1
|
Nickless A, Bailis JM, You Z. Control of gene expression through the nonsense-mediated RNA decay pathway. Cell Biosci 2017; 7:26. [PMID: 28533900 PMCID: PMC5437625 DOI: 10.1186/s13578-017-0153-7] [Citation(s) in RCA: 130] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 05/12/2017] [Indexed: 11/25/2022] Open
Abstract
Nonsense-mediated RNA decay (NMD) was originally discovered as a cellular surveillance pathway that safeguards the quality of mRNA transcripts in eukaryotic cells. In its canonical function, NMD prevents translation of mutant mRNAs harboring premature termination codons (PTCs) by targeting them for degradation. However, recent studies have shown that NMD has a much broader role in gene expression by regulating the stability of many normal transcripts. In this review, we discuss the function of NMD in normal physiological processes, its dynamic regulation by developmental and environmental cues, and its association with human disease.
Collapse
Affiliation(s)
- Andrew Nickless
- Department of Cell Biology & Physiology, Washington University School of Medicine, Campus Box 8228, 660 S. Euclid Ave., St. Louis, MO 63110 USA
| | - Julie M Bailis
- Department of Oncology Research, Amgen, South San Francisco, CA 94080 USA
| | - Zhongsheng You
- Department of Cell Biology & Physiology, Washington University School of Medicine, Campus Box 8228, 660 S. Euclid Ave., St. Louis, MO 63110 USA
| |
Collapse
|
2
|
Shi M, Zhang H, Wang L, Zhu C, Sheng K, Du Y, Wang K, Dias A, Chen S, Whitman M, Wang E, Reed R, Cheng H. Premature Termination Codons Are Recognized in the Nucleus in A Reading-Frame Dependent Manner. Cell Discov 2015; 1. [PMID: 26491543 PMCID: PMC4610414 DOI: 10.1038/celldisc.2015.1] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
mRNAs containing premature termination codons (PTCs) are known to be degraded via nonsense-mediated mRNA decay (NMD). Unexpectedly, we found that mRNAs containing any type of PTC (UAA, UAG, UGA) are detained in the nucleus whereas their wild-type counterparts are rapidly exported. This retention is strictly reading-frame dependent. Strikingly, our data indicate that translating ribosomes in the nucleus proofread the frame and detect the PTCs in the nucleus. Moreover, the shuttling NMD protein Upf1 specifically associates with PTC+ mRNA in the nucleus and is required for nuclear retention of PTC+ mRNA. Together, our data lead to a working model that PTCs are recognized in the nucleus by translating ribosomes, resulting in recruitment of Upf1, which in turn functions in nuclear retention of PTC+ mRNA. Nuclear PTC recognition adds a new layer of proofreading for mRNA and may be vital for ensuring the extraordinary fidelity required for protein production.
Collapse
Affiliation(s)
- Min Shi
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, Institute of Biochemistry and Cell Biology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Heng Zhang
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, Institute of Biochemistry and Cell Biology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Lantian Wang
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, Institute of Biochemistry and Cell Biology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Changlan Zhu
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, Institute of Biochemistry and Cell Biology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Ke Sheng
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, Institute of Biochemistry and Cell Biology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yanhua Du
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, Institute of Biochemistry and Cell Biology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Ke Wang
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, Institute of Biochemistry and Cell Biology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Anusha Dias
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - She Chen
- National Institute of Biological Sciences, Beijing 102206
| | - Malcolm Whitman
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA 02115, USA
| | - Enduo Wang
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, Institute of Biochemistry and Cell Biology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Robin Reed
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Hong Cheng
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, Institute of Biochemistry and Cell Biology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
3
|
Abstract
Cells use messenger RNAs (mRNAs) to ensure the accurate dissemination of genetic information encoded by DNA. Given that mRNAs largely direct the synthesis of a critical effector of cellular phenotype, i.e., proteins, tight regulation of both the quality and quantity of mRNA is a prerequisite for effective cellular homeostasis. Here, we review nonsense-mediated mRNA decay (NMD), which is the best-characterized posttranscriptional quality control mechanism that cells have evolved in their cytoplasm to ensure transcriptome fidelity. We use protein quality control as a conceptual framework to organize what is known about NMD, highlighting overarching similarities between these two polymer quality control pathways, where the protein quality control and NMD pathways intersect, and how protein quality control can suggest new avenues for research into mRNA quality control.
Collapse
Affiliation(s)
- Maximilian Wei-Lin Popp
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester, Rochester, New York 14642;
| | | |
Collapse
|
4
|
Trcek T, Sato H, Singer RH, Maquat LE. Temporal and spatial characterization of nonsense-mediated mRNA decay. Genes Dev 2013; 27:541-51. [PMID: 23431032 PMCID: PMC3605467 DOI: 10.1101/gad.209635.112] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Accepted: 01/29/2013] [Indexed: 12/11/2022]
Abstract
Nonsense-mediated mRNA decay (NMD) is a quality control mechanism responsible for "surveying" mRNAs during translation and degrading those that harbor a premature termination codon (PTC). Currently the intracellular spatial location of NMD and the kinetics of its decay step in mammalian cells are under debate. To address these issues, we used single-RNA fluorescent in situ hybridization (FISH) and measured the NMD of PTC-containing β-globin mRNA in intact single cells after the induction of β-globin gene transcription. This approach preserves temporal and spatial information of the NMD process, both of which would be lost in an ensemble study. We determined that decay of the majority of PTC-containing β-globin mRNA occurs soon after its export into the cytoplasm, with a half-life of <1 min; the remainder is degraded with a half-life of >12 h, similar to the half-life of normal PTC-free β-globin mRNA, indicating that it had evaded NMD. Importantly, NMD does not occur within the nucleoplasm, thus countering the long-debated idea of nuclear degradation of PTC-containing transcripts. We provide a spatial and temporal model for the biphasic decay of NMD targets.
Collapse
Affiliation(s)
- Tatjana Trcek
- Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | - Hanae Sato
- Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester, Rochester, New York 14642, USA
- Center for RNA Biology, University of Rochester, Rochester, New York 14642, USA
| | - Robert H. Singer
- Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | - Lynne E. Maquat
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester, Rochester, New York 14642, USA
- Center for RNA Biology, University of Rochester, Rochester, New York 14642, USA
| |
Collapse
|
5
|
Tani H, Imamachi N, Salam KA, Mizutani R, Ijiri K, Irie T, Yada T, Suzuki Y, Akimitsu N. Identification of hundreds of novel UPF1 target transcripts by direct determination of whole transcriptome stability. RNA Biol 2012; 9:1370-9. [PMID: 23064114 DOI: 10.4161/rna.22360] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
UPF1 eliminates aberrant mRNAs harboring premature termination codons, and regulates the steady-state levels of normal physiological mRNAs. Although genome-wide studies of UPF1 targets performed, previous studies did not distinguish indirect UPF1 targets because they could not determine UPF1-dependent altered RNA stabilities. Here, we measured the decay rates of the whole transcriptome in UPF1-depleted HeLa cells using BRIC-seq, an inhibitor-free method for directly measuring RNA stability. We determined the half-lives and expression levels of 9,229 transcripts. An amount of 785 transcripts were stabilized in UPF1-depleted cells. Among these, the expression levels of 76 transcripts were increased, but those of the other 709 transcripts were not altered. RNA immunoprecipitation showed UPF1 bound to the stabilized transcripts, suggesting that UPF1 directly degrades the 709 transcripts. Many UPF1 targets in this study were newly identified. This study clearly demonstrates that direct determination of RNA stability is a powerful approach for identifying targets of RNA degradation factors.
Collapse
Affiliation(s)
- Hidenori Tani
- Radioisotope Center, University of Tokyo, Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Morgado A, Almeida F, Teixeira A, Silva AL, Romão L. Unspliced precursors of NMD-sensitive β-globin transcripts exhibit decreased steady-state levels in erythroid cells. PLoS One 2012; 7:e38505. [PMID: 22675570 PMCID: PMC3366927 DOI: 10.1371/journal.pone.0038505] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Accepted: 05/07/2012] [Indexed: 11/19/2022] Open
Abstract
Nonsense-mediated mRNA decay (NMD) is a quality control mechanism that detects and rapidly degrades mRNAs carrying premature translation-termination codons (PTCs). Mammalian NMD depends on both splicing and translation, and requires recognition of the premature stop codon by the cytoplasmic ribosomes. Surprisingly, some published data have suggested that nonsense codons may also affect the nuclear metabolism of the nonsense-mutated transcripts. To determine if nonsense codons could influence nuclear events, we have directly assessed the steady-state levels of the unspliced transcripts of wild-type and PTC-containing human β-globin genes stably transfected in mouse erythroleukemia (MEL) cells, after erythroid differentiation induction, or in HeLa cells. Our analyses by ribonuclease protection assays and reverse transcription-coupled quantitative PCR show that β-globin pre-mRNAs carrying NMD-competent PTCs, but not those containing a NMD-resistant PTC, exhibit a significant decrease in their steady-state levels relatively to the wild-type or to a missense-mutated β-globin pre-mRNA. On the contrary, in HeLa cells, human β-globin pre-mRNAs carrying NMD-competent PTCs accumulate at normal levels. Functional analyses of these pre-mRNAs in MEL cells demonstrate that their low steady-state levels do not reflect significantly lower pre-mRNA stabilities when compared to the normal control. Furthermore, our results also provide evidence that the relative splicing efficiencies of intron 1 and 2 are unaffected. This set of data highlights potential nuclear pathways that might be promoter- and/or cell line-specific, which recognize the NMD-sensitive transcripts as abnormal. These specialized nuclear pathway(s) may be superimposed on the general NMD mechanism.
