1
|
Grishanin A. Chromatin diminution as a tool to study some biological problems. COMPARATIVE CYTOGENETICS 2024; 18:27-49. [PMID: 38369988 PMCID: PMC10870232 DOI: 10.3897/compcytogen.17.112152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 01/21/2024] [Indexed: 02/20/2024]
Abstract
This work reveals the opportunities to obtain additional information about some biological problems through studying species that possess chromatin diminution. A brief review of the hypothesized biological significance of chromatin diminution is discussed. This article analyzes the biological role of chromatin diminution as it relates to the C-value enigma. It is proposed to consider chromatin diminution as a universal mechanism of genome reduction, reducing the frequency of recombination events in the genome, which leads to specialization and adaptation of the species to more narrow environmental conditions. A hypothesis suggesting the role of non-coding DNA in homologous recombination in eukaryotes is proposed. Cyclopskolensis Lilljeborg, 1901 (Copepoda, Crustacea) is proposed as a model species for studying the mechanisms of transformation of the chromosomes and interphase nuclei structure of somatic line cells due to chromatin diminution. Chromatin diminution in copepods is considered as a stage of irreversible differentiation of embryonic cells during ontogenesis. The process of speciation in cyclopoids with chromatin diminution is considered.
Collapse
Affiliation(s)
- Andrey Grishanin
- Papanin Institute for Biology of Inland Waters, Russian Academy of Sciences, 152742 Borok, Yaroslavl Prov., RussiaRussian Academy of SciencesBorokRussia
- Department of Biophisics, Faculty of Natural and Engineering Sciences, Dubna State University, Universitetskaya 19, 141980, Dubna, Moscow Prov., RussiaDubna State UniversityDubnaRussia
| |
Collapse
|
2
|
Abstract
In most organisms, the whole genome is maintained throughout the life span. However, exceptions occur in some species where the genome is reduced during development through a process known as programmed DNA elimination (PDE). In the human and pig parasite Ascaris, PDE occurs during the 4 to 16 cell stages of embryogenesis, when germline chromosomes are fragmented and specific DNA sequences are reproducibly lost in all somatic cells. PDE was identified in Ascaris over 120 years ago, but little was known about its molecular details until recently. Genome sequencing revealed that approximately 1,000 germline-expressed genes are eliminated in Ascaris, suggesting PDE is a gene silencing mechanism. All germline chromosome ends are removed and remodeled during PDE. In addition, PDE increases the number of chromosomes in the somatic genome by splitting many germline chromosomes. Comparative genomics indicates that these germline chromosomes arose from fusion events. PDE separates these chromosomes at the fusion sites. These observations indicate that PDE plays a role in chromosome karyotype and evolution. Furthermore, comparative analysis of PDE in other parasitic and free-living nematodes illustrates conserved features of PDE, suggesting it has important biological significance. We summarize what is known about PDE in Ascaris and its relatives. We also discuss other potential functions, mechanisms, and the evolution of PDE in these parasites of humans and animals of veterinary importance.
Collapse
|
3
|
Programmed DNA elimination: silencing genes and repetitive sequences in somatic cells. Biochem Soc Trans 2021; 49:1891-1903. [PMID: 34665225 DOI: 10.1042/bst20190951] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/25/2021] [Accepted: 09/28/2021] [Indexed: 12/30/2022]
Abstract
In a multicellular organism, the genomes of all cells are in general the same. Programmed DNA elimination is a notable exception to this genome constancy rule. DNA elimination removes genes and repetitive elements in the germline genome to form a reduced somatic genome in various organisms. The process of DNA elimination within an organism is highly accurate and reproducible; it typically occurs during early embryogenesis, coincident with germline-soma differentiation. DNA elimination provides a mechanism to silence selected genes and repeats in somatic cells. Recent studies in nematodes suggest that DNA elimination removes all chromosome ends, resolves sex chromosome fusions, and may also promote the birth of novel genes. Programmed DNA elimination processes are diverse among species, suggesting DNA elimination likely has evolved multiple times in different taxa. The growing list of organisms that undergo DNA elimination indicates that DNA elimination may be more widespread than previously appreciated. These various organisms will serve as complementary and comparative models to study the function, mechanism, and evolution of programmed DNA elimination in metazoans.
