1
|
Switch to high-level virus replication and HLA class I upregulation in differentiating megakaryocytic cells after infection with pathogenic hantavirus. Virology 2010; 405:70-80. [PMID: 20673746 DOI: 10.1016/j.virol.2010.05.028] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2010] [Revised: 03/26/2010] [Accepted: 05/22/2010] [Indexed: 11/23/2022]
Abstract
Hantaan virus (HTNV), the prototype member of the Hantavirus genus in the family Bunyaviridae, causes hemorrhagic fever with renal syndrome (HFRS) in humans. Hemorrhage is due to endothelial barrier damage and a sharp decrease in platelet counts. The mechanisms underlying HTNV-associated acute thrombocytopenia have not been elucidated so far. Platelets are produced by mature megakaryocytes that develop during megakaryopoiesis. In this study, we show that HTNV targets megakaryocytic cells whereas rather non-pathogenic hantaviruses did not infect this cell type. After induction of differentiation megakaryocytic cells switched from low-level to high-level HTNV production without reduction in cell survival or alteration in differentiation. However, increased HTNV replication resulted in strong upregulation of HLA class I molecules although HTNV escaped type I interferon (IFN)-associated innate responses. Taken together, HTNV efficiently replicates in differentiating megakaryocytic cells resulting in upregulation of HLA class I molecules, the target structures for cytotoxic T cells (CTLs).
Collapse
|
2
|
Du Z, Kelly E, Mecklenbräuker I, Agle L, Herrero C, Paik P, Ivashkiv LB. Selective Regulation of IL-10 Signaling and Function by Zymosan. THE JOURNAL OF IMMUNOLOGY 2006; 176:4785-92. [PMID: 16585572 DOI: 10.4049/jimmunol.176.8.4785] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Balanced activity of pro- and anti-inflammatory cytokines during innate immune responses is required to allow effective host defense while avoiding tissue damage and autoimmunity. Induction of cytokine production after recognition of pathogen-associated molecular patterns (PAMPs) by innate immune cells has been well demonstrated, but modulation of cytokine function by PAMPs is not well understood. In this study we show that stimulation of macrophages with zymosan, which contains PAMPs derived from yeast, rapidly extinguished macrophage responses to IL-10, a suppressive cytokine that limits inflammatory tissue damage but also compromises host defense. The mechanism of inhibition involved protein kinase Cbeta and internalization of IL-10R, and was independent of TLR2 and phagocytosis. Inhibition of IL-10 signaling and function required direct contact with zymosan, and cells in an inflammatory environment that had not contacted zymosan remained responsive to the paracrine activity of zymosan-induced IL-10. These results reveal a mechanism that regulates IL-10 function such that antimicrobial functions of infected macrophages are not suppressed, but the activation of surrounding noninfected cells and subsequent tissue damage are limited. The fate of individual cells in an inflammatory microenvironment is thus specified by dynamic interactions among host cells, microbes, and cytokines that determine the balance between protection and pathology.
Collapse
Affiliation(s)
- Zhimei Du
- Graduate Program in Immunology, Weill Graduate School of Medical Sciences of Cornell University, New York, NY 10021, USA
| | | | | | | | | | | | | |
Collapse
|
3
|
Du Z, Shen Y, Yang W, Mecklenbrauker I, Neel BG, Ivashkiv LB. Inhibition of IFN-alpha signaling by a PKC- and protein tyrosine phosphatase SHP-2-dependent pathway. Proc Natl Acad Sci U S A 2005; 102:10267-72. [PMID: 16000408 PMCID: PMC1177356 DOI: 10.1073/pnas.0408854102] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Cytokine signaling by the Jak-STAT pathway is subject to complex negative regulation that limits the amplitude and duration of signal transduction. Inhibition of signaling also mediates negative crosstalk, whereby factors with opposing biological activities crossinhibit each other's function. Here, we investigated a rapidly inducible mechanism that inhibited Jak-STAT activation by IFN-alpha, a cytokine that is important for antiviral responses, growth control, and modulation of immune responses. IFN-alpha-induced signaling and gene activation were inhibited by ligation of Fc receptors and Toll-like receptors 7 and 8 in a PKCbeta-dependent manner. Neither PKCbeta nor PKCdelta influenced responses of cells treated with IFN-alpha alone. Inhibition of IFN-alpha signaling correlated with suppression of IFN-alpha-dependent antiviral responses. PKC-mediated inhibition did not require de novo gene expression but involved the recruitment of PKCbeta to the IFN-alpha receptor and interaction with protein tyrosine phosphatase SHP-2, resulting in augmented phosphatase activity. PKC-mediated inhibition of IFN-alpha signaling was abolished in SHP-2-deficient cells, demonstrating a pivotal role for SHP-2 in this inhibitory pathway. Together, our data describe a rapidly inducible, direct mechanism of inhibition of Jak-STAT signaling mediated by a PKCbeta-SHP-2 signaling pathway.
Collapse
Affiliation(s)
- Zhimei Du
- Graduate Program in Immunology, Weill Graduate School of Medical Sciences of Cornell University, New York, NY 10021, USA
| | | | | | | | | | | |
Collapse
|
4
|
Zhou Y, Chase BI, Whitmore M, Williams BRG, Zhou A. Double-stranded RNA-dependent protein kinase (PKR) is downregulated by phorbol ester. FEBS J 2005; 272:1568-76. [PMID: 15794745 DOI: 10.1111/j.1742-4658.2005.04572.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The double-stranded RNA-dependent protein kinase (PKR) is one of the key mediators of interferon (IFN) action against certain viruses. PKR also plays an important role in signal transduction and immunomodulation. Understanding the regulation of PKR activity is important for the use of PKR as a tool to discover and develop novel therapeutics for viral infections, cancer and immune dysfunction. We found that phorbol 12-myristate 13-acetate (PMA), a potent activator of protein kinase C (PKC), decreased the level of autophosphorylated PKR in a dose- and time-dependent manner in IFN-treated mouse fibroblast cells. Polyinosinic-polycytidylic acid (poly I:C) treatment enhanced the activity of PKR induced by IFN, but did not overcome the PMA-induced reduction of PKR autophosphorylation. Western blot analysis with a monoclonal antibody to mouse PKR revealed that the decrease of PKR autophosphorylation in cells by PMA was a result of PKR protein degradation. Selective PKC inhibitors blocked the degradation of PKR stimulated by PMA, indicating that PKC activity was required for the effect. Furthermore, we also found that proteasome inhibitors prevented PMA-induced down regulation of PKR, indicating that an active proteasome is required. Our results identify a novel mechanism for the post-translational regulation of PKR.
Collapse
Affiliation(s)
- Yan Zhou
- Department of Chemistry, Cleveland State University, OH 44115, USA
| | | | | | | | | |
Collapse
|
5
|
Chen X, Zuckerman ST, Kao WJ. Intracellular protein phosphorylation in adherent U937 monocytes mediated by various culture conditions and fibronectin-derived surface ligands. Biomaterials 2005; 26:873-82. [PMID: 15353198 PMCID: PMC5746422 DOI: 10.1016/j.biomaterials.2004.04.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2004] [Accepted: 04/06/2004] [Indexed: 11/16/2022]
Abstract
Macrophages play a central role in the normal healing process after tissue injury and the host response to foreign objects such as biomaterials. The process leading to macrophage adhesion and activation on protein-adsorbed substrates is complex and unresolved. While the use of primary cells offers clinical relevancy, macrophage cell lines offer unique advantages such as availability and relatively homogeneous phenotype as models to probe the molecular mechanism of cell-surface interaction. Our goal was to better characterize the effect of the culture condition and surface-associated ligands on the extent of U937 adhesion. Tyrosine phosphorylation of intracellular proteins was surveyed as a basis to seek a greater understanding of the molecular mechanism involved in mediating U937 adhesion on various ligand-adsorbed surfaces. U937 viability and adhesion on tissue culture polystyrene (TCPS) increased with (i) increasing serum level, (ii) decreasing tyrosine phosphorylation inhibitor AG18 concentration, or (iii) increasing culture time. The adsorption of various adhesion proteins such as fibronectin and peptide ligands (i.e., RGD, PHSRN) on TCPS did not significantly increase the adherent density of U937 when compared with albumin and PBS ligand controls. However, ligand identity and the presence of phorbol myristate acetate dramatically affected the extent (i.e., increase or decrease) and the identity (i.e., molecular weight) of phosphotyrosine proteins in adherent U937 in a time-dependent manner. The extent and identity of phosphotyrosine proteins did not exhibit a clear AG18 dose dependency, rather the level of tyrosine phosphorylation for a distinct group of proteins was either increased or decreased for a given AG18 concentration.