Collapse
Affiliation(s)
- Ana Morgado
- Departamento de Genética, Instituto Nacional de Saúde Dr. Ricardo Jorge, Lisboa, Portugal
- BioFIG–Center for Biodiversity, Functional and Integrative Genomics, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Fátima Almeida
- Departamento de Genética, Instituto Nacional de Saúde Dr. Ricardo Jorge, Lisboa, Portugal
| | - Alexandre Teixeira
- Departamento de Genética, Instituto Nacional de Saúde Dr. Ricardo Jorge, Lisboa, Portugal
- Centro de Investigação em Genética Molecular Humana, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Ana Luísa Silva
- Departamento de Genética, Instituto Nacional de Saúde Dr. Ricardo Jorge, Lisboa, Portugal
- BioFIG–Center for Biodiversity, Functional and Integrative Genomics, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Luísa Romão
- Departamento de Genética, Instituto Nacional de Saúde Dr. Ricardo Jorge, Lisboa, Portugal
- BioFIG–Center for Biodiversity, Functional and Integrative Genomics, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
- * E-mail:
| |
Collapse
|
7
|
de Turris V, Nicholson P, Orozco RZ, Singer RH, Mühlemann O. Cotranscriptional effect of a premature termination codon revealed by live-cell imaging. RNA (NEW YORK, N.Y.) 2011; 17:2094-107. [PMID: 22028363 PMCID: PMC3222123 DOI: 10.1261/rna.02918111] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Accepted: 08/30/2011] [Indexed: 05/29/2023]
Abstract
Aberrant mRNAs with premature translation termination codons (PTCs) are recognized and eliminated by the nonsense-mediated mRNA decay (NMD) pathway in eukaryotes. We employed a novel live-cell imaging approach to investigate the kinetics of mRNA synthesis and release at the transcription site of PTC-containing (PTC+) and PTC-free (PTC-) immunoglobulin-μ reporter genes. Fluorescence recovery after photobleaching (FRAP) and photoconversion analyses revealed that PTC+ transcripts are specifically retained at the transcription site. Remarkably, the retained PTC+ transcripts are mainly unspliced, and this RNA retention is dependent upon two important NMD factors, UPF1 and SMG6, since their depletion led to the release of the PTC+ transcripts. Finally, ChIP analysis showed a physical association of UPF1 and SMG6 with both the PTC+ and the PTC- reporter genes in vivo. Collectively, our data support a mechanism for regulation of PTC+ transcripts at the transcription site.
Collapse
Affiliation(s)
| | - Pamela Nicholson
- Department of Chemistry and Biochemistry, University of Bern, CH-3012 Bern, Switzerland
| | | | | | - Oliver Mühlemann
- Department of Chemistry and Biochemistry, University of Bern, CH-3012 Bern, Switzerland
| |
Collapse
|
8
|
Yamashita A, Ohno S. Analysis of nonsense-mediated mRNA decay by monitoring mRNA half-lives in mammalian cells. Cold Spring Harb Protoc 2010; 2010:pdb.prot5386. [PMID: 20150149 DOI: 10.1101/pdb.prot5386] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- Akio Yamashita
- Department of Molecular Biology, Yokohama City University School of Medicine, Yokohama 236-0004, Japan.
| | | |
Collapse
|
9
|
Bhalla AD, Gudikote JP, Wang J, Chan WK, Chang YF, Olivas OR, Wilkinson MF. Nonsense codons trigger an RNA partitioning shift. J Biol Chem 2009; 284:4062-72. [PMID: 19091751 PMCID: PMC2640978 DOI: 10.1074/jbc.m805193200] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2008] [Revised: 11/24/2008] [Indexed: 11/06/2022] Open
Abstract
T-cell receptor-beta (TCRbeta) genes naturally acquire premature termination codons (PTCs) as a result of programmed gene rearrangements. PTC-bearing TCRbeta transcripts are dramatically down-regulated to protect T-cells from the deleterious effects of the truncated proteins that would otherwise be produced. Here we provide evidence that two responses collaborate to elicit this dramatic down-regulation. One is rapid mRNA decay triggered by the nonsense-mediated decay (NMD) RNA surveillance pathway. We demonstrate that this occurs in highly purified nuclei lacking detectable levels of three different cytoplasmic markers, but containing an outer nuclear membrane marker, suggesting that decay occurs either in the nucleoplasm or at the outer nuclear membrane. The second response is a dramatic partitioning shift in the nuclear fraction-to-cytoplasmic fraction mRNA ratio that results in few TCRbeta transcripts escaping to the cytoplasmic fraction of cells. Analysis of TCRbeta mRNA kinetics after either transcriptional repression or induction suggested that this nonsense codon-induced partitioning shift (NIPS) response is not the result of cytoplasmic NMD but instead reflects retention of PTC(+) TCRbeta mRNA in the nuclear fraction of cells. We identified TCRbeta sequences crucial for NIPS but found that NIPS is not exclusively a property of TCRbeta transcripts, and we identified non-TCRbeta sequences that elicit NIPS. RNA interference experiments indicated that NIPS depends on the NMD factors UPF1 and eIF4AIII but not the NMD factor UPF3B. We propose that NIPS collaborates with NMD to retain and degrade a subset of PTC(+) transcripts at the outer nuclear membrane and/or within the nucleoplasm.
Collapse
MESH Headings
- Cell Nucleus/genetics
- Cell Nucleus/metabolism
- Codon, Nonsense/genetics
- Codon, Nonsense/metabolism
- DEAD-box RNA Helicases/genetics
- DEAD-box RNA Helicases/metabolism
- Down-Regulation/physiology
- Eukaryotic Initiation Factor-4A
- Gene Rearrangement, beta-Chain T-Cell Antigen Receptor/physiology
- HeLa Cells
- Humans
- Kinetics
- Pol1 Transcription Initiation Complex Proteins/genetics
- Pol1 Transcription Initiation Complex Proteins/metabolism
- RNA Interference
- RNA Stability/physiology
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
- RNA-Binding Proteins/genetics
- RNA-Binding Proteins/metabolism
- Receptors, Antigen, T-Cell, alpha-beta/biosynthesis
- Receptors, Antigen, T-Cell, alpha-beta/genetics
Collapse
Affiliation(s)
- Angela D Bhalla
- Department of Biochemistry and Molecular Biology, University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030-4009, USA
| | | | | | | | | | | | | |
Collapse
|
10
|
Singh G, Jakob S, Kleedehn MG, Lykke-Andersen J. Communication with the exon-junction complex and activation of nonsense-mediated decay by human Upf proteins occur in the cytoplasm. Mol Cell 2007; 27:780-92. [PMID: 17803942 DOI: 10.1016/j.molcel.2007.06.030] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2007] [Revised: 05/16/2007] [Accepted: 06/21/2007] [Indexed: 10/22/2022]
Abstract
The nonsense-mediated mRNA decay (NMD) pathway rids eukaryotic cells of mRNAs with premature termination codons. There is contradictory evidence as to whether mammalian NMD is a nuclear or a cytoplasmic process. Here, we show evidence that NMD in human cells occurs primarily, if not entirely, in the cytoplasm. Polypeptides designed to inhibit interactions between NMD factors specifically impede NMD when exogenously expressed in the cytoplasm. However, restricting the polypeptides to the nucleus strongly impairs their NMD-inhibitory function, even for those intended to inhibit interactions between the exon-junction complex (EJC) and hUpf3 proteins, which localize primarily in the nucleus. NMD substrates classified based on cell fractionation assays as "nucleus associated" or "cytoplasmic" are all inhibited in the same manner. Furthermore, retention of the NMD factor hUpf1 in the nucleus strongly impairs NMD. These observations suggest that the hUpf complex communicates with the EJC and triggers NMD in the cytoplasm.
Collapse
Affiliation(s)
- Guramrit Singh
- Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO 80309, USA
| | | | | | | |
Collapse
|
11
|
Buvoli M, Buvoli A, Leinwand LA. Interplay between exonic splicing enhancers, mRNA processing, and mRNA surveillance in the dystrophic Mdx mouse. PLoS One 2007; 2:e427. [PMID: 17487273 PMCID: PMC1855434 DOI: 10.1371/journal.pone.0000427] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2007] [Accepted: 04/15/2007] [Indexed: 02/05/2023] Open
Abstract
Background Pre-mRNA splicing, the removal of introns from RNA, takes place within the spliceosome, a macromolecular complex composed of five small nuclear RNAs and a large number of associated proteins. Spliceosome assembly is modulated by the 5′ and 3′ splice site consensus sequences situated at the ends of each intron, as well as by exonic and intronic splicing enhancers/silencers recognized by SR and hnRNP proteins. Nonsense mutations introducing a premature termination codon (PTC) often result in the activation of cellular quality control systems that reduce mRNA levels or alter the mRNA splicing pattern. The mdx mouse, a commonly used genetic model for Duchenne muscular dystrophy (DMD), lacks dystrophin by virtue of a premature termination codon (PTC) in exon 23 that also severely reduces the level of dystrophin mRNA. However, the effect of the mutation on dystrophin RNA processing has not yet been described. Methodology/Principal Finding Using combinations of different biochemical and cellular assays, we found that the mdx mutation partially disrupts a multisite exonic splicing enhancer (ESE) that is recognized by a 40 kDa SR protein. In spite of the presence of an inefficient intron 22 3′ splice site containing the rare GAG triplet, the mdx mutation does not activate nonsense-associated altered splicing (NAS), but induces exclusively nonsense-mediated mRNA decay (NMD). Functional binding sites for SR proteins were also identified in exon 22 and 24, and in vitro experiments show that SR proteins can mediate direct association between exon 22, 23, and 24. Conclusions/Significance Our findings highlight the complex crosstalk between trans-acting factors, cis-elements and the RNA surveillance machinery occurring during dystrophin mRNA processing. Moreover, they suggest that dystrophin exon–exon interactions could play an important role in preventing mdx exon 23 skipping, as well as in facilitating the pairing of committed splice sites.
