatin, gemcitabine, or paclitaxel when administered before trabectedin, did not seem to influence its pharmacokinetics. Cytochrome P450 (CYP) 3A4 has an important role in the metabolism of trabectedin, suggesting a risk of drug-drug interactions with trabectedin used in combination with other CYP3A4 substrates. Trabectedin has a favorable risk/efficacy profile, even during extended treatment in pretreated patients.
Collapse
|
16
|
Esposito F, De Martino M, Petti MG, Forzati F, Tornincasa M, Federico A, Arra C, Pierantoni GM, Fusco A. HMGA1 pseudogenes as candidate proto-oncogenic competitive endogenous RNAs. Oncotarget 2015; 5:8341-54. [PMID: 25268743 PMCID: PMC4226687 DOI: 10.18632/oncotarget.2202] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The High Mobility Group A (HMGA) are nuclear proteins that participate in the organization of nucleoprotein complexes involved in chromatin structure, replication and gene transcription. HMGA overexpression is a feature of human cancer and plays a causal role in cell transformation. Since non-coding RNAs and pseudogenes are now recognized to be important in physiology and disease, we investigated HMGA1 pseudogenes in cancer settings using bioinformatics analysis. Here we report the identification and characterization of two HMGA1 non-coding pseudogenes, HMGA1P6 and HMGA1P7. We show that their overexpression increases the levels of HMGA1 and other cancer-related proteins by inhibiting the suppression of their synthesis mediated by microRNAs. Consistently, embryonic fibroblasts from HMGA1P7-overexpressing transgenic mice displayed a higher growth rate and reduced susceptibility to senescence. Moreover, HMGA1P6 and HMGA1P7 were overexpressed in human anaplastic thyroid carcinomas, which are highly aggressive, but not in differentiated papillary carcinomas, which are less aggressive. Lastly, the expression of the HMGA1 pseudogenes was significantly correlated with HMGA1 protein levels thereby implicating HMGA1P overexpression in cancer progression. In conclusion, HMGA1P6 and HMGA1P7 are potential proto-oncogenic competitive endogenous RNAs.
Collapse
Affiliation(s)
- Francesco Esposito
- Istituto di Endocrinologia ed Oncologia Sperimentale del CNR c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Scuola di Medicina e Chirurgia di Napoli, Università degli Studi di Napoli "Federico II", Naples, Italy
| | - Marco De Martino
- Istituto di Endocrinologia ed Oncologia Sperimentale del CNR c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Scuola di Medicina e Chirurgia di Napoli, Università degli Studi di Napoli "Federico II", Naples, Italy
| | - Maria Grazia Petti
- Istituto di Endocrinologia ed Oncologia Sperimentale del CNR c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Scuola di Medicina e Chirurgia di Napoli, Università degli Studi di Napoli "Federico II", Naples, Italy
| | - Floriana Forzati
- Istituto di Endocrinologia ed Oncologia Sperimentale del CNR c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Scuola di Medicina e Chirurgia di Napoli, Università degli Studi di Napoli "Federico II", Naples, Italy
| | - Mara Tornincasa
- Istituto di Endocrinologia ed Oncologia Sperimentale del CNR c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Scuola di Medicina e Chirurgia di Napoli, Università degli Studi di Napoli "Federico II", Naples, Italy
| | - Antonella Federico
- Istituto di Endocrinologia ed Oncologia Sperimentale del CNR c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Scuola di Medicina e Chirurgia di Napoli, Università degli Studi di Napoli "Federico II", Naples, Italy
| | - Claudio Arra
- Istituto Nazionale dei Tumori, Fondazione Pascale, Naples, Italy
| | - Giovanna Maria Pierantoni
- Istituto di Endocrinologia ed Oncologia Sperimentale del CNR c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Scuola di Medicina e Chirurgia di Napoli, Università degli Studi di Napoli "Federico II", Naples, Italy
| | - Alfredo Fusco
- Istituto di Endocrinologia ed Oncologia Sperimentale del CNR c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Scuola di Medicina e Chirurgia di Napoli, Università degli Studi di Napoli "Federico II", Naples, Italy
| |
Collapse
|
17
|
D'Angelo D, Esposito F, Fusco A. Epigenetic Mechanisms Leading to Overexpression of HMGA Proteins in Human Pituitary Adenomas. Front Med (Lausanne) 2015; 2:39. [PMID: 26137461 PMCID: PMC4469109 DOI: 10.3389/fmed.2015.00039] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 05/23/2015] [Indexed: 01/06/2023] Open
Abstract
Overexpression of the high-mobility group A (HMGA)1 and HMGA2 proteins is a feature of all human pituitary adenoma (PAs) subtypes. However, amplification and/or rearrangement of the HMGA2 have been described in human prolactinomas, but rarely in other pituitary subtypes, and no genomic amplification of HMGA1 was detected in PAs. Here, we summarize the functional role of HMGA proteins in pituitary tumorigenesis and the epigenetic mechanisms contributing to HMGA overexpression in these tumors focusing on recent studies indicating a critical role of non-coding RNAs in modulating HMGA protein levels.
Collapse
Affiliation(s)
- Daniela D'Angelo
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Istituto per l'Endocrinologia e l'Oncologia Sperimentale del CNR, Università degli Studi di Napoli "Federico II" , Naples , Italy
| | - Francesco Esposito
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Istituto per l'Endocrinologia e l'Oncologia Sperimentale del CNR, Università degli Studi di Napoli "Federico II" , Naples , Italy
| | - Alfredo Fusco
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Istituto per l'Endocrinologia e l'Oncologia Sperimentale del CNR, Università degli Studi di Napoli "Federico II" , Naples , Italy ; Instituto Nacional de Câncer - INCA , Rio de Janeiro, Rio de Janeiro , Brazil
| |
Collapse
|
18
|
Sheen YS, Liao YH, Lin MH, Chu CY, Ho BY, Hsieh MC, Chen PC, Cha ST, Jeng YM, Chang CC, Chiu HC, Jee SH, Kuo ML, Chu CY. IMP-3 promotes migration and invasion of melanoma cells by modulating the expression of HMGA2 and predicts poor prognosis in melanoma. J Invest Dermatol 2015; 135:1065-1073. [PMID: 25380351 DOI: 10.1038/jid.2014.480] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Revised: 09/10/2014] [Accepted: 10/05/2014] [Indexed: 02/01/2023]
Abstract
IGF II mRNA-binding protein 3 (IMP-3) has been reported to be a marker of melanoma progression. However, the mechanisms by which it impacts melanoma are incompletely understood. In this study, we investigate the clinical significance of IMP-3 in melanoma progression and also its underlying mechanisms. We found that IMP-3 expression was much higher in advanced-stage/metastatic melanomas and that it was associated with a poor prognosis (P=0.001). Univariate analysis showed that IMP-3 expression was associated with stage III/IV melanomas (odds ratio=5.40, P=0.031) and the acral lentiginous subtype (odds ratio=3.93, P=0.0034). MeWo cells with overexpression of IMP-3 showed enhanced proliferation and migration and significantly increased tumorigenesis and metastatic ability in nude mice. We further demonstrated that IMP-3 could bind and enhance the stability of the mRNA of high mobility group AT-hook 2 (HMGA2). It was also confirmed that IMP-3 had an important role in melanoma invasion and metastasis through regulating HMGA2 mRNA expression. IMP-3 expression was positively correlated with HMGA2 expression in melanoma cells and also in melanoma tissues. Our results show that IMP-3 expression is a strong prognostic factor for melanoma, especially acral lentiginous melanoma.
Collapse
Affiliation(s)
- Yi-Shuan Sheen
- Department of Dermatology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Yi-Hua Liao
- Department of Dermatology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Ming-Hsien Lin
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan; Department of Surgery, National Taiwan University Hospital Hsin-Chu Branch, Hisn-Chu, Taiwan
| | - Chia-Ying Chu
- Department of Life Science, Institute of Zoology, College of Life Science, National Taiwan University, Taipei, Taiwan
| | - Bing-Ying Ho
- Department of Dermatology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Meng-Chen Hsieh
- Department of Dermatology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Pin-Chun Chen
- Department of Dermatology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Shih-Ting Cha
- Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei, Taiwan
| | - Yung-Ming Jeng
- Department of Pathology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Cheng-Chi Chang
- Graduate Institute of Oral Biology, School of Dentistry, National Taiwan University, Taipei, Taiwan
| | - Hsien-Ching Chiu
- Department of Dermatology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Shiou-Hwa Jee
- Department of Dermatology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Min-Liang Kuo
- Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei, Taiwan
| | - Chia-Yu Chu
- Department of Dermatology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan.
| |
Collapse
|
19
|
HMGA1 silencing restores normal stem cell characteristics in colon cancer stem cells by increasing p53 levels. Oncotarget 2015; 5:3234-45. [PMID: 24833610 PMCID: PMC4102806 DOI: 10.18632/oncotarget.1914] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
High-mobility group A1 (HMGA1) proteins are architectural chromatinic proteins, abundantly expressed during embryogenesis and in most cancer tissues, but expressed at low levels or absent in normal adult tissues. Several studies have demonstrated that HMGA1 proteins play a causal role in neoplastic cell transformation. The aim of this study was to investigate the role of these proteins in the control of cancer stem cells (CSCs), which have emerged as a preferred target in cancer therapy, because of their role in cancer recurrence. We observed that HMGA1 is overexpressed in colon tumour stem cell (CTSC) lines compared to normal and colon cancer tissues. We demonstrated that HMGA1 silencing in CTSCs increases stem cell quiescence and reduces self-renewal and sphere-forming efficiency (SFE). The latter, together with the upregulation and asymmetric distribution of NUMB, is indicative of the recovery of an asymmetric division pattern, typical of normal stem cells. We further found that HMGA1 transcriptionally regulates p53, which is known to control the balance between symmetric and asymmetric divisions in CSCs. Therefore, our data indicate a critical role for HMGA1 in regulating both self-renewal and the symmetric/asymmetric division ratio in CSCs, suggesting that blocking HMGA1 function may be an effective anti-cancer therapy.