Collapse
Affiliation(s)
- Xiuxu Chen
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Sean T. Zuckerman
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Weiyuan John Kao
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53705, USA
- Corresponding author. 777 Highland Ave., University of Wisconsin-Madison, Madison, WI 53705, USA. Tel: +1608-263-2998; fax: +1608-262-5345. (W.J. Kao)
| |
Collapse
|
6
|
Lin RJ, Liao CL, Lin E, Lin YL. Blocking of the alpha interferon-induced Jak-Stat signaling pathway by Japanese encephalitis virus infection. J Virol 2004; 78:9285-94. [PMID: 15308723 PMCID: PMC506928 DOI: 10.1128/jvi.78.17.9285-9294.2004] [Citation(s) in RCA: 150] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2004] [Accepted: 04/23/2004] [Indexed: 12/23/2022] Open
Abstract
The induction of alpha/beta interferon (IFN-alpha/beta) is a powerful host defense mechanism against viral infection, and many viruses have evolved strategies to overcome the antiviral effects of IFN. In this study, we found that IFN-alpha had only some degree of antiviral activity against Japanese encephalitis virus (JEV) infection, in contrast to another flavivirus, dengue virus serotype 2, which was highly sensitive to IFN-alpha in the cultured cell system. JEV infection appeared to render cells resistant to IFN-alpha since the IFN-alpha-induced luciferase reporter activity driven by the IFN-stimulated response element (ISRE) was gradually reduced as the JEV infection progressed. Since the biological activities of IFNs are triggered by the Janus kinase (Jak) signal transducer and activation of transcription (Stat) signaling cascade, we then studied the activation of Jak-Stat pathway in the virus-infected cells. The IFN-alpha-stimulated tyrosine phosphorylation of Stat1, Stat2, and Stat3 was suppressed by JEV in a virus replication and de novo protein synthesis-dependent manner. Furthermore, JEV infection blocked the tyrosine phosphorylation of IFN receptor-associated Jak kinase, Tyk2, without affecting the expression of IFN-alpha/beta receptor on the cell surface. Consequently, expression of several IFN-stimulated genes in response to IFN-alpha stimulation was also reduced in the JEV-infected cells. Overall, our findings suggest that JEV counteracts the effect of IFN-alpha/beta by blocking Tyk2 activation, thereby resulting in inhibition of Jak-Stat signaling pathway.
Collapse
Affiliation(s)
- Ren-Jye Lin
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan, Republic of China
| | | | | | | |
Collapse
|
7
|
Gold JA, Hoshino Y, Hoshino S, Jones MB, Nolan A, Weiden MD. Exogenous gamma and alpha/beta interferon rescues human macrophages from cell death induced by Bacillus anthracis. Infect Immun 2004; 72:1291-7. [PMID: 14977930 PMCID: PMC356021 DOI: 10.1128/iai.72.3.1291-1297.2004] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
During the recent bioterrorism-related outbreaks, inhalational anthrax had a 45% mortality in spite of appropriate antimicrobial therapy, underscoring the need for better adjuvant therapies. The variable latency between exposure and development of disease suggests an important role for the host's innate immune response. Alveolar macrophages are likely the first immune cells exposed to inhalational anthrax, and the interferon (IFN) response of these cells comprises an important arm of the host innate immune response to intracellular infection with Bacillus anthracis. Furthermore, IFNs have been used as immunoadjuvants for treatment of another intracellular pathogen, Mycobacterium tuberculosis. We established a model of B. anthracis infection with the Sterne strain (34F(2)) which contains lethal toxin (LeTx). 34F(2) was lethal to murine and human macrophages. Treatment with IFNs significantly improved cell viability and reduced the number of germinated intracellular spores. Infection with 34F(2) failed to induce the latent transcription factors signal transducer and activators of transcription 1 (STAT1) and ISGF-3, which are central to the IFN response. Furthermore, 34F(2) reduced STAT1 activation in response to exogenous alpha/beta IFN, suggesting direct inhibition of IFN signaling. Even though 34F(2) has LeTx, there was no mitogen-activated protein kinase kinase 3 cleavage and p38 was normally induced, suggesting that these early effects of B. anthracis infection in macrophages are independent of LeTx. These data suggest an important role for both IFNs in the control of B. anthracis and the potential benefit of using exogenous IFN as an immunoadjuvant therapy.
Collapse
Affiliation(s)
- Jeffrey A Gold
- Division of Pulmonary and Critical Care Medicine, Sackler Institute of Biomedical Studies, New York University School of Medicine, New York, New York 10016, USA
| | | | | | | | | | | |
Collapse
|
8
|
Hsu MJ, Lin WW, Tsao WC, Chang YC, Hsu TL, Chiu AW, Chio CC, Hsieh SL. Enhanced adhesion of monocytes via reverse signaling triggered by decoy receptor 3. Exp Cell Res 2004; 292:241-51. [PMID: 14697332 DOI: 10.1016/j.yexcr.2003.09.019] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Decoy receptor 3 (DcR3), a newly identified soluble protein belonging to the tumor necrosis factor receptor (TNFR) superfamily, is a receptor for Fas ligand (FasL), LIGHT and TL1A. It has been demonstrated that DcR3 is frequently overexpressed by malignant tumors arising from lung, gastrointestinal tract, neuronal glia and virus-associated leukemia. Recently, we demonstrated that DcR3 is able to modulate the differentiation and activation of dendritic cells (DCs), and that DcR3-treated DCs skew naive T cell differentiation towards a Th2 phenotype. In this study, we further demonstrate that DcR3 is able to induce actin reorganization and enhance the adhesion of monocytes and THP-1 cells by activating multiple signaling molecules, such as protein kinase C (PKC), phosphatidylinositol 3-kinase (PI3K), focal adhesion kinase (FAK) and Src kinases. This provides the first evidence that the soluble DcR3, like other immobilized members of TNFR superfamily, is able to trigger 'reverse signaling' to modulate cell function.
Collapse
Affiliation(s)
- Ming-Jen Hsu
- Department of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Takuma A, Kaneda T, Sato T, Ninomiya S, Kumegawa M, Hakeda Y. Dexamethasone enhances osteoclast formation synergistically with transforming growth factor-beta by stimulating the priming of osteoclast progenitors for differentiation into osteoclasts. J Biol Chem 2003; 278:44667-74. [PMID: 12944401 DOI: 10.1074/jbc.m300213200] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Long-term administration of glucocorticoids (GCs) causes osteoporosis with a rapid and severe bone loss and with a slow and prolonged bone disruption. Although the involvement of GCs in osteoblastic proliferation and differentiation has been studied extensively, their direct action on osteoclasts is still controversial and not conclusive. In this study, we investigated the direct participation of GCs in osteoclastogenesis. Dexamethasone (Dex) at <10(-8) M stimulated, but at >10(-7) M depressed, receptor activator of NF-kappaB ligand (RANKL)-induced osteoclast formation synergistically with transforming growth factor-beta. The stimulatory action of Dex was restricted to the early phase of osteoclast differentiation and enhanced the priming of osteoclast progenitors (bone marrow-derived monocytes/macrophages) toward differentiation into cells of the osteoclast lineage. The osteoclast differentiation depending on RANKL requires the activation of NF-kappaB and AP-1, and the DNA binding of these transcription factors to their respective consensus cis-elements was enhanced by Dex, consistent with the stimulation of osteoclastogenesis. However, Dex did not affect the RANKL-induced signaling pathways such as the activation of IkappaB kinase followed by NF-kappaB nuclear translocation or the activation of JNK. On the other hand, Dex significantly decreased the endogenous production of interferon-beta, and this cytokine depressed the RANKL-elicited DNA binding of NF-kappaB and AP-1, as well as osteoclast formation. Thus, the down-regulation of inhibitory cytokines such as interferon-beta by Dex may allow the osteoclast progenitors to be freed from the suppression of osteoclastogenesis, resulting in an increased number of osteoclasts, as is observed in the early phase of GC-induced osteoporosis.