Collapse
Affiliation(s)
- Massimo Buvoli
- Department of Molecular, Cellular and Developmental Biology, University of Colorado at Boulder, Boulder, Colorado, United States of America
| | - Ada Buvoli
- Department of Molecular, Cellular and Developmental Biology, University of Colorado at Boulder, Boulder, Colorado, United States of America
| | - Leslie A. Leinwand
- Department of Molecular, Cellular and Developmental Biology, University of Colorado at Boulder, Boulder, Colorado, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
12
|
Abstract
I have demonstrated that nuclear transcription modulates the distribution of replication origins along mammalian chromosomes. Chinese Hamster Ovary (CHO) cells were exposed to transcription inhibitors in early G1 phase and replication origin sites in the dihydrofolate reductase (DHFR) gene locus were mapped several hours later. DNA within nuclei prepared from control and transcription-deficient G1-phase cells was replicated with similar efficiencies when introduced into Xenopus egg extracts. Replication initiated in the intergenic region within control late-G1 nuclei, but randomly within transcriptionally repressed nuclei. Random initiation was not a consequence of inability to produce an essential protein(s), since initiation was site-specific within cells exposed to the translation inhibitor cycloheximide during the same interval of G1 phase. Furthermore, in vivo inhibition of transcription within late-G1-phase cells reduced the frequency of usage of pre-established DHFR replication origin sites. Transcription rates in the DHFR domain were very low and did not change throughout G1 phase. This implies that, although ongoing nuclear transcription is required, local expression of the genes in the DHFR locus alone is not sufficient to create a site-specific replication initiation pattern. I conclude that epigenetic factors, including general nuclear transcription, play a role in replication origin selection in mammalian nuclei.
Collapse
Affiliation(s)
- Daniela S Dimitrova
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, NY 14260, USA.
| |
Collapse
|
13
|
Makarova JA, Kramerov DA. Noncoding RNA of U87 host gene is associated with ribosomes and is relatively resistant to nonsense-mediated decay. Gene 2005; 363:51-60. [PMID: 16226852 DOI: 10.1016/j.gene.2005.08.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2005] [Revised: 08/17/2005] [Accepted: 08/18/2005] [Indexed: 12/01/2022]
Abstract
Non-coding RNAs are involved in many cellular processes. In particular, most of C/D box small nucleolar RNAs (snoRNAs) function as guide RNAs in site-specific 2'-O-methylation of rRNAs. While most snoRNA genes reside in introns of protein-coding genes, here we demonstrated an unusual snoRNA gene occupying an intron of a previously unknown non-protein-coding gene U87HG. We characterized this host gene in human, mouse, rat, and dog. It is a member of 5'TOP gene family, which includes many translation apparatus genes. U87HG RNA carried multiple stop-codons and was associated with ribosomes, suggesting that it may be a target for nonsense-mediated mRNA decay (NMD), a process that eliminates transcripts bearing nonsense mutations. Surprisingly, we found that U87HG RNA was hardly susceptible to NMD. Possible mechanisms (translation reinitiation, ribosomal leaky scanning, and low efficiency of translation) of this phenomenon are discussed. Unlike transcripts of four other known non-protein-coding host genes, U87HG RNA shows a relatively high degree of conservation suggesting a selective pressure and a possible functional activity of U87HG apart from producing U87 snoRNA.
Collapse
Affiliation(s)
- Julia A Makarova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | | |
Collapse
|
14
|
Gudikote JP, Imam JS, Garcia RF, Wilkinson MF. RNA splicing promotes translation and RNA surveillance. Nat Struct Mol Biol 2005; 12:801-9. [PMID: 16116435 DOI: 10.1038/nsmb980] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2005] [Accepted: 07/19/2005] [Indexed: 11/09/2022]
Abstract
Aberrant mRNAs harboring premature termination codons (PTCs or nonsense codons) are degraded by the nonsense-mediated mRNA decay (NMD) pathway. mRNAs transcribed from genes that naturally acquire PTCs during lymphocyte development are strongly downregulated by PTCs. Here we show that a signal essential for this robust mRNA downregulatory response is efficient RNA splicing. Strong mRNA downregulation can be conferred on a poor NMD substrate by either strengthening its splicing signals or removing its weak introns. Efficient splicing also strongly promotes translation, providing a molecular explanation for enhanced NMD and suggesting that efficient splicing may have evolved to enhance both protein production and RNA surveillance. Our results suggest simple approaches for increasing protein expression from expression vectors and treating human genetic diseases caused by nonsense and frameshift mutations.
Collapse
Affiliation(s)
- Jayanthi P Gudikote
- Department of Immunology, University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | | | |
Collapse
|
15
|
Kuperwasser N, Brogna S, Dower K, Rosbash M. Nonsense-mediated decay does not occur within the yeast nucleus. RNA (NEW YORK, N.Y.) 2004; 10:1907-15. [PMID: 15547136 PMCID: PMC1370679 DOI: 10.1261/rna.7132504] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Nonsense-mediated decay (NMD) is a eukaryotic regulatory process that degrades mRNAs with premature termination codons (PTCs). Although NMD is a translation-dependent process, there is evidence from mammalian systems that PTC recognition and mRNA degradation takes place in association with nuclei. Consistent with this notion, degradation of mammalian PTC-containing mRNAs occurs when they are bound by the cap binding complex (CBC) during a "pioneer" round of translation. Moreover, there are reports indicating that a PTC can trigger other nuclear events such as alternative splicing, abnormal 3' end processing, and accumulation of pre-mRNA at transcription sites. To examine whether a PTC can elicit similar nuclear events in yeast, we used RNA export-defective mutants to sequester mRNAs within nuclei. The results indicate that nuclear PTC-containing yeast RNAs are NMD insensitive. We also observed by fluorescent in situ hybridization that there was no PTC effect on mRNA accumulated at the site of transcription. Finally, we show that yeast NMD occurs minimally if at all on CBC-bound transcripts, arguing against a CBC-mediated pioneer round of translation in yeast. The data taken together indicate that there are no direct consequences of a PTC within the yeast nucleus.
Collapse
Affiliation(s)
- Nicolas Kuperwasser
- Howard Hughes Medical Institute, Department of Biology, Brandeis University, 415 South St., Waltham, MA 02454, USA
| | | | | | | |
Collapse
|
16
|
Dreumont N, Maresca A, Khandjian EW, Baklouti F, Tanguay RM. Cytoplasmic nonsense-mediated mRNA decay for a nonsense (W262X) transcript of the gene responsible for hereditary tyrosinemia, fumarylacetoacetate hydrolase. Biochem Biophys Res Commun 2004; 324:186-92. [PMID: 15465000 DOI: 10.1016/j.bbrc.2004.09.041] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2004] [Indexed: 01/01/2023]
Abstract
Messenger RNAs containing premature stop codons are generally targeted for degradation through the nonsense-mediated mRNA decay (NMD) pathway. The subcellular localization of the NMD process in higher eukaryotes remains controversial. While many mRNAs are subjected to NMD prior to their release from the nucleus, a few display cytoplasmic NMD. To understand the possible impact of NMD on the pathogenesis of hereditary tyrosinemia type I, a severe metabolic disease caused by fumarylacetoacetate hydrolase (FAH) deficiency, we examined the metabolism of FAH mRNA harboring a nonsense mutation, W262X, in lymphoblastoid cell lines derived from patients and their parents. W262X-FAH transcripts show a approximately 20-fold reduction in abundance in mutant cells, which is translation-dependent. Cellular fractionation shows that this down-regulation of the W262X transcript occurs in the cytoplasm. Thus, the W262X FAH is another example of nonsense mRNAs subjected to the NMD pathway in the cytoplasm.
Collapse
Affiliation(s)
- Natacha Dreumont
- Laboratory of Cellular and Developmental Genetics, CREFSIP, Department of Medicine, Université Laval, Que., Canada
| | | | | | | | | |
Collapse
|
17
|
Lytle JR, Steitz JA. Premature termination codons do not affect the rate of splicing of neighboring introns. RNA (NEW YORK, N.Y.) 2004; 10:657-68. [PMID: 15037775 PMCID: PMC1370556 DOI: 10.1261/rna.5241404] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2003] [Accepted: 12/29/2003] [Indexed: 05/21/2023]
Abstract
Introduction of a premature termination codon (PTC) into an exon of a gene can lead to nonsense-mediated decay of the mRNA, which is best characterized as a cytoplasmic event. However, increasing evidence has suggested that PTCs may also influence the nuclear processing of an RNA transcript, leading to models of nuclear surveillance perhaps involving translating nuclear ribosomes. We used quantitative RT-PCR to measure the in vivo steady-state levels of every exon-intron junction in wild-type, PTC-containing, and missense-containing precursor mRNAs of both the nonrearranging dihydrofolate reductase (DHFR) and the somatically rearranging Ig- micro genes. We find that each exon-intron junction's abundance and, therefore, the rate of intron removal, is not significantly affected by the presence of a PTC in a neighboring exon in either the DHFR or Ig- micro pre-mRNA. Similarly, the abundance of the uncleaved Ig- micro polyadenylation sites does not differ between wild-type and PTC-containing Ig- micro pre-mRNAs. Our Ig- micro data were confirmed by RNase protection analyses, and multiple cell isolates were examined to resolve differences with previously published data on steady-state pre-mRNA levels. We conclude that the presence of a PTC affects the rate of neither splicing nor the cleavage step of 3' end formation during pre-mRNA processing in the nucleus. Our results are discussed with respect to existing evidence for nuclear surveillance mechanisms.
Collapse
Affiliation(s)
- J Robin Lytle
- Department of Molecular Biophysics and Biochemistry, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut 06536, USA
| | | |
Collapse
|
18
|
Noé V, MacKenzie S, Ciudad CJ. An intron is required for dihydrofolate reductase protein stability. J Biol Chem 2003; 278:38292-300. [PMID: 12865433 DOI: 10.1074/jbc.m212746200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We compared the expression of dihydrofolate reductase minigenes with and without an intron. The levels of protein were significantly higher in the presence of dihydrofolate reductase intron 1. However, mRNA levels in both constructs were comparable. In addition, the RNA transcribed from either construct was correctly polyadenylated and exported to the cytoplasm. The intron-mediated increase in dihydrofolate reductase protein levels was position-independent and was also observed when dihydrofolate reductase intron 1 was replaced by heterologous introns. The translational rate of dihydrofolate reductase protein was increased in transfectants from the intron-containing minigene. In addition, the protein encoded by the intronless construct was unstable and subject to lysosomal degradation, thus showing a shorter half-life than the protein encoded by the intron-containing minigene. We conclude that an intron is required for the translation and stability of dihydrofolate reductase protein.