Collapse
|
4
|
Wang J. Genomics of the Parasitic Nematode Ascaris and Its Relatives. Genes (Basel) 2021; 12:493. [PMID: 33800545 PMCID: PMC8065839 DOI: 10.3390/genes12040493] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/22/2021] [Accepted: 03/26/2021] [Indexed: 12/18/2022] Open
Abstract
Nematodes of the genus Ascaris are important parasites of humans and swine, and the phylogenetically related genera (Parascaris, Toxocara, and Baylisascaris) infect mammals of veterinary interest. Over the last decade, considerable genomic resources have been established for Ascaris, including complete germline and somatic genomes, comprehensive mRNA and small RNA transcriptomes, as well as genome-wide histone and chromatin data. These datasets provide a major resource for studies on the basic biology of these parasites and the host-parasite relationship. Ascaris and its relatives undergo programmed DNA elimination, a highly regulated process where chromosomes are fragmented and portions of the genome are lost in embryonic cells destined to adopt a somatic fate, whereas the genome remains intact in germ cells. Unlike many model organisms, Ascaris transcription drives early development beginning prior to pronuclear fusion. Studies on Ascaris demonstrated a complex small RNA network even in the absence of a piRNA pathway. Comparative genomics of these ascarids has provided perspectives on nematode sex chromosome evolution, programmed DNA elimination, and host-parasite coevolution. The genomic resources enable comparison of proteins across diverse species, revealing many new potential drug targets that could be used to control these parasitic nematodes.
Collapse
Affiliation(s)
- Jianbin Wang
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA;
- UT-Oak Ridge National Laboratory Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN 37996, USA
| |
Collapse
|
5
|
Abstract
Two distinct groups of parasitic nematodes use programmed DNA elimination to silence germline-expressed genes in the somatic cells (ascarids) or for sex determination (Strongyloides spp.). In the ascarids, DNA is lost only in pre-somatic cells during early embryogenesis, leading to a reduced somatic genome compared to the intact germ cell genome. Comparative genome analysis has provided information on the retained vs. eliminated sequences, DNA breaks, a full chromosome view on DNA elimination, and the evolutionary conservation of DNA elimination among ascarids. These studies have revealed novel insights into the functions and mechanisms of DNA elimination and provided a reference for in-depth molecular analysis of DNA elimination. Here, I describe the genomics methods we used to study programmed DNA elimination, focusing on the parasitic nematode Ascaris.
Collapse
Affiliation(s)
- Jianbin Wang
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN, USA. .,UT-ORNL Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN, USA.
| |
Collapse
|
6
|
Wang J, Veronezi GMB, Kang Y, Zagoskin M, O'Toole ET, Davis RE. Comprehensive Chromosome End Remodeling during Programmed DNA Elimination. Curr Biol 2020; 30:3397-3413.e4. [PMID: 32679104 PMCID: PMC7484210 DOI: 10.1016/j.cub.2020.06.058] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/09/2020] [Accepted: 06/16/2020] [Indexed: 01/14/2023]
Abstract
Germline and somatic genomes are in general the same in a multicellular organism. However, programmed DNA elimination leads to a reduced somatic genome compared to germline cells. Previous work on the parasitic nematode Ascaris demonstrated that programmed DNA elimination encompasses high-fidelity chromosomal breaks and loss of specific genome sequences including a major tandem repeat of 120 bp and ~1,000 germline-expressed genes. However, the precise chromosomal locations of these repeats, breaks regions, and eliminated genes remained unknown. We used PacBio long-read sequencing and chromosome conformation capture (Hi-C) to obtain fully assembled chromosomes of Ascaris germline and somatic genomes, enabling a complete chromosomal view of DNA elimination. We found that all 24 germline chromosomes undergo comprehensive chromosome end remodeling with DNA breaks in their subtelomeric regions and loss of distal sequences including the telomeres at both chromosome ends. All new Ascaris somatic chromosome ends are recapped by de novo telomere healing. We provide an ultrastructural analysis of Ascaris DNA elimination and show that eliminated DNA is incorporated into double membrane-bound structures, similar to micronuclei, during telophase of a DNA elimination mitosis. These micronuclei undergo dynamic changes including loss of active histone marks and localize to the cytoplasm following daughter nuclei formation and cytokinesis where they form autophagosomes. Comparative analysis of nematode chromosomes suggests that chromosome fusions occurred, forming Ascaris sex chromosomes that become independent chromosomes following DNA elimination breaks in somatic cells. These studies provide the first chromosomal view and define novel features and functions of metazoan programmed DNA elimination.