Collapse
Affiliation(s)
- Atsushi Takuma
- Department of Oral Anatomy, Meikai University School of Dentistry, Sakado, Saitama 350-0283, Japan
| | | | | | | | | | | |
Collapse
|
10
|
Kamata T, Yamashita M, Kimura M, Murata K, Inami M, Shimizu C, Sugaya K, Wang CR, Taniguchi M, Nakayama T. src homology 2 domain-containing tyrosine phosphatase SHP-1 controls the development of allergic airway inflammation. J Clin Invest 2003; 111:109-19. [PMID: 12511594 PMCID: PMC151831 DOI: 10.1172/jci15719] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Th2 cells are generated from naive CD4 T cells upon T cell receptor (TCR) recognition of antigen and IL-4 stimulation and play crucial roles in humoral immunity against infectious microorganisms and the pathogenesis of allergic and autoimmune diseases. A tyrosine phosphatase, SHP-1, that contains src homology 2 (SH2) domains is recognized as a negative regulator for various intracellular signaling molecules, including those downstream of the TCR and the IL-4 receptor. Here we assessed the role of SHP-1 in Th1/Th2 cell differentiation and in the development of Th2-dependent allergic airway inflammation by using a natural SHP-1 mutant, the motheaten mouse. CD4 T cells appear to develop normally in the heterozygous motheaten (me/+) thymus even though they express decreased amounts of SHP-1 (about one-third the level of wild-type thymus). The me/+ naive splenic CD4 T cells showed enhanced activation by IL-4 receptor-mediated signaling but only marginal enhancement of TCR-mediated signaling. Interestingly, the generation of Th2 cells was increased and specific cytokine production of mast cells was enhanced in me/+ mice. In an OVA-induced allergic airway inflammation model, eosinophilic inflammation, mucus hyperproduction, and airway hyperresponsiveness were enhanced in me/+ mice. Thus, SHP-1 may have a role as a negative regulator in the development of allergic responses, such as allergic asthma.
Collapse
Affiliation(s)
- Tohru Kamata
- Department of Molecular Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Hayashi T, Kaneda T, Toyama Y, Kumegawa M, Hakeda Y. Regulation of receptor activator of NF-kappa B ligand-induced osteoclastogenesis by endogenous interferon-beta (INF-beta ) and suppressors of cytokine signaling (SOCS). The possible counteracting role of SOCSs- in IFN-beta-inhibited osteoclast formation. J Biol Chem 2002; 277:27880-6. [PMID: 12023971 DOI: 10.1074/jbc.m203836200] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Bone resorption and the immune system are correlated with each other, and both are controlled by a variety of common cytokines produced in the bone microenvironments. Among these immune mediators, the involvement of type I interferons (IFNs) in osteoclastic bone resorption remains unknown. In this study, we investigated the participation of IFN-beta and suppressors of cytokine signaling (SOCS)-1 and -3 in osteoclastogenesis. Addition of exogenous IFN-beta to osteoclast progenitors (bone-derived monocytes/macrophages) inhibited their differentiation toward osteoclasts induced by the receptor activator of NF-kappaB ligand (RANKL) and macrophage colony-stimulating factor with/without transforming growth factor-beta, where inhibition was associated with down-regulation of the gene expressions of molecules related to osteoclast differentiation. In addition, RANKL induced the expression of IFN-beta; furthermore, neutralizing antibody against type I IFNs accelerated the osteoclast formation, indicating type I IFNs as potential intrinsic inhibitors. On the other hand, RANKL also induced the expression of SOCS-1 and -3, suppressors of the IFN signaling. Pretreatment with RANKL for a sufficient time for the induction of SOCSs attenuated phosphorylation of STAT-1 in response to IFN-beta in osteoclast progenitors, causing a decrease in the binding activity of nuclear extracts toward the interferon-stimulated response element. mRNA levels of STAT-1, STAT-2, and IFN-stimulated gene factor-3gamma, comprising IFN-stimulated gene factor-3, were not altered by RANKL. Thus, although the inhibitory cytokine such as IFN-beta is produced in response to RANKL, the inhibition of osteoclastogenesis may be rescued by the induction of signaling suppressors such as SOCSs.
Collapse
Affiliation(s)
- Toshikichi Hayashi
- Department of Oral Anatomy, Meikai University School of Dentistry, Sakado, Saitama 350-0283, Japan
| | | | | | | | | |
Collapse
|
12
|
Lewis J, Eiben LJ, Nelson DL, Cohen JI, Nichols KE, Ochs HD, Notarangelo LD, Duckett CS. Distinct interactions of the X-linked lymphoproliferative syndrome gene product SAP with cytoplasmic domains of members of the CD2 receptor family. Clin Immunol 2001; 100:15-23. [PMID: 11414741 DOI: 10.1006/clim.2001.5035] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
X-linked lymphoproliferative syndrome (XLP; Duncan's disease) is a primary immunodeficiency disease that manifests as an inability to regulate the immune response to Epstein-Barr virus (EBV) infection. Here we examine the ability of the product of the gene defective in XLP, SAP (DSHP/SH2D1A), to associate with the cytoplasmic domains of several members of the CD2 subfamily of cell surface receptors, including SLAM, 2B4, and CD84. While recruitment of SAP to SLAM occurred in a phosphorylation-independent manner, SAP was found to bind preferentially to tyrosine-phosphorylated cytoplasmic domains within 2B4 and CD84. Missense or nonsense mutations in the SAP open reading frame were identified in five of seven clinically diagnosed XLP patients from different kindreds. Four of these variants retained the ability to bind to the cytoplasmic tails of SLAM and CD84. While ectopic expression of wild-type SAP was observed to block the binding of SHP-2 to SLAM, mutant SAP derivatives that retained the ability to bind SLAM did not inhibit recruitment of SHP-2 to SLAM. In contrast, SAP binding to CD84 had no effect on the ability of CD84 to recruit SHP-2, but instead displaced SHP-1 from the cytoplasmic tail of CD84. These results suggest that mutations in the gene encoding the XLP protein SAP lead to functional defects in the protein that include receptor binding and SHP-1 and SHP-2 displacement and that SAP utilizes different mechanisms to regulate signaling through the CD2 family of receptors.
Collapse
Affiliation(s)
- J Lewis
- Metabolism Branch, National Cancer Institute, Bethesda, Maryland 20892-1578, USA
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Ghislain JJ, Wong T, Nguyen M, Fish EN. The interferon-inducible Stat2:Stat1 heterodimer preferentially binds in vitro to a consensus element found in the promoters of a subset of interferon-stimulated genes. J Interferon Cytokine Res 2001; 21:379-88. [PMID: 11440635 DOI: 10.1089/107999001750277853] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Regulated expression of type I interferon (IFN)-stimulated genes (ISG) requires the binding of the signal transducer and activator of transcription (Stat) complexes to enhancer elements located in the ISG promoters. These enhancer elements include the IFN-stimulated response element (ISRE) and the palindromic IFN-gamma activation site (GAS) element. Regulated expression of ISRE containing ISG depends on IFN-stimulated gene factor 3 (ISGF3), a heterodimer involving Stat1 and Stat2 in association with a DNA-binding adapter protein, p48/IFN regulatory factor-9 (IRF-9). Several GAS binding Stat complexes involving Stat1, Stat3, Stat4, and Stat5 have been described, but their contribution to GAS-dependent ISG expression remains to be established. We and others previously identified an IFN-alpha-inducible Stat2:1 heterodimer that exhibits binding to the GAS element of the IRF-1 gene. These previous studies raise the possibility that Stat2:1 may participate in the transcriptional activation of the subset of ISG containing GAS elements. To address this question, we performed a PCR-assisted binding site selection procedure to define the Stat2:1 recognition sequence. The data reveal that Stat2:1 preferentially binds to a palindromic sequence similar to the consensus GAS element found in the promoter of several ISG. Our results establish that in addition to the classic complex formation involving Stat2, Stat1, and p48 associations, Stat2:1 heterodimers are formed in response to IFN treatment that may play an important role in the transcriptional regulation of certain ISG.