Collapse
Affiliation(s)
- Véronique Noé
- Department of Biochemistry and Molecular Biology, School of Pharmacy, University of Barcelona E-08028, Spain.
| | | | | |
Collapse
|
19
|
Zhang X, Lee J, Chasin LA. The effect of nonsense codons on splicing: a genomic analysis. RNA (NEW YORK, N.Y.) 2003; 9:637-639. [PMID: 12756320 PMCID: PMC1370429 DOI: 10.1261/rna.5060403] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2003] [Accepted: 02/20/2003] [Indexed: 05/24/2023]
Abstract
The phenomenon of nonsense-associated altered splicing raises the possibility that the recognition of in-frame nonsense codons is used generally for exon identification during pre-mRNA splicing. However, nonsense codon frequencies in pseudo exons and in regions flanking 5' splice sites are no greater than that expected by chance, arguing against the widespread use of this strategy as a means of rejecting potential splice sites.
Collapse
|
20
|
Maderazo AB, Belk JP, He F, Jacobson A. Nonsense-containing mRNAs that accumulate in the absence of a functional nonsense-mediated mRNA decay pathway are destabilized rapidly upon its restitution. Mol Cell Biol 2003; 23:842-51. [PMID: 12529390 PMCID: PMC140708 DOI: 10.1128/mcb.23.3.842-851.2003] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nonsense-mediated mRNA decay (NMD) is a conserved proofreading mechanism that protects eukaryotic cells from the potentially deleterious effects of truncated proteins. Studies of Saccharomyces cerevisiae imply that NMD is a predominantly cytoplasmic decay pathway, while studies of mammalian systems suggest that decay of most substrate mRNAs may occur while they are still associated with the nucleus, possibly during a round of translation that occurs during their export to the cytoplasm. Complete entry of the latter mRNAs into the cytoplasm appears to render them immune to further NMD; i.e., they escape further susceptibility to this decay pathway. To determine if yeast cytoplasmic nonsense-containing mRNAs that evade decay are subsequently immune to NMD, we examined the consequences of placing each of the three UPF/NMD genes under the control of a galactose-inducible promoter. The decay kinetics of ADE2 and PGK1 nonsense-containing mRNAs were then analyzed when expression of UPF1, NMD2, or UPF3 was either repressed or subsequently induced. Results from these experiments demonstrated that activation of NMD caused rapid and immediate degradation of both substrate transcripts, with half-lives of both stable mRNA populations shortened to approximately 7 min. These findings make it unlikely that yeast nonsense-containing mRNAs can escape degradation by NMD and indicate that such mRNAs are available to this decay pathway at each round of translation.
Collapse
Affiliation(s)
- Alan B Maderazo
- Department of Molecular Genetics and Microbiology, University of Massachusetts Medical School, Worcester, Massachusetts 01655-0122, USA
| | | | | | | |
Collapse
|
21
|
Abstract
Most vertebrate mRNAs with premature termination codons (PTCs) are specifically recognized and degraded by a process referred to as nonsense-mediated mRNA decay (NMD) while still associated with the nucleus. However, it is still a matter of debate whether PTCs can be identified by intranuclear scanning or only by ribosomes on the cytoplasmic side of the nuclear envelope. Here we show that inhibition of mRNA export by two independent approaches does not affect the downregulation of PTC-containing T-cell receptor beta transcripts in the nuclear fraction of mammalian cells, providing strong evidence for intranuclear NMD. Our results are fully consistent with recently reported evidence for nuclear translation and suggest that an important biological role for nuclear ribosomes is the early elimination of nonsense mRNA during a pioneer round of translation.
Collapse
Affiliation(s)
- Marc Bühler
- Institute of Cell Biology, University of Bern, Baltzerstrasse-4, Switzerland
| | | | | |
Collapse
|
22
|
Liu P, Gucwa A, Stover ML, Buck E, Lichtler A, Rowe D. Analysis of inhibitory action of modified U1 snRNAs on target gene expression: discrimination of two RNA targets differing by a 1 bp mismatch. Nucleic Acids Res 2002; 30:2329-39. [PMID: 12034819 PMCID: PMC117199 DOI: 10.1093/nar/30.11.2329] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The modified U1 snRNA gene can suppress expression of a target transgene. In the present study, its potential utility to inhibit a dominant negative/gain of function mutation is explored. Using a green fluorescent protein (GFP) target gene, inhibition was achieved in all cells transduced with U1antiGFP directed at multiple sites within GFP. Using a chloramphenicol acetyltransferase (CAT) target gene, inhibition was not increased by increasing the hybridization domain from 10 to 16 bp or when a site in an upstream exon or intron was targeted. To determine if a U1 anti-target design could discriminate between two transcripts that differ by a 1-2 bp mismatch, GFPtpz and GFPsaph were chosen as targets because they share sequence homology except for three regions where a 1, 2 or 3 bp mismatch exists. The results demonstrated that U1antiGFP correctly reduced its cognate GFP expression by >90% and therefore U1 anti-target constructs are able to discriminate a 1 or 2 bp mismatch in their target mRNA. Thus, these U1 anti-target constructs may be effective in a strategy of somatic gene therapy for a dominant negative/gain of function mutation due to the discreteness of its discrimination. It may complement other anti-target strategies to reduce the cellular load of a mutant transcript.
Collapse
Affiliation(s)
- Peng Liu
- Department of Genetics and Developmental Biology, Mail Code 3301, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT 06030, USA
| | | | | | | | | | | |
Collapse
|
23
|
Wang J, Vock VM, Li S, Olivas OR, Wilkinson MF. A quality control pathway that down-regulates aberrant T-cell receptor (TCR) transcripts by a mechanism requiring UPF2 and translation. J Biol Chem 2002; 277:18489-93. [PMID: 11889124 DOI: 10.1074/jbc.m111781200] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nonsense-mediated decay (NMD) is an RNA surveillance pathway that degrades mRNAs containing premature termination codons (PTC). T-cell receptor (TCR) and immunoglobulin (Ig) transcripts, which are encoded by genes that very frequently acquire PTCs during lymphoid ontogeny, are down-regulated much more dramatically in response to PTCs than are other known transcripts. Another feature unique to TCR, Ig, and a subset of other mRNAs is that they are down-regulated in response to nonsense codons in the nuclear fraction of cells. This is paradoxical, as the only well recognized entity that recognizes nonsense codons is the cytoplasmic translation apparatus. Therefore, we investigated whether translation is responsible for this nuclear-associated mechanism. We found that the down-regulation of TCR-beta transcripts in response to nonsense codons requires several features of translation, including an initiator ATG and the ability to scan. We also found that optimal down-regulation depends on a Kozak consensus sequence surrounding the initiator ATG and that it can be initiated by an internal ribosome entry site, neither of which has been demonstrated before for any other PTC-bearing mRNA. At least a portion of this down-regulatory response is mediated by the NMD pathway as antisense hUPF2 transcripts increased the levels of PTC-bearing TCR-beta transcripts in the nuclear fraction of cells. We conclude that a hUPF2-dependent RNA surveillance pathway with translation-like features operating in the nuclear fraction of cells prevents the expression of potentially deleterious truncated proteins encoded by non-productively rearranged TCR genes.
Collapse
Affiliation(s)
- Jun Wang
- Department of Immunology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | | | | | |
Collapse
|
24
|
Frischmeyer PA, van Hoof A, O'Donnell K, Guerrerio AL, Parker R, Dietz HC. An mRNA surveillance mechanism that eliminates transcripts lacking termination codons. Science 2002; 295:2258-61. [PMID: 11910109 DOI: 10.1126/science.1067338] [Citation(s) in RCA: 418] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Translation is an important mechanism to monitor the quality of messenger RNAs (mRNAs), as exemplified by the translation-dependent recognition and degradation of transcripts harboring premature termination codons (PTCs) by the nonsense-mediated mRNA decay (NMD) pathway. We demonstrate in yeast that mRNAs lacking all termination codons are as labile as nonsense transcripts. Decay of "nonstop" transcripts in yeast requires translation but is mechanistically distinguished from NMD and the major mRNA turnover pathway that requires deadenylation, decapping, and 5'-to-3' exonucleolytic decay. These data suggest that nonstop decay is initiated when the ribosome reaches the 3' terminus of the message. We demonstrate multiple physiologic sources of nonstop transcripts and conservation of their accelerated decay in mammalian cells. This process regulates the stability and expression of mRNAs that fail to signal translational termination.
Collapse
Affiliation(s)
- Pamela A Frischmeyer
- Institute for Genetic Medicine, Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | | | | | | | |
Collapse
|
25
|
Gudikote JP, Wilkinson MF. T-cell receptor sequences that elicit strong down-regulation of premature termination codon-bearing transcripts. EMBO J 2002; 21:125-34. [PMID: 11782432 PMCID: PMC125808 DOI: 10.1093/emboj/21.1.125] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The nonsense-mediated decay (NMD) RNA surveillance pathway detects and degrades mRNAs containing premature termination codons (PTCs). T-cell receptor (TCR) and immunoglobulin transcripts, which commonly harbor PTCs as a result of programmed DNA rearrangement during normal development, are down-regulated much more than other known mammalian gene transcripts in response to nonsense codons. Here, we demonstrate that this is not because of promoter or cell type but instead is directed by regulatory sequences within the rearranging VDJ exon and immediately flanking intron sequences of a Vbeta8.1 TCR-beta gene. Insertion of these sequences into a heterologous gene elicited strong down-regulation (>30-fold) in response to PTCs, indicating that this region is sufficient to trigger robust down-regulation. The rearranging Vbeta5.1 exon and the flanking intron sequences from another member of the TCR-beta family also triggered strong down-regulation, suggesting that down-regulatory-promoting elements are a conserved feature of TCR genes. Importantly, we found that the Vbeta8.1 down-regulatory-promoting element was position dependent, such that it failed to function when positioned downstream of a PTC. To our knowledge, this is the first class of down-regulatory elements identified that act upstream of nonsense codons.