Collapse
Affiliation(s)
- Jianbin Wang
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045, USA; RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, CO 80045, USA; Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA.
| | - Giovana M B Veronezi
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Yuanyuan Kang
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Maxim Zagoskin
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Eileen T O'Toole
- Molecular, Cellular and Developmental Biology, University of Colorado at Boulder, Boulder, CO 80309, USA
| | - Richard E Davis
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045, USA; RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, CO 80045, USA.
| |
Collapse
|
7
|
Wang J, Gao S, Mostovoy Y, Kang Y, Zagoskin M, Sun Y, Zhang B, White LK, Easton A, Nutman TB, Kwok PY, Hu S, Nielsen MK, Davis RE. Comparative genome analysis of programmed DNA elimination in nematodes. Genome Res 2017; 27:2001-2014. [PMID: 29118011 PMCID: PMC5741062 DOI: 10.1101/gr.225730.117] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 10/12/2017] [Indexed: 12/20/2022]
Abstract
Programmed DNA elimination is a developmentally regulated process leading to the reproducible loss of specific genomic sequences. DNA elimination occurs in unicellular ciliates and a variety of metazoans, including invertebrates and vertebrates. In metazoa, DNA elimination typically occurs in somatic cells during early development, leaving the germline genome intact. Reference genomes for metazoa that undergo DNA elimination are not available. Here, we generated germline and somatic reference genome sequences of the DNA eliminating pig parasitic nematode Ascaris suum and the horse parasite Parascaris univalens. In addition, we carried out in-depth analyses of DNA elimination in the parasitic nematode of humans, Ascaris lumbricoides, and the parasitic nematode of dogs, Toxocara canis. Our analysis of nematode DNA elimination reveals that in all species, repetitive sequences (that differ among the genera) and germline-expressed genes (approximately 1000–2000 or 5%–10% of the genes) are eliminated. Thirty-five percent of these eliminated genes are conserved among these nematodes, defining a core set of eliminated genes that are preferentially expressed during spermatogenesis. Our analysis supports the view that DNA elimination in nematodes silences germline-expressed genes. Over half of the chromosome break sites are conserved between Ascaris and Parascaris, whereas only 10% are conserved in the more divergent T. canis. Analysis of the chromosomal breakage regions suggests a sequence-independent mechanism for DNA breakage followed by telomere healing, with the formation of more accessible chromatin in the break regions prior to DNA elimination. Our genome assemblies and annotations also provide comprehensive resources for analysis of DNA elimination, parasitology research, and comparative nematode genome and epigenome studies.
Collapse
Affiliation(s)
- Jianbin Wang
- Department of Biochemistry and Molecular Genetics, RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| | - Shenghan Gao
- Department of Biochemistry and Molecular Genetics, RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, Colorado 80045, USA.,Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Yulia Mostovoy
- Cardiovascular Research Institute, UCSF School of Medicine, San Francisco, California 94158, USA
| | - Yuanyuan Kang
- Department of Biochemistry and Molecular Genetics, RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| | - Maxim Zagoskin
- Department of Biochemistry and Molecular Genetics, RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| | - Yongqiao Sun
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Bing Zhang
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Laura K White
- Department of Biochemistry and Molecular Genetics, RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| | - Alice Easton
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Thomas B Nutman
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Pui-Yan Kwok
- Cardiovascular Research Institute, UCSF School of Medicine, San Francisco, California 94158, USA
| | - Songnian Hu
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Martin K Nielsen
- Gluck Equine Research Center, University of Kentucky, Lexington, Kentucky 40546, USA
| | - Richard E Davis
- Department of Biochemistry and Molecular Genetics, RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| |
Collapse
|
8
|
Wang J, Davis RE. Programmed DNA elimination in multicellular organisms. Curr Opin Genet Dev 2014; 27:26-34. [PMID: 24886889 DOI: 10.1016/j.gde.2014.03.012] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 03/17/2014] [Accepted: 03/25/2014] [Indexed: 10/25/2022]
Abstract
Genetic information typically remains constant in all cells throughout the life cycle of most organisms. However, there are exceptions where DNA elimination is an integral, developmental program for some organisms, associated with generating distinct germline versus somatic genomes. Programmed DNA elimination occurs in unicellular ciliates and diverse metazoa ranging from nematodes to vertebrates. DNA elimination can occur through chromosome breakage and selective loss of chromosome regions or the elimination of individual chromosomes. Recent studies provide compelling evidence that DNA elimination is a novel form of gene silencing, dosage compensation, and sex determination. Further identification of the eliminated sequences, genome changes, and in depth characterization of this phenomenon in diverse metazoans is needed to shed new light on the functions and mechanisms of this regulated process.
