1
|
Kabrani E, Saha T, Di Virgilio M. DNA repair and antibody diversification: the 53BP1 paradigm. Trends Immunol 2023; 44:782-791. [PMID: 37640588 DOI: 10.1016/j.it.2023.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/01/2023] [Accepted: 08/03/2023] [Indexed: 08/31/2023]
Abstract
The DNA double-strand break (DSB) repair factor 53BP1 has long been implicated in V(D)J and class switch recombination (CSR) of mammalian lymphocyte receptors. However, the dissection of the underlying molecular activities is hampered by a paucity of studies [V(D)J] and plurality of phenotypes (CSR) associated with 53BP1 deficiency. Here, we revisit the currently accepted roles of 53BP1 in antibody diversification in view of the recent identification of its downstream effectors in DSB protection and latest advances in genome architecture. We propose that, in addition to end protection, 53BP1-mediated end-tethering stabilization is essential for CSR. Furthermore, we support a pre-DSB role during V(D)J recombination. Our perspective underscores the importance of evaluating repair of DSBs in relation to their dynamic architectural contexts.
Collapse
Affiliation(s)
- Eleni Kabrani
- Laboratory of Genome Diversification and Integrity, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin 13125, Germany.
| | - Tannishtha Saha
- Laboratory of Genome Diversification and Integrity, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin 13125, Germany; Freie Universität Berlin, Berlin 14195, Germany
| | - Michela Di Virgilio
- Laboratory of Genome Diversification and Integrity, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin 13125, Germany; Charité-Universitätsmedizin Berlin, Berlin 10117, Germany.
| |
Collapse
|
2
|
Sui H, Hao M, Chang W, Imamichi T. The Role of Ku70 as a Cytosolic DNA Sensor in Innate Immunity and Beyond. Front Cell Infect Microbiol 2021; 11:761983. [PMID: 34746031 PMCID: PMC8566972 DOI: 10.3389/fcimb.2021.761983] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 10/06/2021] [Indexed: 12/24/2022] Open
Abstract
Human Ku70 is a well-known endogenous nuclear protein involved in the non-homologous end joining pathway to repair double-stranded breaks in DNA. However, Ku70 has been studied in multiple contexts and grown into a multifunctional protein. In addition to the extensive functional study of Ku70 in DNA repair process, many studies have emphasized the role of Ku70 in various other cellular processes, including apoptosis, aging, and HIV replication. In this review, we focus on discussing the role of Ku70 in inducing interferons and proinflammatory cytokines as a cytosolic DNA sensor. We explored the unique structure of Ku70 binding with DNA; illustrated, with evidence, how Ku70, as a nuclear protein, responds to extracellular DNA stimulation; and summarized the mechanisms of the Ku70-involved innate immune response pathway. Finally, we discussed several new strategies to modulate Ku70-mediated innate immune response and highlighted some potential physiological insights based on the role of Ku70 in innate immunity.
Collapse
Affiliation(s)
- Hongyan Sui
- Laboratory of Human Retrovirology and Immunoinformatics, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | | | | | - Tomozumi Imamichi
- Laboratory of Human Retrovirology and Immunoinformatics, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| |
Collapse
|
3
|
Sui H, Chen Q, Imamichi T. Cytoplasmic-translocated Ku70 senses intracellular DNA and mediates interferon-lambda1 induction. Immunology 2021; 163:323-337. [PMID: 33548066 PMCID: PMC8207419 DOI: 10.1111/imm.13318] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 01/15/2021] [Accepted: 01/23/2021] [Indexed: 01/08/2023] Open
Abstract
We have previously identified that human Ku70, a nuclear protein, serves as a cytosolic DNA sensor. Upon transfection with DNA or infection with DNA virus, Ku70 translocates from the nucleus into the cytoplasm and then predominately induces interferon lambda1 (IFN-λ1) rather than IFN-alpha or IFN-beta, through a STING-dependent signalling pathway. However, a detailed mechanism for Ku70 cytoplasmic translocation and its correlation with IFN-λ1 induction have not been fully elucidated. Here, we observed that cytoplasmic translocation of Ku70 only occurred in DNA-triggered IFN-λ1-inducible cells. Additionally, infection by Herpes simplex virus type-1 (HSV-1), a DNA virus, induces cytoplasmic translocation of Ku70 and IFN-λ1 induction in a strain-dependent manner: the translocation and IFN-λ1 induction were detected upon infection by HSV-1 McKrae, but not MacIntyre, strain. A kinetic analysis indicated that cytoplasmic translocation of Ku70 was initiated right after DNA transfection and was peaked at 6 hr after DNA stimulation. Furthermore, treatment with leptomycin B, a nuclear export inhibitor, inhibited both Ku70 translocation and IFN-λ1 induction, suggesting that Ku70 translocation is an essential and early event for its cytosolic DNA sensing. We further confirmed that enhancing the acetylation status of the cells promotes Ku70's cytoplasmic accumulation, and therefore increases DNA-mediated IFN-λ1 induction. These findings provide insights into the molecular mechanism by which the versatile sensor detects pathogenic DNA in a localization-dependent manner.
Collapse
Affiliation(s)
- Hongyan Sui
- Laboratory of Human Retrovirology and ImmunoinformaticsFrederick National Laboratory for Cancer ResearchFrederickMDUSA
| | - Qian Chen
- Laboratory of Human Retrovirology and ImmunoinformaticsFrederick National Laboratory for Cancer ResearchFrederickMDUSA
| | - Tomozumi Imamichi
- Laboratory of Human Retrovirology and ImmunoinformaticsFrederick National Laboratory for Cancer ResearchFrederickMDUSA
| |
Collapse
|
4
|
Karwowski BT. (5' S) 5',8-Cyclo-2'-Deoxyadenosine Cannot Stop BER. Clustered DNA Lesion Studies. Int J Mol Sci 2021; 22:ijms22115934. [PMID: 34072994 PMCID: PMC8199134 DOI: 10.3390/ijms22115934] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 05/28/2021] [Accepted: 05/29/2021] [Indexed: 12/12/2022] Open
Abstract
As a result of external and endocellular physical-chemical factors, every day approximately ~105 DNA lesions might be formed in each human cell. During evolution, living organisms have developed numerous repair systems, of which Base Excision Repair (BER) is the most common. 5′,8-cyclo-2′-deoxyadenosine (cdA) is a tandem lesion that is removed by the Nucleotide Excision Repair (NER) mechanism. Previously, it was assumed that BER machinery was not able to remove (5′S)cdA from the genome. In this study; however, it has been demonstrated that, if (5′S)cdA is a part of a single-stranded clustered DNA lesion, it can be removed from ds-DNA by BER. The above is theoretically possible in two cases: (A) When, during repair, clustered lesions form Okazaki-like fragments; or (B) when the (5′S)cdA moiety is located in the oligonucleotide strand on the 3′-end side of the adjacent DNA damage site, but not when it appears at the opposite 5′-end side. To explain this phenomenon, pure enzymes involved in BER were used (polymerase β (Polβ), a Proliferating Cell Nuclear Antigen (PCNA), and the X-Ray Repair Cross-Complementing Protein 1 (XRCC1)), as well as the Nuclear Extract (NE) from xrs5 cells. It has been found that Polβ can effectively elongate the primer strand in the presence of XRCC1 or PCNA. Moreover, supplementation of the NE from xrs5 cells with Polβ (artificial Polβ overexpression) forced oligonucleotide repair via BER in all the discussed cases.
Collapse
Affiliation(s)
- Boleslaw T Karwowski
- DNA Damage Laboratory of Food Science Department, Faculty of Pharmacy, Medical University of Lodz, ul. Muszynskiego 1, 90-151 Lodz, Poland
| |
Collapse
|
5
|
Tsuchiya H, Shimada M, Tsukada K, Meng Q, Kobayashi J, Matsumoto Y. Diminished or inversed dose-rate effect on clonogenic ability in Ku-deficient rodent cells. JOURNAL OF RADIATION RESEARCH 2021; 62:198-205. [PMID: 33372229 PMCID: PMC7948855 DOI: 10.1093/jrr/rraa128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 11/09/2020] [Indexed: 06/12/2023]
Abstract
The biological effects of ionizing radiation, especially those of sparsely ionizing radiations like X-ray and γ-ray, are generally reduced as the dose rate is reduced. This phenomenon is known as 'the dose-rate effect'. The dose-rate effect is considered to be due to the repair of DNA damage during irradiation but the precise mechanisms for the dose-rate effect remain to be clarified. Ku70, Ku86 and DNA-dependent protein kinase catalytic subunit (DNA-PKcs) are thought to comprise the sensor for DNA double-strand break (DSB) repair through non-homologous end joining (NHEJ). In this study, we measured the clonogenic ability of Ku70-, Ku86- or DNA-PKcs-deficient rodent cells, in parallel with respective control cells, in response to high dose-rate (HDR) and low dose-rate (LDR) γ-ray radiation (~0.9 and ~1 mGy/min, respectively). Control cells and murine embryonic fibroblasts (MEF) from a severe combined immunodeficiency (scid) mouse, which is DNA-PKcs-deficient, showed higher cell survival after LDR irradiation than after HDR irradiation at the same dose. On the other hand, MEF from Ku70-/- mice exhibited lower clonogenic cell survival after LDR irradiation than after HDR irradiation. XR-V15B and xrs-5 cells, which are Ku86-deficient, exhibited mostly identical clonogenic cell survival after LDR and HDR irradiation. Thus, the dose-rate effect in terms of clonogenic cell survival is diminished or even inversed in Ku-deficient rodent cells. These observations indicate the involvement of Ku in the dose-rate effect.
Collapse
Affiliation(s)
- Hisayo Tsuchiya
- Laboratory for Advanced Nuclear Energy, Institute of Innovative Research, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550 Japan
| | - Mikio Shimada
- Laboratory for Advanced Nuclear Energy, Institute of Innovative Research, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550 Japan
| | - Kaima Tsukada
- Laboratory for Advanced Nuclear Energy, Institute of Innovative Research, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550 Japan
| | - Qingmei Meng
- Department of Interdisciplinary Environment, Graduate School of Human and Environmental Sciences, Kyoto University, Yoshidanihonmatsucho, Sakyo-ku, Kyoto 606-8501 Japan
| | - Junya Kobayashi
- Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Yoshida-Konoecho, Sakyo-ku, Kyoto 606-8501 Japan
| | - Yoshihisa Matsumoto
- Laboratory for Advanced Nuclear Energy, Institute of Innovative Research, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550 Japan
| |
Collapse
|
6
|
Farhat T, Dudakovic A, Chung JH, van Wijnen AJ, St-Arnaud R. Inhibition of the catalytic subunit of DNA-dependent protein kinase (DNA-PKcs) stimulates osteoblastogenesis by potentiating bone morphogenetic protein 2 (BMP2) responses. J Cell Physiol 2020; 236:1195-1213. [PMID: 32686190 DOI: 10.1002/jcp.29927] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 06/03/2020] [Accepted: 07/01/2020] [Indexed: 12/13/2022]
Abstract
The catalytic subunit of DNA-dependent protein kinase (DNA-PKcs) is a pleiotropic enzyme involved in DNA repair, cell cycle control, and transcription regulation. A potential role for DNA-PKcs in the regulation of osteoblastogenesis remains to be established. We show that pharmacological inhibition of DNA-PKcs kinase activity or gene silencing of Prkdc (encoding DNA-PKcs) in murine osteoblastic MC3T3-E1 cells and human adipose-derived mesenchymal stromal cells markedly enhanced osteogenesis and the expression of osteoblast differentiation marker genes. Inhibition of DNA-PKcs inhibited cell cycle progression and increased osteogenesis by significantly enhancing the bone morphogenetic protein 2 response in osteoblasts and other mesenchymal cell types. Importantly, in vivo pharmacological inhibition of the kinase enhanced bone biomechanical properties. Bones from osteoblast-specific conditional Prkdc-knockout mice exhibited a similar phenotype of increased stiffness. In conclusion, DNA-PKcs negatively regulates osteoblast differentiation, and therefore DNA-PKcs inhibitors may have therapeutic potential for bone regeneration and metabolic bone diseases.