Collapse
MESH Headings
- 3T3 Cells
- Animals
- Codon, Nonsense/genetics
- Codon, Terminator/genetics
- Down-Regulation
- Exons
- Gene Rearrangement, beta-Chain T-Cell Antigen Receptor
- HeLa Cells
- Humans
- Mice
- Models, Biological
- Promoter Regions, Genetic
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptors, Antigen, T-Cell, alpha-beta/genetics
Collapse
Affiliation(s)
| | - Miles F. Wilkinson
- Department of Immunology, The University of Texas M.D.Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
Corresponding author e-mail:
| |
Collapse
|
26
|
Watanabe Y, Magor KE, Parham P. Exon 5 encoding the transmembrane region of HLA-A contains a transitional region for the induction of nonsense-mediated mRNA decay. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 167:6901-11. [PMID: 11739508 DOI: 10.4049/jimmunol.167.12.6901] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
HLA class I alleles containing premature termination codons (PTCs) are increasingly being found. To understand their effects on MHC class I expression, HLA-A*2402 mutants containing PTCs were transfected into class I-deficient cells, and expression of HLA-A mRNA and protein was determined. In exons 2, 3, and 4, and in the 5' part of exon 5, PTCs reduced mRNA levels by up to 90%, whereas in the 3' part of exon 5 and in exons 6 and 7 they had little effect. Transition in the extent of nonsense-mediated mRNA decay occurred within a 48-nt segment of exon 5, placed 58 nt upstream from the exon 5/exon 6 junction. This transition did not conform to the positional rule obeyed by other genes, which predicted it to be approximately 50-55 nt upstream of the exon 7/exon 8 junction and thus placing it in exon 6. Mutants containing extra gene segments showed the difference is caused by the small size of exons 5 and 6, which renders them invisible to the surveillance machinery. For the protein, a transition from secretion to membrane association occurs within a 26-nt segment of exon 5, 17 nt upstream of the exon 5/exon 6 junction. Premature termination in exon 5 can produce secreted and membrane-associated HLA-A variants expressed at high levels.
Collapse
Affiliation(s)
- Y Watanabe
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | | |
Collapse
|
27
|
Gemignani F, Landi S, DeMarini DM, Kole R. Spontaneous and MNNG-induced reversion of an EGFP construct in HeLa cells: an assay for observing mutations in living cells by fluorescent microscopy. Hum Mutat 2001; 18:526-34. [PMID: 11748845 DOI: 10.1002/humu.1229] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
A HeLa cell line stably expressing the enhanced green fluorescence protein (EGFP) gene, interrupted by the HBB IVS2-654 intron, was studied without treatment and after treatment with a single standard dose of 15 microM of N-methyl-N'-nitro-N-nitrosoguanidine (MNNG). This assay was done in order to prove that such a construct can revert by a variety of mechanisms and that it produces a visible phenotype, i.e., green fluorescence. The system permits visual detection of living mutant cells among a background of non-mutant cells and does not require a selective medium. The results show that the construct reverts by large deletions (-62, -100, and -162 bp), small insertions (+4 bp), small rearrangements (19 bp duplication), base substitutions at purines (G652, G653, A655, G579), and a pyrimidine (T654) between nucleotide positions 579 and 837. Splice-site mutations were recovered, and some of the mechanisms underlying these mutations are discussed. Because of the ease of detection of revertant cells under fluorescent light and the wide variety of mutations that can be recovered, further development of this system could make it a useful new mammalian cell mutagenicity assay.
Collapse
Affiliation(s)
- F Gemignani
- Lineberger Comprehensive Cancer Center and Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina, USA.
| | | | | | | |
Collapse
|
28
|
Li CM, Chao HK, Liu YF, Su TS. A nonsense mutation is responsible for the RNA-negative phenotype in human citrullinaemia. Eur J Hum Genet 2001; 9:685-9. [PMID: 11571557 DOI: 10.1038/sj.ejhg.5200695] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2001] [Revised: 05/09/2001] [Accepted: 06/06/2001] [Indexed: 11/09/2022] Open
Abstract
Citrullinaemia is an inborn error of metabolism resulting from a deficiency of argininosuccinate synthetase. Previous studies of RNA of argininosuccinate synthetase of citrullinaemia patients using S1 nuclease analysis have identified a class of so-called RNA-negative alleles in which no stable mRNA can be detected. To investigate the nature of mutation responsible for such a phenotype, a compound heterozygous citrullinaemia carrying an RNA-negative allele and an allele with a 3' splice site mutation in intron 6 (IVS6-2A>G) was analysed. Using sequences of a DNA polymorphism and the IVS6-2A>G mutation as markers, approximately equal amounts of pre-mRNAs from allelic genes were detected suggesting that RNA-negative phenotype could not be the result of defect in transcription initiation. A C-to-T transition converting the CGA arginine codon at residue 279 to a TGA termination codon (R279X) was identified by cDNA sequencing. No accumulation of partially spliced pre-mRNAs containing introns immediately upstream and downstream of the nonsense mutation was observed. In addition, no mRNA species of abnormal size was detected when cDNA from the RNA-negative allele was analysed. Hence, there is no indication of nonsense-associated altered splicing (NAS). The most likely event responsible for the RNA-negative phenotype appears to be nonsense-mediated mRNA decay (NMD).
Collapse
Affiliation(s)
- C M Li
- Institute of Genetics, National Yang-Ming University, Taipei, Taiwan, Republic of China
| | | | | | | |
Collapse
|
29
|
Abstract
Nonsense-mediated mRNA decay (NMD), the loss of mRNAs carrying premature stop codons, is a process by which cells recognize and degrade nonsense mRNAs to prevent possibly toxic effects of truncated peptides. Most mammalian nonsense mRNAs are degraded while associated with the nucleus, but a few are degraded in the cytoplasm; at either site, there is a requirement for translation and for an intron downstream of the early stop codon. We have examined the NMD of a mutant HEXA message in lymphoblasts derived from a Tay-Sachs disease patient homozygous for the common frameshift mutation 1278ins4. The mutant mRNA was nearly undetectable in these cells and increased to approximately 40% of normal in the presence of the translation inhibitor cycloheximide. The stabilized transcript was found in the cytoplasm in association with polysomes. Within 5 h of cycloheximide removal, the polysome-associated nonsense message was completely degraded, while the normal message was stable. The increased lability of the polysome-associated mutant HEXA mRNA shows that NMD of this endogenous mRNA occurred in the cytoplasm. Transfection of Chinese hamster ovary cells showed that expression of an intronless HEXA minigene harboring the frameshift mutation or a closely located nonsense codon resulted in half the normal mRNA level. Inclusion of multiple downstream introns decreased the abundance further, to about 20% of normal. Thus, in contrast to other systems, introns are not absolutely required for NMD of HEXA mRNA, although they enhance the low-HEXA-mRNA phenotype.
Collapse
Affiliation(s)
- K S Rajavel
- Department of Biological Chemistry, University of California Los Angeles, Los Angeles, California 90095-1737, USA
| | | |
Collapse
|
30
|
Detich N, Ramchandani S, Szyf M. A conserved 3'-untranslated element mediates growth regulation of DNA methyltransferase 1 and inhibits its transforming activity. J Biol Chem 2001; 276:24881-90. [PMID: 11335728 DOI: 10.1074/jbc.m103056200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ectopic expression of DNA methyltransferase 1 (DNMT1) has been proposed to play an important role in cancer. dnmt1 mRNA is undetectable in growth-arrested cells but is induced upon entrance into the S phase of the cell cycle, and until now, the mechanisms responsible for this regulation were unknown. In this report, we demonstrate that the 3'-untranslated region (3'-UTR) of the dnmt1 mRNA can confer a growth-dependent regulation on its own message as well as a heterologous beta-globin mRNA. Our results indicate that a 54-nucleotide highly conserved element within the 3'-UTR is necessary and sufficient to mediate this regulation. Cell-free mRNA decay experiments demonstrate that this element increases mRNA turnover rates and does so to a greater extent in the presence of extracts prepared from arrested cells. A specific RNA-protein complex is formed with the 3'-UTR only in growth-arrested cells, and a UV cross-linking analysis revealed a 40-kDa protein (p40), the binding of which is dramatically increased in growth-arrested cells and is inversely correlated with dnmt1 mRNA levels as cells are induced into the cell cycle. Although ectopic expression of human DNMT1 lacking the 3'-UTR can transform NIH-3T3 cells, inclusion of the 3'-UTR prevents transformation. These results support the hypothesis that deregulated expression of DNMT1 with the cell cycle is important for cellular transformation.
Collapse
Affiliation(s)
- N Detich
- Department of Pharmacology and Therapeutics, McGill University, 3655 Sir William Osler Promenade, Montreal, Quebec H3G 1Y6, Canada
| | | | | |
Collapse
|
31
|
Mühlemann O, Mock-Casagrande CS, Wang J, Li S, Custódio N, Carmo-Fonseca M, Wilkinson MF, Moore MJ. Precursor RNAs harboring nonsense codons accumulate near the site of transcription. Mol Cell 2001; 8:33-43. [PMID: 11511358 DOI: 10.1016/s1097-2765(01)00288-x] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Messenger RNAs containing premature termination codons (PTCs) are selectively eliminated by nonsense-mediated mRNA decay (NMD). Paradoxically, although cytoplasmic ribosomes are the only known species capable of PTC recognition, in mammals many PTC-containing mRNAs are apparently eliminated prior to release from the nucleus. To determine whether PTCs can influence events within the nucleus proper, we studied the immunoglobulin (Ig)-mu and T cell receptor (TCR)-beta genes using fluorescent in situ hybridization (FISH). Alleles containing PTCs, but not those containing a missense mutation or a frameshift followed by frame-correcting mutations, exhibited elevated levels of pre-mRNA, which accumulated at or near the site of transcription. Our data indicate that mRNA reading frame can influence events at or near the site of gene transcription.
