1
|
Mazzera L, Abeltino M, Lombardi G, Cantoni AM, Jottini S, Corradi A, Ricca M, Rossetti E, Armando F, Peli A, Ferrari A, Martinelli G, Scupoli MT, Visco C, Bonifacio M, Ripamonti A, Gambacorti-Passerini C, Bonati A, Perris R, Lunghi P. MEK1/2 regulate normal BCR and ABL1 tumor-suppressor functions to dictate ATO response in TKI-resistant Ph+ leukemia. Leukemia 2023; 37:1671-1685. [PMID: 37386079 PMCID: PMC10400427 DOI: 10.1038/s41375-023-01940-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 05/10/2023] [Accepted: 06/07/2023] [Indexed: 07/01/2023]
Abstract
Resistance to tyrosine kinase inhibitors (TKIs) remains a clinical challenge in Ph-positive variants of chronic myeloid leukemia. We provide mechanistic insights into a previously undisclosed MEK1/2/BCR::ABL1/BCR/ABL1-driven signaling loop that may determine the efficacy of arsenic trioxide (ATO) in TKI-resistant leukemic patients. We find that activated MEK1/2 assemble into a pentameric complex with BCR::ABL1, BCR and ABL1 to induce phosphorylation of BCR and BCR::ABL1 at Tyr360 and Tyr177, and ABL1, at Thr735 and Tyr412 residues thus provoking loss of BCR's tumor-suppression functions, enhanced oncogenic activity of BCR::ABL1, cytoplasmic retention of ABL1 and consequently drug resistance. Coherently, pharmacological blockade of MEK1/2 induces dissociation of the pentameric MEK1/2/BCR::ABL1/BCR/ABL1 complex and causes a concurrent BCRY360/Y177, BCR::ABL1Y360/Y177 and cytoplasmic ABL1Y412/T735 dephosphorylation thereby provoking the rescue of the BCR's anti-oncogenic activities, nuclear accumulation of ABL1 with tumor-suppressive functions and consequently, growth inhibition of the leukemic cells and an ATO sensitization via BCR-MYC and ABL1-p73 signaling axes activation. Additionally, the allosteric activation of nuclear ABL1 was consistently found to enhance the anti-leukemic effects of the MEK1/2 inhibitor Mirdametinib, which when combined with ATO, significantly prolonged the survival of mice bearing BCR::ABL1-T315I-induced leukemia. These findings highlight the therapeutic potential of MEK1/2-inhibitors/ATO combination for the treatment of TKI-resistant leukemia.
Collapse
Affiliation(s)
- Laura Mazzera
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna "Bruno Ubertini", Brescia, Italy
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Manuela Abeltino
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Guerino Lombardi
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna "Bruno Ubertini", Brescia, Italy
| | | | - Stefano Jottini
- Department of Veterinary Science, University of Parma, Parma, Italy
| | - Attilio Corradi
- Department of Veterinary Science, University of Parma, Parma, Italy
| | - Micaela Ricca
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna "Bruno Ubertini", Brescia, Italy
| | - Elena Rossetti
- Department of Medicine and Surgery, University of Parma, Parma, Italy
- National Healthcare Service (SSN-Servizio Sanitario Nazionale) ASL Piacenza, Piacenza, Italy
| | - Federico Armando
- Department of Veterinary Science, University of Parma, Parma, Italy
- University of Veterinary Medicine Hannover, Foundation, Hanover, Germany
| | - Angelo Peli
- Department for Life Quality Studies Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - Anna Ferrari
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, FC, Italy
| | - Giovanni Martinelli
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, FC, Italy
- Institute of Hematology "L. e A. Seragnoli", Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Maria Teresa Scupoli
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Carlo Visco
- Department of Engineering for Innovation Medicine, Section of Hematology-University of Verona, Verona, Italy
| | - Massimiliano Bonifacio
- Department of Engineering for Innovation Medicine, Section of Hematology-University of Verona, Verona, Italy
| | - Alessia Ripamonti
- Department of Medicine and Surgery, University of Milan-Bicocca, Monza, Italy
- Adult Hematology, IRCCS San Gerardo, Monza, Italy
| | - Carlo Gambacorti-Passerini
- Department of Medicine and Surgery, University of Milan-Bicocca, Monza, Italy
- Adult Hematology, IRCCS San Gerardo, Monza, Italy
| | - Antonio Bonati
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Roberto Perris
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
- Centre for Molecular and Translational Oncology-COMT, University of Parma, Parma, Italy
| | - Paolo Lunghi
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy.
- Centre for Molecular and Translational Oncology-COMT, University of Parma, Parma, Italy.
| |
Collapse
|
2
|
Burslem GM, Schultz AR, Bondeson DP, Eide CA, Savage Stevens SL, Druker BJ, Crews CM. Targeting BCR-ABL1 in Chronic Myeloid Leukemia by PROTAC-Mediated Targeted Protein Degradation. Cancer Res 2019; 79:4744-4753. [PMID: 31311809 DOI: 10.1158/0008-5472.can-19-1236] [Citation(s) in RCA: 151] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 06/04/2019] [Accepted: 07/12/2019] [Indexed: 01/09/2023]
Abstract
Although the use of ATP-competitive tyrosine kinase inhibitors of oncoprotein BCR-ABL1 has enabled durable responses in patients with chronic myeloid leukemia (CML), issues of drug resistance and residual leukemic stem cells remain. To test whether the degradation of BCR-ABL1 kinase could offer improved response, we developed a series of proteolysis-targeting chimera (PROTAC) that allosterically target BCR-ABL1 protein and recruit the E3 ligase Von Hippel-Lindau, resulting in ubiquitination and subsequent degradation of the oncogenic fusion protein. In both human CML K562 cells and murine Ba/F3 cells expressing BCR-ABL1, lead compound GMB-475 induced rapid proteasomal degradation and inhibition of downstream biomarkers, such as STAT5, and showed increased sensitivity compared with diastereomeric controls lacking degradation activity. Notably, GMB-475 inhibited the proliferation of certain clinically relevant BCR-ABL1 kinase domain point mutants and further sensitized Ba/F3 BCR-ABL1 cells to inhibition by imatinib, while demonstrating no toxicity toward Ba/F3 parental cells. Reverse phase protein array analysis suggested additional differences in levels of phosphorylated SHP2, GAB2, and SHC associated with BCR-ABL1 degradation. Importantly, GMB-475 reduced viability and increased apoptosis in primary CML CD34+ cells, with no effect on healthy CD34+ cells at identical concentrations. GMB-475 degraded BCR-ABL1 and reduced cell viability in primary CML stem cells. Together, these findings suggest that combined BCR-ABL1 kinase inhibition and protein degradation may represent a strategy to address BCR-ABL1-dependent drug resistance, and warrant further investigation into the eradication of persistent leukemic stem cells, which rely on neither the presence nor the activity of the BCR-ABL1 protein for survival. SIGNIFICANCE: Small-molecule-induced degradation of BCR-ABL1 in CML provides an advantage over inhibition and provides insights into CML stem cell biology. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/79/18/4744/F1.large.jpg.
Collapse
MESH Headings
- Animals
- Apoptosis/drug effects
- Cell Proliferation/drug effects
- Drug Resistance, Neoplasm
- Fusion Proteins, bcr-abl/antagonists & inhibitors
- Humans
- K562 Cells
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Mice
- Neoplastic Stem Cells/drug effects
- Neoplastic Stem Cells/metabolism
- Neoplastic Stem Cells/pathology
- Protein Array Analysis
- Protein Kinase Inhibitors/pharmacology
- Proteolysis/drug effects
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- George M Burslem
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut
| | - Anna Reister Schultz
- Division of Hematology and Medical Oncology, Oregon Health and Science University Knight Cancer Institute, Portland, Oregon
| | - Daniel P Bondeson
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut
| | - Christopher A Eide
- Division of Hematology and Medical Oncology, Oregon Health and Science University Knight Cancer Institute, Portland, Oregon
- Howard Hughes Medical Institute, Portland, Oregon
| | - Samantha L Savage Stevens
- Division of Hematology and Medical Oncology, Oregon Health and Science University Knight Cancer Institute, Portland, Oregon
| | - Brian J Druker
- Division of Hematology and Medical Oncology, Oregon Health and Science University Knight Cancer Institute, Portland, Oregon
- Howard Hughes Medical Institute, Portland, Oregon
| | - Craig M Crews
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut.
