1
|
Lata E, Choquet K, Sagliocco F, Brais B, Bernard G, Teichmann M. RNA Polymerase III Subunit Mutations in Genetic Diseases. Front Mol Biosci 2021; 8:696438. [PMID: 34395528 PMCID: PMC8362101 DOI: 10.3389/fmolb.2021.696438] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 07/21/2021] [Indexed: 12/24/2022] Open
Abstract
RNA polymerase (Pol) III transcribes small untranslated RNAs such as 5S ribosomal RNA, transfer RNAs, and U6 small nuclear RNA. Because of the functions of these RNAs, Pol III transcription is best known for its essential contribution to RNA maturation and translation. Surprisingly, it was discovered in the last decade that various inherited mutations in genes encoding nine distinct subunits of Pol III cause tissue-specific diseases rather than a general failure of all vital functions. Mutations in the POLR3A, POLR3C, POLR3E and POLR3F subunits are associated with susceptibility to varicella zoster virus-induced encephalitis and pneumonitis. In addition, an ever-increasing number of distinct mutations in the POLR3A, POLR3B, POLR1C and POLR3K subunits cause a spectrum of neurodegenerative diseases, which includes most notably hypomyelinating leukodystrophy. Furthermore, other rare diseases are also associated with mutations in genes encoding subunits of Pol III (POLR3H, POLR3GL) and the BRF1 component of the TFIIIB transcription initiation factor. Although the causal relationship between these mutations and disease development is widely accepted, the exact molecular mechanisms underlying disease pathogenesis remain enigmatic. Here, we review the current knowledge on the functional impact of specific mutations, possible Pol III-related disease-causing mechanisms, and animal models that may help to better understand the links between Pol III mutations and disease.
Collapse
Affiliation(s)
- Elisabeth Lata
- Bordeaux University, Inserm U 1212, CNRS UMR 5320, ARNA laboratory, Bordeaux, France
| | - Karine Choquet
- Department of Genetics, Harvard Medical School, Boston, MA, United States
| | - Francis Sagliocco
- Bordeaux University, Inserm U 1212, CNRS UMR 5320, ARNA laboratory, Bordeaux, France
| | - Bernard Brais
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Geneviève Bernard
- Departments of Neurology and Neurosurgery, Pediatrics and Human Genetics, McGill University, Montreal, QC, Canada
- Department of Specialized Medicine, Division of Medical Genetics, McGill University Health Center, Montreal, QC, Canada
- Child Health and Human Development Program, Research Institute of the McGill University Health Center, Montreal, QC, Canada
| | - Martin Teichmann
- Bordeaux University, Inserm U 1212, CNRS UMR 5320, ARNA laboratory, Bordeaux, France
| |
Collapse
|
2
|
Greber BJ, Nogales E. The Structures of Eukaryotic Transcription Pre-initiation Complexes and Their Functional Implications. Subcell Biochem 2019; 93:143-192. [PMID: 31939151 DOI: 10.1007/978-3-030-28151-9_5] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Transcription is a highly regulated process that supplies living cells with coding and non-coding RNA molecules. Failure to properly regulate transcription is associated with human pathologies, including cancers. RNA polymerase II is the enzyme complex that synthesizes messenger RNAs that are then translated into proteins. In spite of its complexity, RNA polymerase requires a plethora of general transcription factors to be recruited to the transcription start site as part of a large transcription pre-initiation complex, and to help it gain access to the transcribed strand of the DNA. This chapter reviews the structure and function of these eukaryotic transcription pre-initiation complexes, with a particular emphasis on two of its constituents, the multisubunit complexes TFIID and TFIIH. We also compare the overall architecture of the RNA polymerase II pre-initiation complex with those of RNA polymerases I and III, involved in transcription of ribosomal RNA and non-coding RNAs such as tRNAs and snRNAs, and discuss the general, conserved features that are applicable to all eukaryotic RNA polymerase systems.
Collapse
Affiliation(s)
- Basil J Greber
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA, 94720, USA.
- Molecular Biophysics and Integrative Bio-Imaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
| | - Eva Nogales
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA, 94720, USA
- Molecular Biophysics and Integrative Bio-Imaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Howard Hughes Medical Institute, University of California, Berkeley, CA, 94720, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, 94720, USA
| |
Collapse
|
3
|
Wang YQ, Lu JL, Liang YR, Li QS. Suppressive Effects of EGCG on Cervical Cancer. Molecules 2018; 23:E2334. [PMID: 30213130 PMCID: PMC6225117 DOI: 10.3390/molecules23092334] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 09/05/2018] [Accepted: 09/11/2018] [Indexed: 02/07/2023] Open
Abstract
Cervical cancer is the fourth most common gynecological cancer worldwide. Although prophylactic vaccination presents the most effective method for cervical cancer prevention, chemotherapy is still the primary invasive intervention. It is urgent to exploit low-toxic natural anticancer drugs on account of high cytotoxicity and side-effects of conventional agents. As a natural product, (-)-epigallocatechingallate (EGCG) has abilities in anti-proliferation, anti-metastasis and pro-apoptosis of cervical cancer cells. Moreover, EGCG also has pharmaceutical synergistic effects with conventional agents such as cisplatin (CDDP) and bleomycin (BLM). The underlying mechanisms of EGCG suppressive effects on cervical cancer are reviewed in this article. Further research directions and ambiguous results are also discussed.
Collapse
Affiliation(s)
- Ying-Qi Wang
- Tea Research Institute, Zhejiang University, # 866 Yuhangtang Road, Hangzhou 310058, China.
| | - Jian-Liang Lu
- Tea Research Institute, Zhejiang University, # 866 Yuhangtang Road, Hangzhou 310058, China.
| | - Yue-Rong Liang
- Tea Research Institute, Zhejiang University, # 866 Yuhangtang Road, Hangzhou 310058, China.
| | - Qing-Sheng Li
- Tea Research Institute, Zhejiang University, # 866 Yuhangtang Road, Hangzhou 310058, China.
| |
Collapse
|
4
|
Dergai O, Cousin P, Gouge J, Satia K, Praz V, Kuhlman T, Lhôte P, Vannini A, Hernandez N. Mechanism of selective recruitment of RNA polymerases II and III to snRNA gene promoters. Genes Dev 2018; 32:711-722. [PMID: 29785964 PMCID: PMC6004067 DOI: 10.1101/gad.314245.118] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 04/17/2018] [Indexed: 01/03/2023]
Abstract
RNA polymerase II (Pol II) small nuclear RNA (snRNA) promoters and type 3 Pol III promoters have highly similar structures; both contain an interchangeable enhancer and "proximal sequence element" (PSE), which recruits the SNAP complex (SNAPc). The main distinguishing feature is the presence, in the type 3 promoters only, of a TATA box, which determines Pol III specificity. To understand the mechanism by which the absence or presence of a TATA box results in specific Pol recruitment, we examined how SNAPc and general transcription factors required for Pol II or Pol III transcription of SNAPc-dependent genes (i.e., TATA-box-binding protein [TBP], TFIIB, and TFIIA for Pol II transcription and TBP and BRF2 for Pol III transcription) assemble to ensure specific Pol recruitment. TFIIB and BRF2 could each, in a mutually exclusive fashion, be recruited to SNAPc. In contrast, TBP-TFIIB and TBP-BRF2 complexes were not recruited unless a TATA box was present, which allowed selective and efficient recruitment of the TBP-BRF2 complex. Thus, TBP both prevented BRF2 recruitment to Pol II promoters and enhanced BRF2 recruitment to Pol III promoters. On Pol II promoters, TBP recruitment was separate from TFIIB recruitment and enhanced by TFIIA. Our results provide a model for specific Pol recruitment at SNAPc-dependent promoters.
Collapse
Affiliation(s)
- Oleksandr Dergai
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, 1015 Lausanne, Switzerland
| | - Pascal Cousin
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, 1015 Lausanne, Switzerland
| | - Jerome Gouge
- Division of Structural Biology, The Institute of Cancer Research, London SW7 3RP, United Kingdom
| | - Karishma Satia
- Division of Structural Biology, The Institute of Cancer Research, London SW7 3RP, United Kingdom
| | - Viviane Praz
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, 1015 Lausanne, Switzerland
- Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Tracy Kuhlman
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Philippe Lhôte
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, 1015 Lausanne, Switzerland
| | - Alessandro Vannini
- Division of Structural Biology, The Institute of Cancer Research, London SW7 3RP, United Kingdom
| | - Nouria Hernandez
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|
5
|
Bellido F, Sowada N, Mur P, Lázaro C, Pons T, Valdés-Mas R, Pineda M, Aiza G, Iglesias S, Soto JL, Urioste M, Caldés T, Balbín M, Blay P, Rueda D, Durán M, Valencia A, Moreno V, Brunet J, Blanco I, Navarro M, Calin GA, Borck G, Puente XS, Capellá G, Valle L. Association Between Germline Mutations in BRF1, a Subunit of the RNA Polymerase III Transcription Complex, and Hereditary Colorectal Cancer. Gastroenterology 2018; 154:181-194.e20. [PMID: 28912018 DOI: 10.1053/j.gastro.2017.09.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 08/21/2017] [Accepted: 09/03/2017] [Indexed: 12/14/2022]
Abstract
BACKGROUND & AIMS Although there is a genetic predisposition to colorectal cancer (CRC), few of the genes that affect risk have been identified. We performed whole-exome sequence analysis of individuals in a high-risk family without mutations in genes previously associated with CRC risk to identify variants associated with inherited CRC. METHODS We collected blood samples from 3 relatives with CRC in Spain (65, 62, and 40 years old at diagnosis) and performed whole-exome sequence analyses. Rare missense, truncating or splice-site variants shared by the 3 relatives were selected. We used targeted pooled DNA amplification followed by next generation sequencing to screen for mutations in candidate genes in 547 additional hereditary and/or early-onset CRC cases (502 additional families). We carried out protein-dependent yeast growth assays and transfection studies in the HT29 human CRC cell line to test the effects of the identified variants. RESULTS A total of 42 unique or rare (population minor allele frequency below 1%) nonsynonymous genetic variants in 38 genes were shared by all 3 relatives. We selected the BRF1 gene, which encodes an RNA polymerase III transcription initiation factor subunit for further analysis, based on the predicted effect of the identified variant and previous association of BRF1 with cancer. Previously unreported or rare germline variants in BRF1 were identified in 11 of 503 CRC families, a significantly greater proportion than in the control population (34 of 4300). Seven of the identified variants (1 detected in 2 families) affected BRF1 mRNA splicing, protein stability, or expression and/or function. CONCLUSIONS In an analysis of families with a history of CRC, we associated germline mutations in BRF1 with predisposition to CRC. We associated deleterious BRF1 variants with 1.4% of familial CRC cases, in individuals without mutations in high-penetrance genes previously associated with CRC. Our findings add additional evidence to the link between defects in genes that regulate ribosome synthesis and risk of CRC.