Collapse
|
20
|
Role of miRNA let-7 and its major targets in prostate cancer. BIOMED RESEARCH INTERNATIONAL 2014; 2014:376326. [PMID: 25276782 PMCID: PMC4168040 DOI: 10.1155/2014/376326] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 08/11/2014] [Accepted: 08/18/2014] [Indexed: 12/21/2022]
Abstract
Prostate cancer is worldwide the sixth leading cause of cancer related death in men thus early detection and successful treatment are still of major interest. The commonly performed screening of the prostate-specific antigen (PSA) is controversially discussed, as in many patients the prostate-specific antigen levels are chronically elevated in the absence of cancer. Due to the unsatisfying efficiency of available prostate cancer screening markers and the current treatment outcome of the aggressive hormone refractory prostate cancer, the evaluation of novel molecular markers and targets is considered an issue of high importance. MicroRNAs are relatively stable in body fluids orchestrating simultaneously the expression of many genes. These molecules are currently discussed to bear a greater diagnostic potential than protein-coding genes, being additionally promising therapeutic drugs and/or targets. Herein we review the potential impact of the microRNA let-7 family on prostate cancer and show how deregulation of several of its target genes could influence the cellular equilibrium in the prostate gland, promoting cancer development as they do in a variety of other human malignant neoplasias.
Collapse
|
21
|
Willenbrock S, Wagner S, Reimann-Berg N, Moulay M, Hewicker-Trautwein M, Nolte I, Escobar HM. Generation and characterisation of a canine EGFP-HMGA2 prostate cancer in vitro model. PLoS One 2014; 9:e98788. [PMID: 24914948 PMCID: PMC4051699 DOI: 10.1371/journal.pone.0098788] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 05/07/2014] [Indexed: 12/15/2022] Open
Abstract
The architectural transcription factor HMGA2 is abundantly expressed during embryonic development. In several malignant neoplasias including prostate cancer, high re-expression of HMGA2 is correlated with malignancy and poor prognosis. The let-7 miRNA family is described to regulate HMGA2 negatively. The balance of let-7 and HMGA2 is discussed to play a major role in tumour aetiology. To further analyse the role of HMGA2 in prostate cancer a stable and highly reproducible in vitro model system is precondition. Herein we established a canine CT1258-EGFP-HMGA2 prostate cancer cell line stably overexpressing HMGA2 linked to EGFP and in addition the reference cell line CT1258-EGFP expressing solely EGFP to exclude EGFP-induced effects. Both recombinant cell lines were characterised by fluorescence microscopy, flow cytometry and immunocytochemistry. The proliferative effect of ectopically overexpressed HMGA2 was determined via BrdU assays. Comparative karyotyping of the derived and the initial CT1258 cell lines was performed to analyse chromosome consistency. The impact of the ectopic HMGA2 expression on its regulator let-7a was analysed by quantitative real-time PCR. Fluorescence microscopy and immunocytochemistry detected successful expression of the EGFP-HMGA2 fusion protein exclusively accumulating in the nucleus. Gene expression analyses confirmed HMGA2 overexpression in CT1258-EGFP-HMGA2 in comparison to CT1258-EGFP and native cells. Significantly higher let-7a expression levels were found in CT1258-EGFP-HMGA2 and CT1258-EGFP. The BrdU assays detected an increased proliferation of CT1258-HMGA2-EGFP cells compared to CT1258-EGFP and native CT1258. The cytogenetic analyses of CT1258-EGFP and CT1258-EGFP-HMGA2 resulted in a comparable hyperdiploid karyotype as described for native CT1258 cells. To further investigate the impact of recombinant overexpressed HMGA2 on CT1258 cells, other selected targets described to underlie HMGA2 regulation were screened in addition. The new fluorescent CT1258-EGFP-HMGA2 cell line is a stable tool enabling in vitro and in vivo analyses of the HMGA2-mediated effects on cells and the development and pathogenesis of prostate cancer.
Collapse
Affiliation(s)
- Saskia Willenbrock
- Small Animal Clinic, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Siegfried Wagner
- Small Animal Clinic, University of Veterinary Medicine Hannover, Hannover, Germany
- Institute of Biophysics, Leibniz University Hannover, Hannover, Germany
| | - Nicola Reimann-Berg
- Small Animal Clinic, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Mohammed Moulay
- Small Animal Clinic, University of Veterinary Medicine Hannover, Hannover, Germany
| | | | - Ingo Nolte
- Small Animal Clinic, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Hugo Murua Escobar
- Small Animal Clinic, University of Veterinary Medicine Hannover, Hannover, Germany
- Division of Medicine, Haematology, Oncology and Palliative Medicine, University of Rostock, Rostock, Germany
| |
Collapse
|
22
|
Federico A, Forzati F, Esposito F, Arra C, Palma G, Barbieri A, Palmieri D, Fedele M, Pierantoni GM, De Martino I, Fusco A. Hmga1/Hmga2 double knock-out mice display a "superpygmy" phenotype. Biol Open 2014; 3:372-8. [PMID: 24728959 PMCID: PMC4021359 DOI: 10.1242/bio.20146759] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The HMGA1 and HMGA2 genes code for proteins belonging to the High Mobility Group A family. Several genes are negatively or positively regulated by both these proteins, but a number of genes are specifically regulated by only one of them. Indeed, knock-out of the Hmga1 and Hmga2 genes leads to different phenotypes: cardiac hypertrophy and type 2 diabetes in the former case, and a large reduction in body size and amount of fat tissue in the latter case. Therefore, to better elucidate the functions of the Hmga genes, we crossed Hmga1-null mice with mice null for Hmga2. The Hmga1(-/-)/Hmga2(-/-) mice showed reduced vitality and a very small size (75% smaller than the wild-type mice); they were even smaller than pygmy Hmga2-null mice. The drastic reduction in E2F1 activity, and consequently in the expression of the E2F-dependent genes involved in cell cycle regulation, likely accounts for some phenotypic features of the Hmga1(-/-)/Hmga2(-/-) mice.
