1
|
Che L, Wang K, Tang D, Liu Q, Chen X, Li Y, Hu Q, Shen Y, Yu H, Gu M, Cheng Z. OsHUS1 facilitates accurate meiotic recombination in rice. PLoS Genet 2014; 10:e1004405. [PMID: 24901798 PMCID: PMC4046934 DOI: 10.1371/journal.pgen.1004405] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Accepted: 04/15/2014] [Indexed: 11/18/2022] Open
Abstract
Meiotic recombination normally takes place between allelic sequences on homologs. This process can also occur between non-allelic homologous sequences. Such ectopic interaction events can lead to chromosome rearrangements and are normally avoided. However, much remains unknown about how these ectopic interaction events are sensed and eliminated. In this study, using a screen in rice, we characterized a homolog of HUS1 and explored its function in meiotic recombination. In Oshus1 mutants, in conjunction with nearly normal homologous pairing and synapsis, vigorous, aberrant ectopic interactions occurred between nonhomologous chromosomes, leading to multivalent formation and subsequent chromosome fragmentation. These ectopic interactions relied on programed meiotic double strand breaks and were formed in a manner independent of the OsMER3-mediated interference-sensitive crossover pathway. Although early homologous recombination events occurred normally, the number of interference-sensitive crossovers was reduced in the absence of OsHUS1. Together, our results indicate that OsHUS1 might be involved in regulating ectopic interactions during meiosis, probably by forming the canonical RAD9-RAD1-HUS1 (9-1-1) complex. Meiosis is a special type of cell division that generates gametes for sexual reproduction. During meiosis, recombination not only occurs between allelic sequences on homologs, but also between non-allelic homologous sequences at dispersed loci. Such ectopic recombination is the main cause of chromosomal alterations and accounts for numerous genomic disorders in humans. To ensure genomic integrity, those ectopic recombinations must be quickly resolved. Despite the importance of ectopic recombination suppression, the mechanism underlying this process still remains largely unknown. Here, using rice as a model system, we identified the rice HUS1 homolog, a member of the RAD9-RAD1-HUS1 (9-1-1) complex, and elucidated its roles in meiotic recombination. In Oshus1, vigorous ectopic interactions occur between nonhomologous chromosomes, and the number of crossovers is reduced. We suspect that OsHUS1 participates in regulating ectopic interactions during meiosis, probably by forming the canonical RAD9-RAD1-HUS1 (9-1-1) complex.
Collapse
Affiliation(s)
- Lixiao Che
- State Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Kejian Wang
- State Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Ding Tang
- State Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Qiaoquan Liu
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Key Laboratory of Plant Functional Genomics of Ministry of Education, Yangzhou University, Yangzhou, China
| | - Xiaojun Chen
- State Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yafei Li
- State Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Qing Hu
- State Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yi Shen
- State Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Hengxiu Yu
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Key Laboratory of Plant Functional Genomics of Ministry of Education, Yangzhou University, Yangzhou, China
| | - Minghong Gu
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Key Laboratory of Plant Functional Genomics of Ministry of Education, Yangzhou University, Yangzhou, China
| | - Zhukuan Cheng
- State Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
2
|
Nielsen I, Bentsen IB, Andersen AH, Gasser SM, Bjergbaek L. A Rad53 independent function of Rad9 becomes crucial for genome maintenance in the absence of the Recq helicase Sgs1. PLoS One 2013; 8:e81015. [PMID: 24278365 PMCID: PMC3835667 DOI: 10.1371/journal.pone.0081015] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Accepted: 10/10/2013] [Indexed: 11/19/2022] Open
Abstract
The conserved family of RecQ DNA helicases consists of caretaker tumour suppressors, that defend genome integrity by acting on several pathways of DNA repair that maintain genome stability. In budding yeast, Sgs1 is the sole RecQ helicase and it has been implicated in checkpoint responses, replisome stability and dissolution of double Holliday junctions during homologous recombination. In this study we investigate a possible genetic interaction between SGS1 and RAD9 in the cellular response to methyl methane sulphonate (MMS) induced damage and compare this with the genetic interaction between SGS1 and RAD24. The Rad9 protein, an adaptor for effector kinase activation, plays well-characterized roles in the DNA damage checkpoint response, whereas Rad24 is characterized as a sensor protein also in the DNA damage checkpoint response. Here we unveil novel insights into the cellular response to MMS-induced damage. Specifically, we show a strong synergistic functionality between SGS1 and RAD9 for recovery from MMS induced damage and for suppression of gross chromosomal rearrangements, which is not the case for SGS1 and RAD24. Intriguingly, it is a Rad53 independent function of Rad9, which becomes crucial for genome maintenance in the absence of Sgs1. Despite this, our dissection of the MMS checkpoint response reveals parallel, but unequal pathways for Rad53 activation and highlights significant differences between MMS- and hydroxyurea (HU)-induced checkpoint responses with relation to the requirement of the Sgs1 interacting partner Topoisomerase III (Top3). Thus, whereas earlier studies have documented a Top3-independent role of Sgs1 for an HU-induced checkpoint response, we show here that upon MMS treatment, Sgs1 and Top3 together define a minor but parallel pathway to that of Rad9.
Collapse
Affiliation(s)
- Ida Nielsen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Iben Bach Bentsen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Anni H. Andersen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Susan M. Gasser
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Lotte Bjergbaek
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
- * E-mail:
| |
Collapse
|
3
|
Amara F, Colombo R, Cazzaniga P, Pescini D, Csikász-Nagy A, Falconi MM, Besozzi D, Plevani P. In vivo and in silico analysis of PCNA ubiquitylation in the activation of the Post Replication Repair pathway in S. cerevisiae. BMC SYSTEMS BIOLOGY 2013; 7:24. [PMID: 23514624 PMCID: PMC3668150 DOI: 10.1186/1752-0509-7-24] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Accepted: 02/05/2013] [Indexed: 12/23/2022]
Abstract
BACKGROUND The genome of living organisms is constantly exposed to several damaging agents that induce different types of DNA lesions, leading to cellular malfunctioning and onset of many diseases. To maintain genome stability, cells developed various repair and tolerance systems to counteract the effects of DNA damage. Here we focus on Post Replication Repair (PRR), the pathway involved in the bypass of DNA lesions induced by sunlight exposure and UV radiation. PRR acts through two different mechanisms, activated by mono- and poly-ubiquitylation of the DNA sliding clamp, called Proliferating Cell Nuclear Antigen (PCNA). RESULTS We developed a novel protocol to measure the time-course ratios between mono-, di- and tri-ubiquitylated PCNA isoforms on a single western blot, which were used as the wet readout for PRR events in wild type and mutant S. cerevisiae cells exposed to acute UV radiation doses. Stochastic simulations of PCNA ubiquitylation dynamics, performed by exploiting a novel mechanistic model of PRR, well fitted the experimental data at low UV doses, but evidenced divergent behaviors at high UV doses, thus driving the design of further experiments to verify new hypothesis on the functioning of PRR. The model predicted the existence of a UV dose threshold for the proper functioning of the PRR model, and highlighted an overlapping effect of Nucleotide Excision Repair (the pathway effectively responsible to clean the genome from UV lesions) on the dynamics of PCNA ubiquitylation in different phases of the cell cycle. In addition, we showed that ubiquitin concentration can affect the rate of PCNA ubiquitylation in PRR, offering a possible explanation to the DNA damage sensitivity of yeast strains lacking deubiquitylating enzymes. CONCLUSIONS We exploited an in vivo and in silico combinational approach to analyze for the first time in a Systems Biology context the events of PCNA ubiquitylation occurring in PRR in budding yeast cells. Our findings highlighted an intricate functional crosstalk between PRR and other events controlling genome stability, and evidenced that PRR is more complicated and still far less characterized than previously thought.
Collapse
Affiliation(s)
- Flavio Amara
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy
| | - Riccardo Colombo
- Dipartimento di Informatica, Sistemistica e Comunicazione, Università degli Studi di Milano-Bicocca, Milano, Italy
| | - Paolo Cazzaniga
- Dipartimento di Scienze Umane e Sociali, Università degli Studi di Bergamo, Bergamo, Italy
| | - Dario Pescini
- Dipartimento di Statistica e Metodi Quantitativi, Università degli Studi di Milano-Bicocca, Milano, Italy
| | - Attila Csikász-Nagy
- , The Microsoft Research - Università degli Studi di Trento, Centre for Computational and Systems Biology, Rovereto (Trento), Italy
| | - Marco Muzi Falconi
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy
| | - Daniela Besozzi
- Dipartimento di Informatica, Università degli Studi di Milano, Milano, Italy
| | - Paolo Plevani
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy
| |
Collapse
|
4
|
G(1)/S and G(2)/M cyclin-dependent kinase activities commit cells to death in the absence of the S-phase checkpoint. Mol Cell Biol 2012; 32:4971-85. [PMID: 23045388 DOI: 10.1128/mcb.00956-12] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Mec1 and Rad53 protein kinases are essential for budding yeast cell viability and are also required to activate the S-phase checkpoint, which supports DNA replication under stress conditions. Whether these two functions are related to each other remains to be determined, and the nature of the replication stress-dependent lethality of mec1 and rad53 mutants is still unclear. We show here that a decrease in cyclin-dependent kinase 1 (Cdk1) activity alleviates the lethal effects of mec1 and rad53 mutations both in the absence and in the presence of replication stress, indicating that the execution of a certain Cdk1-mediated event(s) is detrimental in the absence of Mec1 and Rad53. This lethality involves Cdk1 functions in both G(1) and mitosis. In fact, delaying either the G(1)/S transition or spindle elongation in mec1 and rad53 mutants allows their survival both after exposure to hydroxyurea and under unperturbed conditions. Altogether, our studies indicate that inappropriate entry into S phase and segregation of incompletely replicated chromosomes contribute to cell death when the S-phase checkpoint is not functional. Moreover, these findings suggest that the essential function of Mec1 and Rad53 is not necessarily separated from the function of these kinases in supporting DNA synthesis under stress conditions.
