1
|
Raja KKB, Yeung K, Li Y, Chen R, Mardon G. A single cell RNA sequence atlas of the early Drosophila larval eye. BMC Genomics 2024; 25:616. [PMID: 38890587 PMCID: PMC11186242 DOI: 10.1186/s12864-024-10423-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 05/16/2024] [Indexed: 06/20/2024] Open
Abstract
The Drosophila eye has been an important model to understand principles of differentiation, proliferation, apoptosis and tissue morphogenesis. However, a single cell RNA sequence resource that captures gene expression dynamics from the initiation of differentiation to the specification of different cell types in the larval eye disc is lacking. Here, we report transcriptomic data from 13,000 cells that cover six developmental stages of the larval eye. Our data show cell clusters that correspond to all major cell types present in the eye disc ranging from the initiation of the morphogenetic furrow to the differentiation of each photoreceptor cell type as well as early cone cells. We identify dozens of cell type-specific genes whose function in different aspects of eye development have not been reported. These single cell data will greatly aid research groups studying different aspects of early eye development and will facilitate a deeper understanding of the larval eye as a model system.
Collapse
Affiliation(s)
- Komal Kumar Bollepogu Raja
- Department of Pathology and Immunology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Kelvin Yeung
- Department of Pathology and Immunology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Yumei Li
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
- Human Genome Sequencing Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Rui Chen
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
- Human Genome Sequencing Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Graeme Mardon
- Department of Pathology and Immunology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.
| |
Collapse
|
2
|
Presser A, Freund O, Hassapelis T, Hunter G. Scabrous is distributed via signaling filopodia to modulate Notch response during bristle patterning in Drosophila. PLoS One 2023; 18:e0291409. [PMID: 37729137 PMCID: PMC10511103 DOI: 10.1371/journal.pone.0291409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 08/29/2023] [Indexed: 09/22/2023] Open
Abstract
During development, cells in tissues must be patterned correctly in order to support tissue function and shape. The sensory bristles of the peripheral nervous system on the thorax of Drosophila melanogaster self-organizes from a unpatterned epithelial tissue to a regular spot pattern during pupal stages. Wild type patterning requires Notch-mediated lateral inhibition. Scabrous is a protein that can bind to and modify Notch receptor activity. Scabrous can be secreted, but it is also known to be localized to basal signaling filopodia, or cytonemes, that play a role in long-range Notch signaling. Here we show that Scabrous is primarily distributed basally, within the range of signaling filopodia extension. We show that filamentous actin dynamics are required for the distribution of Scabrous protein during sensory bristle patterning stages. We show that the Notch response of epithelial cells is sensitive to the level of Scabrous protein being expressed by the sensory bristle precursor cell. Our findings at the cell-level suggest a model for how epithelial cells engaged in lateral inhibition at a distance are sensitive local levels of Scabrous protein.
Collapse
Affiliation(s)
- Adam Presser
- Department of Biology, Clarkson University, Potsdam, New York, United States of America
| | - Olivia Freund
- Department of Biology, Clarkson University, Potsdam, New York, United States of America
| | - Theodora Hassapelis
- Department of Biology, Clarkson University, Potsdam, New York, United States of America
| | - Ginger Hunter
- Department of Biology, Clarkson University, Potsdam, New York, United States of America
| |
Collapse
|
3
|
Warren J, Kumar JP. Patterning of the Drosophila retina by the morphogenetic furrow. Front Cell Dev Biol 2023; 11:1151348. [PMID: 37091979 PMCID: PMC10117938 DOI: 10.3389/fcell.2023.1151348] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 03/23/2023] [Indexed: 04/25/2023] Open
Abstract
Pattern formation is the process by which cells within a homogeneous epithelial sheet acquire distinctive fates depending upon their relative spatial position to each other. Several proposals, starting with Alan Turing's diffusion-reaction model, have been put forth over the last 70 years to describe how periodic patterns like those of vertebrate somites and skin hairs, mammalian molars, fish scales, and avian feather buds emerge during development. One of the best experimental systems for testing said models and identifying the gene regulatory networks that control pattern formation is the compound eye of the fruit fly, Drosophila melanogaster. Its cellular morphogenesis has been extensively studied for more than a century and hundreds of mutants that affect its development have been isolated. In this review we will focus on the morphogenetic furrow, a wave of differentiation that takes an initially homogeneous sheet of cells and converts it into an ordered array of unit eyes or ommatidia. Since the discovery of the furrow in 1976, positive and negative acting morphogens have been thought to be solely responsible for propagating the movement of the furrow across a motionless field of cells. However, a recent study has challenged this model and instead proposed that mechanical driven cell flow also contributes to retinal pattern formation. We will discuss both models and their impact on patterning.
Collapse
Affiliation(s)
| | - Justin P. Kumar
- Department of Biology, Indiana University, Bloomington, IN, United States
| |
Collapse
|
4
|
Gallagher KD, Mani M, Carthew RW. Emergence of a geometric pattern of cell fates from tissue-scale mechanics in the Drosophila eye. eLife 2022; 11:72806. [PMID: 35037852 PMCID: PMC8863370 DOI: 10.7554/elife.72806] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 01/15/2022] [Indexed: 12/02/2022] Open
Abstract
Pattern formation of biological structures involves the arrangement of different types of cells in an ordered spatial configuration. In this study, we investigate the mechanism of patterning the Drosophila eye epithelium into a precise triangular grid of photoreceptor clusters called ommatidia. Previous studies had led to a long-standing biochemical model whereby a reaction-diffusion process is templated by recently formed ommatidia to propagate a molecular prepattern across the eye. Here, we find that the templating mechanism is instead, mechanochemical in origin; newly born columns of differentiating ommatidia serve as a template to spatially pattern flows that move epithelial cells into position to form each new column of ommatidia. Cell flow is generated by a source and sink, corresponding to narrow zones of cell dilation and contraction respectively, that straddle the growing wavefront of ommatidia. The newly formed lattice grid of ommatidia cells are immobile, deflecting, and focusing the flow of other cells. Thus, the self-organization of a regular pattern of cell fates in an epithelium is mechanically driven.
Collapse
Affiliation(s)
- Kevin D Gallagher
- Department of Molecular Biosciences, Northwestern UniversityEvanstonUnited States,NSF Simons Center for Quantitative Biology, Northwestern UniversityEvanstonUnited States
| | - Madhav Mani
- Department of Molecular Biosciences, Northwestern UniversityEvanstonUnited States,NSF Simons Center for Quantitative Biology, Northwestern UniversityEvanstonUnited States,Department of Engineering Sciences and Applied Mathematics, Northwestern UniversityEvanstonUnited States
| | - Richard W Carthew
- Department of Molecular Biosciences, Northwestern UniversityEvanstonUnited States,NSF Simons Center for Quantitative Biology, Northwestern UniversityEvanstonUnited States
| |
Collapse
|
5
|
Abstract
Notch signalling is a well-conserved signalling pathway that regulates cell fate through cell-cell communication. A typical feature of Notch signalling is ‘lateral inhibition’, whereby two neighbouring cells of equivalent state of differentiation acquire different cell fates. Recently, mathematical and computational approaches have addressed the Notch dynamics in Drosophila neural development. Typical examples of lateral inhibition are observed in the specification of neural stem cells in the embryo and sensory organ precursors in the thorax. In eye disc development, Notch signalling cooperates with other signalling pathways to define the evenly spaced positioning of the photoreceptor cells. The interplay between Notch and epidermal growth factor receptor signalling regulates the timing of neural stem cell differentiation in the optic lobe. In this review, we summarize the theoretical studies that have been conducted to elucidate the Notch dynamics in these systems and discuss the advantages of combining mathematical models with biological experiments.
Collapse
Affiliation(s)
- Tetsuo Yasugi
- Mathematical Neuroscience Unit, Institute for Frontier Science Initiative, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Makoto Sato
- Mathematical Neuroscience Unit, Institute for Frontier Science Initiative, Kanazawa University, Kanazawa, Ishikawa, Japan.,Laboratory of Developmental Neurobiology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa, Japan
| |
Collapse
|
6
|
Johnson RI. Hexagonal patterning of the Drosophila eye. Dev Biol 2021; 478:173-182. [PMID: 34245727 DOI: 10.1016/j.ydbio.2021.07.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 07/04/2021] [Accepted: 07/06/2021] [Indexed: 10/24/2022]
Abstract
A complex network of transcription factor interactions propagates across the larval eye disc to establish columns of evenly-spaced R8 precursor cells, the founding cells of Drosophila ommatidia. After the recruitment of additional photoreceptors to each ommatidium, the surrounding cells are organized into their stereotypical pattern during pupal development. These support cells - comprised of pigment and cone cells - are patterned to encapsulate the photoreceptors and separate ommatidia with an hexagonal honeycomb lattice. Since the proteins and processes essential for correct eye patterning are conserved, elucidating how these function and change during Drosophila eye patterning can substantially advance our understanding of transcription factor and signaling networks, cytoskeletal structures, adhesion complexes, and the biophysical properties of complex tissues during their morphogenesis. Our understanding of many of these aspects of Drosophila eye patterning is largely descriptive. Many important questions, especially relating to the regulation and integration of cellular events, remain.