Collapse
Affiliation(s)
- Fernando Bellido
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL and CIBERONC, Hospitalet de Llobregat, Barcelona, Spain
| | - Nadine Sowada
- Institute of Human Genetics, University of Ulm, Ulm, Germany
| | - Pilar Mur
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL and CIBERONC, Hospitalet de Llobregat, Barcelona, Spain
| | - Conxi Lázaro
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL and CIBERONC, Hospitalet de Llobregat, Barcelona, Spain
| | - Tirso Pons
- Structural Biology and Biocomputing Program, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Rafael Valdés-Mas
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Oncología del Principado de Asturias, Universidad de Oviedo, Oviedo, Spain
| | - Marta Pineda
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL and CIBERONC, Hospitalet de Llobregat, Barcelona, Spain
| | - Gemma Aiza
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL and CIBERONC, Hospitalet de Llobregat, Barcelona, Spain
| | - Silvia Iglesias
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL and CIBERONC, Hospitalet de Llobregat, Barcelona, Spain
| | - José Luís Soto
- Molecular Genetics Laboratory, Elche University Hospital, Elche, Spain; Alicante Institute for Health and Biomedical Research (ISABIAL-FISABIO Foundation), Alicante, Spain
| | - Miguel Urioste
- Familial Cancer Clinical Unit, Human Cancer Genetics Program, Spanish National Cancer Research Centre (CNIO) and Center for Biomedical Network Research on Rare Diseases, Madrid, Spain
| | - Trinidad Caldés
- Laboratorio de Oncología Molecular, Servicio de Oncología Médica, Hospital Clínico San Carlos, Madrid, Spain
| | - Milagros Balbín
- Laboratorio de Oncología Molecular, Instituto Universitario de Oncología del Principado de Asturias, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Pilar Blay
- Familial Cancer Unit, Department of Medical Oncology, Instituto Universitario de Oncología del Principado de Asturias, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Daniel Rueda
- Molecular Biology Laboratory, 12 de Octubre University Hospital, Madrid, Spain
| | - Mercedes Durán
- Instituto de Biología y Genética Molecular, IBGM-UVA-CSIC, Valladolid, Spain
| | - Alfonso Valencia
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain; Life Science Department, Barcelona; Supercomputing Centre (BSC-CNS), Barcelona, Spain
| | - Victor Moreno
- Unit of Biomarkers and Susceptibility, Catalan Institute of Oncology, IDIBELL and CIBERESP, Hospitalet de Llobregat, Spain; Department of Clinical Sciences, School of Medicine, University of Barcelona, Hospitalet de Llobregat, Barcelona, Spain
| | - Joan Brunet
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL and CIBERONC, Hospitalet de Llobregat, Barcelona, Spain; Hereditary Cancer Program, Catalan Institute of Oncology, IDIBGi, Girona, Spain
| | - Ignacio Blanco
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL and CIBERONC, Hospitalet de Llobregat, Barcelona, Spain
| | - Matilde Navarro
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL and CIBERONC, Hospitalet de Llobregat, Barcelona, Spain
| | - George A Calin
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Guntram Borck
- Institute of Human Genetics, University of Ulm, Ulm, Germany
| | - Xose S Puente
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Oncología del Principado de Asturias, Universidad de Oviedo, Oviedo, Spain
| | - Gabriel Capellá
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL and CIBERONC, Hospitalet de Llobregat, Barcelona, Spain
| | - Laura Valle
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL and CIBERONC, Hospitalet de Llobregat, Barcelona, Spain.
| |
Collapse
|
6
|
Dumay-Odelot H, Durrieu-Gaillard S, El Ayoubi L, Parrot C, Teichmann M. Contributions of in vitro transcription to the understanding of human RNA polymerase III transcription. Transcription 2015; 5:e27526. [PMID: 25764111 DOI: 10.4161/trns.27526] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Human RNA polymerase III transcribes small untranslated RNAs that contribute to the regulation of essential cellular processes, including transcription, RNA processing and translation. Analysis of this transcription system by in vitro transcription techniques has largely contributed to the discovery of its transcription factors and to the understanding of the regulation of human RNA polymerase III transcription. Here we review some of the key steps that led to the identification of transcription factors and to the definition of minimal promoter sequences for human RNA polymerase III transcription.
Collapse
Affiliation(s)
- Hélène Dumay-Odelot
- a INSERM U869; University of Bordeaux; Institut Européen de Chimie et Biologie (IECB); 33607 Pessac, France
| | | | | | | | | |
Collapse
|
7
|
Gjidoda A, Henry RW. RNA polymerase III repression by the retinoblastoma tumor suppressor protein. BIOCHIMICA ET BIOPHYSICA ACTA 2013; 1829:385-92. [PMID: 23063750 PMCID: PMC3549324 DOI: 10.1016/j.bbagrm.2012.09.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Revised: 09/28/2012] [Accepted: 09/30/2012] [Indexed: 12/29/2022]
Abstract
The retinoblastoma (RB) tumor suppressor protein regulates multiple pathways that influence cell growth, and as a key regulatory node, its function is inactivated in most cancer cells. In addition to its canonical roles in cell cycle control, RB functions as a global repressor of RNA polymerase (Pol) III transcription. Indeed, Pol III transcripts accumulate in cancer cells and their heightened levels are implicated in accelerated growth associated with RB dysfunction. Herein we review the mechanisms of RB repression for the different types of Pol III genes. For type 1 and type 2 genes, RB represses transcription through direct contacts with the core transcription machinery, notably Brf1-TFIIIB, and inhibits preinitiation complex formation and Pol III recruitment. A contrasting model for type 3 gene repression indicates that RB regulation involves stable and simultaneous promoter association by RB, the general transcription machinery including SNAPc, and Pol III, suggesting that RB may impede Pol III promoter escape or elongation. Interestingly, analysis of published genomic association data for RB and Pol III revealed added regulatory complexity for Pol III genes both during active growth and during arrested growth associated with quiescence and senescence. This article is part of a Special Issue entitled: Transcription by Odd Pols.
Collapse
Affiliation(s)
- Alison Gjidoda
- Department of Biochemistry & Molecular Biology, Michigan State University, 603 Wilson Road, East Lansing, MI 48824
| | - R. William Henry
- Department of Biochemistry & Molecular Biology, Michigan State University, 603 Wilson Road, East Lansing, MI 48824
| |
Collapse
|
8
|
Cabarcas S, Jacob J, Veras I, Schramm L. Differential expression of the TFIIIB subunits Brf1 and Brf2 in cancer cells. BMC Mol Biol 2008; 9:74. [PMID: 18700021 PMCID: PMC2533013 DOI: 10.1186/1471-2199-9-74] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2008] [Accepted: 08/12/2008] [Indexed: 12/27/2022] Open
Abstract
Background RNA polymerase (pol) III transcription is specifically elevated in a variety of cancers and is a target of regulation by a variety of tumor suppressors and oncogenes. Accurate initiation by RNA pol III is dependent on TFIIIB. In higher eukaryotes, two forms of TFIIIB have been characterized. TFIIIB required for proper initiation from gene internal RNA pol III promoters is comprised of TBP, Bdp1, and Brf1. Proper initiation from gene external RNA pol III promoters requires TBP, Bdp1, and Brf2. We hypothesized that deregulation of RNA polymerase III transcription in cancer may be a consequence of altered TFIIIB expression Results Here, we report: (1) the TFIIIB subunits Brf1 and Brf2 are differentially expressed in a variety of cancer cell lines: (2) the Brf1 and Brf2 promoters differ in activity in cancer cell lines, and (3) VAI transcription is universally elevated, as compared to U6, in breast, prostate and cervical cancer cells. Conclusion Deregulation of TFIIIB-mediated transcription may be an important step in tumor development. We demonstrate that Brf1 and Brf2 mRNA are differentially expressed in a variety of cancer cells and that the Brf2 promoter is more active than the Brf1 promoter in all cell lines tested. We also demonstrate, that Brf1-dependent VAI transcription was significantly higher than the Brf2-dependent U6 snRNA transcription in all cancer cell lines tested. The data presented suggest that Brf2 protein expression levels correlate with U6 promoter activity in the breast, cervical and prostate cell lines tested. Interestingly, the Brf1 protein levels did not vary considerably in HeLa, MCF-7 and DU-145 cells, yet Brf1 mRNA expression varied considerably in breast, prostate and cervical cancer cell lines tested. Thus, Brf1 promoter activity and Brf1 protein expression levels did not correlate well with Brf1-dependent transcription levels. Taken together, we reason that deregulation of Brf1 and Brf2 expression could be a key mechanism responsible for the observed deregulation of RNA pol III transcription in cancer cells.
Collapse
Affiliation(s)
- Stephanie Cabarcas
- Department of Biological Sciences, St, John's University, 8000 Utopia Parkway, Queens, NY 11439, USA.
| | | | | | | |
Collapse
|
9
|
Jacob J, Cabarcas S, Veras I, Zaveri N, Schramm L. The green tea component EGCG inhibits RNA polymerase III transcription. Biochem Biophys Res Commun 2007; 360:778-83. [PMID: 17624304 PMCID: PMC3010276 DOI: 10.1016/j.bbrc.2007.06.114] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2007] [Accepted: 06/21/2007] [Indexed: 02/04/2023]
Abstract
RNA polymerase III (RNA pol III) transcribes many small structural RNA molecules involved in RNA processing and translation, and thus regulates the growth rate of a cell. Accurate initiation by RNA pol III requires the initiation factor TFIIIB. TFIIIB has been demonstrated to be regulated by tumor suppressors, including ARF, p53, RB, and the RB-related pocket proteins, and is a target of the oncogene c-myc and the mitogen-activated protein kinase ERK. EGCG has been demonstrated to inhibit the growth of a variety of cancer cells, induce apoptosis and regulate the expression of p53, myc, and ERK. Thus, we hypothesized that EGCG may regulate RNA pol III transcription in cells. Here, we report that EGCG (1) inhibits RNA pol III transcription from gene internal and gene external promoters (2) EGCG inhibits protein expression of the TFIIIB subunits Brf1 and Brf2, and (3) EGCG inhibits Brf2 promoter activity in cervical carcinoma cells.