Collapse
|
5
|
Finn K, Lowndes NF, Grenon M. Eukaryotic DNA damage checkpoint activation in response to double-strand breaks. Cell Mol Life Sci 2012; 69:1447-73. [PMID: 22083606 PMCID: PMC11115150 DOI: 10.1007/s00018-011-0875-3] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Revised: 10/19/2011] [Accepted: 10/20/2011] [Indexed: 02/07/2023]
Abstract
Double-strand breaks (DSBs) are the most detrimental form of DNA damage. Failure to repair these cytotoxic lesions can result in genome rearrangements conducive to the development of many diseases, including cancer. The DNA damage response (DDR) ensures the rapid detection and repair of DSBs in order to maintain genome integrity. Central to the DDR are the DNA damage checkpoints. When activated by DNA damage, these sophisticated surveillance mechanisms induce transient cell cycle arrests, allowing sufficient time for DNA repair. Since the term "checkpoint" was coined over 20 years ago, our understanding of the molecular mechanisms governing the DNA damage checkpoint has advanced significantly. These pathways are highly conserved from yeast to humans. Thus, significant findings in yeast may be extrapolated to vertebrates, greatly facilitating the molecular dissection of these complex regulatory networks. This review focuses on the cellular response to DSBs in Saccharomyces cerevisiae, providing a comprehensive overview of how these signalling pathways function to orchestrate the cellular response to DNA damage and preserve genome stability in eukaryotic cells.
Collapse
Affiliation(s)
- Karen Finn
- Centre for Chromosome Biology, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| | | | | |
Collapse
|
6
|
Grandin N, Bailly A, Charbonneau M. Activation of Mrc1, a mediator of the replication checkpoint, by telomere erosion. Biol Cell 2012; 97:799-814. [PMID: 15760303 DOI: 10.1042/bc20040526] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND INFORMATION In budding yeast, the loss of either telomere sequences (in telomerase-negative cells) or telomere capping (in mutants of two telomere end-protection proteins, Cdc13 and Yku) lead, by distinct pathways, to telomeric senescence. After DNA damage, activation of Rad53, which together with Chk1 represents a protein kinase central to all checkpoint pathways, normally requires Rad9, a checkpoint adaptor. RESULTS We report that in telomerase-negative (tlc1Delta) cells, activation of Rad53, although diminished, could still take place in the absence of Rad9. In contrast, Rad9 was essential for Rad53 activation in cells that entered senescence in the presence of functional telomerase, namely in senescent cells bearing mutations in telomere end-protection proteins (cdc13-1 yku70Delta). In telomerase-negative cells deleted for RAD9, Mrc1, another checkpoint adaptor previously implicated in the DNA replication checkpoint, mediated Rad53 activation. Rad9 and Rad53, as well as other DNA damage checkpoint proteins (Mec1, Mec3, Chk1 and Dun1), were required for complete DNA-damage-induced cell-cycle arrest after loss of telomerase function. However, unexpectedly, given the formation of an active Rad53-Mrc1 complex in tlc1Delta rad9Delta cells, Mrc1 did not mediate the cell-cycle arrest elicited by telomerase loss. Finally, we report that Rad9, Mrc1, Dun1 and Chk1 are activated by phosphorylation after telomerase inactivation. CONCLUSIONS These results indicate that loss of telomere capping and loss of telomere sequences, both of which provoke telomeric senescence, are perceived as two distinct types of damages. In contrast with the Rad53-Rad9-mediated cell-cycle arrest that functions in a similar way in both types of telomeric senescence, activation of Rad53-Mrc1 might represent a specific response to telomerase inactivation and/or telomere shortening, the functional significance of which has yet to be uncovered.
Collapse
Affiliation(s)
- Nathalie Grandin
- IFR128 BioSciences Gerland, UMR CNRS no. 5161, Ecole Normale Supérieure de Lyon, 46 allée d'Italie, 69364 Lyon, France
| | | | | |
Collapse
|
7
|
Murakami-Sekimata A, Huang D, Piening BD, Bangur C, Paulovich AG. The Saccharomyces cerevisiae RAD9, RAD17 and RAD24 genes are required for suppression of mutagenic post-replicative repair during chronic DNA damage. DNA Repair (Amst) 2010; 9:824-34. [PMID: 20472512 DOI: 10.1016/j.dnarep.2010.04.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2009] [Revised: 03/25/2010] [Accepted: 04/16/2010] [Indexed: 12/31/2022]
Abstract
In Saccharomyces cerevisiae, a DNA damage checkpoint in the S-phase is responsible for delaying DNA replication in response to genotoxic stress. This pathway is partially regulated by the checkpoint proteins Rad9, Rad17 and Rad24. Here, we describe a novel hypermutable phenotype for rad9Delta, rad17Delta and rad24Delta cells in response to a chronic 0.01% dose of the DNA alkylating agent MMS. We report that this hypermutability results from DNA damage introduction during the S-phase and is dependent on a functional translesion synthesis pathway. In addition, we performed a genetic screen for interactions with rad9Delta that confer sensitivity to 0.01% MMS. We report and quantify 25 genetic interactions with rad9Delta, many of which involve the post-replication repair machinery. From these data, we conclude that defects in S-phase checkpoint regulation lead to increased reliance on mutagenic translesion synthesis, and we describe a novel role for members of the S-phase DNA damage checkpoint in suppressing mutagenic post-replicative repair in response to sublethal MMS treatment.
Collapse
|
8
|
Koltovaya NA. Activation of repair and checkpoints by double-strand DNA breaks: Activational cascade of protein phosphorylation. RUSS J GENET+ 2009. [DOI: 10.1134/s1022795409010013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
9
|
Longhese MP, Guerini I, Baldo V, Clerici M. Surveillance mechanisms monitoring chromosome breaks during mitosis and meiosis. DNA Repair (Amst) 2008; 7:545-57. [DOI: 10.1016/j.dnarep.2007.09.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2007] [Accepted: 09/13/2007] [Indexed: 01/05/2023]
|
10
|
Dominant TEL1-hy mutations compensate for Mec1 lack of functions in the DNA damage response. Mol Cell Biol 2007; 28:358-75. [PMID: 17954565 DOI: 10.1128/mcb.01214-07] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Eukaryotic genome integrity is safeguarded by two highly conserved protein kinases that are called ATR and ATM for humans and Mec1 and Tel1 for Saccharomyces cerevisiae. Although they share sequence similarities and substrates, these protein kinases perform different specialized functions. In particular, Mec1 plays a key role in the DNA damage checkpoint response, whereas Tel1 primarily is involved in telomere homeostasis, and its checkpoint function is masked by the prevailing activity of Mec1. In order to understand how this specificity is achieved, we searched for TEL1 mutations able to compensate for the lack of Mec1 functions. Here, we describe seven independent dominant TEL1-hy alleles that are able to suppress, to different extents, both the hypersensitivity to genotoxic agents and the checkpoint defects of Mec1-deficient cells. Most of these alleles also cause telomere overelongation. In vitro kinase activity was increased compared to that of wild-type Tel1 in the Tel1-hy385, Tel1-hy394, Tel1-hy680, and Tel1-hy909 variants, but its activity was not affected by the TEL1-hy184 and TEL1-hy628 mutations and was slightly reduced by the TEL1-hy544 mutation. Thus, the phenotypes caused by at least some Tel1-hy variants are not simply the consequence of improved catalytic activity. Further characterization shows that Tel1-hy909 not only can sense and signal a single double-stranded DNA break, unlike wild-type Tel1, but also contributes more efficiently than Tel1 to single-stranded DNA accumulation at double-strand ends, thus enhancing Mec1 signaling activity. Moreover, it causes unscheduled checkpoint activation in unperturbed conditions and upregulates the checkpoint response to small amounts of DNA lesions. Finally, Tel1-hy544 can activate the checkpoint more efficiently than wild-type Tel1, while it causes telomere shortening, indicating that the checkpoint and telomeric functions of Tel1 can be separable.
Collapse
|
11
|
Mitra N, Roeder GS. A novel nonnull ZIP1 allele triggers meiotic arrest with synapsed chromosomes in Saccharomyces cerevisiae. Genetics 2007; 176:773-87. [PMID: 17435220 PMCID: PMC1894607 DOI: 10.1534/genetics.107.071100] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
During meiotic prophase, assembly of the synaptonemal complex (SC) brings homologous chromosomes into close apposition along their lengths. The Zip1 protein is a major building block of the SC in Saccharomyces cerevisiae. In the absence of Zip1, SC fails to form, cells arrest or delay in meiotic prophase (depending on strain background), and crossing over is reduced. We created a novel allele of ZIP1, zip1-4LA, in which four leucine residues in the central coiled-coil domain have been replaced by alanines. In the zip1-4LA mutant, apparently normal SC assembles with wild-type kinetics; however, crossing over is delayed and decreased compared to wild type. The zip1-4LA mutant undergoes strong checkpoint-induced arrest in meiotic prophase; the defect in cell cycle progression is even more severe than that of the zip1 null mutant. When the zip1-4LA mutation is combined with the pch2 checkpoint mutation, cells sporulate with wild-type efficiency and crossing over occurs at wild-type levels. This result suggests that the zip1-4LA defect in recombination is an indirect consequence of cell cycle arrest. Previous studies have suggested that the Pch2 protein acts in a checkpoint pathway that monitors chromosome synapsis. We hypothesize that the zip1-4LA mutant assembles aberrant SC that triggers the synapsis checkpoint.