Collapse
Affiliation(s)
- Antonella Federico
- Istituto di Endocrinologia ed Oncologia Sperimentale del CNR c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Facoltà di Medicina e Chirurgia di Napoli, Università degli Studi di Napoli "Federico II", via Pansini 5, 80131 Naples, Italy
| | - Floriana Forzati
- Istituto di Endocrinologia ed Oncologia Sperimentale del CNR c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Facoltà di Medicina e Chirurgia di Napoli, Università degli Studi di Napoli "Federico II", via Pansini 5, 80131 Naples, Italy
| | - Francesco Esposito
- Istituto di Endocrinologia ed Oncologia Sperimentale del CNR c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Facoltà di Medicina e Chirurgia di Napoli, Università degli Studi di Napoli "Federico II", via Pansini 5, 80131 Naples, Italy
| | - Claudio Arra
- Istituto Nazionale dei Tumori, Fondazione Pascale, 80131 Naples, Italy
| | - Giuseppe Palma
- Istituto di Endocrinologia ed Oncologia Sperimentale del CNR c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Facoltà di Medicina e Chirurgia di Napoli, Università degli Studi di Napoli "Federico II", via Pansini 5, 80131 Naples, Italy Istituto Nazionale dei Tumori, Fondazione Pascale, 80131 Naples, Italy
| | - Antonio Barbieri
- Istituto Nazionale dei Tumori, Fondazione Pascale, 80131 Naples, Italy
| | - Dario Palmieri
- Istituto di Endocrinologia ed Oncologia Sperimentale del CNR c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Facoltà di Medicina e Chirurgia di Napoli, Università degli Studi di Napoli "Federico II", via Pansini 5, 80131 Naples, Italy
| | - Monica Fedele
- Istituto di Endocrinologia ed Oncologia Sperimentale del CNR c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Facoltà di Medicina e Chirurgia di Napoli, Università degli Studi di Napoli "Federico II", via Pansini 5, 80131 Naples, Italy
| | - Giovanna Maria Pierantoni
- Istituto di Endocrinologia ed Oncologia Sperimentale del CNR c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Facoltà di Medicina e Chirurgia di Napoli, Università degli Studi di Napoli "Federico II", via Pansini 5, 80131 Naples, Italy
| | - Ivana De Martino
- Istituto di Endocrinologia ed Oncologia Sperimentale del CNR c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Facoltà di Medicina e Chirurgia di Napoli, Università degli Studi di Napoli "Federico II", via Pansini 5, 80131 Naples, Italy
| | - Alfredo Fusco
- Istituto di Endocrinologia ed Oncologia Sperimentale del CNR c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Facoltà di Medicina e Chirurgia di Napoli, Università degli Studi di Napoli "Federico II", via Pansini 5, 80131 Naples, Italy
| |
Collapse
|
23
|
Ozturk N, Singh I, Mehta A, Braun T, Barreto G. HMGA proteins as modulators of chromatin structure during transcriptional activation. Front Cell Dev Biol 2014; 2:5. [PMID: 25364713 PMCID: PMC4207033 DOI: 10.3389/fcell.2014.00005] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 02/07/2014] [Indexed: 01/12/2023] Open
Abstract
High mobility group (HMG) proteins are the most abundant non-histone chromatin associated proteins. HMG proteins bind to DNA and nucleosome and alter the structure of chromatin locally and globally. Accessibility to DNA within chromatin is a central factor that affects DNA-dependent nuclear processes, such as transcription, replication, recombination, and repair. HMG proteins associate with different multi-protein complexes to regulate these processes by mediating accessibility to DNA. HMG proteins can be subdivided into three families: HMGA, HMGB, and HMGN. In this review, we will focus on recent advances in understanding the function of HMGA family members, specifically their role in gene transcription regulation during development and cancer.
Collapse
Affiliation(s)
- Nihan Ozturk
- LOEWE Research Group Lung Cancer Epigenetic, Max-Planck-Institute for Heart and Lung Research Bad Nauheim, Germany
| | - Indrabahadur Singh
- LOEWE Research Group Lung Cancer Epigenetic, Max-Planck-Institute for Heart and Lung Research Bad Nauheim, Germany
| | - Aditi Mehta
- LOEWE Research Group Lung Cancer Epigenetic, Max-Planck-Institute for Heart and Lung Research Bad Nauheim, Germany
| | - Thomas Braun
- Department of Cardiac Development and Remodeling, Max-Planck-Institute for Heart and Lung Research Bad Nauheim, Germany
| | - Guillermo Barreto
- LOEWE Research Group Lung Cancer Epigenetic, Max-Planck-Institute for Heart and Lung Research Bad Nauheim, Germany
| |
Collapse
|
24
|
Mussnich P, D'Angelo D, Leone V, Croce CM, Fusco A. The High Mobility Group A proteins contribute to thyroid cell transformation by regulating miR-603 and miR-10b expression. Mol Oncol 2013; 7:531-42. [PMID: 23384558 DOI: 10.1016/j.molonc.2013.01.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Revised: 01/07/2013] [Accepted: 01/08/2013] [Indexed: 01/08/2023] Open
Abstract
The overexpression of the HMGA1 proteins is a feature of human malignant neoplasias and has a causal role in cell transformation. The aim of our study has been to investigate the microRNAs (miRNAs or miRs) regulated by the HMGA1 proteins in the process of cell transformation analyzing the miRNA expression profile of v-ras-Ki oncogene-transformed thyroid cells expressing or not HMGA1 proteins. We demonstrate that, among the miRNAs regulated by cell transformation, there are miR-10b, miR-21, miR-125b, miR-221 and miR-222 that are positively and miR-34a and miR-603 that are negatively regulated by HMGA1 expression. Then, we focused our attention on the miR-10b and miR-603 whose expression was dependent on the presence of HMGA1 also in other cell systems. We found that miR-10b is able to target the PTEN gene, whereas miR-603 targets the CCND1 and CCND2 genes coding for the cyclin D1 and cyclin D2 proteins, respectively. Moreover, functional studies showed that miR-10b and miR-603 regulate positively and negatively, respectively, cell proliferation and migration suggesting a role of their dysregulation in thyroid cell transformation.
Collapse
Affiliation(s)
- Paula Mussnich
- Istituto di Endocrinologia ed Oncologia Sperimentale del CNR, c/o Dipartimento di Biologia e Patologia Cellulare e Molecolare, Facoltà di Medicina e Chirurgia di Napoli, Università degli Studi di Napoli Federico II, Naples, Italy
| | | | | | | | | |
Collapse
|
25
|
D'Angelo D, Borbone E, Palmieri D, Uboldi S, Esposito F, Frapolli R, Pacelli R, D'Incalci M, Fusco A. The impairment of the High Mobility Group A (HMGA) protein function contributes to the anticancer activity of trabectedin. Eur J Cancer 2012; 49:1142-51. [PMID: 23149213 DOI: 10.1016/j.ejca.2012.10.014] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Revised: 09/18/2012] [Accepted: 10/16/2012] [Indexed: 11/13/2022]
Abstract
Trabectedin (Ecteinascidin-743 or ET-743) is a novel antitumour agent of marine origin with potent antitumour activity both in vitro and in vivo. It interacts with the minor groove of DNA, interfering with transcriptional activity and DNA repair pathways. Here, we report a novel mechanism by which trabectedin exerts its cytotoxic effects on carcinoma cells. It is based on its ability to impair the function of the High-Mobility Group A (HMGA) proteins. These proteins have a key role in cell transformation, and their overexpression is a common feature of human malignant neoplasias, representing a poor prognostic index often correlated to anti-cancer drug resistance. They bind the minor groove of DNA, alter chromatin structure and, thus, regulate the transcription of several genes by enhancing or suppressing the activity of transcription factors. We first report that trabectedin has a higher cytotoxic effect on thyroid and colon carcinoma cells expressing abundant levels of HMGAs in comparison with cells not expressing them. Then, we have shown that trabectedin treatment displaces HMGA proteins from the HMGA-responsive promoters, including ATM promoter, impairing their transcriptional activity. Finally, we report a synergism between Ionising Radiations and trabectedin treatment restricted to the HMGA-overexpressing cancer cells. This result might have important clinical implications since it would suggest the use of trabectedin for the treatment of neoplasias expressing abundant HMGA levels that are frequently associated to chemoresistance and poor prognosis.
Collapse
Affiliation(s)
- Daniela D'Angelo
- Istituto di Endocrinologia ed Oncologia Sperimentale del CNR, c/o Dipartimento di Biologia e Patologia Cellulare e Molecolare, Facoltà di Medicina e Chirurgia di Napoli, Università degli Studi di Napoli Federico II, Naples, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Venkatesan N, Krishnakumar S, Deepa PR, Deepa M, Khetan V, Reddy MA. Molecular deregulation induced by silencing of the high mobility group protein A2 gene in retinoblastoma cells. Mol Vis 2012; 18:2420-37. [PMID: 23077401 PMCID: PMC3472926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2011] [Accepted: 10/01/2012] [Indexed: 11/03/2022] Open
Abstract
AIM To explore the molecular mechanisms deregulated by high mobility group protein A2 (HMGA2) gene silencing in retinoblastoma (RB) cells. METHODS Synthetic anti-HMGA2 short interfering RNA (siRNA) was used to silence the HMGA2 gene in cultured Y79 RB cells that were subjected to whole genome microarray analysis. The expression of differentially regulated key genes was confirmed with quantitative reverse-transcriptase polymerase chain reaction (qRT-PCR) in post-silenced RB cell lines (Y79 and WERI Rb1). These deregulated genes were compared for their constitutive expression in primary RB tumors (n=10). Zymographic determination of matrix metalloproteinase (MMP) activity was performed in RB cells. A cell cycle assay and a proliferation assay were performed in post-transfected RB cells. RESULTS HMGA2 gene silencing in cultured RB cells results in reduced cell proliferation and transition in the G1/S phase. The whole genome microarray analysis of HMGA2 silenced Y79 cells revealed overall upregulation of 1,132 genes (≥ 1.0 fold) and downregulation of 1,562 genes (≤ -1.0 fold). Specific quantitative pathway analysis of the deregulated genes (using Biointerpreter) revealed 150 upregulated genes and 77 downregulated genes (≥ 1.0 fold) involved in vital pathways, namely, mitogen-activated protein kinase, Janus kinase/signal transducers and activators of transcription, Ras pathway, Ras-induced extracellular signal-regulated protein kinases 1 and 2, and tumor protein p53. The differential expression of genes obtained from microarray analysis (Homo sapiens ELK1, member of ETS oncogene family [ELK1], Homo sapiens cyclin-dependent kinase 6 [CDK6], Homo sapiens E2F transcription factor 4, p107/p130-binding [E2F4], Homo sapiens G-2 and S-phase expressed 1 [GTSE1], Damage-regulated autophagy modulator [DRAM], Homo sapiens cadherin 1, type 1,E-cadherin (epithelial) [CDH1], Homo sapiens snail homolog 1 (Drosophila) [SNAI1], Homo sapiens matrix metallopeptidase 2 [MMP2], and Homo sapiens matrix metallopeptidase 9 [MMP9]) was confirmed with quantitative reverse-transcriptase polymerase chain reaction in post-silenced RB cells. Zymographic analysis revealed that the increase in MMP mRNA expression in the post-silenced RB cells did not correlate with corresponding enzyme activity. CONCLUSIONS Our study revealed molecular regulatory changes induced by HMGA2 silencing in RB cancer cells, offering mechanistic insights into the anticancer potential. HMGA2 may be considered a promising candidate for gene silencing therapy in RB.