- Departments of Chemistry and Pharmacology, Yale University, New Haven, Connecticut
| |
Collapse
|
3
|
Malouf C, Ottersbach K. Molecular processes involved in B cell acute lymphoblastic leukaemia. Cell Mol Life Sci 2018; 75:417-446. [PMID: 28819864 PMCID: PMC5765206 DOI: 10.1007/s00018-017-2620-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 08/01/2017] [Accepted: 08/04/2017] [Indexed: 12/19/2022]
Abstract
B cell leukaemia is one of the most frequent malignancies in the paediatric population, but also affects a significant proportion of adults in developed countries. The majority of infant and paediatric cases initiate the process of leukaemogenesis during foetal development (in utero) through the formation of a chromosomal translocation or the acquisition/deletion of genetic material (hyperdiploidy or hypodiploidy, respectively). This first genetic insult is the major determinant for the prognosis and therapeutic outcome of patients. B cell leukaemia in adults displays similar molecular features as its paediatric counterpart. However, since this disease is highly represented in the infant and paediatric population, this review will focus on this demographic group and summarise the biological, clinical and epidemiological knowledge on B cell acute lymphoblastic leukaemia of four well characterised subtypes: t(4;11) MLL-AF4, t(12;21) ETV6-RUNX1, t(1;19) E2A-PBX1 and t(9;22) BCR-ABL1.
Collapse
Affiliation(s)
- Camille Malouf
- MRC Centre for Regenerative Medicine, The University of Edinburgh, 5 Little France Drive, Edinburgh, EH16 4UU, UK
| | - Katrin Ottersbach
- MRC Centre for Regenerative Medicine, The University of Edinburgh, 5 Little France Drive, Edinburgh, EH16 4UU, UK.
| |
Collapse
|
4
|
Opening the door to the development of novel Abl kinase inhibitors. Future Med Chem 2016; 8:2143-2165. [PMID: 27774798 DOI: 10.4155/fmc-2016-0155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The discovery of the importance of kinase activity and its relationship to the emergence and proliferation of cancer cells, due to changes in normal physiology, opened a remarkable pathway for the treatment of chronic myelogenous leukemia through intense search of drug candidates. Six Abl kinase inhibitors have received the US FDA approval as chronic myelogenous leukemia treatment, and continuous efforts in obtaining new, more effective and selective molecules are being carried out. Herein we discuss the mechanisms of Abl inhibition, structural features and ligand/protein interactions that are important for the design of new Abl kinase inhibitors. This review provides a broad overview of binding mode predictions, through molecular docking, which can be an approach to discover novel Abl kinase inhibitors.
Collapse
|
5
|
Haberbosch I, Rafiei A, Oancea C, Ottmann GO, Ruthardt M, Mian AA. BCR: a new target in resistance mediated by BCR/ABL-315I? Genes Cancer 2016; 7:36-46. [PMID: 27014420 PMCID: PMC4773704 DOI: 10.18632/genesandcancer.93] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Targeting BCR/ABL with Tyrosine kinase inhibitors (TKIs) is a proven concept for the treatment of Philadelphia chromosome-positive (Ph+) leukemias but the “gatekeeper” mutation T315I confers resistance against all approved TKIs, with the only exception of ponatinib, a multi-targeted kinase inhibitor. Besides resistance to TKIs, T315I also confers additional features to the leukemogenic potential of BCR/ABL, involving endogenous BCR. Therefore we studied the role of BCR on BCR/ABL mutants lacking functional domains indispensable for the oncogenic activity of BCR/ABL. We used the factor independent growth of murine myeloid progenitor 32D cells and the transformation of Rat-1 fibroblasts both mediated by BCR/ABL. Here we report that T315I restores the capacity to mediate factor-independent growth and transformation potential of loss-of-function mutants of BCR/ABL. Targeting endogenous Bcr abrogated the capacity of oligomerization deficient mutant of BCR/ABL-T315I to mediate factor independent growth of 32D cells and strongly reduced their transformation potential in Rat-1 cells, as well as led to the up-regulation of mitogen activated protein kinase (MAPK) pathway. Our data show that the T315I restores the capacity of loss-of-function mutants to transform cells which is dependent on the transphosphorylation of endogenous Bcr, which becomes a putative therapeutic target to overcome resistance by T315I.
Collapse
Affiliation(s)
| | - Anahita Rafiei
- Department of Hematology, University of Zurich, Zurich, Switzerland
| | - Claudia Oancea
- Deparment of Haematology, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Gerhart Oliver Ottmann
- Deparment of Haematology, School of Medicine, Cardiff University, Cardiff, United Kingdom; Cardiff Experimental Cancer Medicine Centre (ECMC), Cardiff, United Kingdom
| | - Martin Ruthardt
- Deparment of Haematology, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Afsar Ali Mian
- Deparment of Haematology, School of Medicine, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
6
|
The functional interplay between the t(9;22)-associated fusion proteins BCR/ABL and ABL/BCR in Philadelphia chromosome-positive acute lymphatic leukemia. PLoS Genet 2015; 11:e1005144. [PMID: 25919613 PMCID: PMC4412790 DOI: 10.1371/journal.pgen.1005144] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 03/15/2015] [Indexed: 12/20/2022] Open
Abstract
The hallmark of Philadelphia chromosome positive (Ph+) leukemia is the BCR/ABL kinase, which is successfully targeted by selective ATP competitors. However, inhibition of BCR/ABL alone is unable to eradicate Ph+ leukemia. The t(9;22) is a reciprocal translocation which encodes not only for the der22 (Philadelphia chromosome) related BCR/ABL, but also for der9 related ABL/BCR fusion proteins, which can be detected in 65% of patients with chronic myeloid leukemia (CML) and 100% of patients with Ph+ acute lymphatic leukemia (ALL). ABL/BCRs are oncogenes able to influence the lineage commitment of hematopoietic progenitors. Aim of this study was to further disclose the role of p96ABL/BCR for the pathogenesis of Ph+ ALL. The co-expression of p96ABL/BCR enhanced the kinase activity and as a consequence, the transformation potential of p185BCR/ABL. Targeting p96ABL/BCR by RNAi inhibited growth of Ph+ ALL cell lines and Ph+ ALL patient-derived long-term cultures (PD-LTCs). Our in vitro and in vivo stem cell studies further revealed a functional hierarchy of p96ABL/BCR and p185BCR/ABL in hematopoietic stem cells. Co-expression of p96ABL/BCR abolished the capacity of p185BCR/ABL to induce a CML-like disease and led to the induction of ALL. Taken together our here presented data reveal an important role of p96ABL/BCR for the pathogenesis of Ph+ ALL. The t(9;22) is a reciprocal translocation, which causes chronic myeloid leukemia (CML) and a subset of high risk acute lymphatic leukemia (ALL). The derivative chromosome 22 is the so called Philadelphia chromosome (Ph) which encodes the BCR/ABL kinase. Targeting BCR/ABL by selective ATP competitors, such as imatinib or nilotinib, is a well validated therapeutic concept, but unable to definitively eradicate the disease. Little is known about the role of the fusion protein encoded by the reciprocal derivative chromosome 9, the ABL/BCR. In models of Ph+ ALL we show that the functional interplay between ABL/BCR and BCR/ABL not only increases the transformation potential of BCR/ABL but is also indispensable for the growth and survival of Ph+ ALL leukemic cells. The presence of ABL/BCR changed the phenotype of the leukemia most likely due to its capacity to influence the stem cell population as shown by our in vivo data. Taken together our here presented data reveal an important role of p96ABL/BCR for the pathogenesis of Ph+ ALL.