Collapse
Affiliation(s)
- Jianbin Wang
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045, United States.
| | - Richard E Davis
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045, United States.
| |
Collapse
|
9
|
Wang J, Mitreva M, Berriman M, Thorne A, Magrini V, Koutsovoulos G, Kumar S, Blaxter ML, Davis RE. Silencing of germline-expressed genes by DNA elimination in somatic cells. Dev Cell 2012; 23:1072-80. [PMID: 23123092 PMCID: PMC3620533 DOI: 10.1016/j.devcel.2012.09.020] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Revised: 09/05/2012] [Accepted: 09/21/2012] [Indexed: 02/02/2023]
Abstract
Chromatin diminution is the programmed elimination of specific DNA sequences during development. It occurs in diverse species, but the function(s) of diminution and the specificity of sequence loss remain largely unknown. Diminution in the nematode Ascaris suum occurs during early embryonic cleavages and leads to the loss of germline genome sequences and the formation of a distinct genome in somatic cells. We found that ∼43 Mb (∼13%) of genome sequence is eliminated in A. suum somatic cells, including ∼12.7 Mb of unique sequence. The eliminated sequences and location of the DNA breaks are the same in all somatic lineages from a single individual and between different individuals. At least 685 genes are eliminated. These genes are preferentially expressed in the germline and during early embryogenesis. We propose that diminution is a mechanism of germline gene regulation that specifically removes a large number of genes involved in gametogenesis and early embryogenesis.
Collapse
Affiliation(s)
- Jianbin Wang
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, 80045
| | - Makedonka Mitreva
- The Genome Institute, Washington University School of Medicine, St. Louis, 63108
- Department of Genetics, Washington University School of Medicine, St. Louis, 63108
| | - Matthew Berriman
- The Wellcome Trust Sanger Institute, Genome Campus, Hinxton, CB10 1SA, UK
| | - Alicia Thorne
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, 80045
| | - Vincent Magrini
- The Genome Institute, Washington University School of Medicine, St. Louis, 63108
- Department of Genetics, Washington University School of Medicine, St. Louis, 63108
| | | | - Sujai Kumar
- Institute of Evolutionary Biology, University of Edinburgh, EH9 3JT UK
| | - Mark L. Blaxter
- Institute of Evolutionary Biology, University of Edinburgh, EH9 3JT UK
| | - Richard E. Davis
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, 80045
| |
Collapse
|
10
|
Awata H, Noto T, Endoh H. Peculiar behavior of distinct chromosomal DNA elements during and after development in the dicyemid mesozoan Dicyema japonicum. Chromosome Res 2007; 14:817-30. [PMID: 17139531 DOI: 10.1007/s10577-006-1084-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2006] [Revised: 07/04/2006] [Accepted: 07/04/2006] [Indexed: 11/26/2022]
Abstract
The dicyemid mesozoans are obligate parasites that inhabit the cephalopod renal appendage. Dicyemids have a simple body, consisting of approximately 30 cells: one long cylindrical axial cell contains intracellular stem cells (called axoblast), from which embryos are derived, and is surrounded by some 30 peripheral somatic cells. Somatic cells divide at most eight times in their life span, and never divide after differentiation. During early somatic cell development, numerous unique DNA sequences are first amplified and then eliminated, in the form of extrachromosomal circular DNA, leading to genome reduction. In this study we demonstrate that the remaining sequences, single-copy genes and repetitive sequences, have very different fates. Single-copy genes, such as beta-tubulin, are initially amplified, presumably via endoreduplication, but subsequently decrease in copy number through development, suggesting that the whole genome is initially amplified and then the amplified DNAs are simply diluted in successive cell divisions, with little DNA replication. In contrast, repetitive sequences are maintained even in terminally differentiated somatic cell nuclei. Considering the increasing intensity of in-situ hybridization, incorporation of BrdU, and a general correlation between nuclear content and cell size, those repetitive sequences must be selectively endoreplicated in the peripheral cell nucleus, concomitant with the increase of cell size. The biological significance of this mechanism is discussed as a unique dicyemid adaptation to parasitism.