Collapse
Affiliation(s)
- J J Ghislain
- Biologie Moléculaire du Développement, Ecole Normale Superieure, France
| | | | | | | |
Collapse
|
14
|
Gamero AM, Larner AC. Vanadate facilitates interferon alpha-mediated apoptosis that is dependent on the Jak/Stat pathway. J Biol Chem 2001; 276:13547-53. [PMID: 11278370 DOI: 10.1074/jbc.m007948200] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Type I interferon (IFN)-dependent inhibition of cell growth can occur either in the absence or presence of apoptosis. The mechanisms that determine whether or not cells undergo apoptosis after exposure to IFN-alpha are not clear. This study shows that a variety of cell lines that display growth inhibition but not apoptosis in response to IFN-alpha will undergo programmed cell death when low concentrations of the protein-tyrosine phosphatase inhibitor vanadate are added with IFN-alpha. In contrast, the combination of tumor necrosis factor-alpha with vanadate did not trigger apoptosis in these cells. Caspase-3 activity was detected only in cells exposed to IFN-alpha and vanadate but not to IFN-alpha or vanadate alone. The ability of IFN-alpha and vanadate to induce apoptosis did not require expression of p53 and was blocked by N-acetyl-l-cysteine. Activation of the Jak/Stat pathway and expression of IFN-inducible genes was not altered by incubation of cells with IFN-alpha and vanadate compared with IFN-alpha alone. However, mutant cells lacking Stat1, Stat2, Jak1, or Tyk2, or cells expressing kinase inactive Jak1 or Tyk2 did not undergo apoptosis in the presence of IFN-alpha and vanadate. These results suggest that IFN-alpha stimulation of Stat-dependent genes is necessary, but not sufficient, for this cytokine to induce apoptosis. Another signaling cascade that involves the activity of a protein-tyrosine phosphatase and/or the generation of reactive oxygen species may play an important role in promoting IFN-alpha-induced apoptosis.
Collapse
Affiliation(s)
- A M Gamero
- Department of Immunology, Lerner Research Institute, The Cleveland Clinic Foundation, Ohio 44195, USA
| | | |
Collapse
|
15
|
Tu LC, Chou CK, Chen HC, Yeh SF. Protein kinase C-mediated tyrosine phosphorylation of paxillin and focal adhesion kinase requires cytoskeletal integrity and is uncoupled to mitogen-activated protein kinase activation in human hepatoma cells. J Biomed Sci 2001; 8:184-90. [PMID: 11287749 DOI: 10.1007/bf02256411] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Treatment of cultured human hepatoma HepG2 cells with the protein kinase C (PKC) activator, 12-O-tetradecanoylphorbol-13-acetate (TPA), results in an increase in tyrosine phosphorylation of several proteins, including the focal adhesion kinase (FAK) and paxillin using anti-phosphotyrosine Western blotting and immunoprecipitation. However, when cells are in suspension or in the presence of cytochalasin D which disrupts the intracellular network of actin microfilaments, TPA loses its ability to stimulate tyrosine phosphorylation of FAK and paxillin but it still activates mitogen-activated protein kinase (MAPK) and induces PKC translocation from cytosol to the membrane in HepG2 cells. On the other hand, PD98059, a specific inhibitor of mitogen-activated protein kinase kinase, blocks TPA-induced MAPK activation but has no effect on TPA-induced tyrosine phosphorylation. Our findings suggest that TPA-induced tyrosine phosphorylation of FAK and paxillin in human hepatoma cells is PKC dependent and requires the integrity of the cell cytoskeleton but is uncoupled to the signal transduction pathway of PKC leading to the translocation of PKC and MAPK activation.
Collapse
Affiliation(s)
- L C Tu
- Institute of Biochemistry, National Yang-Ming University, Taipei, Taiwan, ROC
| | | | | | | |
Collapse
|
16
|
Meloche S, Pelletier S, Servant MJ. Functional cross-talk between the cyclic AMP and Jak/STAT signaling pathways in vascular smooth muscle cells. Mol Cell Biochem 2000; 212:99-109. [PMID: 11108141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Angiotensin II (Ang II), the primary effector of the renin-angiotensin system, is a multifunctional hormone that plays an important role in vascular function. In addition to its classical vasoconstrictor action, more recent studies demonstrated that Ang II stimulates the growth of a number of cell types, including vascular smooth muscle cells (SMC) (reviewed in [1-3]). In vivo studies have shown that chronic infusion of Ang II leads to the development of vascular hypertrophy in rats, whereas administration of angiotensin-converting enzyme (ACE) inhibitors or Ang II receptor antagonists prevents or regresses vascular hypertrophy in models of genetic and experimental hypertension [4]. Consistent with in vivo data, several laboratories have shown that Ang II stimulates protein synthesis and induces cellular hypertrophy, but not cell proliferation, in cultured aortic SMC [5-9]. Ang II also induces directed migration (chemotaxis) of vascular SMC [10, 11], although its effect is less prominent than that of platelet-derived growth factor (PDGF). The cellular mechanisms underlying these diverse actions of Ang II are not clearly understood but are likely to involve the activation of distinct signaling pathways.
Collapse
Affiliation(s)
- S Meloche
- Research Centre, Centre hospitalier de l'Université de Montréal, Quebec, Canada
| | | | | |
Collapse
|
17
|
Regulation of Jak2 tyrosine kinase by protein kinase C during macrophage differentiation of IL-3–dependent myeloid progenitor cells. Blood 2000. [DOI: 10.1182/blood.v95.5.1626.005k21_1626_1632] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Differentiation of macrophages from myeloid progenitor cells depends on a discrete balance between cell growth, survival, and differentiation signals. Interleukin-3 (IL-3) supports the growth and survival of myeloid progenitor cells through the activation of Jak2 tyrosine kinase, and macrophage differentiation has been shown to be regulated by protein kinase C (PKC). During terminal differentiation of macrophages, the cells lose their mitogenic response to IL-3 and undergo growth arrest, but the underlying signaling mechanisms have remained elusive. Here we show that in IL-3–dependent 32D myeloid progenitor cells, the differentiation-inducing PKC isoforms PKC- and PKC-δ specifically caused rapid inhibition of IL-3–induced tyrosine phosphorylation. The target for this inhibition was Jak2, and the activation of PKC by 12-O-tetradecanoyl-phorbol-13-acetate treatment also abrogated IL-3–induced tyrosine phosphorylation of Jak2 in Ba/F3 cells. The mechanism of this regulation was investigated in 32D and COS7 cells, and the inhibition of Jak2 required catalytic activity of PKC-δ and involved the phosphorylation of Jak2 on serine and threonine residues by the associated PKC-δ. Furthermore, PKC-δ inhibited the in vitro catalytic activity of Jak2, indicating that Jak2 was a direct target for PKC-δ. In 32D cells, the inhibition of Jak2 either by PKC-δ, tyrosine kinase inhibitor AG490, or IL-3 deprivation caused a similar growth arrest. Reversal of PKC-δ–mediated inhibition by the overexpression of Jak2 promoted apoptosis in differentiating 32D cells. These results demonstrate a PKC-mediated negative regulatory mechanism of cytokine signaling and Jak2, and they suggest that it serves to integrate growth-promoting and differentiation signals during macrophage differentiation.