Collapse
Affiliation(s)
- Ruth I Johnson
- Biology Department, Wesleyan University, 52 Lawn Avenue, Middletown, CT, USA.
| |
Collapse
|
7
|
Raj A, Chimata AV, Singh A. Motif 1 Binding Protein suppresses wingless to promote eye fate in Drosophila. Sci Rep 2020; 10:17221. [PMID: 33057115 PMCID: PMC7560846 DOI: 10.1038/s41598-020-73891-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 08/31/2020] [Indexed: 01/19/2023] Open
Abstract
The phenomenon of RNA polymerase II (Pol II) pausing at transcription start site (TSS) is one of the key rate-limiting steps in regulating genome-wide gene expression. In Drosophila embryo, Pol II pausing is known to regulate the developmental control genes expression, however, the functional implication of Pol II pausing during later developmental time windows remains largely unknown. A highly conserved zinc finger transcription factor, Motif 1 Binding Protein (M1BP), is known to orchestrate promoter-proximal pausing. We found a new role of M1BP in regulating Drosophila eye development. Downregulation of M1BP function suppresses eye fate resulting in a reduced eye or a "no-eye" phenotype. The eye suppression function of M1BP has no domain constraint in the developing eye. Downregulation of M1BP results in more than two-fold induction of wingless (wg) gene expression along with robust induction of Homothorax (Hth), a negative regulator of eye fate. The loss-of-eye phenotype of M1BP downregulation is dependent on Wg upregulation as downregulation of both M1BP and wg, by using wgRNAi, shows a significant rescue of a reduced eye or a "no-eye" phenotype, which is accompanied by normalizing of wg and hth expression levels in the eye imaginal disc. Ectopic induction of Wg is known to trigger developmental cell death. We found that upregulation of wg as a result of downregulation of M1BP also induces apoptotic cell death, which can be significantly restored by blocking caspase-mediated cell death. Our data strongly imply that transcriptional regulation of wg by Pol II pausing factor M1BP may be one of the important regulatory mechanism(s) during Drosophila eye development.
Collapse
Affiliation(s)
- Akanksha Raj
- Department of Biology, University of Dayton, Dayton, OH, 45469, USA
| | | | - Amit Singh
- Department of Biology, University of Dayton, Dayton, OH, 45469, USA. .,Premedical Program, University of Dayton, Dayton, OH, USA. .,Center for Tissue Regeneration and Engineering (TREND), University of Dayton, Dayton, OH, USA. .,Integrative Science and Engineering (ISE), University of Dayton, Dayton, OH, USA. .,Center for Genomic Advocacy (TCGA), Indiana State University, Terre Haute, IN, USA.
| |
Collapse
|
8
|
Petruccelli E, Feyder M, Ledru N, Jaques Y, Anderson E, Kaun KR. Alcohol Activates Scabrous-Notch to Influence Associated Memories. Neuron 2018; 100:1209-1223.e4. [PMID: 30482693 DOI: 10.1016/j.neuron.2018.10.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 08/17/2018] [Accepted: 10/02/2018] [Indexed: 12/17/2022]
Abstract
Drugs of abuse, like alcohol, modulate gene expression in reward circuits and consequently alter behavior. However, the in vivo cellular mechanisms through which alcohol induces lasting transcriptional changes are unclear. We show that Drosophila Notch/Su(H) signaling and the secreted fibrinogen-related protein Scabrous in mushroom body (MB) memory circuitry are important for the enduring preference of cues associated with alcohol's rewarding properties. Alcohol exposure affects Notch responsivity in the adult MB and alters Su(H) targeting at the dopamine-2-like receptor (Dop2R). Alcohol cue training also caused lasting changes to the MB nuclear transcriptome, including changes in the alternative splicing of Dop2R and newly implicated transcripts like Stat92E. Together, our data suggest that alcohol-induced activation of the highly conserved Notch pathway and accompanying transcriptional responses in memory circuitry contribute to addiction. Ultimately, this provides mechanistic insight into the etiology and pathophysiology of alcohol use disorder.
Collapse
Affiliation(s)
- Emily Petruccelli
- Department of Neuroscience, Brown University, Providence, RI 02912, USA
| | - Michael Feyder
- Department of Neuroscience, Brown University, Providence, RI 02912, USA
| | - Nicolas Ledru
- Department of Neuroscience, Brown University, Providence, RI 02912, USA
| | - Yanabah Jaques
- Department of Neuroscience, Brown University, Providence, RI 02912, USA
| | - Edward Anderson
- Department of Neuroscience, Brown University, Providence, RI 02912, USA
| | - Karla R Kaun
- Department of Neuroscience, Brown University, Providence, RI 02912, USA.
| |
Collapse
|
9
|
Li K, Baker NE. Regulation of the Drosophila ID protein Extra macrochaetae by proneural dimerization partners. eLife 2018; 7:33967. [PMID: 29687780 PMCID: PMC5915177 DOI: 10.7554/elife.33967] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 03/25/2018] [Indexed: 12/13/2022] Open
Abstract
Proneural bHLH proteins are transcriptional regulators of neural fate specification. Extra macrochaetae (Emc) forms inactive heterodimers with both proneural bHLH proteins and their bHLH partners (represented in Drosophila by Daughterless). It is generally thought that varying levels of Emc define a prepattern that determines where proneural bHLH genes can be effective. We report that instead it is the bHLH proteins that determine the pattern of Emc levels. Daughterless level sets Emc protein levels in most cells, apparently by stabilizing Emc in heterodimers. Emc is destabilized in proneural regions by local competition for heterodimer formation by proneural bHLH proteins including Atonal or AS-C proteins. Reflecting this post-translational control through protein stability, uniform emc transcription is sufficient for almost normal patterns of neurogenesis. Protein stability regulated by exchanges between bHLH protein dimers could be a feature of bHLH-mediated developmental events.
Collapse
Affiliation(s)
- Ke Li
- Department of Genetics, Albert Einstein College of Medicine, Bronx, United States
| | - Nicholas E Baker
- Department of Genetics, Albert Einstein College of Medicine, Bronx, United States.,Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, United States.,Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, United States
| |
Collapse
|
10
|
Zhu H, Owen MR, Mao Y. The spatiotemporal order of signaling events unveils the logic of development signaling. ACTA ACUST UNITED AC 2016; 32:2313-20. [PMID: 27153573 PMCID: PMC4965629 DOI: 10.1093/bioinformatics/btw121] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 02/28/2016] [Indexed: 11/30/2022]
Abstract
Motivation: Animals from worms and insects to birds and mammals show distinct body plans; however, the embryonic development of diverse body plans with tissues and organs within is controlled by a surprisingly few signaling pathways. It is well recognized that combinatorial use of and dynamic interactions among signaling pathways follow specific logic to control complex and accurate developmental signaling and patterning, but it remains elusive what such logic is, or even, what it looks like. Results: We have developed a computational model for Drosophila eye development with innovated methods to reveal how interactions among multiple pathways control the dynamically generated hexagonal array of R8 cells. We obtained two novel findings. First, the coupling between the long-range inductive signals produced by the proneural Hh signaling and the short-range restrictive signals produced by the antineural Notch and EGFR signaling is essential for generating accurately spaced R8s. Second, the spatiotemporal orders of key signaling events reveal a robust pattern of lateral inhibition conducted by Ato-coordinated Notch and EGFR signaling to collectively determine R8 patterning. This pattern, stipulating the orders of signaling and comparable to the protocols of communication, may help decipher the well-appreciated but poorly defined logic of developmental signaling. Availability and implementation: The model is available upon request. Contact:hao.zhu@ymail.com Supplementary information:Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Hao Zhu
- Bioinformatics Section, Southern Medical University, Guangzhou 510515, China
| | - Markus R Owen
- School of Mathematical Sciences, University of Nottingham, Nottingham NG7 2RD, UK
| | - Yanlan Mao
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
| |
Collapse
|
11
|
Gavish A, Barkai N. A two-step patterning process increases the robustness of periodic patterning in the fly eye. J Biol Phys 2016; 42:317-38. [PMID: 26884095 DOI: 10.1007/s10867-016-9409-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 01/06/2016] [Indexed: 12/31/2022] Open
Abstract
Complex periodic patterns can self-organize through dynamic interactions between diffusible activators and inhibitors. In the biological context, self-organized patterning is challenged by spatial heterogeneities ('noise') inherent to biological systems. How spatial variability impacts the periodic patterning mechanism and how it can be buffered to ensure precise patterning is not well understood. We examine the effect of spatial heterogeneity on the periodic patterning of the fruit fly eye, an organ composed of ∼800 miniature eye units (ommatidia) whose periodic arrangement along a hexagonal lattice self-organizes during early stages of fly development. The patterning follows a two-step process, with an initial formation of evenly spaced clusters of ∼10 cells followed by a subsequent refinement of each cluster into a single selected cell. Using a probabilistic approach, we calculate the rate of patterning errors resulting from spatial heterogeneities in cell size, position and biosynthetic capacity. Notably, error rates were largely independent of the desired cluster size but followed the distributions of signaling speeds. Pre-formation of large clusters therefore greatly increases the reproducibility of the overall periodic arrangement, suggesting that the two-stage patterning process functions to guard the pattern against errors caused by spatial heterogeneities. Our results emphasize the constraints imposed on self-organized patterning mechanisms by the need to buffer stochastic effects. Author summary Complex periodic patterns are common in nature and are observed in physical, chemical and biological systems. Understanding how these patterns are generated in a precise manner is a key challenge. Biological patterns are especially intriguing, as they are generated in a noisy environment; cell position and cell size, for example, are subject to stochastic variations, as are the strengths of the chemical signals mediating cell-to-cell communication. The need to generate a precise and robust pattern in this 'noisy' environment restricts the space of patterning mechanisms that can function in the biological setting. Mathematical modeling is useful in comparing the sensitivity of different mechanisms to such variations, thereby highlighting key aspects of their design.We use mathematical modeling to study the periodic patterning of the fruit fly eye. In this system, a highly ordered lattice of differentiated cells is generated in a two-dimensional cell epithelium. The pattern is first observed by the appearance of evenly spaced clusters of ∼10 cells that express specific genes. Each cluster is subsequently refined into a single cell, which initiates the formation and differentiation of a miniature eye unit, the ommatidium. We formulate a mathematical model based on the known molecular properties of the patterning mechanism, and use a probabilistic approach to calculate the errors in cluster formation and refinement resulting from stochastic cell-to-cell variations ('noise') in different quantitative parameters. This enables us to define the parameters most influencing noise sensitivity. Notably, we find that this error is roughly independent of the desired cluster size, suggesting that large clusters are beneficial for ensuring the overall reproducibility of the periodic cluster arrangement. For the stage of cluster refinement, we find that rapid communication between cells is critical for reducing error. Our work provides new insights into the constraints imposed on mechanisms generating periodic patterning in a realistic, noisy environment, and in particular, discusses the different considerations in achieving optimal design of the patterning network.
Collapse
Affiliation(s)
- Avishai Gavish
- Department of Molecular Genetics, Weizmann institute of Science, Rehovot, 76100, Israel.