Collapse
Affiliation(s)
- Theresa Farhat
- Research Centre, Shriners Hospital for Children - Canada, Montreal, Quebec, Canada.,Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| | - Amel Dudakovic
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota.,Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota
| | - Jay H Chung
- Laboratory of Obesity & Aging Research, Genetics and Developmental Biology Center, National Heart Lung and Blood Institute (NIH), Bethesda, Maryland
| | - Andre J van Wijnen
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota.,Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota
| | - René St-Arnaud
- Research Centre, Shriners Hospital for Children - Canada, Montreal, Quebec, Canada.,Department of Human Genetics, McGill University, Montreal, Quebec, Canada.,Department of Surgery, McGill University, Montreal, Quebec, Canada.,Department of Medicine, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
7
|
Ubiquitylation of Ku80 by RNF126 Promotes Completion of Nonhomologous End Joining-Mediated DNA Repair. Mol Cell Biol 2017; 37:MCB.00347-16. [PMID: 27895153 DOI: 10.1128/mcb.00347-16] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 11/22/2016] [Indexed: 01/06/2023] Open
Abstract
Repair of damaged DNA is critical for maintenance of genetic information. In eukaryotes, DNA double-strand breaks (DSBs) are recognized by the Ku70-Ku80 heterodimer, which then recruits proteins that mediate repair by nonhomologous end joining (NHEJ). Prolonged retention of Ku70/80 at DSBs prevents completion of repair, however, with ubiquitylation of Ku80 having been implicated in Ku70/80 dissociation from DNA. Here, we identify RNF126 as a ubiquitin ligase that is recruited to DSBs and ubiquitylates Ku80, with UBE2D3 serving as an E2 enzyme. Knockdown of RNF126 prevented Ku70/80 dissociation from DSBs and inhibited break repair. Attenuation of Ku80 ubiquitylation by replacement of ubiquitylation site lysines with arginine residues delayed Ku70/80 release from chromatin after DSB induction by genotoxic insults. Together, our data indicate that RNF126 is a novel regulator of NHEJ that promotes completion of DNA repair by ubiquitylating Ku80 and releasing Ku70/80 from damaged DNA.
Collapse
|
8
|
Rocca CJ, Soares DG, Bouzid H, Henriques JAP, Larsen AK, Escargueil AE. BRCA2 is needed for both repair and cell cycle arrest in mammalian cells exposed to S23906, an anticancer monofunctional DNA binder. Cell Cycle 2016; 14:2080-90. [PMID: 25945522 DOI: 10.1080/15384101.2015.1042632] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Repair of DNA-targeted anticancer agents is an active area of investigation of both fundamental and clinical interest. However, most studies have focused on a small number of compounds limiting our understanding of both DNA repair and the DNA damage response. S23906 is an acronycine derivative that shows strong activity toward solid tumors in experimental models. S23906 forms bulky monofunctional DNA adducts in the minor groove which leads to destabilization of the double-stranded helix. We now report that S23906 induces formation of DNA double strand breaks that are processed through homologous recombination (HR) but not Non-Homologous End-Joining (NHEJ) repair. Interestingly, S23906 exposure was accompanied by a higher sensitivity of BRCA2-deficient cells compared to other HR deficient cell lines and by an S-phase accumulation in wild-type (wt), but not in BRCA2-deficient cells. Recently, we have shown that S23906-induced S phase arrest was mediated by the checkpoint kinase Chk1. However, its activated phosphorylated form is equally induced by S23906 in wt and BRCA2-deficient cells, likely indicating a role for BRCA2 downstream of Chk1. Accordingly, override of the S phase arrest by either 7-hydroxystaurosporine (UCN-01) or AZD7762 potentiates the cytotoxic activity of S23906 in wt, but not in BRCA2-deficient cells. Together, our findings suggest that the pronounced sensitivity of BRCA2-deficient cells to S23906 is due to both a defective S-phase arrest and the absence of HR repair. Tumors with deficiencies for proteins involved in HR, and BRCA2 in particular, may thus show increased sensitivity to S23906, thereby providing a rationale for patient selection in clinical trials.
Collapse
Key Words
- ATR, Ataxia telangiectasia- and RAD3-related
- DNA alkylators
- DNA double strand breaks
- DNA replication
- DSBs, Double Strand Breaks
- FA, Fanconi Anemia
- GAPDH, Glyceraldehyde-3-phosphate dehydrogenase
- HR, Homologous Recombination
- HU, Hydroxyurea
- Homologous recombination
- ICLs, Inter-strand Crosslinks
- NER, Nucleotide Excision Repair
- NHEJ, Non-Homologous End-Joining
- TCR, Transcription-Coupled Repair
- UCN-01, 7-hydroxystaurosporine.
- checkpoint control
Collapse
Affiliation(s)
- Céline J Rocca
- a Laboratory of Cancer Biology and Therapeutics ; Centre de Recherche Saint-Antoine ; Paris , France
| | | | | | | | | | | |
Collapse
|
9
|
Li N, Parrish M, Chan TK, Yin L, Rai P, Yoshiyuki Y, Abolhassani N, Tan KB, Kiraly O, Chow VTK, Engelward BP. Influenza infection induces host DNA damage and dynamic DNA damage responses during tissue regeneration. Cell Mol Life Sci 2015; 72:2973-88. [PMID: 25809161 PMCID: PMC4802977 DOI: 10.1007/s00018-015-1879-1] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 02/18/2015] [Accepted: 03/02/2015] [Indexed: 12/19/2022]
Abstract
Influenza viruses account for significant morbidity worldwide. Inflammatory responses, including excessive generation of reactive oxygen and nitrogen species (RONS), mediate lung injury in severe influenza infections. However, the molecular basis of inflammation-induced lung damage is not fully understood. Here, we studied influenza H1N1 infected cells in vitro, as well as H1N1 infected mice, and we monitored molecular and cellular responses over the course of 2 weeks in vivo. We show that influenza induces DNA damage to both, when cells are directly exposed to virus in vitro (measured using the comet assay) and also when cells are exposed to virus in vivo (estimated via γH2AX foci). We show that DNA damage, as well as responses to DNA damage persist in vivo until long after virus has been cleared, at times when there are inflammation associated RONS (measured by xanthine oxidase activity and oxidative products). The frequency of lung epithelial and immune cells with increased γH2AX foci is elevated in vivo, especially for dividing cells (Ki-67-positive) exposed to oxidative stress during tissue regeneration. Additionally, we observed a significant increase in apoptotic cells as well as increased levels of DNA double strand break (DSB) repair proteins Ku70, Ku86 and Rad51 during the regenerative phase. In conclusion, results show that influenza induces DNA damage both in vitro and in vivo, and that DNA damage responses are activated, raising the possibility that DNA repair capacity may be a determining factor for tissue recovery and disease outcome.
Collapse
Affiliation(s)
- Na Li
- Singapore-MIT Alliance for Research and Technology, 1 CREATE Way, #03-10/11 Innovation Wing, #03-12/13/14 Enterprise Wing, Singapore, 138602 Singapore
- Department of Microbiology, National University of Singapore, 5 Science Drive 2, Blk MD4, Level 3, Singapore, 117545 Singapore
| | - Marcus Parrish
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., 16-743, Cambridge, MA 02139 USA
| | - Tze Khee Chan
- Singapore-MIT Alliance for Research and Technology, 1 CREATE Way, #03-10/11 Innovation Wing, #03-12/13/14 Enterprise Wing, Singapore, 138602 Singapore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, Clinical Research Center, MD11, 10 Medical Drive, Level 5, #05-09, Singapore, 117597 Singapore
| | - Lu Yin
- Singapore-MIT Alliance for Research and Technology, 1 CREATE Way, #03-10/11 Innovation Wing, #03-12/13/14 Enterprise Wing, Singapore, 138602 Singapore
| | - Prashant Rai
- Singapore-MIT Alliance for Research and Technology, 1 CREATE Way, #03-10/11 Innovation Wing, #03-12/13/14 Enterprise Wing, Singapore, 138602 Singapore
- Department of Microbiology, National University of Singapore, 5 Science Drive 2, Blk MD4, Level 3, Singapore, 117545 Singapore
| | - Yamada Yoshiyuki
- Singapore-MIT Alliance for Research and Technology, 1 CREATE Way, #03-10/11 Innovation Wing, #03-12/13/14 Enterprise Wing, Singapore, 138602 Singapore
| | - Nona Abolhassani
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., 16-743, Cambridge, MA 02139 USA
| | - Kong Bing Tan
- Department of Pathology, Yong loo Lin School of Medicine, National University Health System and National University of Singapore, Lower Kent Ridge Road, Singapore, 119074 Singapore
| | - Orsolya Kiraly
- Singapore-MIT Alliance for Research and Technology, 1 CREATE Way, #03-10/11 Innovation Wing, #03-12/13/14 Enterprise Wing, Singapore, 138602 Singapore
| | - Vincent T. K. Chow
- Department of Microbiology, National University of Singapore, 5 Science Drive 2, Blk MD4, Level 3, Singapore, 117545 Singapore
| | - Bevin P. Engelward
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., 16-743, Cambridge, MA 02139 USA
| |
Collapse
|
10
|
Karwowski BT, Bellon S, O'Neill P, Lomax ME, Cadet J. Effects of (5'S)-5',8-cyclo-2'-deoxyadenosine on the base excision repair of oxidatively generated clustered DNA damage. A biochemical and theoretical study. Org Biomol Chem 2015; 12:8671-82. [PMID: 25253544 DOI: 10.1039/c4ob01089b] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The presence of 5',8-cyclo-2'-deoxyadenosine (5'S)-cdA induces modifications in the geometry of the DNA duplex in the 5'-end direction of the strand and in the 3'-end direction of the complementary strand. As a consequence, the enzymes are probably not able to adjust their active sites in this rigid structure. Additionally, clustered DNA damage sites, a signature of ionising radiation, pose a severe challenge to a cell's repair machinery, particularly base excision repair (BER). To date, clusters containing a DNA base lesion, (5'S)-cdA, which is repaired by nucleotide excision repair, have not been explored. We have therefore investigated whether bistranded clusters containing (5'S)-cdA influence the repairability of an opposed AP site lesion, which is repaired by BER. Using synthetic oligonucleotides containing a bistranded cluster with (5'S)-cdA and an AP site at different interlesion separations, we have shown that in the presence of (5'S)-cdA on the 5'-end side, repair of the AP site by the BER machinery is retarded when the AP site is ≤8 bases from the (5'S)-cdA. However, if (5'S)-cdA is located on the 3'-end side with respect to the AP site, the effect on its repair is much weaker and totally disappears for distances ≥8 bases.