Collapse
|
18
|
Komatsu T, Takeuchi K, Yokoo J, Tanaka Y, Gotoh B. Sendai virus blocks alpha interferon signaling to signal transducers and activators of transcription. J Virol 2000; 74:2477-80. [PMID: 10666284 PMCID: PMC111735 DOI: 10.1128/jvi.74.5.2477-2480.2000] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
We demonstrate here that Sendai virus (SeV) blocks alpha interferon (IFN-alpha) signaling to signal transducers and activators of transcription (STATs) in HeLa cells. IFN-alpha-stimulated tyrosine phosphorylation of STATs and subsequent formation of the IFN-stimulated gene factor 3 transcription complex were inhibited in SeV-infected cells, resulting in inefficient induction of IFN-stimulated gene products. None of the components of the signaling pathway-type I IFN receptor subunits Jak1, Tyk2, Stat1, Stat2, and p48-was degraded. Moreover, tyrosine phosphorylation of Jak1 in response to IFN-alpha was unaffected at the early phase of infection, suggesting that oligomerization of the receptor subunits proceeded normally. In contrast to Jak1, IFN-alpha-stimulated tyrosine phosphorylation of Tyk2 was partially inhibited. Therefore, this partial inhibition of activation of Tyk2 probably contributes to the subsequent failure in the activation of STATs.
Collapse
Affiliation(s)
- T Komatsu
- Department of Microbiology, Fukui Medical University School of Medicine, Yoshida-gun, Fukui 910-1193, Japan.
| | | | | | | | | |
Collapse
|
19
|
Franchimont D, Galon J, Gadina M, Visconti R, Zhou Y, Aringer M, Frucht DM, Chrousos GP, O'Shea JJ. Inhibition of Th1 immune response by glucocorticoids: dexamethasone selectively inhibits IL-12-induced Stat4 phosphorylation in T lymphocytes. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 164:1768-74. [PMID: 10657623 DOI: 10.4049/jimmunol.164.4.1768] [Citation(s) in RCA: 186] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Glucocorticoids are widely used in the therapy of inflammatory, autoimmune, and allergic diseases. As the end-effectors of the hypothalamic-pituitary-adrenal axis, endogenous glucocorticoids also play an important role in suppressing innate and cellular immune responses. Previous studies have indicated that glucocorticoids inhibit Th1 and enhance Th2 cytokine secretion. IL-12 promotes Th1 cell-mediated immunity, while IL-4 stimulates Th2 humoral-mediated immunity. Here, we examined the regulatory effect of glucocorticoids on key elements of IL-12 and IL-4 signaling. We first investigated the effect of dexamethasone on IL-12-inducible genes and showed that dexamethasone inhibited IL-12-induced IFN-gamma secretion and IFN regulatory factor-1 expression in both NK and T cells. This occurred even though the level of expression of IL-12 receptors and IL-12-induced Janus kinase phosphorylation remained unaltered. However, dexamethasone markedly inhibited IL-12-induced phosphorylation of Stat4 without altering its expression. This was specific, as IL-4-induced Stat6 phosphorylation was not affected, and mediated by the glucocorticoid receptor, as it was antagonized by the glucocorticoid receptor antagonist RU486. Moreover, transfection experiments showed that dexamethasone reduced responsiveness to IL-12 through the inhibition of Stat4-dependent IFN regulatory factor-1 promoter activity. We conclude that blocking IL-12-induced Stat4 phosphorylation, without altering IL-4-induced Stat6 phosphorylation, appears to be a new suppressive action of glucocorticoids on the Th1 cellular immune response and may help explain the glucocorticoid-induced shift toward the Th2 humoral immune response.
Collapse
Affiliation(s)
- D Franchimont
- Lymphocyte Cell Biology Section, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Bode JG, Nimmesgern A, Schmitz J, Schaper F, Schmitt M, Frisch W, Häussinger D, Heinrich PC, Graeve L. LPS and TNFalpha induce SOCS3 mRNA and inhibit IL-6-induced activation of STAT3 in macrophages. FEBS Lett 1999; 463:365-70. [PMID: 10606755 DOI: 10.1016/s0014-5793(99)01662-2] [Citation(s) in RCA: 166] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Recent findings indicate that cytokine signaling can be modulated by other mediators of simultaneously activated signal transduction pathways. In this study we show that LPS and TNFalpha are potent inhibitors of IL-6-mediated STAT3 activation in human monocyte derived macrophages, rat liver macrophages and RAW 264.7 mouse macrophages but not in human hepatoma cells (HepG2) or in rat hepatocytes. Accordingly, LPS and TNFalpha were found to induce the expression of SOCS3 mRNA in each of the investigated type of macrophages but not in HepG2 cells. Using a specific inhibitor, evidence is presented that the p38 MAP kinase might be involved, especially for the inhibitory effect of TNFalpha.
Collapse
Affiliation(s)
- J G Bode
- Institut für Biochemie, Klinikum der RWTH Aachen, Pauwelsstrasse 30, 52057, Aachen, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Nguyen VA, Gao B. Cross-talk between alpha(1B)-adrenergic receptor (alpha(1B)AR) and interleukin-6 (IL-6) signaling pathways. Activation of alpha(1b)AR inhibits il-6-activated STAT3 in hepatic cells by a p42/44 mitogen-activated protein kinase-dependent mechanism. J Biol Chem 1999; 274:35492-8. [PMID: 10585421 DOI: 10.1074/jbc.274.50.35492] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Treatment of primary rat hepatocytes or tranfected HepG2 cells with the alpha(1B)-adrenergic receptor (alpha(1B)AR) agonist phenylephrine (PE) significantly inhibited interleukin 6 (IL-6)-induced STAT3 binding, tyrosine phosphorylation, and IL-6-induced serum amyloid A mRNA expression. Western analyses and in vitro kinase assays indicate that this inhibition is not due to either down-regulation of STAT3 protein expression nor inactivation of upstream-located JAK1 and JAK2. Blocking the new RNA and protein syntheses antagonized the inhibitory effect of PE on IL-6-activated STAT3, suggesting synthesis of an inhibitory factor(s) is involved. The inhibitory effect of PE on IL-6 activation of STAT3 was also abolished by the tyrosine phosphatase inhibitor sodium vanadate, indicating involvement of protein tyrosine phosphatases. Furthermore, preincubation of the cells with the specific MEK1 inhibitor PD98059 or a dominant negative MEK1 reversed the inhibitory effect of PE, and expression of constitutively activated MEK1 alone abolished IL-6-activated STAT3. Taken together, these data indicate that PE inhibits IL-6 activation of STAT3 in hepatic cells by a p42/44 mitogen-activated protein kinase-dependent mechanism, and tyrosine phosphatases are involved. This inhibitory cross-talk between the alpha(1B)AR and IL-6 signaling pathways implicates the alpha(1B)AR involvement in regulating the IL-6-mediated inflammatory responses.
Collapse
Affiliation(s)
- V A Nguyen
- Department of Pharmacology, Medical College of Virginia, Virginia Commonwealth University, Richmond, Virginia 23298, USA
| | | |
Collapse
|
22
|
Vila‐Coro AJ, Rodríguez‐Frade JM, De Ana AM, Moreno‐Ortíz MAC, Martínez‐A. C, Mellado M. The chemokine SDF‐lα triggers CXCR4 receptor dimerization and activates the JAK/STAT pathway. FASEB J 1999. [DOI: 10.1096/fasebj.13.13.1699] [Citation(s) in RCA: 384] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Antonio J. Vila‐Coro
- Department of Immunology and OncologyCentro Nacional de BiotecnologíaCSIC‐Universidad Autónoma de MadridCampus de Cantoblanco E‐28049 Madrid Spain
| | - José Miguel Rodríguez‐Frade
- Department of Immunology and OncologyCentro Nacional de BiotecnologíaCSIC‐Universidad Autónoma de MadridCampus de Cantoblanco E‐28049 Madrid Spain
| | - Ana Martín De Ana
- Department of Immunology and OncologyCentro Nacional de BiotecnologíaCSIC‐Universidad Autónoma de MadridCampus de Cantoblanco E‐28049 Madrid Spain
| | - MA Carmen Moreno‐Ortíz
- Department of Immunology and OncologyCentro Nacional de BiotecnologíaCSIC‐Universidad Autónoma de MadridCampus de Cantoblanco E‐28049 Madrid Spain
| | - Carlos Martínez‐A.