Collapse
Affiliation(s)
- Hiroko Awata
- Division of Life Science, Graduate School of Natural Science and Technology, Kanazawa University, Kanazawa 920-1192, Japan
| | | | | |
Collapse
|
11
|
Andrade MA, Siles-Lucas M, López-Abán J, Carranza C, Pérez-Arellano JL, Muro A. Antigens from Ascaris suum trigger in vitro macrophage NO production. Parasite Immunol 2005; 27:235-42. [PMID: 16048643 DOI: 10.1111/j.1365-3024.2005.00774.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
SUMMARY We investigated the in vitro effect of total excretory/secretory and somatic antigens from Ascaris suum adults (ESA and SA) and larvae 3 (ESL3 and SL3), and of 10 purified protein fractions from ESA components on rat alveolar macrophage nitric oxide (NO) production. Our results showed that in vitro incubation of macrophages with SA and SL3 antigens of A. suum did not result in NO release from cells, whereas incubation with ESA or ESL3 antigens resulted in the stimulation of NO production by these cells, both in a specific (inhibited by L-NAME and L-canavanine) and dose-dependent manner. In addition, we could demonstrate that a purified ESA fraction consisting of three Coomassie-stained bands of approximately 37, 44 and 46 kDa is involved in the in vitro triggering of NO production by host cells. These three bands were subjected to MALDI-peptide mass fingerprint, showing similarities with phosphoglycerate kinase, elongation factor Tu and enolase molecules, respectively. Future studies will focus on the characterization of these parasite-derived molecules.
Collapse
Affiliation(s)
- M Amparo Andrade
- Laboratorio de Parasitología, Facultad de Farmacia, Universidad de Salamanca, Spain
| | | | | | | | | | | |
Collapse
|
12
|
Kontargiris E, Kolettas E, Vadalouca A, Trougakos IP, Gonos ES, Kalfakakou V. Ectopic expression of clusterin/apolipoprotein J or Bcl-2 decreases the sensitivity of HaCaT cells to toxic effects of ropivacaine. Cell Res 2004; 14:415-22. [PMID: 15538973 DOI: 10.1038/sj.cr.7290242] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Local anesthetics inhibit cell proliferation and induce apoptosis in various cell types. Ropivacaine, a unique, novel tertiary amine-type anesthetic, was shown to inhibit the proliferation of several cell types including keratinocytes. We found that Ropivacaine could inhibit the proliferation and induce apoptosis in an immortalized human keratinocyte line, HaCaT, in a dose- and time-dependent manner and with the deprivation of serum. The dose-dependent induction of apoptosis by ropivacaine was demonstrated by DNA fragmentation analysis and the proteolytic cleavage of a caspase-3 substrate-poly (ADP-ribose) polymerase (PARP). In addition, ropivacaine downregulated the expression of clusterin/ apoliporotein J, a protein with anti-apoptotic properties, in a dose-dependent manner, which well correlated with the induction of apoptosis of HaCaT cells. To investigate the role of clusterin/apoliporotein J in ropivacaine-induced apoptosis, HaCaT cells overexpressing clusterin/apoliporotein J were generated and compared to cells expressing the well established anti-apoptotic Bcl-2 protein. Ectopic overexpression of the secreted form of clusterin/apoliporotein J or Bcl-2 decreased the sensitivity of HaCaT cells to toxic effects of ropivacaine as demonstrated by DNA fragmentation, the proteolytic cleavage of PARP and by a reduction in procaspase-3 expression. Furthermore, the downregulation of endogenous clusterin/apolipoprotein J levels by ropivacaine suggested that this might be one mechanism by which ropivacaine induced cell death in HaCaT cells. In conclusion, the ability of ropivacaine to induce antiproliferative responses and to suppress the expression of the anti-apoptotic protein clusterin/apolipoprotein J, combined with previously reported anti-inflammatory activity and analgesic property of the drug, suggests that ropivacaine may have potential utility in the local treatment of tumors.