Collapse
Affiliation(s)
- Boleslaw T Karwowski
- Food Science Department, Medical University of Lodz, Muszynskiego str. 1, 90-151 Lodz, Poland.
| | | | | | | | | |
Collapse
|
11
|
The Ku heterodimer: function in DNA repair and beyond. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2014; 763:15-29. [PMID: 25795113 DOI: 10.1016/j.mrrev.2014.06.002] [Citation(s) in RCA: 196] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 06/07/2014] [Accepted: 06/25/2014] [Indexed: 01/11/2023]
Abstract
Ku is an abundant, highly conserved DNA binding protein found in both prokaryotes and eukaryotes that plays essential roles in the maintenance of genome integrity. In eukaryotes, Ku is a heterodimer comprised of two subunits, Ku70 and Ku80, that is best characterized for its central role as the initial DNA end binding factor in the "classical" non-homologous end joining (C-NHEJ) pathway, the main DNA double-strand break (DSB) repair pathway in mammals. Ku binds double-stranded DNA ends with high affinity in a sequence-independent manner through a central ring formed by the intertwined strands of the Ku70 and Ku80 subunits. At the break, Ku directly and indirectly interacts with several C-NHEJ factors and processing enzymes, serving as the scaffold for the entire DNA repair complex. There is also evidence that Ku is involved in signaling to the DNA damage response (DDR) machinery to modulate the activation of cell cycle checkpoints and the activation of apoptosis. Interestingly, Ku is also associated with telomeres, where, paradoxically to its DNA end-joining functions, it protects the telomere ends from being recognized as DSBs, thereby preventing their recombination and degradation. Ku, together with the silent information regulator (Sir) complex is also required for transcriptional silencing through telomere position effect (TPE). How Ku associates with telomeres, whether it is through direct DNA binding, or through protein-protein interactions with other telomere bound factors remains to be determined. Ku is central to the protection of organisms through its participation in C-NHEJ to repair DSBs generated during V(D)J recombination, a process that is indispensable for the establishment of the immune response. Ku also functions to prevent tumorigenesis and senescence since Ku-deficient mice show increased cancer incidence and early onset of aging. Overall, Ku function is critical to the maintenance of genomic integrity and to proper cellular and organismal development.
Collapse
|
12
|
The repair of environmentally relevant DNA double strand breaks caused by high linear energy transfer irradiation – No simple task. DNA Repair (Amst) 2014; 17:64-73. [DOI: 10.1016/j.dnarep.2014.01.014] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 01/10/2014] [Accepted: 01/24/2014] [Indexed: 01/03/2023]
|
13
|
Peters NE, Ferguson BJ, Mazzon M, Fahy AS, Krysztofinska E, Arribas-Bosacoma R, Pearl LH, Ren H, Smith GL. A mechanism for the inhibition of DNA-PK-mediated DNA sensing by a virus. PLoS Pathog 2013; 9:e1003649. [PMID: 24098118 PMCID: PMC3789764 DOI: 10.1371/journal.ppat.1003649] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Accepted: 08/06/2013] [Indexed: 12/17/2022] Open
Abstract
The innate immune system is critical in the response to infection by pathogens and it is activated by pattern recognition receptors (PRRs) binding to pathogen associated molecular patterns (PAMPs). During viral infection, the direct recognition of the viral nucleic acids, such as the genomes of DNA viruses, is very important for activation of innate immunity. Recently, DNA-dependent protein kinase (DNA-PK), a heterotrimeric complex consisting of the Ku70/Ku80 heterodimer and the catalytic subunit DNA-PKcs was identified as a cytoplasmic PRR for DNA that is important for the innate immune response to intracellular DNA and DNA virus infection. Here we show that vaccinia virus (VACV) has evolved to inhibit this function of DNA-PK by expression of a highly conserved protein called C16, which was known to contribute to virulence but by an unknown mechanism. Data presented show that C16 binds directly to the Ku heterodimer and thereby inhibits the innate immune response to DNA in fibroblasts, characterised by the decreased production of cytokines and chemokines. Mechanistically, C16 acts by blocking DNA-PK binding to DNA, which correlates with reduced DNA-PK-dependent DNA sensing. The C-terminal region of C16 is sufficient for binding Ku and this activity is conserved in the variola virus (VARV) orthologue of C16. In contrast, deletion of 5 amino acids in this domain is enough to knockout this function from the attenuated vaccine strain modified vaccinia virus Ankara (MVA). In vivo a VACV mutant lacking C16 induced higher levels of cytokines and chemokines early after infection compared to control viruses, confirming the role of this virulence factor in attenuating the innate immune response. Overall this study describes the inhibition of DNA-PK-dependent DNA sensing by a poxvirus protein, adding to the evidence that DNA-PK is a critical component of innate immunity to DNA viruses.
Collapse
Affiliation(s)
- Nicholas E. Peters
- Section of Virology, Department of Medicine, Imperial College London, Norfolk Place, London, United Kingdom
| | - Brian J. Ferguson
- Section of Virology, Department of Medicine, Imperial College London, Norfolk Place, London, United Kingdom
- Department of Pathology, Cambridge University, Cambridge, United Kingdom
| | - Michela Mazzon
- Section of Virology, Department of Medicine, Imperial College London, Norfolk Place, London, United Kingdom
- Department of Pathology, Cambridge University, Cambridge, United Kingdom
| | - Aodhnait S. Fahy
- Section of Virology, Department of Medicine, Imperial College London, Norfolk Place, London, United Kingdom
| | - Ewelina Krysztofinska
- Section of Virology, Department of Medicine, Imperial College London, Norfolk Place, London, United Kingdom
| | - Raquel Arribas-Bosacoma
- Cancer Research UK DNA Repair Enzymes Group, Genome Damage and Stability Centre, University of Sussex, Falmer, Brighton, United Kingdom
| | - Laurence H. Pearl
- Cancer Research UK DNA Repair Enzymes Group, Genome Damage and Stability Centre, University of Sussex, Falmer, Brighton, United Kingdom
| | - Hongwei Ren
- Section of Virology, Department of Medicine, Imperial College London, Norfolk Place, London, United Kingdom
- Department of Pathology, Cambridge University, Cambridge, United Kingdom
| | - Geoffrey L. Smith
- Section of Virology, Department of Medicine, Imperial College London, Norfolk Place, London, United Kingdom
- Department of Pathology, Cambridge University, Cambridge, United Kingdom
| |
Collapse
|
14
|
Ribes-Zamora A, Indiviglio SM, Mihalek I, Williams CL, Bertuch AA. TRF2 interaction with Ku heterotetramerization interface gives insight into c-NHEJ prevention at human telomeres. Cell Rep 2013; 5:194-206. [PMID: 24095731 PMCID: PMC3984498 DOI: 10.1016/j.celrep.2013.08.040] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Revised: 05/31/2013] [Accepted: 08/23/2013] [Indexed: 12/02/2022] Open
Abstract
Telomeres are protected from nonhomologous end-joining (NHEJ) to avoid deleterious chromosome fusions, yet they associate with the Ku heterodimer that is principal in the classical NHEJ (c-NHEJ) pathway. T-loops have been proposed to inhibit Ku’s association with telomeric ends, thus inhibiting c-NHEJ; however, deficiencies in the t-loop model suggest additional mechanisms are in effect. We demonstrate that TRF2 interacts with Ku at telomeres and via residues in Ku70 helix 5 (α5), which are vital for NHEJ. We show that Ku’s interaction with a TRF2 mutant that induces telomeric fusions is significantly impaired. Additionally, we demonstrate that Ku70 α5 is required for Ku self-association in live cells, which can bridge DNA ends. Together, these findings lead us to propose a model in which telomeres are directly protected from c-NHEJ via TRF2 impeding Ku’s ability to synapse telomere ends.
Collapse
Affiliation(s)
- Albert Ribes-Zamora
- Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | | | | | | | | |
Collapse
|
15
|
Manic G, Maurin-Marlin A, Laurent F, Vitale I, Thierry S, Delelis O, Dessen P, Vincendeau M, Leib-Mösch C, Hazan U, Mouscadet JF, Bury-Moné S. Impact of the Ku complex on HIV-1 expression and latency. PLoS One 2013; 8:e69691. [PMID: 23922776 PMCID: PMC3726783 DOI: 10.1371/journal.pone.0069691] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Accepted: 06/17/2013] [Indexed: 01/20/2023] Open
Abstract
Ku, a cellular complex required for human cell survival and involved in double strand break DNA repair and multiple other cellular processes, may modulate retroviral multiplication, although the precise mechanism through which it acts is still controversial. Recently, Ku was identified as a possible anti-human immunodeficiency virus type 1 (HIV-1) target in human cells, in two global approaches. Here we investigated the role of Ku on the HIV-1 replication cycle by analyzing the expression level of a panel of non-replicative lentiviral vectors expressing the green fluorescent protein in human colorectal carcinoma HCT 116 cells, stably or transiently depleted of Ku. We found that in this cellular model the depletion of Ku did not affect the efficiency of (pre-)integrative steps but decreased the early HIV-1 expression by acting at the transcriptional level. This negative effect was specific of the HIV-1 promoter, required the obligatory step of viral DNA integration and was reversed by transient depletion of p53. We also provided evidence on a direct binding of Ku to HIV-1 LTR in transduced cells. Ku not only promotes the early transcription from the HIV-1 promoter, but also limits the constitution of viral latency. Moreover, in the presence of a normal level of Ku, HIV-1 expression was gradually lost over time, likely due to the counter-selection of HIV-1-expressing cells. On the contrary, the reactivation of transgene expression from HIV-1 by means of trichostatin A- or tumor necrosis factor α-administration was enhanced under condition of Ku haplodepletion, suggesting a phenomenon of provirus latency. These observations plead in favor of the hypothesis that Ku has an impact on HIV-1 expression and latency at early- and mid-time after integration.
Collapse
Affiliation(s)
- Gwenola Manic
- Laboratoire de Biologie et Pharmacologie Appliquée, Centre national de la recherche scientifique-UMR8113, Ecole Normale Supérieure de Cachan, Cachan, France
| | - Aurélie Maurin-Marlin
- Laboratoire de Biologie et Pharmacologie Appliquée, Centre national de la recherche scientifique-UMR8113, Ecole Normale Supérieure de Cachan, Cachan, France
| | - Fanny Laurent
- Laboratoire de Biologie et Pharmacologie Appliquée, Centre national de la recherche scientifique-UMR8113, Ecole Normale Supérieure de Cachan, Cachan, France
| | - Ilio Vitale
- Regina Elena National Cancer Institute, Rome, Italy
- National Institute of Health, Rome, Italy
| | - Sylvain Thierry
- Laboratoire de Biologie et Pharmacologie Appliquée, Centre national de la recherche scientifique-UMR8113, Ecole Normale Supérieure de Cachan, Cachan, France
| | - Olivier Delelis
- Laboratoire de Biologie et Pharmacologie Appliquée, Centre national de la recherche scientifique-UMR8113, Ecole Normale Supérieure de Cachan, Cachan, France
| | - Philippe Dessen
- Institut Gustave Roussy, Villejuif, France
- Institut National de la Santé et de la Recherche Médicale-U985, Villejuif, France
| | - Michelle Vincendeau
- Institute of Virology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Research Unit Cellular Signal Integration, Institute of Molecular Toxicology and Pharmacology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Christine Leib-Mösch
- Institute of Virology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Department of Hematology and Oncology, Mannheim Medical Center, University of Heidelberg, Mannheim, Germany
| | - Uriel Hazan
- Laboratoire de Biologie et Pharmacologie Appliquée, Centre national de la recherche scientifique-UMR8113, Ecole Normale Supérieure de Cachan, Cachan, France
| | - Jean-François Mouscadet
- Laboratoire de Biologie et Pharmacologie Appliquée, Centre national de la recherche scientifique-UMR8113, Ecole Normale Supérieure de Cachan, Cachan, France
| | - Stéphanie Bury-Moné
- Laboratoire de Biologie et Pharmacologie Appliquée, Centre national de la recherche scientifique-UMR8113, Ecole Normale Supérieure de Cachan, Cachan, France
- * E-mail:
| |
Collapse
|
16
|
Reynolds P, Botchway SW, Parker AW, O'Neill P. Spatiotemporal dynamics of DNA repair proteins following laser microbeam induced DNA damage - when is a DSB not a DSB? Mutat Res 2013; 756:14-20. [PMID: 23688615 PMCID: PMC4028083 DOI: 10.1016/j.mrgentox.2013.05.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 05/02/2013] [Indexed: 12/19/2022]
Abstract
The formation of DNA lesions poses a constant threat to cellular stability. Repair of endogenously and exogenously produced lesions has therefore been extensively studied, although the spatiotemporal dynamics of the repair processes has yet to be fully understood. One of the most recent advances to study the kinetics of DNA repair has been the development of laser microbeams to induce and visualize recruitment and loss of repair proteins to base damage in live mammalian cells. However, a number of studies have produced contradictory results that are likely caused by the different laser systems used reflecting in part the wavelength dependence of the damage induced. Additionally, the repair kinetics of laser microbeam induced DNA lesions have generally lacked consideration of the structural and chemical complexity of the DNA damage sites, which are known to greatly influence their reparability. In this review, we highlight the key considerations when embarking on laser microbeam experiments and interpreting the real time data from laser microbeam irradiations. We compare the repair kinetics from live cell imaging with biochemical and direct quantitative cellular measurements for DNA repair.