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel.
| | - Naama Barkai
- Department of Molecular Genetics, Weizmann institute of Science, Rehovot, 76100, Israel
| |
Collapse
|
12
|
Muñoz-Soriano V, Santos D, Durupt FC, Casani S, Paricio N. Scabrous overexpression in the eye affects R3/R4 cell fate specification and inhibits notch signaling. Dev Dyn 2015; 245:166-74. [PMID: 26505171 DOI: 10.1002/dvdy.24362] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 10/07/2015] [Accepted: 10/23/2015] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Planar cell polarity (PCP) in the Drosophila eye is generated when immature ommatidial preclusters acquire opposite chirality in the dorsal and ventral halves of the eye imaginal disc and rotate 90 ° toward the equator. The scabrous (sca) gene is involved in R8 differentiation and in the correct spacing of ommatidial clusters in eye imaginal discs, but it was also suggested to be required during ommatidial rotation. However, no clear relationships between sca and other genes involved in the process were established. RESULTS To explore the role of Sca in PCP establishment, we performed an RNAi-based modifier genetic screen using the rough eye phenotype of sca-overexpressing flies. We found that sca overexpression mainly affects R3/R4 cell specification as it was reported in Notch mutants. Of the 86 modifiers identified in the screen, genes encoding components of Notch signaling and proteins involved in intracellular transport were of particular interest. CONCLUSIONS These and other results obtained with a reporter line of Notch activity indicate that sca overexpression antagonizes Notch signaling in the Drosophila eye, and are inconsistent with Sca being an ommatidial rotation-specific factor. We also found that microtubule motors and other proteins involved in intracellular transport are related with Sca function.
Collapse
Affiliation(s)
- Verónica Muñoz-Soriano
- Departamento de Genética, Facultad CC Biológicas, Universidad de Valencia, Burjasot, Spain.,Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED), Universidad de Valencia, Burjasot, Spain
| | - Diego Santos
- Departamento de Genética, Facultad CC Biológicas, Universidad de Valencia, Burjasot, Spain
| | - Fabrice C Durupt
- Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED), Universidad de Valencia, Burjasot, Spain
| | - Sandra Casani
- Departamento de Genética, Facultad CC Biológicas, Universidad de Valencia, Burjasot, Spain
| | - Nuria Paricio
- Departamento de Genética, Facultad CC Biológicas, Universidad de Valencia, Burjasot, Spain.,Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED), Universidad de Valencia, Burjasot, Spain
| |
Collapse
|
13
|
Fernandes VM, Panchapakesan SSS, Braid LR, Verheyen EM. Nemo promotes Notch-mediated lateral inhibition downstream of proneural factors. Dev Biol 2014; 392:334-43. [PMID: 24880113 DOI: 10.1016/j.ydbio.2014.05.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2014] [Revised: 04/30/2014] [Accepted: 05/15/2014] [Indexed: 12/27/2022]
Abstract
During neurogenesis, conserved tissue-specific proneural factors establish a cell's competence to take on neural fate from within a field of unspecified cells. Proneural genes encode basic helix-loop-helix transcription factors that promote the expression of 'core' and subtype-specific target genes. Target genes include both pan-neuronal genes and genes that aid in the process of refinement, known as lateral inhibition. In this process, proneural gene expression is increased in the neural progenitor while simultaneously down-regulated in the surrounding cells, in a Notch signalling-dependent manner. Here, we identify nemo (nmo) as a target of members of both Drosophila Atonal and Achaete-Scute proneural factor families and find that mammalian proneural homologs induce Nemo-like-kinase (Nlk) expression in cell culture. We find that nmo loss of function leads to reduced expression of Notch targets and to perturbations in Notch-mediated lateral inhibition. Furthermore, Notch hyperactivity can compensate for nmo loss in the Drosophila eye. Thus nmo promotes Notch-mediated lateral inhibition downstream of proneural factors during neurogenesis.
Collapse
Affiliation(s)
- Vilaiwan M Fernandes
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada V5A1S6
| | - Shanker S S Panchapakesan
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada V5A1S6
| | - Lorena R Braid
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada V5A1S6; Defence Research and Development Canada - Suffield, Biotechnology Section, Medicine Hat, AB, Canada T1A 8K6
| | - Esther M Verheyen
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada V5A1S6.
| |
Collapse
|
14
|
Charng WL, Yamamoto S, Jaiswal M, Bayat V, Xiong B, Zhang K, Sandoval H, David G, Gibbs S, Lu HC, Chen K, Giagtzoglou N, Bellen HJ. Drosophila Tempura, a novel protein prenyltransferase α subunit, regulates notch signaling via Rab1 and Rab11. PLoS Biol 2014; 12:e1001777. [PMID: 24492843 PMCID: PMC3904817 DOI: 10.1371/journal.pbio.1001777] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Accepted: 12/16/2013] [Indexed: 11/23/2022] Open
Abstract
Vesicular trafficking plays a key role in tuning the activity of Notch signaling. Here, we describe a novel and conserved Rab geranylgeranyltransferase (RabGGT)-α-like subunit that is required for Notch signaling-mediated lateral inhibition and cell fate determination of external sensory organs. This protein is encoded by tempura, and its loss affects the secretion of Scabrous and Delta, two proteins required for proper Notch signaling. We show that Tempura forms a heretofore uncharacterized RabGGT complex that geranylgeranylates Rab1 and Rab11. This geranylgeranylation is required for their proper subcellular localization. A partial dysfunction of Rab1 affects Scabrous and Delta in the secretory pathway. In addition, a partial loss Rab11 affects trafficking of Delta. In summary, Tempura functions as a new geranylgeranyltransferase that regulates the subcellular localization of Rab1 and Rab11, which in turn regulate trafficking of Scabrous and Delta, thereby affecting Notch signaling.
Collapse
Affiliation(s)
- Wu-Lin Charng
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Shinya Yamamoto
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Jan and Dan Duncan Neurological Research Institute, Texas Children′s Hospital, Houston, Texas, United States of America
| | - Manish Jaiswal
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Howard Hughes Medical Institute, Baylor College of Medicine, Houston, Texas, United States of America
| | - Vafa Bayat
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas, United States of America
- Medical Scientist Training Program, Baylor College of Medicine, Houston, Texas, United States of America
| | - Bo Xiong
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Ke Zhang
- Program in Structural and Computational Biology and Molecular Biophysics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Hector Sandoval
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Gabriela David
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Stephen Gibbs
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Hsiang-Chih Lu
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Kuchuan Chen
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Nikos Giagtzoglou
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Neurology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Hugo J. Bellen
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Jan and Dan Duncan Neurological Research Institute, Texas Children′s Hospital, Houston, Texas, United States of America
- Howard Hughes Medical Institute, Baylor College of Medicine, Houston, Texas, United States of America
- Program in Structural and Computational Biology and Molecular Biophysics, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, United States of America
| |
Collapse
|
15
|
Boisclair Lachance JF, Peláez N, Cassidy JJ, Webber JL, Rebay I, Carthew RW. A comparative study of Pointed and Yan expression reveals new complexity to the transcriptional networks downstream of receptor tyrosine kinase signaling. Dev Biol 2013; 385:263-78. [PMID: 24240101 DOI: 10.1016/j.ydbio.2013.11.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Accepted: 11/05/2013] [Indexed: 11/29/2022]
Abstract
The biochemical regulatory network downstream of receptor tyrosine kinase (RTK) signaling is controlled by two opposing ETS family members: the transcriptional activator Pointed (Pnt) and the transcriptional repressor Yan. A bistable switch model has been invoked to explain how pathway activation can drive differentiation by shifting the system from a high-Yan/low-Pnt activity state to a low-Yan/high-Pnt activity state. Although the model explains yan and pnt loss-of-function phenotypes in several different cell types, how Yan and Pointed protein expression dynamics contribute to these and other developmental transitions remains poorly understood. Toward this goal we have used a functional GFP-tagged Pnt transgene (Pnt-GFP) to perform a comparative study of Yan and Pnt protein expression throughout Drosophila development. Consistent with the prevailing model of the Pnt-Yan network, we found numerous instances where Pnt-GFP and Yan adopt a mutually exclusive pattern of expression. However we also observed many examples of co-expression. While some co-expression occurred in cells where RTK signaling is presumed low, other co-expression occurred in cells with high RTK signaling. The instances of co-expressed Yan and Pnt-GFP in tissues with high RTK signaling cannot be explained by the current model, and thus they provide important contexts for future investigation of how context-specific differences in RTK signaling, network topology, or responsiveness to other signaling inputs, affect the transcriptional response.
Collapse
Affiliation(s)
- Jean-François Boisclair Lachance
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL 60637, USA; The Chicago Center for Systems Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Nicolás Peláez
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA; The Chicago Center for Systems Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Justin J Cassidy
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA; The Chicago Center for Systems Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Jemma L Webber
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL 60637, USA; The Chicago Center for Systems Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Ilaria Rebay
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL 60637, USA; The Chicago Center for Systems Biology, The University of Chicago, Chicago, IL 60637, USA.
| | - Richard W Carthew
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA; The Chicago Center for Systems Biology, The University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
16
|
Das S, Chen QB, Saucier JD, Drescher B, Zong Y, Morgan S, Forstall J, Meriwether A, Toranzo R, Leal SM. The Drosophila T-box transcription factor Midline functions within the Notch-Delta signaling pathway to specify sensory organ precursor cell fates and regulates cell survival within the eye imaginal disc. Mech Dev 2013; 130:577-601. [PMID: 23962751 DOI: 10.1016/j.mod.2013.08.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Revised: 07/30/2013] [Accepted: 08/03/2013] [Indexed: 12/20/2022]
Abstract
We report that the T-box transcription factor Midline (Mid), an evolutionary conserved homolog of the vertebrate Tbx20 protein, functions within the Notch-Delta signaling pathway essential for specifying the fates of sensory organ precursor (SOP) cells. These findings complement an established history of research showing that Mid regulates the cell-fate specification of diverse cell types within the developing heart, epidermis and central nervous system. Tbx20 has been detected in unique neuronal and epithelial cells of embryonic eye tissues in both mice and humans. However, the mechanisms by which either Mid or Tbx20 function to regulate cell-fate specification or other critical aspects of eye development including cell survival have not yet been elucidated. We have also gathered preliminary evidence suggesting that Mid may play an indirect, but vital role in selecting SOP cells within the third-instar larval eye disc by regulating the expression of the proneural gene atonal. During subsequent pupal stages, Mid specifies SOP cell fates as a member of the Notch-Delta signaling hierarchy and is essential for maintaining cell viability by inhibiting apoptotic pathways. We present several new hypotheses that seek to understand the role of Mid in regulating developmental processes downstream of the Notch receptor that are critical for specifying unique cell fates, patterning the adult eye and maintaining cellular homeostasis during eye disc morphogenesis.