Collapse
Affiliation(s)
- Nalini Venkatesan
- Department of Ocular pathology, Vision Research Foundation, Sankara Nethralaya, Chennai, India
| | | | - Perinkulam Ravi Deepa
- Department of Biological Sciences, PhD student, Birla Institute of Technology and Science (BITS), Pilani, India
| | - Murali Deepa
- Department of Ocular pathology, Vision Research Foundation, Sankara Nethralaya, Chennai, India
| | - Vikas Khetan
- Department of Vitreoretinal and Ocular Oncology, Medical Research Foundation, Sankara Nethralaya, Chennai, India
| | - M. Ashwin Reddy
- Department of Ophthalmology, Barts Health, London, England,Department of Pediatric Ophthalmology, Moorfields Eye Hospital, London, England
| |
Collapse
|
27
|
High-mobility group A1 protein inhibits p53-mediated intrinsic apoptosis by interacting with Bcl-2 at mitochondria. Cell Death Dis 2012; 3:e383. [PMID: 22932725 PMCID: PMC3434658 DOI: 10.1038/cddis.2012.126] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The high-mobility group A (HMGA) proteins are a family of non-histone chromatin factors, encoded by the HMGA1 and HMGA2 genes. Several studies demonstrate that HMGA proteins have a critical role in neoplastic transformation, and their overexpression is mainly associated with a highly malignant phenotype, also representing a poor prognostic index. Even though a cytoplasmic localization of these proteins has been previously reported in some highly malignant neoplasias, a clear role for this localization has not been defined. Here, we first confirm the localization of the HMGA1 proteins in the cytoplasm of cancer cells, and then we report a novel mechanism through which HMGA1 inhibits p53-mitochondrial apoptosis by counteracting the binding of p53 to the anti-apoptotic factor Bcl-2. Indeed, we demonstrate a physical and functional interaction between HMGA1 and Bcl-2 proteins. This interaction occurs at mitochondria interfering with the ability of p53 protein to bind Bcl-2, thus counteracting p53-mediated mitochondrial apoptosis. This effect is associated with the inhibition of cytochrome c release and activation of caspases. Consistent with this mechanism, a strong correlation between HMGA1 cytoplasmic localization and a more aggressive histotype of thyroid, breast and colon carcinomas has been observed. Therefore, cytoplasmic localization of HMGA1 proteins in malignant tissues is a novel mechanism of inactivation of p53 apoptotic function.
Collapse
|
28
|
Gong M, Ma J, Li M, Zhou M, Hock JM, Yu X. MicroRNA-204 critically regulates carcinogenesis in malignant peripheral nerve sheath tumors. Neuro Oncol 2012; 14:1007-17. [PMID: 22718995 DOI: 10.1093/neuonc/nos124] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Malignant peripheral nerve sheath tumors (MPNSTs) are highly aggressive soft tissue sarcomas accounting for 3%-10% of all soft tissue sarcomas. Neurofibromatosis type 1 (NF1) is the most important known risk factor. MPNSTs are often diagnosed at an advanced stage when distant metastases have developed. Although surgical resection remains the main treatment for MPNSTs, complete surgical resection is rarely possible. The prognosis for patients with MPNSTs is poor. There is an urgent need for improved therapies. To this end, we investigated whether microRNA (miR), specifically miR-204, might be implicated in MPNSTs because it is located at a cancer-associated genomic region exhibiting high frequency of loss of heterozygosity in tumors. We show that miR-204 expression is downregulated in NF1 and non-NF1 MPNST tumor tissues and in tumor cell lines. Restoring miR-204 expression in MPNST cell lines STS26T (non-NF1), ST88-14 (NF1), and T265p21 (NF1) significantly reduces cellular proliferation, migration, and invasion in vitro. Restoring miR-204 expression in STS26T decreases tumor growth and malignant progression in vivo. We also report that miR-204 inhibits Ras signaling and expression of high mobility group gene A2. These findings support the hypothesis that miR-204 plays critical roles in MPNST development and tumor progression. miR-204 may represent a novel biomarker for diagnosis and a candidate target with which to develop effective therapies for MPNSTs.
Collapse
Affiliation(s)
- Meng Gong
- Laboratory of Endocrinology and Metabolism, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
| | | | | | | | | | | |
Collapse
|
29
|
Palmieri D, D'Angelo D, Valentino T, De Martino I, Ferraro A, Wierinckx A, Fedele M, Trouillas J, Fusco A. Downregulation of HMGA-targeting microRNAs has a critical role in human pituitary tumorigenesis. Oncogene 2011; 31:3857-65. [DOI: 10.1038/onc.2011.557] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
30
|
High-mobility group A2 protein modulates hTERT transcription to promote tumorigenesis. Mol Cell Biol 2011; 31:2605-17. [PMID: 21536653 DOI: 10.1128/mcb.05447-11] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The high-mobility group A2 gene (HMGA2) is one of the most frequently amplified genes in human cancers. However, functions of HMGA2 in tumorigenesis are not fully understood due to limited knowledge of its targets in tumor cells. Our study reveals a novel link between HMGA2 and the regulation of human telomerase reverse transcriptase (hTERT), the catalytic subunit of telomerase, which offers critical insight into how HMGA2 contributes to tumorigenesis. The expression of HMGA2 modulates the expression of hTERT, resulting in cells with enhanced telomerase activities and increased telomere length. Treatment with suberoylanilide hydroxamide (SAHA), a histone deacetylase (HDAC) inhibitor, causes dose-dependent hTERT reporter activation, mimicking HMGA2 overexpression. By interacting with Sp1, HMGA2 interferes with the recruitment of HDAC2 to the hTERT proximal promoter, enhancing localized histone H3-K9 acetylation and thereby stimulating hTERT expression and telomerase activity. Moreover, HMGA2 knockdown by short hairpin HMGA2 in HepG2 cells leads to progressive telomere shortening and a concurrent decrease of steady-state hTERT mRNA levels, attenuating their ability to form colonies in soft agar. Importantly, HMGA2 partially replaces the function of hTERT during the tumorigenic transformation of normal human fibroblasts. These findings are potentially clinically relevant, because HMGA2 expression is reported to be upregulated in a number of human cancers as telomere maintenance is essential for tumorigenesis.
Collapse
|
31
|
Esposito F, Tornincasa M, Chieffi P, De Martino I, Pierantoni GM, Fusco A. High-mobility group A1 proteins regulate p53-mediated transcription of Bcl-2 gene. Cancer Res 2010; 70:5379-88. [PMID: 20530667 DOI: 10.1158/0008-5472.can-09-4199] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We have previously described a mechanism through which the high-mobility group A1 (HMGA1) proteins inhibit p53-mediated apoptosis by delocalizing the p53 proapoptotic activator homeodomain-interacting protein kinase 2 from the nucleus to the cytoplasm. By this mechanism, HMGA1 modulates the transcription of p53 target genes such as Mdm2, p21(waf1), and Bax, inhibiting apoptosis. Here, we report that HMGA1 antagonizes the p53-mediated transcriptional repression of another apoptosis-related gene, Bcl-2, suggesting a novel mechanism by which HMGA1 counteracts apoptosis. Moreover, HMGA1 overexpression promotes the reduction of Brn-3a binding to the Bcl-2 promoter, thereby blocking the Brn-3a corepressor function on Bcl-2 expression following p53 activation. Consistently, a significant direct correlation between HMGA1 and Bcl-2 overexpression has been observed in human breast carcinomas harboring wild-type p53. Therefore, this study suggests a novel mechanism, based on Bcl-2 induction, by which HMGA1 overexpression contributes to the escape from apoptosis leading to neoplastic transformation.