Collapse
|
7
|
Park AR, Oh D, Lim SH, Choi J, Moon J, Yu DY, Park SG, Heisterkamp N, Kim E, Myung PK, Lee JR. Regulation of dendritic arborization by BCR Rac1 GTPase-activating protein, a substrate of PTPRT. J Cell Sci 2012; 125:4518-31. [PMID: 22767509 DOI: 10.1242/jcs.105502] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Dendritic arborization is important for neuronal development as well as the formation of neural circuits. Rac1 is a member of the Rho GTPase family that serve as regulators of neuronal development. Breakpoint cluster region protein (BCR) is a Rac1 GTPase-activating protein that is abundantly expressed in the central nervous system. Here, we show that BCR plays a key role in neuronal development. Dendritic arborization and actin polymerization were attenuated by overexpression of BCR in hippocampal neurons. Knockdown of BCR using specific shRNAs increased the dendritic arborization as well as actin polymerization. The number of dendrites in null mutant BCR(-/-) mice was considerably increased compared with that in wild-type mice. We found that the function of the BCR GTPase-activating domain could be modulated by protein tyrosine phosphatase receptor T (PTPRT), which is expressed principally in the brain. We demonstrate that tyrosine 177 of BCR was the main target of PTPRT and the BCR mutant mimicking dephosphorylation of tyrosine 177 alleviated the attenuation of dendritic arborization. Additionally the attenuated dendritic arborization found upon BCR overexpression was relieved upon co-expression of PTPRT. When PTPRT was knocked down by a specific shRNA, the dendritic arborization was significantly reduced. The activity of the BCR GTPase-activating domain was modulated by means of conversions between the intra- and inter-molecular interactions, which are finely regulated through the dephosphorylation of a specific tyrosine residue by PTPRT. We thus show conclusively that BCR is a novel substrate of PTPRT and that BCR is involved in the regulation of neuronal development via control of the BCR GTPase-activating domain function by PTPRT.
Collapse
Affiliation(s)
- A-Reum Park
- Biomedical Proteomics Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806, Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Abstract
Despite the success of imatinib mesylate (IM) in the early chronic phase of chronic myeloid leukemia (CML), patients are resistant to IM and other kinase inhibitors in the later stages of CML. Our findings indicate that inhibition of Janus kinase 2 (Jak2) in Bcr–Abl+ cells overcomes IM resistance although the precise mechanism of Jak2 action is unknown. Knocking down Jak2 in Bcr–Abl+ cells reduced levels of the Bcr–Abl protein and also the phosphorylation of Tyr177 of Bcr–Abl, and Jak2 overexpression rescued these knockdown effects. Treatment of Bcr–Abl+ cells with Jak2 inhibitors for 4–6 h but not with IM also reduced Bcr–Abl protein and pTyr177 levels. In vitro kinase experiments performed with recombinant Jak2 showed that Jak2 readily phosphorylated Tyr177 of Bcr–Abl (a Jak2 consensus site, YvnV) whereas c-Abl did not. Importantly, Jak2 inhibition decreased pTyr177 Bcr–Abl in immune complexes but did not reduce levels of Bcr–Abl, suggesting that the reduction of Bcr–Abl by Jak2 inhibition is a separate event from phosphorylation of Tyr177. Jak2 inhibition by chemical inhibitors (TG101209/WP1193) and Jak2 knockdown diminished the activation of Ras, PI-3 kinase pathways and reduced levels of pTyrSTAT5. These findings suggest that Bcr–Abl stability and oncogenic signaling in CML cells are under the control of Jak2.
Collapse
|
9
|
Sun T, Arlinghaus RB. Preparation and application of polyclonal and monoclonal sequence-specific anti-phosphoamino acid antibodies. ACTA ACUST UNITED AC 2008; Chapter 13:13.6.1-13.6.27. [PMID: 18429250 DOI: 10.1002/0471140864.ps1306s34] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
This unit discusses the issues that must be considered in the design, production, and characterization of polyclonal and monoclonal sequence-specific anti-phosphoamino acid antibodies. Protocols are provided for generating and purifying such antibodies, and methods are also provided for producing useful polyclonal antibodies in a non-purified form. Support protocols describe coupling of peptides or phosphotyrosine to a solid support for use in affinity chromatography. An example of the generation, purification, and characterization of two sequence-specific anti-phosphopeptide antibodies specific for different sequences of a single phosphoprotein is described. The cross-reactivity of such antibodies, which is a common problem with anti-peptide antibodies, is also discussed.
Collapse
Affiliation(s)
- Tong Sun
- University of Texas M.D. Anderson Cancer Center, Houston, Texas, USA
| | | |
Collapse
|
10
|
Abstract
Bcr-Abl acquires its transforming ability through its upregulated Abl tyrosine kinase activity. Bcr is a phosphoprotein with a novel serine/threonine kinase activity encoded by its first exon. In chronic myelogenous leukemia (CML) cells, Bcr-Abl phosphorylates Bcr on tyrosine residues reducing its kinase activity. Overexpression of BCR in BCR-ABL+ cells produces a phosphoserine form of Bcr, which inhibits the oncogenic effects of BCR-ABL. To investigate the inhibitory effects of Bcr on Bcr-Abl, we expressed BCR/GFP in TonB210 cells, which contain a tetracycline-inducible BCR-ABL. In nude mice injected with cell clones of TonB210/BCR/GFP, tumor formation was delayed, and tumors were 50% smaller compared with the TonB210/GFP. In addition, TonB210/ BCR/GFP cells had little colony-forming ability in soft agar compared with TonB210/GFP cells. In contrast, a point mutant of BCR (Y360F), which disrupts its kinase activity, not only blocked Bcr's inhibitory effects but also enhanced the oncogenic effects of Bcr-Abl in a solid tumor model and in soft agar colony assays. Similar effects were observed with a second BCR kinase domain mutant, S354A. These results indicate that the inhibitory function of Bcr directed toward Bcr-Abl requires its kinase function.
Collapse
|
11
|
Affiliation(s)
- Ralph Arlinghaus
- Department of Molecular Pathology, The University of Texas M.D. Anderson Cancer Center, Houston, USA
| | | |
Collapse
|
12
|
Ress A, Moelling K. Bcr is a negative regulator of the Wnt signalling pathway. EMBO Rep 2005; 6:1095-100. [PMID: 16211085 PMCID: PMC1371031 DOI: 10.1038/sj.embor.7400536] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2005] [Revised: 07/20/2005] [Accepted: 08/18/2005] [Indexed: 11/09/2022] Open
Abstract
The Wnt signalling pathway can activate transcription of genes such as c-myc through beta-catenin. Here, we describe the protein breakpoint cluster region, Bcr, as a negative regulator of this pathway. Bcr can form a complex with beta-catenin and negatively regulate expression of c-Myc. Knockdown of Bcr by short interfering RNA relieves the block and activates expression of c-Myc. Expression of Bcr in the human colon carcinoma cell line HCT116, which has a high level of endogenous beta-catenin, leads to reduced c-Myc expression. The negative effect is exerted by the amino terminus of Bcr, which does not harbour the kinase domain. Bcr-Abl, the oncogene protein expressed in chronic myelogenous leukaemia (CML), does not bind to beta-catenin. It phosphorylates Bcr in the first exon sequence on tyrosines, which abrogates the binding of Bcr to beta-catenin. The inhibitor of the Bcr-Abl tyrosine kinase, STI-571 or Gleevec, a drug against CML, reverses this effect. Our data contribute to the understanding of Bcr as a tumour suppressor in the Wnt signalling pathway, as well as in CML.