Collapse
Affiliation(s)
- Neal Mitra
- Department of Molecular, Cellular and Developmental Biology, Howard Hughes Medical Institute and Department of Genetics, Yale University, New Haven, Connecticut 06520-8103
| | - G. Shirleen Roeder
- Department of Molecular, Cellular and Developmental Biology, Howard Hughes Medical Institute and Department of Genetics, Yale University, New Haven, Connecticut 06520-8103
- Corresponding author: Department of Molecular, Cellular and Developmental Biology, Yale University, P.O. Box 208103, New Haven, CT 06520-8103. E-mail:
| |
Collapse
|
12
|
Grandin N, Charbonneau M. Control of the yeast telomeric senescence survival pathways of recombination by the Mec1 and Mec3 DNA damage sensors and RPA. Nucleic Acids Res 2007; 35:822-38. [PMID: 17202155 PMCID: PMC1807969 DOI: 10.1093/nar/gkl1081] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Saccharomyces cerevisiae telomerase-negative cells undergo homologous recombination on subtelomeric or TG1–3 telomeric sequences, thus allowing Type I or Type II post-senescence survival, respectively. Here, we find that the DNA damage sensors, Mec1, Mec3 and Rad24 control Type II recombination, while the Rad9 adaptor protein and the Rad53 and Chk1 effector kinases have no effect on survivor type selection. Therefore, the Mec1 and Mec3 checkpoint complexes control telomeric recombination independently of their roles in generating and amplifying the Mec1-Rad53-Chk1 kinase cascade. rfa1-t11 mutant cells, bearing a mutation in Replication Protein A (RPA) conferring a defect in recruiting Mec1-Ddc2, were also deficient in both types of telomeric recombination. Importantly, expression of an Rfa1-t11-Ddc2 hybrid fusion protein restored checkpoint-dependent arrest, but did not rescue defective telomeric recombination. Therefore, the Rfa1-t11-associated defect in telomeric recombination is not solely due to its failure to recruit Mec1. We have also isolated novel alleles of RFA1 that were deficient in Type I but not in Type II recombination and proficient in checkpoint control. Therefore, the checkpoint and recombination functions of RPA can be genetically separated, as can the RPA-mediated control of the two types of telomeric recombination.
Collapse
Affiliation(s)
| | - Michel Charbonneau
- To whom correspondence should be addressed at Ecole Normale Supérieure de Lyon, UMR CNRS 5161 46, allée d'Italie, 69364 Lyon, France. Tel: +33 47272 8170; Fax: +33 47272 8080;
| |
Collapse
|
13
|
Cardone JM, Revers LF, Machado RM, Bonatto D, Brendel M, Henriques JAP. Psoralen-sensitive mutant pso9-1 of Saccharomyces cerevisiae contains a mutant allele of the DNA damage checkpoint gene MEC3. DNA Repair (Amst) 2005; 5:163-71. [PMID: 16202664 DOI: 10.1016/j.dnarep.2005.08.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2005] [Revised: 08/03/2005] [Accepted: 08/30/2005] [Indexed: 11/23/2022]
Abstract
Complementation analysis of the pso9-1 yeast mutant strain sensitive to photoactivated mono- and bifunctional psoralens, UV-light 254 nm, and nitrosoguanidine, with pso1 to pso8 mutants, confirmed that it contains a novel pso mutation. Molecular cloning via the reverse genetics complementation approach using a yeast genomic library suggested pso9-1 to be a mutant allele of the DNA damage checkpoint control gene MEC3. Non-complementation of several sensitivity phenotypes in pso9-1/mec3Delta diploids confirmed allelism. The pso9-1 mutant allele contains a -1 frameshift mutation (deletion of one A) at nucleotide position 802 (802delA), resulting in nine different amino acid residues from that point and a premature termination. This mutation affected the binding properties of Pso9-1p, abolishing its interactions with both Rad17p and Ddc1p. Further interaction assays employing mec3 constructions lacking the last 25 and 75 amino acid carboxyl termini were also not able to maintain stable interactions. Moreover, the pso9-1 mutant strain could no longer sense DNA damage since it continued in the cell cycle after 8-MOP + UVA treatment. Taken together, these observations allowed us to propose a model for checkpoint activation generated by photo-induced adducts.
Collapse
Affiliation(s)
- J M Cardone
- Universidade Federal do Rio Grande do Sul, Department de Biofísica/Centro de Biotecnologia, UFRGS, Av. Bento Gonçalves 9.500, Agronomia CEP, 91501 970 Porto Alegre, RS, Brasil
| | | | | | | | | | | |
Collapse
|
14
|
Aroya SB, Kupiec M. The Elg1 replication factor C-like complex: a novel guardian of genome stability. DNA Repair (Amst) 2005; 4:409-17. [PMID: 15725622 DOI: 10.1016/j.dnarep.2004.08.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2004] [Accepted: 08/17/2004] [Indexed: 02/07/2023]
Abstract
The remarkable stability of the eukaryotic genome is achieved by the activity of many overlapping surveillance and repair mechanism. Two protein complexes with resemblance to replication factor C (RFC) have been recently described, that play important roles in maintaining the stability of the genome. These RFC-like complexes (RLCs) share four common subunits (Rfc2-5) and each carry a unique large subunit (Rad24 or Ctf18) replacing the Rfc1 subunit of the replication complex. Work in several laboratories has recently uncovered a novel yeast gene, ELG1, which seems to play a central role in keeping the genome stable. elg1 mutants exhibit increased rates of spontaneous recombination and gross chromosomal rearrangements during vegetative growth. In addition, they lose chromosomes at an enhanced rate, show hyper-transposition of natural repeated elements and exhibit elongated telomeres. The Elg1 protein also associates with the Rfc2-5 subunits of replication factor C (RFC) to form a third RFC-like complex (RLC). Genetic and biochemical data indicate that the Elg1, Ctf18 and Rad24 RLCs work in three separate pathways important for maintaining the integrity of the genome and for coping with various genomic stresses. ELG1 is evolutionarily conserved and may play an important role in preventing the onset of cancer in humans. The Elg1 function is thus clearly required for maintaining genome stability during normal growth, and its absence has severe genetic consequences.
Collapse
Affiliation(s)
- Shay Ben Aroya
- Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Ramat Aviv 69978, Israel
| | | |
Collapse
|
15
|
Giannattasio M, Lazzaro F, Siede W, Nunes E, Plevani P, Muzi-Falconi M. DNA decay and limited Rad53 activation after liquid holding of UV-treated nucleotide excision repair deficient S. cerevisiae cells. DNA Repair (Amst) 2005; 3:1591-9. [PMID: 15474420 DOI: 10.1016/j.dnarep.2004.06.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2004] [Accepted: 06/15/2004] [Indexed: 11/25/2022]
Abstract
The DNA damage checkpoint is a surveillance mechanism activated by DNA lesions and devoted to the maintenance of genome stability. It is considered as a signal transduction cascade, involving a sensing step, the activation of a set of protein kinases and the transmission and amplification of the damage signal through several phosphorylation events. In budding yeast many players of this pathway have been identified. Recent work showed that G1 and G2 checkpoint activation in response to UV irradiation requires prior recognition and processing of UV lesions by nucleotide excision repair (NER) factors that likely recruit checkpoint proteins near the damage. However, another report suggested that NER was not required for checkpoint function. Since the functional relationship between repair mechanisms and checkpoint activation is a very important issue in the field, we analyzed, under different experimental conditions, whether lesion processing by NER is required for checkpoint activation. We found that DNA damage checkpoint can be triggered in an NER-independent manner only if cells are subjected to liquid holding after UV treatment. This incubation causes a time-dependent breakage of DNA strands in NER-deficient cells and leads to partial activation of the checkpoint kinase. The analysis of the genetic requirements for this alternative activation pathway suggest that it requires Mec1 and the Rad17 complex and that the observed DNA breaks are likely to be due to spontaneous decay of damaged DNA.
Collapse
Affiliation(s)
- Michele Giannattasio
- Dipartimento di Scienze Biomolecolari e Biotecnologie, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy
| | | | | | | | | | | |
Collapse
|
16
|
Giannattasio M, Lazzaro F, Plevani P, Muzi-Falconi M. The DNA damage checkpoint response requires histone H2B ubiquitination by Rad6-Bre1 and H3 methylation by Dot1. J Biol Chem 2005; 280:9879-86. [PMID: 15632126 DOI: 10.1074/jbc.m414453200] [Citation(s) in RCA: 224] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The cellular response to DNA lesions entails the recruitment of several checkpoint and repair factors to damaged DNA, and chromatin modifications may play a role in this process. Here we show that in Saccharomyces cerevisiae epigenetic modification of histones is required for checkpoint activity in response to a variety of genotoxic stresses. We demonstrate that ubiquitination of histone H2B on lysine 123 by the Rad6-Bre1 complex, is necessary for activation of Rad53 kinase and cell cycle arrest. We found a similar requirement for Dot1-dependent methylation of histone H3. Loss of H3-Lys(79) methylation does not affect Mec1 activation, whereas it renders cells checkpoint-defective by preventing phosphorylation of Rad9. Such results suggest that histone modifications may have a role in checkpoint function by modulating the interactions of Rad9 with chromatin and active Mec1 kinase.
Collapse
Affiliation(s)
- Michele Giannattasio
- Dipartimento di Scienze Biomolecolari e Biotecnologie, Universita' degli Studi di Milano, 20133 Milano, Italy
| | | | | | | |
Collapse
|
17
|
Viscardi V, Clerici M, Cartagena-Lirola H, Longhese MP. Telomeres and DNA damage checkpoints. Biochimie 2004; 87:613-24. [PMID: 15989978 DOI: 10.1016/j.biochi.2004.10.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2004] [Accepted: 10/25/2004] [Indexed: 10/26/2022]
Abstract
In all eukaryotic organisms, interruptions in duplex DNA molecules elicit a DNA damage response, which includes activation of DNA repair machineries and surveillance mechanisms, known as DNA damage checkpoints. Telomeres and double-strand breaks (DSBs) share the common feature of being physical ends of chromosomes. However, unlike DSBs, telomeres do not activate the DNA damage checkpoints and are usually protected from end-to-end fusions and other processing events that normally promote repair of DNA breaks. This indicates that they are shielded from being recognized and processed as DSBs. On the other hand, chromosome ends resemble damaged DNA, as several factors required for DNA repair and checkpoint networks play important roles in telomere length maintenance. Due to the critical role of both DNA damage checkpoints and telomere homeostasis in maintaining genetic stability and in counteracting cancer development, the knowledge of their interconnections is essential for our understanding of these key cellular controls.