Collapse
Affiliation(s)
- Francesco Esposito
- Istituto di Endocrinologia ed Oncologia Sperimentale del CNR c/o Università degli Studi di Napoli Federico II, Naples, Italy
| | | | | | | | | | | |
Collapse
|
32
|
Evaluation of targets for ovarian cancer gene silencing therapy: in vitro and in vivo approaches. Methods Mol Biol 2010; 623:423-36. [PMID: 20217567 DOI: 10.1007/978-1-60761-588-0_27] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Ovarian cancer is the most lethal neoplasm of the female genital tract. Despite progress with chemotherapy, surgery and supportive care, the death rate remains extremely high. Gene silencing therapy represents a possible opportunity to advance the management of ovarian cancer patients. The concept of gene silencing therapy, which is based on RNA interference (RNAi) phenomenon, requires selection of targeted genes and development of a strategy for genetic drug development. Recently, plenty of research studies in ovarian cancer genetics have been published. Although they can be analyzed regarding candidate gene selection, the therapeutic effect of particular gene silencing can only be evaluated experimentally at this time. Obviously, the correct choice and application of a genetic drug delivery system determines the efficacy of gene silencing. Complexation of therapeutic nucleic acids with cationic polymers, cationic lipids, or their combination, represents a main strategy of non-virus-mediated delivery of genetic drug. Owing to a tendency of ovarian cancer to spread through the abdominal cavity, a delivery system should allow intraperitoneal mode of administration. Therefore, clinical application of RNAi may rely on a combination of biosciences and nanotechnology: in particular, identifying optimal small interfering RNAs (siRNAs) against optimal target genes and developing an efficient system for siRNA delivery into the cancer cells.
Collapse
|
33
|
Mahajan A, Liu Z, Gellert L, Zou X, Yang G, Lee P, Yang X, Wei JJ. HMGA2: a biomarker significantly overexpressed in high-grade ovarian serous carcinoma. Mod Pathol 2010; 23:673-81. [PMID: 20228781 DOI: 10.1038/modpathol.2010.49] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Ovarian carcinoma consists of a group of histologically heterogeneous diseases involving distinct tumorigenic pathways. High-grade papillary serous carcinoma of the ovary is commonly associated with p53 mutations. HMGA2, an oncofetal protein, is found to be overexpressed in ovarian cancer. To study the function of HMGA2 in ovarian cancer, it is important to know which subtypes of ovarian cancer are associated with HMGA2 overexpression. In this study, we collected six different types of ovarian cancer and examined HMGA2 expression by immunohistochemistry, along with HMGA1, p53 and Ki-67. We found that HMGA2 overexpression was significantly higher in high-grade papillary serous carcinoma (64%) and carcinosarcoma (60%) than in other types of ovarian cancers (7-23%). HMGA2 overexpression was moderately associated with dominant p53 mutations (R=0.51). In addition, the microRNA in situ analysis revealed that let-7b, the HMGA2-negative regulators, were significantly lost in high-grade serous carcinoma. Our findings suggest that HMGA2 is an important molecular change significantly related to high-grade papillary serous carcinoma and is less common in other histological types of ovarian cancer.
Collapse
Affiliation(s)
- Aparna Mahajan
- Department of Pathology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Peluso S, Chiappetta G. High-Mobility Group A (HMGA) Proteins and Breast Cancer. ACTA ACUST UNITED AC 2010; 5:81-85. [PMID: 20847819 DOI: 10.1159/000297717] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The high-mobility group A (HMGA) protein family includes HMGA1a, HMGA1b and HMGA1c, which are encoded by the same gene through alternative splicing, and the closely related HMGA2 protein. HMGA proteins have been found to be abundant in several malignant neoplasias, including colorectal, prostate, cervical, lung, thyroid and breast carcinoma. HMGA proteins can be ideal candidates for the identification of new prognosis and diagnosis factors with non-invasive methods. To provide some clarity regarding the abundance of articles on this topic, here we focus on the relationship between HMGA proteins and breast cancer and their clinical perspective in the development of new therapeutic strategies.
Collapse
Affiliation(s)
- Silvia Peluso
- Istituto Nazionale dei Tumori, Fondazione Pascale, Naples, Italy
| | | |
Collapse
|
35
|
Mansueto G, Forzati F, Ferraro A, Pallante P, Bianco M, Esposito F, Iaccarino A, Troncone G, Fusco A. Identification of a New Pathway for Tumor Progression: MicroRNA-181b Up-Regulation and CBX7 Down-Regulation by HMGA1 Protein. Genes Cancer 2010; 1:210-24. [PMID: 21779448 PMCID: PMC3092193 DOI: 10.1177/1947601910366860] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
High mobility group A (HMGA) overexpression plays a critical role in neoplastic transformation. To investigate whether HMGA acts by regulating the expression of microRNAs, we analyzed the microRNA expression profile of human breast adenocarcinoma cells (MCF7) transfected with the HMGA1 gene, which results in a highly malignant phenotype. Among the microRNAs induced by HMGA1, we focused on miR-181b, which was overexpressed in several malignant neoplasias including breast carcinomas. We show that miR-181b regulates CBX7 protein levels, which are down-regulated in cancer, and promotes cell cycle progression. We also demonstrate that CBX7, being negatively regulated by HMGA, is able to negatively regulate miR-181b expression. Finally, there was a direct correlation between HMGA1 and miR-181b expression and an inverse correlation between HMGA1 and CBX7 expression in human breast carcinomas. These data indicate the presence of a novel pathway involving HMGA1, miR-181b, and CBX7, which leads to breast cancer progression.
Collapse
Affiliation(s)
- Gelsomina Mansueto
- Dipartimento di Biologia e Patologia Cellulare e Molecolare, Istituto di Endocrinologia ed Oncologia Sperimentale del CNR, Università di Napoli “Federico II”, Naples, Italy
- NOGEC (Naples Oncogenomic Center), CEINGE–Biotecnologie Avanzate-Napoli & SEMM–European School of Molecular Medicine–Naples Site, Naples, Italy
| | - Floriana Forzati
- Dipartimento di Biologia e Patologia Cellulare e Molecolare, Istituto di Endocrinologia ed Oncologia Sperimentale del CNR, Università di Napoli “Federico II”, Naples, Italy
- NOGEC (Naples Oncogenomic Center), CEINGE–Biotecnologie Avanzate-Napoli & SEMM–European School of Molecular Medicine–Naples Site, Naples, Italy
| | - Angelo Ferraro
- NOGEC (Naples Oncogenomic Center), CEINGE–Biotecnologie Avanzate-Napoli & SEMM–European School of Molecular Medicine–Naples Site, Naples, Italy
| | - Pierlorenzo Pallante
- Dipartimento di Biologia e Patologia Cellulare e Molecolare, Istituto di Endocrinologia ed Oncologia Sperimentale del CNR, Università di Napoli “Federico II”, Naples, Italy
- NOGEC (Naples Oncogenomic Center), CEINGE–Biotecnologie Avanzate-Napoli & SEMM–European School of Molecular Medicine–Naples Site, Naples, Italy
| | - Mimma Bianco
- Dipartimento di Biologia e Patologia Cellulare e Molecolare, Istituto di Endocrinologia ed Oncologia Sperimentale del CNR, Università di Napoli “Federico II”, Naples, Italy
| | - Francesco Esposito
- Dipartimento di Biologia e Patologia Cellulare e Molecolare, Istituto di Endocrinologia ed Oncologia Sperimentale del CNR, Università di Napoli “Federico II”, Naples, Italy
| | - Antonino Iaccarino
- Dipartimento di Anatomia Patologica e Citopatologia, Università di Napoli “Federico II”, Naples, Italy
| | - Giancarlo Troncone
- NOGEC (Naples Oncogenomic Center), CEINGE–Biotecnologie Avanzate-Napoli & SEMM–European School of Molecular Medicine–Naples Site, Naples, Italy
- Dipartimento di Anatomia Patologica e Citopatologia, Università di Napoli “Federico II”, Naples, Italy
| | - Alfredo Fusco
- Dipartimento di Biologia e Patologia Cellulare e Molecolare, Istituto di Endocrinologia ed Oncologia Sperimentale del CNR, Università di Napoli “Federico II”, Naples, Italy
- NOGEC (Naples Oncogenomic Center), CEINGE–Biotecnologie Avanzate-Napoli & SEMM–European School of Molecular Medicine–Naples Site, Naples, Italy
| |
Collapse
|
36
|
HMGA1 protein expression in familial breast carcinoma patients. Eur J Cancer 2010; 46:332-9. [DOI: 10.1016/j.ejca.2009.10.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2009] [Revised: 10/02/2009] [Accepted: 10/09/2009] [Indexed: 11/22/2022]
|
37
|
Fehr A, Meyer A, Heidorn K, Röser K, Löning T, Bullerdiek J. A link between the expression of the stem cell marker HMGA2, grading, and the fusion CRTC1-MAML2 in mucoepidermoid carcinoma. Genes Chromosomes Cancer 2009; 48:777-85. [PMID: 19521953 DOI: 10.1002/gcc.20682] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Recently, the concept of cancer stem cells and their expression of embryonic stem cell markers has gained considerable experimental support. In this study, we examined the expression of one such marker, the high-mobility group AT-hook 2 gene (HMGA2) mRNA, in 53 formalin-fixed, paraffin-embedded mucoepidermoid carcinomas (MEC) and four normal parotid tissues using quantitative real-time RT-PCR (qPCR). MECs are often characterized by the fusion gene CRTC1-MAML2, the detection of which is an important tool for the diagnosis and prognosis of MEC. For detection of the CRTC1-MAML2 fusion transcript, we performed RT-PCR. The mean expression level of HMGA2 was higher in fusion negative (302.8 +/- 124.4; n = 14) than in positive tumors (67.3 +/- 13.1; n = 39). Furthermore, the fusion-negative tumors were often high-grade tumors and the HMGA2 expression level rose with the tumor grade (low: 43.7 +/- 11.0, intermediate: 126.2 +/- 28.3, and high: 271.2 +/- 126.5). A significant difference was found in the HMGA2 expression levels between the different grading groups (one-way ANOVA, P = 0.04) and among the fusion-negative and -positive tumors (t-test, P = 0.05), indicating that the expression level of HMGA2 was closely linked to grading, the presence/absence of the CRTC1-MAML2 fusion, and the tumor behavior of MECs. These findings offer further evidence for the theory that the MEC group comprises two subgroups: one group with the CRTC1-MAML2 fusion, which is a group with a moderate aggressiveness and prognosis, and the other group lacking that fusion corresponding to an increased stemness, and thus, higher aggressiveness and worse prognosis.