Collapse
Affiliation(s)
- Pamela Reynolds
- Gray Institute for Radiation Oncology and Biology, Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK
| | | | | | | |
Collapse
|
17
|
Trinh BQ, Ko SY, Barengo N, Lin SY, Naora H. Dual functions of the homeoprotein DLX4 in modulating responsiveness of tumor cells to topoisomerase II-targeting drugs. Cancer Res 2012; 73:1000-10. [PMID: 23222298 DOI: 10.1158/0008-5472.can-12-3538] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Topoisomerase II (TOP2)-targeting poisons such as anthracyclines and etoposide are commonly used for cancer chemotherapy and kill tumor cells by causing accumulation of DNA double-strand breaks (DSB). Several lines of evidence indicate that overexpression of TOP2A, the gene encoding topoisomerase IIα, increases sensitivity of tumor cells to TOP2 poisons, but it is not clear why some TOP2A-overexpressing (TOP2A-High) tumors respond poorly to these drugs. In this study, we identified that TOP2A expression is induced by DLX4, a homeoprotein that is overexpressed in breast and ovarian cancers. Analysis of breast cancer datasets revealed that TOP2A-high cases that also highly expressed DLX4 responded more poorly to anthracycline-based chemotherapy than TOP2A-high cases that expressed DLX4 at low levels. Overexpression of TOP2A alone in tumor cells increased the level of DSBs induced by TOP2 poisons. In contrast, DLX4 reduced the level of TOP2 poison-induced DSBs irrespective of its induction of TOP2A. DLX4 did not stimulate homologous recombination-mediated repair of DSBs. However, DLX4 interacted with Ku proteins, stimulated DNA-dependent protein kinase activity, and increased erroneous end-joining repair of DSBs. Whereas DLX4 did not reduce levels of TOP2 poison-induced DSBs in Ku-deficient cells, DLX4 stimulated DSB repair and reduced the level of TOP2 poison-induced DSBs when Ku was reconstituted in these cells. Our findings indicate that DLX4 induces TOP2A expression but reduces sensitivity of tumor cells to TOP2 poisons by stimulating Ku-dependent repair of DSBs. These opposing activities of DLX4 could explain why some TOP2A-overexpressing tumors are not highly sensitive to TOP2 poisons.
Collapse
Affiliation(s)
- Bon Q Trinh
- Department of Systems Biology, University of Texas MD Anderson Cancer Center, Houston, Texas 77054, USA
| | | | | | | | | |
Collapse
|
18
|
Reynolds P, Anderson JA, Harper JV, Hill MA, Botchway SW, Parker AW, O'Neill P. The dynamics of Ku70/80 and DNA-PKcs at DSBs induced by ionizing radiation is dependent on the complexity of damage. Nucleic Acids Res 2012; 40:10821-31. [PMID: 23012265 PMCID: PMC3510491 DOI: 10.1093/nar/gks879] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
DNA double-strand breaks (DSBs) are biologically one of the most important cellular lesions and possess varying degrees of chemical complexity. The notion that the repairability of more chemically complex DSBs is inefficient led to the concept that the extent of DSB complexity underlies the severity of the biological consequences. The repair of DSBs by non-homologous end joining (NHEJ) has been extensively studied but it remains unknown whether more complex DSBs require a different sub-set of NHEJ protein for their repair compared with simple DSBs. To address this, we have induced DSBs in fluorescently tagged mammalian cells (Ku80-EGFP, DNA-PKcs-YFP or XRCC4-GFP, key proteins in NHEJ) using ultra-soft X-rays (USX) or multi-photon near infrared (NIR) laser irradiation. We have shown in real-time that simple DSBs, induced by USX or NIR microbeam irradiation, are repaired rapidly involving Ku70/80 and XRCC4/Ligase IV/XLF. In contrast, DSBs with greater chemical complexity are repaired slowly involving not only Ku70/80 and XRCC4/Ligase IV/XLF but also DNA-PKcs. Ataxia telangiectasia-mutated inhibition only retards repair of the more chemically complex DSBs which require DNA-PKcs. In summary, the repair of DSBs by NHEJ is highly regulated with pathway choice and kinetics of repair dependent on the chemical complexity of the DSB.
Collapse
Affiliation(s)
- Pamela Reynolds
- Department of Oncology, Gray Institute for Radiation Oncology & Biology, University of Oxford, Oxford OX3 7DQ, UK
| | | | | | | | | | | | | |
Collapse
|
19
|
Silvera D, Koloteva-Levine N, Burma S, Elroy-Stein O. Effect of Ku proteins on IRES-mediated translation. Biol Cell 2012; 98:353-61. [PMID: 16448389 DOI: 10.1042/bc20050060] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND INFORMATION Ku is an abundant nuclear heterodimeric protein composed of 70 and 86 kDa subunits. As an activator of the catalytic subunit of DNA-PK (DNA-dependent protein kinase), Ku plays an important role in DNA repair and recombination. Ku is also involved in actions independent of DNA-PK, such as transcription regulation and telomere maintenance. Although Ku is localized in the cytoplasm under specific cellular conditions, no functions for Ku outside of the nucleus have as yet been reported. In addition to DNA binding, Ku binds specific RNA sequences with high affinity. However, no specific cellular mRNA targets for Ku have been identified. RESULTS In a yeast three-hybrid system, Ku70 bound to an RNA bait that contained an IRES (internal ribosomal entry site) element. A single band with migration properties similar to those of Ku70 was immunoprecipitated with anti-Ku antibody, using UV cross-linked complexes formed by HeLa cell nuclear extracts and an IRES-containing RNA probe. IRES activity was reduced in Ku80(-/-) cells. Overexpression of Ku proteins stimulated IRES-dependent translation. CONCLUSIONS The present study suggests that Ku binds IRES elements within RNA molecules, and that Ku plays a role in the modulation of IRES-mediated mRNA translation.
Collapse
Affiliation(s)
- Deborah Silvera
- Department of Cell Research and Immunology, George S. Wise Faculty of Life Science, Tel Aviv University, Tel Aviv 69978, Israel
| | | | | | | |
Collapse
|
20
|
Hu S, Cucinotta FA. Computational studies on full-length Ku70 with DNA duplexes: base interactions and a helical path. J Mol Model 2011; 18:1935-49. [DOI: 10.1007/s00894-011-1220-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Accepted: 08/09/2011] [Indexed: 11/30/2022]
|
21
|
De Zio D, Bordi M, Tino E, Lanzuolo C, Ferraro E, Mora E, Ciccosanti F, Fimia GM, Orlando V, Cecconi F. The DNA repair complex Ku70/86 modulates Apaf1 expression upon DNA damage. Cell Death Differ 2010; 18:516-27. [PMID: 20966962 DOI: 10.1038/cdd.2010.125] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Apaf1 is a key regulator of the mitochondrial intrinsic pathway of apoptosis, as it activates executioner caspases by forming the apoptotic machinery apoptosome. Its genetic regulation and its post-translational modification are crucial under the various conditions where apoptosis occurs. Here we describe Ku70/86, a mediator of non-homologous end-joining pathway of DNA repair, as a novel regulator of Apaf1 transcription. Through analysing different Apaf1 promoter mutants, we identified an element repressing the Apaf1 promoter. We demonstrated that Ku70/86 is a nuclear factor able to bind this repressing element and downregulating Apaf1 transcription. We also found that Ku70/86 interaction with Apaf1 promoter is dynamically modulated upon DNA damage. The effect of this binding is a downregulation of Apaf1 expression immediately following the damage to DNA; conversely, we observed Apaf1 upregulation and apoptosis activation when Ku70/86 unleashes the Apaf1-repressing element. Therefore, besides regulating DNA repair, our results suggest that Ku70/86 binds to the Apaf1 promoter and represses its activity. This may help to inhibit the apoptosome pathway of cell death and contribute to regulate cell survival.
Collapse
Affiliation(s)
- D De Zio
- Department of Biology, Dulbecco Telethon Institute, University of Rome Tor Vergata, 00133 Rome, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Takagi M, Sakata KI, Someya M, Tauchi H, Iijima K, Matsumoto Y, Torigoe T, Takahashi A, Hareyama M, Fukushima M. Gimeracil sensitizes cells to radiation via inhibition of homologous recombination. Radiother Oncol 2010; 96:259-66. [PMID: 20584556 DOI: 10.1016/j.radonc.2010.05.020] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2010] [Revised: 05/14/2010] [Accepted: 05/27/2010] [Indexed: 12/31/2022]
Abstract
BACKGROUND AND PURPOSE 5-Chloro-2,4-dihydroxypyridine (Gimeracil) is a component of an oral fluoropyrimidine derivative S-1. Gimeracil is originally added to S-1 to yield prolonged 5-FU concentrations in tumor tissues by inhibiting dihydropyrimidine dehydrogenase, which degrades 5-FU. We found that Gimeracil by itself had the radiosensitizing effect. METHODS AND MATERIALS We used various cell lines deficient in non-homologous end-joining (NHEJ) or homologous recombination (HR) as well as DLD-1 and HeLa in clonogenic assay. gamma-H2AX focus formation and SCneo assay was performed to examine the effects of Gimeracil on DNA double strand break (DSB) repair mechanisms. RESULTS Results of gamma-H2AX focus assay indicated that Gimeracil inhibited DNA DSB repair. It did not sensitize cells deficient in HR but sensitized those deficient in NHEJ. In SCneo assay, Gimeracil reduced the frequency of neo-positive clones. Additionally, it sensitized the cells in S-phase more than in G0/G1. CONCLUSIONS Gimeracil inhibits HR. Because HR plays key roles in the repair of DSBH caused by radiotherapy, Gimeracil may enhance the efficacy of radiotherapy through the suppression of HR-mediated DNA repair pathways.