Collapse
Affiliation(s)
- O Mühlemann
- Howard Hughes Medical Institute, W.M. Keck Center for Cellular Visualization, Department of Biochemistry, Brandeis University, Waltham, MA 02454, USA
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Foster D, Strong R, Morgan WW. A tetracycline-repressible transactivator approach suggests a shorter half-life for tyrosine hydroxylase mRNA. ACTA ACUST UNITED AC 2001; 7:137-46. [PMID: 11356380 DOI: 10.1016/s1385-299x(01)00056-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Long-term increases in catecholamine release result in elevated levels of the mRNA for tyrosine hydroxylase (TH), the rate-limiting enzyme in the biosynthesis of these compounds. This increase is due, in part, to increased transcription. However, recent evidence suggests that increased stability of TH mRNA may also play a role. One of the problems in studying the stability of the TH message is the limitation of current methods for assessing transcript half-life. In this study the regulation of the expression of the rat TH gene was placed under the control of a tetracycline (Tet)-repressible transactivator (tTA). In the absence of doxycycline (Dox), an analogue of Tet, TH mRNA was synthesized. However, when Dox was present, transcription of TH message was essentially totally suppressed, and the resulting degradation of the TH mRNA provided an index of the half-life of this message. With this approach the computed half-life of TH mRNA was significantly shorter than that determined following actinomycin D administration. This effect was not due to some unique feature of the chimeric gene used to synthesize TH mRNA or to an untoward effect of the Tet analogue used to suppress TH transcription.
Collapse
Affiliation(s)
- D Foster
- Department of Cellular and Structural Biology, Mail Code 7762, The University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900, USA
| | | | | |
Collapse
|
33
|
Lykke-Andersen J, Shu MD, Steitz JA. Human Upf proteins target an mRNA for nonsense-mediated decay when bound downstream of a termination codon. Cell 2000; 103:1121-31. [PMID: 11163187 DOI: 10.1016/s0092-8674(00)00214-2] [Citation(s) in RCA: 447] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Nonsense-mediated decay (NMD) rids eukaryotic cells of aberrant mRNAs containing premature termination codons. These are discriminated from true termination codons by downstream cis-elements, such as exon-exon junctions. We describe three novel human proteins involved in NMD, hUpf2, hUpf3a, and hUpf3b. While in HeLa cell extracts these proteins are complexed with hUpf1, in intact cells hUpf3a and hUpf3b are nucleocytoplasmic shuttling proteins, hUpf2 is perinuclear, and hUpf1 cytoplasmic. hUpf3a and hUpf3b associate selectively with spliced beta-globin mRNA in vivo, and tethering of any hUpf protein to the 3'UTR of beta-globin mRNA elicits NMD. These data suggest that assembly of a dynamic hUpf complex initiates in the nucleus at mRNA exon-exon junctions and triggers NMD in the cytoplasm when recognized downstream of a translation termination site.
Collapse
Affiliation(s)
- J Lykke-Andersen
- Department of Molecular Biophysics and Biochemistry, Howard Hughes Medical Institute, Yale University School of Medicine, 295 Congress Avenue, New Haven, CT 06536, USA
| | | | | |
Collapse
|
34
|
Abstract
Generally, nonsense codons 50 bp or more upstream of the 3′-most intron of the human β-globin gene reduce mRNA abundance. In contrast, dominantly inherited β-thalassemia is frequently associated with nonsense mutations in the last exon. In this work, murine erythroleukemia (MEL) cells were stably transfected with human β-globin genes mutated within each of the 3 exons, namely at codons 15 (TGG→TGA), 39 (C→T), or 127 (C→T). Primer extension analysis after erythroid differentiation induction showed codon 127 (C→T) mRNA accumulated in the cytoplasm at approximately 20% of the normal mRNA level. Codon 39 (C→T) mutation did not result in significant mRNA accumulation. Unexpectedly, codon 15 (TGG→TGA) mRNA accumulated at approximately 90%. Concordant results were obtained when reticulocyte mRNA from 2 carriers for this mutation was studied. High mRNA accumulation of codon 15 nonsense-mutated gene was revealed to be independent of the type of nonsense mutation and the genomic background in which this mutation occurs. To investigate the effects of other nonsense mutations located in the first exon on the mRNA level, nonsense mutations at codons 5, 17, and 26 were also cloned and stably transfected into MEL cells. After erythroid differentiation induction, mRNAs with a mutation at codon 5 or 17 were detected at high levels, whereas the mutation at codon 26 led to low mRNA levels. These findings suggest that nonsense-mediated mRNA decay is not exclusively dependent on the localization of mutations relative to the 3′-most intron. Other factors may also contribute to determine the cytoplasmic nonsense-mutated mRNA level in erythroid cells.
Collapse
|
35
|
Nonsense mutations in the human β-globin gene lead to unexpected levels of cytoplasmic mRNA accumulation. Blood 2000. [DOI: 10.1182/blood.v96.8.2895] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Generally, nonsense codons 50 bp or more upstream of the 3′-most intron of the human β-globin gene reduce mRNA abundance. In contrast, dominantly inherited β-thalassemia is frequently associated with nonsense mutations in the last exon. In this work, murine erythroleukemia (MEL) cells were stably transfected with human β-globin genes mutated within each of the 3 exons, namely at codons 15 (TGG→TGA), 39 (C→T), or 127 (C→T). Primer extension analysis after erythroid differentiation induction showed codon 127 (C→T) mRNA accumulated in the cytoplasm at approximately 20% of the normal mRNA level. Codon 39 (C→T) mutation did not result in significant mRNA accumulation. Unexpectedly, codon 15 (TGG→TGA) mRNA accumulated at approximately 90%. Concordant results were obtained when reticulocyte mRNA from 2 carriers for this mutation was studied. High mRNA accumulation of codon 15 nonsense-mutated gene was revealed to be independent of the type of nonsense mutation and the genomic background in which this mutation occurs. To investigate the effects of other nonsense mutations located in the first exon on the mRNA level, nonsense mutations at codons 5, 17, and 26 were also cloned and stably transfected into MEL cells. After erythroid differentiation induction, mRNAs with a mutation at codon 5 or 17 were detected at high levels, whereas the mutation at codon 26 led to low mRNA levels. These findings suggest that nonsense-mediated mRNA decay is not exclusively dependent on the localization of mutations relative to the 3′-most intron. Other factors may also contribute to determine the cytoplasmic nonsense-mutated mRNA level in erythroid cells.
Collapse
|
36
|
Abstract
Splice site consensus sequences alone are insufficient to dictate the recognition of real constitutive splice sites within the typically large transcripts of higher eukaryotes, and large numbers of pseudoexons flanked by pseudosplice sites with good matches to the consensus sequences can be easily designated. In an attempt to identify elements that prevent pseudoexon splicing, we have systematically altered known splicing signals, as well as immediately adjacent flanking sequences, of an arbitrarily chosen pseudoexon from intron 1 of the human hprt gene. The substitution of a 5' splice site that perfectly matches the 5' consensus combined with mutation to match the CAG/G sequence of the 3' consensus failed to get this model pseudoexon included as the central exon in a dhfr minigene context. Provision of a real 3' splice site and a consensus 5' splice site and removal of an upstream inhibitory sequence were necessary and sufficient to confer splicing on the pseudoexon. This activated context also supported the splicing of a second pseudoexon sequence containing no apparent enhancer. Thus, both the 5' splice site sequence and the polypyrimidine tract of the pseudoexon are defective despite their good agreement with the consensus. On the other hand, the pseudoexon body did not exert a negative influence on splicing. The introduction into the pseudoexon of a sequence selected for binding to ASF/SF2 or its replacement with beta-globin exon 2 only partially reversed the effect of the upstream negative element and the defective polypyrimidine tract. These results support the idea that exon-bridging enhancers are not a prerequisite for constitutive exon definition and suggest that intrinsically defective splice sites and negative elements play important roles in distinguishing the real splicing signal from the vast number of false splicing signals.
Collapse
Affiliation(s)
- H Sun
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | | |
Collapse
|
37
|
Sun X, Moriarty PM, Maquat LE. Nonsense-mediated decay of glutathione peroxidase 1 mRNA in the cytoplasm depends on intron position. EMBO J 2000; 19:4734-44. [PMID: 10970865 PMCID: PMC302051 DOI: 10.1093/emboj/19.17.4734] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
mRNA for glutathione peroxidase 1 (GPx1) is subject to cytoplasmic nonsense-mediated decay (NMD) when the UGA selenocysteine (Sec) codon is recognized as nonsense. Here, we demonstrate by moving the sole intron of the GPx1 gene that either the Sec codon or a TAA codon in its place elicits NMD when located >/=59 bp but not </=43 bp upstream of the intron. Therefore, the exon-exon junction of GPx1 mRNA positions the boundary between nonsense codons that do and do not elicit NMD, as has been shown for the 3'-most junctions of mRNAs subject to nucleus-associated NMD. We also demonstrate by using a regulatable promoter to drive GPx1 gene expression that cytoplasmic NMD is characteristic of steady-state mRNA, in contrast to nucleus-associated NMD. These findings clarify the mechanistic relationship between cytoplasmic and nucleus-associated NMD and offer the first demonstration that nuclear introns can influence cytoplasmic NMD. Finally, by analyzing hybrid GPx1 genes, we disprove the idea that the cellular site of NMD is determined by the efficiency of translation initiation.