Collapse
Affiliation(s)
- Sudeshna Das
- The Department of Biological Sciences, University of Southern Mississippi, United States
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Giagtzoglou N, Li T, Yamamoto S, Bellen HJ. Drosophila EHBP1 regulates Scabrous secretion during Notch-mediated lateral inhibition. J Cell Sci 2013; 126:3686-96. [PMID: 23788431 DOI: 10.1242/jcs.126292] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Notch signaling is an evolutionarily conserved pathway that plays a central role in numerous developmental and disease processes. The versatility of the Notch pathway relies on the activity of context-dependent regulators. These include rab11, sec15, arp3 and Drosophila EHBP1 (dEHBP1), which control Notch signaling and cell fate acquisition in asymmetrically dividing mechanosensory lineages by regulating the trafficking of the ligand Delta. Here, we show that dEHBP1 also controls the specification of R8 photoreceptors, as its loss results in the emergence of supernumerary R8 photoreceptors. Given the requirements for Notch signaling during lateral inhibition, we propose that dEHBP1 regulates distinct aspects of Notch signaling in different developmental contexts. We show that dEHBP1 regulates the exocytosis of Scabrous, a positive regulator of Notch signaling. In conclusion, dEHBP1 provides developmental versatility of intercellular signaling by regulating the trafficking of distinct Notch signaling components.
Collapse
Affiliation(s)
- Nikolaos Giagtzoglou
- Department of Molecular and Human Genetics, Jan and Dan Duncan Neurological Research Institute, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
18
|
Simakov DSA, Pismen LM. Discrete model of periodic pattern formation through a combined autocrine–juxtacrine cell signaling. Phys Biol 2013; 10:046001. [DOI: 10.1088/1478-3975/10/4/046001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
19
|
Doolittle RF, McNamara K, Lin K. Correlating structure and function during the evolution of fibrinogen-related domains. Protein Sci 2012; 21:1808-23. [PMID: 23076991 PMCID: PMC3575912 DOI: 10.1002/pro.2177] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Revised: 10/04/2012] [Accepted: 10/05/2012] [Indexed: 12/29/2022]
Abstract
Fibrinogen-related domains (FReDs) are found in a variety of animal proteins with widely different functions, ranging from non-self recognition to clot formation. All appear to have a common surface where binding of one sort or other occurs. An examination of 19 completed animal genomes--including a sponge and sea anemone, six protostomes, and 11 deuterostomes--has allowed phylogenies to be constructed that show where various types of FReP (proteins containing FReDs) first made their appearance. Comparisons of sequences and structures also reveal particular features that correlate with function, including the influence of neighbor-domains. A particular set of insertions in the carboxyl-terminal subdomain was involved in the transition from structures known to bind sugars to those known to bind amino-terminal peptides. Perhaps not unexpectedly, FReDs with different functions have changed at different rates, with ficolins by far the fastest changing group. Significantly, the greatest amount of change in ficolin FReDs occurs in the third subdomain ("P domain"), the very opposite of the situation in most other vertebrate FReDs. The unbalanced style of change was also observed in FReDs from non-chordates, many of which have been implicated in innate immunity.
Collapse
Affiliation(s)
- Russell F Doolittle
- Department of Chemistry & Biochemistry, University of California, San Diego, La Jolla, California 92093-0314, USA.
| | | | | |
Collapse
|
20
|
Treisman JE. Retinal differentiation in Drosophila. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2012; 2:545-57. [PMID: 24014422 DOI: 10.1002/wdev.100] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Drosophila eye development has been extensively studied, due to the ease of genetic screens for mutations disrupting this process. The eye imaginal disc is specified during embryonic and larval development by the Pax6 homolog Eyeless and a network of downstream transcription factors. Expression of these factors is regulated by signaling molecules and also indirectly by growth of the eye disc. Differentiation of photoreceptor clusters initiates in the third larval instar at the posterior of the eye disc and progresses anteriorly, driven by the secreted protein Hedgehog. Within each cluster, the combined activities of Hedgehog signaling and Notch-mediated lateral inhibition induce and refine the expression of the transcription factor Atonal, which specifies the founding R8 photoreceptor of each ommatidium. Seven additional photoreceptors, followed by cone and pigment cells, are successively recruited by the signaling molecules Spitz, Delta, and Bride of sevenless. Combinations of these signals and of intrinsic transcription factors give each ommatidial cell its specific identity. During the pupal stages, rhodopsins are expressed, and the photoreceptors and accessory cells take on their final positions and morphologies to form the adult retina. Over the past few decades, the genetic analysis of this small number of cell types arranged in a repetitive structure has allowed a remarkably detailed understanding of the basic mechanisms controlling cell differentiation and morphological rearrangement.
Collapse
Affiliation(s)
- Jessica E Treisman
- Department of Cell Biology and Kimmel Center for Biology and Medicine of the Skirball Institute, NYU School of Medicine, New York, NY, USA.
| |
Collapse
|
21
|
Kametaka S, Kametaka A, Yonekura S, Haruta M, Takenoshita S, Goto S, Waguri S. AP-1 clathrin adaptor and CG8538/Aftiphilin are involved in Notch signaling during eye development in Drosophila melanogaster. J Cell Sci 2012; 125:634-48. [PMID: 22389401 DOI: 10.1242/jcs.090167] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Clathrin adaptor protein complex-1 (AP-1) and its accessory proteins play a role in the sorting of integral membrane proteins at the trans-Golgi network and endosomes. Their physiological functions in complex organisms, however, are not fully understood. In this study, we found that CG8538p, an uncharacterized Drosophila protein, shares significant structural and functional characteristics with Aftiphilin, a mammalian AP-1 accessory protein. The Drosophila Aftiphilin was shown to interact directly with the ear domain of γ-adaptin of Drosophila AP-1, but not with the GAE domain of Drosophila GGA. In S2 cells, Drosophila Aftiphilin and AP-1 formed a complex and colocalized at the Golgi compartment. Moreover, tissue-specific depletion of AP-1 or Aftiphilin in the developing eyes resulted in a disordered alignment of photoreceptor neurons in larval stage and roughened eyes with aberrant ommatidia in adult flies. Furthermore, AP-1-depleted photoreceptor neurons showed an intracellular accumulation of a Notch regulator, Scabrous, and downregulation of Notch by promoting its degradation in the lysosomes. These results suggest that AP-1 and Aftiphilin are cooperatively involved in the intracellular trafficking of Notch during eye development in Drosophila.
Collapse
Affiliation(s)
- Satoshi Kametaka
- Department of Anatomy and Histology, Fukushima Medical University, 1 Hikarigaoka, Fukushima, Fukushima 960-1295, Japan.
| | | | | | | | | | | | | |
Collapse
|
22
|
Xie G, Zhang H, Du G, Huang Q, Liang X, Ma J, Jiao R. Uif, a large transmembrane protein with EGF-like repeats, can antagonize Notch signaling in Drosophila. PLoS One 2012; 7:e36362. [PMID: 22558447 PMCID: PMC3340373 DOI: 10.1371/journal.pone.0036362] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2012] [Accepted: 04/05/2012] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Notch signaling is a highly conserved pathway in multi-cellular organisms ranging from flies to humans. It controls a variety of developmental processes by stimulating the expression of its target genes in a highly specific manner both spatially and temporally. The diversity, specificity and sensitivity of the Notch signaling output are regulated at distinct levels, particularly at the level of ligand-receptor interactions. METHODOLOGY/PRINCIPAL FINDINGS Here, we report that the Drosophila gene uninflatable (uif), which encodes a large transmembrane protein with eighteen EGF-like repeats in its extracellular domain, can antagonize the canonical Notch signaling pathway. Overexpression of Uif or ectopic expression of a neomorphic form of Uif, Uif*, causes Notch signaling defects in both the wing and the sensory organ precursors. Further experiments suggest that ectopic expression of Uif* inhibits Notch signaling in cis and acts at a step that is dependent on the extracellular domain of Notch. Our results suggest that Uif can alter the accessibility of the Notch extracellular domain to its ligands during Notch activation. CONCLUSIONS/SIGNIFICANCE Our study shows that Uif can modulate Notch activity, illustrating the importance of a delicate regulation of this signaling pathway for normal patterning.