- Department of Immunology and OncologyCentro Nacional de BiotecnologíaCSIC‐Universidad Autónoma de MadridCampus de Cantoblanco E‐28049 Madrid Spain
| | - Mario Mellado
- Department of Immunology and OncologyCentro Nacional de BiotecnologíaCSIC‐Universidad Autónoma de MadridCampus de Cantoblanco E‐28049 Madrid Spain
| |
Collapse
|
23
|
Abstract
Interferons play key roles in mediating antiviral and antigrowth responses and in modulating immune response. The main signaling pathways are rapid and direct. They involve tyrosine phosphorylation and activation of signal transducers and activators of transcription factors by Janus tyrosine kinases at the cell membrane, followed by release of signal transducers and activators of transcription and their migration to the nucleus, where they induce the expression of the many gene products that determine the responses. Ancillary pathways are also activated by the interferons, but their effects on cell physiology are less clear. The Janus kinases and signal transducers and activators of transcription, and many of the interferon-induced proteins, play important alternative roles in cells, raising interesting questions as to how the responses to the interferons intersect with more general aspects of cellular physiology and how the specificity of cytokine responses is maintained.
Collapse
Affiliation(s)
- G R Stark
- Lerner Research Institute, Cleveland Clinic Foundation, Ohio 44195, USA.
| | | | | | | | | |
Collapse
|
24
|
Sengupta TK, Talbot ES, Scherle PA, Ivashkiv LB. Rapid inhibition of interleukin-6 signaling and Stat3 activation mediated by mitogen-activated protein kinases. Proc Natl Acad Sci U S A 1998; 95:11107-12. [PMID: 9736697 PMCID: PMC21603 DOI: 10.1073/pnas.95.19.11107] [Citation(s) in RCA: 195] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Gene activation and cellular differentiation induced by interleukin-6 (IL-6) and transcription factor Stat3 are suppressed by several factors, including ionomycin, granulocyte/macrophage-colony-stimulating factor, and phorbol 12-myristate 13-acetate (PMA), that block IL-6-induced Stat3 activation. These inhibitory agents activate mitogen activated protein kinases (MAPKs), and thus the role of MAPKs in the mechanism of inhibition of Stat3 activation was investigated. Inhibition of IL-6-induced Stat3 activation by PMA and ionomycin was rapid (within 5 min) and did not require new RNA or protein synthesis. Inhibition of Stat3 DNA-binding activity and tyrosine phosphorylation by PMA, ionomycin, and granulocyte/macrophage-colony-stimulating factor was reversed when activation of the extracellular signal-regulated kinase (ERK) group of MAPKs was blocked by using specific kinase inhibitors. Expression of constitutively active MEK1, the kinase that activates ERKs, or overexpression of ERK2, but not JNK1, inhibited Stat3 activation. Inhibition of Stat3 correlated with suppression of IL-6-induction of a signal transducer and activator of transcription (STAT)-dependent reporter gene. In contrast to IL-6, activation of Stat3 by interferon-alpha was not inhibited. MEKs and ERKs inhibited IL-6 activation of Stat3 harboring a mutation at serine-727, the major site for serine phosphorylation, similar to inhibition of wild-type Stat3, and inhibited Janus kinases Jak1 and Jak2 upstream of Stat3 in the Jak-STAT-signaling pathway. These results demonstrate an ERK-mediated mechanism for inhibiting IL-6-induced Jak-STAT signaling that is rapid and inducible, and thus differs from previously described mechanisms for downmodulation of the Jak-STAT pathway. This inhibitory pathway provides a molecular mechanism for the antagonism of Stat3-mediated IL-6 activity by factors that activate ERKs.
Collapse
Affiliation(s)
- T K Sengupta
- Department of Medicine, Hospital for Special Surgery, Cornell University Graduate School of Medical Sciences New York, NY 10021, USA
| | | | | | | |
Collapse
|
25
|
Van Weyenbergh J, Lipinski P, Abadie A, Chabas D, Blank U, Liblau R, Wietzerbin J. Antagonistic Action of IFN-β and IFN-γ on High Affinity Fcγ Receptor Expression in Healthy Controls and Multiple Sclerosis Patients. THE JOURNAL OF IMMUNOLOGY 1998. [DOI: 10.4049/jimmunol.161.3.1568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Abstract
Monocyte-macrophage activation by IFN-γ is characterized by a pronounced increase of high affinity Fc receptors for IgG (FcγRI), capable of triggering respiratory burst, phagocytosis, Ab-dependent cytotoxicity, and release of proinflammatory cytokines. In view of the antagonism of IFN-β on IFN-γ action, of interest in the chronic inflammatory disorder multiple sclerosis, we examined the possible effect of IFN-β on IFN-γ induction of FcγRI gene expression. We found that IFN-β significantly down-regulated IFN-γ-induced FcγRI surface expression in peripheral blood monocytes from healthy donors, in a dose- and time-dependent manner. This down-regulation of FcγRI surface levels did not correspond to a decrease in FcγRI mRNA, suggesting a posttranscriptional effect of IFN-β. Down-regulation of FcγRI surface expression correlated with diminished cellular signaling through FcγRI, since the IFN-γ-induced increase in Fcγ receptor-triggered respiratory burst was nearly completely abrogated by simultaneous addition of IFN-β. Finally, the same antagonism between both IFNs on FcγRI surface expression was observed in peripheral blood monocytes derived from multiple sclerosis patients; inhibition by IFN-β was even increased (82 ± 11%), as compared with healthy controls (67 ± 4%). These results may partially help explain the beneficial effect of IFN-β in multiple sclerosis.
Collapse
Affiliation(s)
- Johan Van Weyenbergh
- *Unité 365, Institut National de la Santé et de la Recherche Médicale (INSERM), Institut Curie, Section de Recherche,
| | - Pawel Lipinski
- *Unité 365, Institut National de la Santé et de la Recherche Médicale (INSERM), Institut Curie, Section de Recherche,
| | - Annie Abadie
- *Unité 365, Institut National de la Santé et de la Recherche Médicale (INSERM), Institut Curie, Section de Recherche,
| | - Dorothée Chabas
- †Laboratoire d’Immunologie Cellulaire, Fédération de Neurologie et INSERM CJF 9608, Hôpital Pitié-Salpêtrière, and
| | - Ulrich Blank
- ‡Unité d’Immuno-Allergie, Institut Pasteur, Paris, France
| | - Roland Liblau
- †Laboratoire d’Immunologie Cellulaire, Fédération de Neurologie et INSERM CJF 9608, Hôpital Pitié-Salpêtrière, and
| | - Juana Wietzerbin
- *Unité 365, Institut National de la Santé et de la Recherche Médicale (INSERM), Institut Curie, Section de Recherche,
| |
Collapse
|
26
|
Walker DG. Expression and regulation of complement C1q by human THP-1-derived macrophages. MOLECULAR AND CHEMICAL NEUROPATHOLOGY 1998; 34:197-218. [PMID: 10327418 DOI: 10.1007/bf02815080] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The regulation of C1q expression was examined in the human monocytic cell line THP-1. Since these cells can be differentiated into cells with macrophage properties and induced to express C1q, they were used as models for mature human monocyte/macrophages and indirectly microglia. Interferon-gamma (IFN-gamma) and the anti-inflammatory steroid agents dexamethasone and prednisone were powerful stimulators of C1q production, alone or in combination. Interleukin-6 (IL-6) and lipopolysaccharide (LPS) also had significant stimulatory activity. Phorbol myristate acetate, a protein kinase C activator, reduced C1q expression. Four additional classes of pharmacological agents were tested for their effect on C1q secretion. Tacrine, but not indomethacin, cimetidine, or propentofylline, showed activity in inhibiting C1q secretion by IFN-gamma treated THP-1-derived macrophages.