Collapse
Affiliation(s)
- Valeria Viscardi
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| | | | | | | |
Collapse
|
18
|
Ito N, Nureki O, Shirouzu M, Yokoyama S, Hanaoka F. Crystal structure of the Pyrococcus horikoshii DNA primase-UTP complex: implications for the mechanism of primer synthesis. Genes Cells 2004; 8:913-23. [PMID: 14750947 DOI: 10.1111/j.1365-2443.2003.00693.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND In chromosomal DNA replication, DNA primase initiates the synthesis of a dinucleotide on a single-stranded template DNA, and elongates it to form a primer RNA for the replicative DNA polymerase. Although the apo-structure of an archaeal primase has been reported, the mechanism of primer synthesis by the eukaryotic-type primase still remains to be elucidated. RESULTS In this study, we present the crystal structure of the eukaryotic-type DNA primase from the hyperthermophilic archaeon (Pyrococcus horikoshii) with the uridine 5'-triphosphate (UTP). In the present primase-UTP complex, the primase binds the triphosphate moiety of the UTP at the active site, which includes Asp95, Asp97, and Asp280, the essential residues for the nucleotidyl transfer reaction. CONCLUSION The nucleotide binding geometry in this complex explains the previous biochemical analyses of the eukaryotic primase. Based on the complex structure, we constructed a model between the DNA primase and a primer/template DNA for the primer synthesis. This model facilitates the comprehension of the reported features of DNA primase.
Collapse
Affiliation(s)
- Nobutoshi Ito
- Cellular Physiology Laboratory, Discovery Research Institute, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | | | | | | | | |
Collapse
|
19
|
Baroni E, Viscardi V, Cartagena-Lirola H, Lucchini G, Longhese MP. The functions of budding yeast Sae2 in the DNA damage response require Mec1- and Tel1-dependent phosphorylation. Mol Cell Biol 2004; 24:4151-65. [PMID: 15121837 PMCID: PMC400471 DOI: 10.1128/mcb.24.10.4151-4165.2004] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
DNA damage checkpoint pathways sense DNA lesions and transduce the signals into appropriate biological responses, including cell cycle arrest, induction of transcriptional programs, and modification or activation of repair factors. Here we show that the Saccharomyces cerevisiae Sae2 protein, known to be involved in processing meiotic and mitotic double-strand breaks, is required for proper recovery from checkpoint-mediated cell cycle arrest after DNA damage and is phosphorylated periodically during the unperturbed cell cycle and in response to DNA damage. Both cell cycle- and DNA damage-dependent Sae2 phosphorylation requires the main checkpoint kinase, Mec1, and the upstream components of its pathway, Ddc1, Rad17, Rad24, and Mec3. Another pathway, involving Tel1 and the MRX complex, is also required for full DNA damage-induced Sae2 phosphorylation, that is instead independent of the downstream checkpoint transducers Rad53 and Chk1, as well as of their mediators Rad9 and Mrc1. Mutations altering all the favored ATM/ATR phosphorylation sites of Sae2 not only abolish its in vivo phosphorylation after DNA damage but also cause hypersensitivity to methyl methanesulfonate treatment, synthetic lethality with RAD27 deletion, and decreased rates of mitotic recombination between inverted Alu repeats, suggesting that checkpoint-mediated phosphorylation of Sae2 is important to support its repair and recombination functions.
Collapse
Affiliation(s)
- Enrico Baroni
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi di Milano-Bicocca, 20126 Milan, Italy
| | | | | | | | | |
Collapse
|
20
|
Giannattasio M, Lazzaro F, Longhese MP, Plevani P, Muzi-Falconi M. Physical and functional interactions between nucleotide excision repair and DNA damage checkpoint. EMBO J 2004; 23:429-38. [PMID: 14726955 PMCID: PMC1271758 DOI: 10.1038/sj.emboj.7600051] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2003] [Accepted: 11/25/2003] [Indexed: 11/09/2022] Open
Abstract
The mechanisms used by checkpoints to identify DNA lesions are poorly understood and may involve the function of repair proteins. Looking for mutants specifically defective in activating the checkpoint following UV lesions, but proficient in the response to methyl methane sulfonate and double-strand breaks, we isolated cdu1-1, which is allelic to RAD14, the homolog of human XPA, involved in lesion recognition during nucleotide excision repair (NER). Rad14 was also isolated as a partner of the Ddc1 checkpoint protein in a two-hybrid screening, and physical interaction was proven by co-immunoprecipitation. We show that lesion recognition is not sufficient for checkpoint activation, but processing, carried out by repair factors, is required for recruiting checkpoint proteins to damaged DNA. Mutations affecting the core NER machinery abolish G1 and G2 checkpoint responses to UV, preventing activation of the Mec1 kinase and its binding to chromosomes. Conversely, elimination of transcription-coupled or global genome repair alone does not affect checkpoints, suggesting a possible interpretation for the heterogeneity in cancer susceptibility observed in different NER syndrome patients.
Collapse
Affiliation(s)
- Michele Giannattasio
- Dipartimento di Scienze Biomolecolari e Biotecnologie, Università degli Studi di Milano, Milano, Italy
| | - Federico Lazzaro
- Dipartimento di Scienze Biomolecolari e Biotecnologie, Università degli Studi di Milano, Milano, Italy
| | - Maria Pia Longhese
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Milano, Italy
| | - Paolo Plevani
- Dipartimento di Scienze Biomolecolari e Biotecnologie, Università degli Studi di Milano, Milano, Italy
- Dipartimento di Scienze Biomolecolari e Biotecnologie, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy. Tel.: +39 02 5031 5034; Fax: +39 02 5031 5044; E-mail:
| | - Marco Muzi-Falconi
- Dipartimento di Scienze Biomolecolari e Biotecnologie, Università degli Studi di Milano, Milano, Italy
- Dipartimento di Scienze Biomolecolari e Biotecnologie, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy. Tel.: +39 02 5031 5034; Fax: +39 02 5031 5044; E-mail:
| |
Collapse
|
21
|
Lottersberger F, Rubert F, Baldo V, Lucchini G, Longhese MP. Functions of Saccharomyces cerevisiae 14-3-3 Proteins in Response to DNA Damage and to DNA Replication Stress. Genetics 2003; 165:1717-32. [PMID: 14704161 PMCID: PMC1462906 DOI: 10.1093/genetics/165.4.1717] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Abstract
Two members of the 14-3-3 protein family, involved in key biological processes in different eukaryotes, are encoded by the functionally redundant Saccharomyces cerevisiae BMH1 and BMH2 genes. We produced and characterized 12 independent bmh1 mutant alleles, whose presence in the cell as the sole 14-3-3 source causes hypersensitivity to genotoxic agents, indicating that Bmh proteins are required for proper response to DNA damage. In particular, the bmh1-103 and bmh1-266 mutant alleles cause defects in G1/S and G2/M DNA damage checkpoints, whereas only the G2/M checkpoint is altered by the bmh1-169 and bmh1-221 alleles. Impaired checkpoint responses correlate with the inability to maintain phosphorylated forms of Rad53 and/or Chk1, suggesting that Bmh proteins might regulate phosphorylation/dephosphorylation of these checkpoint kinases. Moreover, several bmh1 bmh2Δ mutants are defective in resuming DNA replication after transient deoxynucleotide depletion, and all display synthetic effects when also carrying mutations affecting the polα-primase and RPA DNA replication complexes, suggesting a role for Bmh proteins in DNA replication stress response. Finally, the bmh1-169 bmh2Δ and bmh1-170 bmh2Δ mutants show increased rates of spontaneous gross chromosomal rearrangements, indicating that Bmh proteins are required to suppress genome instability.
Collapse
Affiliation(s)
- Francisca Lottersberger
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, 20126 Milano, Italy
| | | | | | | | | |
Collapse
|
22
|
Giannattasio M, Sabbioneda S, Minuzzo M, Plevani P, Muzi-Falconi M. Correlation between checkpoint activation and in vivo assembly of the yeast checkpoint complex Rad17-Mec3-Ddc1. J Biol Chem 2003; 278:22303-8. [PMID: 12672803 DOI: 10.1074/jbc.m301260200] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Rad17-Mec3-Ddc1 forms a proliferating cell nuclear antigen-like complex that is required for the DNA damage response in Saccharomyces cerevisiae and acts at an early step of the signal transduction cascade activated by DNA lesions. We used the mec3-dn allele, which causes a dominant negative checkpoint defect in G1 but not in G2, to test the stability of the complex in vivo and to correlate its assembly and disassembly with the mechanisms controlling checkpoint activation. Under physiological conditions, the mutant complex is formed both in G1 and G2, although the mutant phenotype is detectable only in G1, suggesting that is not the presence of the mutant complex per se to cause a checkpoint defect. Our data indicate that the Rad17-Mec3-Ddc1 complex is very stable, and it takes several hours to replace Mec3 with Mec3-dn within a wild type complex. On the other hand, the mutant complex is rapidly assembled when starting from a condition where the complex is not pre-assembled, indicating that the critical factor for the substitution is the disassembly step rather than complex formation. Moreover, the kinetics of mutant complex assembly, starting from conditions in which the wild type form is present, parallels the kinetics of checkpoint inactivation, suggesting that the complex acts in a stoichiometric way, rather than catalytically.
Collapse
Affiliation(s)
- Michele Giannattasio
- Dipartimento di Genetica e di Biologia dei Microrganismi, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy
| | | | | | | | | |
Collapse
|
23
|
Weinert T, Little E, Shanks L, Admire A, Gardner R, Putnam C, Michelson R, Nyberg K, Sundareshan P. Details and concerns regarding the G2/M DNA damage checkpoint in budding yeast. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2003; 65:433-41. [PMID: 12760059 DOI: 10.1101/sqb.2000.65.433] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- T Weinert
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona 85721, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Weiss RS, Leder P, Vaziri C. Critical role for mouse Hus1 in an S-phase DNA damage cell cycle checkpoint. Mol Cell Biol 2003; 23:791-803. [PMID: 12529385 PMCID: PMC140711 DOI: 10.1128/mcb.23.3.791-803.2003] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2002] [Revised: 09/30/2002] [Accepted: 11/01/2002] [Indexed: 01/31/2023] Open
Abstract
Mouse Hus1 encodes an evolutionarily conserved DNA damage response protein. In this study we examined how targeted deletion of Hus1 affects cell cycle checkpoint responses to genotoxic stress. Unlike hus1(-) fission yeast (Schizosaccharomyces pombe) cells, which are defective for the G(2)/M DNA damage checkpoint, Hus1-null mouse cells did not inappropriately enter mitosis following genotoxin treatment. However, Hus1-deficient cells displayed a striking S-phase DNA damage checkpoint defect. Whereas wild-type cells transiently repressed DNA replication in response to benzo(a)pyrene dihydrodiol epoxide (BPDE), a genotoxin that causes bulky DNA adducts, Hus1-null cells maintained relatively high levels of DNA synthesis following treatment with this agent. However, when treated with DNA strand break-inducing agents such as ionizing radiation (IR), Hus1-deficient cells showed intact S-phase checkpoint responses. Conversely, checkpoint-mediated inhibition of DNA synthesis in response to BPDE did not require NBS1, a component of the IR-responsive S-phase checkpoint pathway. Taken together, these results demonstrate that Hus1 is required specifically for one of two separable mammalian checkpoint pathways that respond to distinct forms of genome damage during S phase.