Collapse
Affiliation(s)
- Gengqiang Xie
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, the Chinese Academy of Sciences, Beijing, China
- Graduate School of the Chinese Academy of Sciences, Beijing, China
- Division of Biomedical Informatics, Cincinnati Children's Research Foundation, Cincinnati, Ohio, United States of America
| | - Hongtao Zhang
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, the Chinese Academy of Sciences, Beijing, China
- Graduate School of the Chinese Academy of Sciences, Beijing, China
| | - Guiping Du
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, the Chinese Academy of Sciences, Beijing, China
- Graduate School of the Chinese Academy of Sciences, Beijing, China
| | - Qinglei Huang
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, the Chinese Academy of Sciences, Beijing, China
| | - Xuehong Liang
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, the Chinese Academy of Sciences, Beijing, China
| | - Jun Ma
- Division of Biomedical Informatics, Cincinnati Children's Research Foundation, Cincinnati, Ohio, United States of America
- Division of Developmental Biology, Cincinnati Children's Research Foundation, Cincinnati, Ohio, United States of America
- * E-mail: (RJ); (JM)
| | - Renjie Jiao
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, the Chinese Academy of Sciences, Beijing, China
- * E-mail: (RJ); (JM)
| |
Collapse
|
23
|
A network of broadly expressed HLH genes regulates tissue-specific cell fates. Cell 2012; 147:881-92. [PMID: 22078884 DOI: 10.1016/j.cell.2011.08.055] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Revised: 07/06/2011] [Accepted: 08/17/2011] [Indexed: 12/11/2022]
Abstract
Spatial and temporal expression of specific basic-helix-loop-helix (bHLH) transcription factors defines many types of cellular differentiation. We find that a distinct mechanism regulates the much broader expression of the heterodimer partners of these specific factors and impinges on differentiation. In Drosophila, a cross-interacting regulatory network links expression of the E protein Daughterless (Da), which heterodimerizes with bHLH proteins to activate them, with expression of the Id protein Extramacrochaetae (Emc), which antagonizes bHLH proteins. Coupled transcriptional feedback loops maintain the widespread Emc expression that restrains Da expression, opposing bHLH-dependent differentiation while enhancing growth and cell survival. Where extracellular signals repress emc, Da expression can increase. This defines regions of proneural ectoderm independently from the proneural bHLH genes. Similar regulation is found in multiple Drosophila tissues and in mammalian cells and therefore is likely to be a conserved general feature of developmental regulation by HLH proteins.
Collapse
|
24
|
Lubensky DK, Pennington MW, Shraiman BI, Baker NE. A dynamical model of ommatidial crystal formation. Proc Natl Acad Sci U S A 2011; 108:11145-50. [PMID: 21690337 PMCID: PMC3131319 DOI: 10.1073/pnas.1015302108] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The crystalline photoreceptor lattice in the Drosophila eye is a paradigm for pattern formation during development. During eye development, activation of proneural genes at a moving front adds new columns to a regular lattice of R8 photoreceptors. We present a mathematical model of the governing activator-inhibitor system, which indicates that the dynamics of positive induction play a central role in the selection of certain cells as R8s. The "switch and template" patterning mechanism we observe is mathematically very different from the well-known Turing instability. Unlike a standard lateral inhibition model, our picture implies that R8s are defined before the appearance of the complete group of proneural cells. The model reproduces the full time course of proneural gene expression and accounts for specific features of the refinement of proneural groups that had resisted explanation. It moreover predicts that perturbing the normal template can lead to eyes containing stripes of R8 cells. We observed these stripes experimentally after manipulation of the Notch and scabrous genes. Our results suggest an alternative to the generally assumed mode of operation for lateral inhibition during development; more generally, they hint at a broader role for bistable switches in the initial establishment of patterns as well as in their maintenance.
Collapse
Affiliation(s)
- David K Lubensky
- Department of Physics, University of Michigan, Ann Arbor, MI 48109-1040, USA.
| | | | | | | |
Collapse
|
25
|
Hanington PC, Zhang SM. The primary role of fibrinogen-related proteins in invertebrates is defense, not coagulation. J Innate Immun 2010; 3:17-27. [PMID: 21063081 DOI: 10.1159/000321882] [Citation(s) in RCA: 142] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Accepted: 10/08/2010] [Indexed: 12/15/2022] Open
Abstract
In vertebrates, the conversion of fibrinogen into fibrin is an essential process that underlies the establishment of the supporting protein framework required for coagulation. In invertebrates, fibrinogen-domain-containing proteins play a role in the defense response generated against pathogens; however, they do not function in coagulation, suggesting that this role has been recently acquired. Molecules containing fibrinogen motifs have been identified in numerous invertebrate organisms, and most of these molecules known to date have been linked to defense. Moreover, recent genome projects of invertebrate animals have revealed surprisingly high numbers of fibrinogen-like loci in their genomes, suggesting important and perhaps diverse functions of fibrinogen-like proteins in invertebrates. The ancestral role of molecules containing fibrinogen-related domains (FReDs) with immunity is the focus of this review, with emphasis on specific FReDs called fibrinogen-related proteins (FREPs) identified from the schistosome-transmitting mollusc Biomphalaria glabrata. Herein, we outline the range of invertebrate organisms FREPs can be found in, and detail the roles these molecules play in defense and protection against infection.
Collapse
Affiliation(s)
- Patrick C Hanington
- Center for Evolutionary and Theoretical Immunology, Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA
| | | |
Collapse
|
26
|
Abstract
Cells are sequentially recruited during formation of the Drosophila compound eye. A few simple rules are reiteratively utilized to control successive steps of eye assembly. Two themes emerge: the interplay between cell signaling and competence determines diversity of cell types and selective cell adhesion determines spatial patterns of cells. Cell signaling through competence creates signaling relays, which sequentially trigger differentiation of all cell types. Selective cell adhesion, on the other hand, provides forces to drive cells into energy-favored spatial configurations. Organ formation is nevertheless a complex process. The complexity lies in the spatial, temporal, and quantitative precision of gene expression. Many challenging questions remain.
Collapse
Affiliation(s)
- Sujin Bao
- Department of Pediatrics, Mount Sinai School of Medicine, New York, USA
| |
Collapse
|
27
|
Roignant JY, Treisman JE. Pattern formation in the Drosophila eye disc. THE INTERNATIONAL JOURNAL OF DEVELOPMENTAL BIOLOGY 2009; 53:795-804. [PMID: 19557685 DOI: 10.1387/ijdb.072483jr] [Citation(s) in RCA: 123] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Differentiation of the Drosophila compound eye from the eye imaginal disc is a progressive process: columns of cells successively differentiate in a posterior to anterior sequence, clusters of cells form at regularly spaced intervals within each column, and individual photoreceptors differentiate in a defined order within each cluster. The progression of differentiation across the eye disc is driven by a positive autoregulatory loop of expression of the secreted molecule Hedgehog, which is temporally delayed by the intercalation of a second signal, Spitz. Hedgehog refines the spatial position at which each column initiates its differentiation by inducing secondary signals that act over different ranges to control the expression of positive and negative regulators. The position of clusters within each column is controlled by secreted inhibitory signals from clusters in the preceding column, and a single founder neuron, R8, is singled out within each cluster by Notch-mediated lateral inhibition. R8 then sequentially recruits surrounding cells to differentiate by producing a short-range signal, Spitz, which induces a secondary short-range signal, Delta. Intrinsic transcription factors act in combination with these two signals to produce cell-type diversity within the ommatidium. The Hedgehog and Spitz signals are transported along the photoreceptor axons and reused within the brain as long-range and local cues to trigger the differentiation and assembly of target neurons.
Collapse
Affiliation(s)
- Jean-Yves Roignant
- Kimmel Center for Biology and Medicine of the Skirball Institute, New York University School of Medicine, Department of Cell Biology, New York, 10016, USA
| | | |
Collapse
|
28
|
Pepple KL, Atkins M, Venken K, Wellnitz K, Harding M, Frankfort B, Mardon G. Two-step selection of a single R8 photoreceptor: a bistable loop between senseless and rough locks in R8 fate. Development 2008; 135:4071-9. [PMID: 19004852 DOI: 10.1242/dev.028951] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Patterning of sensory organs requires precise regulation of neural induction and repression. The neurocrystalline pattern of the adult Drosophila compound eye is generated by ordered selection of single founder photoreceptors (R8s) for each unit eye or ommatidium. R8 selection requires mechanisms that restrict R8 potential to a single cell from within a group of cells expressing the proneural gene atonal (ato). One model of R8 selection suggests that R8 precursors are selected from a three-cell ;R8 equivalence group' through repression of ato by the homeodomain transcription factor Rough (Ro). A second model proposes that lateral inhibition is sufficient to select a single R8 from an equipotent group of cells called the intermediate group (IG). Here, we provide new evidence that lateral inhibition, but not ro, is required for the initial selection of a single R8 precursor. We show that in ro mutants, ectopic R8s develop from R2,5 photoreceptor precursors independently of ectopic Ato and hours after normal R8s are specified. We also show that Ro directly represses the R8 specific zinc-finger transcription factor senseless (sens) in the developing R2,5 precursors to block ectopic R8 differentiation. Our results support a new model for R8 selection in which lateral inhibition establishes a transient pattern of selected R8s that is permanently reinforced by a repressive bistable loop between sens and ro. This model provides new insight into the strategies that allow successful integration of a repressive patterning signal, such as lateral inhibition, with continued developmental plasticity during retinal differentiation.
Collapse
Affiliation(s)
- Kathryn L Pepple
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | | | | | |
Collapse
|
29
|
Identification of novel regulators of atonal expression in the developing Drosophila retina. Genetics 2008; 180:2095-110. [PMID: 18832354 DOI: 10.1534/genetics.108.093302] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Atonal is a Drosophila proneural protein required for the proper formation of the R8 photoreceptor cell, the founding photoreceptor cell in the developing retina. Proper expression and refinement of the Atonal protein is essential for the proper formation of the Drosophila adult eye. In vertebrates, expression of transcription factors orthologous to Drosophila Atonal (MATH5/Atoh7, XATH5, and ATH5) and their progressive restriction are also involved in specifying the retinal ganglion cell, the founding neural cell type in the mammalian retina. Thus, identifying factors that are involved in regulating the expression of Atonal during development are important to fully understand how retinal neurogenesis is accomplished. We have performed a chemical mutagenesis screen for autosomal dominant enhancers of a loss-of-function atonal eye phenotype. We report here the identification of five genes required for proper Atonal expression, three of which are novel regulators of Atonal expression in the Drosophila retina. We characterize the role of the daughterless, kismet, and roughened eye genes on atonal transcriptional regulation in the developing retina and show that each gene regulates atonal transcription differently within the context of retinal development. Our results provide additional insights into the regulation of Atonal expression in the developing Drosophila retina.