Collapse
Affiliation(s)
- D G Walker
- Kinsmen Laboratory of Neurological Research, Department of Psychiatry, University of British Columbia, Vancouver, Canada.
| |
Collapse
|
27
|
Gadina M, Stancato LM, Bacon CM, Larner AC, O’Shea JJ. Cutting Edge: Involvement of SHP-2 in Multiple Aspects of IL-2 Signaling: Evidence for a Positive Regulatory Role. THE JOURNAL OF IMMUNOLOGY 1998. [DOI: 10.4049/jimmunol.160.10.4657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Abstract
Binding of IL-2 to its receptor activates several biochemical pathways, but precisely how these pathways are linked is incompletely understood. Here, we report that SHP-2, an SH2-domain containing tyrosine phosphatase, associates with different molecules of the IL-2 signaling cascade. Upon IL-2 stimulation, SHP-2 was coimmunoprecipitated with Grb2 and the p85 subunit of phosphatidylinositol 3-kinase. In contrast, SHP-2 was constitutively associated with JAK1 and JAK3. Finally, SHP-2 expression amplified STAT-dependent transcriptional activation whereas a dominant negative allele inhibited transactivation and the IL-2-induced activation of MAPK (mitogen-activated protein kinase). These results demonstrate the involvement of SHP-2 in multiple pathways of the IL-2 signaling cascade and provide evidence for its positive regulatory role.
Collapse
Affiliation(s)
- Massimo Gadina
- *Lymphocyte Cell Biology Section, Arthritis and Rheumatism Branch, National Institute of Arthritis Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Louis M. Stancato
- *Lymphocyte Cell Biology Section, Arthritis and Rheumatism Branch, National Institute of Arthritis Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Chris M. Bacon
- *Lymphocyte Cell Biology Section, Arthritis and Rheumatism Branch, National Institute of Arthritis Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Andrew C. Larner
- †U.S. Food and Drug Administration, Center for Biologics Evaluation and Research, Division of Cytokine Biology, Bethesda, MD 20814
| | - John J. O’Shea
- *Lymphocyte Cell Biology Section, Arthritis and Rheumatism Branch, National Institute of Arthritis Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
28
|
Abstract
Multiple biologic effects of interferon-α (IFN-α), including cell growth inhibition and antiviral protection, are initiated by tyrosine phosphorylation of STAT proteins. Although this signal pathway has been intensively investigated, the relevance of STAT signal persistence has received scant attention. Using paired isogenic lymphoma cells (Daudi), which either are sensitive or resistant to growth inhibition by IFN-α, we found comparable initial tyrosine phosphorylation of multiple STAT proteins; however, the phosphorylation durations and associated DNA-binding activities diverged. Phosphorylation and DNA-binding capacity of STAT1 decreased after 4 to 8 hours in resistant cells, as compared with 24 to 32 hours in sensitive cells, whereas phosphorylation of STAT3 and STAT5b was briefer in both lines. Functional significance of the prolonged STAT1 signal, therefore, was explored by experimental interruption of tyrosine phosphorylation, either by premature withdrawal of the IFN-α or deferred addition of pharmacologically diverse antagonists: staurosporine (protein kinase inhibitor), phorbol 12-myristate 13-acetate (growth promoter), or aurintricarboxylic acid (ligand competitor). Results indicated that an approximately 18-hour period of continued STAT1 phosphorylation was associated with growth arrest, but that antiviral protection developed earlier. These differences provide novel evidence of a temporal dimension to IFN-α signal specificity and show that duration of STAT1 activation may be a critical variable in malignant cell responsiveness to antiproliferative therapy.
Collapse
|
29
|
Fernández L, Flores-Morales A, Lahuna O, Sliva D, Norstedt G, Haldosén LA, Mode A, Gustafsson JA. Desensitization of the growth hormone-induced Janus kinase 2 (Jak 2)/signal transducer and activator of transcription 5 (Stat5)-signaling pathway requires protein synthesis and phospholipase C. Endocrinology 1998; 139:1815-24. [PMID: 9528967 DOI: 10.1210/endo.139.4.5931] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Signal transducers and activators of transcription (Stat) proteins are latent cytoplasmic transcription factors that are tyrosine phosphorylated by Janus kinases (Jak) in response to GH and other cytokines. GH activates Stat5 by a mechanism that involves tyrosine phosphorylation and nuclear translocation. However, the mechanisms that turn off the GH-activated Jak2/Stat5 pathway are unknown. Continuous exposure to GH of BRL-4 cells, a rat hepatoma cell line stably transfected with rat GH receptor, induces a rapid but transient activation of Jak2 and Stat5. GH-induced Stat5 DNA-binding activity was detected after 2 min and reached a maximum at 10 min. Continued exposure to GH resulted in a desensitization characterized by 1) a rapid decrease in Stat5 DNA-binding activity. The rate of decrease of activity was rapid up to 1 h of GH treatment, and the remaining activity declined slowly thereafter. The activity of Stat5 present after 5 h is still higher than the control levels and almost 10-20% with respect to maximal activity at 10 min; and 2) the inability of further GH treatment to reinduce activation of Stat5. In contrast, with transient exposures of BRL-4 cells to GH, Stat5 DNA-binding activity could repeatedly be induced. GH-induced Jak2 and Stat5 activities were independent of ongoing protein synthesis. However, Jak2 tyrosine phosphorylation and Stat5 DNA-binding activity were prolonged for at least 4 h in the presence of cycloheximide, which suggests that the maintenance of desensitization requires ongoing protein synthesis. Furthermore, inhibition of protein synthesis potentiated GH-induced transcriptional activity in BRL-4 cells transiently transfected with SPIGLE1CAT, a reporter plasmid activated by Stat5. GH-induced Jak2 and Stat5 activation were not affected by D609 or mepacrine, both inhibitors of phospholipase C. However, in the presence of D609 and mepacrine, GH maintained prolonged Jak2 and Stat5 activation. Transactivation of SPIGLE1 by GH was potentiated by mepacrine and D609 but not by the phospholipase A2 inhibitor AACOCF3. Thus, a regulatory circuit of GH-induced transcription through the Jak2/Stat5-signaling pathway includes a prompt GH-induced activation of Jak2/Stat5 followed by a negative regulatory response; ongoing protein synthesis and intracellular signaling pathways, where phospholipase C activity is involved, play a critical role to desensitize the GH-activated Jak2/Stat5-signaling pathway.
Collapse
Affiliation(s)
- L Fernández
- Department of Medical Nutrition, Karolinska Institute, Novum, Huddinge, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Bhat GJ, Hunt RA, Baker KM. alpha-Thrombin inhibits signal transducers and activators of transcription 3 signaling by interleukin-6, leukemia inhibitory factor, and ciliary neurotrophic factor in CCL39 cells. Arch Biochem Biophys 1998; 350:307-14. [PMID: 9473306 DOI: 10.1006/abbi.1997.0520] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
We recently demonstrated that, in rat aortic smooth muscle cells, alpha-thrombin stimulated Stat3/SIF-A (signal transducers and activators of transcription 3/sis-inducing factor-A) activity [G. J. Bhat et al. (1997) Hypertension 29(Pt. 2), 356-360]. In the present study, we observed that exposure of CCL39 cells (a Chinese hamster lung fibroblast cell line) to alpha-thrombin resulted in a time-dependent decrease in basal SIF-A activity. We hypothesized that the decrease in basal SIF-A was due to the initiation of an inhibitory pathway, following alpha-thrombin exposure. To test this hypothesis, we determined if alpha-thrombin would inhibit Stat3 and SIF-A activation by interleukin-6 (IL-6), leukemia inhibitory factor (LIF), and ciliary neurotrophic factor (CNTF). In support of this hypothesis, alpha-thrombin inhibited the Stat3/SIF-A response induced by all the above cytokines. The inhibition by alpha-thrombin was concentration dependent, was sensitive to hirudin, and was mimicked by the thrombin receptor agonist peptide. The inhibition did not require the activation of phorbol 12-myristate 13-acetate-sensitive isoforms of protein kinase C and was reversed by pretreatment with the mitogen-activated protein kinase kinase 1 (MAPKK1 or MEK1) inhibitor PD98059. Inhibitory cross talk between alpha-thrombin and IL-6 was also observed in MRC-5 cells, a fibroblast cell line derived from human lung tissue. Thus, we identify a novel alpha-thrombin inhibitory pathway which, acting through a MAPKK1-dependent mechanism, blocks IL-6-, LIF-, and CNTF-induced Stat3/SIF-A activation. This inhibitory cross talk may provide an important regulatory function to modulate gene transcription by these cytokines, during immune and inflammatory responses.