Collapse
Affiliation(s)
- Joby Jacob
- Department of Biological Sciences, St. John's University, 8000 Utopia Parkway, Queens, NY 11439
| | - Stephanie Cabarcas
- Department of Biological Sciences, St. John's University, 8000 Utopia Parkway, Queens, NY 11439
| | - Ingrid Veras
- Department of Biological Sciences, St. John's University, 8000 Utopia Parkway, Queens, NY 11439
| | - Nurulain Zaveri
- Drug Discovery Program, Biosciences Division, SRI International, 333 Ravenswood Avenue, Menlo Park, CA
| | - Laura Schramm
- Department of Biological Sciences, St. John's University, 8000 Utopia Parkway, Queens, NY 11439
- Corresponding author: Laura Schramm, Department of Biological Sciences, St. John's University, 8000 Utopia Parkway, Queens, NY 11439; ; Fax: 718-990-5958
| |
Collapse
|
10
|
Kassavetis GA, Driscoll R, Geiduschek EP. Mapping the Principal Interaction Site of the Brf1 and Bdp1 Subunits of Saccharomyces cerevisiae TFIIIB. J Biol Chem 2006; 281:14321-9. [PMID: 16551611 DOI: 10.1074/jbc.m601702200] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Brf1 subunit of the central RNA polymerase (pol) III transcription initiation factor TFIIIB is bipartite; its N-terminal TFIIB-related half is principally responsible for recruiting pol III to the promoter and for promoter opening near the transcriptional start site, whereas its pol III-specific C-terminal half contributes most of the affinities that hold the three subunits of TFIIIB together. Here, the principal attachment site of Brf1 for the Bdp1 subunit of TFIIIB has been mapped by a combination of structure-informed, site-directed mutagenesis and photochemical protein-DNA cross-linking. A 66-amino acid segment of Brf1 is shown to serve as a two-sided adhesive surface, with the side chains projecting away from its extended interface with TATA-binding protein anchoring Bdp1 binding. An extensive collection of N-terminal, C-terminal, and internal deletion proteins has been used to demarcate the interacting Bdp1 domain to a 66-amino acid segment that includes the SANT domain of this subunit and is phylogenetically the most conserved region of Bdp1.
Collapse
Affiliation(s)
- George A Kassavetis
- Division of Biological Sciences and Center for Molecular Genetics, University of California, San Diego, La Jolla, California 92093-0634, USA.
| | | | | |
Collapse
|
11
|
Schoenen F, Wirth B. The zinc finger protein ZNF297B interacts with BDP1, a subunit of TFIIIB. Biol Chem 2006; 387:277-84. [PMID: 16542149 DOI: 10.1515/bc.2006.037] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The human gene BDP1, localized on chromosome 5q13 in close proximity to the spinal muscular atrophy determining gene SMN, encodes a large protein consisting of 2254 amino acids (aa). In the first third of the gene, the subunit of the RNA polymerase III (Pol III) transcription factor complex (TFIIIB alpha/beta) is encoded. To further characterize the function of BDP1, we carried out a yeast two-hybrid screen using various parts of BDP1. With the clone BDP1-(1-640) we identified a novel interaction partner, ZNF297B. The ZNF297B gene is localized on chromosome 9q24 and encodes a zinc finger protein of 467 aa possessing the typical structure of a transcription factor. The interaction found in yeast was confirmed by co-immunoprecipitation and refined to the N-terminal region of ZNF297B-(1-127) containing the BTB/POZ domain and the N-terminal end of BDP1-(1-299). The ZNF297B transcript is 5.7 kb in length and ubiquitously expressed, with highest levels found in muscles. Immunofluorescence staining revealed a speckled pattern in the nuclei of HEK293 cells. Due to the essential role of BDP1 in Pol III transcription, we propose that ZNF297B may also regulate these transcriptional pathways.
Collapse
Affiliation(s)
- Frank Schoenen
- Institute of Human Genetics, University of Cologne, D-50674 Cologne, Germany
| | | |
Collapse
|
12
|
Saxena A, Ma B, Schramm L, Hernandez N. Structure-function analysis of the human TFIIB-related factor II protein reveals an essential role for the C-terminal domain in RNA polymerase III transcription. Mol Cell Biol 2005; 25:9406-18. [PMID: 16227591 PMCID: PMC1265830 DOI: 10.1128/mcb.25.21.9406-9418.2005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The transcription factors TFIIB, Brf1, and Brf2 share related N-terminal zinc ribbon and core domains. TFIIB bridges RNA polymerase II (Pol II) with the promoter-bound preinitiation complex, whereas Brf1 and Brf2 are involved, as part of activities also containing TBP and Bdp1 and referred to here as Brf1-TFIIIB and Brf2-TFIIIB, in the recruitment of Pol III. Brf1-TFIIIB recruits Pol III to type 1 and 2 promoters and Brf2-TFIIIB to type 3 promoters such as the human U6 promoter. Brf1 and Brf2 both have a C-terminal extension absent in TFIIB, but their C-terminal extensions are unrelated. In yeast Brf1, the C-terminal extension interacts with the TBP/TATA box complex and contributes to the recruitment of Bdp1. Here we have tested truncated Brf2, as well as Brf2/TFIIB chimeric proteins for U6 transcription and for assembly of U6 preinitiation complexes. Our results characterize functions of various human Brf2 domains and reveal that the C-terminal domain is required for efficient association of the protein with U6 promoter-bound TBP and SNAP(c), a type 3 promoter-specific transcription factor, and for efficient recruitment of Bdp1. This in turn suggests that the C-terminal extensions in Brf1 and Brf2 are crucial to specific recruitment of Pol III over Pol II.
Collapse
Affiliation(s)
- Ashish Saxena
- Genetics Program, Stony Brook University, Stony Brook, NY 11794, USA
| | | | | | | |
Collapse
|
13
|
Hirsch HA, Jawdekar GW, Lee KA, Gu L, Henry RW. Distinct mechanisms for repression of RNA polymerase III transcription by the retinoblastoma tumor suppressor protein. Mol Cell Biol 2004; 24:5989-99. [PMID: 15199152 PMCID: PMC480882 DOI: 10.1128/mcb.24.13.5989-5999.2004] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The retinoblastoma (RB) protein represses global RNA polymerase III transcription of genes that encode nontranslated RNAs, potentially to control cell growth. However, RNA polymerase III-transcribed genes exhibit diverse promoter structures and factor requirements for transcription, and a universal mechanism explaining global repression is uncertain. We show that RB represses different classes of RNA polymerase III-transcribed genes via distinct mechanisms. Repression of human U6 snRNA (class 3) gene transcription occurs through stable promoter occupancy by RB, whereas repression of adenovirus VAI (class 2) gene transcription occurs in the absence of detectable RB-promoter association. Endogenous RB binds to a human U6 snRNA gene in both normal and cancer cells that maintain functional RB but not in HeLa cells whose RB function is disrupted by the papillomavirus E7 protein. Both U6 promoter association and transcriptional repression require the A/B pocket domain and C region of RB. These regions of RB contribute to U6 promoter targeting through numerous interactions with components of the U6 general transcription machinery, including SNAP(C) and TFIIIB. Importantly, RB also concurrently occupies a U6 promoter with RNA polymerase III during repression. These observations suggest a novel mechanism for RB function wherein RB can repress U6 transcription at critical steps subsequent to RNA polymerase III recruitment.
Collapse
Affiliation(s)
- Heather A Hirsch
- Program in Cell and Molecular Biology, Michigan State University, East Lansing 48824, USA
| | | | | | | | | |
Collapse
|
14
|
Arthur DC, Ghetu AF, Gubbins MJ, Edwards RA, Frost LS, Glover JNM. FinO is an RNA chaperone that facilitates sense-antisense RNA interactions. EMBO J 2004; 22:6346-55. [PMID: 14633993 PMCID: PMC291848 DOI: 10.1093/emboj/cdg607] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The protein FinO represses F-plasmid conjugative transfer by facilitating interactions between the mRNA of the major F-plasmid transcriptional activator, TraJ, and an antisense RNA, FinP. FinO is known to bind stem-loop structures in both FinP and traJ RNAs; however, the mechanism by which FinO facilitates sense-antisense pairing is poorly understood. Here we show that FinO acts as an RNA chaperone to promote strand exchange and duplexing between minimal RNA targets derived from FinP. This strongly suggests that FinO may function to destabilize internal secondary structures within FinP and traJ RNAs that would otherwise act as a kinetic trap to sense-antisense pairing. The energy for FinO-catalyzed base-pair destabilization does not arise from ATP hydrolysis but appears to be supplied directly from FinO RNA binding free energy. An analysis of the activities of mutants that are specifically deficient in strand exchange but not RNA-binding activity demonstrates that strand exchange is essential to the ability of FinO to mediate sense-antisense RNA recognition, and that this function also plays a role in repression of conjugation in vivo.
Collapse
Affiliation(s)
- David C Arthur
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2H7
| | | | | | | | | | | |
Collapse
|
15
|
Shannon TE, James CBL. Protein kinase C inhibits formation of va gene transcription initiation complex. In Vitro Cell Dev Biol Anim 2004; 39:460-7. [PMID: 14746504 DOI: 10.1290/1543-706x(2003)039<0460:pkcifo>2.0.co;2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Activation of protein kinase c (PKC) reduces transcription from the polymerase III (pol III)-transcribed adenovirus VA gene. Data presented here support a role for PKC in disrupting the formation of transcription-competent initiation complexes. The study used the plasmids VA and VA/EL (VA gene with a linker to distinguish its transcript from that of the VA gene) in in vitro assays to show that preincubation of either template for a minimum of 10 min before the activation of PKC did not result in PKC-induced repression of transcription. In contrast, under the same conditions, efficient transcription occurs from a preincubated template but not from a second template if it is added during or after the activation of PKC. Simultaneous preincubation of both VA and VA/EL resulted in efficient transcription from both templates. Rescue experiments confirm that PKC modifies a target within transcription factor B (TFIIIB) because phosphocellulose fractionation of whole-cell extracts that yield partially purified pol III transcription factor, TFIIIB, successfully rescues VA transcription from PKC-induced repression. Subsequent studies confirmed that the TATA box-binding protein (TBP), a constituent of TFIIIB, substituted for the crude preparation of TFIIIB. These data support a conclusion that activation of PKC triggers a cascade that likely involves the sequestration or degradation of TBP, resulting in the disruption of the steps that leads to successful pol III transcription initiation.