Collapse
|
30
|
Tsubota T, Saigo K, Kojima T. Hox genes regulate the same character by different strategies in each segment. Mech Dev 2008; 125:894-905. [DOI: 10.1016/j.mod.2008.06.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2007] [Revised: 05/26/2008] [Accepted: 06/02/2008] [Indexed: 10/22/2022]
|
31
|
Pei Z, Baker NE. Competition between Delta and the Abruptex domain of Notch. BMC DEVELOPMENTAL BIOLOGY 2008; 8:4. [PMID: 18208612 PMCID: PMC2267168 DOI: 10.1186/1471-213x-8-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2007] [Accepted: 01/21/2008] [Indexed: 12/24/2022]
Abstract
Background Extracellular domains of the Notch family of signalling receptors contain many EGF repeat domains, as do their major ligands. Some EGF repeats are modified by O-fucosylation, and most have no identified role in ligand binding. Results Using a binding assay with purified proteins in vitro, it was determined that, in addition to binding to Delta, the ligand binding region of Notch bound to EGF repeats 22–27 of Notch, but not to other EGF repeat regions of Notch. EGF repeats 22–27 of Drosophila Notch overlap the genetically-defined 'Abruptex' region, and competed with Delta for binding to proteins containing the ligand-binding domain. Delta differed from the Abruptex domain in showing markedly enhanced binding at acid pH. Both Delta and the Abruptex region are heavily modified by protein O-fucosylation, but the split mutation of Drosophila Notch, which affects O-fucosylation of EGF repeat 14, did not affect binding of Notch to either Delta or the Abruptex region. Conclusion The Abruptex region may serve as a barrier to Notch activation by competing for the ligand-binding domain of Notch.
Collapse
Affiliation(s)
- Zifei Pei
- Department of Molecular Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA.
| | | |
Collapse
|
32
|
Fiehler RW, Wolff T. Nemo is required in a subset of photoreceptors to regulate the speed of ommatidial rotation. Dev Biol 2007; 313:533-44. [PMID: 18068152 DOI: 10.1016/j.ydbio.2007.10.034] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2007] [Revised: 10/12/2007] [Accepted: 10/13/2007] [Indexed: 11/18/2022]
Abstract
Both dramatic and subtle morphogenetic movements are of paramount importance in molding cells and tissues into functional form. Cells move either independently or as populations and the distance traversed by cells varies greatly, but in all cases, the output is common: to organize cells into or within organs and epithelia. In the developing Drosophila eye, a highly specialized, 90 degrees rotational movement of subsets of cells imposes order by polarizing the retinal epithelium across its dorsoventral axis. This process was proposed to take place in two 45 degrees steps, with the second under control of the gene nemo (nmo), a serine/threonine kinase. While our analysis confirms that these subsets of cells, the ommatidial precursors, do stall at 45 degrees , we demonstrate that nmo is also required through most of the first 45 degrees of rotation to regulate the speed at which the ommatidial precursors move. In addition, although the precursors reach only the halfway point by the end of larval life, this work demonstrates that patterning events that occur during pupal life move the ommatidial units an additional 15 degrees . A re-analysis of nmo mosaic clones indicates that nmo is required in photoreceptors R1, R6 and R7 for normal orientation. This work also demonstrates that two major isoforms of nmo rescue the nmo(P1) phenotype. Finally, a dominant modifier screen of a nmo misexpression background identified genomic regions that potentially regulate rotation. The results presented here suggest a model in which a motor for rotation is established in a nemo-dependent fashion in a subset of cells.
Collapse
Affiliation(s)
- Ryan W Fiehler
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | |
Collapse
|
33
|
Doroquez DB, Orr-Weaver TL, Rebay I. Split ends antagonizes the Notch and potentiates the EGFR signaling pathways during Drosophila eye development. Mech Dev 2007; 124:792-806. [PMID: 17588724 PMCID: PMC2231642 DOI: 10.1016/j.mod.2007.05.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2007] [Revised: 04/03/2007] [Accepted: 05/14/2007] [Indexed: 01/08/2023]
Abstract
The Notch and Epidermal Growth Factor Receptor (EGFR) signaling pathways interact cooperatively and antagonistically to regulate many aspects of Drosophila development, including the eye. How output from these two signaling networks is fine-tuned to achieve the precise balance needed for specific inductive interactions and patterning events remains an open and important question. Previously, we reported that the gene split ends (spen) functions within or parallel to the EGFR pathway during midline glial cell development in the embryonic central nervous system. Here, we report that the cellular defects caused by loss of spen function in the developing eye imaginal disc place spen as both an antagonist of the Notch pathway and a positive contributor to EGFR signaling during retinal cell differentiation. Specifically, loss of spen results in broadened expression of Scabrous, ectopic activation of Notch signaling, and a corresponding reduction in Atonal expression at the morphogenetic furrow. Consistent with Spen's role in antagonizing Notch signaling, reduction of spen levels is sufficient to suppress Notch-dependent phenotypes. At least in part due to loss of Spen-dependent down-regulation of Notch signaling, loss of spen also dampens EGFR signaling as evidenced by reduced activity of MAP kinase (MAPK). This reduced MAPK activity in turn leads to a failure to limit expression of the EGFR pathway antagonist and the ETS-domain transcriptional repressor Yan and to a corresponding loss of cell fate specification in spen mutant ommatidia. We propose that Spen plays a role in modulating output from the Notch and EGFR pathways to ensure appropriate patterning during eye development.
Collapse
Affiliation(s)
- David B. Doroquez
- Whitehead Institute for Biomedical Research, Department of Biology, Massachusetts Institute of Technology, 9 Cambridge Center, Cambridge, MA 02142 USA
| | - Terry L. Orr-Weaver
- Whitehead Institute for Biomedical Research, Department of Biology, Massachusetts Institute of Technology, 9 Cambridge Center, Cambridge, MA 02142 USA
| | - Ilaria Rebay
- Ben May Institute for Cancer Research, University of Chicago, 929 E. 57 St., Chicago, IL 60637 USA
| |
Collapse
|
34
|
Fiehler RW, Wolff T. Drosophila Myosin II, Zipper, is essential for ommatidial rotation. Dev Biol 2007; 310:348-62. [PMID: 17826761 PMCID: PMC2110880 DOI: 10.1016/j.ydbio.2007.08.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2006] [Revised: 06/20/2007] [Accepted: 08/01/2007] [Indexed: 01/17/2023]
Abstract
The adult Drosophila retina is a highly polarized epithelium derived from a precursor tissue that is initially symmetric across its dorsoventral axis. Specialized 90 degrees rotational movements of subsets of cells, the ommatidial precursors, establish mirror symmetry in the retinal epithelium. Myosin II, or Zipper (Zip), a motor protein, regulates the rate at which ommatidia rotate: in zip mutants, the rate of rotation is significantly slowed. Zip is concentrated in the cells that we show to be at the likely interface between rotating and non-rotating cells: the boundary between differentiated and undifferentiated cells. Zip is also robust in newly added ommatidial cells, consistent with our model that the machinery that drives rotation should shift to newly recruited cells as they are added to the growing ommatidium. Finally, cell death genes and canonical Wnt signaling pathway members genetically modify the zip phenotype.
Collapse
Affiliation(s)
- Ryan W Fiehler
- Department of Genetics, Washington University School of Medicine, St Louis, MO 63110, USA
| | | |
Collapse
|
35
|
Lim J, Lee OK, Hsu YC, Singh A, Choi KW. Drosophila TRAP230/240 are essential coactivators for Atonal in retinal neurogenesis. Dev Biol 2007; 308:322-30. [PMID: 17585897 PMCID: PMC1994652 DOI: 10.1016/j.ydbio.2007.05.029] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2007] [Revised: 05/21/2007] [Accepted: 05/22/2007] [Indexed: 10/23/2022]
Abstract
The TRAP (thyroid hormone receptor associated proteins)/Mediator complex serves as a transcriptional coactivator. In Drosophila, Kohtalo (Kto) and Skuld (Skd), homologs of TRAP subunits, TRAP230 and TRAP240, respectively, are necessary for eye development. However, the transcriptional activators that require Kto and Skd have not been identified. Here we provide evidence that Kto and Skd are essential for the function of transcription factor Atonal (Ato) in spatial patterning of proneural clusters in the morphogenetic furrow. In the absence of Kto/Skd, Ato fails to induce its inhibitory target events such as EGFR signaling and Scabrous expression that result in ectopic Ato expression in the space between proneural groups. Kto/Skd are also required for positive Ato functions to induce Ato targets such as Ato itself and Senseless within the proneural clusters. We also show that Skd forms a protein complex with Ato in vivo. These data suggest that Kto/Skd act as essential coactivators for Ato expression during early retinal neurogenesis.
Collapse
Affiliation(s)
- Janghoo Lim
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | | | | | | | | |
Collapse
|
36
|
Doroquez DB, Rebay I. Signal integration during development: mechanisms of EGFR and Notch pathway function and cross-talk. Crit Rev Biochem Mol Biol 2007; 41:339-85. [PMID: 17092823 DOI: 10.1080/10409230600914344] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Metazoan development relies on a highly regulated network of interactions between conserved signal transduction pathways to coordinate all aspects of cell fate specification, differentiation, and growth. In this review, we discuss the intricate interplay between the epidermal growth factor receptor (EGFR; Drosophila EGFR/DER) and the Notch signaling pathways as a paradigm for signal integration during development. First, we describe the current state of understanding of the molecular architecture of the EGFR and Notch signaling pathways that has resulted from synergistic studies in vertebrate, invertebrate, and cultured cell model systems. Then, focusing specifically on the Drosophila eye, we discuss how cooperative, sequential, and antagonistic relationships between these pathways mediate the spatially and temporally regulated processes that generate this sensory organ. The common themes underlying the coordination of the EGFR and Notch pathways appear to be broadly conserved and should, therefore, be directly applicable to elucidating mechanisms of information integration and signaling specificity in vertebrate systems.
Collapse
Affiliation(s)
- David B Doroquez
- Department of Biology, Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | |
Collapse
|
37
|
Beckingham KM, Texada MJ, Baker DA, Munjaal R, Armstrong JD. Genetics of graviperception in animals. ADVANCES IN GENETICS 2006; 55:105-45. [PMID: 16291213 DOI: 10.1016/s0065-2660(05)55004-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/10/2023]
Abstract
Gravity is a constant stimulus for life on Earth and most organisms have evolved structures to sense gravitational force and incorporate its influence into their behavioral repertoire. Here we focus attention on animals and their diverse structures for perceiving and responding to the gravitational vector-one of the few static reference stimuli for any mobile organism. We discuss vertebrate, arthropod, and nematode models from the perspective of the role that genetics is playing in our understanding of graviperception in each system. We describe the key sensory structures in each class of organism and present what is known about the genetic control of development of these structures and the molecular signaling pathways operating in the mature organs. We also discuss the role of large genetic screens in identifying specific genes with roles in mechanosensation and graviperception.