Collapse
Affiliation(s)
- André Fehr
- Center for Human Genetics, University of Bremen, Bremen, Germany
| | | | | | | | | | | |
Collapse
|
38
|
De Martino I, Visone R, Fedele M, Petrocca F, Palmieri D, Martinez Hoyos J, Forzati F, Croce CM, Fusco A. Regulation of microRNA expression by HMGA1 proteins. Oncogene 2009; 28:1432-42. [PMID: 19169275 DOI: 10.1038/onc.2008.495] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The High Mobility Group proteins HMGA1 are nuclear architectural factors that play a critical role in a wide range of biological processes. Since recent studies have identified the microRNAs (miRNAs) as important regulators of gene expression, modulating critical cellular functions such as proliferation, apoptosis and differentiation, the aim of our work was to identify the miRNAs that are physiologically regulated by HMGA1 proteins. To this purpose, we have analysed the miRNA expression profile of mouse embryonic fibroblasts (MEFs) carrying two, one or no Hmga1 functional alleles using a microarray (miRNA microarray). By this approach, we found a miRNA expression profile that differentiates Hmga1-null MEFs from the wild-type ones. In particular, a significant decrease in miR-196a-2, miR-101b, miR-331 and miR-29a was detected in homozygous Hmga1-knockout MEFs in comparison with wild-type cells. Consistently, these miRNAs are downregulated in most of the analysed tissues of Hmga1-null mice in comparison with the wild-type mice. ChIP assay shows that HMGA1 is able to bind regions upstream of these miRNAs. Moreover, we identified the HMGA2 gene product as a putative target of miR-196a-2, suggesting that HMGA1 proteins are able to downregulate the expression of the other member of the HMGA family through the regulation of the miR-196a-2 expression. Finally, ATXN1 and STC1 gene products have been identified as targets of miR-101b. Therefore, it is reasonable to hypothesize that HMGA1 proteins are involved in several functions by regulating miRNA expression.
Collapse
Affiliation(s)
- I De Martino
- Istituto di Endocrinologia ed Oncologia Sperimentale del CNR c/o Dipartimento di Biologia e Patologia Cellulare e Molecolare, Facoltà di Medicina e Chirurgia di Napoli, Università degli Studi di Napoli Federico II, Naples, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Di Cello F, Hillion J, Hristov A, Wood LJ, Mukherjee M, Schuldenfrei A, Kowalski J, Bhattacharya R, Ashfaq R, Resar LMS. HMGA2 participates in transformation in human lung cancer. Mol Cancer Res 2008; 6:743-50. [PMID: 18505920 DOI: 10.1158/1541-7786.mcr-07-0095] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Although previous studies have established a prominent role for HMGA1 (formerly HMG-I/Y) in aggressive human cancers, the role of HMGA2 (formerly HMGI-C) in malignant transformation has not been clearly defined. The HMGA gene family includes HMGA1, which encodes the HMGA1a and HMGA1b protein isoforms, and HMGA2, which encodes HMGA2. These chromatin-binding proteins function in transcriptional regulation and recent studies also suggest a role in cellular senescence. HMGA1 proteins also appear to participate in cell cycle regulation and malignant transformation, whereas HMGA2 has been implicated primarily in the pathogenesis of benign, mesenchymal tumors. Here, we show that overexpression of HMGA2 leads to a transformed phenotype in cultured lung cells derived from normal tissue. Conversely, inhibiting HMGA2 expression blocks the transformed phenotype in metastatic human non-small cell lung cancer cells. Moreover, we show that HMGA2 mRNA and protein are overexpressed in primary human lung cancers compared with normal tissue or indolent tumors. In addition, there is a statistically significant correlation between HMGA2 protein staining by immunohistochemical analysis and tumor grade (P < 0.001). Our results indicate that HMGA2 is an oncogene important in the pathogenesis of human lung cancer. Although additional studies with animal models are needed, these findings suggest that targeting HMGA2 could be therapeutically beneficial in lung cancer and other cancers characterized by increased HMGA2 expression.
Collapse
Affiliation(s)
- Francescopaolo Di Cello
- Hematology Division, the Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Pallante P, Federico A, Berlingieri MT, Bianco M, Ferraro A, Forzati F, Iaccarino A, Russo M, Pierantoni GM, Leone V, Sacchetti S, Troncone G, Santoro M, Fusco A. Loss of the CBX7 Gene Expression Correlates with a Highly Malignant Phenotype in Thyroid Cancer. Cancer Res 2008; 68:6770-8. [DOI: 10.1158/0008-5472.can-08-0695] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
41
|
Cao X, Clavijo C, Li X, Lin HH, Chen Y, Shih HM, Ann DK. SUMOylation of HMGA2: selective destabilization of promyelocytic leukemia protein via proteasome. Mol Cancer Ther 2008; 7:923-34. [PMID: 18413806 DOI: 10.1158/1535-7163.mct-07-0540] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The HMGA2 architectural protein functions in a variety of cellular processes, such as cell growth, transcription regulation, neoplastic transformation, and progression. Up-regulation of HMGA2 protein is observed in many tumors and is associated with advanced cancers with poor prognoses. Although the expression and biochemical properties of HMGA2 protein are regulated by microRNA and phosphorylation, it is unknown whether HMGA2 activity can also be regulated by SUMOylation, and that is what is investigated in this report. We identified HMGA2 as a SUMOylation target and showed that the expression of wild-type HMGA2, but not SUMOylation-defective HMGA2(2K/R), selectively lowered the steady-state level of PML protein. Consequently, the HMGA2-elicited PML down-regulation rendered a reduction in the average number of PML nuclear bodies per cell and the volume of PML assembled per PML nuclear body. Using small interfering RNA to suppress endogenous ubiquitin expression and proteasome inhibitor to repress ubiquitin-mediated protein degradation, we showed that HMGA2 confers PML down-regulation through ubiquitin-proteasome-dependent protein degradation. Importantly, arsenic trioxide treatment stimulated HMGA2 SUMOylation, leading to the formation of HMGA2 nuclear foci surrounding PML nuclear bodies and the stimulation of PML degradation. Collectively, our results unveil a previously unrecognized effect by HMGA2 on the modulation of PML protein level, providing a novel mechanism underlying HMGA2 function and underscoring the molecular basis for oncogenic progression by HMGA2.
Collapse
Affiliation(s)
- Xuefei Cao
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, California, USA
| | | | | | | | | | | | | |
Collapse
|
42
|
Malek A, Bakhidze E, Noske A, Sers C, Aigner A, Schäfer R, Tchernitsa O. HMGA2 gene is a promising target for ovarian cancer silencing therapy. Int J Cancer 2008; 123:348-356. [PMID: 18452175 DOI: 10.1002/ijc.23491] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Ovarian cancer is one of the most lethal gynecological malignancies and the small success rate of routine therapeutic methods justifies efforts to develop new approaches. Evaluation of targets for effective inhibition of ovarian cancer cell growth should precipitate clinical application of gene silencing therapy. In our previous work, we showed upregulation of HMGA2 gene expression as a result of Ras-induced rat ovarian surface epithelial cell transformation. This gene codes the HMGA2 protein, a member of the high-mobility group AT-hook (HMGA) family of nonhistone chromatin proteins. Genome-wide studies revealed upregulation of the HMGA2 gene in human ovarian carcinomas. Herein we have evaluated over-expression of the HMGA2 gene, relevant to ovarian cancer, in subsets of human specimens and cell lines by in situ RNA hybridization and RT-PCR. Transient silencing of HMGA2 gene by means of siRNA inhibited proliferation of those ovarian cancer cells, which over-express this gene initially. Growth suppression was mediated by cell-cycle arrest. Stable silencing of highly expressed HMGA2 gene by shRNAi in A27/80, Ovcar-3 and OAW-42 ovarian cancer cell lines resulted in growth inhibition because of G1 arrest and increase of apoptosis as well. The tumor growth inhibition effect of HMGA2 silencing for Ovcar-3 cells was validated in vivo. Our findings revealed that the HMGA2 gene represents a promising target for gene silencing therapy in ovarian cancer.