Collapse
Affiliation(s)
- Evangelos Kontargiris
- Laboratory of Experimental Physiology, University of Ioannina Medical School, 45110 Ioannina, Greece
| | | | | | | | | | | |
Collapse
|
13
|
Bachmann-Waldmann C, Jentsch S, Tobler H, Müller F. Chromatin diminution leads to rapid evolutionary changes in the organization of the germ line genomes of the parasitic nematodes A. suum and P. univalens. Mol Biochem Parasitol 2004; 134:53-64. [PMID: 14747143 DOI: 10.1016/j.molbiopara.2003.11.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Chromatin diminution in the parasitic nematodes Ascaris suum and Parascaris univalens represents a rather complex molecular phenomenon that includes chromosomal breakage, DNA degradation and new telomere formation. At a given elimination site, DNA breakage and new telomere addition does not take place at a single chromosomal locus but at many different places within a several kilobase long chromosomal region, referred to as chromosomal breakage region (CBR). Here we describe the cloning and the characterisation of seven CBRs from A. suum and P. univalens and we show that the process has been conserved between the two species. A detailed sequence comparison provides evidence that the sequences of the CBRs and their flanking regions are not directly important for the specification of the elimination sites. Six out of the seven CBRs are conserved between the two nematode species, suggesting that they have already existed in a common ancestor. We present a hypothesis stating that the elimination process ensures the maintenance of a functional somatic genome and concomitantly allows extremely rapid and profound changes in the germ line genome, thereby allowing the development of new germ line specific functions and thus providing a selective advantage for the chromatin eliminating nematodes during further evolution.
Collapse
Affiliation(s)
- Christa Bachmann-Waldmann
- Departement of Biology, Zoology, University of Fribourg, Chemin du Musée 10, Fribourg CH-1700, Switzerland
| | | | | | | |
Collapse
|
14
|
Watanabe M, Yoshida K, Hida M, Kato H, Uchida K, Yamaguchi R, Tateyama S, Sugano S. Cloning, expression analysis, and chromosomal mapping of GTPBP2, a novel member of the G protein family. Gene 2000; 256:51-8. [PMID: 11054535 DOI: 10.1016/s0378-1119(00)00346-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
We have identified a novel gene encoding a protein bearing GTP-binding motifs, the characteristics of GTP-binding proteins (G proteins). The deduced amino acid sequence exhibited the highest overall homology with GTPBP1 and its mouse orthologue GP-1. Hence, we named the gene GTPBP2. The mouse orthologue of this gene, Gtpbp2, showed 98% identity with GTPBP2 over the entire protein (the HGMW-approved nomenclature symbol is GTPBP2 and mouse orthologue is Gtpbp2). A phylogenetic analysis showed GTPBP2 and homologous G proteins (GTPBP1, AGP-1, and CGP-1) did not belong to major G protein families. They formed a distinct branch in the phylogenetic tree, suggesting that they constitute a novel G protein family. A 2. 9kb mRNA was predominantly detected in the testis along with various other organs. In situ hybridization analysis revealed that Gtpbp2 was predominantly expressed in spermatocytes and round-spermatids in the testis. These novel genes were localized to human chromosome 6p21.1-2 and mouse chromosome 17qC-D.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Blotting, Northern
- Chromosome Mapping
- Chromosomes/genetics
- Chromosomes, Human, Pair 6/genetics
- Cloning, Molecular
- DNA, Complementary/chemistry
- DNA, Complementary/genetics
- Female
- GTP-Binding Proteins/genetics
- Gene Expression
- Humans
- In Situ Hybridization, Fluorescence
- Male
- Mice
- Mice, Inbred C57BL
- Molecular Sequence Data
- Monomeric GTP-Binding Proteins/genetics
- Phylogeny
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Sequence Alignment
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- Testis/metabolism
- Tissue Distribution
Collapse
Affiliation(s)
- M Watanabe
- Department of Virology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Senju S, Iyama K, Kudo H, Aizawa S, Nishimura Y. Immunocytochemical analyses and targeted gene disruption of GTPBP1. Mol Cell Biol 2000; 20:6195-200. [PMID: 10938096 PMCID: PMC86094 DOI: 10.1128/mcb.20.17.6195-6200.2000] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We previously identified a gene encoding a putative GTPase, GTPBP1, which is structurally related to elongation factor 1alpha, a key component of protein biosynthesis machinery. The primary structure of GTPBP1 is highly conserved between human and mouse (97% identical at the amino acid level). Expression of this gene is enhanced by gamma interferon in a monocytic cell line, THP-1. Although counterparts of this molecule in Caenorhabditis elegans and Ascaris suum have also been identified, the function of this molecule remains to be clarified. In the present study, our immunohistochemical analyses on mouse tissues revealed that GTPBP1 is expressed in some neurons and smooth muscle cells of various organs as well as macrophages. Immunofluorescence analyses revealed that GTPBP1 is localized exclusively in cytoplasm and shows a diffuse granular network forming a gradient from the nucleus to the periphery of the cells in smooth muscle cell lines and macrophages. To investigate the physiological role of GTPBP1, we used targeted gene disruption in embryonic stem cells to generate GTPBP1-deficient mice. The mutant mice were born at the expected Mendelian frequency, developed normally, and were fertile. No manifest anatomical or behavioral abnormality was observed in the mutant mice. Functions of macrophages, including chemotaxis, phagocytosis, and nitric oxide production, in mutant mice were equivalent to those seen in wild-type mice. No significant difference was observed in the immune response to protein antigen between mutant mice and wild-type mice, suggesting normal function of antigen-presenting cells of the mutant mice. The absence of an eminent phenotype in GTPBP1-deficient mice may be due to functional compensation by GTPBP2, a molecule we recently identified which is similar to GTPBP1 in structure and tissue distribution.