Collapse
Affiliation(s)
- Robert S Weiss
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
25
|
Nasheuer HP, Smith R, Bauerschmidt C, Grosse F, Weisshart K. Initiation of eukaryotic DNA replication: regulation and mechanisms. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2002; 72:41-94. [PMID: 12206458 DOI: 10.1016/s0079-6603(02)72067-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The accurate and timely duplication of the genome is a major task for eukaryotic cells. This process requires the cooperation of multiple factors to ensure the stability of the genetic information of each cell. Mutations, rearrangements, or loss of chromosomes can be detrimental to a single cell as well as to the whole organism, causing failures, disease, or death. Because of the size of eukaryotic genomes, chromosomal duplication is accomplished in a multiparallel process. In human somatic cells between 10,000 and 100,000 parallel synthesis sites are present. This raises fundamental problems for eukaryotic cells to coordinate the start of DNA replication at each origin and to prevent replication of already duplicated DNA regions. Since these general phenomena were recognized in the middle of the 20th century the regulation and mechanisms of the initiation of eukaryotic DNA replication have been intensively investigated. These studies were carried out to find the essential factors involved in the process and to determine their functions during DNA replication. These studies gave rise to a model of the organization and the coordination of DNA replication within the eukaryotic cell. The elegant experiments carried out by Rao and Johnson (1970) (1), who fused cells in different phases of the cell cycle, showed that G1 cells are competent for replication of their chromosomes, but lack a specific diffusible factor required to activate their replicaton machinery and showed that G2 cells are incompetent for DNA replication. These findings suggested that eukaryotic cells exist in two states. In G1 phase, cells are competent to initiate DNA replication, which is subsequently triggered in S phase. After completion of S phase, cells in G2 are no longer able to initiate DNA replication and they require a transition through mitosis to reenable initiation of DNA replication to take place in the next S phase. The Xenopus cell-free replication system has proved a good model system in which to study DNA replication in vitro as well as the mechanism preventing rereplication within a single cell cycle (2). Studies using this system resulted in the development of a model postulating the existence of a replication licensing factor, which binds to chromatin before the G1-S transition and which is displaced during replication (2, 3). These results were supported by genetic and biochemical experiments in Saccharomyces cerevisiae (budding yeast) and Schizosaccharomyces pombe (fission yeast) (4, 5). The investigation of cell division cycle mutants and the budding yeast origin of replication resulted in the concept of a prereplicative and a postreplicative complex of initiation proteins (6-9). These three individual concepts have recently started to merge and it has become obvious that initiation in eukaryotes is generally governed by the same ubiquitous mechanisms.
Collapse
|
26
|
Giannattasio M, Sommariva E, Vercillo R, Lippi-Boncambi F, Liberi G, Foiani M, Plevani P, Muzi-Falconi M. A dominant-negative MEC3 mutant uncovers new functions for the Rad17 complex and Tel1. Proc Natl Acad Sci U S A 2002; 99:12997-3002. [PMID: 12271137 PMCID: PMC130575 DOI: 10.1073/pnas.202463999] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Rad17-Mec3-Ddc1 complex is essential for the cellular response to genotoxic agents and is thought to be important for sensing DNA lesions. Deletion of any of the RAD17, MEC3 or DDC1 genes abolishes the G(1) and G(2) and impairs the intra-S DNA-damage checkpoints. We characterize a dominant-negative mec3-dn mutation that has an unexpected phenotype. It inactivates the G(1) checkpoint while it leaves the G(2) response functional, thus revealing a difference in the requirements of the DNA-damage response in different phases of the cell cycle. In an attempt to identify the molecular defect imparted by the mutation, we dissected step-by-step the signaling cascade, which is triggered by DNA lesions and requires the activity of Mec1 and Rad53 kinases. The analysis of the phosphorylation state of checkpoint factors and critical protein interactions showed that, in mec3-dn cells, the signal transduction cascade is triggered normally, and the central kinase Mec1 can be activated. In G(1) cells expressing the mutation, the signaling cannot proceed any further along the pathway, indicating that the Rad17 complex acts after the activation of Mec1, possibly recruiting targets for the kinase. We also show that the function of the G(2) checkpoint in mutant cells is maintained by an uncharacterized activity of Tel1, the yeast homologue of ATM. This work thus reports a previously undiscovered role for Tel1 in checkpoint control.
Collapse
Affiliation(s)
- Michele Giannattasio
- Dipartimento di Genetica e Biologia dei Microrganismi, Universitá degli Studi di Milano, Via Celoria 26, 20133 Milan, Italy
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Ott RD, Rehfuess C, Podust VN, Clark JE, Fanning E. Role of the p68 subunit of human DNA polymerase alpha-primase in simian virus 40 DNA replication. Mol Cell Biol 2002; 22:5669-78. [PMID: 12138179 PMCID: PMC133971 DOI: 10.1128/mcb.22.16.5669-5678.2002] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
DNA polymerase alpha-primase (pol-prim) is a heterotetramer with DNA polymerase and primase activities. The polymerase (p180) and primase (p48 and p58) subunits synthesize primers and extend them, but the function of the remaining subunit (p68) is poorly understood. Genetic studies in yeast suggested an essential role for the p68 ortholog in early S phase prior to the hydroxyurea-sensitive step, possibly a regulatory role in initiation of DNA replication, but found no evidence for an essential function of p68 later in S phase. To investigate whether the human p68 subunit has an essential role in DNA replication, we examined the ability of a purified trimeric human pol-prim lacking p68 to initiate simian virus 40 DNA replication in vitro and to synthesize and elongate primers on single-stranded DNA in the presence of T antigen and replication protein A (RPA). Both activities of trimeric pol-prim were defective, but activity was recovered upon addition of separately purified p68. Phosphorylation of p68 by cyclin A-dependent protein kinase also inhibited both activities of pol-prim. The data strongly suggest that the p68 subunit is required for priming activity of pol-prim in the presence of RPA and T antigen, both during initiation at the origin and during lagging strand replication.
Collapse
Affiliation(s)
- Robert D Ott
- Department of Biological Sciences and Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee 37232, USA
| | | | | | | | | |
Collapse
|
28
|
Myung K, Kolodner RD. Suppression of genome instability by redundant S-phase checkpoint pathways in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 2002; 99:4500-7. [PMID: 11917116 PMCID: PMC123677 DOI: 10.1073/pnas.062702199] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cancer cells show increased genome rearrangements, although it is unclear what defects cause these rearrangements. Previous studies have implicated the Saccharomyces cerevisiae replication checkpoint in the suppression of spontaneous genome rearrangements. In the present study, low doses of methyl methane sulfonate that activate the intra-S checkpoint but not the G1 or G2 DNA damage checkpoints were found to cause increased accumulation of genome rearrangements in both wild-type strains and to an even greater extent in strains containing mutations causing defects in the intra-S checkpoint. The rearrangements were primarily translocations or events resulting in deletion of a portion of a chromosome arm along with the addition of a new telomere. Combinations of mutations causing individual defects in the RAD24 or SGS1 branches of the intra-S checkpoint or the replication checkpoint showed synergistic interactions with regard to the spontaneous genome instability rate. PDS1 and the RAD50-MRE11-XRS2 complex were found to be important members of all the S-phase checkpoints in suppressing genome instability, whereas RAD53 only seemed to play a role in the intra-S checkpoints. Combinations of mutations that seem to result in inactivation of the S-phase checkpoints and critical effectors resulted in as much as 12,000-14,000-fold increases in the genome instability rate. These data support the view that spontaneous genome rearrangements result from DNA replication errors and indicate that there is a high degree of redundancy among the checkpoints that act in S phase to suppress such genome instability.
Collapse
Affiliation(s)
- Kyungjae Myung
- Ludwig Institute for Cancer Research, Cancer Center, and Department of Medicine, University of California at San Diego School of Medicine, La Jolla, CA 92093, USA
| | | |
Collapse
|
29
|
Abstract
DNA primases are enzymes whose continual activity is required at the DNA replication fork. They catalyze the synthesis of short RNA molecules used as primers for DNA polymerases. Primers are synthesized from ribonucleoside triphosphates and are four to fifteen nucleotides long. Most DNA primases can be divided into two classes. The first class contains bacterial and bacteriophage enzymes found associated with replicative DNA helicases. These prokaryotic primases contain three distinct domains: an amino terminal domain with a zinc ribbon motif involved in binding template DNA, a middle RNA polymerase domain, and a carboxyl-terminal region that either is itself a DNA helicase or interacts with a DNA helicase. The second major primase class comprises heterodimeric eukaryotic primases that form a complex with DNA polymerase alpha and its accessory B subunit. The small eukaryotic primase subunit contains the active site for RNA synthesis, and its activity correlates with DNA replication during the cell cycle.