Collapse
Affiliation(s)
- Angelika Ress
- Institute of Medical Virology, University of Zurich, Gloriastrasse 30, 8006 Zurich, Switzerland
- Institute of Biochemistry, FU Berlin, Thielallee 63, 14195 Berlin, Germany
| | - Karin Moelling
- Institute of Medical Virology, University of Zurich, Gloriastrasse 30, 8006 Zurich, Switzerland
- Institute of Biochemistry, FU Berlin, Thielallee 63, 14195 Berlin, Germany
- Tel: +41 44 634 26 52/53; Fax: +41 44 634 49 67; E-mail:
| |
Collapse
|
13
|
Abstract
The twenty-first century is beginning with a sharp turn in the field of cancer therapy. Molecular targeted therapies against specific oncogenic events are now possible. The BCR-ABL story represents a notable example of how research from the fields of cytogenetics, retroviral oncology, protein phosphorylation, and small molecule chemical inhibitors can lead to the development of a successful molecular targeted therapy. Imatinib mesylate (Gleevec, STI571, or CP57148B) is a direct inhibitor of ABL (ABL1), ARG (ABL2), KIT, and PDGFR tyrosine kinases. This drug has had a major impact on the treatment of chronic myelogenous leukemia (CML) as well as other blood neoplasias and solid tumors with etiologies based on activation of these tyrosine kinases. Analysis of CML patients resistant to BCR-ABL suppression by Imatinib mesylate coupled with the crystallographic structure of ABL complexed to this inhibitor have shown how structural mutations in ABL can circumvent an otherwise potent anticancer drug. The successes and limitations of Imatinib mesylate hold general lessons for the development of alternative molecular targeted therapies in oncology.
Collapse
Affiliation(s)
- Stephane Wong
- Molecular Biology Interdepartmental PhD Program/UCLA, Los Angeles, California 90095-1662, USA.
| | | |
Collapse
|
14
|
Chakraborty AK, Das SK. Molecular cloning and characterization of the guinea pig cholinephosphotransferase gene. Biochem Biophys Res Commun 2003; 312:1104-10. [PMID: 14651986 DOI: 10.1016/j.bbrc.2003.11.033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Cholinephosphotransferase (CPT), the terminal enzyme in the de novo synthesis of phosphatidylcholine (PC), has an important role in regulating the acyl group of PC in mammalian cells. A 593bp cDNA coding for the 3(')-end of the CPT gene has been cloned from guinea pig liver using degenerative oligos based on the human CPT gene. It has 85% amino acid homology with the human CPT enzyme and amino acid variations were found to cluster at few points. Restriction enzyme polymorphisms were found particularly with respect to BamHI and NcoI. Hydrophobic and helix plot analysis of the sequence shows a similar pattern to human counterpart except for amino acid residues 142-179 and 173-179. PCR analysis suggested that a predominant pseudogene may be present in guinea pig and also the intronic sequences were much shorter when compared to the human CPT gene. We are the first to report on the C-terminal 195 amino acid residues of the CPT gene from any animal species alike in many aspects of cellular metabolism. The probable differences in genomic organization and its expression in different cancer cells have been discussed here having CPT as an important target for cancer drug development.
Collapse
Affiliation(s)
- Asit K Chakraborty
- Department of Biochemistry, Meharry Medical College, 1005 David Todd Boulevard, Nashville, TN 37208-3599, USA
| | | |
Collapse
|
15
|
Katayama H, Sasai K, Kawai H, Yuan ZM, Bondaruk J, Suzuki F, Fujii S, Arlinghaus RB, Czerniak BA, Sen S. Phosphorylation by aurora kinase A induces Mdm2-mediated destabilization and inhibition of p53. Nat Genet 2003; 36:55-62. [PMID: 14702041 DOI: 10.1038/ng1279] [Citation(s) in RCA: 469] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2003] [Accepted: 11/12/2003] [Indexed: 01/10/2023]
Abstract
Aurora kinase A (also called STK15 and BTAK) is overexpressed in many human cancers. Ectopic overexpression of aurora kinase A in mammalian cells induces centrosome amplification, chromosome instability and oncogenic transformation, a phenotype characteristic of loss-of-function mutations of p53. Here we show that aurora kinase A phosphorylates p53 at Ser315, leading to its ubiquitination by Mdm2 and proteolysis. p53 is not degraded in the presence of inactive aurora kinase A or ubiquitination-defective Mdm2. Destabilization of p53 by aurora kinase A is abrogated in the presence of mutant Mdm2 that is unable to bind p53 and after repression of Mdm2 by RNA interference. Silencing of aurora kinase A results in less phosphorylation of p53 at Ser315, greater stability of p53 and cell-cycle arrest at G2-M. Cells depleted of aurora kinase A are more sensitive to cisplatin-induced apoptosis, and elevated expression of aurora kinase A abolishes this response. In a sample of bladder tumors with wild-type p53, elevated expression of aurora kinase A was correlated with low p53 concentration. We conclude that aurora kinase A is a key regulatory component of the p53 pathway and that overexpression of aurora kinase A leads to increased degradation of p53, causing downregulation of checkpoint-response pathways and facilitating oncogenic transformation of cells.
Collapse
Affiliation(s)
- Hiroshi Katayama
- Department of Molecular Pathology, Division of Pathology & Laboratory Medicine, University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Radziwill G, Erdmann RA, Margelisch U, Moelling K. The Bcr kinase downregulates Ras signaling by phosphorylating AF-6 and binding to its PDZ domain. Mol Cell Biol 2003; 23:4663-72. [PMID: 12808105 PMCID: PMC164848 DOI: 10.1128/mcb.23.13.4663-4672.2003] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The protein kinase Bcr is a negative regulator of cell proliferation and oncogenic transformation. We identified Bcr as a ligand for the PDZ domain of the cell junction and Ras-interacting protein AF-6. The Bcr kinase phosphorylates AF-6, which subsequently allows efficient binding of Bcr to AF-6, showing that the Bcr kinase is a regulator of the PDZ domain-ligand interaction. Bcr and AF-6 colocalize in epithelial cells at the plasma membrane. In addition, Bcr, AF-6, and Ras form a trimeric complex. Bcr increases the affinity of AF-6 to Ras, and a mutant of AF-6 that lacks a specific phosphorylation site for Bcr shows a reduced binding to Ras. Wild-type Bcr, but not Bcr mutants defective in binding to AF-6, interferes with the Ras-dependent stimulation of the Raf/MEK/ERK pathway. Since AF-6 binds to Bcr via its PDZ domain and to Ras via its Ras-binding domain, we propose that AF-6 functions as a scaffold-like protein that links Bcr and Ras to cellular junctions. We suggest that this trimeric complex is involved in downregulation of Ras-mediated signaling at sites of cell-cell contact to maintain cells in a nonproliferating state.
Collapse
Affiliation(s)
- G Radziwill
- Institute of Medical Virology, University of Zurich, CH-8028 Zurich, Switzerland
| | | | | | | |
Collapse
|
17
|
Steen H, Fernandez M, Ghaffari S, Pandey A, Mann M. Phosphotyrosine mapping in Bcr/Abl oncoprotein using phosphotyrosine-specific immonium ion scanning. Mol Cell Proteomics 2003; 2:138-45. [PMID: 12644574 DOI: 10.1074/mcp.m300001-mcp200] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Bcr/Abl is a fusion oncoprotein that is of paramount importance in chronic myelogenous leukemia and acute lymphocytic leukemia. The tyrosine-phosphorylated fraction of the p185 form of Bcr/Abl was isolated by immunoprecipitation with an anti-phosphotyrosine antibody and SDS-PAGE. The tryptic digest of the gel-separated protein was prefractionated on POROS R2/OLIGO R3 microcolumns and subjected to phosphotyrosine mapping by precursor ion scanning in positive ion mode utilizing the immonium ion of phosphotyrosine, also called phosphotyrosine-specific immonium ion scanning, on a quadrupole time-of-flight tandem mass spectrometer. In total, nine different phosphorylated tyrosine residues were unambiguously localized in 12 different precursor ions. These phosphorylation sites correspond to three previously described phosphotyrosine residues and six novel tyrosine phosphorylation sites, and most of them were not predicted by the phosphorylation motif prediction programs ProSite, NetPhos, or ScanSite. This study shows the power of phosphotyrosine-specific immonium ion scanning for sensitive phosphotyrosine mapping when limited amounts of samples are available.