Collapse
Affiliation(s)
- G J Bhat
- Research Program, Sigfried and Janet Weis Center for Research, The Pennsylvania State University College of Medicine, 100 North Academy Avenue, Danville, Pennsylvania 17822, USA
| | | | | |
Collapse
|
31
|
The Bmx Tyrosine Kinase Induces Activation of the Stat Signaling Pathway, Which Is Specifically Inhibited by Protein Kinase Cδ. Blood 1997. [DOI: 10.1182/blood.v90.11.4341.4341_4341_4353] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Members of the hematopoietically expressed Tec tyrosine kinase family have an important role in hematopoietic signal transduction, as exemplified by the crucial role of Btk for B-cell differentiation and activation. Although a variety of cell surface receptors have been found to activate Tec tyrosine kinases, the specific signaling pathways and substrate molecules used by Tec kinases are still largely unknown. In this study a Tec family kinase, Bmx, was found to induce activation of the Stat signaling pathway. Bmx induced the tyrosine phosphorylation and DNA binding activity of all the Stat factors tested, including Stat1, Stat3, and Stat5, both in mammalian and insect cells. Bmx also induced transcriptional activation of Stat1- and Stat5-dependent reporter genes. Other cytoplasmic tyrosine kinases, Syk, Fyn, and c-Src, showed no or only weak ability to activate Stat proteins. Expression of Bmx in mammalian cells was found to induce activation of endogenous Stat proteins without activation of endogenous Jak kinases. We further analyzed the Bmx-mediated activation of Stat1, which was found to be regulated by protein kinase C δ (PKCδ) isoform, but not β 1, ε, or ζ isoforms, leading to inhibition of Stat1 tyrosine phosphorylation. In conclusion, these studies show that Bmx, a Tec family kinase, can function as an activator of the Stat signaling pathway and identify a role for PKCδ in the regulation of Bmx signaling.
Collapse
|
32
|
The Bmx Tyrosine Kinase Induces Activation of the Stat Signaling Pathway, Which Is Specifically Inhibited by Protein Kinase Cδ. Blood 1997. [DOI: 10.1182/blood.v90.11.4341] [Citation(s) in RCA: 79] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractMembers of the hematopoietically expressed Tec tyrosine kinase family have an important role in hematopoietic signal transduction, as exemplified by the crucial role of Btk for B-cell differentiation and activation. Although a variety of cell surface receptors have been found to activate Tec tyrosine kinases, the specific signaling pathways and substrate molecules used by Tec kinases are still largely unknown. In this study a Tec family kinase, Bmx, was found to induce activation of the Stat signaling pathway. Bmx induced the tyrosine phosphorylation and DNA binding activity of all the Stat factors tested, including Stat1, Stat3, and Stat5, both in mammalian and insect cells. Bmx also induced transcriptional activation of Stat1- and Stat5-dependent reporter genes. Other cytoplasmic tyrosine kinases, Syk, Fyn, and c-Src, showed no or only weak ability to activate Stat proteins. Expression of Bmx in mammalian cells was found to induce activation of endogenous Stat proteins without activation of endogenous Jak kinases. We further analyzed the Bmx-mediated activation of Stat1, which was found to be regulated by protein kinase C δ (PKCδ) isoform, but not β 1, ε, or ζ isoforms, leading to inhibition of Stat1 tyrosine phosphorylation. In conclusion, these studies show that Bmx, a Tec family kinase, can function as an activator of the Stat signaling pathway and identify a role for PKCδ in the regulation of Bmx signaling.
Collapse
|
33
|
Suzuki Y, Ozawa Y, Murakami K, Miyazaki H. Lysophosphatidic acid inhibits epidermal-growth-factor-induced Stat1 signaling in human epidermoid carcinoma A431 cells. Biochem Biophys Res Commun 1997; 240:856-61. [PMID: 9398658 DOI: 10.1006/bbrc.1997.7758] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Lysophosphatidic acid (LPA) is a lipid mediator which acts on its putative G protein-coupled receptor (GPCR). Recently, activation of signal transducers and activators of transcription (STATs) mediated by GPCR has been reported. In this study, we examined the effect of LPA on STAT activation using the electrophoretic mobility shift assays and the heterologous promoter analysis in human epidermoid carcinoma A431 cells. We found that LPA inhibited epidermal growth factor (EGF)-induced Stat1 activation in a concentration-dependent manner. Other phospholipase C (PLC)-coupled GPCR agonists, bradykinin and ATP, also inhibited Stat1 activation. This inhibitory effect of LPA was completely mimicked by an activator of protein kinase C (PKC), a PLC-downstream effector. These findings suggest that the inhibitory effect on EGF-induced Stat1 activation may be a general characteristic of PLC-coupled GPCRs and PKC pathway may be mainly associated with this inhibitory effect. This is the first evidence showing that GPCR agonists inhibit the Janus kinase-independent Stat1 activation induced by receptor tyrosine kinase.
Collapse
Affiliation(s)
- Y Suzuki
- Institute of Applied Biochemistry, University of Tsukuba, Ibaraki, Japan
| | | | | | | |
Collapse
|
34
|
Haque SJ, Wu Q, Kammer W, Friedrich K, Smith JM, Kerr IM, Stark GR, Williams BR. Receptor-associated constitutive protein tyrosine phosphatase activity controls the kinase function of JAK1. Proc Natl Acad Sci U S A 1997; 94:8563-8. [PMID: 9238016 PMCID: PMC23014 DOI: 10.1073/pnas.94.16.8563] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/02/1997] [Indexed: 02/04/2023] Open
Abstract
Exposure of cells to protein tyrosine phosphatase (PTP) inhibitors causes an increase in the phosphotyrosine content of many cellular proteins. However, the level at which the primary signaling event is affected is still unclear. We show that Jaks are activated by tyrosine phosphorylation in cells that are briefly exposed to the PTP inhibitor pervanadate (PV), resulting in tyrosine phosphorylation and functional activation of Stat6 (in addition to other Stats). Mutant cell lines that lack Jak1 activity fail to support PV-mediated [or interleukin 4 (IL-4)-dependent] activation of Stat6 but can be rescued by complementation with functional Jak1. The docking sites for both Jak1 and Stat6 reside in the cytoplasmic domain of the IL-4 receptor alpha-chain (IL-4Ralpha). The glioblastoma-derived cell lines T98G, GRE, and M007, which do not express the IL-4Ralpha chain, fail to support Stat6 activation in response to either IL-4 or PV. Complementation of T98G cells with the IL-4Ralpha restores both PV-mediated and IL-4-dependent Stat6 activation. Murine L929 cells, which do not express the gamma common chain of the IL-4 receptor, support PV-mediated but not IL-4-dependent Stat6 activation. Thus, Stat6 activation by PV is an IL-4Ralpha-mediated, Jak1-dependent event that is independent of receptor dimerization. We propose that receptor-associated constitutive PTP activity functions to down-regulate persistent, receptor-linked kinase activity. Inhibition or deletion of PTP activity results in constitutive activation of cytokine signaling pathways.
Collapse
Affiliation(s)
- S J Haque
- Department of Cancer Biology, Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA.
| | | | | | | | | | | | | | | |
Collapse
|