Collapse
Affiliation(s)
- S Senju
- Division of Immunogenetics, Kumamoto University Graduate School of Medical Sciences, Institute of Molecular Embryology and Genetics, Kumamoto University School of Medicine, Kumamoto 860, Japan
| | | | | | | | | |
Collapse
|
16
|
Kudo H, Senju S, Mitsuya H, Nishimura Y. Mouse and human GTPBP2, newly identified members of the GP-1 family of GTPase. Biochem Biophys Res Commun 2000; 272:456-65. [PMID: 10833435 DOI: 10.1006/bbrc.2000.2763] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We earlier identified the GTPBP1 gene which encodes a putative GTPase structurally related to peptidyl elongation factors. This finding was the result of a search for genes, the expression of which is induced by interferon-gamma in a macrophage cell line, THP-1. In the current study, we probed the expressed sequence tag database with the deduced amino acid sequence of GTPBP1 to search for partial cDNA clones homologous to GTPBP1. We used one of the partial cDNA clones to screen a mouse brain cDNA library and identified a novel gene, mouse GTPBP2, encoding a protein consisting of 582 amino acids and carrying GTP-binding motifs. The deduced amino acid sequence of mouse GTPBP2 revealed 44.2% similarity to mouse GTPBP1. We also cloned a human homologue of this gene from a cDNA library of the human T cell line, Jurkat. GTPBP2 protein was found highly conserved between human and mouse (over 99% identical), thereby suggesting a fundamental role of this molecule across species. On Northern blot analysis of various mouse tissues, GTPBP2 mRNA was detected in brain, thymus, kidney and skeletal muscle, but was scarce in liver. Level of expression of GTPBP2 mRNA was enhanced by interferon-gamma in THP-1 cells, HeLa cells, and thioglycollate-elicited mouse peritoneal macrophages. In addition, we determined the chromosomal localization of GTPBP1 and GTPBP2 genes in human and mouse. The GTPBP1 gene was mapped to mouse chromosome 15, region E3, and human chromosome 22q12-13.1, while the GTPBP2 gene is located in mouse chromosome 17, region C-D, and human chromosome 6p21-12.
Collapse
Affiliation(s)
- H Kudo
- Division of Immunogenetics, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Japan
| | | | | | | |
Collapse
|
17
|
Müller F, Tobler H. Chromatin diminution in the parasitic nematodes ascaris suum and parascaris univalens. Int J Parasitol 2000; 30:391-9. [PMID: 10731562 DOI: 10.1016/s0020-7519(99)00199-x] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Chromatin diminution in Parascaris univalens and Ascaris suum undoubtedly represents an interesting case of developmentally programmed DNA rearrangement in higher eukaryotes. It is a complex mechanism involving chromosomal breakage, new telomere addition and DNA degradation, and occurs in all presomatic cells. The process is rather specific with respect to its developmental timing and the chromosomal regions that are eliminated. The functional significance of chromatin diminution still remains an enigma. The fact, however, that single-copy, protein-coding genes are contained in the eliminated DNA demonstrates that in P. univalens and A. suum, there is a qualitative difference between germ-line and somatic genomes, and suggests that chromatin diminution may be used as a "throw-away" approach to gene regulation. We present a hypothesis as to how, during evolution, a partial genome duplication might have been linked to the process of chromatin diminution, in order to provide a selective advantage to parasitic DNA-eliminating nematodes.