Collapse
Affiliation(s)
- Masaru Takagi
- Department of Radiology, Sapporo Medical University, Hokkaido, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Urano M, He F, Minami A, Ling CC, Li GC. Response to multiple radiation doses of human colorectal carcinoma cells infected with recombinant adenovirus containing dominant-negative Ku70 fragment. Int J Radiat Oncol Biol Phys 2010; 77:877-85. [PMID: 20510198 DOI: 10.1016/j.ijrobp.2009.12.062] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2009] [Revised: 12/23/2009] [Accepted: 12/28/2009] [Indexed: 11/30/2022]
Abstract
PURPOSE To investigate the effect of recombinant replication-defective adenovirus containing dominant-negative Ku70 fragment on the response of tumor cells to multiple small radiation doses. Our ultimate goal is to demonstrate the feasibility of using this virus in gene-radiotherapy to enhance the radiation response of tumor cells. METHODS AND MATERIALS Human colorectal HCT8 and HT29 carcinoma cells were plated in glass tubes, infected with virus (25 multiplicity of infection), and irradiated with a single dose or zero to five doses of 3 Gy each at 6-h intervals. Hypoxia was induced by flushing with 100% nitrogen gas. The cells were trypsinized 0 or 6 h after the final irradiation, and cell survival was determined by colony formation. The survival data were fitted to linear-quadratic model or exponential line. RESULTS Virus infection enhanced the radiation response of the HCT8 and HT29 cells. The virus enhancement ratio for single-dose irradiation at a surviving fraction of 0.1 was approximately 1.3 for oxic and hypoxic HCT8 and 1.4 and 1.1 for oxic and hypoxic HT29, respectively. A similar virus enhancement ratio of 1.2-1.3 was observed for both oxic and hypoxic cells irradiated with multiple doses; however, these values were smaller than the values found for dominant-negative Ku70-transfected Rat-1 cells. This difference has been discussed. The oxygen enhancement ratio for HCT8 and HT29 receiving fractionated doses was 1.2 and 2.0, respectively, and virus infection altered them slightly. CONCLUSION Infection of recombinant replication-defective adenovirus containing dominant-negative Ku70 fragment enhanced the response of human colorectal cancer cells to single and multiple radiation doses.
Collapse
Affiliation(s)
- Muneyasu Urano
- Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA.
| | | | | | | | | |
Collapse
|
24
|
Fattah F, Lee EH, Weisensel N, Wang Y, Lichter N, Hendrickson EA. Ku regulates the non-homologous end joining pathway choice of DNA double-strand break repair in human somatic cells. PLoS Genet 2010; 6:e1000855. [PMID: 20195511 PMCID: PMC2829059 DOI: 10.1371/journal.pgen.1000855] [Citation(s) in RCA: 183] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2009] [Accepted: 01/23/2010] [Indexed: 12/20/2022] Open
Abstract
The repair of DNA double-strand breaks (DSBs) is critical for the maintenance of genomic integrity and viability for all organisms. Mammals have evolved at least two genetically discrete ways to mediate DNA DSB repair: homologous recombination (HR) and non-homologous end joining (NHEJ). In mammalian cells, most DSBs are preferentially repaired by NHEJ. Recent work has demonstrated that NHEJ consists of at least two sub-pathways-the main Ku heterodimer-dependent or "classic" NHEJ (C-NHEJ) pathway and an "alternative" NHEJ (A-NHEJ) pathway, which usually generates microhomology-mediated signatures at repair junctions. In our study, recombinant adeno-associated virus knockout vectors were utilized to construct a series of isogenic human somatic cell lines deficient in the core C-NHEJ factors (Ku, DNA-PK(cs), XLF, and LIGIV), and the resulting cell lines were characterized for their ability to carry out DNA DSB repair. The absence of DNA-PK(cs), XLF, or LIGIV resulted in cell lines that were profoundly impaired in DNA DSB repair activity. Unexpectedly, Ku86-null cells showed wild-type levels of DNA DSB repair activity that was dominated by microhomology joining events indicative of A-NHEJ. Importantly, A-NHEJ DNA DSB repair activity could also be efficiently de-repressed in LIGIV-null and DNA-PK(cs)-null cells by subsequently reducing the level of Ku70. These studies demonstrate that in human cells C-NHEJ is the major DNA DSB repair pathway and they show that Ku is the critical C-NHEJ factor that regulates DNA NHEJ DSB pathway choice.
Collapse
Affiliation(s)
- Farjana Fattah
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
| | - Eu Han Lee
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
| | - Natalie Weisensel
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
| | - Yongbao Wang
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
| | - Natalie Lichter
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
| | - Eric A. Hendrickson
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
- * E-mail:
| |
Collapse
|
25
|
Activation of PARP-1 in response to bleomycin depends on the Ku antigen and protein phosphatase 5. Oncogene 2010; 29:2093-103. [PMID: 20101203 DOI: 10.1038/onc.2009.492] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Poly (ADP-ribose) polymerase-1 (PARP-1) has an important role in the cellular response to a broad spectrum of DNA lesions. PARP-1 is strongly activated in response to double-stranded DNA breaks (DSBs), yet its contribution to the DSB response is poorly understood. Here we used bleomycin, a radiomimetic that generates DSBs with high specificity to focus on the response of PARP-1 to DSBs. We report that the induction of PARP-1 activity by bleomycin depends on the Ku antigen, a nonhomologous-DNA-End-Joining factor and protein phosphatase 5 (PP5). PARP-1 activation in response to bleomycin was reduced over 10-fold in Ku-deficient cells, whereas its activation in response to U.V. was unaffected. PARP-1 activation was rescued by reexpression of Ku, but was refractory to manipulation of DNA-dependent protein kinase or ATM. Similarly, PARP-1 activation subsequent to bleomycin was reduced 2-fold on ablation of PP5 and was increased 5-fold when PP5 was overexpressed. PP5 seemed to act directly on PARP-1, as its basal phosphorylation was reduced on overexpression of PP5, and PP5 dephosphorylated PARP-1 in vitro. These results highlight the functional importance of Ku antigen and PP5 for PARP-1 activity subsequent to DSBs.
Collapse
|
26
|
A nonhomologous end-joining pathway is required for protein phosphatase 2A promotion of DNA double-strand break repair. Neoplasia 2010; 11:1012-21. [PMID: 19794960 DOI: 10.1593/neo.09720] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2009] [Revised: 06/25/2009] [Accepted: 06/25/2009] [Indexed: 12/31/2022] Open
Abstract
Protein phosphatase 2A (PP2A) functions as a potent tumor suppressor, but its mechanism(s) remains enigmatic. Specific disruption of PP2A by either expression of SV40 small tumor antigen or depletion of endogenous PP2A/C by RNA interference inhibits Ku DNA binding and DNA-PK activities, which results in suppression of DNA double-strand break (DSB) repair and DNA end-joining in association with increased genetic instability (i.e., chromosomal and chromatid breaks). Overexpression of the PP2A catalytic subunit (PP2A/C) enhances Ku and DNA-PK activities with accelerated DSB repair. Camptothecin-induced DSBs promote PP2A to associate with Ku 70 and Ku 86. PP2A directly dephosphorylates Ku as well as the DNA-PK catalytic subunit (DNA-PKcs) in vitro and in vivo, which enhances the formation of a functional Ku/DNA-PKcs complex. Intriguingly, PP2A promotes DSB repair in wild type mouse embryonic fibroblast (MEF) cells but has no such effect in Ku-deficient MEF cells, suggesting that the Ku 70/86 heterodimer is required for PP2A promotion of DSB repair. Thus, PP2A promotion of DSB repair may occur in a novel mechanism by activating the nonhomologous end-joining pathway through direct dephosphorylation of Ku and DNA-PKcs, which may contribute to maintenance of genetic stability.
Collapse
|
27
|
Ohno M, Komakine J, Suzuki E, Nishizuka M, Osada S, Imagawa M. Repression of the Promoter Activity Mediated by Liver Receptor Homolog-1 through Interaction with Ku Proteins. Biol Pharm Bull 2010; 33:784-91. [DOI: 10.1248/bpb.33.784] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Masae Ohno
- Department of Molecular Biology, Graduate School of Pharmaceutical Sciences, Nagoya City University
| | - Jun Komakine
- Department of Molecular Biology, Graduate School of Pharmaceutical Sciences, Nagoya City University
| | - Eiko Suzuki
- Department of Molecular Biology, Graduate School of Pharmaceutical Sciences, Nagoya City University
| | - Makoto Nishizuka
- Department of Molecular Biology, Graduate School of Pharmaceutical Sciences, Nagoya City University
| | - Shigehiro Osada
- Department of Molecular Biology, Graduate School of Pharmaceutical Sciences, Nagoya City University
| | - Masayoshi Imagawa
- Department of Molecular Biology, Graduate School of Pharmaceutical Sciences, Nagoya City University
| |
Collapse
|
28
|
Byrne S, Cunniffe S, O'Neill P, Lomax ME. 5,6-Dihydrothymine Impairs the Base Excision Repair Pathway of a Closely Opposed AP Site or Single-Strand Break. Radiat Res 2009; 172:537-49. [DOI: 10.1667/rr1830.1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
29
|
|
30
|
Tagging of endogenous genes in a Toxoplasma gondii strain lacking Ku80. EUKARYOTIC CELL 2009; 8:530-9. [PMID: 19218426 DOI: 10.1128/ec.00358-08] [Citation(s) in RCA: 396] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
As with other organisms with a completed genome sequence, opportunities for performing large-scale studies, such as expression and localization, on Toxoplasma gondii are now much more feasible. We present a system for tagging genes endogenously with yellow fluorescent protein (YFP) in a Deltaku80 strain. Ku80 is involved in DNA strand repair and nonhomologous DNA end joining; previous studies in other organisms have shown that in its absence, random integration is eliminated, allowing the insertion of constructs with homologous sequences into the proper loci. We generated a vector consisting of YFP and a dihydrofolate reductase-thymidylate synthase selectable marker. The YFP is preceded by a ligation-independent cloning (LIC) cassette, which allows the insertion of PCR products containing complementary LIC sequences. We demonstrated that the Deltaku80 strain is more effective and efficient in integrating the YFP-tagged constructs into the correct locus than wild-type strain RH. We then selected several hypothetical proteins that were identified by a proteomic screen of excreted-secreted antigens and that displayed microarray expression profiles similar to known micronemal proteins, with the thought that these could potentially be new proteins with roles in cell invasion. We localized these hypothetical proteins by YFP fluorescence and showed expression by immunoblotting. Our findings demonstrate that the combination of the Deltaku80 strain and the pYFP.LIC constructs reduces both the time and cost required to determine localization of a new gene of interest. This should allow the opportunity for performing larger-scale studies of novel T. gondii genes.
Collapse
|
31
|
Roos WP, Nikolova T, Quiros S, Naumann SC, Kiedron O, Zdzienicka MZ, Kaina B. Brca2/Xrcc2 dependent HR, but not NHEJ, is required for protection against O6-methylguanine triggered apoptosis, DSBs and chromosomal aberrations by a process leading to SCEs. DNA Repair (Amst) 2009; 8:72-86. [DOI: 10.1016/j.dnarep.2008.09.003] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2008] [Revised: 08/18/2008] [Accepted: 09/01/2008] [Indexed: 10/21/2022]
|
32
|
Anderson CM, Blackburn EH. Mec1 function in the DNA damage response does not require its interaction with Tel2. Cell Cycle 2008; 7:3695-8. [PMID: 19029808 DOI: 10.4161/cc.7.23.7154] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The essential, conserved Tel2 protein plays a role in the response to DNA damage and replication stress in a wide range of eukaryotes. Tel2 interacts physically with multiple members of the PI3-kinase related protein kinase (PIKK) family in mammalian cells and fission yeast. In mammalian cells, loss of Tel2 leads to destabilization of PIKKs. Our previous work in the yeast Saccharomyces cerevisiae showed that Tel2 interacts with the PIKK Tel1 (yeast ATM kinase), and that this interaction is abrogated by the only known non-lethal TEL2 mutation in S. cerevisiae, tel2-1. We showed that this mutation specifically disrupts the function of Tel1 and not the function of the closely related protein Mec1 (yeast ATR kinase) in DNA damage responses. Here we show that Tel2 and Mec1 interact in S. cerevisiae, and that surprisingly, this physical interaction is also disrupted by the tel2-1 mutation. Although the tel2-1 mutation leads to moderately lower Mec1 levels, the ability of Mec1 to localize to a site of DNA damage and to function in DNA damage signaling remains intact. These results suggest that the model of Tel2 as solely a global regulator of PIKK stability is insufficient. Rather, Tel2 can specifically and differentially regulate the function of individual PIKKs.