Collapse
Affiliation(s)
- D N Frick
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, New York 10595, USA.
| | | |
Collapse
|
30
|
Clerici M, Paciotti V, Baldo V, Romano M, Lucchini G, Longhese MP. Hyperactivation of the yeast DNA damage checkpoint by TEL1 and DDC2 overexpression. EMBO J 2001; 20:6485-98. [PMID: 11707419 PMCID: PMC125310 DOI: 10.1093/emboj/20.22.6485] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The evolutionarily conserved yeast Mec1 and Tel1 protein kinases, as well as the Mec1-interacting protein Ddc2, are involved in the DNA damage checkpoint response. We show that regulation of Tel1 and Ddc2-Mec1 activities is important to modulate both activation and termination of checkpoint-mediated cell cycle arrest. In fact, overproduction of either Tel1 or Ddc2 causes a prolonged cell cycle arrest and cell death in response to DNA damage, impairing the ability of cells to recover from checkpoint activation. This cell cycle arrest is independent of Mec1 in UV-irradiated Tel1-overproducing cells, while it is strictly Mec1 dependent in similarly treated DDC2-overexpressing cells. The Rad53 checkpoint kinase is instead required in both cases for cell cycle arrest, which correlates with its enhanced and persistent phosphorylation, suggesting that unscheduled Rad53 phosphorylation might prevent cells from re-entering the cell cycle after checkpoint activation. In addition, Tel1 overproduction results in transient nuclear division arrest and concomitant Rad53 phosphorylation in the absence of exogenous DNA damage independently of Mec1 and Ddc1.
Collapse
Affiliation(s)
| | | | | | | | | | - Maria Pia Longhese
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi di Milano-Bicocca, 20126 Milan, Italy
Corresponding author e-mail:
M.Clerici and V.Paciotti contributed equally to this work
| |
Collapse
|
31
|
Grandin N, Damon C, Charbonneau M. Cdc13 prevents telomere uncapping and Rad50-dependent homologous recombination. EMBO J 2001; 20:6127-39. [PMID: 11689452 PMCID: PMC125707 DOI: 10.1093/emboj/20.21.6127] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Cdc13 performs an essential function in telomere end protection in budding yeast. Here, we analyze the consequences on telomere dynamics of cdc13-induced telomeric DNA damage in proliferating cells. Checkpoint-deficient cdc13-1 cells accumulated DNA damage and eventually senesced. However, these telomerase-proficient cells could survive by using homologous recombination but, contrary to telomerase-deficient cells, did so without prior telomere shortening. Strikingly, homologous recombination in cdc13-1 mec3, as well as in telomerase-deficient cdc13-1 cells, which were Rad52- and Rad50-dependent but Rad51-independent, exclusively amplified the TG(1-3) repeats. This argues that not only short telomeres are substrates for type II recombination. The Cdc13-1 mutant protein harbored a defect in its association with Stn1 and Ten1 but also an additional, unknown, defect that could not be cured by expressing a Cdc13-1- Ten1-Stn1 fusion. We propose that Cdc13 prevents telomere uncapping and inhibits recombination between telomeric sequences through a pathway distinct from and complementary to that used by telomerase.
Collapse
Affiliation(s)
| | | | - Michel Charbonneau
- UMR CNRS/ENS No. 5665, Ecole Normale Supérieure de Lyon, 46, allée d’Italie, 69364 Lyon, France
Corresponding author e-mail:
| |
Collapse
|
32
|
Chakraverty RK, Kearsey JM, Oakley TJ, Grenon M, de La Torre Ruiz MA, Lowndes NF, Hickson ID. Topoisomerase III acts upstream of Rad53p in the S-phase DNA damage checkpoint. Mol Cell Biol 2001; 21:7150-62. [PMID: 11585898 PMCID: PMC99890 DOI: 10.1128/mcb.21.21.7150-7162.2001] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Deletion of the Saccharomyces cerevisiae TOP3 gene, encoding Top3p, leads to a slow-growth phenotype characterized by an accumulation of cells with a late S/G2 content of DNA (S. Gangloff, J. P. McDonald, C. Bendixen, L. Arthur, and R. Rothstein, Mol. Cell. Biol. 14:8391-8398, 1994). We have investigated the function of TOP3 during cell cycle progression and the molecular basis for the cell cycle delay seen in top3Delta strains. We show that top3Delta mutants exhibit a RAD24-dependent delay in the G2 phase, suggesting a possible role for Top3p in the resolution of abnormal DNA structures or DNA damage arising during S phase. Consistent with this notion, top3Delta strains are sensitive to killing by a variety of DNA-damaging agents, including UV light and the alkylating agent methyl methanesulfonate, and are partially defective in the intra-S-phase checkpoint that slows the rate of S-phase progression following exposure to DNA-damaging agents. This S-phase checkpoint defect is associated with a defect in phosphorylation of Rad53p, indicating that, in the absence of Top3p, the efficiency of sensing the existence of DNA damage or signaling to the Rad53 kinase is impaired. Consistent with a role for Top3p specifically during S phase, top3Delta mutants are sensitive to the replication inhibitor hydroxyurea, expression of the TOP3 mRNA is activated in late G1 phase, and DNA damage checkpoints operating outside of S phase are unaffected by deletion of TOP3. All of these phenotypic consequences of loss of Top3p function are at least partially suppressed by deletion of SGS1, the yeast homologue of the human Bloom's and Werner's syndrome genes. These data implicate Top3p and, by inference, Sgs1p in an S-phase-specific role in the cellular response to DNA damage. A model proposing a role for these proteins in S phase is presented.
Collapse
Affiliation(s)
- R K Chakraverty
- Imperial Cancer Research Fund Laboratories, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
33
|
Schramke V, Neecke H, Brevet V, Corda Y, Lucchini G, Longhese MP, Gilson E, Géli V. The set1Delta mutation unveils a novel signaling pathway relayed by the Rad53-dependent hyperphosphorylation of replication protein A that leads to transcriptional activation of repair genes. Genes Dev 2001; 15:1845-58. [PMID: 11459833 PMCID: PMC312739 DOI: 10.1101/gad.193901] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
SET domain proteins are present in chromosomal proteins involved in epigenetic control of transcription. The yeast SET domain protein Set1p regulates chromatin structure, DNA repair, and telomeric functions. We investigated the mechanism by which the absence of Set1p increases DNA repair capacities of checkpoint mutants. We show that deletion of SET1 induces a response relayed by the signaling kinase Rad53p that leads to the MEC1/TEL1-independent hyperphosphorylation of replication protein A middle subunit (Rfa2p). Consequently, the binding of Rfa2p to upstream repressing sequences (URS) of repair genes is decreased, thereby leading to their derepression. Our results correlate the set1Delta-dependent phosphorylation of Rfa2p with the transcriptional induction of repair genes. Moreover, we show that the deletion of the amino-terminal region of Rfa2p suppresses the sensitivity to ultraviolet radiation of a mec3Delta checkpoint mutant, abolishes the URS-mediated repression, and increases the expression of repair genes. This work provides an additional link for the role of Rfa2p in the regulation of the repair capacity of the cell and reveals a role for the phosphorylation of Rfa2p and unveils unsuspected connections between chromatin, signaling pathways, telomeres, and DNA repair.
Collapse
Affiliation(s)
- V Schramke
- Laboratoire D'Ingéniérie des Systèmes Macromoléculaires, Institut de Biologie Structurale et Microbiologie (IBSM), Centre National de la Recherche Scientifique (CNRS), 13402, Marseille, Cedex 20, France
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Leroy C, Mann C, Marsolier MC. Silent repair accounts for cell cycle specificity in the signaling of oxidative DNA lesions. EMBO J 2001; 20:2896-906. [PMID: 11387222 PMCID: PMC125485 DOI: 10.1093/emboj/20.11.2896] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Reactive oxygen species are the most important source of DNA lesions in aerobic organisms, but little is known about the activation of the DNA checkpoints in response to oxidative stress. We show that treatment of yeast cells with sublethal concentrations of hydrogen peroxide induces a Mec1-dependent phosphorylation of Rad53 and a Rad53-dependent cell cycle delay specifically during S phase. The lack of Rad53 phosphorylation after hydrogen peroxide treatment in the G1 and G2 phases is due to the silent repair of oxidative DNA lesions produced at these stages by the base excision repair (BER) pathway. Only the disruption of the BER pathway and the accumulation and/or treatment of DNA intermediates by alternative repair pathways reveal the existence of primary DNA lesions induced at all phases of the cell cycle by hydrogen peroxide. Our data illustrate both the concept of silent repair of DNA damage and the high sensitivity of S-phase cells to hydrogen peroxide.
Collapse
Affiliation(s)
| | | | - Marie-Claude Marsolier
- Service de Biochimie et de Génétique Moléculaire, CEA/Saclay, F-91191 Gif-sur-Yvette Cedex, France
Corresponding author e-mail:
| |
Collapse
|
35
|
Mayer ML, Gygi SP, Aebersold R, Hieter P. Identification of RFC(Ctf18p, Ctf8p, Dcc1p): an alternative RFC complex required for sister chromatid cohesion in S. cerevisiae. Mol Cell 2001; 7:959-70. [PMID: 11389843 DOI: 10.1016/s1097-2765(01)00254-4] [Citation(s) in RCA: 262] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We have identified and characterized an alternative RFC complex RFC(Ctf18p, Ctf8p, Dcc1p) that is required for sister chromatid cohesion and faithful chromosome transmission. Ctf18p, Ctf8p, and Dcc1p interact physically in a complex with Rfc2p, Rfc3p, Rfc4p, and Rfc5p but not with Rfc1p or Rad24p. Deletion of CTF18, CTF8, or DCC1 singly or in combination (ctf18Deltactf8Deltadcc1Delta) leads to sensitivity to microtubule depolymerizing drugs and a severe sister chromatid cohesion defect. Furthermore, temperature-sensitive mutations in RFC4 result in precocious sister chromatid separation. Our results highlight a novel function of the RFC proteins and support a model in which sister chromatid cohesion is established at the replication fork via a polymerase switching mechanism and a replication-coupled remodeling of chromatin.
Collapse
Affiliation(s)
- M L Mayer
- Graduate Program in Biochemistry, Cellular and Molecular Biology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | | | | | | |
Collapse
|
36
|
Abstract
The initiation of DNA replication in eukaryotic cells is tightly controlled to ensure that the genome is faithfully duplicated once each cell cycle. Genetic and biochemical studies in several model systems indicate that initiation is mediated by a common set of proteins, present in all eukaryotic species, and that the activities of these proteins are regulated during the cell cycle by specific protein kinases. Here we review the properties of the initiation proteins, their interactions with each other, and with origins of DNA replication. We also describe recent advances in understanding how the regulatory protein kinases control the progress of the initiation reaction. Finally, we describe the checkpoint mechanisms that function to preserve the integrity of the genome when the normal course of genome duplication is perturbed by factors that damage the DNA or inhibit DNA synthesis.