Collapse
Affiliation(s)
- Kathleen M Beckingham
- Department of Biochemistry and Cell Biology, Rice University, Houston, TX 77005, USA
| | | | | | | | | |
Collapse
|
38
|
Pulipparacharuvil S, Akbar MA, Ray S, Sevrioukov EA, Haberman AS, Rohrer J, Krämer H. Drosophila Vps16A is required for trafficking to lysosomes and biogenesis of pigment granules. J Cell Sci 2005; 118:3663-73. [PMID: 16046475 DOI: 10.1242/jcs.02502] [Citation(s) in RCA: 199] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Mutations that disrupt trafficking to lysosomes and lysosome-related organelles cause multiple diseases, including Hermansky-Pudlak syndrome. The Drosophila eye is a model system for analyzing such mutations. The eye-color genes carnation and deep orange encode two subunits of the Vps-C protein complex required for endosomal trafficking and pigment-granule biogenesis. Here we demonstrate that dVps16A (CG8454) encodes another Vps-C subunit. Biochemical experiments revealed a specific interaction between the dVps16A C-terminus and the Sec1/Munc18 homolog Carnation but not its closest homolog, dVps33B. Instead, dVps33B interacted with a related protein, dVps16B (CG18112). Deep orange bound both Vps16 homologs. Like a deep orange null mutation, eye-specific RNAi-induced knockdown of dVps16A inhibited lysosomal delivery of internalized ligands and interfered with biogenesis of pigment granules. Ubiquitous knockdown of dVps16A was lethal. Together, these findings demonstrate that Drosophila Vps16A is essential for lysosomal trafficking. Furthermore, metazoans have two types of Vps-C complexes with non-redundant functions.
Collapse
Affiliation(s)
- Suprabha Pulipparacharuvil
- Center for Basic Neuroscience, UT Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390-9111, USA
| | | | | | | | | | | | | |
Collapse
|
39
|
Kamimura K, Rhodes JM, Ueda R, McNeely M, Shukla D, Kimata K, Spear PG, Shworak NW, Nakato H. Regulation of Notch signaling by Drosophila heparan sulfate 3-O sulfotransferase. ACTA ACUST UNITED AC 2004; 166:1069-79. [PMID: 15452147 PMCID: PMC2172002 DOI: 10.1083/jcb.200403077] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Heparan sulfate (HS) regulates the activity of various ligands and is involved in molecular recognition events on the cell surface and in the extracellular matrix. Specific binding of HS to different ligand proteins depends on the sulfation pattern of HS. For example, the interaction between antithrombin and a particular 3-O sulfated HS motif is thought to modulate blood coagulation. However, a recent study of mice defective for this modification suggested that 3-O sulfation plays other biological roles. Here, we show that Drosophila melanogaster HS 3-O sulfotransferase-b (Hs3st-B), which catalyzes HS 3-O sulfation, is a novel component of the Notch pathway. Reduction of Hs3st-B function by transgenic RNA interference compromised Notch signaling, producing neurogenic phenotypes. We also show that levels of Notch protein on the cell surface were markedly decreased by loss of Hs3st-B. These findings suggest that Hs3st-B is involved in Notch signaling by affecting stability or intracellular trafficking of Notch protein.
Collapse
Affiliation(s)
- Keisuke Kamimura
- Dept. of Genetics, Cell Biology, and Development, University of Minnesota, 6-160 Jackson Hall, 321 Church Street SE, Minneapolis, MN 55455, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Karandikar UC, Trott RL, Yin J, Bishop CP, Bidwai AP. Drosophila CK2 regulates eye morphogenesis via phosphorylation of E(spl)M8. Mech Dev 2004; 121:273-86. [PMID: 15003630 DOI: 10.1016/j.mod.2004.01.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2003] [Revised: 12/19/2003] [Accepted: 01/06/2004] [Indexed: 10/26/2022]
Abstract
The Notch effector E(spl)M8 is phosphorylated at Ser159 by CK2, a highly conserved Ser/Thr protein kinase. We have used the Gal4-UAS system to assess the role of M8 phosphorylation during bristle and eye morphogenesis by employing a non-phosphorylatable variant (M8SA) or one predicted to mimic the 'constitutively' phosphorylated protein (M8SD). We find that phosphorylation of M8 does not appear to be critical during bristle morphogenesis. In contrast, only M8SD elicits a severe 'reduced eye' phenotype when it is expressed in the morphogenetic furrow of the eye disc. M8SD elicits neural hypoplasia in eye discs, elicits loss of phase-shifted Atonal-positive cells, i.e. the 'founding' R8 photoreceptors, and consequently leads to apoptosis. The ommatidial phenotype of M8SD is similar to that in Nspl/Y; E(spl)D/+ flies. E(spl)D, an allele of m8, encodes a truncated protein known as M8*, which, unlike wild type M8, displays exacerbated antagonism of Atonal via direct protein-protein interactions. In line with this, we find that the M8SD-Atonal interaction appears indistinguishable from that of M8*-Atonal, whereas interaction of M8 or M8SA appears marginal, at best. These results raise the possibility that phosphorylation of M8 (at Ser159) might be required for its ability to mediate 'lateral inhibition' within proneural clusters in the developing retina. This is the first identification of a dominant allele encoding a phosphorylation-site variant of an E(spl) protein. Our studies uncover a novel functional domain that is conserved amongst a subset of E(spl)/Hes repressors in Drosophila and mammals, and suggests a potential role for CK2 during retinal patterning.
Collapse
Affiliation(s)
- Umesh C Karandikar
- Department of Biology, Life Sciences Building, P.O. Box 6057, West Virginia University, Morgantown, WV 26506, USA
| | | | | | | | | |
Collapse
|
41
|
Guo DF, Chenier I, Tardif V, Orlov SN, Inagami T. Type 1 angiotensin II receptor-associated protein ARAP1 binds and recycles the receptor to the plasma membrane. Biochem Biophys Res Commun 2003; 310:1254-65. [PMID: 14559250 DOI: 10.1016/j.bbrc.2003.09.154] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The carboxyl terminus of the type 1 angiotensin II receptor (AT(1)) plays an important role in receptor phosphorylation, desensitization, and internalization. The yeast two-hybrid system was employed to isolate proteins associated with the carboxyl terminal region of the AT(1A) receptor. In the present study, we report the isolation of a novel protein, ARAP1, which promotes recycling of AT(1A) to the plasma membrane in HEK-293 cells. ARAP1 cDNA encodes a 493-amino-acid protein and its mRNA is ubiquitously expressed in rat tissues. A complex of ARAP1 and AT(1A) was observed by immunoprecipitation and Western blotting in HEK-293 cells. In the presence of ARAP1, recycled AT(1A) showed a significant Ca(2+) release response to a second stimulation by Ang II 30 min after the first treatment. Immunocytochemical analysis revealed co-localization of recycled AT(1A) and ARAP1 in the plasma membrane 45 min after the initial exposure to Ang II. Taken together, these results indicate a role for ARAP1 in the recycling of the AT(1) receptor to the plasma membrane with presumable concomitant recovery of receptor signal functions.
Collapse
Affiliation(s)
- Deng-Fu Guo
- Research Centre, Hôtel-Dieu du CHUM, Department of Medicine, Université de Montréal, Montréal, Québec, Canada H2W 1T8.
| | | | | | | | | |
Collapse
|
42
|
Fu W, Baker NE. Deciphering synergistic and redundant roles of Hedgehog, Decapentaplegic and Delta that drive the wave of differentiation in Drosophila eye development. Development 2003; 130:5229-39. [PMID: 12954721 DOI: 10.1242/dev.00764] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
In Drosophila, a wave of differentiation progresses across the retinal field in response to signals from posterior cells. Hedgehog (Hh), Decapentaplegic (Dpp) and Notch (N) signaling all contribute. Clones of cells mutated for receptors and nuclear effectors of one, two or all three pathways were studied to define systematically the necessary and sufficient roles of each signal. Hh signaling alone was sufficient for progressive differentiation, acting through both the transcriptional activator Ci155 and the Ci75 repressor. In the absence of Ci, Dpp and Notch signaling together provided normal differentiation. Dpp alone sufficed for some differentiation, but Notch was not sufficient alone and acted only to enhance the effect of Dpp. Notch acted in part through downregulation of Hairy; Hh signaling downregulated Hairy independently of Notch. One feature of this signaling network is to limit Dpp signaling spatially to a range coincident with Hh.
Collapse
Affiliation(s)
- Weimin Fu
- Department of Molecular Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | | |
Collapse
|
43
|
Lim J, Choi KW. Bar homeodomain proteins are anti-proneural in the Drosophila eye: transcriptional repression of atonal by Bar prevents ectopic retinal neurogenesis. Development 2003; 130:5965-74. [PMID: 14573515 DOI: 10.1242/dev.00818] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Atonal (Ato)/Math (Mammalian atonal homolog) family proneural proteins are key regulators of neurogenesis in both vertebrates and invertebrates. In the Drosophila eye, Ato is essential for the generation of photoreceptor neurons. Ato expression is initiated at the anterior ridge of the morphogenetic furrow but is repressed in the retinal precursor cells behind the furrow to prevent ectopic neurogenesis. We show that Ato repression is mediated by the conserved homeobox proteins BarH1 and BarH2. Loss of Bar causes cell-autonomous ectopic Ato expression, resulting in excess photoreceptor clusters. The initial ommatidial spacing at the furrow occurs normally in the absence of Bar, suggesting that the ectopic neurogenesis within Bar mutant clones is not due to the lack of Notch (N)-dependent lateral inhibition. Targeted misexpression of Bar is sufficient to repress ato expression. Furthermore, we provide evidence that Bar represses ato expression at the level of transcription without affecting the expression of an ato activator, Cubitus interruptus (Ci). Thus, we propose that Bar is essential for transcriptional repression of ato and the prevention of ectopic neurogenesis behind the furrow.