Collapse
Affiliation(s)
- Hanno Steen
- Center for Experimental Bioinformatics, Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense M, Denmark
| | | | | | | | | |
Collapse
|
18
|
Abstract
The fusion of 5' parts of the BCR gene to the ABL gene at the second exon yields several forms of an oncogenic Bcr-Abl oncoprotein observed in several types of Philadelphia chromosome positive leukemia patients. The first exon of the BCR gene is a critical part of this fusion, as the coiled-coil domain at the amino terminal domain of the Bcr protein causes oligomerization of the Bcr-Abl oncoprotein forming tetramers, thereby activating the tyrosine kinase activity of the normally silent c-Abl protein. Another consequence of this Bcr-Abl fusion is the extensive autophosphorylation of the cis Bcr protein sequences on tyrosine residues. This review will summarize the effects of Bcr-Abl autophosphorylation on tyrosines as they relate to the oncogenic activity of Bcr-Abl, and as a means to inactivate the serine/threonine kinase activity of the Bcr protein. The review also discusses our findings that show that phosphoserine Bcr by means of a unique structure, binds to the Abl SH2 domain of the Bcr-Abl oncoprotein, and as a result this SH2 binding inhibits the oncogenic effects of the oncoprotein. Our results indicate that one effect of this binding is inhibition of the Bcr-Abl tyrosine kinase. Serine 354 of Bcr plays a major role in this inhibition. In the case of Bcr(64-413), serine 354 is required for the formation of the unique Bcr structure that binds to the Abl SH2 domain.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Fusion Proteins, bcr-abl
- Gene Expression Regulation, Enzymologic/physiology
- Gene Expression Regulation, Neoplastic/physiology
- Humans
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Mice
- Oncogene Proteins/physiology
- Phosphorylation
- Protein-Tyrosine Kinases/chemistry
- Protein-Tyrosine Kinases/genetics
- Protein-Tyrosine Kinases/metabolism
- Proto-Oncogene Proteins
- Proto-Oncogene Proteins c-bcr
- Tyrosine/metabolism
Collapse
Affiliation(s)
- Ralph B Arlinghaus
- Department of Molecular Pathology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, TX 77030, USA.
| |
Collapse
|
19
|
Abstract
Animal models of BCR-ABL+ leukemias have provided important new knowledge about the molecular pathophysiology of these diseases, and answered questions that are difficult or impossible to address using BCR-ABL-expressing cell lines or primary Ph+ leukemia samples from patients. The power of mouse models lies in their ability to recapitulate precisely the phenotypes of BCR-ABL+ leukemias in vivo, but this comes at the price of significant complexity. Here I review recent studies of leukemias induced in mice by BCR-ABL with an emphasis on the intricate nature of these diseases and the need for careful pathological and molecular analysis.
Collapse
Affiliation(s)
- Richard A Van Etten
- The Center for Blood Research and Department of Genetics, Harvard Medical School, Boston, Massachusetts, MA 02115, USA.
| |
Collapse
|
20
|
Ghosh A, Akech J, Mukherjee S, Das SK. Differential expression of cholinephosphotransferase in normal and cancerous human mammary epithelial cells. Biochem Biophys Res Commun 2002; 297:1043-8. [PMID: 12359261 DOI: 10.1016/s0006-291x(02)02332-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Membrane phospholipids as well as fatty acid profile of cell membrane phospholipids are altered in tumorigenicity and malignancy. Synthesis of total cellular phosphatidylcholine (PC) can be used as a marker for membrane proliferation in neoplastic mammary gland tissues. Cholinephosphotransferase (CPT), the terminal enzyme in the de novo synthesis of PC, has an important role in regulating the acyl group of PC in mammalian cells. In this study, the effect of neoplasia on CPT was examined. The gene shows an elevated expression in cancerous (11-9-14) breast epithelial cell line when compared to that of normal non-tumorigenic (MCF-12A) breast epithelial cell line. Four nucleotide substitutions are observed in the cancer cell line. Of these, three are null mutations, but the third one shows an interesting serine to tyrosine substitution (at amino acid position 89 of our partial sequence which corresponds to position 323 of the CPT sequence reported as NM_020244 in GenBank) in 11-9-14 cells. The tyrosine is present in the right context of KSELYQDT, which directs tyrosine phosphorylation at the tyrosine site. Biochemical approach also reveals a 1.5-fold stimulation in CPT activity in 11-9-14 cells compared to that of the MCF-12A cells.
Collapse
Affiliation(s)
- Aparajita Ghosh
- Department of Biochemistry, Meharry Medical College, 1005 D.B. Todd Boulevard, Nashville, TN 37208-3599, USA
| | | | | | | |
Collapse
|
21
|
Tan M, Jing T, Lan KH, Neal CL, Li P, Lee S, Fang D, Nagata Y, Liu J, Arlinghaus R, Hung MC, Yu D. Phosphorylation on tyrosine-15 of p34(Cdc2) by ErbB2 inhibits p34(Cdc2) activation and is involved in resistance to taxol-induced apoptosis. Mol Cell 2002; 9:993-1004. [PMID: 12049736 DOI: 10.1016/s1097-2765(02)00510-5] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
ErbB2 overexpression confers resistance to taxol-induced apoptosis by inhibiting p34(Cdc2) activation. One mechanism is via ErbB2-mediated upregulation of p21(Cip1), which inhibits Cdc2. Here, we report that the inhibitory phosphorylation on Cdc2 tyrosine (Y)15 (Cdc2-Y15-p) is elevated in ErbB2-overexpressing breast cancer cells and primary tumors. ErbB2 binds to and colocalizes with cyclin B-Cdc2 complexes and phosphorylates Cdc2-Y15. The ErbB2 kinase domain is sufficient to directly phosphorylate Cdc2-Y15. Increased Cdc2-Y15-p in ErbB2-overexpressing cells corresponds with delayed M phase entry. Expressing a nonphosphorylatable mutant of Cdc2 renders cells more sensitive to taxol-induced apoptosis. Thus, ErbB2 membrane RTK can confer resistance to taxol-induced apoptosis by directly phosphorylating Cdc2.
Collapse
Affiliation(s)
- Ming Tan
- Department of Surgical Oncology, The University of Texas M.D. Anderson Cancer Center, Houston 77030, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
In this review, we describe methods to generate and characterize sequence-specific phosphoamino acid antibodies. Several of the early contributions regarding the utility of such antibodies are summarized. Three antiphosphopeptide antibodies derived from sequences of the Bcr protein are described. They are anti-Bcr pSer-354, anti-Bcr pTyr-328, and anti-Bcr pTyr-360. These anti-Bcr phosphopeptide antibodies are directed toward phosphorylated sequences encoded by the first exon of the BCR gene, which is the critical portion of the Bcr sequence present in the Bcr-Abl oncoprotein. Using these antibodies, we established/confirmed the in vivo phosphorylation of Ser-354, Tyr-328, and Tyr-360 in Bcr and Bcr-Abl proteins. The cross-reactivity of these antibodies, which is a common problem with antipeptide antibodies, was also investigated and discussed.
Collapse
Affiliation(s)
- T Sun
- Department of Molecular Pathology, Box 89, The University of Texas, M. D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
23
|
Lin F, Monaco G, Sun T, Liu J, Lin H, Stephens C, Belmont J, Arlinghaus RB. BCR gene expression blocks Bcr-Abl induced pathogenicity in a mouse model. Oncogene 2001; 20:1873-81. [PMID: 11313935 DOI: 10.1038/sj.onc.1204409] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2000] [Revised: 02/14/2001] [Accepted: 02/20/2001] [Indexed: 11/08/2022]
Abstract
It is well accepted that the Bcr-Abl oncoprotein encoded by the Philadelphia chromosome is responsible for causing chronic myelogenous leukemia (CML). We have previously demonstrated that expression of Bcr interferes with the oncogenic effects of Bcr-Abl. To examine the effects of increased Bcr expression on Bcr-Abl oncogenic effects in a more physiological system, we tested the leukemogenic potential of a clone of K562 cells (K6 K562) containing an inducible BCR gene in NOD/scid mice. In this clone, the BCR gene was placed under the control of a tetracycline (Tet) repression system with a cytomegalovirus (CMV) promoter. Induction of exogenous Bcr protein by removal of Tet from the culture medium caused a dramatic increase in Bcr serine kinase activity, yielding predominantly phosphoserine Bcr, despite the presence of Bcr-Abl in the kinase reaction mixture. Prior to induction, the endogenous Bcr was predominantly in the phosphotyrosine form because of phosphorylation by Bcr-Abl, which we previously have shown suppresses Bcr serine/threonine kinase activity. Injection of K6 K562 cells into NOD/scid mice under conditions where BCR expression was suppressed resulted in death or terminal illness in 100% of the mice within 35 days after injection. These mice had a severe wasting syndrome characterized by atrophy of bone marrow hematopoiesis, and/or neoplasia of liver, bone marrow and spleen. Neoplastic spleens from these mice usually contained b3a2 Bcr-Abl transcripts. In contrast, induction of BCR expression at the time of injection allowed 80% survival; these healthy mice had no detectable microscopic lesions in blood forming organs. This difference in survival was significant with P<0.0001. Of interest, mice that were fed Tet for 19 days to initiate the disease syndrome and then released from the BCR transcriptional block had a significantly better survival pattern than mice exposed to Tet throughout the entire period. Moreover, 30% of these mice (three mice) survived through day 50. We conclude from these findings that BCR gene expression strongly inhibits the oncogenic effects of Bcr-Abl in NOD/scid mice, yielding healthy mice in most cases.