Collapse
Affiliation(s)
- Timothy E Shannon
- Department of Biology, Francis Marion University, Florence, South Carolina 29501, USA
| | | |
Collapse
|
16
|
Moir RD, Willis IM. Tetratricopeptide repeats of Tfc4 and a limiting step in the assembly of the initiation factor TFIIIB. ADVANCES IN PROTEIN CHEMISTRY 2004; 67:93-121. [PMID: 14969725 DOI: 10.1016/s0065-3233(04)67004-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Robyn D Moir
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | |
Collapse
|
17
|
Fairley JA, Scott PH, White RJ. TFIIIB is phosphorylated, disrupted and selectively released from tRNA promoters during mitosis in vivo. EMBO J 2003; 22:5841-50. [PMID: 14592981 PMCID: PMC275401 DOI: 10.1093/emboj/cdg544] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Mitosis involves a generalized repression of gene expression. In the case of RNA polymerase III transcription, this is due to phosphorylation-mediated inactivation of TFIIIB, an essential complex comprising the TATA-binding protein TBP and the TAF subunits Brf1 and Bdp1. In HeLa cells, this repression is mediated by a mitotic kinase other than cdc2-cyclin B and is antagonized by protein phosphatase 2A. Brf1 is hyperphosphorylated in metaphase-arrested cells, but remains associated with promoters in condensed chromosomes, along with TBP. In contrast, Bdp1 is selectively released. Repression can be reversed by raising the concentration of Brf1 or Bdp1. The data support a model in which hyperphosphorylation disrupts TFIIIB during mitosis, compromising its ability to support transcription.
Collapse
Affiliation(s)
- Jennifer A Fairley
- Institute of Biomedical and Life Sciences, Division of Biochemistry and Molecular Biology, Davidson Building, University of Glasgow, Glasgow G12 8QQ, UK
| | | | | |
Collapse
|
18
|
Zhao X, Herr W. Role of the inhibitory DNA-binding surface of human TATA-binding protein in recruitment of human TFIIB family members. Mol Cell Biol 2003; 23:8152-60. [PMID: 14585974 PMCID: PMC262358 DOI: 10.1128/mcb.23.22.8152-8160.2003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
TATA box recognition by TATA-binding protein (TBP) is a key step in transcriptional initiation complex assembly on TATA-box-containing RNA polymerase (Pol) II and III promoters. This process is inhibited by the inhibitory DNA-binding (IDB) surface on the human TBP core domain (TBP(CORE)) and is stimulated by promoter-specific basal transcription factors, such as two human TFIIB family members, the Pol II factor TFIIB and the Pol III factor Brf2, which is required for transcription from TATA-box-containing Pol III promoters. In contrast, the third TFIIB family member, Brf1, which is required for transcription from TATA-less Pol III promoters, does not stimulate TBP binding to the TATA box. We show here that in addition to its role in regulating TBP binding to a TATA box, the TBP IDB surface is unexpectedly involved in TBP association with all three TFIIB family members. Interestingly, the loss of IDB function has specific and diverse effects on each TFIIB family member. Indeed, the IDB and prototypical TFIIB contact surfaces of TBP, which lie on opposite sides of the TBP(CORE), cooperate to form the wild-type TFIIB-TBP-TATA box complex. These results reveal how, through differential usage of opposite surfaces of the TBP(CORE), TBP can achieve versatility in the assembly of Pol II and Pol III promoter complexes with TFIIB family proteins.
Collapse
Affiliation(s)
- Xuemei Zhao
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | | |
Collapse
|
19
|
Schröder O, Bryant GO, Geiduschek EP, Berk AJ, Kassavetis GA. A common site on TBP for transcription by RNA polymerases II and III. EMBO J 2003; 22:5115-24. [PMID: 14517249 PMCID: PMC204460 DOI: 10.1093/emboj/cdg476] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The TATA-binding protein (TBP) is involved in all nuclear transcription. We show that a common site on TBP is used for transcription initiation complex formation by RNA polymerases (pols) II and III. TBP, the transcription factor IIB (TFIIB)-related factor Brf1 and the pol III-specific factor Bdp1 constitute TFIIIB. A photochemical cross-linking approach was used to survey a collection of human TBP surface residue mutants for their ability to form TFIIIB-DNA complexes reliant on only the TFIIB-related part of Brf1. Mutations impairing complex formation and transcription were identified and mapped on the surface of TBP. The most severe effects were observed for mutations in the C-terminal stirrup of TBP, which is the principal site of interaction between TBP and TFIIB. Structural modeling of the Brf1-TBP complex and comparison with its TFIIB-TBP analog further rationalizes the close resemblance of the TBP interaction with the N-proximal part of Brf1 and TFIIB, and establishes the conserved usage of a TBP surface in pol II and pol III transcription for a conserved function in the initiation of transcription.
Collapse
Affiliation(s)
- Oliver Schröder
- Division of Biological Sciences, Center for Molecular Genetics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0634, USA.
| | | | | | | | | |
Collapse
|
20
|
Martinez MJ, Sprague KU. Cloning of a putative Bombyx mori TFIIB-related factor (BRF). ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2003; 54:55-67. [PMID: 14518004 DOI: 10.1002/arch.10120] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
To identify the protein domains responsible for its conserved and specialized functions, putative TFIIB-Related Factor (BRF) from the silkworm (Bombyx mori) was compared with BRFs from other organisms. The Bombyx BRF coding region was assembled from three separate and overlapping cDNA fragments. Fragments encoding the middle portion and the 3' end were discovered in the Bombyx mori Genome Project "Silkbase" collection through sequence homology with human BRF1, and the fragment encoding the N-terminus was isolated in our laboratory using the 5' RACE method. Southern analysis showed that silkworm BRF is encoded by a single-copy gene. Bombyx BRF contains the following domains that have been noted in all other BRFs, and that are likely, therefore, to provide highly conserved functions: a zinc finger domain, an imperfect repeat, three "BRF Homology" domains, and an acidic domain at the C-terminus. As expected from the evolutionary relationships among insects and mammals, Bombyx BRF is more similar overall to Drosophila BRF (55% identical) than to human BRF1 (42% identical). Detailed examination of individual domains reveals a remarkable exception, however. Domain II of Bombyx BRF is more similar to its human counterpart than to Drosophila Domain II. This result indicates that Domain II has undergone unusual divergence in Drosophila, and suggests a structural basis for Drosophila BRF's unique pattern of interaction with other transcription factors.
Collapse
Affiliation(s)
- M Juanita Martinez
- Department of Chemistry, University of Oregon, Eugene, Oregon 97403-1229, USA
| | | |
Collapse
|
21
|
Hinkley CS, Hirsch HA, Gu L, LaMere B, Henry RW. The small nuclear RNA-activating protein 190 Myb DNA binding domain stimulates TATA box-binding protein-TATA box recognition. J Biol Chem 2003; 278:18649-57. [PMID: 12621023 DOI: 10.1074/jbc.m204247200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human U6 small nuclear RNA (snRNA) gene transcription by RNA polymerase III requires cooperative promoter binding involving the snRNA-activating protein complex (SNAP(c)) and the TATA-box binding protein (TBP). To investigate the role of SNAP(c) for TBP function at U6 promoters, TBP recruitment assays were performed using full-length TBP and a mini-SNAP(c) containing SNAP43, SNAP50, and a truncated SNAP190. Mini-SNAP(c) efficiently recruits TBP to the U6 TATA box, and two SNAP(c) subunits, SNAP43 and SNAP190, directly interact with the TBP DNA binding domain. Truncated SNAP190 containing only the Myb DNA binding domain is sufficient for TBP recruitment to the TATA box. Therefore, the SNAP190 Myb domain functions both to specifically recognize the proximal sequence element present in the core promoters of human snRNA genes and to stimulate TBP recognition of the neighboring TATA box present in human U6 snRNA promoters. The SNAP190 Myb domain also stimulates complex assembly with TBP and Brf2, a subunit of a snRNA-specific TFIIIB complex. Thus, interactions between the DNA binding domains of SNAP190 and TBP at juxtaposed promoter elements define the assembly of a RNA polymerase III-specific preinitiation complex.
Collapse
Affiliation(s)
- Craig S Hinkley
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, USA
| | | | | | | | | |
Collapse
|
22
|
Felton-Edkins ZA, Fairley JA, Graham EL, Johnston IM, White RJ, Scott PH. The mitogen-activated protein (MAP) kinase ERK induces tRNA synthesis by phosphorylating TFIIIB. EMBO J 2003; 22:2422-32. [PMID: 12743036 PMCID: PMC155998 DOI: 10.1093/emboj/cdg240] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2002] [Revised: 03/21/2003] [Accepted: 03/24/2003] [Indexed: 01/01/2023] Open
Abstract
RNA polymerase (pol) III transcription increases within minutes of serum addition to growth-arrested fibroblasts. We show that ERK mitogen-activated protein kinases regulate pol III output by directly binding and phosphorylating the BRF1 subunit of transcription factor TFIIIB. Blocking the ERK signalling cascade inhibits TFIIIB binding to pol III and to transcription factor TFIIIC2. Chromatin immunoprecipitation shows that the association of BRF1 and pol III with tRNA(Leu) genes in cells decreases when ERK is inactivated. Furthermore, mutation of an ERK docking domain or phosphoacceptor site in BRF1 prevents serum induction of pol III transcription. These data identify a novel target for ERK, and suggest that its ability to stimulate biosynthetic capacity and growth involves direct transcriptional activation of tRNA and 5S rRNA genes.