Collapse
Affiliation(s)
- Anastasia Malek
- Department of Pharmacology and Toxicology, Philipps-University School of Medicine, Marburg, Germany
| | - Elena Bakhidze
- Department of Oncogynecology, N.N. Petrov Research Institute of Oncology, St. Petersburg, Russia
| | - Aurelia Noske
- Laboratory of Molecular Tumor Pathology, Institute of Pathology, Charité-Universitätsmedizin, Berlin, Germany
| | - Christine Sers
- Laboratory of Molecular Tumor Pathology, Institute of Pathology, Charité-Universitätsmedizin, Berlin, Germany
| | - Achim Aigner
- Department of Pharmacology and Toxicology, Philipps-University School of Medicine, Marburg, Germany
| | - Reinhold Schäfer
- Laboratory of Molecular Tumor Pathology, Institute of Pathology, Charité-Universitätsmedizin, Berlin, Germany
| | - Oleg Tchernitsa
- Laboratory of Molecular Tumor Pathology, Institute of Pathology, Charité-Universitätsmedizin, Berlin, Germany
| |
Collapse
|
43
|
Chiappetta G, Ferraro A, Vuttariello E, Monaco M, Galdiero F, De Simone V, Califano D, Pallante P, Botti G, Pezzullo L, Pierantoni GM, Santoro M, Fusco A. HMGA2 mRNA expression correlates with the malignant phenotype in human thyroid neoplasias. Eur J Cancer 2008; 44:1015-21. [PMID: 18375116 DOI: 10.1016/j.ejca.2008.02.039] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2007] [Revised: 02/15/2008] [Accepted: 02/21/2008] [Indexed: 11/16/2022]
Abstract
We have analysed the expression of the HMGA2 gene in a panel of normal and neoplastic thyroid tissues by immunohistochemistry and quantitative RT-PCR. HMGA2 protein was detectable in four out of 21 follicular carcinomas, 30 out of 45 papillary carcinomas, and 11 out of 12 undifferentiated carcinomas. As far as follicular thyroid adenomas are concerned, only three cases of the 31 analysed showed HMGA2 protein expression, whereas it was absent in seven normal thyroid tissues and in 12 hyperplastic nodules. Quantitative RT-PCR showed that almost all the papillary thyroid carcinomas and 13 out of 16 follicular thyroid carcinomas express much higher HMGA2 specific mRNA levels in comparison to normal thyroids and adenomas. Therefore, our data support the quantitative RT-PCR analysis of HMGA2 expression, rather than immunohistochemistry, as a powerful tool for the diagnosis of thyroid neoplasias.
Collapse
Affiliation(s)
- Gennaro Chiappetta
- Istituto Nazionale dei Tumori, Fondazione Pascale, via Mariano Semmola, 80131 Naples, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Franco R, Esposito F, Fedele M, Liguori G, Pierantoni GM, Botti G, Tramontano D, Fusco A, Chieffi P. Detection of high-mobility group proteins A1 and A2 represents a valid diagnostic marker in post-pubertal testicular germ cell tumours. J Pathol 2008; 214:58-64. [PMID: 17935122 DOI: 10.1002/path.2249] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The high-mobility group A (HMGA) non-histone chromosomal proteins HMGA1 and HMGA2 are architectural factors. They are abundantly expressed during embryogenesis and in most malignant neoplasias, whereas their expression is low or absent in normal adult tissues. Their over-expression is known to have a causal role in cellular neoplastic transformation. Previous studies from our group have shown that their expression is restricted to specific germinal cells. In this study we have evaluated, by immunohistochemistry, the expression of HMGA1 and HMGA2 in a series of post-pubertal testicular tumours of different histological types, including 30 seminomas, 15 teratomas, 15 embryonal carcinomas and 10 mixed germinal tumours with a prominent yolk sac tumour component. HMGA1 protein expression was detected in all seminomas and embryonal carcinomas analysed, but not in teratomas or yolk sac carcinomas. Conversely, HMGA2 was present only in embryonal carcinomas and yolk sac carcinomas, but not in seminomas or teratomas. The immunohistochemical data were further confirmed by Western blot and, at the mRNA level, by RT-PCR analyses. These findings indicate that HMGA1 and HMGA2 are differently expressed with respect to the state of differentiation of testicular germ cell tumours (TGCTs), with over-expression of both proteins in pluripotential embryonal carcinoma cells and loss of expression of HMGA1 in yolk sac tumours and of both proteins in the mature adult tissue of teratoma areas. Therefore, the different profiles of HMGA1 and HMGA2 protein expression could represent a valuable diagnostic tool in some cases in which the histological differential diagnosis is problematic.
Collapse
Affiliation(s)
- R Franco
- Istituto Nazionale dei Tumori Fondazione G Pascale, 80131, Naples, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Visone R, Iuliano R, Palmieri D, Server IN, Chiappetta G, De Martino I, Fedele M, Costinean S, Oberyszyn TM, Kusewitt DF, Croce CM, Fusco A. Hmga1 null mice are less susceptible to chemically induced skin carcinogenesis. Eur J Cancer 2008; 44:318-25. [DOI: 10.1016/j.ejca.2007.11.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2007] [Revised: 11/02/2007] [Accepted: 11/13/2007] [Indexed: 10/22/2022]
|
46
|
Pierantoni GM, Esposito F, Giraud S, Bienvenut WV, Diaz JJ, Fusco A. Identification of new high mobility group A1 associated proteins. Proteomics 2007; 7:3735-42. [PMID: 17880001 DOI: 10.1002/pmic.200700148] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
High mobility group A (HMGA) proteins (HMGA1a, HMGA1b, HMGA1c and HMGA2) are nonhistone chromosomal proteins that do not have transcriptional activity per se, but they orchestrate the assembly of multiprotein complexes involved in gene transcription, replication and chromatin structure through a complex network of protein-DNA and protein-protein interactions. To better understand their mechanisms of action, we have used a combination of coimmunoprecipitation, 1-D gel SDS-PAGE and MS to identify new potential molecular interactors. We have found 11 proteins that associate with HMGA1. These proteins belong to three different classes: mRNA processing proteins, RNA helicases and protein chaperones. Some interactions were confirmed by coimmunoprecipitation and pull-down experiments in human embryonal kidney 293 cells. These experimental data suggest that HMGA1 proteins can associate with proteins that are strictly involved in chromatin structure and in several important mRNA processing steps, supporting the idea that HMGA1 proteins can also participate in these events.
Collapse
Affiliation(s)
- Giovanna Maria Pierantoni
- Dipartimento di Biologia e Patologia Cellulare e Molecolare, Facoltà di Medicina e Chirurgia, Università degli Studi di Napoli Federico II, Naples, Italy
| | | | | | | | | | | |
Collapse
|
47
|
Abstract
The high mobility group A (HMGA) non-histone chromatin proteins alter chromatin structure and thereby regulate the transcription of several genes by either enhancing or suppressing transcription factors. This protein family is implicated, through different mechanisms, in both benign and malignant neoplasias. Rearrangements of HMGA genes are a feature of most benign human mesenchymal tumours. Conversely, unrearranged HMGA overexpression is a feature of malignant tumours and is also causally related to neoplastic cell transformation. Here, we focus on the role of the HMGA proteins in human neoplastic diseases, the mechanisms by which they contribute to carcinogenesis, and therapeutic strategies based on targeting HMGA proteins.