Collapse
Affiliation(s)
- F Lin
- Department of Molecular Pathology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, TX 77030, USA
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
Multistep carcinogenesis is exemplified by chronic myeloid leukemia with clinical manifestation consisting of a chronic phase and blast crisis. Pathological generation of BCR-ABL (breakpoint cluster region-Abelson) results in growth promotion, differentiation, resistance to apoptosis, and defect in DNA repair in targeted blood cells. Domains in BCR and ABL sequences work in concert to elicit a variety of leukemogenic signals including Ras, STAT5 (signal transducer and activator of transcription-5), Myc, cyclin D1, P13 (phosphatidylinositol 3-kinase), RIN1 (Ras interaction/interference), and activation of actin cytoskeleton. However, the mechanism of differentiation of transformed cells is poorly understood. A mutator phenotype of BCR-ABL could explain the transformation to blast crisis. The aim of this review is to integrate molecular and biological information on BCR, ABL, and BCR-ABL and to focus on how signaling from those molecules mirrors the biological phenotypes of chronic myeloid leukemia.
Collapse
MESH Headings
- Animals
- Blast Crisis/genetics
- Cell Differentiation
- Cell Transformation, Neoplastic/genetics
- Disease Progression
- Fusion Proteins, bcr-abl/chemistry
- Fusion Proteins, bcr-abl/genetics
- Fusion Proteins, bcr-abl/physiology
- Gene Expression Regulation, Leukemic
- Genes, abl
- Humans
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/enzymology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Leukemia, Myeloid, Accelerated Phase/genetics
- Leukemia, Myeloid, Chronic-Phase/genetics
- Mice
- Mice, Knockout
- Models, Biological
- Neoplasm Proteins/physiology
- Neoplastic Stem Cells/enzymology
- Neoplastic Stem Cells/pathology
- Oncogene Proteins/chemistry
- Oncogene Proteins/genetics
- Oncogene Proteins/physiology
- Phenotype
- Philadelphia Chromosome
- Phosphorylation
- Protein Processing, Post-Translational
- Protein Structure, Tertiary
- Protein-Tyrosine Kinases
- Proto-Oncogene Proteins
- Proto-Oncogene Proteins c-abl/chemistry
- Proto-Oncogene Proteins c-abl/genetics
- Proto-Oncogene Proteins c-abl/physiology
- Proto-Oncogene Proteins c-bcr
- Rats
- Signal Transduction
- Structure-Activity Relationship
Collapse
Affiliation(s)
- Y Maru
- Department of Genetics, Institute of Medical Science, University of Tokyo, Japan.
| |
Collapse
|
25
|
Pachmann K, Zhao S, Schenk T, Kantarjian H, El-Naggar AK, Siciliano MJ, Guo JQ, Arlinghaus RB, Andreeff M. Expression of bcr-abl mRNA in individual chronic myelogenous leukaemia cells as determined by in situ amplification. Br J Haematol 2001; 112:749-59. [PMID: 11260080 DOI: 10.1111/j.1365-2141.2001.02510.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We present the results of a novel method developed for evaluation of in situ amplification, a molecular genetic method at the cellular level. Reverse transcription polymerase chain reaction (RT-PCR) was used to study bcr-abl transcript levels in individual cells from patients with chronic myelogenous leukaemia (CML). After hybridizing a fluorochrome-labelled probe to the cell-bound RT-PCR product, bcr-abl mRNA-positive cells were determined using image analysis. A dilution series of bcr-abl-positive BV173 into normal cells showed a good correlation between expected and actual values. In 25 CML samples, the percentage of in situ PCR-positive cells showed an excellent correlation with cytogenetic results (r = 0.94, P < 0.0001), interphase fluorescence in situ hybridization (FISH) (r = 0.95, P = 0.001) and hypermetaphase FISH (r = 0.81, P < 0.001). The fluorescence intensity was higher in residual CML cells after interferon (IFN) treatment than in newly diagnosed patients (P = 0.004), and was highest in late-stage CML resistant to IFN therapy and lowest in CML blast crisis (P = 0.001). Mean fluorescence values correlated with bcr-abl protein levels, as determined by Western blot analysis (r = 0.62). Laser scanning cytometry allowing automated analysis of large numbers of cells confirmed the results. Thus, fluorescence in situ PCR provides a novel and quantitative approach for monitoring tumour load and bcr-abl transcript levels in CML.
Collapse
MESH Headings
- Analysis of Variance
- Blotting, Western
- Fusion Proteins, bcr-abl/analysis
- Fusion Proteins, bcr-abl/genetics
- Humans
- Image Processing, Computer-Assisted
- In Situ Hybridization, Fluorescence
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/therapy
- Metaphase
- RNA, Messenger/analysis
- Remission Induction
- Reverse Transcriptase Polymerase Chain Reaction
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- K Pachmann
- The University of Texas M.D. Anderson Cancer Center, Department of Molecular Haematology and Therapy, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Zhang X, Subrahmanyam R, Wong R, Gross AW, Ren R. The NH(2)-terminal coiled-coil domain and tyrosine 177 play important roles in induction of a myeloproliferative disease in mice by Bcr-Abl. Mol Cell Biol 2001; 21:840-53. [PMID: 11154271 PMCID: PMC86675 DOI: 10.1128/mcb.21.3.840-853.2001] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bcr-Abl, a fusion protein generated by t(9;22)(q34;q11) translocation, plays a critical role in the pathogenesis of chronic myelogenous leukemia (CML). It has been shown that Bcr-Abl contains multiple functional domains and motifs and can disrupt regulation of many signaling pathways and cellular functions. However, the role of specific domains and motifs of Bcr-Abl or of specific signaling pathways in the complex in vivo pathogenesis of CML is not completely known. We have previously shown that expression of Bcr-Abl in bone marrow cells by retroviral transduction efficiently induces a myeloproliferative disorder (MPD) in mice resembling human CML. We have also shown that the Abl kinase activity within Bcr-Abl is essential for Bcr-Abl leukemogenesis, yet activation of the Abl kinase without Bcr sequences is not sufficient to induce MPD in mice. In this study we investigated the role of Bcr sequences within Bcr-Abl in inducing MPD using this murine model for CML. We found that the NH(2)-terminal coiled-coil (CC) domain was both essential and sufficient, even though not efficient, to activate Abl to induce an MPD in mice. Interestingly, deletion of the Src homology 3 domain complemented the deficiencies of the CC-deleted Bcr-Abl in inducing MPD in mice. We further demonstrated that the Grb2 binding site at Y177 played an important role in efficient induction of MPD. These studies directly demonstrated the important roles of Bcr sequences in induction of MPD by Bcr-Abl.