Collapse
Affiliation(s)
- Zoe A Felton-Edkins
- Institute of Biomedical and Life Sciences, Division of Biochemistry and Molecular Biology, Davidson Building, University of Glasgow, UK
| | | | | | | | | | | |
Collapse
|
23
|
Schmidt EE, Bondareva AA, Radke JR, Capecchi MR. Fundamental cellular processes do not require vertebrate-specific sequences within the TATA-binding protein. J Biol Chem 2003; 278:6168-74. [PMID: 12471023 DOI: 10.1074/jbc.m211205200] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The 180-amino acid core of the TATA-binding protein (TBPcore) is conserved from Archae bacteria to man. Vertebrate TBPs contain, in addition, a large and highly conserved N-terminal region that is not found in other phyla. We have generated a line of mice in which the tbp allele is replaced with a version, tbp(Delta N), which lacks 111 of 135 N-terminal amino acid residues. Most tbp(Delta N/Delta N) fetuses die in midgestation. To test whether a disruption of general cellular processes contributed to this fetal loss, primary fibroblast cultures were established from +/+, Delta N/+, and Delta N/Delta N fetuses. The cultures exhibited no genotype-dependent differences in proliferation or in expression of the proliferative markers dihydrofolate reductase (DHFR) mRNA (S phase-specific) and cdc25B mRNA (G(2)-specific). The mutation had no effect on transcription initiation site fidelity by either RNA polymerase II (pol II) or pol III. Moreover, the mutation did not cause differences in levels of U6 RNA, a pol III-dependent component of the splicing machinery, in mRNA splicing efficiency, in expression of housekeeping genes from either TATA-containing or TATA-less promoters, or in global gene expression. Our results indicated that general eukaryotic cell functions are unaffected by deletion of these vertebrate-specific sequences from TBP. Thus, all activities of this polypeptide domain must either be compensated for by redundant activities or be restricted to situations that are not represented by primary fibroblasts.
Collapse
Affiliation(s)
- Edward E Schmidt
- Department of Veterinary Molecular Biology, Marsh Laboratories, Montana State University, Bozeman, Montana 59717, USA.
| | | | | | | |
Collapse
|
24
|
Zhao X, Schramm L, Hernandez N, Herr W. A shared surface of TBP directs RNA polymerase II and III transcription via association with different TFIIB family members. Mol Cell 2003; 11:151-61. [PMID: 12535529 DOI: 10.1016/s1097-2765(02)00797-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The TATA box binding protein TBP is highly conserved and the only known basal factor that is involved in transcription by all three eukaryotic nuclear RNA polymerases from promoters with or without a TATA box. By mutagenesis and analysis on a selected set of four model pol II and pol III TATA box-containing and TATA-less promoters, we demonstrate that human TBP utilizes two modes to achieve its versatile functions. First, it uses a different set of surfaces on the conserved and structured TBP core domain to direct transcription from each of the four model promoters. Second, unlike yeast TBP, human TBP can use a shared surface to interact with two different TFIIB family members--TFIIB and Brf2--to initiate transcription by different RNA polymerases.
Collapse
Affiliation(s)
- Xuemei Zhao
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | | | | | | |
Collapse
|
25
|
Ma B, Hernandez N. Redundant cooperative interactions for assembly of a human U6 transcription initiation complex. Mol Cell Biol 2002; 22:8067-78. [PMID: 12391172 PMCID: PMC134731 DOI: 10.1128/mcb.22.22.8067-8078.2002] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The core human U6 promoter consists of a proximal sequence element (PSE) located upstream of a TATA box. The PSE is recognized by the snRNA-activating protein complex (SNAP(c)), which consists of five types of subunits, SNAP190, SNAP50, SNAP45, SNAP43, and SNAP19. The TATA box is recognized by TATA box binding protein (TBP). In addition, basal U6 transcription requires the SANT domain protein Bdp1 and the transcription factor IIB-related factor Brf2. SNAP(c) and mini-SNAP(c), which consists of just SNAP43, SNAP50, and the N-terminal third of SNAP190, bind cooperatively with TBP to the core U6 promoter. By generating complexes smaller than mini-SNAP(c), we have identified a 50-amino-acid region within SNAP190 that is (i) required for cooperative binding with TBP in the context of mini-SNAP(c) and (ii) sufficient for cooperative binding with TBP when fused to a heterologous DNA binding domain. We show that derivatives of mini-SNAP(c) lacking this region are active for transcription and that with such complexes, TBP can still be recruited to the U6 promoter through cooperative interactions with Brf2. Our results identify complexes smaller than mini-SNAP(c) that are transcriptionally active and show that there are at least two redundant mechanisms to stably recruit TBP to the U6 transcription initiation complex.
Collapse
Affiliation(s)
- Beicong Ma
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | | |
Collapse
|
26
|
Affiliation(s)
- Laura Schramm
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | | |
Collapse
|
27
|
Cabart P, Murphy S. Assembly of human small nuclear RNA gene-specific transcription factor IIIB complex de novo on and off promoter. J Biol Chem 2002; 277:26831-8. [PMID: 12016223 DOI: 10.1074/jbc.m203119200] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In humans, transcription factor IIIB (TFIIIB)-alpha governs basal transcription from small nuclear RNA genes by RNA polymerase III (pol III). One of the components of this complex, BRFU/TFIIIB50, is specific for these promoters, whereas TATA-binding protein (TBP) and hB" are required for pol III transcription from both gene external and internal promoters. We show that hB" is specifically recruited to a promoter-bound TBP.BRFU complex, which we have previously demonstrated as forming on TATA-containing templates. The N-terminal region of BRFU, containing a zinc ribbon domain, acts as a damper of hB" binding. TBP deactivates this negative mechanism through protein-protein contacts with both BRFU and hB", which may then promote their cooperative binding to form TFIIIB-alpha. In addition, we have identified a GC-rich sequence downstream from the TATA box (the BURE) which, depending on the strength of TATA box, can either enhance BRFU binding to the TBP.DNA complex or hB" association with the BRFU.TBP.DNA complex, and subsequently stimulate pol III transcription. Moreover, mutation of the BURE reduces pol III transcription and induces transcription by RNA polymerase II from the U2 gene promoter carrying a minimal TATA box.
Collapse
Affiliation(s)
- Pavel Cabart
- Chemical Pathology Unit, Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, United Kingdom.
| | | |
Collapse
|
28
|
Ishiguro A, Kassavetis GA, Geiduschek EP. Essential roles of Bdp1, a subunit of RNA polymerase III initiation factor TFIIIB, in transcription and tRNA processing. Mol Cell Biol 2002; 22:3264-75. [PMID: 11971960 PMCID: PMC133792 DOI: 10.1128/mcb.22.10.3264-3275.2002] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The essential Saccharomyces cerevisiae gene BDP1 encodes a subunit of RNA polymerase III (Pol III) transcription factor (TFIIIB); TATA box binding protein (TBP) and Brf1 are the other subunits of this three-protein complex. Deletion analysis defined three segments of Bdp1 that are essential for viability. A central segment, comprising amino acids 327 to 353, was found to be dispensable, and cells making Bdp1 that was split within this segment, at amino acid 352, are viable. Suppression of bdp1 conditional viability by overexpressing SPT15 and BRF1 identified functional interactions of specific Bdp1 segments with TBP and Brf1, respectively. A Bdp1 deletion near essential segment I was synthetically lethal with overexpression of PCF1-1, a dominant gain-of-function mutation in the second tetracopeptide repeat motif (out of 11) of the Tfc4 (tau(131)) subunit of TFIIIC. The analysis also identifies a connection between Bdp1 and posttranscriptional processing of Pol III transcripts. Yeast genomic library screening identified RPR1 as the specific overexpression suppressor of very slow growth at 37 degrees C due to deletion of Bdp1 amino acids 253 to 269. RPR1 RNA, a Pol III transcript, is the RNA subunit of RNase P, which trims pre-tRNA transcript 5' ends. Maturation of tRNA was found to be aberrant in bdp1-Delta 253-269 cells, and RPR1 transcription with the highly resolved Pol III transcription system in vitro was also diminished when recombinant Bdp1 Delta 253-269 replaced wild-type Bdp1. Physical interaction of RNase P with Bdp1 was demonstrated by coimmunoprecipitation and pull-down assays.
Collapse
Affiliation(s)
- Akira Ishiguro
- Division of Biology and Center for Molecular Genetics, University of California, San Diego, La Jolla, California 92093-0634, USA.
| | | | | |
Collapse
|
29
|
Meissner W, Thomae R, Seifart KH. The activity of transcription factor IIIC1 is impaired during differentiation of F9 cells. J Biol Chem 2002; 277:7148-56. [PMID: 11741993 DOI: 10.1074/jbc.m108721200] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Differentiation in vitro of mouse F9 embryonal carcinoma (EC) cells to the parietal endoderm (PE) mimics processes of development of the early mouse embryo. This differentiation is accompanied by a dramatic down-regulation of all genes transcribed by RNA polymerase III (pol III). Complementation of extracts from cells, differentiated for various time periods with purified pol III transcription factors show for the first time that TFIIIC1 can substantially restore this impaired transcription, particularly in the early stages of differentiation. At later stages (day 7) the TBP (TATA-binding protein )-TAF complex, TFIIIBbeta, may also become limiting, which can contribute to but cannot account for the reduced transcription of type 2 promoters in PE cells. Because TFIIIBbeta is not required for the expression of type 3 promoters, other components must necessarily be involved, and our results show that U6 transcription can significantly be reactivated by TFIIIC1. By employing a variant type 3 promoter construct, which essentially requires a mutant form of TBP (TBP-DR2), we show that TBP is not limiting in PE extracts. The partial purification of pol III transcription factors from PE and EC cells revealed that TFIIIC2 activity could be purified from both cell types, whereas TFIIIC1 activity was dramatically reduced in extracts from PE cells.
Collapse
Affiliation(s)
- Wolfgang Meissner
- Institut für Molekularbiologie und Tumorforschung, Philipps Universität Marburg, Lahnstrasse 3, D-35037 Marburg, Germany.
| | | | | |
Collapse
|
30
|
Chen D, Hinkley CS, Henry RW, Huang S. TBP dynamics in living human cells: constitutive association of TBP with mitotic chromosomes. Mol Biol Cell 2002; 13:276-84. [PMID: 11809839 PMCID: PMC65088 DOI: 10.1091/mbc.01-10-0523] [Citation(s) in RCA: 124] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The recruitment of TATA binding protein (TBP) to gene promoters is a critical rate-limiting step in transcriptional regulation for all three eukaryotic RNA polymerases. However, little is known regarding the dynamics of TBP in live mammalian cells. In this report, we examined the distribution and dynamic behavior of green fluorescence protein (GFP)-tagged TBP in live HeLa cells using fluorescence recovery after photobleaching (FRAP) analyses. We observed that GFP-TBP associates with condensed chromosomes throughout mitosis without any FRAP. These results suggest that TBP stably associates with the condensed chromosomes during mitosis. In addition, endogenous TBP and TBP-associated factors (TAFs), specific for RNA polymerase II and III transcription, cofractionated with mitotic chromatin, suggesting that TBP is retained as a TBP-TAF complex on transcriptionally silent chromatin throughout mitosis. In interphase cells, GFP-TBP distributes throughout the nucleoplasm and shows a FRAP that is 100-fold slower than the general transcription factor GFP-TFIIB. This difference supports the idea that TBP and, most likely, TBP-TAF complexes, remain promoter- bound for multiple rounds of transcription. Altogether, our observations demonstrate that there are cell cycle specific characteristics in the dynamic behavior of TBP. We propose a novel model in which the association of TBP-TAF complexes with chromatin during mitosis marks genes for rapid transcriptional activation as cells emerge from mitosis.