Collapse
Affiliation(s)
- T J Kelly
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA.
| | | |
Collapse
|
37
|
Myung K, Datta A, Kolodner RD. Suppression of spontaneous chromosomal rearrangements by S phase checkpoint functions in Saccharomyces cerevisiae. Cell 2001; 104:397-408. [PMID: 11239397 DOI: 10.1016/s0092-8674(01)00227-6] [Citation(s) in RCA: 251] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Cancer cells show increased genome rearrangements, although it is unclear what defects cause these rearrangements. Mutations in Saccharomyces cerevisiae RFC5, DPB11, MEC1, DDC2 MEC3, RAD53, CHK1, PDS1, and DUN1 increased the rate of genome rearrangements up to 200-fold whereas mutations in RAD9, RAD17, RAD24, BUB3, and MAD3 had little effect. The rearrangements were primarily deletion of a portion of a chromosome arm along with TEL1-dependent addition of a new telomere. tel1 mutations increased the proportion of translocations observed, and in some cases showed synergistic interactions when combined with mutations that increased the genome rearrangement rate. These data suggest that one role of S phase checkpoint functions in normal cells is to suppress spontaneous genome rearrangements resulting from DNA replication errors.
Collapse
Affiliation(s)
- K Myung
- Ludwig Institute for Cancer Research, Cancer Center and Department of Medicine, University of California-San Diego School of Medicine, La Jolla, CA 92093, USA
| | | | | |
Collapse
|
38
|
Nishikawa N, Izumi M, Yokoi M, Miyazawa H, Hanaoka F. E2F regulates growth-dependent transcription of genes encoding both catalytic and regulatory subunits of mouse primase. Genes Cells 2001; 6:57-70. [PMID: 11168597 DOI: 10.1046/j.1365-2443.2001.00395.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
DNA polymerase alpha-primase is one of the principal enzymes involved in eukaryotic chromosomal DNA replication. Mouse DNA polymerase alpha-primase consists of four subunits with molecular masses of 180, 68, 54 and 46 kDa. Protein and mRNA expression levels of the four subunits are up-regulated in a coordinated manner in response to growth stimulation. We have previously analysed the transcription of the 180 kDa (p180) and 68 kDa (p68) subunits, which form the DNA polymerase catalytic complex, and found that growth-dependent regulation of transcription of the mouse p180 and p68 genes is mediated by a common factor, E2F, while the basal transcription of the genes is regulated by different transcription factors. We characterized the transcriptional regulation of the 54 kDa (p54) and 46 kDa (p46) subunits, which form the DNA primase catalytic complex. We isolated genomic clones spanning the 5'-flanking regions of the p54 and p46 genes and showed, using transient expression and gel mobility shift assays, that the basal transcription of p54 is controlled by Sp1 and GA-binding protein, as is the basal transcription of the p180 gene. The basal transcription of p46 is controlled by unknown factor(s) which were bound to the upstream sequence. The variant E2F sites close to the transcription initiation sites of the p54 and p46 genes had no basal promoter activity, but were essential for the growth-dependent transcription of both genes. The promoter regions of the four subunits of mouse DNA polymerase d-primase complex share several common features. The coordinated transcription of all four subunits in response to growth stimulation appears to be controlled by E2F.
Collapse
Affiliation(s)
- N Nishikawa
- Cellular Physiology Laboratory, RIKEN (The Institute of Physical and Chemical Research), Wako, Saitama 351-0198, Japan
| | | | | | | | | |
Collapse
|
39
|
Paciotti V, Clerici M, Lucchini G, Longhese MP. The checkpoint protein Ddc2, functionally related to S. pombe Rad26, interacts with Mec1 and is regulated by Mec1-dependent phosphorylation in budding yeast. Genes Dev 2000. [DOI: 10.1101/gad.14.16.2046] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
DDC2 is a novel component of the DNA integrity checkpoint pathway, which is required for proper checkpoint response to DNA damage and to incomplete DNA replication. Moreover, Ddc2 overproduction causes sensitivity to DNA-damaging agents and checkpoint defects. Ddc2 physically interacts with Mec1 and undergoes Mec1-dependent phosphorylation both in vitro and in vivo. The phosphorylation of Ddc2 takes place in late S phase and in G2 phase during an unperturbed cell cycle and is further increased in response to DNA damage. Because Ddc2 phosphorylation does not require any other known tested checkpoint factors but Mec1, the Ddc2–Mec1 complex might respond to the presence of some DNA structures independently of the other known checkpoint proteins. Our findings suggest that Ddc2 may be the functional homolog of Schizosaccharomyces pombe Rad26, strengthening the hypothesis that the mechanisms leading to checkpoint activation are conserved throughout evolution.
Collapse
|
40
|
Paciotti V, Clerici M, Lucchini G, Longhese MP. The checkpoint protein Ddc2, functionally related to S. pombe Rad26, interacts with Mec1 and is regulated by Mec1-dependent phosphorylation in budding yeast. Genes Dev 2000; 14:2046-59. [PMID: 10950868 PMCID: PMC316858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
DDC2 is a novel component of the DNA integrity checkpoint pathway, which is required for proper checkpoint response to DNA damage and to incomplete DNA replication. Moreover, Ddc2 overproduction causes sensitivity to DNA-damaging agents and checkpoint defects. Ddc2 physically interacts with Mec1 and undergoes Mec1-dependent phosphorylation both in vitro and in vivo. The phosphorylation of Ddc2 takes place in late S phase and in G(2) phase during an unperturbed cell cycle and is further increased in response to DNA damage. Because Ddc2 phosphorylation does not require any other known tested checkpoint factors but Mec1, the Ddc2-Mec1 complex might respond to the presence of some DNA structures independently of the other known checkpoint proteins. Our findings suggest that Ddc2 may be the functional homolog of Schizosaccharomyces pombe Rad26, strengthening the hypothesis that the mechanisms leading to checkpoint activation are conserved throughout evolution.
Collapse
Affiliation(s)
- V Paciotti
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi di Milano-Bicocca, 20126 Milan, Italy
| | | | | | | |
Collapse
|
41
|
Longhese MP, Paciotti V, Neecke H, Lucchini G. Checkpoint proteins influence telomeric silencing and length maintenance in budding yeast. Genetics 2000; 155:1577-91. [PMID: 10924458 PMCID: PMC1461196 DOI: 10.1093/genetics/155.4.1577] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
A complex network of surveillance mechanisms, called checkpoints, interrupts cell cycle progression when damage to the genome is detected or when cells fail to complete DNA replication, thus ensuring genetic integrity. In budding yeast, components of the DNA damage checkpoint regulatory network include the RAD9, RAD17, RAD24, MEC3, DDC1, RAD53, and MEC1 genes that are proposed to be involved in different aspects of DNA metabolism. We provide evidence that some DNA damage checkpoint components play a role in maintaining telomere integrity. In fact, rad53 mutants specifically enhance repression of telomere-proximal transcription via the Sir-mediated pathway, suggesting that Rad53 might be required for proper chromatin structure at telomeres. Moreover, Rad53, Mec1, Ddc1, and Rad17 are necessary for telomere length maintenance, since mutations in all of these genes cause a decrease in telomere size. The telomeric shortening in rad53 and mec1 mutants is further enhanced in the absence of SIR genes, suggesting that Rad53/Mec1 and Sir proteins contribute to chromosome end protection by different pathways. The finding that telomere shortening, but not increased telomeric repression of gene expression in rad53 mutants, can be suppressed by increasing dNTP synthetic capacity in these strains suggests that transcriptional silencing and telomere integrity involve separable functions of Rad53.
Collapse
Affiliation(s)
- M P Longhese
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi di Milano-Bicocca, 20126 Milan, Italy.
| | | | | | | |
Collapse
|
42
|
Naiki T, Shimomura T, Kondo T, Matsumoto K, Sugimoto K. Rfc5, in cooperation with rad24, controls DNA damage checkpoints throughout the cell cycle in Saccharomyces cerevisiae. Mol Cell Biol 2000; 20:5888-96. [PMID: 10913172 PMCID: PMC86066 DOI: 10.1128/mcb.20.16.5888-5896.2000] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
RAD24 and RFC5 are required for DNA damage checkpoint control in the budding yeast Saccharomyces cerevisiae. Rad24 is structurally related to replication factor C (RFC) subunits and associates with RFC subunits Rfc2, Rfc3, Rfc4, and Rfc5. rad24Delta mutants are defective in all the G(1)-, S-, and G(2)/M-phase DNA damage checkpoints, whereas the rfc5-1 mutant is impaired only in the S-phase DNA damage checkpoint. Both the RFC subunits and Rad24 contain a consensus sequence for nucleoside triphosphate (NTP) binding. To determine whether the NTP-binding motif is important for Rad24 function, we mutated the conserved lysine(115) residue in this motif. The rad24-K115E mutation, which changes lysine to glutamate, confers a complete loss-of-function phenotype, while the rad24-K115R mutation, which changes lysine to arginine, shows no apparent phenotype. Although neither rfc5-1 nor rad24-K115R single mutants are defective in the G(1)- and G(2)/M-phase DNA damage checkpoints, rfc5-1 rad24-K115R double mutants become defective in these checkpoints. Coimmunoprecipitation experiments revealed that Rad24(K115R) fails to interact with the RFC proteins in rfc5-1 mutants. Together, these results indicate that RFC5, like RAD24, functions in all the G(1)-, S- and G(2)/M-phase DNA damage checkpoints and suggest that the interaction of Rad24 with the RFC proteins is essential for DNA damage checkpoint control.