Collapse
Affiliation(s)
- X Zhang
- Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, Massachusetts 02454-9110, USA
| | | | | | | | | |
Collapse
|
27
|
|
28
|
|
29
|
Laurent E, Talpaz M, Wetzler M, Kurzrock R. Cytoplasmic and nuclear localization of the 130 and 160 kDa Bcr proteins. Leukemia 2000; 14:1892-7. [PMID: 11069024 DOI: 10.1038/sj.leu.2401923] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Formation of the Bcr-Abl chimeric protein is the molecular hallmark of Philadelphia-positive leukemia. Normal Bcr is a complex protein which has been found in the cytoplasm, has serine kinase activity, and has been implicated in cellular signal transduction. However, we have recently demonstrated that Bcr can also associate with condensed chromatin. Since two major Bcr proteins have been characterized (p160Bcr and p130Bcr), we sought to determine if different forms of Bcr localized to the nucleus vs the cytoplasm. Metabolic labeling and Western blotting experiments were performed using nuclear and cytoplasmic extracts of three human Philadelphia-negative leukemia/lymphoma cell lines (KG-1, HL-60, and Jurkat). Both methodologies showed that p160Bcr and p130Bcr localized to the cytoplasm, but the p130 form predominated in the nucleus. These results suggest that Bcr serves both nuclear and cytoplasmic functions, and that different forms of Bcr may be preferentially involved in these distinct activities.
Collapse
Affiliation(s)
- E Laurent
- Department of Bioimmunotherapy, University of Texas MD Anderson Cancer Center, Houston 77030, USA
| | | | | | | |
Collapse
|
30
|
del Pozo V, Pirotto F, Cárdaba B, Cortegano I, Gallardo S, Rojo M, Arrieta I, Aceituno E, Palomino P, Gaya A, Lahoz C. Expression on human eosinophils of CD148: a membrane tyrosine phosphatase. Implications in the effector function of eosinophils. J Leukoc Biol 2000. [DOI: 10.1189/jlb.68.1.31] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
| | | | - Blanca Cárdaba
- Immunology Department, Fundación Jiménez Díaz, Madrid, Spain
| | | | | | - Marta Rojo
- Immunology Department, Fundación Jiménez Díaz, Madrid, Spain
| | - Ignacio Arrieta
- Immunology Department, Fundación Jiménez Díaz, Madrid, Spain
| | - Esther Aceituno
- Immunology Department, Fundación Jiménez Díaz, Madrid, Spain
| | - Pilar Palomino
- Immunology Department, Fundación Jiménez Díaz, Madrid, Spain
| | - Antoni Gaya
- Servei d’Immunologia, Hospital Clinic, Barcelona, Spain
| | - Carlos Lahoz
- Immunology Department, Fundación Jiménez Díaz, Madrid, Spain
| |
Collapse
|
31
|
Gross AW, Zhang X, Ren R. Bcr-Abl with an SH3 deletion retains the ability To induce a myeloproliferative disease in mice, yet c-Abl activated by an SH3 deletion induces only lymphoid malignancy. Mol Cell Biol 1999; 19:6918-28. [PMID: 10490629 PMCID: PMC84687 DOI: 10.1128/mcb.19.10.6918] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The bcr-abl oncogene plays a critical role in the pathogenesis of chronic myelogenous leukemia (CML). The fusion of Bcr sequences to Abl constitutively activates the Abl protein tyrosine kinase. We have recently shown that expression of Bcr-Abl in bone marrow cells by retroviral transduction efficiently induces in mice a myeloproliferative disease resembling human CML and that Abl kinase activity is essential for Bcr-Abl to induce a CML-like myeloproliferative disease. However, it is not known if activation of the Abl kinase alone is sufficient to induce a myeloproliferative disease. In this study, we examined the role of the Abl SH3 domain of Bcr-Abl in induction of myeloproliferative disease and tested whether c-Abl activated by SH3 deletion can induce a CML-like disease. We found that Bcr-Abl with an Abl SH3 deletion still induced a CML-like disease in mice. In contrast, c-Abl activated by SH3 deletion induced only lymphoid malignancies in mice and did not stimulate the growth of myeloid colonies from 5-fluorouracil-treated bone marrow cells in vitro. These results indicate that Bcr sequences in Bcr-Abl play additional roles in inducing myeloproliferative disease beyond simply activating the Abl kinase domain and that functions of the Abl SH3 domain are either not required or redundant in Bcr-Abl-induced myeloproliferative disease. The results also suggest that the type of hematological neoplasm induced by an abl oncogene is influenced not only by what type of hematopoietic cells the oncogene is targeted into but also by the intrinsic oncogenic properties of the particular abl oncogene. In addition, we found that DeltaSH3 c-Abl induced less activation of Akt and STAT5 than did Bcr-Abl, suggesting that activation of these pathways plays a critical role in inducing a CML-like disease.
Collapse
Affiliation(s)
- A W Gross
- Rosenstiel Basic Medical Sciences Research Center, Department of Biology, Brandeis University, Waltham, Massachusetts 02454-9110, USA
| | | | | |
Collapse
|
32
|
Gayà A, Pirotto F, Palou E, Autschbach F, Del Pozo V, Solé J, Serra-Pages C. CD148, a new membrane tyrosine phosphatase involved in leukocyte function. Leuk Lymphoma 1999; 35:237-43. [PMID: 10706446 DOI: 10.3109/10428199909145726] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Protein tyrosine phosphatases play an essential role in the control of leucocyte cell growth an differentiation. Recently a new receptor type membrane tyrosine phosphatase named CD148 has been identified. This molecule is present on the membrane of all the hematopoietic lineages as well as on several other cell types, mainly epithelial cells and its expression increases after cell activation. This molecule is able to act as a transducing molecule. Moreover, CD148 is able to modulate the signal transduction through the TCR/CD3 complex, in a manner similar to CD45. It has also been suggested that CD148 could be involved in mechanisms of differentiation and inhibition of cell growth. In addition, CD148 seems to be associated with a serine/threonine kinase in certain epithelial cell lines and leucocytes. Here, we review recent data on the expression and function of CD148 in both human, mouse and rat.
Collapse
Affiliation(s)
- A Gayà
- Servei d'Immunologia, Hospital Clinic, Barcelona, Spain.
| | | | | | | | | | | | | |
Collapse
|
33
|
Wu Y, Ma G, Lu D, Lin F, Xu HJ, Liu J, Arlinghaus RB. Bcr: a negative regulator of the Bcr-Abl oncoprotein. Oncogene 1999; 18:4416-24. [PMID: 10442632 DOI: 10.1038/sj.onc.1202828] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Chronic myelogenous leukemia is typically characterized by the presence of the Philadelphia chromosome (Ph) in which 5' portions of the BCR gene are fused to a large portion of the ABL gene. Our studies and those of others indicate that Bcr sequences within the Bcr-Abl oncoprotein are critically involved in activating the Abl tyrosine kinase and actively participate in the oncogenic response, which is generated by the Bcr-Abl oncoprotein. We investigated the role of the Bcr protein in the oncogenic effects of Bcr-Abl. Reduction of the level of the Bcr protein by incubating cells with a 3' BCR anti-sense oligodeoxynucleotide increased the growth rate and survival of hematopoietic cell lines expressing Bcr-Abl. Also, enforced expression of Bcr in Bcr-Abl cell lines strongly reduced transformation efficiency. Induction of Bcr expression drastically reduced the phosphotyrosine content of Bcr-Abl in Rat-1 fibroblasts transformed by P185 BCR-ABL and in hematopoietic cells expressing P210 Bcr-Abl within days following induction of Bcr. Rat-1/P185 cells maintained for three weeks after Bcr induction had dramatically reduced amounts of phosphotyrosine proteins compared to cells in which Bcr expression was repressed by the addition of Tet. In contrast Bcr expression did not decrease the phosphotyrosine content of either v-Src or activated Neu tyrosine kinase. Importantly, the phosphotyrosine content of total P160 BCR (induced plus endogenous) was strongly reduced by inducing expression of Bcr, indicating that the induced Bcr protein was not a target of the tyrosine kinase activity of Bcr-Abl but instead functioned as an inhibitor of Bcr-Abl. These results show that the Bcr protein can function as a negative regulator of Bcr-Abl, but that the inhibitory effects of Bcr are dependent on achieving an elevated level of Bcr expression relative to Bcr-Abl.