Collapse
Affiliation(s)
- Danyang Chen
- Department of Cell and Molecular Biology, Northwestern University Medical School, Chicago, IL 60611, USA
| | | | | | | |
Collapse
|
31
|
Cabart P, Murphy S. BRFU, a TFIIB-like factor, is directly recruited to the TATA-box of polymerase III small nuclear RNA gene promoters through its interaction with TATA-binding protein. J Biol Chem 2001; 276:43056-64. [PMID: 11564744 DOI: 10.1074/jbc.m108515200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The human snRNA genes transcribed by RNA polymerase II (pol II) and III (pol III) have different core promoter elements. Both gene types contain similar proximal sequence elements (PSEs) but differ in the absence (pol II) or presence (pol III) of a TATA-box, which, together with the PSE, determines the assembly of a pol III-specific pre-initiation complex. BRFU is a factor exclusively required for transcription of the pol III-type snRNA genes. We report that recruitment of BRFU to the TATA-box of these promoters is TATA-binding protein (TBP)-dependent. BRFU in turn stabilizes TBP on TATA-containing template and extends the TBP footprint both upstream and downstream of the TATA element. The core domain of TBP is sufficient for BRFU.TBP.DNA complex formation and for interaction with BRFU off the template. We have mapped amino acid residues within TBP and domains of BRFU that mediate this interaction. BRFU has no specificity for sequences flanking the TATA-box and also forms a stable complex on the TATA-box of the pol II-specific adenovirus major late promoter (AdMLP). Furthermore, pol III-type transcription can initiate from an snRNA gene promoter containing an AdMLP TATA-box and flanking sequences. Therefore, the polymerase recruitment is not simply determined by the sequence of the TATA-box and immediate flanking sequences.
Collapse
Affiliation(s)
- P Cabart
- Chemical Pathology Unit, Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom
| | | |
Collapse
|
32
|
Hamada M, Huang Y, Lowe TM, Maraia RJ. Widespread use of TATA elements in the core promoters for RNA polymerases III, II, and I in fission yeast. Mol Cell Biol 2001; 21:6870-81. [PMID: 11564871 PMCID: PMC99864 DOI: 10.1128/mcb.21.20.6870-6881.2001] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In addition to directing transcription initiation, core promoters integrate input from distal regulatory elements. Except for rare exceptions, it has been generally found that eukaryotic tRNA and rRNA genes do not contain TATA promoter elements and instead use protein-protein interactions to bring the TATA-binding protein (TBP), to the core promoter. Genomewide analysis revealed TATA elements in the core promoters of tRNA and 5S rRNA (Pol III), U1 to U5 snRNA (Pol II), and 37S rRNA (Pol I) genes in Schizosaccharomyces pombe. Using tRNA-dependent suppression and other in vivo assays, as well as in vitro transcription, we demonstrated an obligatory requirement for upstream TATA elements for tRNA and 5S rRNA expression in S. pombe. The Pol III initiation factor Brf is found in complexes with TFIIIC and Pol III in S. pombe, while TBP is not, consistent with independent recruitment of TBP by TATA. Template commitment assays are consistent with this and confirm that the mechanisms of transcription complex assembly and initiation by Pol III in S. pombe differ substantially from those in other model organisms. The results were extended to large-rRNA synthesis, as mutation of the TATA element in the Pol I promoter also abolishes rRNA expression in fission yeast. A survey of other organisms' genomes reveals that a substantial number of eukaryotes may use widespread TATAs for transcription. These results indicate the presence of TATA-unified transcription systems in contemporary eukaryotes and provide insight into the residual need for TBP by all three Pols in other eukaryotes despite a lack of TATA elements in their promoters.
Collapse
MESH Headings
- Amino Acid Motifs
- Amino Acid Sequence
- Base Sequence
- Conserved Sequence
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Evolution, Molecular
- Genome, Fungal
- Immunoblotting
- Molecular Sequence Data
- Promoter Regions, Genetic
- RNA Polymerase I/genetics
- RNA Polymerase I/metabolism
- RNA Polymerase II/genetics
- RNA Polymerase II/metabolism
- RNA Polymerase III/genetics
- RNA Polymerase III/metabolism
- RNA, Ribosomal/metabolism
- RNA, Ribosomal, 5S/genetics
- RNA, Transfer/metabolism
- Schizosaccharomyces/metabolism
- Sequence Homology, Amino Acid
- Sequence Homology, Nucleic Acid
- TATA-Box Binding Protein
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Transcription, Genetic
Collapse
Affiliation(s)
- M Hamada
- Laboratory of Molecular Growth Regulation, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892-2753, USA
| | | | | | | |
Collapse
|
33
|
Hernandez N. Small nuclear RNA genes: a model system to study fundamental mechanisms of transcription. J Biol Chem 2001; 276:26733-6. [PMID: 11390411 DOI: 10.1074/jbc.r100032200] [Citation(s) in RCA: 179] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- N Hernandez
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| |
Collapse
|
34
|
Affiliation(s)
- E P Geiduschek
- Division of Biology and Center for Molecular Genetics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0634, USA.
| | | |
Collapse
|
35
|
Eichhorn K, Jackson SP. A role for TAF3B2 in the repression of human RNA polymerase III transcription in nonproliferating cells. J Biol Chem 2001; 276:21158-65. [PMID: 11283026 DOI: 10.1074/jbc.m102295200] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
RNA polymerase III (Pol III) synthesizes various small RNA species, including the tRNAs and the 5 S ribosomal RNA, which are involved in protein synthesis. Here, we describe the regulation of human Pol III transcription in response to sustained cell cycle arrest. The experimental system used is a cell line in which cell cycle arrest is induced by the regulated expression of the tumor suppressor protein p53. We show that the capacity of cells to carry out Pol III transcription from various promoter types, when tested in vitro, is severely reduced in response to sustained p53-mediated cell cycle arrest. Furthermore, this effect does not appear to be due to direct inhibition by p53. By using complementation assays, we demonstrate that a subcomponent of the Pol III transcription factor IIIB, which contains the proteins TATA-binding protein and TAF3B2, is the target of repression. Moreover, we reveal that TAF3B2 levels are markedly reduced in extracts from cell cycle-arrested cells because of a decrease in TAF3B2 protein stability. These findings provide a novel mechanism of Pol III regulation and yield insights into how cellular biosynthetic capacity and growth status can be coordinated.
Collapse
Affiliation(s)
- K Eichhorn
- Wellcome Trust and Cancer Research Campaign Institute of Cancer and Developmental Biology and the Department of Zoology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, United Kingdom
| | | |
Collapse
|
36
|
Chong SS, Hu P, Hernandez N. Reconstitution of transcription from the human U6 small nuclear RNA promoter with eight recombinant polypeptides and a partially purified RNA polymerase III complex. J Biol Chem 2001; 276:20727-34. [PMID: 11279001 DOI: 10.1074/jbc.m100088200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The human U6 small nuclear (sn) RNA core promoter consists of a proximal sequence element, which recruits the multisubunit factor SNAP(c), and a TATA box, which recruits the TATA box-binding protein, TBP. In addition to SNAP(c) and TBP, transcription from the human U6 promoter requires two well defined factors. The first is hB", a human homologue of the B" subunit of yeast TFIIIB generally required for transcription of RNA polymerase III genes, and the second is hBRFU, one of two human homologues of the yeast TFIIIB subunit BRF specifically required for transcription of U6-type RNA polymerase III promoters. Here, we have partially purified and characterized a RNA polymerase III complex that can direct transcription from the human U6 promoter when combined with recombinant SNAP(c), recombinant TBP, recombinant hB", and recombinant hBRFU. These results open the way to reconstitution of U6 transcription from entirely defined components.
Collapse
Affiliation(s)
- S S Chong
- Department of Microbiology and Graduate Program of Molecular and Cellular Biology, State University of New York at Stony Brook, Stony Brook, New York 11794, USA
| | | | | |
Collapse
|
37
|
Teichmann M, Wang Z, Roeder RG. A stable complex of a novel transcription factor IIB- related factor, human TFIIIB50, and associated proteins mediate selective transcription by RNA polymerase III of genes with upstream promoter elements. Proc Natl Acad Sci U S A 2000; 97:14200-5. [PMID: 11121026 PMCID: PMC18895 DOI: 10.1073/pnas.97.26.14200] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Transcription factor IIIB (TFIIIB) is directly involved in transcription initiation by RNA polymerase III in eukaryotes. Yeast contain a single TFIIIB activity that is comprised of the TATA-binding protein (TBP), TFIIB-related factor 1 (BRF1), and TFIIIB", whereas two distinct TFIIIB activities, TFIIIB-alpha and TFIIIB-beta, have been described in human cells. Human TFIIIB-beta is required for transcription of genes with internal promoter elements, and contains TBP, a TFIIIB" homologue (TFIIIB150), and a BRF1 homologue (TFIIIB90), whereas TFIIIB-alpha is required for transcription of genes with promoter elements upstream of the initiation site. Here we describe the identification, cloning, and characterization of TFIIIB50, a novel homologue of TFIIB and TFIIIB90. TFIIIB50 and tightly associated factors, along with TBP and TFIIIB150, reconstitute human TFIIIB-alpha activity. Thus, higher eukaryotes, in contrast to the yeast Saccharomyces cerevisiae, have evolved two distinct TFIIB-related factors that mediate promoter selectivity by RNA polymerase III.