Collapse
Affiliation(s)
- T Naiki
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-0814, Japan
| | | | | | | | | |
Collapse
|
43
|
Corda Y, Schramke V, Longhese MP, Smokvina T, Paciotti V, Brevet V, Gilson E, Géli V. Interaction between Set1p and checkpoint protein Mec3p in DNA repair and telomere functions. Nat Genet 1999; 21:204-8. [PMID: 9988274 DOI: 10.1038/5991] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The yeast protein Set1p, inactivation of which alleviates telomeric position effect (TPE), contains a conserved SET domain present in chromosomal proteins involved in epigenetic control of transcription. Mec3p is required for efficient DNA-damage-dependent checkpoints at G1/S, intra-S and G2/M (refs 3-7). We show here that the SET domain of Set1p interacts with Mec3p. Deletion of SET1 increases the viability of mec3delta mutants after DNA damage (in a process that is mostly independent of Rad53p kinase, which has a central role in checkpoint control) but does not significantly affect cell-cycle progression. Deletion of MEC3 enhances TPE and attenuates the Set1delta-induced silencing defect. Furthermore, restoration of TPE in a Set1delta mutant by overexpression of the isolated SET domain requires Mec3p. Finally, deletion of MEC3 results in telomere elongation, whereas cells with deletions of both SET1 and MEC3 do not have elongated telomeres. Our findings indicate that interactions between SET1 and MEC3 have a role in DNA repair and telomere function.
Collapse
Affiliation(s)
- Y Corda
- Laboratoire d'Ingénierie et de Dynamique des Systèmes Macromoléculaires, CNRS, Marseille, France
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Kondo T, Matsumoto K, Sugimoto K. Role of a complex containing Rad17, Mec3, and Ddc1 in the yeast DNA damage checkpoint pathway. Mol Cell Biol 1999; 19:1136-43. [PMID: 9891048 PMCID: PMC116043 DOI: 10.1128/mcb.19.2.1136] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Genetic analysis has suggested that RAD17, RAD24, MEC3, and DDC1 play similar roles in the DNA damage checkpoint control in budding yeast. These genes are required for DNA damage-induced Rad53 phosphorylation and considered to function upstream of RAD53 in the DNA damage checkpoint pathway. Here we identify Mec3 as a protein that associates with Rad17 in a two-hybrid screen and demonstrate that Rad17 and Mec3 interact physically in vivo. The amino terminus of Rad17 is required for its interaction with Mec3, and the protein encoded by the rad17-1 allele, containing a missense mutation at the amino terminus, is defective for its interaction with Mec3 in vivo. Ddc1 interacts physically and cosediments with both Rad17 and Mec3, indicating that these three proteins form a complex. On the other hand, Rad24 is not found to associate with Rad17, Mec3, and Ddc1. DDC1 overexpression can partially suppress the phenotypes of the rad24Delta mutation: sensitivity to DNA damage, defect in the DNA damage checkpoint and decrease in DNA damage-induced phosphorylation of Rad53. Taken together, our results suggest that Rad17, Mec3, and Ddc1 form a complex which functions downstream of Rad24 in the DNA damage checkpoint pathway.
Collapse
Affiliation(s)
- T Kondo
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-0814, Japan
| | | | | |
Collapse
|
45
|
Abstract
Replication of the two template strands at eukaryotic cell DNA replication forks is a highly coordinated process that ensures accurate and efficient genome duplication. Biochemical studies, principally of plasmid DNAs containing the Simian Virus 40 origin of DNA replication, and yeast genetic studies have uncovered the fundamental mechanisms of replication fork progression. At least two different DNA polymerases, a single-stranded DNA-binding protein, a clamp-loading complex, and a polymerase clamp combine to replicate DNA. Okazaki fragment synthesis involves a DNA polymerase-switching mechanism, and maturation occurs by the recruitment of specific nucleases, a helicase, and a ligase. The process of DNA replication is also coupled to cell-cycle progression and to DNA repair to maintain genome integrity.
Collapse
Affiliation(s)
- S Waga
- Cold Spring Harbor Laboratory, New York 11724, USA
| | | |
Collapse
|
46
|
Abstract
Telomeres are the termini of linear eukaryotic chromosomes consisting of tandem repeats of DNA and proteins that bind to these repeat sequences. Telomeres ensure the complete replication of chromosome ends, impart protection to ends from nucleolytic degradation, end-to-end fusion, and guide the localization of chromosomes within the nucleus. In addition, a combination of genetic, biochemical, and molecular biological approaches have implicated key roles for telomeres in diverse cellular processes such as regulation of gene expression, cell division, cell senescence, and cancer. This review focuses on recent advances in our understanding of the organization of telomeres, telomere replication, proteins that bind telomeric DNA, and the establishment of telomere length equilibrium.
Collapse
Affiliation(s)
- K Muniyappa
- Department of Biochemistry, Indian Institute of Science, Bangalore
| | | |
Collapse
|
47
|
Ishii C, Nakamura K, Inoue H. A new UV-sensitive mutant that suggests a second excision repair pathway in Neurospora crassa. Mutat Res 1998; 408:171-82. [PMID: 9806416 DOI: 10.1016/s0921-8777(98)00030-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
In an attempt to understand the relationship between photorepair and dark repair in Neurospora crassa, a new mutant was isolated, which showed defects in both repair processes. The new mutant, mus-38, is moderately sensitive to UV and shows imperfect photoreactivation following UV irradiation. DNA was purified from this mutant and the other UV-sensitive mutants, and analyzed for the removal of cyclobutane pyrimidine dimers (CPDs). UV-specific endonuclease-sensitive sites (ESS) completely disappeared with 1 h of photoreactivation in mus-38 DNA, although the survival recovery with photoreactivation was greatly reduced in this mutant. This suggests that the insufficient survival recovery with photoreactivation in mus-38 does not result from a failure of photo-reversal of CPDs. Removal of ESS during liquid holding (dark repair) was slower in mus-38 compared to wild type. To test the possibility that this mutant was involved in excision repair, the double mutant was made between mus-38 and mus-18, which encodes a UV-damage-specific endonuclease. CPD excision in the mus-18 null mutant was severely affected but not completely inhibited. The double mutant showed a complete loss of the excision activity and was super sensitive to UV. These results indicate that mus-38 participates in an excision pathway that is different from the mus-18 pathway. The mus-38 mutant was sensitive not only to UV but also to some chemical mutagens which make adducts on DNA. Thus, mus-38 is possibly involved in an excision-repair pathway that is related to the Saccharomyces cerevisiae RAD3 pathway.
Collapse
Affiliation(s)
- C Ishii
- Department of Regulation Biology, Faculty of Science, Saitama University, Urawa, Japan.
| | | | | |
Collapse
|
48
|
Shimomura T, Ando S, Matsumoto K, Sugimoto K. Functional and physical interaction between Rad24 and Rfc5 in the yeast checkpoint pathways. Mol Cell Biol 1998; 18:5485-91. [PMID: 9710632 PMCID: PMC109133 DOI: 10.1128/mcb.18.9.5485] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The RFC5 gene encodes a small subunit of replication factor C (RFC) complex in Saccharomyces cerevisiae and has been shown to be required for the checkpoints which respond to replication block and DNA damage. Here we describe the isolation of RAD24, known to play a role in the DNA damage checkpoint, as a dosage-dependent suppressor of rfc5-1. RAD24 overexpression suppresses the sensitivity of rfc5-1 cells to DNA-damaging agents and the defect in DNA damage-induced Rad53 phosphorylation. Rad24, like Rfc5, is required for the regulation of Rad53 phosphorylation in response to DNA damage. The Rad24 protein, which is structurally related to the RFC subunits, interacts physically with RFC subunits Rfc2 and Rfc5 and cosediments with Rfc5. Although the rad24Delta mutation alone does not cause a defect in the replication block checkpoint, it does enhance the defect in rfc5-1 mutants. Furthermore, overexpression of RAD24 suppresses the rfc5-1 defect in the replication block checkpoint. Taken together, our results demonstrate a physical and functional interaction between Rad24 and Rfc5 in the checkpoint pathways.
Collapse
Affiliation(s)
- T Shimomura
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-0814, Japan
| | | | | | | |
Collapse
|
49
|
Paulovich AG, Armour CD, Hartwell LH. The Saccharomyces cerevisiae RAD9, RAD17, RAD24 and MEC3 genes are required for tolerating irreparable, ultraviolet-induced DNA damage. Genetics 1998; 150:75-93. [PMID: 9725831 PMCID: PMC1460327 DOI: 10.1093/genetics/150.1.75] [Citation(s) in RCA: 100] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In wild-type Saccharomyces cerevisiae, a checkpoint slows the rate of progression of an ongoing S phase in response to exposure to a DNA-alkylating agent. Mutations that eliminate S phase regulation also confer sensitivity to alkylating agents, leading us to suggest that, by regulating the S phase rate, cells are either better able to repair or better able to replicate damaged DNA. In this study, we determine the effects of mutations that impair S phase regulation on the ability of excision repair-defective cells to replicate irreparably UV-damaged DNA. We assay survival after UV irradiation, as well as the genetic consequences of replicating a damaged template, namely mutation and sister chromatid exchange induction. We find that RAD9, RAD17, RAD24, and MEC3 are required for UV-induced (although not spontaneous) mutagenesis, and that RAD9 and RAD17 (but not REV3, RAD24, and MEC3) are required for maximal induction of replication-dependent sister chromatid exchange. Therefore, checkpoint genes not only control cell cycle progression in response to damage, but also play a role in accommodating DNA damage during replication.
Collapse
Affiliation(s)
- A G Paulovich
- Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | | | | |
Collapse
|
50
|
Abstract
In budding yeast, DNA damage can activate a checkpoint surveillance system controlled by the RAD9, RAD53, and MEC1 genes, resulting in a delay in cell cycle progression. Here, I report that DNA damage induces rapid and extensive phosphorylation of Rad9p in a manner that correlates directly with checkpoint activation. This response is dependent on MEC1, which encodes a member of the evolutionarily conserved ATM family of protein kinases, and on gene products of the RAD24 epistasis group, which have been implicated in the recognition and processing of DNA lesions. Since the phosphorylated form of Rad9p appears capable of interacting stably with Rad53p in vivo, this phosphorylation response likely controls checkpoint signaling by Rad9p.
Collapse
Affiliation(s)
- A Emili
- Division of Molecular Medicine, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA.
| |
Collapse
|