Collapse
Affiliation(s)
- F Müller
- Institute of Zoology, University of Fribourg, CH-1700, Fribourg, Switzerland.
| | | |
Collapse
|
18
|
Huang YJ, Prichard RK. Identification and stage-specific expression of two putative P-glycoprotein coding genes in Onchocerca volvulus. Mol Biochem Parasitol 1999; 102:273-81. [PMID: 10498183 DOI: 10.1016/s0166-6851(99)00104-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The potential for the development of ivermectin (IVM) resistance in microfilariae of Onchocerca volvulus and the existence of IVM tolerance in adult worms of this human pathogen are major concerns for the effective control of onchocerciasis. P-glycoprotein (P-gp), an ATP-binding transporter protein associated with multidrug resistance in mammals, protozoa and the nematode, Haemonchus contortus, might play important roles in the development of IVM resistance and/or in the tolerance of adult O. volvulus. In order to find the homologues of P-gp in O. volvulus, reverse transcription polymerase chain reaction (RT-PCR) has been performed in a specially synthesized cDNA pool and two full-length cDNAs have been cloned and sequenced. The first, ovpgp-1, encodes a 1278-amino-acid putative protein (OVPGP-1) with tandemly duplicated halves, each containing six putative transmembrane motifs and an ATP-binding cassette. OVPGP-1 is most similar in sequence to other eukaryotic P-gps. The second cDNA, ovplp-1, encodes a 587-amino-acid P-gp-like protein, which is only half the size of typical P-gps although it still shares high homology with them. Expression patterns of the two genes in different developmental stages have been investigated by semiquantitative RT PCR, suggesting that the expression levels of the two genes (especially ovpgp-1) may be linked with IVM sensitivity; low levels were found in IVM sensitive larval stages while high levels were found in IVM tolerant adult worms.
Collapse
Affiliation(s)
- Y J Huang
- Institute of Parasitology, McGill University, Ste-Anne-de-Bellevue, Quebec, Canada
| | | |
Collapse
|
19
|
Senju S, Nishimura Y. Identification of human and mouse GP-1, a putative member of a novel G-protein family. Biochem Biophys Res Commun 1997; 231:360-4. [PMID: 9070279 DOI: 10.1006/bbrc.1997.6103] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
To identify genes induced in monocytes by interferon-gamma, we carried out PCR-based cDNA subtraction and subsequent differential display on mRNA isolated from a human monocytic leukemia cell line, THP-1. We detected a novel gene encoding a protein bearing GTP-binding motifs, the characteristics of GTP-binding proteins (G-proteins). We also identified the mouse homologue of this gene and designated the gene GP-1. The amino acid sequence of GP-1 deduced from the nucleotide sequence is highly conserved in human and mouse (97% identical over the entire protein), suggesting a fundamental physiological role for this molecule. As amino acid sequences of GTP-binding motifs of human and mouse GP-1 are practically identical to those of recently identified putative G-proteins of nematode, AGP-1 and CGP-1, these proteins are likely to be members of the same, novel G-protein family. GP-1 mRNA was readily detected in mouse brain, thymus, lung, and kidney, while GP-1 mRNA is rarely expressed in liver.
Collapse
Affiliation(s)
- S Senju
- Department of Neuroscience and Immunology, Kumamoto University Graduate School of Medical Sciences, Japan
| | | |
Collapse
|
20
|
Abstract
Telomeres cap and protect the ends of chromosomes from degradation and illegitimate recombination. The termini of a linear template cannot, however, be completely replicated by conventional DNA-dependent DNA polymerases, and thus in the absence of a mechanisms to counter this effect, telomeres of eukaryotic cells shorten every round of DNA replication. In humans and possibly other higher eukaryotes, telomere shortening may have been adopted to limit the life span of somatic cells. Human somatic cells have a finite proliferative capacity and enter a viable growth arrested state called senescence. Life span appears to be governed by cell division, not time. The regular loss of telomeric DNA could therefore serve as a mitotic clock in the senescence programme, counting cell divisions. In most eukaryotic organisms, however, telomere shortening can be countered by the de novo addition of telomeric repeats by the enzyme telomerase. Cells which are "immortal' such as the human germ line or tumour cell lines, established mouse cells, yeast and ciliates, all maintain a stable telomere length through the action of telomerase. Abolition of telomerase activity in such cells nevertheless results in telomere shortening, a process that eventually destabilizes the ends of chromosomes, leading to genomic instability and cell growth arrest or death. Therefore, loss of terminal DNA sequences may limit cell life span by two mechanisms: by acting as a mitotic clock and by denuding chromosomes of protective telomeric DNA necessary for cell viability.
Collapse
Affiliation(s)
- C M Counter
- Whitehead Institute for Biomedical Research (Weinberg Lab), Nine Cambridge Center, MA 02142-1479, USA.
| |
Collapse
|
21
|
13th International Chromosome Conference. Chromosome Res 1996. [DOI: 10.1007/bf02257278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|