Collapse
Affiliation(s)
- X Sun
- Department of Cancer Genetics, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | | | | |
Collapse
|
38
|
Petracek ME, Nuygen T, Thompson WF, Dickey LF. Premature termination codons destabilize ferredoxin-1 mRNA when ferredoxin-1 is translated. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2000; 21:563-9. [PMID: 10758507 DOI: 10.1046/j.1365-313x.2000.00705.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Ferredoxin-1 (Fed-1) mRNA is poorly translated in dark-treated tobacco (Nicotiana tabacum) leaves, resulting in destabilization of Fed-1 mRNA and a differential light/dark accumulation of the mRNA. Insertion of nonsense codons within the Fed-1 coding sequence disrupts the light regulation of Fed-1 mRNA abundance. Here we show that the nonsense codon effect results primarily from lowering the Fed-1 mRNA stability in light-treated leaf tissue and in rapidly growing tobacco cell cultures, but not in dark-treated leaf tissue. These results suggest that nonsense codons trigger a decay pathway distinct from that seen for Fed-1 mRNA in the dark. We propose that nonsense-mediated decay of nonsense-containing Fed-1 mRNA occurs in light-treated leaves and in non-photosynthetic tobacco culture cells where Fed-1 mRNA is being actively translated.
Collapse
Affiliation(s)
- M E Petracek
- Department of Botany, North Carolina State University, Raleigh, NC 27695, USA.
| | | | | | | |
Collapse
|
39
|
Slayton RL, Deschenes SP, Willing MC. Nonsense mutations in the COL1A1 gene preferentially reduce nuclear levels of mRNA but not hnRNA in osteogenesis imperfecta type I cell strains. Matrix Biol 2000; 19:1-9. [PMID: 10686420 DOI: 10.1016/s0945-053x(99)00056-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Osteogenesis imperfecta (OI) is a heterogeneous disorder of type I collagen resulting in varying degrees of severity. The mildest form of OI (Type I) is associated with bone fragility, normal or near normal stature and blue sclerae. All forms of OI are the result of mutations in COL1A1 or COL1A2, the genes that encode the proalpha1(I) and proalpha2(I) chains of type I collagen, respectively. Mutations identified in patients with OI type I lead to premature termination codons and allele-specific reductions of nuclear mRNA (termed nonsense-mediated mRNA decay or NMD), resulting in a COL1A1 null allele. In mammals, this process primarily effects RNA that co-purifies with the nuclear fraction of the cell. Using a semi-quantitative RT-PCR assay, we compare the relative amounts of normal and mutant transcripts in unprocessed hnRNA and mature mRNA isolated from the nuclear fraction of cells from 11 OI type I individuals with previously identified mutations distributed throughout the COL1A1 gene. While we detect about equal amounts of normal and mutant hnRNA from each cell strain, there is preferential reduction in the relative amount of mutant mRNA when compared to normal; only the cell strain with a mutation in the last exon escapes the major effects of NMD. Our data indicate that NMD targets mRNA rather than hnRNA for degradation, and that this occurs either during or after splicing but prior to cytoplasmic translation.
Collapse
Affiliation(s)
- R L Slayton
- Department of Pediatric Dentistry, College of Dentistry, University of Iowa, Iowa City, IA 52242, USA.
| | | | | |
Collapse
|
40
|
Noé V, Ciudad CJ, Chasin LA. Effect of differential polyadenylation and cell growth phase on dihydrofolate reductase mRNA stability. J Biol Chem 1999; 274:27807-14. [PMID: 10488126 DOI: 10.1074/jbc.274.39.27807] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have constructed tetracycline-responsive dhfr minigenes and transferred them to a Chinese hamster ovary cell DHFR-deficient deletion mutant to obtained cells in which dhfr transcription can be repressed by tetracycline (tet-off). DHFR mRNA half-life measured after the repression of transcription by tetracycline in these transfectants is about 1.5 h, which is significantly shorter than previously reported. In addition, we observed that DHFR mRNA is less stable in serum-starved cells than in exponentially growing cells. Given that the dhfr gene contains multiple polyadenylation sites, we analyzed the role of polyadenylation site usage on the stability of the resultant mRNA molecules. We found that DHFR mRNA is more stable when a strong polyadenylation site is used. Finally, we have observed that the relative lengths of the poly(A) tails for the different DHFR mRNA species correlated with their relative stability in growing versus resting cells.
Collapse
Affiliation(s)
- V Noé
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | | | | |
Collapse
|
41
|
Ragheb JA, Deen M, Schwartz RH. The Destabilization of IL-2 mRNA by a Premature Stop Codon and Its Differential Stabilization by Trans-Acting Inhibitors of Protein Synthesis Do Not Support a Role for Active Translation in mRNA Stability. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.163.6.3321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Abstract
To investigate the role that translation plays in the stabilization of the IL-2 mRNA, we inhibited protein synthesis in both cis and trans. To block translation in trans, we utilized the inhibitors puromycin (PUR) and cycloheximide (CHX), which differentially effect polysome structure. We found that CHX enhances the stability of IL-2 mRNA in cells stimulated with anti-TCR Ab alone, but it inhibits CD28-induced message stabilization in costimulated cells. In contrast, PUR had a minimal effect on IL-2 mRNA stability in either the presence or absence of costimulation. The differential effects of these two inhibitors suggest that: 1) CHX is unlikely to stabilize the IL-2 mRNA by inhibiting the expression of a labile RNase; 2) CD28-mediated IL-2 mRNA stabilization does not require translation; and 3) IL-2 mRNA decay is not coupled to translation. To block translation in cis, we generated sequence-tagged IL-2 genomic reporters that contain a premature termination codon (PTC). In both the presence and absence of costimulation, these PTC-containing mRNAs exhibit drastically diminished stability. Interestingly, the addition of CHX but not PUR completely restored CD28-mediated stabilization, suggesting that CHX can block the enhanced decay induced by a PTC. Finally, CHX was able to superinduce IL-2 mRNA levels in anti-TCR Ab-stimulated cells but not in CD28-costimulated cells, suggesting that CHX may also act by other mechanisms.
Collapse
Affiliation(s)
- Jack A. Ragheb
- Laboratory of Cellular and Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Mary Deen
- Laboratory of Cellular and Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Ronald H. Schwartz
- Laboratory of Cellular and Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
42
|
Gersappe A, Pintel DJ. A premature termination codon interferes with the nuclear function of an exon splicing enhancer in an open reading frame-dependent manner. Mol Cell Biol 1999; 19:1640-50. [PMID: 10022852 PMCID: PMC83958 DOI: 10.1128/mcb.19.3.1640] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Premature translation termination codon (PTC)-mediated effects on nuclear RNA processing have been shown to be associated with a number of human genetic diseases; however, how these PTCs mediate such effects in the nucleus is unclear. A PTC at nucleotide (nt) 2018 that lies adjacent to the 5' element of a bipartite exon splicing enhancer within the NS2-specific exon of minute virus of mice P4 promoter-generated pre-mRNA caused a decrease in the accumulated levels of P4-generated R2 mRNA relative to P4-generated R1 mRNA, although the total accumulated levels of P4 product remained the same. This effect was seen in nuclear RNA and was independent of RNA stability. The 5' and 3' elements of the bipartite NS2-specific exon enhancer are redundant in function, and when the 2018 PTC was combined with a deletion of the 3' enhancer element, the exon was skipped in the majority of the viral P4-generated product. Such exon skipping in response to a PTC, but not a missense mutation at nt 2018, could be suppressed by frame shift mutations in either exon of NS2 which reopened the NS2 open reading frame, as well as by improvement of the upstream intron 3' splice site. These results suggest that a PTC can interfere with the function of an exon splicing enhancer in an open reading frame-dependent manner and that the PTC is recognized in the nucleus.
Collapse
Affiliation(s)
- A Gersappe
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri-Columbia, Columbia, Missouri 65212, USA
| | | |
Collapse
|
43
|
Véniant MM, Kim E, McCormick S, Borén J, Nielsen LB, Raabe M, Young SG. Insights into apolipoprotein B biology from transgenic and gene-targeted mice. J Nutr 1999; 129:451S-455S. [PMID: 10064308 DOI: 10.1093/jn/129.2.451s] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Over the past five years, several laboratories have used transgenic and gene-targeted mice to study apolipoprotein (apo) B biology. Genetically modified mice have proven useful for investigating the genetic and environmental factors affecting atherogenesis, for defining apoB structure/function relationships, for understanding the regulation of the apoB gene expression in the intestine, for defining the "physiologic rationale" for the existence of the two different forms of apoB (apoB48 and apoB100) in mammalian metabolism and for providing mechanistic insights into the human apoB deficiency syndrome, familial hypobetalipoproteinemia. This review will provide several examples of how genetically modified mice have contributed to our understanding of apoB biology, including our new discovery that human heart myocytes secrete nascent apoB-containing lipoproteins.
Collapse
Affiliation(s)
- M M Véniant
- Gladstone Institute of Cardiovascular Disease, University of California, San Francisco 94141-9100, USA
| | | | | | | | | | | | | |
Collapse
|
44
|
Loflin PT, Chen CY, Xu N, Shyu AB. Transcriptional pulsing approaches for analysis of mRNA turnover in mammalian cells. Methods 1999; 17:11-20. [PMID: 10075878 DOI: 10.1006/meth.1998.0702] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Modulation of mRNA stability provides a powerful means for controlling gene expression during the cell cycle, cell differentiation, the immune response, as well as many other physiological transitions. Through the years, many different methods have been developed for measuring mRNA stability. Frequently mRNA stability is studied indirectly by analyzing the steady-state level of mRNA. Therefore by inference, changes in mRNA abundance are thought to affect only the stability of the mRNA, an assumption that is not always correct. Alternatively, direct measurements of mRNA decay are performed in a number of ways, including kinetic labeling techniques and administration of transcriptional inhibitors. Due to the nature of these techniques, they either are technically demanding or introduce a significant change in cell physiology. In addition, many critical mechanistic issues as to deadenylation kinetics, decay intermediates, and precursor-product relationships cannot be readily addressed by these methods. Here, we describe and discuss in detail two different transcriptional pulsing methods based on the c-fos serum-inducible promoter and the tetracycline-regulated promoter systems as an effort to better elucidate the mechanistic steps and regulation underlying differential and selective mRNA turnover in mammalian cells. Both systems allow unequivocal monitoring of deadenylation and decay kinetics as well as determination of precursor-product relationship. In addition, decay rate constants and half-lives are determined and used in both methods to quantitatively denote the mRNA stability. Thus, they provide a reliable way to determine subtle yet physiologically meaningful changes in mRNA stability. Application of one method or the other covers the study of mRNA turnover in most mammalian cell types under a wide range of physiological conditions.