Collapse
Affiliation(s)
- M Teichmann
- Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, 1230 York Avenue, New York, NY 10021, USA
| | | | | |
Collapse
|
38
|
Sutcliffe JE, Brown TR, Allison SJ, Scott PH, White RJ. Retinoblastoma protein disrupts interactions required for RNA polymerase III transcription. Mol Cell Biol 2000; 20:9192-202. [PMID: 11094071 PMCID: PMC102177 DOI: 10.1128/mcb.20.24.9192-9202.2000] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2000] [Accepted: 09/07/2000] [Indexed: 12/28/2022] Open
Abstract
The retinoblastoma protein (RB) has been shown to suppress RNA polymerase (Pol) III transcription in vivo (R. J. White, D. Trouche, K. Martin, S. P. Jackson, and T. Kouzarides, Nature 382:88-90, 1996). This regulation involves interaction with TFIIIB, a multisubunit factor that is required for the expression of all Pol III templates (C. G. C. Larminie, C. A. Cairns, R. Mital, K. Martin, T. Kouzarides, S. P. Jackson, and R. J. White, EMBO J. 16:2061-2071, 1997; W.-M. Chu, Z. Wang, R. G. Roeder, and C. W. Schmid, J. Biol. Chem. 272:14755-14761, 1997). However, it has not been established why RB binding to TFIIIB results in transcriptional repression. For several Pol II-transcribed genes, RB has been shown to inhibit expression by recruiting histone deacetylases, which are thought to decrease promoter accessibility. We present evidence that histone deacetylases exert a negative effect on Pol III activity in vivo. However, RB remains able to regulate Pol III transcription in the presence of the histone deacetylase inhibitor trichostatin A. Instead, RB represses by disrupting interactions between TFIIIB and other components of the basal Pol III transcription apparatus. Recruitment of TFIIIB to most class III genes requires its binding to TFIIIC2, but this can be blocked by RB. In addition, RB disrupts the interaction between TFIIIB and Pol III that is essential for transcription. The ability of RB to inhibit these key interactions can explain its action as a potent repressor of class III gene expression.
Collapse
Affiliation(s)
- J E Sutcliffe
- Institute of Biomedical and Life Sciences, Division of Biochemistry and Molecular Biology, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | | | | | | | | |
Collapse
|
39
|
Hirsch HA, Gu L, Henry RW. The retinoblastoma tumor suppressor protein targets distinct general transcription factors to regulate RNA polymerase III gene expression. Mol Cell Biol 2000; 20:9182-91. [PMID: 11094070 PMCID: PMC102176 DOI: 10.1128/mcb.20.24.9182-9191.2000] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The retinoblastoma protein (RB) represses RNA polymerase III transcription effectively both in vivo and in vitro. Here we demonstrate that the general transcription factors snRNA-activating protein complex (SNAP(c)) and TATA binding protein (TBP) are important for RB repression of human U6 snRNA gene transcription by RNA polymerase III. RB is associated with SNAP(c) as detected by both coimmunoprecipitation of endogenous RB with SNAP(c) and cofractionation of RB and SNAP(c) during chromatographic purification. RB also interacts with two SNAP(c) subunits, SNAP43 and SNAP50. TBP or a combination of TBP and SNAP(c) restores efficient U6 transcription from RB-treated extracts, indicating that TBP is also involved in RB regulation. In contrast, the TBP-containing complex TFIIIB restores adenovirus VAI but not human U6 transcription in RB-treated extracts, suggesting that TFIIIB is important for RB regulation of tRNA-like genes. These results suggest that different classes of RNA polymerase III-transcribed genes have distinct general transcription factor requirements for repression by RB.
Collapse
MESH Headings
- Adenoviruses, Human
- Autoradiography
- Cell Extracts
- Cell Nucleus/metabolism
- Chromatography
- Cloning, Molecular
- Electrophoresis, Polyacrylamide Gel
- HeLa Cells
- Humans
- Models, Genetic
- Precipitin Tests
- Promoter Regions, Genetic/genetics
- RNA Polymerase III/genetics
- RNA Polymerase III/metabolism
- RNA, Viral/genetics
- RNA, Viral/metabolism
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/metabolism
- Retinoblastoma Protein/genetics
- Retinoblastoma Protein/metabolism
- Ribonucleoprotein, U4-U6 Small Nuclear/genetics
- Ribonucleoprotein, U4-U6 Small Nuclear/metabolism
- TATA Box
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Transcription, Genetic/genetics
Collapse
Affiliation(s)
- H A Hirsch
- Cell and Molecular Biology Program, Michigan State University, East Lansing, Michigan 48824, USA
| | | | | |
Collapse
|
40
|
Schramm L, Pendergrast PS, Sun Y, Hernandez N. Different human TFIIIB activities direct RNA polymerase III transcription from TATA-containing and TATA-less promoters. Genes Dev 2000; 14:2650-63. [PMID: 11040218 PMCID: PMC316990 DOI: 10.1101/gad.836400] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Transcription initiation at RNA polymerase III promoters requires transcription factor IIIB (TFIIIB), an activity that binds to RNA polymerase III promoters, generally through protein-protein contacts with DNA binding factors, and directly recruits RNA polymerase III. Saccharomyces cerevisiae TFIIIB is a complex of three subunits, TBP, the TFIIB-related factor BRF, and the more loosely associated polypeptide beta("). Although human homologs for two of the TFIIIB subunits, the TATA box-binding protein TBP and the TFIIB-related factor BRF, have been characterized, a human homolog of yeast B(") has not been described. Moreover, human BRF, unlike yeast BRF, is not universally required for RNA polymerase III transcription. In particular, it is not involved in transcription from the small nuclear RNA (snRNA)-type, TATA-containing, RNA polymerase III promoters. Here, we characterize two novel activities, a human homolog of yeast B("), which is required for transcription of both TATA-less and snRNA-type RNA polymerase III promoters, and a factor equally related to human BRF and TFIIB, designated BRFU, which is specifically required for transcription of snRNA-type RNA polymerase III promoters. Together, these results contribute to the definition of the basal RNA polymerase III transcription machinery and show that two types of TFIIIB activities, with specificities for different classes of RNA polymerase III promoters, have evolved in human cells.
Collapse
Affiliation(s)
- L Schramm
- Department of Pharmacology, State University of New York at Stony Brook, Stony Brook, New York 11794, USA
| | | | | | | |
Collapse
|
41
|
McCulloch V, Hardin P, Peng W, Ruppert JM, Lobo-Ruppert SM. Alternatively spliced hBRF variants function at different RNA polymerase III promoters. EMBO J 2000; 19:4134-43. [PMID: 10921893 PMCID: PMC306597 DOI: 10.1093/emboj/19.15.4134] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In yeast, a single form of TFIIIB is required for transcription of all RNA polymerase III (pol III) genes. It consists of three subunits: the TATA box-binding protein (TBP), a TFIIB-related factor, BRF, and B". Human TFIIIB is not as well defined and human pol III promoters differ in their requirements for this activity. A human homolog of yeast BRF was shown to be required for transcription at the gene-internal 5S and VA1 promoters. Whether or not it was also involved in transcription from the gene-external human U6 promoter was unclear. We have isolated cDNAs encoding alternatively spliced forms of human BRF that can complex with TBP. Using immunopurified complexes containing the cloned hBRFs, we show that while hBRF1 functions at the 5S, VA1, 7SL and EBER2 promoters, a different variant, hBRF2, is required at the human U6 promoter. Thus, pol III utilizes different TFIIIB complexes at structurally distinct promoters.
Collapse
Affiliation(s)
- V McCulloch
- Department of Medical Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | | | | | | |
Collapse
|
42
|
Abstract
The task of transcribing nuclear genes is shared between three RNA polymerases in eukaryotes: RNA polymerase (pol) I synthesizes the large rRNA, pol II synthesizes mRNA and pol III synthesizes tRNA and 5S rRNA. Although pol II has received most attention, pol I and pol III are together responsible for the bulk of transcriptional activity. This survey will summarise what is known about the process of transcription by pol I and pol III, how it happens and the proteins involved. Attention will be drawn to the similarities between the three nuclear RNA polymerase systems and also to their differences.
Collapse
Affiliation(s)
- M R Paule
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA.
| | | |
Collapse
|
43
|
Ouyang C, Martinez MJ, Young LS, Sprague KU. TATA-Binding protein-TATA interaction is a key determinant of differential transcription of silkworm constitutive and silk gland-specific tRNA(Ala) genes. Mol Cell Biol 2000; 20:1329-43. [PMID: 10648619 PMCID: PMC85276 DOI: 10.1128/mcb.20.4.1329-1343.2000] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have investigated the contribution of specific TATA-binding protein (TBP)-TATA interactions to the promoter activity of a constitutively expressed silkworm tRNA(C)(Ala) gene and have also asked whether the lack of similar interactions accounts for the low promoter activity of a silk gland-specific tRNA(SG)(Ala) gene. We compared TBP binding, TFIIIB-promoter complex stability (measured by heparin resistance), and in vitro transcriptional activity in a series of mutant tRNA(C)(Ala) promoters and found that specific TBP-TATA contacts are important for TFIIIB-promoter interaction and for transcriptional activity. Although the wild-type tRNA(C)(Ala) promoter contains two functional TBP binding sequences that overlap, the tRNA(SG)(Ala) promoter lacks any TBP binding site in the corresponding region. This feature appears to account for the inefficiency of the tRNA(SG)(Ala) promoter since provision of either of the wild-type TATA sequences derived from the tRNA(C)(Ala) promoter confers robust transcriptional activity. Transcriptional impairment of the wild-type tRNA(SG)(Ala) gene is not due to reduced incorporation of TBP into transcription complexes since both the tRNA(C)(Ala) and tRNA(SG)(Ala) promoters form transcription complexes that contain the same amount of TBP. Thus, the deleterious consequences of the lack of appropriate TBP-TATA contacts in the tRNA(SG)(Ala) promoter must come from failure to incorporate some other essential transcription factor(s) or to stabilize the complete complex in an active conformation.
Collapse
Affiliation(s)
- C Ouyang
- Department of Physics, University of Oregon, Eugene, Oregon 97403, USA
| | | | | | | |
Collapse
|
44
|
Brown TRP, Scott PH, Stein T, Winter AG, White RJ. RNA polymerase III transcription: its control by tumor suppressors and its deregulation by transforming agents. Gene Expr 2000; 9:15-28. [PMID: 11097422 PMCID: PMC5964957 DOI: 10.3727/000000001783992713] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The level of RNA polymerase (pol) III transcription is tightly linked to the rate of growth; it is low in resting cells and increases following mitogenic stimulation. When mammalian cells begin to proliferate, maximal pol III activity is reached shortly before the G1/S transition; it then remains high throughout S and G2 phases. Recent data suggest that the retinoblastoma protein RB and its relatives p107 and p130 may be largely responsible for this pattern of expression. During G0 and early G1 phase, RB and p130 bind and repress the pol III-specific factor TFIIIB; shortly before S phase they dissociate from TFIIIB, allowing transcription to increase. At the end of interphase, when cells enter mitosis, pol III transcription is again suppressed; this mitotic repression is achieved through direct phosphorylation of TFIIIB. Thus, pol III transcription levels fluctuate as mammalian cells cycle, being high in S and G2 phases and low during mitosis and early G1. In addition to this cyclic regulation, TFIIIB can be bound and repressed by the tumor suppressor p53. Conversely, it is a target for activation by several viruses, including SV40, HBV, and HTLV-1. Some viruses also increase the activity of a second pol III-specific factor called TFIIIC. A large proportion of transformed and tumor cell types express abnormally high levels of pol III products. This may be explained, at least in part, by the very high frequency with which RB and p53 become inactivated during neoplastic transformation; loss of function of these cardinal tumor suppressors may release TFIIIB from key restraints that operate in normal cells.