Collapse
Affiliation(s)
- Janghoo Lim
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | | |
Collapse
|
44
|
Li Y, Lei L, Irvine KD, Baker NE, Li L. Notch activity in neural cells triggered by a mutant allele with altered glycosylation. Development 2003; 130:2829-40. [PMID: 12756168 DOI: 10.1242/dev.00498] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The receptor protein Notch is inactive in neural precursor cells despite neighboring cells expressing ligands. We investigated specification of the R8 neural photoreceptor cells that initiate differentiation of each Drosophila ommatidium. The ligand Delta was required in R8 cells themselves, consistent with a lateral inhibitor function for Delta. By contrast, Delta expressed in cells adjacent to R8 could not activate Notch in R8 cells. The split mutation of Notch was found to activate signaling in R8 precursor cells, blocking differentiation and leading to altered development and neural cell death. split did not affect other, inductive functions of Notch. The Ile578-->Thr578 substitution responsible for the split mutation introduced a new site for O-fucosylation on EGF repeat 14 of the Notch extracellular domain. The O-fucose monosaccharide did not require extension by Fringe to confer the phenotype. Our results suggest functional differences between Notch in neural and non-neural cells. R8 precursor cells are protected from lateral inhibition by Delta. The protection is affected by modifications of a particular EGF repeat in the Notch extracellular domain. These results suggest that the pattern of neurogenesis is determined by blocking Notch signaling, as well as by activating Notch signaling.
Collapse
Affiliation(s)
- Yanxia Li
- Department of Molecular Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | | | | | | | | |
Collapse
|
45
|
Li Y, Fetchko M, Lai ZC, Baker NE. Scabrous and Gp150 are endosomal proteins that regulate Notch activity. Development 2003; 130:2819-27. [PMID: 12756167 DOI: 10.1242/dev.00495] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Notch and Delta are required for lateral inhibition during eye development. They prevent a tenfold excess in R8 photoreceptor cell specification. Mutations in two other genes, Scabrous and Gp150, result in more modestly increased R8 specification. Their roles in Notch signaling have been unclear. Both sca and gp150 are required for ectopic Notch activity that occurs in the split mutant. Similar phenotypes showed that sca and gp150 genes act in a common pathway. Gp150 was required for all activities of Sca, including inhibition of Notch activity and association with Notch-expressing cells that occur when Sca is ectopically expressed. Mosaic analysis found that the gp150 and sca genes were required in different cells from one another. Gp150 concentrated Sca protein in late endosomes. A model is proposed in which endosomal Sca and Gp150 promote Notch activation in response to Delta, by regulating acquisition of insensitivity to Delta in a subset of cells.
Collapse
Affiliation(s)
- Yanxia Li
- Department of Molecular Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | | | | | | |
Collapse
|
46
|
Sun Y, Kanekar SL, Vetter ML, Gorski S, Jan YN, Glaser T, Brown NL. Conserved and divergent functions of Drosophila atonal, amphibian, and mammalian Ath5 genes. Evol Dev 2003; 5:532-41. [PMID: 12950631 PMCID: PMC2262842 DOI: 10.1046/j.1525-142x.2003.03058.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Insect and vertebrate eyes differ in their formation, cellular composition, neural connectivity, and visual function. Despite this diversity, Drosophila atona and its vertebrate Ortholog in the eye, Ath5, each regulate determination of the first retinal neuron class-R8 photo-receptors and retinal ganglion cells (RGCs)-in their respective organisms. We have performed a cross-species functional comparison of these genes. In ato mutant Drosophila, ectopic Xenopus Ath5 (Xath5) rescues photoreceptor cell development comparably with atonaI. In contrast, mouse Ath5 (Math5) induces formation of very few ommatidia, and most of these lack R8 cells. In the developing frog eye, ectopic atonal, like Xath5, promotes the differentiation RGCs. Despite strong conservation of atonaI, Xath5, and Math5 structure and shared function, other factors must contribute to the species specificity of retinal neuron determination. These observations suggest that the atonaI family may occupy a position in a gene hierarchy where differences in gene regulation or function can be correlated with evolutionary diversity of eye development.
Collapse
Affiliation(s)
- Yan Sun
- Institute of Molecular Pathology, 1030 Vienna, Austria
| | - Shami L. Kanekar
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, UT 84132, USA
| | - Monica L. Vetter
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, UT 84132, USA
| | - Sharon Gorski
- Department of Molecular Biology and Pharmacology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Yuh-Nung Jan
- HHMI and Departments of Physiology and Biochemistry, University of California, San Francisco, San Francisco, CA, USA
| | - Tom Glaser
- Departments of Internal Medicine and Human Genetics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Nadean L. Brown
- Department of Pediatrics at Children’s Memorial Institute for Education and Research, Northwestern University Medical School, Chicago, IL 60614, USA
- * Author for correspondence (e-mail: )
| |
Collapse
|
47
|
Abstract
In Drosophila melanogaster, microchaetes (small bristles) are regularly spaced and form five straight rows in the acrostichal region of the adult notum. Microchaetes develop from sensory organ precursors that arise as single, evenly-spaced cells during pupal development. In this article we address the question of how the precursor cells remain aligned throughout pupal development, in spite of continued division of the intervening epidermal cells. Using in vivo imaging we show that bristle precursors move about continuously throughout development, covering distances of up to one or two cell diameters. During this process, they remain aligned in wild-type flies, suggesting that the movement may be regulated. Flies mutant for scabrous (sca) have a disorganised pattern of bristles with little or no alignment. In vivo observations of sca mutants indicated that the precursor cells move around more than in the wild type, but that, in spite of this the precursor cells and resulting bristles never become well aligned. They appear to follow a more complex path, suggesting that the movement is not co-ordinated. Moreover, analysis of the alignment of precursor cells in vivo in wild-type and sca mutant flies indicate that mutant animals are not able to maintain the pattern of precursor cells during development. Analysis of mosaic flies confirmed the time-lapse observations and showed furthermore that bristles preferentially move towards high levels of Scabrous. We suggest that, by altering the properties of epithelial cells in a graded fashion, Scabrous may provide cues that allow the precursors to remain evenly spaced after they have segregated.
Collapse
Affiliation(s)
- Olivier Renaud
- Department of Zoology, Downing Street, University of Cambridge, CB2 3EJ Cambridge, UK.
| | | |
Collapse
|
48
|
Abstract
Establishment of planar polarity in the Drosophila compound eye requires precise 90 degrees rotation of the ommatidial clusters during development. We found that the morphogenetic furrow controls the stop of ommatidial rotation at 90 degrees by emitting signals to posterior ommatidial clusters. One such signal, Scabrous, is synthesized in the furrow cells and transported in vesicles to ommatidial row 6-8. Scabrous vesicles are transported through actin-based cellular extensions but not transcytosis. Scabrous functions nonautonomously to control the stop of ommatidial rotation by suppressing nemo activity in the second 45 degrees rotation. We propose that the morphogenetic furrow regulates precise ommatidial rotation by transporting Scabrous and perhaps other factors through actin-based cellular extensions.
Collapse
Affiliation(s)
- Ya-Hui Chou
- Graduate Institute of Life Sciences, National Defense Medical Center and Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | | |
Collapse
|
49
|
Frankfort BJ, Mardon G. R8 development in theDrosophilaeye: a paradigm for neural selection and differentiation. Development 2002; 129:1295-306. [PMID: 11880339 DOI: 10.1242/dev.129.6.1295] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The Drosophila eye is an outstanding model with which to decipher mechanisms of neural differentiation. Paramount to normal eye development is the organized selection and differentiation of a patterned array of R8 photoreceptors – the founding photoreceptor of each ommatidium that coordinates the incorporation of all other photoreceptors. R8 development is a complex process that requires the integration of transcription factors and signaling pathways, many of which are highly conserved and perform similar functions in other species. This article discusses the developmental control of the four key elements of R8 development: selection, spacing, differentiation and orchestration of later events. New questions that have surfaced because of recent advances in the field are addressed, and the unique characteristics of R8 development are highlighted through comparisons with neural specification in other Drosophila tissues and with ganglion cell development in the mammalian retina.
Collapse
Affiliation(s)
- Benjamin J Frankfort
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | | |
Collapse
|
50
|
Fetchko M, Huang W, Li Y, Lai ZC. Drosophila Gp150 is required for early ommatidial development through modulation of Notch signaling. EMBO J 2002; 21:1074-83. [PMID: 11867535 PMCID: PMC125890 DOI: 10.1093/emboj/21.5.1074] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Cellular signaling activities must be tightly regulated for proper cell fate control and tissue morphogenesis. Here we report that the Drosophila leucine-rich repeat transmembrane glycoprotein Gp150 is required for viability, fertility and development of the eye, wing and sensory organs. In the eye, Gp150 plays a critical role in regulating early ommatidial formation. Gp150 is highly expressed in cells of the morphogenetic furrow (MF) region, where it accumulates exclusively in intracellular vesicles in an endocytosis-independent manner. Loss of gp150 function causes defects in the refinement of photoreceptor R8 cells and recruitment of other cells, which leads to the formation of aberrant ommatidia. Genetic analyses suggest that Gp150 functions to modulate Notch signaling. Consistent with this notion, Gp150 is co-localized with Delta in intracellular vesicles in cells within the MF region and loss of gp150 function causes accumulation of intracellular Delta protein. Therefore, Gp150 might function in intracellular vesicles to modulate Delta-Notch signaling for cell fate control and tissue morphogenesis.
Collapse
Affiliation(s)
- Michael Fetchko
- Department of Biochemistry and Molecular Biology and Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA Corresponding author e-mail:
| | - Wei Huang
- Department of Biochemistry and Molecular Biology and Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA Corresponding author e-mail:
| | - Ying Li
- Department of Biochemistry and Molecular Biology and Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA Corresponding author e-mail:
| | - Zhi-Chun Lai
- Department of Biochemistry and Molecular Biology and Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA Corresponding author e-mail:
| |
Collapse
|