Collapse
Affiliation(s)
- P T Loflin
- Department of Biochemistry and Molecular Biology, University of Texas Houston Health Science Center Medical School, Houston, Texas 77030, USA
| | | | | | | |
Collapse
|
45
|
Kim E, Ambroziak P, Véniant MM, Hamilton RL, Young SG. A gene-targeted mouse model for familial hypobetalipoproteinemia. Low levels of apolipoprotein B mRNA in association with a nonsense mutation in exon 26 of the apolipoprotein B gene. J Biol Chem 1998; 273:33977-84. [PMID: 9852051 DOI: 10.1074/jbc.273.51.33977] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Familial hypobetalipoproteinemia, a syndrome characterized by abnormally low plasma levels of low density lipoprotein cholesterol, is caused by mutations in the apolipoprotein (apo) B gene that interfere with the synthesis of a full-length apoB100. In many cases of familial hypobetalipoproteinemia, nonsense or frameshift mutations result in the synthesis of a truncated apoB protein. To understand why these mutations result in low plasma cholesterol levels, we used gene targeting in mouse embryonic stem cells to introduce a nonsense mutation (N1785Stop) into exon 26 of the mouse Apob gene. The sole product of this mutant Apob allele was a truncated apoB, apoB39. Mice homozygous for this "apoB39-only" (Apob39) allele had low plasma levels of apoB39 and markedly reduced plasma levels of very low density lipoprotein and low density lipoprotein cholesterol when fed a high fat diet. Analysis of liver and intestinal RNA from heterozygous apoB39-only mice revealed that the Apob39 mRNA levels were 60-70% lower than those from the wild-type allele. Interestingly, apoB39 was not cleared as rapidly from the plasma as apoB48. The apoB39-only mice provide new insights into the mechanisms of familial hypobetalipoproteinemia and the structural features of apoB that are important for lipoprotein metabolism.
Collapse
Affiliation(s)
- E Kim
- Gladstone Institute of Cardiovascular Disease, University of California, San Francisco, California 94141-9100, USA
| | | | | | | | | |
Collapse
|
46
|
Abstract
Some genes that contain premature nonsense codons express alternatively-spliced mRNA that has skipped the exon containing the nonsense codon. This paradoxical association of translation signals (nonsense codons) and RNA splicing has inspired numerous explanations. The first is based on the fact that premature nonsense codons often reduce mRNA abundance. The reduction in abundance of full-length mRNA then allows more efficient amplification during PCR of normal, minor, exon-deleted products. This mechanism has been demonstrated to explain an extensive correlation between nonsense codons and exon-skipping for the hamster Hprt gene. The second explanation is that the mutation producing an in-frame nonsense codon has an effect on exon definition. This has been demonstrated for the Mup and hamster Hprt gene by virtue of the fact that missense mutations at the same sites also are associated with the same exon-deleted mRNA. The third general explanation is that a hypothetical process takes place in the nucleus that recognizes nonsense codons, termed 'nuclear scanning', which then has an effect on mRNA splicing. Definitive evidence for nuclear scanning is lacking. My analysis of both nonsense and missense mutations associated with exon skipping in a large number of genes revealed that both types of mutations frequently introduce a T into a purine-rich DNA sequence and are often within 30 base pairs of the nearest exon boundary. This is intriguing given that purine-rich splicing enhancers are known to be inhibited by the introduction of a T. Almost all mutations associated with exon skipping occur in purine-rich or A/C-rich sequences, also characteristics of splicing enhancers. I conclude that most cases of exon skipping associated with premature termination codons may be adequately explained either by a structural effect on exon definition or by nonquantitative methods to measure mRNA, rather than an effect on a putative nuclear scanning mechanism.
Collapse
Affiliation(s)
- C R Valentine
- Division of Genetic and Reproductive Toxicology, National Center for Toxicological Research, Jefferson, AR 72079-9502, USA.
| |
Collapse
|
47
|
Thermann R, Neu-Yilik G, Deters A, Frede U, Wehr K, Hagemeier C, Hentze MW, Kulozik AE. Binary specification of nonsense codons by splicing and cytoplasmic translation. EMBO J 1998; 17:3484-94. [PMID: 9628884 PMCID: PMC1170685 DOI: 10.1093/emboj/17.12.3484] [Citation(s) in RCA: 341] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Premature translation termination codons resulting from nonsense or frameshift mutations are common causes of genetic disorders. Complications arising from the synthesis of C-terminally truncated polypeptides can be avoided by 'nonsense-mediated decay' of the mutant mRNAs. Premature termination codons in the beta-globin mRNA cause the common recessive form of beta-thalassemia when the affected mRNA is degraded, but the more severe dominant form when the mRNA escapes nonsense-mediated decay. We demonstrate that cells distinguish a premature termination codon within the beta-globin mRNA from the physiological translation termination codon by a two-step specification mechanism. According to the binary specification model proposed here, the positions of splice junctions are first tagged during splicing in the nucleus, defining a stop codon operationally as a premature termination codon by the presence of a 3' splicing tag. In the second step, cytoplasmic translation is required to validate the 3' splicing tag for decay of the mRNA. This model explains nonsense-mediated decay on the basis of conventional molecular mechanisms and allows us to propose a common principle for nonsense-mediated decay from yeast to man.
Collapse
Affiliation(s)
- R Thermann
- Department of Pediatrics, Charité-Virchow Medical Center, Humboldt University, Berlin, Germany
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Rae J, Newburger PE, Dinauer MC, Noack D, Hopkins PJ, Kuruto R, Curnutte JT. X-Linked chronic granulomatous disease: mutations in the CYBB gene encoding the gp91-phox component of respiratory-burst oxidase. Am J Hum Genet 1998; 62:1320-31. [PMID: 9585602 PMCID: PMC1377153 DOI: 10.1086/301874] [Citation(s) in RCA: 129] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Chronic granulomatous disease (CGD) is a hereditary disorder of host defense due to absent or decreased activity of phagocyte NADPH oxidase. The X-linked form of the disease derives from defects in the CYBB gene, which encodes the 91-kD glycoprotein component (termed "gp91-phox") of the oxidase. We have identified the mutations in the CYBB gene responsible for X-linked CGD in 131 consecutive independent kindreds. Screening by SSCP analysis identified mutations in 124 of the kindreds, and sequencing of all exons and intron boundary regions revealed the other seven mutations. We detected 103 different specific mutations; no single mutation appeared in more than seven independent kindreds. The types of mutations included large and small deletions (11%), frameshifts (24%), nonsense mutations (23%), missense mutations (23%), splice-region mutations (17%), and regulatory-region mutations (2%). The distribution of mutations within the CYBB gene exhibited great heterogeneity, with no apparent mutational hot spots. Evaluation of 87 available mothers revealed X-linked carrier status in all but 10. The heterogeneity of mutations and the lack of any predominant genotype indicate that the disease represents many different mutational events, without a founder effect, as is expected for a disorder with a previously lethal phenotype.
Collapse
Affiliation(s)
- J Rae
- Department of Immunology, Genetech, Inc., South San Francisco, CA, USA
| | | | | | | | | | | | | |
Collapse
|
49
|
Lee J, Novoradovskaya N, Rundquist B, Redwine J, Saltini C, Brantly M. Alpha 1-antitrypsin nonsense mutation associated with a retained truncated protein and reduced mRNA. Mol Genet Metab 1998; 63:270-80. [PMID: 9635295 DOI: 10.1006/mgme.1998.2680] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
alpha 1-Antitrypsin (alpha 1AT) provides the major protection in the lung against neutrophil elastase-mediated proteolysis. Inheritance of alpha 1AT deficiency alleles is associated with an increased risk of emphysema and liver disease. alpha 1AT null alleles cause the total absence of serum alpha 1AT and represent the ultimate in a continuum of alleles associated with alpha 1AT deficiency. The molecular mechanisms responsible for absence of serum alpha 1AT include splicing abnormalities, deletion of alpha 1AT coding exons, and premature stop codons. We identified an Italian individual with asthma, emphysema, and a very low level of serum alpha 1AT. DNA sequencing demonstrated the Mprocida deficiency allele and a novel null allele, QOtrastevere (c654 G-->A, W194Z), a nonsense mutation near the intron 2 (IVS2) splice acceptor site. To determine the molecular basis of QOtrastevere and specifically to evaluate whether this nonsense mutation interfered with mRNA processing by altered splicing, we used a Chinese hamster ovary cell line permanently transfected with QOtrastevere or normal M alpha 1AT with and without IVS2. Northern blot analysis demonstrated that the normal M construct, with or without IVS2, expressed alpha 1AT mRNA of a similar size. The nonsense mutation was associated with moderately reduced alpha 1AT mRNA regardless of the presence or absence of IVS2. Reduction in alpha 1AT mRNA regardless of the opportunity for splicing supports a translational-translocation model as the cause of reduced alpha 1AT mRNA rather than the nuclear scanning model. Pulse-chase studies followed by immunoprecipitation demonstrated an endoplasmic reticulum-retained 31 kDa QOtrastevere alpha 1AT, which was rapidly degraded. Although mRNA content was moderately reduced, retention and rapid intracellular degradation of the truncated form are the major mechanisms for the absence of secreted alpha 1AT.
Collapse
Affiliation(s)
- J Lee
- Clinical Studies Section, Pulmonary-Critical Care Medicine Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892-1590, USA
| | | | | | | | | | | |
Collapse
|
50
|
|