Collapse
Affiliation(s)
- Alfredo Fusco
- Dipartimento di Biologia e Patologia Cellulare e Molecolare, Facoltà di Medicina e Chirurgia, Università degli Studi di Napoli "Federico II", via Pansini, 5, 80131, Naples, Italy.
| | | |
Collapse
|
48
|
Lee YS, Dutta A. The tumor suppressor microRNA let-7 represses the HMGA2 oncogene. Genes Dev 2007; 21:1025-30. [PMID: 17437991 PMCID: PMC1855228 DOI: 10.1101/gad.1540407] [Citation(s) in RCA: 952] [Impact Index Per Article: 52.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2007] [Accepted: 03/08/2007] [Indexed: 01/12/2023]
Abstract
HMGA2, a high-mobility group protein, is oncogenic in a variety of tumors, including benign mesenchymal tumors and lung cancers. Knockdown of Dicer in HeLa cells revealed that the HMGA2 gene is transcriptionally active, but its mRNA is destabilized in the cytoplasm through the microRNA (miRNA) pathway. HMGA2 was derepressed upon inhibition of let-7 in cells with high levels of the miRNA. Ectopic expression of let-7 reduced HMGA2 and cell proliferation in a lung cancer cell. The effect of let-7 on HMGA2 was dependent on multiple target sites in the 3' untranslated region (UTR), and the growth-suppressive effect of let-7 on lung cancer cells was rescued by overexpression of the HMGA2 ORF without a 3'UTR. Our results provide a novel example of suppression of an oncogene by a tumor-suppressive miRNA and suggest that some tumors activate the oncogene through chromosomal translocations that eliminate the oncogene's 3'UTR with the let-7 target sites.
Collapse
Affiliation(s)
- Yong Sun Lee
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, Virginia 22908, USA
| | - Anindya Dutta
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, Virginia 22908, USA
| |
Collapse
|
49
|
Pierantoni GM, Rinaldo C, Mottolese M, Di Benedetto A, Esposito F, Soddu S, Fusco A. High-mobility group A1 inhibits p53 by cytoplasmic relocalization of its proapoptotic activator HIPK2. J Clin Invest 2007; 117:693-702. [PMID: 17290307 PMCID: PMC1784001 DOI: 10.1172/jci29852] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2006] [Accepted: 12/05/2006] [Indexed: 11/17/2022] Open
Abstract
High-mobility group A1 (HMGA1) overexpression and gene rearrangement are frequent events in human cancer, but the molecular basis of HMGA1 oncogenic activity remains unclear. Here we describe a mechanism through which HMGA1 inhibits p53-mediated apoptosis by counteracting the p53 proapoptotic activator homeodomain-interacting protein kinase 2 (HIPK2). We found that HMGA1 overexpression promoted HIPK2 relocalization in the cytoplasm and inhibition of p53 apoptotic function, while HIPK2 overexpression reestablished HIPK2 nuclear localization and sensitivity to apoptosis. HIPK2 depletion by RNA interference suppressed the antiapoptotic effect of HMGA1, which indicates that HIPK2 is the target required for HMGA1 to repress the apoptotic activity of p53. Consistent with this process, a strong correlation among HMGA1 overexpression, HIPK2 cytoplasmic localization, and low spontaneous apoptosis index (comparable to that observed in mutant p53-carrying tumors) was observed in WT p53-expressing human breast carcinomas. Hence, cytoplasmic relocalization of HIPK2 induced by HMGA1 overexpression is a mechanism of inactivation of p53 apoptotic function that we believe to be novel.
Collapse
Affiliation(s)
- Giovanna Maria Pierantoni
- Dipartimento di Biologia e Patologia Cellulare e Molecolare, Facoltà di Medicina e Chirurgia, Università degli Studi di Napoli “Federico II,” Naples, Italy.
Dipartimento di Oncologia Sperimentale and
Servizio di Anatomia Patologica, Istituto Nazionale dei Tumori Regina Elena, Rome, Italy.
Naples Oncogenomic Center–Centro di Ingegneria Genetica (NOGEC-CEINGE), Biotecnologie Avanzate, and Scuola Europea di Medicina Molecolare (SEMM), Naples, Italy
| | - Cinzia Rinaldo
- Dipartimento di Biologia e Patologia Cellulare e Molecolare, Facoltà di Medicina e Chirurgia, Università degli Studi di Napoli “Federico II,” Naples, Italy.
Dipartimento di Oncologia Sperimentale and
Servizio di Anatomia Patologica, Istituto Nazionale dei Tumori Regina Elena, Rome, Italy.
Naples Oncogenomic Center–Centro di Ingegneria Genetica (NOGEC-CEINGE), Biotecnologie Avanzate, and Scuola Europea di Medicina Molecolare (SEMM), Naples, Italy
| | - Marcella Mottolese
- Dipartimento di Biologia e Patologia Cellulare e Molecolare, Facoltà di Medicina e Chirurgia, Università degli Studi di Napoli “Federico II,” Naples, Italy.
Dipartimento di Oncologia Sperimentale and
Servizio di Anatomia Patologica, Istituto Nazionale dei Tumori Regina Elena, Rome, Italy.
Naples Oncogenomic Center–Centro di Ingegneria Genetica (NOGEC-CEINGE), Biotecnologie Avanzate, and Scuola Europea di Medicina Molecolare (SEMM), Naples, Italy
| | - Anna Di Benedetto
- Dipartimento di Biologia e Patologia Cellulare e Molecolare, Facoltà di Medicina e Chirurgia, Università degli Studi di Napoli “Federico II,” Naples, Italy.
Dipartimento di Oncologia Sperimentale and
Servizio di Anatomia Patologica, Istituto Nazionale dei Tumori Regina Elena, Rome, Italy.
Naples Oncogenomic Center–Centro di Ingegneria Genetica (NOGEC-CEINGE), Biotecnologie Avanzate, and Scuola Europea di Medicina Molecolare (SEMM), Naples, Italy
| | - Francesco Esposito
- Dipartimento di Biologia e Patologia Cellulare e Molecolare, Facoltà di Medicina e Chirurgia, Università degli Studi di Napoli “Federico II,” Naples, Italy.
Dipartimento di Oncologia Sperimentale and
Servizio di Anatomia Patologica, Istituto Nazionale dei Tumori Regina Elena, Rome, Italy.
Naples Oncogenomic Center–Centro di Ingegneria Genetica (NOGEC-CEINGE), Biotecnologie Avanzate, and Scuola Europea di Medicina Molecolare (SEMM), Naples, Italy
| | - Silvia Soddu
- Dipartimento di Biologia e Patologia Cellulare e Molecolare, Facoltà di Medicina e Chirurgia, Università degli Studi di Napoli “Federico II,” Naples, Italy.
Dipartimento di Oncologia Sperimentale and
Servizio di Anatomia Patologica, Istituto Nazionale dei Tumori Regina Elena, Rome, Italy.
Naples Oncogenomic Center–Centro di Ingegneria Genetica (NOGEC-CEINGE), Biotecnologie Avanzate, and Scuola Europea di Medicina Molecolare (SEMM), Naples, Italy
| | - Alfredo Fusco
- Dipartimento di Biologia e Patologia Cellulare e Molecolare, Facoltà di Medicina e Chirurgia, Università degli Studi di Napoli “Federico II,” Naples, Italy.
Dipartimento di Oncologia Sperimentale and
Servizio di Anatomia Patologica, Istituto Nazionale dei Tumori Regina Elena, Rome, Italy.
Naples Oncogenomic Center–Centro di Ingegneria Genetica (NOGEC-CEINGE), Biotecnologie Avanzate, and Scuola Europea di Medicina Molecolare (SEMM), Naples, Italy
| |
Collapse
|
50
|
Lin HH, Xiong Y, Ho YS, Zhou B, Nguyen HV, Deng H, Lee R, Yen Y, Borok Z, Ann DK. Transcriptional regulation by targeted expression of architectural transcription factor high mobility group A2 in salivary glands of transgenic mice. Eur J Oral Sci 2007; 115:30-9. [PMID: 17305714 DOI: 10.1111/j.1600-0722.2007.00421.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
High mobility group A2 (HMGA2) protein is a non-histone architectural transcription factor. Numerous studies have demonstrated that HMGA2 is exclusively expressed in the nucleus of embryonic, but not of terminally differentiated, cells, and aberrant expression of HMGA2 is associated with various benign tumors, including pleomorphic salivary adenoma. Herein, we report the use of a 4.5-kb enhancer/promoter region of the aquaporin-5 (AQP-5) gene to target HMGA2 transgene expression in the mouse salivary acinar cells as a model to investigate the biochemical and biological role of ectopic HMGA2 expression. The expression pattern was analyzed by microarray analyses to profile HMGA2-dependent salivary gene regulation. By using quantitative reverse transcription-polymerase chain reaction (RT-PCR) assays, the expression of a cluster of genes involved in cytokine signaling, including Il7r, Il2rg, and Ptprc, was verified to be up-regulated in the salivary glands of AQP-5/HMGA2 mice. In concert, the expression of a cluster of genes, namely Ppara, Phyh, and Cidea, governing fatty acid and lipid metabolism, was confirmed to be down-regulated by HMGA2. Additionally, squamous carcinoma-like salivary tumors were observed in the AQP-5/HMGA2 transgenic mice, albeit at a low incidence. Our findings indicate that the AQP-5 promoter/enhancer-containing region is sufficient to target salivary-specific transgene expression and suggest novel roles for HMGA2 in salivary epithelial cells.
Collapse
Affiliation(s)
- H Helen Lin
- Molecular Pharmacology and Toxicology, University of Southern California, Los Angeles, CA, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|