Collapse
Affiliation(s)
- Carol M Anderson
- Department of Biochemistry and Biophysics, University of California, San Francisco, California 94158, USA
| | | |
Collapse
|
33
|
Wirthner R, Wrann S, Balamurugan K, Wenger RH, Stiehl DP. Impaired DNA double-strand break repair contributes to chemoresistance in HIF-1 alpha-deficient mouse embryonic fibroblasts. Carcinogenesis 2008; 29:2306-16. [PMID: 18842680 DOI: 10.1093/carcin/bgn231] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
A mismatch between metabolic demand and oxygen delivery leads to microenvironmental changes in solid tumors. The resulting tumor hypoxia is associated with malignant progression, therapy resistance and poor prognosis. However, the molecular mechanisms underlying therapy resistance in hypoxic tumors are not fully understood. The hypoxia-inducible factor (HIF) is a master transcriptional activator of oxygen-regulated gene expression. Transformed mouse embryonic fibroblasts (MEFs) derived from HIF-1alpha-deficient mice are a popular model to study HIF function in tumor progression. We previously found increased chemotherapy and irradiation susceptibility in the absence of HIF-1alpha. Here, we show by single-cell electrophoresis, histone 2AX phosphorylation and nuclear foci formation of gammaH2AX and 53BP1, that the number of DNA double-strand breaks (DSB) is increased in untreated and etoposide-treated HIF-deficient MEFs. In etoposide-treated cells, cell cycle control and p53-dependent gene expression were not affected by the absence of HIF-1alpha. Using a candidate gene approach to screen 17 genes involved in DNA repair, messenger RNA (mRNA) and protein of three members of the DNA-dependent protein kinase complex were found to be decreased in HIF-deficient MEFs. Of note, residual HIF-1alpha protein in cancer cells with a partial HIF-1alpha mRNA knockdown was sufficient to confer chemoresistance. In summary, these data establish a novel molecular link between HIF and DNA DSB repair. We suggest that selection of early, non-hypoxic tumor cells expressing low levels of HIF-1alpha might contribute to HIF-dependent tumor therapy resistance.
Collapse
Affiliation(s)
- Renato Wirthner
- Institute of Physiology and Zürich Center for Integrative Human Physiology, University of Zürich, Zürich, Switzerland
| | | | | | | | | |
Collapse
|
34
|
Li H, Vogel H, Holcomb VB, Gu Y, Hasty P. Deletion of Ku70, Ku80, or both causes early aging without substantially increased cancer. Mol Cell Biol 2007; 27:8205-14. [PMID: 17875923 PMCID: PMC2169178 DOI: 10.1128/mcb.00785-07] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2007] [Revised: 07/13/2007] [Accepted: 09/07/2007] [Indexed: 11/20/2022] Open
Abstract
Ku70 forms a heterodimer with Ku80, called Ku, that is critical for repairing DNA double-stand breaks by nonhomologous end joining and for maintaining telomeres. Mice with either gene mutated exhibit similar phenotypes that include increased sensitivity to ionizing radiation and severe combined immunodeficiency. However, there are also differences in the reported phenotypes. For example, only Ku70 mutants are reported to exhibit a high incidence of thymic lymphomas while only Ku80 mutants are reported to exhibit early aging with very low cancer levels. There are two explanations for these differences. First, either Ku70 or Ku80 functions outside the Ku heterodimer such that deletion of one is not identical to deletion of the other. Second, divergent genetic backgrounds or environments influence the phenotype. To distinguish between these possibilities, the Ku70 and Ku80 mutations were crossed together to generate Ku70, Ku80, and double-mutant mice in the same genetic background raised in the same environment. We show that these three cohorts have similar phenotypes that most resemble the previous report for Ku80 mutant mice, i.e., early aging without substantially increased cancer levels. Thus, our observations suggest that the Ku heterodimer is important for longevity assurance in mice since divergent genetic backgrounds and/or environments likely account for these previously reported differences.
Collapse
Affiliation(s)
- Han Li
- Department of Molecular Medicine and Institute of Biotechnology, The University of Texas Health Science Center, San Antonio, Texas 78245, USA
| | | | | | | | | |
Collapse
|
35
|
Cunniffe SMT, Lomax ME, O'Neill P. An AP site can protect against the mutagenic potential of 8-oxoG when present within a tandem clustered site in E. coli. DNA Repair (Amst) 2007; 6:1839-49. [PMID: 17704010 DOI: 10.1016/j.dnarep.2007.07.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2007] [Revised: 07/03/2007] [Accepted: 07/06/2007] [Indexed: 12/27/2022]
Abstract
Ionizing radiation induces clustered DNA damaged sites, defined as two or more lesions formed within one or two helical turns of the DNA through passage of a single radiation track. It is now established that clustered DNA damage sites are found in cells and present a challenge to the repair machinery of the cell but to date, most studies have investigated the effects of bi-stranded lesions. A subset of clustered DNA damaged sites exist in which two or more lesions are present in tandem on the same DNA strand. In this study synthetic oligonucleotides containing an AP site 1, 3 or 5 bases 5' or 3' to 8-oxo-7,8-dihydroguanine (8-oxoG) on the same DNA strand were synthesized as a model of a tandem clustered damaged sites. It was found that 8-oxoG retards the incision of the AP site by exonuclease III (Xth) and formamidopyrimidine DNA glycosylase (Fpg). In addition the rejoining of the AP site by xrs5 nuclear extracts is impaired by the presence of 8-oxoG. The mutation frequency arising from 8-oxoG within a tandem clustered site was determined in both wild type and mutant E. coli backgrounds. In wild-type, nth, fpg and mutY null E. coli, the mutation frequency is slightly elevated when an AP site is in tandem to 8-oxoG, compared with when 8-oxoG is present as a single lesion. Interestingly, in the double mutant mutY/fpg null E. coli, the mutation frequency of 8-oxoG is reduced when an AP site is present in tandem compared with when 8-oxoG is present as a single lesion. This study demonstrates that tandem lesions can present a challenge to the repair machinery of the cell.
Collapse
Affiliation(s)
- Siobhan M T Cunniffe
- Medical Research Council, Radiation and Genome Stability Unit, Harwell, Didcot, Oxfordshire OX11 0RD, UK
| | | | | |
Collapse
|
36
|
Soares DG, Escargueil AE, Poindessous V, Sarasin A, de Gramont A, Bonatto D, Henriques JAP, Larsen AK. Replication and homologous recombination repair regulate DNA double-strand break formation by the antitumor alkylator ecteinascidin 743. Proc Natl Acad Sci U S A 2007; 104:13062-7. [PMID: 17656556 PMCID: PMC1941813 DOI: 10.1073/pnas.0609877104] [Citation(s) in RCA: 132] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Adducts induced by the antitumor alkylator ecteinascidin 743 (ET-743, Yondelis, trabectedin) represent a unique challenge to the DNA repair machinery because no pathway examined to date is able to remove the ET adducts, whereas cells deficient in nucleotide excision repair show increased resistance. We here describe the processing of the initial ET adducts into cytotoxic lesions and characterize the influence of cellular repair pathways on this process. Our findings show that exposure of proliferating mammalian cells to pharmacologically relevant concentrations of ET-743 is accompanied by rapid formation of DNA double-strand breaks (DSBs), as shown by the neutral comet assay and induction of focalized phosphorylated H2AX. The ET adducts are stable and can be converted into DSBs hours after the drug has been removed. Loss of homologous recombination repair has no influence on the initial levels of DSBs but is associated with the persistence of unrepaired DSBs after ET-743 is removed, resulting in extensive chromosomal abnormalities and pronounced sensitivity to the drug. In comparison, loss of nonhomologous end-joining had only modest effect on the sensitivity. The identification of DSB formation as a key step in the processing of ET-743 lesions represents a novel mechanism of action for the drug that is in agreement with its unusual potency. Because loss of repair proteins is common in human tumors, expression levels of selected repair factors may be useful in identifying patients particularly likely to benefit, or not, from treatment with ET-743.
Collapse
Affiliation(s)
- Daniele Grazziotin Soares
- *Group of Cancer Biology and Therapeutics, Institut National de la Santé et de la Recherche Médicale, Unité 673, and Université Pierre et Marie Curie, Hôpital Saint-Antoine, 75571 Paris Cedex 12, France
- Departamento de Biofisica, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
- Instituto de Biotecnologia e Departamento de Ciencias Biomedicas, Universidade de Caxias do Sul, Caxias do Sul, RS, Brasil; and
| | - Alexandre E. Escargueil
- *Group of Cancer Biology and Therapeutics, Institut National de la Santé et de la Recherche Médicale, Unité 673, and Université Pierre et Marie Curie, Hôpital Saint-Antoine, 75571 Paris Cedex 12, France
| | - Virginie Poindessous
- *Group of Cancer Biology and Therapeutics, Institut National de la Santé et de la Recherche Médicale, Unité 673, and Université Pierre et Marie Curie, Hôpital Saint-Antoine, 75571 Paris Cedex 12, France
| | - Alain Sarasin
- Centre National de la Recherche Scientifique, Formation de Recherche en Evolution 2939, and Université Paris-Sud, Institut Gustave-Roussy, Villejuif 94805, France
| | - Aimery de Gramont
- *Group of Cancer Biology and Therapeutics, Institut National de la Santé et de la Recherche Médicale, Unité 673, and Université Pierre et Marie Curie, Hôpital Saint-Antoine, 75571 Paris Cedex 12, France
| | - Diego Bonatto
- Departamento de Biofisica, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
- Instituto de Biotecnologia e Departamento de Ciencias Biomedicas, Universidade de Caxias do Sul, Caxias do Sul, RS, Brasil; and
| | - João Antonio Pêgas Henriques
- Departamento de Biofisica, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
- Instituto de Biotecnologia e Departamento de Ciencias Biomedicas, Universidade de Caxias do Sul, Caxias do Sul, RS, Brasil; and
| | - Annette K. Larsen
- *Group of Cancer Biology and Therapeutics, Institut National de la Santé et de la Recherche Médicale, Unité 673, and Université Pierre et Marie Curie, Hôpital Saint-Antoine, 75571 Paris Cedex 12, France
- Centre National de la Recherche Scientifique, Formation de Recherche en Evolution 2939, and Université Paris-Sud, Institut Gustave-Roussy, Villejuif 94805, France
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
37
|
Ghosh G, Li G, Myung K, Hendrickson EA. The Lethality of Ku86 (XRCC5) Loss-of-Function Mutations in Human Cells is Independent of p53 (TP53). Radiat Res 2007; 167:66-79. [PMID: 17214517 DOI: 10.1667/rr0692.1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2006] [Accepted: 08/24/2006] [Indexed: 11/03/2022]
Abstract
Ku86 is one of the two regulatory subunits of the DNA-PK (DNA-dependent protein kinase) complex that is required for DNA double-strand break repair in mammalian cells. In a previous study, by means of somatic gene targeting, we generated human cell lines deficient in Ku86 (XRCC5). Heterozygous human Ku86 cells exhibited a wide array of haploinsufficient phenotypes, including sensitivity to ionizing radiation, defects in DNA-PK and DNA end-binding activities, elevated levels of p53 (TP53) and gamma-H2AX foci, and a defect in cell proliferation with an increase in the frequency of aneuploid cells. Here we demonstrate that the overexpression of a human Ku86 cDNA complemented the deficiencies of these cells to wild-type levels. In contrast, Ku86 overexpression only partially rescued the telomere defects characteristic of Ku86 heterozygous cells and did not rescue their genetic instability. Additionally, in stark contrast to every other species described to date, we had shown earlier that homozygous human Ku86(-/-) cells are inviable, because they undergo 8 to 10 rounds of cell division before succumbing to apoptosis. The tumor suppressor protein p53 regulates the DNA damage response in mammalian cells and triggers apoptosis in the face of excessive DNA damage. Correspondingly, ablation of p53 expression has repeatedly been shown to significantly ameliorate the pathological effects of loss-of-function mutations for a large number of DNA repair genes. Surprisingly, however, even in a p53-null genetic background, the absence of Ku86 proved lethal. Thus the gene encoding Ku86 (XRCC5) is an essential gene in human somatic cells, and its absence cannot be suppressed by the loss of p53 function. These results suggest that Ku86 performs an essential role in telomere maintenance in human cells.