Collapse
Affiliation(s)
- Y Wu
- Department of Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston 77030, USA
| | | | | | | | | | | | | |
Collapse
|
34
|
Skourides PA, Perera SA, Ren R. Polarized distribution of Bcr-Abl in migrating myeloid cells and co-localization of Bcr-Abl and its target proteins. Oncogene 1999; 18:1165-76. [PMID: 10022122 DOI: 10.1038/sj.onc.1202407] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Bcr-Abl plays a critical role in the pathogenesis of Philadelphia chromosome-positive leukemia. Although a large number of substrates and interacting proteins of Bcr-Abl have been identified, it remains unclear whether Bcr-Abl assembles multi-protein complexes and if it does where these complexes are within cells. We have investigated the localization of Bcr-Abl in 32D myeloid cells attached to the extracellular matrix. We have found that Bcr-Abl displays a polarized distribution, colocalizing with a subset of filamentous actin at trailing portions of migrating 32D cells, and localizes on the cortical F-actin and on vesicle-like structures in resting 32D cells. Deletion of the actin binding domain of Bcr-Abl (Bcr-AbI-AD) dramatically enhances the localization of Bcr-Abl on the vesicle-like structures. These distinct localization patterns of Bcr-Abl and Bcr-Abl-AD enabled us to examine the localization of Bcr-Abl substrate and interacting proteins in relation to Bcr-Abl. We found that a subset of biochemically defined target proteins of Bcr-Abl redistributed and co-localized with Bcr-Abl on F-actin and on vesicle-like structures. The co-localization of signaling proteins with Bcr-Abl at its sites of localization supports the idea that Bcr-Abl forms a multi-protein signaling complex, while the polarized distribution and vesicle-like localization of Bcr-Abl may play a role in leukemogenesis.
Collapse
Affiliation(s)
- P A Skourides
- Rosenstiel Basic Medical Sciences Research Center and Department of Biology, Brandeis University, Waltham, Massachusetts 02254-9110, USA
| | | | | |
Collapse
|
35
|
Guo XY, Fontana J, Kufe D, Deisseroth A. Antagonistic effects of ABL and BCRABL proteins on proliferation and the response to genotoxic stress in normal and leukemic myeloid cells. Leuk Lymphoma 1998; 30:225-35. [PMID: 9713955 DOI: 10.3109/10428199809057536] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Following the discovery of the p210bcrabl protein product of the bcrabl chimeric fusion gene generated by the Philadelphia chromosome translocation in chronic myelogenous leukemia (CML), structure function studies quickly identified which parts of this molecule were playing a role in the generation of the phenotypes of growth factor independent growth, anchorage independent growth, and genetic instability which are associated with this disease. These latter changes result in abnormally high levels of mature myeloid elements circulating in the systemic circulation of CML patients. In addition, the genetic instability which is associated with the presence of the Philadelphia chromosome drives the evolution of the disease from an indolent chronic non life-threatening leukemia, to a fulminant acute leukemic syndrome which results in the death of patients from bleeding and infection. Multiple sites of contact between the p210bcrabl and its substrates have already been identified which are relevant to the phenotypic changes characteristic of CML cells and define their response to therapy. In this review, we will discuss what is known about the relationships between the structural domains of the p210bcrabl protein and the characteristics of the disease process which it causes. We will also discuss how this information may be applied to the establishment of new directions in therapy.
Collapse
Affiliation(s)
- X Y Guo
- The Gene Therapy Program of the Yale Cancer Center and The Medical Oncology Section of the Yale University School of Medicine, New Haven, Connecticut 06405, USA
| | | | | | | |
Collapse
|
36
|
LaMontagne KR, Flint AJ, Franza BR, Pandergast AM, Tonks NK. Protein tyrosine phosphatase 1B antagonizes signalling by oncoprotein tyrosine kinase p210 bcr-abl in vivo. Mol Cell Biol 1998; 18:2965-75. [PMID: 9566916 PMCID: PMC110676 DOI: 10.1128/mcb.18.5.2965] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/1997] [Accepted: 01/25/1998] [Indexed: 02/07/2023] Open
Abstract
The p210 bcr-abl protein tyrosine kinase (PTK) appears to be directly responsible for the initial manifestations of chronic myelogenous leukemia (CML). In contrast to the extensive characterization of the PTK and its effects on cell function, relatively little is known about the nature of the protein tyrosine phosphatases (PTPs) that may modulate p210 bcr-abl-induced signalling. In this study, we have demonstrated that expression of PTP1B is enhanced specifically in various cells expressing p210 bcr-abl, including a cell line derived from a patient with CML. This effect on expression of PTP1B required the kinase activity of p210 bcr-abl and occurred rapidly, concomitant with maximal activation of a temperature-sensitive mutant of the PTK. The effect is apparently specific for PTP1B since, among several PTPs tested, we detected no change in the levels of TCPTP, the closest relative of PTP1B. We have developed a strategy for identification of physiological substrates of individual PTPs which utilizes substrate-trapping mutant forms of the enzymes that retain the ability to bind to substrate but fail to catalyze efficient dephosphorylation. We have observed association between a substrate-trapping mutant of PTP1B (PTP1B-D181A) and p210 bcr-abl, but not v-Abl, in a cellular context. Consistent with the trapping data, we observed dephosphorylation of p210 bcr-abl, but not v-Abl, by PTP1B in vivo. We have demonstrated that PTP1B inhibited binding of the adapter protein Grb2 to p210 bcr-abl and suppressed p210 bcr-abl-induced transcriptional activation that is dependent on Ras. These results illustrate selectivity in the effects of PTPs in a cellular context and suggest that PTP1B may function as a specific, negative regulator of p210 bcr-abl signalling in vivo.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing
- Animals
- Cell Transformation, Neoplastic
- Enzyme Activation
- Fusion Proteins, bcr-abl/genetics
- Fusion Proteins, bcr-abl/metabolism
- GRB2 Adaptor Protein
- Humans
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Oncogene Proteins v-abl/metabolism
- Phosphorylation
- Precipitin Tests
- Protein Binding
- Protein Tyrosine Phosphatases/genetics
- Protein Tyrosine Phosphatases/metabolism
- Protein-Tyrosine Kinases/genetics
- Protein-Tyrosine Kinases/metabolism
- Proteins/metabolism
- Rats
- Recombinant Proteins/metabolism
- Signal Transduction
- Tumor Cells, Cultured
Collapse
|
37
|
Li J, Smithgall TE. Co-expression with BCR induces activation of the FES tyrosine kinase and phosphorylation of specific N-terminal BCR tyrosine residues. J Biol Chem 1996; 271:32930-6. [PMID: 8955135 DOI: 10.1074/jbc.271.51.32930] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The human BCR gene encodes a protein with serine/threonine kinase activity and regulatory domains for the small G-proteins RAC and CDC42. Previous work in our laboratory has established that BCR is a substrate for c-FES, a non-receptor tyrosine kinase linked to myeloid growth and differentiation. Tyrosine phosphorylation led to the association of BCR with the RAS guanine nucleotide exchange complex GRB2-SOS in vivo via the GRB2 SH2 domain, linking BCR to RAS signaling (Maru, Y., Peters, K. L., Afar, D. E. H., Shibuya, M., Witte, O. N., and Smithgall, T. E. (1995) Mol. Cell. Biol. 15, 835-842). In the present study, we demonstrate that BCR Tyr-246 and at least one of the closely spaced tyrosine residues, Tyr-279, Tyr-283, and Tyr-289 (3Y cluster), are phosphorylated by FES both in vitro and in 32Pi-labeled cells. Mutagenesis of BCR Tyr-177 to Phe completely abolished FES-induced BCR binding to the GRB2 SH2 domain, identifying Tyr-177 as an additional phosphorylation site for FES. Co-expression of BCR and FES in human 293T cells stimulated the tyrosine autophosphorylation of FES. By contrast, tyrosine phosphorylation of BCR by FES suppressed BCR serine/threonine kinase activity toward the 14-3-3 protein and BCR substrate, BAP-1. These data show that tyrosine phosphorylation by FES affects the interaction of BCR with multiple signaling partners and suggest a general role for BCR in non-receptor protein-tyrosine kinase regulation and signal transduction.
Collapse
Affiliation(s)
- J Li
- Eppley Institute for Research in Cancer and Department of Pharmacology, University of Nebraska Medical Center, Omaha, Nebraska 68198-6805, USA.
| | | |
Collapse
|