Collapse
Affiliation(s)
- Timothy R. P. Brown
- Institute of Biomedical and Life Sciences, Division of Biochemistry and Molecular Biology, Davidson Building, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Pamela H. Scott
- Institute of Biomedical and Life Sciences, Division of Biochemistry and Molecular Biology, Davidson Building, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Torsten Stein
- Institute of Biomedical and Life Sciences, Division of Biochemistry and Molecular Biology, Davidson Building, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Andrew G. Winter
- Institute of Biomedical and Life Sciences, Division of Biochemistry and Molecular Biology, Davidson Building, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Robert J. White
- Institute of Biomedical and Life Sciences, Division of Biochemistry and Molecular Biology, Davidson Building, University of Glasgow, Glasgow, G12 8QQ, UK
| |
Collapse
|
45
|
Senatore B, Cafieri A, Di Marino I, Rosati M, Di Nocera PP, Grimaldi G. A variety of RNA polymerases II and III-dependent promoter classes is repressed by factors containing the Krüppel-associated/finger preceding box of zinc finger proteins. Gene X 1999; 234:381-94. [PMID: 10395912 DOI: 10.1016/s0378-1119(99)00182-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
KRAB/FPB (Krüppel-associated/finger preceding box) domains are small, portable transcriptional repression motifs, encoded by hundreds of vertebrates C2-H2-type zinc finger genes. We report that KRAB/FPB domains feature an unprecedented, highly promiscuous DNA-binding dependent transcriptional repressing activity. Indeed, template bound chimeric factors containing KRAB/FPB modules actively repress in vivo the transcription of distinct promoter classes that depend on different core elements, recruit distinct basal transcriptional apparatuses and are transcribed either by RNA polymerase II or III. The promoter types repressed in transient assays in a dose- and DNA-binding dependent, but position- and orientation-independent manner, by GAL4-KRAB/FPB fusions include an RNA polymerase II-dependent small nuclear RNA promoter (U1) as well as RNA polymerase III-dependent class 2 (adenovirus VA1), class 3 (human U6) and atypical (human 7SL) promoters. Down-modulation of all of these templates depended on factors containing the A module of the KRAB/FPB domain. Data provide further insights into the properties and mode of action of this widespread repression motif, and support the notion that genes belonging to distinct classes may be repressed in vivo by KRAB/FPB containing zinc finger proteins. The exquisitely DNA-binding dependent transcriptional promiscuity exhibited by KRAB/FPB domains may provide a unique model system for studying the mechanism by which a promoter recruited repression motif can down-modulate a large variety of promoter types.
Collapse
Affiliation(s)
- B Senatore
- International Institute of Genetics and Biophysics, CNR, Via Marconi 10, Naples, Italy
| | | | | | | | | | | |
Collapse
|
46
|
Hsieh YJ, Wang Z, Kovelman R, Roeder RG. Cloning and characterization of two evolutionarily conserved subunits (TFIIIC102 and TFIIIC63) of human TFIIIC and their involvement in functional interactions with TFIIIB and RNA polymerase III. Mol Cell Biol 1999; 19:4944-52. [PMID: 10373544 PMCID: PMC84305 DOI: 10.1128/mcb.19.7.4944] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human transcription factor IIIC (hTFIIIC) is a multisubunit complex that mediates transcription of class III genes through direct recognition of promoters (for tRNA and virus-associated RNA genes) or promoter-TFIIIA complexes (for the 5S RNA gene) and subsequent recruitment of TFIIIB and RNA polymerase III. We describe the cognate cDNA cloning and characterization of two subunits (hTFIIIC63 and hTFIIIC102) that are present within a DNA-binding subcomplex (TFIIIC2) of TFIIIC and are related in structure and function to two yeast TFIIIC subunits (yTFIIIC95 and yTFIIIC131) previously shown to interact, respectively, with the promoter (A box) and with a subunit of yeast TFIIIB. hTFIIIC63 and hTFIIIC102 show parallel in vitro interactions with the homologous human TFIIIB and RNA polymerase III components, as well as additional interactions that may facilitate both TFIIIB and RNA polymerase III recruitment. These include novel interactions of hTFIIIC63 with hTFIIIC102, with hTFIIIB90, and with hRPC62, in addition to the hTFIIIC102-hTFIIIB90 and hTFIIIB90-hRPC39 interactions that parallel the previously described interactions in yeast. As reported for yTFIIIC131, hTFIIIC102 contains acidic and basic regions, tetratricopeptide repeats (TPRs), and a helix-loop-helix domain, and mutagenesis studies have implicated the TPRs in interactions both with hTFIIIC63 and with hTFIIIB90. These observations further document conservation from yeast to human of the structure and function of the RNA polymerase III transcription machinery, but in addition, they provide new insights into the function of hTFIIIC and suggest direct involvement in recruitment of both TFIIIB and RNA polymerase III.
Collapse
Affiliation(s)
- Y J Hsieh
- Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, New York 10021, USA
| | | | | | | |
Collapse
|
47
|
Larminie CG, Sutcliffe JE, Tosh K, Winter AG, Felton-Edkins ZA, White RJ. Activation of RNA polymerase III transcription in cells transformed by simian virus 40. Mol Cell Biol 1999; 19:4927-34. [PMID: 10373542 PMCID: PMC84300 DOI: 10.1128/mcb.19.7.4927] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
RNA polymerase (Pol) III transcription is abnormally active in fibroblasts that have been transformed by simian virus 40 (SV40). This report presents evidence that two separate components of the general Pol III transcription apparatus, TFIIIB and TFIIIC2, are deregulated following SV40 transformation. TFIIIC2 subunits are expressed at abnormally high levels in SV40-transformed cells, an effect which is observed at both protein and mRNA levels. In untransformed fibroblasts, TFIIIB is subject to repression through association with the retinoblastoma protein RB. The interaction between RB and TFIIIB is compromised following SV40 transformation. Furthermore, the large T antigen of SV40 is shown to relieve repression by RB. The E7 oncoprotein of human papillomavirus can also activate Pol III transcription, an effect that is dependent on its ability to bind to RB. The data provide evidence that both TFIIIB and TFIIIC2 are targets for activation by DNA tumor viruses.
Collapse
MESH Headings
- 3T3 Cells
- Animals
- Antigens, Polyomavirus Transforming/genetics
- Antigens, Polyomavirus Transforming/metabolism
- Cell Extracts
- Cell Line, Transformed
- Cell Transformation, Viral
- Enzyme Activation
- Gene Expression
- Humans
- Mice
- Mice, Inbred BALB C
- Oncogene Proteins, Viral/genetics
- Oncogene Proteins, Viral/metabolism
- Papillomaviridae
- Papillomavirus E7 Proteins
- RNA Polymerase III/metabolism
- RNA, Messenger
- Retinoblastoma Protein/metabolism
- Simian virus 40/physiology
- Transcription Factor TFIIIB
- Transcription Factors/metabolism
- Transcription Factors, TFIII
- Transcription, Genetic
Collapse
Affiliation(s)
- C G Larminie
- Institute of Biomedical and Life Sciences, Division of Biochemistry and Molecular Biology, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | | | | | | | | | | |
Collapse
|
48
|
Henry RW, Ford E, Mital R, Mittal V, Hernandez N. Crossing the line between RNA polymerases: transcription of human snRNA genes by RNA polymerases II and III. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 1999; 63:111-20. [PMID: 10384275 DOI: 10.1101/sqb.1998.63.111] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- R W Henry
- Cold Spring Harbor Laboratory, New York 11724, USA
| | | | | | | | | |
Collapse
|
49
|
Kumar A, Grove A, Kassavetis GA, Geiduschek EP. Transcription factor IIIB: the architecture of its DNA complex, and its roles in initiation of transcription by RNA polymerase III. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 1999; 63:121-9. [PMID: 10384276 DOI: 10.1101/sqb.1998.63.121] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- A Kumar
- Department of Biology, University of California, San Diego, La Jolla 92093-0634, USA
| | | | | | | |
Collapse
|
50
|
Andrau JC, Sentenac A, Werner M. Mutagenesis of yeast TFIIIB70 reveals C-terminal residues critical for interaction with TBP and C34. J Mol Biol 1999; 288:511-20. [PMID: 10329159 DOI: 10.1006/jmbi.1999.2724] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The yeast TFIIIB transcription factor is composed of three components, TBP, TFIIIB90 or B", and TFIIIB70 or BRF. TFIIIB70 is a pivotal component since it interacts with TBP, TFIIIC and RNA polymerase III (pol III). In order to better understand the role of TFIIIB70, we mutagenized extensively three evolutionary conserved motifs of its pol III-specific C-terminal extension. Conditional mutations lying in conserved regions II and III were obtained, some of which altered the interaction with the C34 subunit of pol III and were co-lethal with rpc34 mutations. Two conditional mutations in region II impaired the interaction with TBP and were suppressed by its overexpression. The pattern of suppression of the strongest mutation by overexpression of various mutant TBP, suggested a contact between TBP-R220 and TFIIIB70-D464 residues in vivo. As expected, this TFIIIB70 mutation impaired the assembly of TFIIIB. TFIIIC.DNA complexes and affected in vitro transcription of the SUP4 tRNA gene. Our results underscore the important role of region II of TFIIIB70 in pre-initiation as well as transcription complex assembly via C34 and TBP binding.
Collapse
Affiliation(s)
- J C Andrau
- Service de Biochimie et Génétique Moléculaire, Bât. 142, CEA/Saclay, F-91191 Gif-sur-Yvette, CEDEX, France
| | | | | |
Collapse
|