Collapse
Affiliation(s)
- Goutam Ghosh
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota Medical School, Minneapolis, Minnesota 55455, USA
| | | | | | | |
Collapse
|
38
|
Robert V, Bessereau JL. Targeted engineering of the Caenorhabditis elegans genome following Mos1-triggered chromosomal breaks. EMBO J 2006; 26:170-83. [PMID: 17159906 PMCID: PMC1782371 DOI: 10.1038/sj.emboj.7601463] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2006] [Accepted: 11/02/2006] [Indexed: 01/08/2023] Open
Abstract
The Drosophila element Mos1 is a class II transposon, which moves by a 'cut-and-paste' mechanism and can be experimentally mobilized in the Caenorhabditis elegans germ line. Here, we triggered the excision of identified Mos1 insertions to create chromosomal breaks at given sites and further manipulate the broken loci. Double-strand break (DSB) repair could be achieved by gene conversion using a transgene containing sequences homologous to the broken chromosomal region as a repair template. Consequently, mutations engineered in the transgene could be copied to a specific locus at high frequency. This pathway was further characterized to develop an efficient tool--called MosTIC--to manipulate the C. elegans genome. Analysis of DSB repair during MosTIC experiments demonstrated that DSBs could also be sealed by end-joining in the germ line, independently from the evolutionarily conserved Ku80 and ligase IV factors. In conjunction with a publicly available Mos1 insertion library currently being generated, MosTIC will provide a general tool to customize the C. elegans genome.
Collapse
Affiliation(s)
- Valérie Robert
- ENS, Biologie cellulaire de la synapse, Paris, France; Inserm, U789, Paris, France
| | - Jean-Louis Bessereau
- ENS, Biologie cellulaire de la synapse, Paris, France; Inserm, U789, Paris, France
- Ecole Normale Supérieure, INSERM U789, 46 Rue d'Ulm, Paris 75005, France. Tel.: +33 1 44 32 23 05; Fax: +33 1 44 32 36 54; E-mail:
| |
Collapse
|
39
|
Mari PO, Florea BI, Persengiev SP, Verkaik NS, Brüggenwirth HT, Modesti M, Giglia-Mari G, Bezstarosti K, Demmers JAA, Luider TM, Houtsmuller AB, van Gent DC. Dynamic assembly of end-joining complexes requires interaction between Ku70/80 and XRCC4. Proc Natl Acad Sci U S A 2006; 103:18597-602. [PMID: 17124166 PMCID: PMC1693708 DOI: 10.1073/pnas.0609061103] [Citation(s) in RCA: 297] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
DNA double-strand break (DSB) repair by nonhomologous end joining (NHEJ) requires the assembly of several proteins on DNA ends. Although biochemical studies have elucidated several aspects of the NHEJ reaction mechanism, much less is known about NHEJ in living cells, mainly because of the inability to visualize NHEJ repair proteins at DNA damage. Here we provide evidence that a pulsed near IR laser can produce DSBs without any visible alterations in the nucleus, and we show that NHEJ proteins accumulate in the irradiated areas. The levels of DSBs and Ku accumulation diminished in time, showing that this approach allows us to study DNA repair kinetics in vivo. Remarkably, the Ku heterodimers on DNA ends were in dynamic equilibrium with Ku70/80 in solution, showing that NHEJ complex assembly is reversible. Accumulation of XRCC4/ligase IV on DSBs depended on the presence of Ku70/80, but not DNA-PK(CS). We detected a direct interaction between Ku70 and XRCC4 that could explain these requirements. Our results suggest that this assembly constitutes the core of the NHEJ reaction and that XRCC4 may serve as a flexible tether between Ku70/80 and ligase IV.
Collapse
Affiliation(s)
- Pierre-Olivier Mari
- Departments of *Cell Biology and Genetics
- Pathology, Erasmus MC, University Medical Center, 3000 CA, Rotterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | - Dik C. van Gent
- Departments of *Cell Biology and Genetics
- To whom correspondence should be addressed at:
Department of Cell Biology and Genetics, Erasmus MC, University Medical Center, P.O. Box 2040, 3000 CA, Rotterdam, The Netherlands. E-mail:
| |
Collapse
|
40
|
Gullo C, Au M, Feng G, Teoh G. The biology of Ku and its potential oncogenic role in cancer. Biochim Biophys Acta Rev Cancer 2006; 1765:223-34. [PMID: 16480833 DOI: 10.1016/j.bbcan.2006.01.001] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2005] [Revised: 12/27/2005] [Accepted: 01/03/2006] [Indexed: 11/30/2022]
Abstract
Ku is a heterodimeric protein made up of two subunits, Ku70 and Ku80. It was originally identified as an autoantigen recognized by the sera of patients with autoimmune diseases. It is a highly versatile regulatory protein that has been implicated in multiple nuclear processes, e.g., DNA repair, telomere maintenance and apoptosis. Accordingly, Ku is thought to play a crucial role in maintenance of chromosomal integrity and cell survival. Recent reports suggest that there is a positive relationship between Ku and the development of cancer, making Ku an important candidate target for anticancer drug development. Specifically, prior studies suggest that a delicate balance exists in Ku expression, as overexpression of Ku proteins promotes oncogenic phenotypes, including hyperproliferation and resistance to apoptosis; whereas deficient or low expression of Ku leads to genomic instability and tumorigenesis. Such observations through various experimental models indicate that Ku may act as either a tumor suppressor or an oncoprotein. Hence, understanding the link between the various functions of Ku and the development of cancer in different cell systems may help in the development of novel anticancer therapeutic agents that target Ku. These studies may also increase our understanding of how Ku autoantibodies are generated in autoimmune diseases.
Collapse
Affiliation(s)
- Charles Gullo
- Multiple Myeloma Research Laboratory, MMRL, Singapore Health Services, SingHealth, 7 Hospital Drive, Block A #02-05, Singapore 169611, Republic of Singapore
| | | | | | | |
Collapse
|
41
|
Koike M, Koike A. The Ku70-binding site of Ku80 is required for the stabilization of Ku70 in the cytoplasm, for the nuclear translocation of Ku80, and for Ku80-dependent DNA repair. Exp Cell Res 2005; 305:266-76. [PMID: 15817152 DOI: 10.1016/j.yexcr.2004.12.027] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2004] [Revised: 11/24/2004] [Accepted: 12/13/2004] [Indexed: 10/25/2022]
Abstract
Ku plays a key role in multiple nuclear processes, e.g., DNA repair, transcription regulation, and replication. It is believed that heterodimerization between Ku70 and Ku80 is essential for Ku-dependent DNA repair, although its role is poorly understood. We previously identified the Ku70-binding site of Ku80. In this study, to understand the role of heterodimerization in the function of Ku, we generated and/or analyzed cell lines stably expressing the EGFP-tagged-wild-type human Ku80, its Ku70-binding mutant, its NLS-dysfunctional mutant, or its double mutant in Ku80-deficient cells. Our results show that the Ku70-binding site of Ku80 is required for the stabilization of Ku70 in the cytoplasm and for the nuclear translocation of Ku80 through its heterodimerization with Ku70. In addition, our results suggest that the nuclear translocation of Ku80 through the Ku70-binding site as well as through the NLS of Ku80 play, at least in part, a role in Ku80-dependent DNA repair. Furthermore, our results suggest the possibility that Ku80 has a DNA DSB repair function independent of Ku70 in the nuclei, in addition to that dependent on Ku70.
Collapse
Affiliation(s)
- Manabu Koike
- Radiation Hazards Research Group, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan.
| | | |
Collapse
|
42
|
Losada R, Rivero MT, Slijepcevic P, Goyanes V, Fernández JL. Effect of Wortmannin on the repair profiles of DNA double-strand breaks in the whole genome and in interstitial telomeric sequences of Chinese hamster cells. Mutat Res 2005; 570:119-28. [PMID: 15680409 DOI: 10.1016/j.mrfmmm.2004.10.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2004] [Revised: 10/25/2004] [Accepted: 10/29/2004] [Indexed: 01/29/2023]
Abstract
The DNA breakage detection-fluorescence in situ hybridization (DBD-FISH) procedure was applied to analyze the effect of Wortmannin (WM) in the rejoining kinetics of ionizing radiation-induced DNA double-strand breaks (DSBs) in the whole genome and in the long interstitial telomeric repeat sequence (ITRS) blocks from Chinese hamster cell lines. The results indicate that the ITRS blocks from wild-type Chinese hamster cell lines, CHO9 and V79B, exhibit a slower initial rejoining rate of ionizing radiation-induced DSBs than the genome overall. Neither Rad51C nor the catalytic subunit of DNA-dependent protein kinase (DNA-PKcs) activities, involved in homologous recombination (HR) and in non-homologous end-joining (NHEJ) pathways of DSB repair respectively, influenced the rejoining kinetics within ITRS in contrast to DNA sequences in the whole genome. Nevertheless, DSB removal rate within ITRS was decreased in the absence of Ku86 activity, though at a lower affectation level than in the whole genome, thus homogenizing both rejoining kinetics rates. WM treatment slowed down the DSB rejoining kinetics rate in ITRS, this effect being more pronounced in the whole genome, resulting in a similar pattern to that of the Ku86 deficient cells. In fact, no WM effect was detected in the Ku86 deficient Chinese hamster cells, so probably WM does not add further impairment in DSB rejoining than that resulted as a consequence of absence of Ku activity. The same slowing effect was also observed after treatment of Rad51C and DNA-PKcs defective hamster cells by WM, suggesting that: (1) there is no potentiation of the HR when the NHEJ is impaired by WM, either in the whole genome or in the ITRS, and (2) that this impairment may probably involve more targets than DNA-PKcs. These results suggest that there is an intragenomic heterogeneity in DSB repair, as well as in the effect of WM on this process.
Collapse
Affiliation(s)
- Raquel Losada
- Sección de Genética y Unidad de Investigación, Complejo Hospitalario Universitario Juan Canalejo (CHUJC), As Xubias 84, 15006-A Coruña, Spain
| | | | | | | | | |
Collapse
|
43
|
Mayeur GL, Kung WJ, Martinez A, Izumiya C, Chen DJ, Kung HJ. Ku is a novel transcriptional recycling coactivator of the androgen receptor in prostate cancer cells. J Biol Chem 2005; 280:10827-33. [PMID: 15640154 DOI: 10.1074/jbc.m413336200] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The androgen receptor (AR) dynamically assembles and disassembles multicomponent receptor complexes in order to respond rapidly and reversibly to fluctuations in androgen levels. We are interested in identifying the basal factors that compose the AR aporeceptor and holoreceptor complexes and impact the transcriptional process. Using tandem mass spectroscopy analysis, we identified the trimeric DNA-dependent protein kinase (DNA-PK) complex as the major AR-interacting proteins. AR directly interacts with both Ku70 and Ku80 in vivo and in vitro, as shown by co-immunoprecipitation, glutathione S-transferase pull-down, and Sf9 cell/baculovirus expression. The interaction was localized to the androgen receptor ligand binding domain and is independent of DNA interactions. Ku interacts with AR in the cytoplasm and nucleus regardless of the presence or absence of androgen. Ku acts as a coactivator of AR activity in a luciferase reporter assay employing both Ku-defective cells and Ku small interfering RNA knock-down in a prostate cancer cell line. DNA-PK catalytic subunit (DNA-PKcs) also acts as a coactivator of androgen receptor activity in a luciferase reporter assay employing DNA-PKcs defective cells. AR nuclear translocation is not affected in Ku defective cells, implying Ku functionality may be mainly nuclear. Chromatin immunoprecipitation experiments demonstrated that both Ku70 and Ku80 interact with the prostate-specific antigen promoter in an androgen-dependant manner. Finally, in vitro transcription assays demonstrated Ku involvement in transcriptional recycling with androgen dependent promoters.
Collapse
MESH Headings
- Androgens/metabolism
- Animals
- Antigens, Nuclear/chemistry
- Antigens, Nuclear/metabolism
- Antigens, Nuclear/physiology
- Cell Line
- Cell Line, Tumor
- Cell Nucleus/metabolism
- Chromatin/metabolism
- Chromatin Immunoprecipitation
- Cytoplasm/metabolism
- DNA/chemistry
- DNA-Binding Proteins/chemistry
- DNA-Binding Proteins/metabolism
- DNA-Binding Proteins/physiology
- Electrophoresis, Polyacrylamide Gel
- Genes, Reporter
- Glutathione Transferase/metabolism
- Humans
- Immunoprecipitation
- Insecta
- Ku Autoantigen
- Ligands
- Luciferases/metabolism
- Male
- Mass Spectrometry
- Models, Genetic
- Prostatic Neoplasms/metabolism
- Protein Binding
- Protein Structure, Tertiary
- RNA/metabolism
- RNA, Small Interfering/metabolism
- Receptors, Androgen/metabolism
- Signal Transduction
- Transcription, Genetic
Collapse
Affiliation(s)
- Greg L Mayeur
- Department of Biological Chemistry, School of Medicine, University of California, Davis, UC Davis Cancer Center, Sacramento, California 95817, USA
| | | | | | | | | | | |
Collapse
|
44
|
Abstract
One of the most toxic insults a cell can incur is a disruption of its linear DNA in the form of a double-strand break (DSB). Left unrepaired, or repaired improperly, these lesions can result in cell death or neoplastic transformation. Despite these dangers, lymphoid cells purposely introduce DSBs into their genome to maximize the diversity and effector functions of their antigen receptor genes. While the generation of breaks requires distinct lymphoid-specific factors, their resolution requires various ubiquitously expressed DNA-repair proteins, known collectively as the non-homologous end-joining pathway. In this review, we discuss the factors that constitute this pathway as well as the evidence of their involvement in two lymphoid-specific DNA recombination events.
Collapse
Affiliation(s)
- Sean Rooney
- Howard Hughes Medical Institute, The Children's Hospital, The Department of Genetics, Harvard Medical School and The Center for Blood Research, Boston, MA 02115, USA
| | | | | |
Collapse
|
45
|
Affiliation(s)
- Jessica A Downs
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK.
| | | |
Collapse
|
46
|
Xu P, LaVallee PA, Lin JJ, Hoidal JR. Characterization of Proteins Binding to E-box/Ku86 Sites and Function of Ku86 in Transcriptional Regulation of the Human Xanthine Oxidoreductase Gene. J Biol Chem 2004; 279:16057-63. [PMID: 14761964 DOI: 10.1074/jbc.m305856200] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
We reported previously that E-box and TATA-like elements repress human xanthine oxidoreductase gene (hXOR) expression. In the present investigation, we determined the means by which the E-box site functions in this basal repression. DNA affinity purification demonstrated that at least five proteins are involved in the nuclear protein complex binding to the E-box and adjacent Ku86-binding sites. Amino acid sequence analysis demonstrated that three proteins, DNA-PK catalytic subunit, Ku86, and Ku70 are components of DNA-dependent protein kinase (DNA-PK). By electrophoretic mobility shift assays, gel-shift, and site-directed mutagenesis, we confirmed Ku86 binding to the Ku86 site. Studies indicated that the other two proteins of the complex are AREB6-like proteins binding to the E-box. Pull-down and immunoprecipitation analyses demonstrated the binding of Ku86 to AREB6-like proteins. The functional loss of Ku86 increases hXOR promoter activity and transcript expression. Based on the findings, we propose that DNA-PK/AREB6-like proteins play a central role in repression of basal hXOR activity. AREB6-like proteins specifically bind to the E-box, whereas Ku86 binds an adjacent site and recruits DNA-PK catalytic subunit and Ku70 proteins. A working model is presented to account for the role of DNA-PK and AREB6-like proteins in regulating hXOR activity.
Collapse
Affiliation(s)
- Ping Xu
- Department of Internal Medicine, Division of Respiratory, Critical Care and Occupational Medicine, University of Utah Health Sciences Center and Veterans Affairs Medical Center, Salt Lake City, Utah 84132, USA
| | | | | | | |
Collapse
|
47
|
Izsvák Z, Stüwe EE, Fiedler D, Katzer A, Jeggo PA, Ivics Z. Healing the wounds inflicted by sleeping beauty transposition by double-strand break repair in mammalian somatic cells. Mol Cell 2004; 13:279-90. [PMID: 14759372 DOI: 10.1016/s1097-2765(03)00524-0] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2003] [Revised: 11/19/2003] [Accepted: 11/25/2003] [Indexed: 11/17/2022]
Abstract
The Sleeping Beauty (SB) element is a useful tool to probe transposon-host interactions in vertebrates. We investigated requirements of DNA repair factors for SB transposition in mammalian cells. Factors of nonhomologous end joining (NHEJ), including Ku, DNA-PKcs, and Xrcc4 as well as Xrcc3/Rad51C, a complex that functions during homologous recombination, are required for efficient transposition. NHEJ plays a dominant role in repair of transposon excision sites in somatic cells. Artemis is dispensable for transposition, consistent with the lack of a hairpin structure at excision sites. Ku physically interacts with the SB transposase. DNA-PKcs is a limiting factor for transposition and, in addition to repair, has a function in transposition that is independent from its kinase activity. ATM is involved in excision site repair and affects transposition rates. The overlapping but distinct roles of repair factors in transposition and in V(D)J recombination might influence the outcomes of these mechanistically similar processes.
Collapse
Affiliation(s)
- Zsuzsanna Izsvák
- Max Delbrück Center for Molecular Medicine, Robert Rössle Str. 10, D-13092 Berlin, Germany
| | | | | | | | | | | |
Collapse
|
48
|
Thacker J, Zdzienicka MZ. The mammalian XRCC genes: their roles in DNA repair and genetic stability. DNA Repair (Amst) 2003; 2:655-72. [PMID: 12767346 DOI: 10.1016/s1568-7864(03)00062-4] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Analysis of the XRCC genes has played an important part in understanding mammalian DNA repair processes, especially those involved in double-strand break (DSB) repair. Most of these genes were identified through their ability to correct DNA damage hypersensitivity in rodent cell lines, and they represent components of several different repair pathways including base-excision repair, non-homologous end joining, and homologous recombination. We document the phenotypic effects of mutation of the XRCC genes, and the current state of our knowledge of their functions. In addition to their continuing importance in discovering mechanisms of DNA repair, analysis of the XRCC genes is making a substantial contribution to the understanding of specific human disorders, including cancer.
Collapse
Affiliation(s)
- John Thacker
- Medical Research Council, Radiation and Genome Stability Unit, Harwell, Oxfordshire OX11 0RD, UK.
| | | |
Collapse
|
49
|
Matheos D, Novac O, Price GB, Zannis-Hadjopoulos M. Analysis of the DNA replication competence of the xrs-5 mutant cells defective in Ku86. J Cell Sci 2003; 116:111-24. [PMID: 12456721 DOI: 10.1242/jcs.00156] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The radiosensitive mutant xrs-5, a derivative of the Chinese hamster ovary (CHO) K1 cell line, is defective in DNA double-strand break repair and V(D)J recombination. The defective phenotypes of xrs-5 cells are complemented by the 86 kDa subunit of Ku antigen. OBA is a protein, previously purified from HeLa cells, that binds in a sequence-specific manner to mammalian origins of DNA replication. The DNA-binding subunit of OBA has been identified as Ku86. We tested the xrs-5 cell line for its ability to replicate a mammalian origin-containing plasmid, p186, in vivo and in vitro. In vivo, the p186 episomal DNA replication in transfected xrs-5 cells was reduced by 45% when compared with the CHO K1 cells transfected with p186. In vitro, although total and cytoplasmic cell extracts from xrs-5 cells replicated the p186 with the same efficiency as the parental CHO K1 cell extracts, xrs-5 nuclear extracts did not possess any detectable replication activity. Addition of affinity-purified OBA/Ku restored replication in the xrs-5 nuclear extract reaction. Western blot analyses showed that the levels of other replication proteins (Orc2, PCNA, DNA polymerase epsilon and delta, Primase and Topoisomerase IIalpha) were comparable in both the xrs-5 mutant and CHO K1 wild-type cell lines. In addition, the in vivo association of Ku with the DHFR origin-containing sequence (oribeta) was examined in both the CHO K1 and xrs-5 cell lines by a chromatin immunoprecipitation (ChIP) assay. Anti-Ku antibodies did not immunoprecipitate a detectable amount of Ku from the xrs-5 cells in the origin-containing sequence, in contrast to the CHO K1 cells, wherein Ku was found to be associated with the oribeta origin. The data implicate Ku antigen in in vivo and in vitro DNA replication and suggest the existence of another protein with Ku-like functions in the xrs-5 cells.
Collapse
Affiliation(s)
- Diamanto Matheos
- McGill Cancer Centre, McGill University, Montréal, Québec, Canada, H3G 1Y6
| | | | | | | |
Collapse
|
50
|
Koike M. Dimerization, translocation and localization of Ku70 and Ku80 proteins. JOURNAL OF RADIATION RESEARCH 2002; 43:223-236. [PMID: 12518983 DOI: 10.1269/jrr.43.223] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The Ku protein is a complex of two subunits, Ku70 and Ku80, and was originally identified as an autoantigen recognized by the sera of patients with autoimmune diseases. The Ku protein plays a key role in multiple nuclear processes, e.g., DNA repair, chromosome maintenance, transcription regulation, and V(D)J recombination. The mechanism underlying the regulation of all the diverse functions of Ku is still unclear, although it seems that Ku is a multifunctional protein that works in nuclei. On the other hand, several studies have reported cytoplasmic or cell surface localization of Ku in various cell types. To clarify the fundamental characteristics of Ku, we have examined the expression, heterodimerization, subcellular localization, chromosome location, and molecular mechanisms of the nuclear transport of Ku70 and Ku80. The mechanism that regulates for nuclear localization of Ku70 and Ku80 appears to play, at least in part, a key role in regulating the physiological function of Ku in vivo.
Collapse
Affiliation(s)
- Manabu Koike
- Radiation Hazards Research Group, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan.
| |
Collapse
|